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As a consequence of the world energy supply problems large kilo
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and built to take advantage of the energy in the wind. These appara
tus are equipped with synchronous alternators for direct synchroniza
tion with utility networks. Because a wind turbine generator inher
ently has unique power system features - such as a large moment of
 
inertia relative to its power capacity and a continuously varying in
put torque - its electrical behavior must be investigated-ieither by
 
testing or by analysis. The transient response of the system to elec
trical faults is one mode of the system behavior that must-be studied
 
analytically rather than experimentally.
 

In order to obtain a measure of its response to short circuits
 
a large horizontal axis wind turbine generator is modeled and its per
formance is simulated on a digital computer. The baseline model for
 
the simulation is the DOE/NASA 100 kW wind turbine generator located
 
near Sandusky, Ohio.
 

Simulation of short circuit faults on the synchronous alternator
 
of a wind turbine generator, without resort to the classical assump
tions generally made for that analysis, indicates that maximum clear
ing times for the system tied to an infinite bus are longer than the
 
typical clearing times for equivalent capacity conventional machines.
 
Also, maximum clearing times are independent of tower shadow and wind
 
shear. Variation of circuit conditions produce the modifications in
 
the transient response predicted by analysis.
 

The model and simulation developed for this study of transient
 
stability are applicable for more extensive investigations of power
 
systems involving wind turbine generators, and will continue to be
 
useful until the extent that standard power system technology ap
plies directly to wind turbine power systems is fully determined.
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ABSTRACT
 

As a consequence of the world energy supply problems large kilo

watt and megawatt capacity wind turbine generators are being designed
 

and built to take advantage of the energy in the wind. These appara

tus are equipped with synchronous alternators for direct synchroniza-


Ption with utility networks. Because a wind turbine generator inher

ently has unique power system features - such as a large moment of
 

inertia relative to its power capacity and a continuously varying in

put torque - its electrical behavior must be investigated either by
 

testing or by analysis. The transient response of the system to elec

trical faults is one mode of the system behavior that must be studied
 

analytically rather than experimentally.
 

In order to obtain a measure of its response to short circuits
 

a large horizontal axis wind turbine generator is modeled and its per

fermance is simulated on a digital computer. The baseline model for
 

the simulation is the DOE/NASA 100 kW wind turbine generator located
 

near Sandusky, Ohio.
 

Simulation of short circuit faults on the synchronous alternator
 

of a wind turbine generator, without resort to the classical assump

tions generally made for that analysis, indicates that maximum clear

ing times for the system tied to an infinite bus are longer than the
 

typical clearing times for equivalent capacity conventional machines.
 

Also, maximum clearing times are independent of tower shadow and wind
 

shear. Variation of circuit conditions produce the modifications in
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the transient response predicted by analysis.
 

The model and simulation developed for this study of transient
 

stability are applicable for more extensive investigations of power
 

systems involving wind turbine generators, and will continue to be
 

useful until the extent that standard power-system technology ap

plies directly to wind turbine-power systems is fully determined.
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Chapter I
 

INTRODUCTION
 

As the Department of Energy (DOE) of the United States expands
 

its efforts to make wind turbine generators a viable and appreciable
 

part of the national power network, it becomes necessary that power
 

engineers gain a complete understanding of the electrical behavior
 

of wind turbine generators. The depletion of established sources
 

of fossil fuels and the consequent price increases for those energy
 

sources have turned attention to the energy available in sunlight
 

and wind.
 

1.1 Feasibility of Large Wind Turbine Generators
 

There has been, geographically; a widespread effort to produce
 

commercially economical quantities of electrical power with wind
 

turbines., Heretofore, all such efforts have been abandoned because
 

of the relatively high cost of producing the electrical power from
 

wind energy.
 

The largest wind powered electric system that has been built
 

to date was the Smith-Putnam machine, built in the early 1940's in
 

Vermont. This machine produced 1.25 MW of a.c. power (1). The
 

Danish government helped to develop and operate 200 kW experimental
 

wind powered systems after World War II (2). The British government
 

built a 100 kW wind turbine generator in the Orkney Islands in
 

1950 (3). The French built and operated several large wind powered
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powered electric generators in the period from 1958 to 1966 (4). Some
 

of the most advanced wind turbines that have yet been built were con

structed and operated in Germany during the period from 1957 to 1968
 

(5).
 

In every case the cost of the wind powered electricity was con

siderably in excess of the cost of conventional fossil fuel electric
 

generation. As a consequence, the projects were abandoned. Despite
 

their rejection what these early efforts to generate electricity from
 

the wind energy proved was the technical feasibility of producing
 

electrical power in this manner.
 

1.2 U.S. Government Wind Energy Program
 

The Federal Government has undertaken an accelerated program with
 

the objective of stimulating the development of wind energy conversion
 

systems capable of producing a significant amount of U.S. energy needs
 

by the year 2000. To accomplish this, a series of experimental wind
 

turbines from 100 kW to several megawatts rated capacity will be de

veloped over the next decade. It is anticipated that these develop

ments will be supported by an extensive research and technology effort,
 

leading eventually to the installation of 10 to 100 MW multi-unit
 

demonstration systems.
 

The first large scale wind turbine generator was designed and
 

built for the Department of Energy by the National Aeronautics and
 

Space Administration (NASA) at the NASA/Lewis Research Facility at
 

Plum Brook, Ohio, in 1976. One of the specific objectives of the
 

NASA/Lewis wind energy program was to develop cost effective wind
 

conversion systems that are compatible with user applications. The
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wind power generator at Plum Brook is used as the baseline model for
 

this research study.
 

1.3 Power System Stability
 

An.importantconsideration of a practical power system is stabil

ity.' For an alternating voltage 'power system stability is that prop

erty which makes it possible to,maintain synchronism between all in

terconnected machines for .both steady state and transient conditions.
 

The most important type of power system disturbance in transient sta

bility studies is a fatlt-applied and subsequently cleared (6). Sys

tem disturbances from faulis may upset the balance between input and
 

output power of one or mrematiinesof a synchronous system. If the
 

unbalance is too great or too prolonged, synchronism will be lost.
 

The most effective method of improving stability is to reduce the
 

duration of faults'with the use of high speed relays and circuit
 

breakers. This study of the effects of three phase short circuits
 

-on a wind powered,synchronous alternator and how some of the system
 

parameters govern these effects has been made in order to predict the
 

requirements-of fault correction relays and breakers for wind turbine
 

power systems.
 

1.4 Available Literature
 

Although there exists an appreciable catalog of literature deal

ing with wind power (7, 8), there is little documentation of analyt

ical and experimental data related to the power system stability of
 

wind power generators which have been built and operated in the past.
 

This sparse documented expertenoe is the result of several conditions:
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lack of funding to provide extensive analysis and data taking, private
 

proprietary projects, lack of support for mathematical analysis, dis

posal of records when projects were discontinued, failure to catalog
 

documentation. Further, the computational facilities and analytical
 

techniques available today were not available to earlier projects. In
 

any case, there is a scarcity of literature describing the electrical
 

considerations and network experience of wind powered generators.
 

With the advent of the current national program to develop wind
 

turbines, analysisof the electrical aspects of these systems has
 

been undertaken. Hwang and Gilbert (9, 10) have studied synchroniza

tion of a wind turbine generator with an infinite bus. Johnson and
 

Smith (11) have investigated the dynamics of wind powered generators
 

on utility networks. Work has been done by the General Electric
 

Company as part of an extensive analytical study for ERDA on wind tur

bine system application.- Pantalone has studied effects of large in

terconnected wind generators on power systems (12). Hwang has also
 

studied the use of excitation control and reactance to help stabilize
 

wind turbine generators (13).
 

1.5 Distinctive Wind Turbine Generator Features
 

There are distinctive features of wind turbine generators that
 

make them different enough from conventional power systems to warrant
 

an analytical study to determine the effect of wind turbine charac

teristics on power system stability. Among the characteristic fea

tures of wind turbine generators the two which have the most signif

icant effect on the power system performance are (1) high rotational
 

inertia of the wind turbine, and (2) the variability of the turbine
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excitation. The first characteristic is the product of the neces

sarily large area that the turbine blides must sweep in order to cap

ture appreciable energy from the wind. The second characteristic is
 

the result of the inherent variability of the wind as well as modifi

cations to the wind stream that result from the large system struc

ture.
 

This study of the transient response of a wind turbine generator
 

to three phase faults considers especially these two characteristics
 

and the concomitant features. that these characteristics produce.
 

Variations of the baseline wind turbine model have been used to
 

examine the effects of three phase faults on the performance of the
 

electric power system.
 

1.6 Summary 

The chapters which follow discuss the theory applied in this
 

analytical study. Chapter II expresses the electrical theory in

volved in first swing transient stability analysis of synchronous
 

machinery. Chapter III presents the model used for studying the be

havior of the wind turbine power system. Included in Chapter III is
 

a discussion of the computer simulation. In Chapter IV the results
 

of the analysis are presented and explained, The last section dis

cusses the conclusions derived from the analysis and the recommenda

tions for additional study of wind turbine power system stability.
 



Chapter II
 

ANALYSIS OF THE RESEARCH PROBLEM
 

The transient stability analysis of a wind turbine generator can
 

be approached with the standard analytical tools used to investigate
 

alternating current electric power systems. The wind turbine genera

tor, as any other alternating current power source, consists of a prime
 

mover, a transmission, and an alternator with an excitation control for
 

the alternator and a prime mover control to adjust the input torque.
 

However, significant differences exist between the wind turbine gener

ator and its operating environment and the conventional power system
 

and its environment.
 

2.1 Research Problem
 

The research problem is to determine the extent to which these
 

differences affect the fault response of the wind turbine generator
 

power system.
 

Two distinctive features of the wind power system are considered
 

in this analysis:
 

(1) the turbine (prime mover) has much more rotary inertia than
 

any other rotating component of the system, in fact, much
 

more inertia than the rotating elements of conventional
 

power systems of equivalently rated output power;
 

(2)wind, the source of excitation (torque input), is continfi

ally varying.
 

6 
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A wind turbine generator is an electromechanical system, and any
 

system disturbance produces a transient response. If any bounded in

put disturbance to the system produces a bounded output,. the system
 

is stable. Power system stability is that property of a power sys

tem that enables it to remain in operating equilibrium (synchronism)
 

during and following transient faults and circuit changes.
 

The power system stability problem becomes very complex when a
 

network of machines and loads is considered-. A large set of non

linear coupled equations of the form
 

x f(x,u,t) (2.1)
 

must be used to describe the system performance.
 

2.2 Problem of the Single Machine on an Infinite Bus
 

Before undertaking network problems, an understanding of the
 

performance of a single machine must be developed. For this purpose
 

one synchronous alternator tied electrically to an infinite bus is
 

investigated. Figure 2.1 is a one-line diagram of a single alter

nator tied to an infinite bus through a transmission line. xe Is
 

the lumped reactance between the alternator voltage source and the
 

infinite bus. Line resistance is assumed to be negligible.
 

2.2.1 Swing equation. - Classically the motion of the alter

nator is described by the "swing equation" which relates the rotary
 

inertia torque of the rotating shaft to the net mechanical and elec

trical torque on the shaft.
 

A= T (2.2)
 

For convenience the angle e is measured with respect to the
 

synchronously rotating reference of the infinite bus.
 



xe Infinite Bus 

Figure 2.1-One machine tied to an infinite bus 

8 ? u 
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e = 6 + ot:' 

0=6
 

16= T (2.3) 

The variation of 6 as a function of time is indicative of the
 

transient stability of the machine represented. In practice, the
 

first swing of this function is usually the most gignificant in
 

assessing the stability of the machine. If the rotor angle increases
 

indefinitely, the machine will pull out of synchronism and stability
 

will be lost.
 

2.2.2 Classical assumptions. - The transient stability of one
 

synchronous alternator tied to an infinite bus is a classical prob

lem. The solution is based customarily on the following assumptions
 

(6):
 

(1) The mechanical input torque remains constant during the en

tire duration of the swing curve.
 

(2) Damping or asynchronous power is negligible.
 

(3) Synchronous power may be calculated from a steady state solu

tion of the network to which the machine is connected.
 

(4) The machine can be represented by a constant reactance (di

rect axis transient reactance) in series with a constant voltage
 

source (voltage behind transient reactance),
 

(5) The mechanical angles of the machine rotor coincides with
 

the electrical phase of the voltage behind transient reactance.
 

2.2.3 Applicability 6f assumptions to research problem. - For
 

this research effort, which considers the performance of a wind tur

bine generator in response to an electrical fault, none of the
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"classical assumptions" has been made. However, the applicability of
 

the assumptions to the wind turbine generator problem is discussed.
 

Assumption 1 is usually made because the input to the alternator
 

is controlled by a speed governor. When a fault occurs at the output
 

of the alternator, the output is abruptly changed, but the input re

mains unchanged. The alternator will vary about the synchronous
 

speed, but until synchronism is lost, the speed change is very small.
 

Usually the input governor will not respond until there has been a
 

one percent speed change, and even then there is usually a time lag
 

in the response. Accordingly, in the classical problem it is rea

sonable to assume that the mechanical input torque is constant dur

ing the duration of the swing curve.
 

In the case of the wind turbine generator, however, the-torque
 

input to the alternator is not controlled by a speed governor. The
 

torque input to the alternator is a function of the power limit of
 

the alternator. If the wind speed is below the system rated value,
 

the rotor blades are set at a fixed pitch angle, and the torque input
 

remains constant during a fault. If the wind speed is above the
 

system rated value, the input torque is limited to its rated value
 

by a power error signal controlling the rotor blade pitch. Then the
 

input torque response to the output change resulting from the fault
 

is limited only by the power sensor response time.
 

Assumption 2 is usually an acceptable simplification in the
 

classical model because damping or asynchronous power is small rela

tive to the synchronous power. The electrical output of a synchro

nous alternator consists of a synchronous part, dependent on the
 

angular position of the machine, and an asynchronous part depending
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on the angular speed of the machine.
 

Pe = Pd + P() (2.4) 

Although the asynchronous power may be small, its effect on tran

sient stability of wind power generators may not be negligible. As 

may be seen in plots of angle-time variation for a wind turbine gen

erator (Chapfer.), there is considerable variation of 6. The 

damping of the rotor swing is the result of the interaction between 

the airgap flux and the rotor windings, particularly the damper wind

ing, during slip ((d6/dt) # 0). 

Because the oscillation period of the alternator is relatively
 

long in comparison to time constants of the network, steady-state
 

conditions are usually assumed (Assumption 3).' In this research study
 

two different network models are considered for comparison.
 

The use of a fixed voltage behind the transient react&nce for
 

the alternator model (Assumption 4) is usually acceptable when the
 

only electrical transient which must be considered is the transient
 

component (rather than both the transient and subtransient components)
 

and its time constant is longer than the period of mechanical oscil

lation. The transient component and its time constant are not neces

sarily longer than the mechanical oscillation period in the wind tur

bine generator with its large rotor inertia. The prolongation of
 

the first swing due to the large rotor inertia and the availability
 

of fast response voltage regulators mean that the assumption of
 

fixed voltage during the transient is not warranted. Further, the
 

theoretical model of fixed voltage behind transient reactance is de

rived for the case of zero transient saliency or a round rotor ma

chine. To avoid any unwarranted simplification the alternator model
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for this research is the complete set of Park's equations. The use
 

of this model makes Assumption 5 unnecessary.
 

The set of equations describing the model for this research was
 

solved on a large digital computer. This facility made it unneces

sary and undesirable to make any assumptions merely to simplify the
 

mathematical solution.
 

Analyses of synchronous machines are simplified if the effects
 

of saturation, hysteresis, and eddy currents in the iron are ne

glected. The importance of these neglected effects varies with the
 

problem and the operating conditions. They are relatively unim

portant in the calculation of initial symmetrical rms short circuit
 

currents of fundamental frequency, especially if the fault is sepa

rate from the synchronous machine by transformers and transmission
 

lines (14).
 

2.2.4 Critical clearing time. - When a three phase dead short
 

is placed across the output terminals of an alternator, the output
 

power is reduced to zero immediately. There is then an accelerating
 

torque applied to the alternator rotor because the input power has
 

not been reduced. The alternator rotor continues to accelerate as
 

long as this unbalance remains- The displacement of the power angle
 

with respect to the infinite bus increases and synchronism is lost.
 

If the short is removed before synchronism is lost, the accel

erating power becomes negative with the resumption of the electrical
 

load. If the decelerating power of the load is sufficient, the rate
 

of change of the alternator power angle will become zero and reverse
 

the angle change before synchronism is lost. For a given initial
 

load, the maximum power angle at which the short circuit must be
 



-13
 

cleared in order toprevent loss of synchronism is the critical clear

ing angle. Because power angle is ordinarily.ibt known explicitly,
 

critical clearing time, the time between application of the fault and
 

clearing of the fault, is used in stability studies. The relays and
 

breakers that are used to clear faults operate as timing devices
 

rather than power-.angle devices.
 

2.3 Factors Affecting Clearing Time
 

2.3.l.Effect of inertia on clearing time. - Two synchronous
 

generator design parameters which affect the critical clearing time
 

for faults are the rotary inertia and the transient reactance. In

tuitively it is rational that an increase in inertia increases the
 

time required to reach the critical angle. Analytically, from the
 

classical swing equation it can be shown (6) that the time required
 

for the power angle to change from 61 to 62 as a result of an ac

celerating torque T is
 

t = (I112f ~ (T d6) d6 (2.5)2-/
 

Usually no-literal solution for this equation exists. The
 

equation indicates, however, the dependence of the clearing time on
 

the square root of the inertia as well as on the accelerating
 

torque.
 

2.3.2 Effect of transient reactance on clearing time. - The
 

effect of the transient reactance, xA, on the clearing time can be
 

seen from the relationship that the accelerating torque in the swing
 

equation is the difference between the input shaft torque and the
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electrical torque.
 

T = Tsh - Te (2.6)
 

For a synchronous machine with both a field and an amortisseur
 

winding the fundamental frequency component of torque following a
 

three-phase short is given by Concordia (15) as
 

Te(fund) =vtTA[Qp Qs d t-t-tJt A+.sin t 

(2.7)
 

where
 

2x i
 
TA = r(-" +q ) (2.8) 

The first term within the brackets of equation (2.7) is the sub

transient component with a very short time constant relative to the
 

transient component, the second term within the brackets. The first
 

term can be neglected for the comparison being made. In the second
 

term, xd is ordinarily four to ten times the magnitude of x,
 

Therefore, the magnitude of the torque Te decreases with increasing
 

xA. The unbalanced accelerating torque thus increases with increas

ing x,. As a consequence, the clearing time decreases with increas

ing reactance between the machine terminals and the short circuit.
 

This conclusion follows from the fact that a symmetrical three phase
 

reactance xe between the machine terminals and the short circuit
 

,becomes part of the armature circuit and is added to- Xd, x, x, xq,
 

x4, and x".
 
q'
 

2.3.3 Synchronous damping. - Two of the functions of damper
 

windings in a synchronous alternator are (1) to suppress hunting,
 

and (2) to damp oscillations that result from faults. Damper action
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in the synchronous machine is explained with induction motor theory.
 

In an induction mkchine the torque at small slips is almost directly
 

proportional to the slip. Therefore, in calculation of synchronous
 

damping the damping torque is assumed proportional to the slip. How

ever, because of the difference between the direct and quadrature
 

axes, the constant of proportionality depends upon the angular posi

tion of the rotor, the power angle (16). An equation for the damping
 

power has been developed by Park (17) and modified by Dahl (18).
 

The relationship is based on the following assumptions:
 

(1) No resistance in either the armature or field circuit.
 

(2) Small slip; where slip s -is.per unit sllp-.
 

(3) Damping caused by only one set of damper windings.
 
(xf~x--x ,, ] 

2
P = E2sLd - ) T" sin26 + q ) T' cos (2.9)
d e 2 do (Xe + x) 2 qQo


Sd) qj
 

The derivative of this damping power with respect to 6 is
 

dPd -q xd -Q(2 o] 1
-
dS E s;,I -)-2 T" - T" sin 26 (2.10)

(Xe + x)2
Lxe + d do q 

-

- (-4.2xi0 3 sin 26)6 for xe = 0.4 pu 

-
= (-5.9x103 sin 26)6 for xe 0.009 pu
 

Equation (2.9) shows the inverse relationship between damping power
 

and external reactance which is one of the parameters examined in
 

this research. Equation (2.10) has been evaluated for the synchro

nous alternator modeled in this study. The negative coefficients for
 

practical values of the power angle 6 show that the damping power
 

decreases with increasing load.
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2.4 Wind Phenomena with Respect to Power Output
 

The wind, the normal driving energy source for a wind turbine
 

system is variable in speed and direction. This variability is very
 

much evident in the resultant drive train torque as well as the forces
 

imposed on the structure of the wind turbine systems Thus, even when
 

the system is operating-with a fixed load, the input to the system
 

is varying. Steady-state operation of the system is an infrequent
 

mode and must be defined with reference to the input torque varia

tion.
 

Several phenomena affect the velocity of the wind relative to
 

the wind turbine, and, consequently, affect the torque developed in
 

the drive train. These phenomena include wind shear, tower shadow,
 

and blade flapping.

2.4.1 Tower shadow. - The significant wind variation in the
 

technology of wind turbine generators is that caused by tower.
 

shadow.
 

Most of the large wind turbines that have been built have had
 

the rotor downwind. The principal reasons for this configuration
 

are that (1) the flapping blade is less likely to strike the tower
 

on which the rotor is placed, (2) the rotor can be closer to the tower
 

and less balancing mass is necessary to keep the center of gravity
 

over the base of the tower,, and (3) if allowed to yaw freely, the
 

rotor will seek a downwind location as a stable position. As a con

sequence of the rotor being downwind of the tower on which it is
 

mounted, the tower is between the wind and the rotor blAdes as they
 

rotate. Even though the tower may be an open truss structure, it
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provides considerable blockage to a free. stream of air. The impedance
 

to the wind and the resulting torque reduction in the turbine drive
 

each time a blade passes behind the tower with.respect to the wind
 

is termed tower shadow.
 

The wind speed reduction and corresponding torque reduction that
 

are the result of tower shadow can be as much as 35 percent with a
 

truss tower (19). The torque reduction occurs n times per rotor
 

revolution for n-bladed rotor.' Thus, tower shadow produces an ever
 

present torque pulse n times per rotor revolution.
 

2.4.2 Wind shear. - Wind shear is the result of ground surface
 

friction on the wind. The wind speed normally increases with height
 

above the ground. The speed variation is expressed by the relation

ship 

Vw = Vwref (h/href)k (2.11) 

where the exponent k, is a function of the reference surface rough

ness. 

As a result of the wind shear the torque produced by each blade
 

varies as the turbine rotates. Because of the variation of the wind
 

speed with height, there is a periodically varying shaft torque as
 

the blades move through the wind field. For the wind turbine system
 

studied a value of k = 0.22 is used. This is a k value repre

sentative of open country acceptable for installation of large wind
 

turbines (20). The torque variation resulting from the wind shear is
 

not large (21). The frequency of the variation is twice the turbine
 

rotation frequency, however, and reinforces the tower shadow effect.
 



2.4.3 Bldde flexibility. - The rotor blades of large wind tur

bines are relatively flexible structures. The response of these
 

structures to aerodynamics and inertial loading results in blade
 

motion, particularly flapping, which alters the torque developed.
 

Study has indicated that these effects on rotor shaft torque are
 

not significant (21). These effects are not considered in this
 

study.
 

2.5 Coupling of Tower Shadow Excitation and Output
 

The tower shadow excitation has very important implications to
 

the 'wind turbine generator designer and operator. The entire sys

tem structure must be strong enough to withstand the loading which
 

results from the pulsing excitation. The frequency of the excita

tion must be kept sufficiently different from any structural natural
 

frequencies to avoid resonances. For the power engineers the con

cern is the extent to which tower shadow excitation is coupled to the
 

system power output.
 

2.5.1 Analysis of reduced model. - The existence of a twice per
 

turbine rotor revolution torque pulse is inherent in a downwind rotor
 

wind turbine with a two-bladed rotor. In order to reduce the cou

pling of that twithe'per revolution excitation into the alternator
 

power output the stiffness of the transmission drive can be reduced.
 

The variation of the mode frequencies of the transmission drive train
 

as a: fuiction of drive train stiffnesses can be examined with the
 

simplified model shown in figure 2.2.. The figure represents the
 

rotary inertias of the turbine rotor and the alternator coupled by a
 

stiffness equivalent to all the drive train stiffnesses. The alter
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nator is represented by the second spring with a stiffness equal to
 

the transient synchronous torque coefficient. The rotary motion of
 

the transmission drive is given by equations (2.12) and (2.13).
 

1101 + Kd(Bl - 02) = Tin (2.12)
 

1262 - Kd(81 - 82) + KA62 = +Tsh (2.13) 

The eigenvalue frequencies of the model are given by equa

tion (2.14) and are plotted as a function of drive train stiffness 

in figure 2.3. 

K '[K +Kd(d K)+ (2.14)11 

±[d K(d=Kd +KA + +~ A A) - K2142 
212 4 211 2 21 

The magnitude of these frequencies are carefully considered by wind
 

turbine structural designers in order to avoid a resonance from the
 

tower shadow excitation of the input torque. In this study these
 

resonant frequencies are of interest because the step action of a
 

three-phase short circuit will excite these frequencies.
 

Another, and a closer, approximation of these natural fre

quencies of the drive train and alternator can be obtained from an
 

eigenvalue analysis of the closed-loop system using linearized ver

sions of the system equations. A linearized set of these equations
 

is included in appendix D of this study.
 

2.5.2 Effect of tower shadow on swing curve. - The tower shadow
 

pulses that modulate the input torque of a downwind rotor wind tur

bine generator can affect the clearing time for faults across the
 

output of the alternator. Although the excitation is unidirectional
 

and approximates a half cosine wave in its variation, the alternator
 

responds by swinging continuously, almost sinusoidally. (This re
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sponse is illustrated in Chaper Wv-*herethe results of the system
 

simulation are described.) The rotor is continuously accelerating
 

and decelerating. The clearing time for a three-phase short circuit
 

depends upon the rotor acceleration due to the power pulsations plus
 

the acceleration due to the unbalanced torque from the fault.
 

2.5.3 Effect of alternator excitation system on swing curve. -


The effect of the alternator excitation system on the severity of
 

the first swing is relatively small, except for faults with long
 

clearing times (22). A very fast, high-response, excitation system
 

will usually reduce the first swing by only a few degrees, or will
 

increase the generator transient stability power limit by a few per

cent. The large inertia constant H of a wind turbine alternator
 

makes for longer than usual clearing time. A representation of the
 

alternator excitation system is warranted for this study.
 

2.6 Summary
 

The type of power system disturbance which is most important
 

in stability studies is a fault applied and subsequently cleared
 

(6). Faults are usually not permitted to remain on power systems,
 

any longer than is required for relays to detect their presence and
 

open the appropriate circuit breakers.
 

The classical approach to the transient stability analysis of
 

-afaulted synchronous alternator tied to an infinite bus involves
 

several simplifying assumptions. With the availability of modern
 

digital computers for the solution of sets of nonlinear differential
 

equations one of the reasons for making the assumptions is elimi

nated. At this early stage of investigations into the developing
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technology of wind turbine generators,- it is preferable to represent
 

the system characteristics mere closely. Concordia points out (23)
 

that when the effect of delayed fault clearing is to be studied, a
 

detailed alternator representation is desirable even though only the
 

first swing transients of the alternator rotor are considered. If
 

the simple concept of generator voltage behind transient reactance
 

is used, the effect of clearing time is smaller than in reality. It
 

follows that critical clearing times determined by a simplified sta

bility survey are likely to be longer than in reality.
 



Chapter III
 

SIMULATION MODEL
 

The model used in this study is that of a typical large hori

zontal axis wind turbine generator system. The essential elements
 

of the wind turbine system model are shown in the block diagram in
 

figure 3.1. This is the configuration of the DOE/NASA 100 and 200 kW
 

wind turbine generators already constructed as well as the larger
 

2 MW systems in development for the DOE.
 

A representative model consists of a large inertia turbine which
 

converts wind energy to mechanical energy by applying torque to a low
 

speed (20-40 r/min) shaft. A speed increaser converts the low speed,
 

high torque energy to a high speed (1800-3600 r/min), low torque en

ergy required to drive a conventional synchronous alternator. This
 

transmission is illustrated in figure 3.2.
 

For this study the model has a rigid turbine developing torque
 

that is transmitted by a drive shaft through a 1:45 speed changing
 

gear box. The reduced torque is transmitted to a synchronous gen

erator. The model is detailed in the following sections. The
 

definitionsodfthe terms in all equations are given in appendix A.
 

3.1 Turbine
 

The turbine model is a two-bladed propeller. The magnitudes of
 

the useful torque developed by the turbine q' calculated with a
 

2~4
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digital computer program developed by Wilson and Lissaman (24) and
 

modified for this research program. The turbine torque computer pro

gram uses a modified blade element theory and includes corrections for
 

tip losses. The usable wind energy depends on wind velocity, turbine
 

rotary speed, blade pitch angle, airfoil characteristics, and tur

bine geometry.- The turbine geometry consists of the characteristics:
 

blade length, number of blades, coning angle, and radial distributions
 

of chord and twist angle. The turbine model computer program calcu

lates shaft power, shaft torque, and thrust on the blades.
 

For a given blade geometry the torque vis3 generated as a func

tion of the wind speed perpendicular to the plane of the turbine, the
 

turbine rotational speed, and the blade pitch angle. The relation 

for torque is 

Tin = f(Vw, 81, S1) (3.1) 

Torque-pitch angle characteristics calculated by the program for sev

eral wind speeds at 40 r/min are shown in figure 3.3.
 

3.2 Drive Train
 

The drive train elements, that is, the low speed shaft,.'the gear
 

box, the high speed shaft, and the couplings, have been modeled as the
 

pi-network indicated in figure 3.4.- The rotational inertias of all
 

elements on the low speed side of the gear box, including the gear
 

box, have been combined into one inertia, If, separated from the com

bined inertia, 12' of all components on the high speed side of the gear
 

box, including the generator rotor, by the composite stiffness, Kd, of
 

all elements between the turbine and the alternator. Transmission
 

train lossed are accounted for by the damping factors B1 and B2'
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The simplification of the drive train to a pi-network is justi

fied on the basis that
 

(1) the rotational inertia of the turbine is much greater
 

(15 times) than the combined rotational inertias of all
 

other elements of the drive train, and therefore, it alone
 

essentially determines Ill
 

(2) the alternator rotor provides the largest rotational inertia
 

on the high speed bide of the gear box, and essentially
 

determines 12, and
 

(3) the large low speed drive shaft and the gear box are the
 

softest springs in the drive train and essentially deter

mine its effective stiffness.
 

The stiffness of the drive train determines the amount of cou

pling between the turbine and the alternator.- The extent of this
 

coupling becomes important to the network performance of the wind
 

turbine generator because-of the tower shadow effect on -the-input
 

torque excitation (21). Composing all'the drive train stiffnesses
 

into one spring facilitates treating the coupling parametrically while
 

permitting retention of the lowest oscillatory mode of the drive train
 

which is in a range most likely to excite power network modes. Since
 

the stiffnesses and inertias of elements other than the turbine, the
 

low speed shaft, and the alternator rotor are not readily available
 

from measurements or calculation, they are estimated. Little ac

curacy is lost, therefore, in resorting to an equivalent pi-network
 

for the drive train. The numerical values of the baseline model
 

drive train parameters are listed in Table 3.1.
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Table 3.1
 

STIFFNESS AND MASS MOMENT OF INERTIA OF 
BASELINE DRIVE TRAIN COMPONENTS
 

Mass moment Torsional
 
of inertia, stiffness,
 

N-m-sec2 N-m/rad
 

Turbine 127,735 "Rigid"
 
Low speed shaft 835 2.26x107
 

Gear box 281 1.88x107
 

High speed shafta b992 11i54X10 7
 

3,887 96.40x107
 Alternator rotora 

Pulleys and beltsa 3,356 7.28x107
 

aReferred to turbine speed.
 
bncludes disk brake.
 

The state space model of the equations of motion of the drive
 

train is
 

a1 0 1 0 0 °ll 0 0 

S KdK B1B1 KdKd 1 

I + 1 1 0n (3.2) 

62 0 0 0 1 62 0 0 Tsh 

K 
d12 0 

K 
dII 

B 
-2I- 62 0 -

1 
I 

2 i2 1i2 2 22 

(3.3)
"A N2 


6 poles> (3.4)
 

3.3 Alternator
 

The electrical generator modeled is a synchronous alternator de

scribed the classical Park's equations (17), modified by Olive (25),
 

to eliminate any explicit expression of inductance., The alternator
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equations reflect the assumption that the synchronous generator fre

quency is the same as the bus frequency as long as synchronism is 

maintained (26). No assumptions are made with respect to the relative 

magnitudes of the "transformer voltages" (dXd/dt, dXq/dt) and the 

"speed voltages" (wAd, Oq). The following equations describe the 

alternator.
 

e" -XI 

id (3.5) 
dd
 

= 
1d+id - ,, qqWId (337.6) 

-1
q ( X A 
dl
 d
 

deq [Vd + +raid - (eed Xqiq)W]0 
 (3.7)
 

d?, xq 

-- £+ r i + x- (3.8) 

" 
dts[Vqq - Xi)d + xel e 

eq =(xq q q d (3.9) 

ed d 

dt- A.(Td
 

( __- f qld) (3.12) 

de' - )Xd - xe'j e( 
dt T'6
 

de" ( XI - XID 
-q ,, ,, (3.13)
dt Tdf(X Pd eq2 
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de" ed= - (3.14) 
qbo 

The electromagnetic torque is
 

Te = e"i + ei - i iq(X - Xi") (3.15) 
d d q q d qd q 

TL = N( poes)(737.8 kvabase) Te lb-ft (3.16) 

.0 / 
=N=poles 737°.8 vb (0.1383)Teevba~2 Wo n-m 

The machine reactances appearing in the alternator equations 

include the output transformer and the tie line reactances. There

fore, the terms vd and Vq in equations (3.7) and (3.8) are the 

infinite bus direct and quadrature axes voltage components as shown 

in figure 3.5 where vt is the alternator terminal voltage. 

3.4 Alternator Excitation System
 

The modeled excitation system tends to maintain a constant power
 

factor load on the alternator as well as a constant output voltage
 

(13). Shown in block diagram form in figure 3.6 the excitation sys

tem is described by the following equations:
 

vt =Vref -vt + K F (317 

Avf = 'o6 + AVf (3.19) 

where, as shown in figure 3.5, 
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Vtd= Vd qXe (3.20)
 

Vtq = Vq + ide (3.21)
 

Vt (v2d + V2q)1/2 (3.22) 

Vd = sin & (3.23)
 

given
 

v = cos 6 (3.24)
 
q 

The term (Vref -vt) in equation (3.17) represents the voltage devia

tion; the term ((P/vt) - PF - ia) represents the power factor devia

tion. 

3.5 Turbine Blade Pitch Control
 

Blade pitch control is used to regulate power output of the al

ternator. At wind speeds below the system rated wind speed, alterna

tor output is correspondingly below the rated alternator power. At
 

these less than rated conditions the blades are kept at a fixed pitch 

"maximum power position." When the wind speed is above the rated value
 

(Table 3.1, the alternator is actively limited. Limitation is ef

fected by pitching the turbine blades. Output power is measured and
 

compared with the reference value to generate an error signal that
 

actuates the controller and the blade pitch servomechanism (fig. 3.7).
 

The equations describing the control action at and above rated wind
 

conditions are listed in state space form.
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0o 0 0 

0 0 1 + Ap (3.25) 

0 o 2s wK2 _ 

3.6 Computer Simulation
 

The wind turbine generator model described in the preceding sec

tions provides a set of nonlinear, interrelated, differential equa

tions. This set of equations was solved numerically with a computer
 

code developed for this study using CSMP - Continuous System Modeling
 

Program (27). Integration is performed using a fourth order Runge-


Kutta integration method with a fixed step size of 0.002. Options are
 

provided in the code for the inclusion of tower shadow effect, wind
 

shear effect, and gusting of the wind.
 

The CSMP INITIAL segment of the code includes a set of equations
 

that establishes the initial conditions of the system for any selected
 

power and power factor loading of the alternator. In the CSMP
 

DYNAMIC segment of the program a three phase short circuit can be ap

plied at any time for any duration. Subsequent to the application of
 

the fault the bus and alternator rotor speeds, which are identical
 

prior to the occurrence of the fault, are computed independently.
 

In cases for which a constant wind speed is assumed,the output
 

transients result from a three phase fault short circuit applied at
 

=
time t 0. In cases for which tower shadow effect is included, the
 

transient resulting from the introduction of tower shadow is permitted
 

to stabilize to a 'tteadystatd'prior to the application of the fault.
 

A listing of the computer program used for this study is included
 

as Appendix F of the dissertation.
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3.7 Summary
 

A block diagram of the complete wind turbine generator system
 

model for this study is shown in figure 3.8. The model has been con

figured for simulation on a digital computer to provide a measure of
 

the response of the alternator to three phase zero impedance short
 

circuits.
 

The numerical values of the system constants used in the simula

tion are listed in Appendix E.
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Chapter IV
 

RESULTS OF SIMULATION
 

The response of the synchronized wind turbine alternator to a
 

three phase, zero impedance, short circuit was simulated to examine.
 

the nature of the swing curve and to determine maximum clearing time
 

required to maintain synchronism. A tabulation of the numerical re

sults of the simulation are presentdd in Table 4.1 -forthe selected
 

parameters and operating conditions examined in the study.
 

4.1 Selected Operating Conditions and Parameters
 

4.1.1 External reactance. - Two values of external reactances
 

were selected for comparison. The lower value, xe = 0.009 pu, is

the tie line reactance of the Mod-O wind turbine which was used as
 

the baseline model for the research study. The second tie line re

actance, xe = 0.4 pu was selected as representative of a high reac

tance so that the two reactances spanned the probable range of values
 

to be expected realistically. In both cases the line resistance was
 

assumed negligible.
 

4.1.2 System parameters. - Two parameters of the wind turbine
 

system, the equivalent drive train stiffness and the total rotary in

ertia, were varied to observe the effects on first swing transients
 

resulting from short circuit faults. Both of these parameters are
 

structural features of concern to system designers as well as power
 

engineers°
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TABLE 4.1
 

MAXIMUM CLEARING TIME (WITHOUT LOSS OF SYNCHRONISM) 

Tie-line Drive train Relative Number of 60 Hz cycles in
 
'reactance, relative rotary. maximum short at given
 

pu stiffness inertial wind speed
 

14 mph 18 mph 30 mph
 
(wind speed*)
 

0.009 0.1 1.0 25 15 15
 
1.0 1.0 67 37 37 

10.0 . 1.0 67 38 38 
.1 .5 18 12 12 

1.0 .5 56 28 29
 
10.0 .5 53 29 30 

0.4 	 0.1 1.0 15 7 7
 
1.0 1.0 45 21 21
 

10.0 	 1.0 44 23 24
 
.1 .5 11 5 5
 

1.0 .5 33 15 16
 
10.0 .5 32 17 18
 

*Wind speed Corresponding load
 

14 mph = 6.2 m/s 0.4 pu, 0.8 PF
 
18 mph = 8.0 m/s 0.8 pu, 0.8 PF
 
30 mph = 13.4 m/s 0.8 pu, 0.8 PF
 

4.1.3 Electrical loads. - Three loading conditions were se

lected for examination: a 0.4 pu power load at a wind speed of
 

14 mph, a 0.8 pu power load at a wind speed of 18 mph, and a 0.8 pu
 

power load at a wind speed of 30 mph. All the loads have a 0.8
 

lagging power factor. The 0.8 pu load at 18 mph wind speed repre

sents the rated loading at rated wind speed for the baseline model
 

wind turbine. The 0.4 pu load is a 50 percent rated load and occurs
 

in the fixed blade pitch control mode of the system operation. The
 

0.8 pu load at 30 mph wind is the rated load in the variable pitch
 

or power limiting control mode of the system. The rated load at rated
 

wind speed is nominally at the interface of the two control modes.
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4.2 Determination of Maximum Clearing Time
 

To determine the maximum clearing time for a particular set of
 

operating conditions and system parameters a three phase short circuit,
 

zero impedance, fault was applied to the system at the infinite bus
 

terminals. The duration of the simulated fault, measured in terms
 

of cycles of the 60 Hz frequency, was increased successively in in

tegral values until a power angle swing that exceeded 1800 was ob

served. The short circuit transient preceding the occurrence of the
 

slipped pole determined.the maximum clearing time.
 

4.3 Tower Shadow and Wind Shear
 

The ever present tower shadow phenomenon in the downwind rotor
 

wind turbine generator and the wind shear produce a twice per tur

bine rotor revolution torque excitation that is coupled to the alter

nator through the drive train transmission. (A two-bladed turbine
 

rotor is implied.) The effect of this excitation on the baseline
 

system power outputis shown in figures 4.1 and 4.2.
 

A three phase short circuit fault applied to the system at a
 

time when the alternator rotor acceleration is at a maximum produces
 

the transient displayed in figures 4.3 and 4.4. The figure displays
 

the maximum clearing time for the system operating at the given power
 

conditions and experiencing tower shadow and wind shear. A short
 

circuit duration 1 cycle longer causes loss of synchronism, and
 

that result is also indicated in figures 4.3 and 4.4.
 

A short circuit applied to the baseline model simulated without
 

the tower shadow and wind shear effects produces the transient and
 

maximum clearing time illustrated in figures 4.5 and 4.6. The com
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parison is more easily seen in figures 4.7 to 4.10 in which the tran

sient curves of figures 4.3 to 4.6 are superimposed. The similarity
 

of the two transients implies that for the study of the effects of
 

this fault on the wind turbine generator tower and wind shear can be
 

neglected. This inference is drawn because the magnitude of both
 

tower shadow and wind shear simulated is probably as high as each
 

would ever be in a real wind turbine generator system.
 

For the nominal turbine speed used for the model the twice per
 

turbine rotation excitation produces a 1.33 Hz excitation frequency.
 

This frequency is above any of the low frequency mode values indicated
 

in Table 4.2 and does not excite other oscillation modes.
 

TABLE 4.2
 

COMPARISON OF SIMULATION AND EIGENANALYSIS FREQUENCIES
 

Alternator stiffness, 2537 lb-ft/elec rad 1390 lb-ft/elec rad
 
KA (xe = 0.009) (xe = 0.4)
 

Drive train relative
 
stiffness, KDa 0.1 1.0 10.0 0.1 1.0 10.0
 

Low-frequency mode
 

Simulation frequency,
 
Hzb 0.3 0.7 0.7 0.3 0.6 0.8
 

Eigenanalysis fre
quency, Hz 0.3 0.7 0.8 0.3 0.6 0.8
 

High-frequency mode
 

Simulation frequency,
 
Hzb 5.1 6.4 14.0 3.9 4.8 13.3
 

Eigenanalysis fre
quency, Hz 4.8 6.0 13.5 3.6 5.2 13.1
 

aStiffness relative to baseline model stiffness.
 
bFrequency determined from digital computer output listing.
 

The option to neglect the tower shadow and wind shear effects
 

was selected for this research study. This simplification materially
 

reduced computer time. If there is error in making this assumption,
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it is in the direction to reduce the maximum clearing time; that is,
 

the determination is conservative.
 

4.4 Typical Swing Curve
 

The typical result of the scheme of clearing time determination
 

adopted for this study is illustrated in figure 4.5. In this ex

ample 'a 37 cycle duration short circuit produces one big swing
 

that rapidly is damped so that the power angle returns to its steady
 

state value. A short circuit one cycle longer produces sufficient
 

acceleration to the rotor to cause loss of synchronism. The same
 

alternator rotor behavior is illustrated in figure 4.6 which shows
 

the relative speed of the rotor. Upon application of the fault at
 

time = 0, the rotor accelerates. At time 0.617 second (37 cycles)
 

the fault is removed and the frequency difference between the al

ternator voltage and the bus voltage produces the ensuing speed
 

oscillation that rapidly is damped. Increasing the short circuit
 

duration to time= 0.63,second (38 cycles) produces sufficient rotor
 

acceleration to drive the alternator out of synchronism.
 

The configuration of the swing curve presented in figure 4.5 and
 

the damped oscillation of the rotor speed curve of figure 4.6 are
 

representative of the transient responses produced by the application
 

of a three-phase short to the wind turbine generator system output
 

for different system parameter values and/or operating conditions.
 

In each case for which synchronism is not lost, application of the
 

fault produces a large positive swing of the power angle curve that
 

lasts for 1 to 3 seconds before the angle returns to a damped oscil

lation about the final value. The generalization is indicative of the
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order of magnitude of the duration of the transient.
 

4.5 Oscillation Modes
 

Two frequencies are evident in the swing and the ensuing damped
 

portion of the transient. The same oscillation frequencies are
 

recognizable- in the rotor speed curves. The higher frequency
 

oscillation is rapidly damped; the lower frequency experiences less
 

damping as the transient gradually subsides to the steady state
 

value.
 

Changing system parameter values and/or operating conditions
 

changes the frequency and amplitude of the oscillation, but does not
 

alter the transient function radically.
 

The eigenvalue analysis of the simplified model depicted in fig

ure 3.4 provides good predictions of these two modes of oscillation
 

which occur in the more detailed, closed loop simulation output.
 

The correspondence of the system simulation output frequencies de

termined from the digital computer printout and the eigenvalue anal

ysis frequencies is showniin table 4.2.
 

The lower frequency mode is the effective natural frequency of
 

the alternator. It is determined by the "spring" of the alternator
 

synchronous torque and the rotary inertia of the rotating shaft.
 

The higher frequency mode is produced by the spring-mass combination
 

of the alternator rotor and the synchronous torque paralleled to the
 

drive train spring..
 

4.6 Effect of Rotational Inertia
 

The influence of the rotary inertia on the maximum clearing time
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is shown in Table 4.3. Tabulated are the ratios of maximum clearing
 

times for system conditions matching in all respects except rotary in

ertia.- The mean value for the 18 ratios examined is 1.3. The pre

dicted ratio from the analysis (eq. (2.5)) is 21/2. The result of
 

the simulated effect of inertia on clearing times matches the ex

pectations from earlier analysis.
 

4.7 Effect of Power Load
 

Clearing time is effectively inversely proportional to load.
 

The dependence of-the duration of maximum clearing time on alterna

tor power level is illustrated by the ratios in Table 4.4. The ra

tio of clearing times for a 0.4 pu load and an 0.8 pu load for 12
 

otherwise matching systems is. calculated. The mean value of the
 

12 ratios tabulated is 1.9, corresponding to the inverse of the load
 

ratio. This result implies the generalization that, in spite of the
 

nonlineatities present in the wind torque characteristics, in the
 

alternator model, in the control modes, and in the parameter selec

tions used, clearing time is effectively inversely proportional to
 

load, The implication is further substantiated by the result that
 

clearing times for an 0.8 pu load at 18 mph and at 30 mph wind speeds
 

are substantially the same.
 

This close correspondence in clearing time ratios exists even
 

though the values of the partial derivatives which describe the wind
 

turbine torque characteristics differ considerably at the two wind
 

speeds investigated. The differential torque developed by the wind
 

turbine can be expressed by equation (4.1). (See also Appendix D.)
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TABLE 4.3 

EFFECT OF ROTARY INERTIA ON -MAXIMUM CLEARING TIME 

Tie-line Drive train Relative Number-of 60 Hz cycles Clearing times ratio for 2:1
 
reactance, relative rotary in maximum short at inertia ratio
 

pu stiffness inertia given wind speeds
 
14 mph 18 mph 30 mph
 

14 mph 18 mph 30 mph (wind speed*)
 

0.009 	 0.1 1.0 25 15 15
 
.1 .5 18 12 12
 

1.0 1.0 67 37 37
 
1.0 .5 56 28 29
 

Ln 
10.0 1.0 67 38 38 1.3 1.3 1.3o
 
10.0 .5 53 29 30
 

0.1 1.0 15 7 7
.1. 11.4 	 1.4 1.4°1 .5 11 5 5
 

1.0 1.0 45 21 21
 
1.0 .5 33 15 16
 

10.0 1.0 44 23 24
 

10.0 .5 32 17 18 

*Wind speed Corresponding load Mean ratio = 1.3 

14 mph = 6.2 m/s 0.4 pu, 0.8 PF 
18 mph = 8.0 m/s 0.8 pu, 0.8 PF 
30 mph = 13.4 m/s 0.8 pu, 0.8 PF 
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TABLE 4.4 

EFFECT OF POWER LOAD ON MAXIMUM CLEARING TIME 

xe Drive train 

relative 

stiffness 


0.009 0.1 

1.0 


10.0 

.1 


1.0 

10.0 


0.4 0.1 

1.0 

10.0 

.1 


1.0 

10.1 


*Wind speed 


14 mph = 6.2 m/s 


18 mph.= 8.0 m/s 


AT 


Relative 

rotary 


inertia 


1.0 

1.0 

1.0 

.5 

.5 
.5 


1.0 

1.0 

1.0 


.5 

.5 


.5 


Number of 60 Hz 

cycles in maxi-

mum short at 

given wind
 

speed*
 

14 mph 18 mph 

25 15 
67 37 
'67 38 
18 12 
56 28 
53 29 

15 7 
45 21 
44 23 
11 5 
33 15 
32 17 

Clearing times
 
ratio for 0.4/0.8
 

load ratio
 

1.7
 
1.8
 
1.8
 
1.5
 
2.0
 
1.8
 

2.1
 
2.1
 
1.9
 
2.2
 
2.2
 
1.9
 

Mean ratio 1.9
 

Corresponding load
 

0.4 pu, 0.8 PF
 
0.8 pu, 0.8 PF
 

Tin Tin TinA
--V +- -- I

-K v AVw + Ka A81 + K-aAB1 (4.1) 

The variation of the values of the gain factors (partial derivatives)
 

for the wind speeds 14, 18, and 30 mph are shown in Table 4.5.- A
 

plot of the wind turbine torque characteristics are shown in fig

ure 4.11.
 

The relationship between alternator load and clearing time is
 

seen in the similarity of the transient swing curves and speed curves
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TABLE 4.5
 

GAIN VALUES OF DIFFERENTIAL INPUT TORQUE
 
AT MODELED WIND SPEEDS
 

Wind speed, Kv, Kn, K8, 
mph (ft-lb/ft/sec) (ft-lb/rad/sec) (ft-lb/rad) 

14 1771 -4 152 71 418 
18 2441 -4 834 121 127 
30 2946 -20 382 393 707 

for the three sample wind speeds applied to the same system il

lustrated in figures 4.12 and 4.13. The clearing time for the
 

14 mph, 0.4 pu load is almost twice as long as the 0.8 pu loads.
 

The same comparison is made for the three sample loading conditions
 

in figures 4.14 and 4.15 for a tie-line reactance of 0.4 pu. For
 

each value of xe the reduced damping associated with the lower
 

frequency for the 0.4 pu power trace is evident. The lower fre

quency is associated with the alternator. The more lightly loaded
 

alternator is more lightly damped. This result is consistent with
 

the theory expressed by equation (2.10).
 

4.8 Effect of Drive Train Stiffness
 

Reduced drive train stiffness has a "decoupling" effect.
 

The effect of different drive train stiffness is illustrated in fig

ures 4.16 and 4.17, one set of curves for xe = 0.009 pu, and the
 

other set for xe = 0.4 pu. In each set of curves the transient
 

swings for the system with the baseline value of the drive train- stiff

ness and the system with the increased value of ten times the baseline
 

stiffness are not very different. However, the systems with the re

duced drive train stiffness show the "decoupling" effect of the
 

softer transmission line. In the case of each external reactance
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the same severe three phase, zero impedance, short circuit that
 

causes the large swings for the stiffer systems, produces in the
 

soft systems a transient whose frequency components are -damped in
 

one-third the time as the frequency components of the stiffer sys

tems.
 

The "decoupling" that results from the soft transmission also
 

has the effect of reducing the maximum clearing time over 60 percent.
 

The large turbine rotary inertia is not as closely coupled as in the
 

stiffer systems, and as a consequence of the reduced inertia the
 

rotor accelerates faster. Synchronism is lost more quickly. This
 

effect can be noted from a comparison of figures 4.18 and 4.19.
 

4.9 Effect of Tie-Line Reactance
 

The appreciable increase of the reactance between the fault and
 

the alternator terminals from xe = 0.009 pu to xe = 0.4 pu reduces
 

the maximum clearing time by almost 50 percent for otherwise corre

sponding circuit conditions. For the 18 pairs of corresponding con

ditions tabulated in Table 4.6 the average of the ratios of clearing
 

time for xe = 0.4 to clearing time for xe = 0.009 is 0.56. This
 

reduction is in accord with the reduced synchronous torque of the al

ternator. The equation for the synchronous torque is given by
 

Tsync xate+X ( ,o +e(x x )X x+)+ xe cos 26 (4.°2)d 

syn XdXd a 
-

q + 

The effect of increasing the reactance xe is to reduce the torque
 

coefficient Tsync. The torque coefficient is effectively the stiff

ness KA of the spring indicated in figure 2.2. Reducing the stiff

ness of the system enables the rotor to accelerate more rapidly, and
 



I I 

I 
K D 0.1, 16 CYCLES 

I 'I/ 

161.6 
1616- 

, .\ ~ .* 

WIND SPEED 30 MPH 

XE 0.009 Pu 

u- 121.2 "-KD 1.0, 38 CYCLES 

CD 

4 . 

-D 10.0, 39CCE 

S-- H.110 

0 S 

H.1/ 
I. 

FIGURE 4.18. - SWING CURVES FOR "STIFF" TIE-LINE WITH SELECTED DRIVE TRAIN $TIFFNESSES 

SHOWING LOSS OF SYNCHRONISM. 

69
 



'-K 0a1, 8 CYCLES
 
D
 

KD 10.0, 25 CYCLES-,
 

168.3 ; 

,-K D 1.0, 22 CYCLES
 

Li
 
C
 

135.7 

SX
 WIND SPEED 30 MPH
 

E PU
Li I E
 
tUI
 

193.1
 

.,0G H.25 
 J9 ', 9. 7 5 ,.W 1.2S 
 1. E0 
 1.7s 
 2 .09R 
2.2S 
 2.598

TIME SEC
FIGURE 4.19. 
 SWING CURVES FOR "SOFT' TIE-LINE WITH SELECTED DRIVE TRAIN STIFFNESSES
 

SHOWING LOSS OF SYNCHRONISM,
 

70
 



TABLE 4.6
 

EFFECT OF TIE-LINE REACTANCE ON MAXIMUM CLEARING TIME 

xe Drive train
relative 

Relative 
rotary 

Number of 60 Hz cycles
in maximum short at 

Clearing time ratio for
increase 

x. 

stiffness inertia given wind speeds 
14 mph 18 mph 30 mph 

14 mph 18 mph 30 mph (wind speed*) 

0.4 0.1 1.0 15 7 7 0.60 0.47 0.47 
.009 .1 1.0 25 15 15 

0.4 1.0 1.0 45 21 21 0.67 0.57 0.57 
.009 1.0 1.0 67 37 37 

0.4 10.0 1.0 44 23 24 0.66 0.60 0.63 
.009 10.0 1.0 67 38 38 

0.4 0.1 05 11 5 5 0.61 0.42 0.42 
.009 .1 .5 18 12 12 

0.4 1.0 0.5 33 15 16 0.59 0.54 0,55 
.009 1.0 .5 56 28 29 

0.4 10.0 0.5 32 17 18 060 0.59 0.60 
.009 10.0 .5 53 29 30 

Mean ratio - 0.56 

*Wind speed Corresponding load 

14 mph = 6.2 m/s 0.4 pu, 0.8 PF 
18 mph = 8.0 m/s 0.8 pu, 0.8 PF 
30 mph = 13.4 m/s 0.8 pu, 0.8 PF 



72
 

consequently the maximum clearing time for the fault is reduced.
 

The reduction of the alternator "stiffness" is indicated also
 

in Table 4.2 by the reduced frequencies for the xe = 0.4 cases.
 

This reduction is in accordance with equation (2.12) which relates
 

the mode frequencies to the drive train and alternator stiffness fac

tors, 

The additional line reactance has reduced the transient stabil

ity of the power system so that for a given steady state load the
 

system becomes unstable for a shorter fault duration. This behavior
 

of the system is displayed in figures 4.20 and 4.21.
 

Increasing the tie-line reactance xe also reduces the damping
 

power that is produced by the fault excitation. This reduction is
 

consistent with the analytical expression for damping power
 

(eq. (2.9)).
 

The changes in maximum clearing time and in the damping of the
 

transient following a short circuit to two systems with different
 

external reactances are depicted in figures 4.22 to 4.27. For a given
 

steady state load the system becomes unstable for a shorter fault
 

duration as figures 4.20 and 4.21 show.
 

4.10 Effect of Neglecting "Transformer Voltages"
 

As implied in Section 2.2.2 the classical assumptions for cal

culating the transient response of one synchronous alternator when
 

faulted with a three-phase short neglect the so-called transformer
 

voltages (dAd/dt, dAq/dt) on the basis of the assumption that they
 

are small in comparison to the so-called speed voltages (wAd' Wq)A
 

This assumption was not made during the previous simulations.
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In order to compare the transient response with and without the
 

simplifying assumption, the research computer program was modified
 

to assume the transformer voltages are negligible. When this assump

tion is made, the alternator equations (3.7) and (3.8) are modified to
 

equation (4.3) and (4.4).
 

ra(Vd - ej) + X(Vq - e") 

d x 1" 11+r2 
dq a 

xd(vd e") - r (Vg -ell)(4 

x"s" + r
dq a 

The results of including this simplifying assumption are illustrated
 

in figures 4.28 to 4.34.
 

Neglect of the transformer voltages produces a transient re

sponse very similar to the original response produced with the com

plete alternator model. The frequency content appears to be the
 

same. The maximum amplitude is increased slightly, and the maximum
 

clearing time is reduced slightly. Figures 4.28 to 4.31 show the
 

transient traces of the power angle for the application of a
 

34 cycle three-phase short circuit fault in each model. The
 

34 cycle fault is the maximum clearing time for the model neglecting
 

transformer voltages.
 

As a consequence of including the transformer voltages in the
 

model the simulation does not indicate loss of synchronism for faults
 

that cause loss of synchronism in the simpler model. The simplified
 

model provides more conservative results.
 

The relative values of transformer and speed voltages for the
 

example studied are shown in figures 4.30 and 4.31.
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A comparison of the swing curves for the baseline model with and
 

without transformer voltages is shown in figure 4.32. These are
 

swing curves for the critical clearing times for each model. The
 

loss of synchronism with and without transformer voltages in the
 

model are shown in figures 4.33 and 4.34 for the shortest duration
 

fault causing loss of synchronism.
 

4.11 Summar 

The maximum clearing time for a synchronous alternator of a hori

zontal axis turbine generator subjected to a three-phase, zero im

pedance short circuit was determined for a selected set of operating
 

conditions and system parameters, namely power load, tie-line reac

tance, drive train stiffness, and rotary inertia. The clearing time
 

determination was made by simulating a three-phase short circuit at
 

the infinite bus terminals of the power system.-


The maximum swing curve was obtained for each selected operating
 

condition without including tower shadow and wind shear excitation ef

fects. Although these two effects are significant to the system per

formance of the wind turbine generator, they do not substantially af

fect the fault transient studied'.
 

The typical maximum swing curve produced by the fault applica

tion and removal is a positive swing of the alternator power angle of
 

1 to 3 seconds duration. The two principal drive train modes of oscil

lation- frequencies appear prominently in the transient.
 

The effects upon the transient of the rotary inertia, the steady
 

state power load at th6 time-of the fault -occurrence, the drive train
 

stiffness, and the tie-line reactance were observed and quantified.
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Increased inertia prolongs the maximum clearing time; clearing time 

is inversely'proportional to power load; reduced drive train stiff

ness tends to "decouple" the alternator and turbine; increased tie

line reactance reduces maximum clearing time.
 



Chapter V
 

CONCLUSIONS AND RECOMMENDATIONS
 

The transient stability of a wind turbine generator - in par

ticular the response of that system to a short circuit fault - was
 

investigated in this study. The scope of the problem was limited to
 

a single wind generator tied by one transmission line to an infinite
 

bus. -The 100 kW DOE/NASA wind turbine generator at Plum Brook, Ohio,
 

was used as the baseline system for simulation on a digital com

puter.
 

5.1 Conclusions
 

There are two facets to the results obtained in this research:
 

one aspect is the validity of the results - how well do they reflect
 

the theory; the other aspect is the magnitude of the results -'what
 

is the significance of the maximum clearing times calculated, 

5.1.1 Confirmation of analysis. - The relationships observed in 

the performance of the model and listed hare indicate that the re

sults of the simulation support the analysis that precedes them,
 

1. Tower shadow and wind shear which produce a twice per turbine
 

revolution oscillation of the alternator power angle and thus a power
 

oscillation have little or negligible effect on the transient result

ing from a three-phase fault.
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2. The maximum clearing time for the wind turbine alternator sub

jected to a three-phase short varies directly as the square root of
 

the mass moment of inertia of the system.
 

3. The maximum clearing time increases as reactance between the
 

alternator and the infinite bus is reduced.
 

4. Maximum clearing time increases with decreasing power load,
 

5. The maximum clearing time depends on the electrical load
 

rather than the wind speed. When the load is doubled, the clearing
 

time is halved; when the wind speed is almost doubled while the load
 

remains constant, the clearing time is unchanged.
 

6. As the drive train stiffness decreases so that there is less
 

coupling between the turbine and the alternator, the maximum clearing
 

time decreases. The relatively large inertia of the turbine becomes
 

less effective in prolonging the clearing time as the coupling de

creases.
 

The transient characteristics enumerated are in agreement with
 

the power system theory discussed in Section 2 of this dissertation
 

and with the phenomena observed in conventional alternating voltage
 

power systems. Accordingly, the simulation model used in this research
 

is valid for studying the transient phenomena of a wind turbine gen

erator following a three-phase short circuit fault.
 

5.1.2 Significance of'results. - Simulation of the wind turbine
 

generator tied to an infinite bus yields maximum clearing times for 

a three-phase, zero impedance short circuit that range from 67 cycles
 

(1.12 sec) to 37 cycles (0.62 sec) as the power load ranges from
 

0.8 to 0.4 pu at 0.8 power factor on a "stiff" line. On a "soft" 

line the maximum clearing times range from 45 cycles (0.75 sec) to 
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21 cycles (0.35 sec) for the same load range. These times are rela

tively long clearing times for the average power circuit response to
 

a three-phase, zero impedance fault.
 

Comparison of simulation results using a model which assumes
 

that the "transformer voltages" are negligible with simulation re

sults using a model including "transformer voltages" indicates the
 

validity of assuming that the "transformer voltages" are negligible
 

for the type of transient study performed for this research.
 

In order to provide a comparison between the wind turbine gener

ator and conventional power equipment the function plotted in fig

ure 5.1 is included. The figure is extracted from the General
 

Electric Company publication "Electric Utility Systems and Practices"
 

(28). It is represented in that publication as characteristic of a
 

"typical system." The data is presented in this discussion to il-

lustrate the limitation of the time scale of the switching time to
 

1 second. To provide 08 pu load stability the switching time for
 

the 'typical" circuit must be less than 0.1 second. This limitation
 

is considerably less than the 0.75 second limitation of the wind tur

bine generator on a "soft" line.
 

The significance of the relatively long clearing time available
 

with the wind turbine generator is that the system does not impose
 

a requirement for extremely fast relays and circuit breakers on its
 

circuits in order to maintain transient stability.
 

5.2 Recommendations for Additional Research
 

The simulation and determinations of fault transients developed
 

in this study lead logically to the consideration of wind turbine
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generator performance in a network. Among the problems which can
 

profitably be studied with the application of the simulation and in

formation generated in this study are the following:
 

1. The two machine problem wherein both power generators have
 

the same or similar capacity.
 

2, Transient stability of a wind turbine generator tied to a bus
 

by more than one transmission line.
 

3. The effect of the excitation system on the stability of the
 

wind power system.
 

4. Transient stability for types of faults other than three-phase
 

short circuits.
 

5. The effect of stability of a cluster of several wind turbine
 

generators tied together electrically.
 

The directions that further investigations in this field can
 

take are as numerous as those which conventional power systems
 

studies take. As the first -studies are accomplished, how much of
 

standard power system technology applies directly to wind turbine
 

power systems should become progressively more evident.
 



APPENDIX A 

SYMBOLS 

Alternator Constants 

Lff,Lzzd,Lzzq self inductance of field and damper circuits in 

-direct and quadrature axes 

MafMaZdMazq Maximum mutual inductance between armature circuit 

and field or damper circuits in direct and quad

rature axes 

ra stator resistance in direct and quadrature axes 

circuits 

xd,xq synchronous reactance in direct and quadrature axes 

circuits 

XdX transient reactance in direct and quadrature axes 

circuits 

Xd? 'xq subtransient reactance in direct and quadrature axes 

circuits 

Td'o direct axis transient open circuit time constant 
TT direct axis subtransient open circuit time constant 

TA direct axis transient short circuit time constant 

Td' direct axis subtransient short circuit time constant 

Vqoqo quadrature axis subtransient open circuit time 

constant, 
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Alternator Voltages and Flux
 

VdVq bus voltage in direct and quadrature axes circuits
 

VtdVtq stator voltages in direct and quadrature axes
 

'circuits
 

vt stator voltage
 

idliq stator currents in direct and quadrature axes
 

circuits
 

'a stator current
 

XdXq stator flux linkages in direct and quadrature axes
 

circuits
 

Xf field flux linkage
 

XUzdX£%q flux linkage in direct and quadrature axes
 

ed = - toMaqitq 

ed = - M Zq 
'' La£q ,.,q 

eql = woMafif
 

eq2 = woMkdiZZd
 

Maf
 

Maid
 
oL- ,gd
eq 0 d 

System Variables And Constants
 

BIB 2 drive train damping factors
 

h height above ground
 

href height above ground at which wind speed = Vwref 

H inertia constant 
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I mass moment of inertia 

11,12 mass moment of inertia of low speed and high speed 

components of drive train, respectively 

k wind shear surface roughness coefficient 

KVAbase, alternator kVA rating 

KA spring constant equivalent of alternator synchronous 

torque 

Kd equivalent stiffness of composite drive train spring 

KI gain constant of c6ntroller 

KPF excitation gain factor for power factor control 

Kv partial derivative of turbine torque with respect to 

wind speed 

Ka partial derivative of turbine torque with respect to 

blade pitch 

KO partial derivative of turbine torque with respect to 

rotational speed 

N gear ratio between high and low speed shafts 

p alternator instantaneous output power 

PF power factor 

poles number of poles of alternator 

PO electrical power output of alternator 

Pd damping power output of alternator 

P(6) synchronous power output of alternator 

s slip of alternator; or Laplace operator 

t time 

T accelerating torque 

Te electromagnetic torque 
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Tin turbine torque 

Tsh shaft torque to alternator 

Tsync - synchronous torque 

u control variable 

Vb infinite bus voltage 

V'ref voltage regulator reference voltage 

VRnom nominal regulator voltage 

VW wind speed 

Vwref wind speed at reference height href 

x state variable 

x e -external or tie-line reactance 

$nom reference blade pitch 

ai state variables of controller and pitch servo 

6 alternator rotor angle 

Cs pitch servo damping factor 

(l,62 position angle of low speed and high speed compo

nents of drive train model 

Te time constant of exciter 

W angular frequency of alternator 

Ws natural frequency of pitch servo 

Wo angular frequency of infinite bus 

QA angular frequency of alternator shaft 

no angular frequency of turbine 



APPENDIX B 

BASELINE MODEL OF WIND TURBINE GENERATOR 

The baseline wind turbine generator system for the analytical
 

model of this research is the DOE/NASA 100 kW wind -turbinegenerator
 

at the Plumbrook Station of the Lewis Research Center. This power
 

generator is referred to as the Mod-O system. The system is a pro

totype of.the first half dozen large wind turbine systems which will
 

be erected in the next several years. Although improved designs are
 

expected to evolve as each system is tested, the general configura

tion and composition of these systems are not expected to change
 

radically. On the basis of that expectation the Mod-O system was
 

esteemed to be a satisfactory model on which to base this stability
 

study. A schematic diagram of the Mod-O wind turbine generator drive
 

train assembly is shown in figure B.1.
 

System Description
 

Configuration
 

The Mod-O machine is a horizontal axis wind turbine generator
 

system mounted on top of a 30.5 meter truss tower. (General speci

fications of the system are listed in Table B-1.) The turbine
 

(rotor) blades are downwind of the tower, an arrangement that is
 

selected to provide safety from a blade striking the tower, and
 

which is also more stable with respect to yawing motions. However,
 

100
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Table B-I - General Specifications for the Mod-O 100 kW 

Wind Turbine Generator 

Configuration Horizontal axis, two-bladed down

wind turbine 

Power Output 100 kW in,8.05 m/s wind 

Cut-in Wind Speed 4.47 m/s 

Cut-out Wind Speed 17.88 m/s 

Turbine Speed 40 r/min 

Yaw Rate 1/6 r/min 

Tower Height 30.48 m 

Tower Weight 19,958 kg 

Blade Length 19.05 m 

Blade Weight 907.2 kg 

Airfoil NACA 23,000,-34 deg nonlinear twist 

Coning Angle 7 deg 

Hub Fixed type 

Generator Synchronous, 125 kVA, 480 v 

Weight of Components on Tower 18,140 kg 

with this configuration the rotor blades are subject to tower shadow
 

effect whereby the wind forces on a blade are abruptly and substan-

tially reduced as the blade passes'behind the tower.
 

Rotor Blades
 

The rotor has two all-metal blades, each 19.0 meters long and
 

each weighing 907 kg. The blades are designed to produce 133 kW of
 

power at 8.05 m/s wind speed when rotating,at 40 r/min.
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Hub 

The hub connects the blades to the low speed shaft. The hub
 

also houses the mechanical gears, linkages, and actuators required
 

for changing the pitch of the blades to compensate for changing wind
 

and load conditions. Wind loads and centrifugal loads are absorbed
 

by the hub and transmitted to the low speed shaft. The hub is a
 

fixed hub; that is, the hub is bolted rigidly onto the main low
 

speed shaft with the blades fixed to the hub allowing only the pitch
 

change degree of freedom.
 

Pitch Change Mechanism
 

The pitch change mechanism consists of a hydraulic pump, a pres

sure control valve, an actuator, and a gear for connecting a linear
 

motion of the actuator to a rotational motion (pitch) for the blades.
 

The actuator is a rack and pinion that turns a master gear which in
 

turn rotates the blades by means of a bevel gear mounted on the roots
 

of each blade. The hydraulic pump is mounted separately on the bed
 

plate structure and the hydraulic fluid is brought into the low spe
 

shaft-through rotating seals, thence to the pitch change components
 

rotating at the other end of the shaft.
 

Bed Plate
 

The rotor, transmission train- alternator, and all shafts and
 

bearings are mounted on a bed plate. The bed plate is supported-on
 

a large gear bearing assembly which is capable of rotating (yawing)
 

the entire machine on top of the tower.
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Yaw Control
 

The yaw control is a dual control to increase 'structural stiff

ness between the tower and the rotating bed plate. Each pinion gear
 

is driven by an electric motor. The yaw rate is 1/6 r/mL. The con

trol is designed to follow slow directional changes of the wind
 

rather than sudden changes. The entire structure atop the tower is
 

enclosed in a fiberglass housing for protection from the environment. 

Transmission Train
 

The hub transmits the high torque at low speed to the gear box
 

via a low speed shaft. Out of the gear box a high speed shaft trans

mits the low torque at high speed, through a hydraulic slip coupling,
 

to the alternator-by means of a V-belt connection.
 

The gear box is a standard triple reduction design, but is used
 

in a step up ratio rather than the more conventional step down ratio
 

for which the gear box was originally designed. The gear box ratio
 

is 45:1.
 

Alternator
 

The alternator is an 1800 r/mrin synchronous machine, three 

phase, y-connected, and self-cooled with a directly connected brush

less exciter and regulator.- The machine is rated at 125 kVA, 0.8
 

power factor, 480 volts, 60 Hertz.
 

Tower
 

The tower upon which the entire wind- turbine generator is placed 

is 30.5 meters tall, constructed of steel, and is a pinned truss 
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design. It rests on a concrete foundation. The tower is designed to
 

withstand high wind and thrust loads,- both steady and cyclic.
 

Controls
 

The wind turbine generator system develops a net power of 100 kW
 

at wind speeds of 8.05 m/s and greater. Between 4.47 m/s and 8.05
 

m/s the rotor blade pitch is fixed and the net power is a function of,
 

the wind speed. At wind speeds greater than 8.05 m/s the net power
 

generated is limited to 100 kW by rotating the variable pitch blades 

toward feather, spilling the excess efergy in the wind. At-wind
 

speeds of 17.88 m/s or greater, the turbine blades are completely
 

feathered, shutting down the system.
 



APPENDIX C 

DETERMINATION OF STEADY STATE INITIAL CONDITIONS
 

Alternator
 

The phasor diagram representing the initial conditions of the 

synchronous generator prior to a fault is shown in figure C.l. Given 

(1) Infinite bus voltage, VB
 

(2) Alternator power, P,
 

(3) Power factor, cos 8,
 

such that P = VtIa cos 0, determine 4.
 

AC AB + BC VB sin4 +Iaxe 
tan e = -A- OA VB cos 

P = VtIa cos 8 = VBIa cos
 

VB sin ' + XeP/VB costanG = 
 VB cos
 

2
 
sin o _ VB sin ' cos 4 + xeP 

V2 2
cos 8 . cos

sin cos 2 = sin 0 cos tcos e + XeP 	cos B 

B 

2 	 cos e + 2 xeP cos e2sin cos2 sinecos
V2 B
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sin e-(2 cos2 4) = (2 sin 4 cos O)cos 0+ 
2 XeP Cos 

V2 
0 

sin e(1 + cos 24) = sin 24 cos + 

2xeP cos 

2 

6 

sin 8 cos 20 - sin 20 cos 0= 

2 xeP cos 
V2 

B 

6 
sin e 

sin(8 -2) = 

2xeP cos 0 
V2 
B 

-sin e 

e -2 sin-1 2xepCos 0 -sin 

=0 + sin- I 
Bin e V2- (CI 

(a) Ia -

a VB cos 0 

((.2) 

(b-) Vt VB cOs 
t CosO0 

(C.3) 

& '- tan 1 DE 
OE 

DE = iaXq cos 4 + Iaxe cos - TaRa sin 

OE = VB +IaXe sin + faRa cos 0 +IaXq sin 
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R a s in 
( = tan-lf E(Xq + xe)cOs 4 - gla 

(e-) B + [(Xq + Xe) Sin + Ra cos 01a] (.4) 

Vf = VB cos a + axe sin(O + 
6) + IaR a cos(O + 6) + Idxd 

Since 

Idxd = [ia sin( + 6)ixd 

(d) Vf = VB cos 6 + IaL(xd + Xe)Sin( + 6) + Ra cos(4,+ )] 

(C.5)
 

(e) Id = Ia sin(O + 6), (C.6) 

(f) Iq = Ia cOs(4 + 6) (C.7) 

At steady state the derivatives of equations (3.12), (33.13), and
 

(3.14) are zero, so that
 

(g) Ed = 0 (C.8) 

(h) Eq2 = 0 (C.9) 

(i) Eql =Vf (C.10) 

S I(3.5)
() Ad = Eq IaXa
 

(k) Aq =-E d X'
'' - (3.6) 
d q(3) 

Simultaneous solution of equations (3.5), (3.6), (3.9), (3.10), and
 

(3.11) give
 

(z) El' = (Sq - x4 ')Iq (C.11) 

(M) Eq (xd - xd)ld + Vf (C.12)
 

(n) E'' (x - xd ")d + Vf (C.13)
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(o) Te =Edt Id + E''iq -I - x)(3.15) 

Drive Train 

The initial conditions for a steady state condition of the drive 

train with a constant input-torque is. given by the relationships 

shown in figure 3.4.
 

82 = 2 p
poles N (C.14)
 

Tin - io + 62 
 (C.15)
 

Turbine
 

The correct value of Onom (fig. 3.8) for the given-wind- speed
 

and nominal turbine speed will produce the torque required for the
 

power output desired and system losses. This value is determined
 

from the turbine torque program (Section 3.1) and can be tabulated
 

for operating conditions of interest.. For the appropriate value of
 

8nom other initial conditions of the controller are zero.
 



APPENDIX D
 

LINEARIZED SIMULATION MODEL
 

The complete set of 26 nonlinear differential equations which
 

comprise the simulation model have been linearized for small per

turbations, and the incremental equations are listed. The block
 

diagram for the system is shown in figure D.I.
 

The torque developed by the turbine is-expressed as
 

3T - -~-3 AG1 +WA% = KV + %,i+ K B 

2Ra R,a$
 

2 
d - q Q e + xA" 

!aXell 
 el + C2
 

Ce - C el
eql 3 4
 

eq2 Ceeq + C3 (Ra2+ d ) eq,+ 3 aC
 

- ClC3 (x' - xr')6 

iii
 



FdXCITamg
VIVOTAe 

OUTPUTAl 7',5RI.-A R 

4-2 01 

Figure Dol--Linearized simulation model block diagram
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1d Q 'R 
'
 - - c1+d Q e 

!a xd 
'q - Q e' --- e" + C26 

RaXee 
 + Rae
 
Vtd q eq e' + (VB CosSo C2Xe)
 

Vq=Xqxe e TV + Lx (V" sin So + ClXe)S 

Xex X 

Vt - (- RaVtdo + xq4vtqo)e' + -e (x'vtdo + RaVtqo)ettoQ VtoQ
 

tto
 
+v [VB(Vtdo COS &o Vtqo sin 6o) - XeCC2Vtdo+C Vtqo)jSO 


Hd
GRa 
, +~ 


Gx" HR" 
 CR Hx

Q
Te ( qo + + !!eq + (Ido + Q - e' - (CG - C2H)6 

= 3 , 4 e, + 

qTdo Tdo q do T 

= e -d~ AT RaCxA -xAx ea' - T'__ ae	q (R2 +a') eqTy ) + C _2 

0 OQ qO do 

R (xc - xt) (R2+ 	 (x - xx') 
a_ _ q_ _ T(s1_ 	 __ _ )ed? -q - 6'_ - __ 

d TQ eq - T''Q e' 2 T'' 
qo qo 	 qo
 

6
oI=- Qt - y G1+ D2 + ii
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Wx, HRa,, W GRa Hd 

6--= q io+22 +-)o - (do+ 2 - Hfe:I 

+Q q 	 e+ Q + - e2 ± ( 1cQ - 2H) 
122
 

62 
 62
 

S2 = 	 - s - 2 ssB2 +s3 

53 = - KIP(KVAbase) 

(xN'Vdo + VQo) ( aVdo - xdVqo) _--
 I + 	 -I 
 ell
 
q Qd 

+ IVBC'do cos 6o 1 qo sin 60 	 Cjgq0 ) 6-ld 

i =(Idxq' + IgoRa) el + (IdoRa - lqoxd) eti (Clud0 - C21gq) 

iaoQ q 1 aoQ "ia 

ye = Fleq' + F2eA' + F3ve + F46 

Vf = e 

= 2N62 

where 

Q = R . + x''dqa Xd q
 

VB(Ra cos 6o- x' sin 60)

C 
 Q 
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VB(XA cos 60 + Ra sin do)
' 

C2 = 	 Q
 

xd -	 A 
C3-	 x -x ,
 

Cd - 4
04 	 x -


W = 	Tbase(lb-ft)
 

(IdoX ' + IqoRa)F 	 = U P (q'Vdo + RaVqo) 
Teo t Q I VQ 

j
tPoK 	)(-RaVido
+
- xe 

U KpF (RaVdo - xA'Vqo) - (IdoRa - Igo')F2 	 Te Vto Q -aoQ 

/'VeP;
F + v)(XAVtdo+Rt
o
 
- e 	 -Vto2 Vt°Q / 

F3 = e
 

F4 = t(-- [vB(Ido cos 6o- lqo sin o) - (ClVdo - C2Vqo)]e( Vto 

- C21go)
+ 	(PBKpr(ClIdo 


ao
 

Cto)
\VB(Vtao Cos S~to sin&)d- -x(C2Vt + Cvq_____F 

to Lto 

do =-qoCxA' -	 ,) 
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H = EAAo - Ido(Xd - x4'
 

The system equations are expressed in state space form
 

=Ax +B u 

z =y
 

Matrices A and C are given on the following pages
 

B O0o0, IO..........oT
 

The-closed loop state equation is
 

=(A + B
 

where I is the identity matrix and
 

Y : 10,oo, ,oo,6,, o ......... 0]
 

The vectors x, u, and z are given by
 

qqd °l°'e'2'B1,02'B3,Ve' f, 

= 
u Tin
 

z = EXd,Aq,edeqleq2,id,iqVtd,vtq,vt,Te
 

Matrix dimensions are x(13,1), z(11,l), u(1), A(13,13), B(13,1),
 

C(11,13), K(1,24), and I(13,13),.
 



eq' ed il 01 62 02 01 02 B3 V vf 

C3 C4 1
 

Td To Tdo
 

2(R2+ ) (X - X') C1(xd - XA') 
do ToQ TdoQ T 

R,(xq - xq') R2 + xd-x_ _ 

T(oQ Tq'Q Tqo
 

BI _ KD_ KD 

FlT2 H .W ± x' +HR)\ W i GRa HzA'\ 1( R( -021)(~qog + 21 doid T211 T1jB2 y (010 

-) -2 sws w2 

- KIKVA(x&' Vdo + RaVqo) KIKVA(RaVdo - xa'Vqo) KIKVAEB(Ido cos So-qo sin 6)
SQ - (C1Vdo 
 c2Vqo)
 

F F
F1 F2
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MATRIX A (13'c13)
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Ra 
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6. Vt., sn~ -eCVd+lt. 
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APPENDIX E
 

SYSTEM CONSTANTS
 

Alternator Constants 

Base kVA = 125 kVA 

Base Voltage = 480 Volts 

Base Frequency = 60 Hertz 

Base Ohms = 1.,843 ohms per phase wye 

ra = 0.018 pu 

xd = 2.21 pu 

xd = 0.165 pu 

x " =.0.128 pu 

Xq = 1.064 pu 

x'' = 0.193 puq
 

TAO = 1.942 sec
 

T" = 0.011 sec
 

TA = 0.145 sec
 

T' = 0.008 sec
 

T" = 0.062 sec
 
qo
 

Tq' = 0.011 sec
 
q
 

Other Constants
 

B1 = B2 = 1,186 Po N-m/rad/sec where P0 is per unit output 

power 

h = 30.48 m 
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href = 9.14 m 

k = 0.22 

K, = 6"10-7 rad/kw-sec 

KPF = 0.2 

N =45 

poles = 4 

vb = 1.0.pu 

Cs = 1.0 

TO = 0.05 sec 

w0 = 377 rad/sec 

Ws ='9.4 rad/sec 

92A = 1,800 r/min 

no = 4.189 rad/sec 
S 



APPENDIX F
 

SIMULATION PROGAM LISTING
 

0000100 * THREE-PHASE SHORT CIRCUIT 
0000200 
0000300 FIXED ACTUAL,COUNT,EVERY,TOTALCOUHTR,COUNTBCOUNTW 
0000400 
0000500 FUNCTION BETIC1 = (14.366,1.0), (18.,0.2439),(30.,-0.9878) X=0.009 
0000600 FUNCTION BETIC2 = (14.361,1.0),(18.,0.1847),(30.,-10.9733) X=C.4 
0000700 
0000800
 

XXXXXXXXXIXXXXXXXXXXXX 
0001000 * X 
0001100 * INITIAL I
 
0001200 INITIAL X
 
0001300 *XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
0001400
 
0001500 NOSORT
 

0001600
 
0001700 * TOTAL IS THE NUMBER OF TINES THAT THE DYNAMIC PORTION OF THE
 
0001800 * PROGEAM CYCLES.
 
0001900 * COUNT IS THE MAXIMUM NUMBER OF CYCLES OF THE DYNAMIC PORTION OF THE
 
0002000 * PROGRAM ALLOWED WITHOUT A TRQTUR CALCULATION.
 
0002100 * KOUNTB,KOUHTR,KOUNZW ARE THE NUMBER OF CYCLES FOE WHICH THE CHANGE
 
0002200 * IN BETA,RPMROT,OR WNDVEL IN ONE CYCLE OF THE DYNAMIC PORTION
 
0002300 * OF THE PROGRAM IS GPEATER THAN BETALL,RPMALL, OF WNDALL,
 
0002400 * RESPECTIVELY, CAUSING A NEW CALCULATION OF TROTUR.
 
0002500
 
0002600 ACTUAL = 0
 
0002700 BETALL = 0.005
 
0002800 COUNTR = 0
 
0002900 COUNTB = 0
 
0003000 COUNTW = 0
 
0003100 EVERY = 20
 
0003200 COUNT = EVEPY-1
 
0003300 KOUNTR = 0.0 
0003400 KOUNTB = 0.0 
0003500 KOUNTW = 0.0 
0003600 RPMALL = 0.005 
0003700 TOTAL - 0 
0003800 TRQSET = 0.0 
0003900 TRQSUB = 0.0 
0004000 WNDALL = 0.04 
0004100 
0004200 SORT 
0004300 
0004400 * ALPHA IS ANGULAR WIDTH OF TOWER SHADOW. 
0004500 ALPHA = 30. 
0004600 
0004700 ELDRAD = 62.5 
0004800 DAMPRI = 875.*PWEPU 
0004900 DAMPR2 = DAMPR1 
0005000 DAMPS = 1.0 
0005100 G3 = 6.OE-07 
0005200 INERTI = 95023. 
0005300 INERT2 = 6073. 
0005400 INITAN = ICANGL*TORAD 

0000900 *XXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXKXXI XXXXXXIXIXXIX 
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0005500 KSTIFF = 3630572.
 
0005600 KVABAS = 125.
 
0005700 N = 45.0
 
0005800 OBETA = BETNOM
 
0005900 OMEGAS = 2.*1.5*PI
 
0006000 ONERAT = 1. 
0006100 OMEGAO = 2.*PI*60. 
0006200 ORPMRO = ERPNON 
0006300 OWNDVI = WNDNOM 
0006400 OWNDV2 NEURON 
0006500 PASSRA= 0.0 
0006600 PF = 0.8 
0006700 Pi = 3.14159265 
0006800 POLES = 4. 
0006900 PSI1 = 0.0 
0007000 Ps12 = ALPHA 
0007100 PS13 = 180. 
0007200 PS14 = ALPHA 180. 
0007300 PWRLOD = KVABAS*PWRPU 
0007400 PWRNOM = 100. 
0007500 PWRRBF - PWRNOM 
0007600 RADNOR RPHNOH/TORPM 
0007700 RPMNOM = 40.0 
0007800 RUN = 1. 
0007900 SRVLI5 = 2.*PI/NN
0008000 SYNSPD = 1800. 
0008100 BETLIM = 1.0 
0008200 TODEG = 180./PI 
0008300 TORAD = PI/180. 
0008400 TOEPm = 30./PI 
0008500 TRQNOM = PWRNOH*9TOFPS*1000./(RADNOM*0.8) 
0008600 TRQTUR = (PWRPU+iA*IA*RA)*rRQNOM+DAMPRI*ICTID DAMPR2*ICT2D 
0008700 WTOFPS= 0.7378 
0008800 
0008900 
0009000 * BLOCK1 = 0.0 SETS GUSAMP TO ZERO. 
0009100 BLOCK1 = 0.0 
0009200 
0009300 * BLOCK2 = 1.0 APPLIES SHORT TO LINE 
0009400 BLOCK2 = 0.0 
0009500 
0009600 * CLTIHE IS THE TIME THAT SHORT CLEARS AND LINE IS OPENED. 
0009700 CLTIE - 100. 
0009800 
0009900 * CYCLES IS DURATION OF SHORT IN 60 HERTZ CYCLES. 
0010000 CYCLES = 36.
 
0010100
 
0010200 * DURATN IS THE DURATION OF THE SHORT.
 
0010300 DURATN = CYCLES/60.
 
0010400 
0010500 * EFLENG = 0.0 ELIMINATES WIND SHEAR. USE 0.75 IF WIND SHEAR IS INCLUDED. 
0010600 EFLENG = 0.0 
0010700 
0010800r* REDUCT = 0.0 ELIMINATES TOWER SHADOW.
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0010900 REDUCT = 0.0 
0011000 
0011100 * SHASRT IS THE TIME FOR START OF TOWER SHADOW. 
0011200 SHASRT = 0.0
 
0011300
 
0011400 * SHORTM IS THE TIME AT WHICH THE SHORT IS APPLIED.
 
0011500 SHORTM = 7.40 
0011600 
0011700 * WNDHOM IS WIND SPEED AT ZROTOR 
0011800 WNDNOM = 18.
 
0011900
 
0012000 * WNDTIM IS THE TIME THAT GUST STARTS. 
0012100 WNDTIM = 1000. 
0012200 
0012300 * ALTERNATOR CHARACTERISTICS~ --
0012400 
0012500 RA = 0.018 
0012600 TDOP = 1.94212 
0012700 TDOPP = 0.01096
 
0012800 TQOPP = 0.06230
 
0012900 X = 0.008625
 
0013000 1 = 0.4
 
0013100 XD = 2.21+X
 
0013200 IDP = 0.165 X
 
0013300 XDPP = 0.128+X
 
0013400 XQ = 1.064+X
 
0013500 XQPP = 0.193+X 
0013600 XITRM = 1./X2TEVM 
0013700 X2TEM = (XD-XDPP)/(XDP-XDPP 
0013800 
0013900 -VOLTASE REGULATOR CONSTANTS~_ 
0014000 
0014100 KVRPF = 0.2 
0014200 HUE = 15.0 
0014300 Ti = 0.05 
0014400 VFRLIM = 3.5875 
0014500 
0014600 -- - --GUST MODEL . ...... ..... .......... .. 
0014700
 
0014800 GUSPER = 1.0
 
0014900 ZEEF = 30.
 
0015000 ZROTOR = 100.
 
0015100 ZZERO = 0.220*3.281
 
0015200 GUSTK = 3./2.*WNDNOM/ALOG(ZROTOR/ZZERO)

0015300 GUSAMP = (GUSTK*SQRT(1.-EXP(-WNDNOM*1.467*GUSPER/... 
 BLOCK1
 
0015400 (1.48*ZROTO))))*BLOCK1 
0015500 WNDREF = WNDNOM*(ZREF/ZROTORI**0.220 
0015600 
0015700 * _INITIAL CONDITIONS 
0015800
 
0015900 * ICANGL IS AZIMUTH ANGLE OF BLADE 1 AT SYNC.
 
0016000 ICANGL = 0.0
 
0016100 ICDELT = DELTAO*TORAD/((POLES/2.)*NN)
 
0016200 ICEDPP = EDPP*(-TQOPP)
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0016300 ICEFD = VF
 
0016400 ICEQP = EQP
 
0016500 ICEQPP = EQPP*(-TDOPP/XITERM)
 
0016600 ICLD 

0016700 ICLQ 

0016800 ICPWR 

0016900 ICS 

0017000 ICSRVR 

0017100 ICTI 

0017200 ICTID 

0017300 ICT2 

0017400 ICT2D 

0017500
 
0017600 PROCED PWRPU 


= (EQPP-ID*XDPP)/OMEGA0
 
= -CEDPP+IQ*XQPP)/OEGAO
 
= 0.0
 
= 0.0
 
= 0.0
 
= (DAMPR*RADNOM+(PWRPU+IA*IA*RA)*TRQNOM)/KSTIFF+TCT2
 
= RADNOM
 
= (2./POLES)*(DELTAR/NN) 
= ICTID
 

= PWR(RWNDNOM)

0017700 I!(WNDNOM.L.18.) GO TO 1
 
0017800 PWRPU = 0.8 
0017900 GO TO 2 
0018000 1 PWRPU = 0.4 
0018100 2 CONTINUE 
0018200 ENDPRO
 
0018300
 
0018400 V8 

0018500 PHI 

0018600 CP 

0018700 BETAX 

0018800 CT 

0018900 IA 

0019000 ARG1 

0019100 ST 

0019200 ARG2 

0019300 ARG 

0019400 DELTA-

0019500 DELTAO 

0019600 CD 

0019700 CDT 

0019800 SDT 

0019900 VF 

0020000 ID 

0020100 IQ 

0020200 EQPP 

0020300 EDPP 

0020400 EQP 
0020500 VD 

0020600 VQ 

0020700 VTD 

0020800 VTQ 

0020900 VT 

0021000
 
0021100
 

= 1.0
 
= ARCOS(PF)
 
= COS(PHI)
 
= 0.5*(PHIARSIN(SIN(PHI)-2.*PWRPU*X*CP/VB*VB))}
 
= COS(BETAX)
 
= PWRPU/(VB*CT)
 
= (XQ*CT-RA*ST)*IA
 
= SIN(BETAX)
 
= VB+(XQ*S+RA*CT)*IA
 
= ARG1/ARG2


ATAN(ARG)
 
= DELTAR*TODEG
 
= COS'(DELTAR)
 
= COS(DELTAR*BETAX)
 
= SIN(DELTAR+BETAX)
 
= VB*CD+RA*IA*CDT+XD*IA*SDT 
= IA*SDT
 
= IA*CDT
 
= -(XD-XDPP)*ID+VF
 
= (XQ-XQPP)*IQ
 
= -(XD-XDP)*ID+VF
 
= VB*SIN(DELTAR)
 
= VB*CD
 
= VD-X*IQ
 
= VQOX*ID 
= SQRT(VTD*VTDVIQ*VTQ)
 

0021200 PROCED BETNOM = THIOR2(WHDNDOM,X)
 
0021300 IF(X.EQ.0.4) GO TO 50
 
0021400 BETNO = AFGEN(BETICI,WNDNO8)

0021500 GO TO 51
 
0021600 50 BFTNOM = AFGEN(BETIC2,WNDHOM)
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0021700 51 CONTINUE
 
0021800 ENDPEO
 
0021900
 
0022000 VFO = VF
 
0022100 VNOM = VT
 
0022200 VEE = 0.0
 
0022300 VTDEL = 0.0
 
0022400
 
0022500 * DEBUG 
0022600
 
0022700 NOSORT
 
0022800 1000 CONTINUE
 
0022900 CALL DEBUG(1,0.0) 
0023000 
0023100 *XXXXXXXXXXXXlXXXXXXXXXXlXXXIXKXXXXllXXXXXXXXXXXXXXXXXXXxxxXXXXXXXIXX 
0023200 * X 
0023300 * DYNAMIC x 
0023400 DYNAMIC X 
0023500 *XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXIXIXXXXIXXX 
0023600 
0023700 
0023800 - - -- DRIVE TRAIN - .. . . .. . . 
0023900 
0024000 Tl = INTGRL(ICT1,OMEGA1) 
0024100 OMEGAl = INTGRL(ICTD,rHDD) 
0024200 RPHEOT = OHEGAI*TORPM 
0024300 TRQTPU = TRQTUE/TRQNOM 
0024400 TiDD = (TRQTUP-KSTIF?*(TH1-TE2)-DAMPRI*OMEGAI)/INERT1 
0024500 TE2 = INTGRL(ICT2,OIEGA2) 
0024600 OMEGA2 = INTGRL(ICT2D,TH2DD) 
0024700 SPEED = ALTRPM/SYNSPD 
0024800 ALTEPh = 0MEGA2*TORP*NN 
0024900 TH2DD = (KSTIFF*(TH1-T2)-DAMPR2*OMEGA2-TRQLOD)/T-NERT2 
0025000 RADDPS = OMEGA2-RADNOM 
0025100 EPMERR = RADDPS*TORPH 
0025200 OMEGAE = OHEGAO+(POLES/2.)*EADDPS*N
 
0025300 DELTAS - (POLES/2.) *NrINTGL(ICDELT,ADDPS)
 
0025400 DELTAD = DELTAR*TODEG
 
0025500 ABDELT = ABS(DELTAD)
 
0025600
 
0025700 *CO TROLLEB AND SERVO---------------------
0025800
 
0025900 PWEERR = PWREEF-PWRLOD
 
0026000 SERVIN = G3*INTGRL(ICPRR,PWRERR)
 
0026100 SEVERR = OMEGAS*OBEGAS*(SERVIN-SERVOT)-2.*DAMPS*OMEGAS*LIKIN
 
0026200 LIMIN = INTGRL(ICSEVR,SRVERR)
 
0026300 ANGIN = LIMIN*TODEG
 
0026400 LIHOUT = LIHIT(-SRVLIN,SRVLIM,LIMIN)
 
0026500 ANGOJT = LIMOUT*TODEG
 
0026600 SERVOT = INTGRL(ICS,LMOUT)
 
0026700 BETA1 = SERVOT
 
0026800 BETERR = BETAI*TODEG
 
0026900 BETOUT = BETEBE+BETNOM
 
0027000
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0027100 *-BET __ITA 


0027200
 
0027300 PROCED BETA = THET(BETOUT,BETLIM)

0027400 BETA = BETOUT
 
0027500 IF(BETA.LE.BETLIM) GO TO 40
 
0027600 BETA = BETLIM
 
0027700 40 CONTINUE
 
0027800 ENDPRO
 
0027900
 

. . . . . .
 

0028000 *- ---- TURBINE TORQUE DEVELOPED 
0028100 
0028200 PROCED TRQTUR,TRQTU1,TBQtU2,ACTUAL,COUNT,TOTAL,KOUNrB,KOUNTR,KOUNTW,... 
0028300 COUNTB,COUNTR,COUNTW = TRQ(RDVE,WNDVE2,RPMROT,BETA,EVERY,... 
0028400 OBETA,ORPMRO,OWNDV1,OWNDV2,BETALL, RPMALL,WNDALL,TRQSUB) 
0028500 TOTAL = TOTAL+1 
0028600 COUNT = COUNT+1 
0028700 TRQSET = 0.0 
0028800 IF(COUNT.EQ.EVERY) GO TO 14 
0028900 BETABS = ABS(BETA-OBETA)
 
0029000 EPMABS = ABS(RPMROT-ORPMO)
 
0029100 WNDABi = ABS(WNDVE1-OWNDV1)

0029200 WNDAB2 = ABS(WNDVE2-OWNDV2)
 
0029300 IF(BETABS.LE.BETALL) GO TO 11
 
0029400 COUNTB = COUNTB+1
 
0029500 KOUNTB = COUNTB
 
0029600 TRQSET = 1.0
 
0029700 11 IF(RPMABS.LE.RPMALL) GO TO 12,
 
0029800 COUNTR = COUNTrR+
 
0029900 KOUNTE = COUNTE
 
0030000 TRQSET = 1.0
 
0030100.12 IF(WNDAB1.LE.WNDALL) GO TO 13
 
0030200 IF(WHDAB2.LE.WNDALL) GO TO 13
 
0030300 COUNTW = COUNTW+1
 
0030400 KOUNTN = COUNTW
 
0030500 TROSET = 1.0
 
0030600 13 IF(TBQSET.EQ.1.0) GO TO 14
 
0030700 TEQTUR = TRQSUB
 
0030800 GO TO 15
 
0030900 14 TBQ1,THE1,BET1 = TOEKZ(WNDVE1,RPMROT,BETA)
 
0031000 TRQTUI = 0.5*TEQ1
 
0031100 TRQ2,THR2,BET2 = TORKZ(WNDV22,RPMROT,BBTA)
 
0031200 TRQTU2 = 0.5*TRQ2
 
0031300 TEQTUR = TRQTUI TRQTU2
 
0031400 ACTUAL = ACTUA*l1
 
0031500 TEQSUB = TRQTUE
 
0031600 COUNT = 0
 
0031700 15 OBETA = BETA
 
0031800 ORPMRO = RPMROT
 
0031900 OWNDVI = WHDVE1 
0032000 OWNDV2 = WNDVE2 
0032100 16 CONTINUE 
0032200 ENDPRO 
0032300 
0032400 * TOWER SHADOW 
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0032500
 
0032600 PROCED RENAINSHADOl,SHADO2,GAMDEG= SHADO(RPfROT,PASSRA,SHASRT)
 
0032700 SHAD01 = 0.0
 
0032800 SHAD02 = 0.0
 
0032900 PSIRAD = INITANt(I .O/TCRPM) *INTGBL (0.0P }ROT) 
0033000 PSIDEG = PSIAD*TODEG 
0033100 REMAIN = AMOD(PSIDEG,360.)
 
0033200 ANGLE = REMAIN
 
0033300 IF((REMAIN.GE.PSII).AND.(REMAIN.IE.PSI2)) ANGLE = PSI1
 
0033400 IF((REMAIN.GE.PS13).AND.(REMAIN.LT.210.)) ANGLE = PSI-3
 
0033500 GAMDEG = (180./PSI2)*(RBHAIN-ANGE) 
0033600 IF(PASSHA.EQ.1.0) GO TO 22
 
0033700 IF((ABS (GABDEG) .LE.0.001).AND. (TIME. GE. SHASRY) .AND.... 
0033800 (REDUCT.NE.0.0)) GO TO 22 
0033900 GO TO 21 
0034000 22 PASSHA = 1.0 
0034100 GAMRAD = GAMDBG*TORAD 
0034200 IF(ANGLE.EQ.PSI3 GO TO 20 
0034300 SHAD0I = REDUCT*SIN(GAMRAD) 
0034400 GO TO 21
 
0034500 20 SHADO2 = BEDUCT*SIN(GAMEAD)
 
0034600 21 CONTINUE
 
0034700 ENDPRO
 
0034800
 
0034900 SHADOW = SHAD01+SHADO2
 
0035000
 
0035100 * VOLTAGE REGULATOR
 
0035200
 
0035300 VP = AINI (VPO+VFDEL,VPRLIM) U
 
0035400 VTDEL = (VNOM-VT)-KVRPF*(PF*IA-(VTD*ID+VTQ*IQ)/VT) 
0035500 ZINTER = REALPL(0.0,T1,VTDEL) 
0035600 VRZ = BUE*ZINTER 
0035700 VFDEL = INTGRL(O.0,VRZ) 
0035800 
0035900 _ ALTERNATOR EQUATIONS 
0036000 
0036100 PROCED ONBRAT = ORATIO(BLOCK2,OMEGAO,SHOTM,OEGAE) BLOCK2 
0036200 IF(BLOCK2.EQ.1.0) GO To 70 BLOCK2 
0036300 71 ONERAT = 1.0 
0036400 GO TO 72 
0036500 70 IF(TIME.LT.SHOTM) GO TO 71 
0036600 OMERAT = OMEGAP/OMBGAO 
0036700 72 CONTINUE 
0036800 ENDPRO 
0036900 
0037000 PROCED VD,VQ = VOLTS(DELTAROMERAT,SHORTM,DUATN,CLTIMEEDFP,EQPP) 
0037100 IF((TIME. GE.CLTIME).AND. (TIME.LT.(SORTM*DURATN))) GO TO 30 
0037200 SWITCH = 1.-BLOCK2*(STEP(SHORTM)-STEP(SHORTM+DURATN)) BLOCK2 
0037300 VD = SIN(DELTAR)*SWITCH 
0037400 VQ = COS(DELTAF)*SWITCH 
0037500 GO TO 31 
0037600 30 VD = EDPP*OMERAT 
0037700 VQ - EQPP*OUERAT 
0037800 31 CONTINUE 
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0037900 ENDPRO
 
0038000
 
0038100 VTD 

0038200 VTQ 

0038300 VT 

0038400
 
0038500 PROCED PFLOAD 


= VD-X*IQ
 
= VQ+X*ID
 
- SQRT(VTDVTDVTQ*VTQ)
 

= LOADPF(VT,VTDVTQ,IA,ID,IQ)
 
0038600 IF((VT*IA).EQ.0.0) GO !0 80 
0038700 PFLOAD = (VTD*ID4VTO *Q)/(VT*IA) 
0038800 GO TO 81 
0038900 80 PFLOAD = 0.0 
0039000 81 CONTINUE 
0039100 ENDPRO 
0039200 
0039300 TERMLD = 
0039400 TERMLQ = 
0039500 LADMUD = 
0039600 LAMDAQ = 
0039700 LMDDOT = 
0039800 LMQDOT = 
0039900 RATIOD 
0040000 RATIOQ 
0040100 EDRPP 

0040200 EQPP 
0040300 TERM1 
0040400 EQP 
0040500 ID 
0040600 EQi 

0040700 EQ2 

0040800 IQ 

0040900 ED 

0041000 IA 


= 
= 

= 


= 
= 
= 

= 

= 

= 

= 

= 
= 


0041100 TALTPU = 
0041200 ThQALT = 
0041300 TROLOD = 
0041400 PWRPU = 

0041500 PWRLOD = 

0041600 TORQIN = 
0041700 PWRIN = 
0041800 
0041900 --
0042000 
0042100 TRQLOS = 

(VD+RA*ID-(ED+XQ*IQ)*OMERAT)
 
(VQ+RA*IQ+(XD*ID-EQ1-EQ2)}*OERAT)
 

OMEGAO*INTGRL(ICLD,TERLD) 
OEGA0*INTGP.L(ICLQTERMLQ)
 
DBRIV(0.0,MDAD)
 
DERIV(0.0,LAMDAQ)
 
LMDDOT/(CKEGAD0IAMDAD) 
LMQDOT/(OMEGA0*LAMDAQ)
 
(-1./TQOPP)*INTGRL(ICEDPP,ED)
 
(-XITERM/TDOPP)*INTGRL(ICEQPP,EQ2)
 
(VF-EQ1)/DOP 
INTGRL(ICEQP,TERM1)
 
(EQPP-LAMDAD)/XDPP
 
EQP*X2TEHM-EQPP*(XD-XDP)/(XDP-XDPP)
 
(((XDP-XDPP)*LAMDAD+XDPP*EQP-XDP*EQPP)*X2TERM/(-XDPP))
 
(EDPP+LAMDAQ)/(-XQPP)
 
((LAMDAQ* (XQ-XQPP) EDPP*XQ)/XQPP)
 
SQRT(ID*ID+Q*IQ)
 
EQPP*IQ+EDPP*ID-ID*IQ*(XDPP-XQPP)
 
TALTPU*TSQNOM/N
 
TRQALT*NN
 
VU*ID+VQ*IQ
 
KVABAS*PWRPU
 
TBQTUR-DAMPR1*OMEGAI-DAIPR2*OflGA2
 
TORQIN*OMEGA2/(1000.*WTOFPS)
 

TORQUE LOSS 

DAMPRI*(OMEGA1+OMEGA2)+INERT1* 11D+INRRT2*TH2DD... 
0042200 +INERT2*TH2DD
 
0042300
 
0042400 * WIND SPEED 
0042500 
0042600 ZBLD1 = ZROTOR+BLDRAD*BPLENG*COS((REM3IN-ALPHA/2.)*TOAfD) 
0042700 ZBLAD2 = ZOTOR-BLDRAD*ELENG*COS ((REMAIN-ALPHA/2. )*TORAD) 
0042800 WNDNO1 - WDREP*(ZBLAD1/ZREF)**0.220 
0042900 WNDN02 = WNDREF*.(BLAD2/ZREF)**0.220 
0043DO0 WNDVE1 = (WNDNO1GUST)*(1.-SHADO1) 
0043100 WNDVE2 = (HNDN02+GUST)*(1.-SAD02) 
0043200 MNDAVE = 0.5*(WDV1WNDVE2) 

128
 



ORIGINAL PAGE 18 
OF Poo U 

0043300 GUST = GUSAMP* (.-COS(2.*PI*(TIME-WNDTIM)/GUSPER)) ...
 
0043400 *(SEP(WNDTI)-STEP(WNDTIB GUSPER))
 
0043500 PEECNT = 100.*GUST/WNDNOM
 
0043600
 
0043700 PROCED ILINS = LINEI(ID,IQ,OMEGAR,TIME)
 
0043800 IP(TIME.LT.(SHORTM-0.5)) -GO TO 90
 
0043900 ILIE = ID*COS(OMEGAR*TIHE)-IQ*SIN(OEGAR*TINE)
 
0044000 90 CONTINUE
 
0044100 ENDPRO
 
0044200
 
0044300 *XXXXXXXXXXXXXXXXXXXXXXIIXXXXXXXXXXXXXXXXXXXXXXXIIXXXXXXXXXXXXXXIXXXXXXX
 
0044400 * x 
0044500 * TERMINAL X 
0044600 TERMINAL x 
0044700 *XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI
 
0044800
 
0044900 WRITE(3,200) DELTAD,TIME,CYCLES
 
0045000 WRITE(6,200) DEL2AD,TIME,CYCLES
 
0045100 200 FORMAT(///5X,'DELIAD=',F7.2,5X,'TIMB=',F7.3,5X,'CYCLES=',F4.0///)
 
0045200 WRITE(O,100)EVEBYTOTAL,ACTUAL,G3,PRPU,KSTIFF,WNDNOM,RUNRA,...
 
0045300 DBlTAO,X,BETNOM,EPLENG,BLOCK1,BLOCK2,EEDUCT,DAMPR1,CYCLES
 
0045400 100 FORHAT(1liO,7EVEEY =,I3,8X,7HTOTAL =,16,8X,7HACTUAL=,I6,
 
0045500 S 8X,7HG3 =,F1O.7,2X,7HPOWER =,F4.1,7X,7HKSTIF!=,FO.O//

0045600 S 1X,7HWNDNOM=,F7.3,4X,7HRUN =,F6.0,8X,7HRA =,F5.3,9X,
 
0045700 $ 7HDELTA0=.F.3,4X,7HI =.F6.3,5X,7HBETNOM=,F11.6//
 
0045800 $ IX,7HEFLENG=,F5.2,6X,7HBLOCK1=,F4.1,10X,7HBLOCK2=,F4.1,
 
0045900 $ 10X,7HREDUCT=,F4.2,8X,7HDAMPR1=,F5.0,6X,7HCYCLS=,F4.0)
 
0046000
 
0046100 METHOD RKSFX
 
0046200
 
0046300 RANGE DELTAD,SPBEDKOUNTB,KOUNTR,KOUNTW
 
0046400 
0046500 PRTPLT DELTAD (SPEED,TBQTUR,PWRPU 
0046600 
0046700 PREPARE DELTAD,SPEED,PWRPU,TRQTPU,SHADOWWNDTEI 
0046800 
0046900 FINISH ABDELT = 200. 
0047000 
0047100 TIMER FINTIM = 2.0, OUTDEL = 0.002, DELT = 0.002 
0047200 
0047300 END
 
0047400 STOP
 
0047500 ENDJOB
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