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Tl1F 1NFLUENCF. OF TORTUOSITY ON Till : SPF(TRUM OF
RADIATION FROM LIGHTNING RETURN STROKES

•. n

David M. Le Vine

ABSTRACT

An investigation has been made of the influence of tortuosity on the

a q

spectrum of radiation from lightning return strokes. The shape of the

spectrum obtained by including effects of tortuousity is in keeping	 ,
1

with data: The spectrum has a peak in the correct frequency regime

followed by an initial decrease as the inverse of frequency. This

spectrum is in better agreet.wnt with data than the spectrum predicted

by the satne model without tortuousity (i.e. the long straight channel),

which decays at a rate proportional to I /v`.

These conclusions were derived from a piece wise- 1. 	 "transmission

line" model for the channel using: in one case simplifying assumptions

to arrive at closed form expressions for the spectrum and also from

numerical calculations on simulated channels. The analysis indicates

an eventual transition to I /v2 decrease even for the tortuous channel,

which suggests a means for testing the model and gaining insight into

return stroke current and channel parameters.

v
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I IIE INFLUENCF OF TORTUOSITY ON TFIF SPECTRUM OF
RF RADIATION FROM LIGHTNING

•	 IN  RODUCTION

Knowledge of the spectrum of radiation from lightning is important both for under-

standing the dynamics of the lightning flash as well as for assessing the RF interference

environment during thunderstorms. Spectral meastircments have been reported from fre-

,Iuencies of a few kilohertz (Horner, 1961; Taylor, 1963; Watt and Maxwell, 1957) to

frequencies near a GHz (Kosarev, et al., 1970; Hewitt, 1957) and several coniposite spec-

tra have been deduced from these data by reducing the independent measurements to

common units of distance and bandwidth (Horner and Bradley, 1964, Kimpara, 1965; Oh,

1969; Cianos, Oetzel and Pierce, 1972; Ort'zel and Pierce, 1969). These composite spectra

have several features in common: It is generally agreed that the spectrum peaks near 10

kHz and then decreases roughly inversely with frequency (i.e. as 11v) upto several hundred

MHz. Al higher frequencies the data is more scattered: Kimpara(Kinipara, 1965)extri.polates 	 f

the 1/v dependence to higher frequencies whereas Oh (Oh, 1969) infers from the Bata a

change from 1/v to a decrease as approximately 1/v 2 in the decade between 100 MHz

and I GHz. Representative data are shown in Figure 1.

Theory to rationalize these observations with contemporary best information on

lightning parametees have been less widely reported; and in fact, the measurements pose

some problems for the modeller For example, using as a return stroke model a long straight

channel (current tilament) driven by a current pulse whose shape it consistent with nieasure-

merits, such as the paired expon.ntials of the Bruce-Golde form or as modified to include

continuing current ( Bruce-Golde, 1941 ; Unian, 1969; Price and Pierce, 1974), and assuming

I
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that the current pulse propagates along the charutel Willi velocity, v (i.e. I(z,t) = Ilt—z/v)),

one has the "transmission line" model presently in use (Dennis and Pierce, 1964; Untan

and McLain, 1969), It is not particularly difficult with this model to calculate the electric

f !	 field radiated to a distant observer, employing i'or exampIc the Fraunhoffer approximation

(e.g. Le Vine and Meneghini, 1976). Assuming typical channel lengths and velocities of
i

propagation, this calrulatiutt yields a spectrum whose peak is ill 	 correct frerluency
I

range (tens of kilohertz); however, the high frequency asymptote decays as 1 IP 2 . not in-

versely with the first Dower of I'reyuency as the data suggests.

It is the purpose of this paper to show that by inlrothi ing tortuo llsity into the channel

model	 that is. using the transmission line model but allowing the channel to be irregular

rather than straight — one obtains a spectral decay proportional to 1 /v, -Ilie spectrum

obtained k vith tortuuusity included also peaks near 10 kHz, and then decreases roughly as

i/v mild. at an upper frequency determined by the scale of tortuuusity, it begins to de-

crease as I /v2 . The shape is sinular to that reported by Oh (Oil, 1909),

Relatively little attention has been devoted to the effects of tortuuusity oil 	 fields

radiated from lightning r.turn strokes. Ilrll I Ilill, 1969 ) has treated the subject using a

" C., llar analysis based on the rnorr.ent approximation and the Bruce—Golde form for motion

along the channel. Dis restricts the analysis to VIT (for which it was intended). On

Ilie other hand. it 1'reyuencies of 10 MHz or so, the Free space wavelength of the radiated

fields is comparable to the typical step siie (the ^:Irannel is formed in discrete pieces dur-

ing the stepped leader processes; Uman, 1969) and the individual elements of which the

channel is formed may become effective radiators. In this paper, the effects of tortuuusity

are analy/ed by adopting it 	 linear model for the channel and assuming that tite

a



current pulse propagate% along the channel with constant velocity on each segment?

A
T(r.0 = Q f(t— • F/vl. This is the "transmission line" model applied on a pie:ewise hasis

to the channel. Both an .malytical moxlel for the spectrum. based on simplifying assump-

tions, and numerical results will be presented. The numerical results are obtained by

having a computer produce channel rzaluations in accordance with pre-asxigned stati.--ics

for mean length and orientation of individual elements. TTtcn the spe:trnm is computed

for each reahiation using formulas for the radiatim from each mdivtdual clement keeping

track of the phase as the current pulse propagates up the :;ianncl (Le Vine and Meneghtni,

1978b). The analytical :exults are obtained by simplifying the expressions for radiation

front 	 rlcment sufticientlN that stints and averages can he performed explicitly. The

results agree.

I 
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Consider a filament I units long in the t direction driven by Ilse traveling current

d wave:

Tin ► 	 ef(t-Iz•r^ ►

I	 where v is the velocity of propagation along the channel, and asutsne that the filament is

arbitrarily oriented above a tondncting plane at 	 = l).

(hte can ohlain a solution fm the fields produced by such a current filament by

transforming to the frequency domain an.I solving in lerms of potentials. M ing so, one

obtains the followinK Norm for the magnetic vector po(ential:

A(ru , v) _	 f1181Ojki7V-T,
 I	 rt

l` — t l --	 dr.,
ftslament 	 4nR	 4k' )

where the superscript tilda l 1 denotes a F'ourici t ransform (for c \.snsple, f Ivt is the

Fomict T ransform of 110) and %%here R - IrO -T.1 i% the distance from the source poml F,

to the observer F,, and R' - IF,,-Fs 'l is the dislanLe from the intake source point F's,

I	 , '	 n
TS - 2/(Fs • • 1 to the observer. and 4 = Q-till' • i) and n = c/v. The electromagnetic

fields are oblained front I'qu.slson I by means of the formulas

I	 1

:(r^,, v ► 	 jkc	 A(f,,, u) + 	 (C	 sl	 )

N

In general, the integral in I.luation I can not be evaluated and approximations taunt he

made. The I aunhoffer aplirminiation (i.e, far field .ipprmimation) will he employed

Isere. !In the ;hccial case v = : the integral can he evaluated exactl> in closed form (Le

Fine :end Mcneghini. I ` t 78a; Sclidl.unoff, 1950; although for real lightning, v < c, and

4
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generally v is not even constant along the channel.) To obtain the hraunholfer approxi-

mati.m, Equation I is substituted into Ev , tion 2 and it is assumed that the filament length,

L, is smaller than the distance, R, from filament to observer. Then a Taylor series expan-

sion is made of R about th y• filament center ;t fc . Letting Pc - Irp-rcl and assuming that

L /pc < I, kL 2 1pc «'rr, kpc >> i and keeping only lowest order terms in kP C , one ob-

tains the following form for the radiated fields:

k
F(to .v) =	 µ e flv)	 la - ( .Vpc) Voc( J pc I(v)-

4 x p^

eikpc'
	(Q' - l^ ' poclp..'c I ^ 	1 Ivl

4wpi.

Ill^o ,v) = f(v)	 (VPc x	
±p,

I(v) - (C ps x u') 
Ij L 

I , (v,
4apc	 4np0.

where

A	 Cj'/ikL(q-^l-ppc) _ e-j g kLln- -Vp,:)
I(v)	 ejkq(i'-T^)

I	 n -	 VP,

= jkL ejkn(^' rd sine ('/zkL(n k-p?c)1

ej%kL(n k^ -Cps.'
ejk	

) _e -j^ikl_04t-vpc)l
I(v) =	 v(^•^c^) 1J

- 'vPC

= jkL cjk,7k.rc' ) sine ( 1/2kUq-t, • VP")I

(?a)

(3b)

(4a)

(4b)

1^

An interesting interpretation of Equations 3 and 4 is obtained by noting that the

phase terms (the arguments of the exponentials) can fk written in the form j-'rrvr where

nr = (Pc/c - Q • Tc /v) t '/2(L/v - L/c ^ - c pc ). The first term ill 	 is just the time

required for a signal to propagate from the filament center to the observer plus all arbi-

trary constant 1,1 - -rc/v) which is necessary if several elements are to he compared. 'fire

5	
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remainin g parenthesis is the binomial correction of !his little corre ponding to propagatnm

I
from me upper mid lower ends of the fil.uuent t!	 p,:) I)lus the lime required I'm

.0

the pulse to propagate Drum mmc end of the filament to the other (L/v). That is, wi:hin

the limitations of the I-raunhoffer approximation the radiation may be regarded as consk-

tint; of two pulses which emanate from the ends of the !'ilatneio but with a relative delay

equal to the time required for the pulse to propagate the length of the lilamcnt. hitcres-

tingly, this is exactly what one finds to he true for the exact solution when v = c Me Vine

and Neneglimi. 1078a).

Associating the radiation with the eml point of the filament permits a simple interpre-

tation of effects of tortuosity. When the current Duke begins to propagate ill, the filament. a

pul%v of radiation (having the shape of tite cmik- t pulse) is r.t,ltated from the bottom of the

filatttent, and nothing more happens until the current Duke reaches the top of' the filament.

then an identical pulse, 11111 of opposite sign. is emitted and tlik- total ra.h.ttion is now the

stun of these two terms (Uman. McLain & Krider. 1975. Le Vine & Meneghuu, 1978a). It'

one now joins several segments together to form a long . • hannO. then the radiation is asso-

ciated with the junction points (top of one filainent and hottom of the adjoining !nattiest t.

and the composite channel radiates 1'rom its "kinks". The tortuous channel is one w,ill)

malty kinks. mid therefore has malty sources of radiation. As it result there is the potential

for more structure (i.e. variahilil^ ) in the signal radiated t'rom th- , tortuous ch: mid than

from the Icing straight channel which radiates only frog .,s two ends. Consequently, one

%%wild exiket th.,t the spectnun of the tortuous ch. , .nel will have its high frequency power

increased in comparison with the equivalent straight chamiel. a conclusion which is sup-

ported by the analysis and examples to be presented helow.

6
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Ni ithm the limitation% mhercnt tit 	 I tamiliolfer appromunalimi, e ► the ► the " kutlt"

picth!:e or the more conventional interpretation which associates radwtions with the lila-

.sent center, yield equivalent result% Which picture one adopts itelmuls on which of the

two forms is adopted for HO in I yu. ► tion J. For purpo%cs . ►t the analysts to follow, rtd ► -

Atoll will be associated with the filament center; however. in the computer sin ► ulation it

was more convenient to separate the two vponenttals in the sinc(O function.

r.
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%1.Ithenl.111 ' ally the udlati ►m wen lo) an ub.erver a111oca1% to he a .equemx of 11ul.e.

viluil ►- ►I Inom ea: lt el ►• ment ^%ith a to mil o1.1) hl.tury de11rn ►lent on the manner in Hhi:h

the loubw 11ra11al;ates till the channel aml ►►n the nature lienglh slid onentatiun) of' the

111 ►I1%1 ►Irl.11 c10110 11% tot %hich the channel 1. c► m11111.eo1. 	%%%ociahlig 111cu . 1 1 111... %%Itlt the

filament :enter, the electric field enutteol from the n-th element .1. .een b% an col--mer

tlor amlo ltcily) on th..urt'ace is obtained Ir ► om I luati ►m =:

11 (f,vl	 ` 1	
N t
	 t(l'1.1 11 .n11' krll ll ) ►jker..	 t;l

n r^

%here

ell lye t1) - /
.111 _ .^—..^--

	
(o.0)

Ne 11

n

rn'^^n	 ►1^,,1 'dI ti _1 + Is I 	 (oh)

►%here 1 11 1% the length ► o( the n -th element mid in order It s .implit'% the algebra, it ha%

been osumed that l;ll	 ' pen «q. Ilw tol.11 field. ^(f,rl, wen by the oh.ener 1. the .Inn

over all n of the 1 I^IT,t^1, aril the .l oectrum tot 1hi% radiation is dchned I ► o be:

Sir)	 4 1T,r11 'lT,vl>

%% here the monied br.w kets < '*, denote a statistical a1'cra)'e. U--ing I k1tlatitm S, one t btams

the fi 11w.%mg t'►irm for the .11ectrum:

ti
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F MV) H • (T,v) = I v e IfWl	 L an sin ('/ikr7Ln kjkc r„	 E am sin('hkrlL,n )e - I  rn,
L	 1r 11	 all n	 all m

(7)

}
_ 

\57e If (v)I 	 al, a n , sin WiknLn)sin('/iktll_n)cjkeItn-rill
n

. n .n

In order to perform the required averages assume that: I ) The an. I 'll :utd rn are independ-

ent random variables; 2) Mlle phase kc(rn-rm) is uniformly distributed over 2a; and 3)

pcn ?! pc where pc is a constant, so that the a r, inay be assumed to be identically distrib-

uted. 'then, the O.'agonal terms in the suns are dominant (e.g. Kodis, 1966) and one

obtains:

<E(f,c) li •myp 3 
C 

\/-,7, If (v)IJ 
2 N<an 2 > <sin 2 ('/2knLn )>	 (8)

l nq

where N is the number of elements in the ClIM111e1. In order to perform the average over

the element lengths. Lil l it will be asunned that the Ln are exponentially distributed with

inran L,,. Based can observations of stepped leaders one would expect 1. 0 to he on the

order of several 10's of meters (Uman, 1969; Schonland, 1956); however, little information

exists concerning the actual statistics of the Ln . Fortunately, the limitmg behavior of 11w

average at high and low frequencies, which is the important factor for the discussion to

follow, is independent of the choice of the distribution (Appendix A) and so the conclu-

lions may he representative even it the assumed distribution is not. Also, the numerical

.; results to he presented later support the conclusions reached here, but do not assunle expo-

nentially distributed l. n . Performing the average over the L r, in equation ?t, one obtains:

Y?'	 <sin2V/2kn	 1/2l_n)> _ ^ (k— nl ^ )^	 (9)

9
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I rnploving this result in Filuation M, one obtains the following form !'or the spectrum of

radiation from the tortuous channel-

S(v) = SO	
I r1 lkrl l t)ull=	

Iflt'll	 11111
^ 

where

N ► i	 ^iN^;ar ► ->^
rrr)Nc

Notice- that .It high Irc,lucnctes Ikijl,o»I ), S,v) is propottn ► nal to It lrll and that m

low frequencies (kill, O <<I ). Si v) is prow,rtional to vlf lull. I hat is, in t'e high tretluenc%

limit, the spectrum of radiated electric field is proportional to the spectrum of the current

{{	 pulse, whereas In the low Irequcncy himi it is proportional to the speclimu of Ili, , k^urrent

F
pulse multiplied by frequency. The definition of low frequencN must be treated carefully 	 I

here because- for low enough frequency the amumplions inherent in Iltc Fraunhoffer al ► -

proOmmion fail and the analvsis is not correct. More preckely, the low frequcncy hehav-

for of SU F I is to be regarded as the sh.ipc e ► I' the speclrlrnt In an inlernu• diale fregrtcnc>

range between (roughly) krll.p = I and tlrc low freAlucncy bound on the Fraunholfer ap-

ti	
Il ►rmimatiort, roughk it kpc = 1. In this mlenuediate range SIO is proportional to vlf(v)I

,rd at hiph frequencies So)) is proportional to If 401.

To apprecialc the signrfic.mce of' these two reloons, and to compare with data, the

I
form of the current pulse is required. A pulse shape representative of currents nu•asurcd

in lit-hining rclurn strokes is:

lit)	 =	 II Ic ^ ► t _ ^.-dt I + I. I ^.-7t _ e-fill	 1 I I 1
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where for typical Iirsl return strokes a = ' \ 104 . 0 = 8 x 105 . y = 10-; andf b = 2 x 104,

and 1 1 a 10 kA and 1 ,9 - 2.5 kA. the sh.11 le of thus Cullen ( pulse is shown at the top 1.1

FIgLIre 2 (and its spectrum If(v)I Is plotted( .It the bottom), the fir%l two explrlu-1111.11% in

tills expresmon wi l resent the main current pulse III .1 form prol ldNell 11v Bruce and Goble

1 1041  1 \\ 1111 patameters suggestedl by Dennis and fierce ( 1003). I Ilt. third tel m, I, a xpl - yt ► .

Iepre.enh• inteln ► t.11late current (I 1 man, 10(0); and the remaining exponential, 1, exp(- :f).

has been added to achieve contitmity at t = 0 ind doc^n't, otherwise, significantly alter

the current puht.. Details of the Ilropagation of cutlent during return strokes are still at

issue (e.g., Price and Iherce, 1 1)77). llo\vever, the preceding wave lotln reasonably represents

a Composite of reported curtenl nlrasurenlents (l l nlan, 1 1)(0 1- Dennis and Pierce, 114,41.

he Fourier transform of the pulse given in F.Illation I 1 is:

	

llvl = —110	
(l - o	 } 1

+i	 11	

1	 15-y

	

(_'art	 1 l	
11. )

'Ms .I11 +i	 I	 I0 11 to i1-, 111 *t 2^,1

1f(V)I is plottt.dl Ill 1'1)`tlrt. .' (b1 1 ttom) lot the parameters listed abo\e	 Notice 111 Imiticular,

Him III tht, limit of large f c(picllt.) ( ► » 01`a), the Imictioll l w)I dleCreases as 11v 2 , and

that If (01 is constant ill the low t ► ellut.ncy Ilnrlt.

Now substituting Fllnation 12 for If (v)I into F (luatlon 10, one call ev imine tilt . htgh

and -low" fretint- ncy 1,chavior 111 the spectrum. Since the Sl"k , 11111 1 1 S(v) of 1111' tadi'lledl

fields is proportional to I 0 11 Ill tilt . 11101 frequency Illlll!, SW Ilecreases as I r , at high

e1h 1 11gh trequellcles IIIIIt.l 1 e11d1e111 111 toltuousity. However, at intcrtllethate frelll1ellcles

large enoulth thal t , ? 012a but small enough kill -0 < I	 the spectrum S(r) is pfopt1

Clonal to 0 110 )1 and therefore 11et.Iea%CS oddly as I/Y. I his slo%%er rate of' decrease at mier-

medlime 1'retluencies is a direct conselluence of IOrtuousity. In contrast, IIt' ,[)rotund of a
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single straight channel (no toriuousity) does not eshihit -tit intetnlediate region with I!v

decrease but rather reaches a leak mid then rolls off as If (v)I which is to say as I /v = 41-c

Niue and Meneghini. 1 0 7W. I mstcmx of the inlermediate region loi the turwou% diannel

is consistent \p ith mailable information on I ► ghtnin t, . -tutn stroke,. For eumple. letting

1	 ill meters, whit-h is typical of the length of steps during the stcppcd leader 111m. n.

1009), and letting 11	 \khidt is reasonable for return stroke velocities (Unian, I O(M),

one ohtaiv.s krll.O	I at v = 0. -1 \111/ hu1 with {3 = K X 105 , II (01 has already hegun to

.lecrease as I1v 2 at these fre,luencies.

This section list. drnlon.traled how randomness of' the ch,1nnel can introduce energy

A intermediate frequencies and thereb y slow the rate of decrease ol' the s1wirum. I-x-

ample% and a comparison "ith expetinu • ni will he presented ni the following section Mhere

it \%ill he shown 111,11 this effect is :omislent \011 data.

I
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,I In tlu3 srclion tilt' effects of torluousily will be illustrated with spectra calculated lion.

%itmllated 11gh1nnlg.hannt'ls. A snlnllatum fill lilt' l l urpost' ill sl11d>1119 lilt' t'flecls ill tollu-

ousity has been developed by this author and a colleat.ue ( R. %trIlk'glllnl I usillg a I+iect'%%Ise lin-

ear model for the channel aril .'nlploying hIlu.Itions 3 iaill -1 for the Ilelds rallialed tlonl earl

Clement (1 e Vine and Meneghini. 1978h). In T his simulation the channel 1s generated by plac-

itlg elld-to-elld linear %egnit'llls chosen b1 the Illarlllne ill accordalux WII11 assigned Statistics.

I'he piocedule is suggestive of real cloud-lo-ground lightning in which the ch;ulnt'l 1% lornled

In .
I
 series of* discrete stele called the slepped leader. In 1:1: t, the simulation has been written

so That radiation from (he stepped leader may also be sludlcd. In most of the work done

to d;life. file C11.Innel elenlenls were chosen by assummg that the change In IIIt • ( cartesian)

coordinates retlltued to ad%ance from ime end point to tilt , next of a given element were

normally dishlbutt'd. Typically, the x- and y-coorkimates were identically distributed %ith

"t'ro .uean .Ind the i-coordmate h.Id mm-iero mean ,Ind a stand,ud deviation on the order

of' 20 meters. Obviously, one can control Iht' general direction of the channel Through

choice lrf the mean value of tilt' coordinate change, .Ind can control tilt , variations about

this dnecrlon b y nlemis of the assigned standard de%latlons. I'ypical t'lenlenl It'ngllls In

the channels used here %sere 40 meters, hill have ranged from about .10 meter; to 300

meters. Figure 3 shows a channel rt-110.11ed by tilt' ronll)utt'r. in (Ills case without brancht's.

(The simulmion is three dlmensiotul so (ht, projection of tilt' channel on orthogonal

planes is shown.) Once Iht channel has been generated, the conlptiler calculates both the

tcnll loral history of the elt'ctronlagnAir fields produced by a current pulse propagating

\I

13
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alon}t fllis :h.nulcl .Ind also the manitude of the Fouttcr transform Isl ►ectruml of the t,ltli-

atcd wa%eform. Iltis is done ttsinp the solutions gitcn in Ftluations i and 4 and (heir time

domain ctimulenl, anti c1liploying an assigned current waveform such as given in I qualion

I I. The nlaior coml ►utational l ► roi ► lem is keel ► itig track tit' the ( ►rol ler phase of the :urrenl

in each of the ntam cicnit • Ills which may he radiating at a gisen instant. (tire I c Fine

and %lenephini, 1 117811 for euml+Ics and a comparison rat the Mine domain of sinlulaled

ttawlorms % tlth data.)

F

	

	 Ilre inllttencc of, tortutnlsil> tin the sl ►ectrunl of the rattiatcd fields is illustrated in

Figure 4. For :t+nll ► orison sake , the entclol ►e of the sl ► e ►• trunl. SIO. is I ► lolicd for both a

long, straight ch,utnt • I Intl toituotism 1 and an etluitalent tortuous channel. Iltr :m'rvni

waveform gtitcn in I tluatiorl I I was used with a velocity of propagation of v	 :'2 in both

cases. I he tortuous cliamiel used In tilts calculation is shown n1 Figturc 3. ,Intl tt.t. Itenc-

rated Irom segments whose incan Ictirlh Has about 40 mctcr% with variance of each :arte-

sian coordinate of about 'O meters. In this evanlltle, the observer is 50 kill away and Is

located on Ilse :onductule. sultace. 1111 • lengIll of the ► ertt:.tl cll.utn:l (about S km) %%as

chosen so that its spectral peal , Was nearly identical tkttlt 111.11 of the tortuous channel.

Itlls Was done 14` I 'a ihtatt. colt parisotl of shales tit Iltt • INo slleitra. ISvc 1 e Ville and

\I ii,rhini (11176) for a discril ► lion of the eft'e :ts of 0(her parameters such as channel

Icnhth ;end 06en1.1(ion. and ► clo:ity of prol ► agtation on 111e spectrum of the straight :1lanne1.1

Both spectra sltowi in Figure 4 peak near 10 kllr• but the spectrum .isso, iated with

the straight ch.tnncl I'.tlls ol'l' .II high fretluencies as !11 12 tchcrr.ls Iht • sl+ectrtlnt associated

with the tortuous ch.ttulcl dc:reascs more slowl-,. First roughly as 1 h , , and then near about

III I. 1 1C011s to decrease as I /v- . 1'11; high fretluency asymptote in both cases is deter-

trained by the current ►► awlornt (as discussed above) and lherctOre should be 1 1-2 . however.

•
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the variability introduced by tortuousity introduces additional energy at ntictinediale fre-

quencies slowing the rate of decrease of the sivOrtim in this frequency regime. These

slx• ctra have the sh,ipe deduced tom the analysis of file preceding section.

I11e specftunt associated with the tortuous channel is consistent with measured spec-

Iiit. Iltis is illustrated in figure 5 where representative dMit (Isimpara. 1905) have horn

plotted with the calculated spectra shown in figure d. (11te data points were obtained

from Figure I of Kimpara, 1965, and normahied to unit bandwidth mid an observer 50

km from the chminel.) As can be seen the spectrum associated Willi the tortuous channel

(solid line) Itas a shape consistent with the data !. intermediate frequencim in contrast,

Ole spectrum of the equivalent straight channel falls oft' too rap i dly to agree well with

the data. LventuAly, at a freoluency determined by the mean lengili of the elrinents

in the .hamicl. the spectrum computed from the tortuous channel also begins to decrease

as l/vI . The transition from I/v to 11v2 decay is not inconsistent H1I11 data at high fre-

yuencies (e.g. fierce, 1077) and in fact Oh ttlh. No')) interprets the data to have such

a transition, although in file vicinity of IUU M111. 11 confirnnd by measurements, such

it transition would have important implications. first, establishing the freolucncy

regime in which the transition occurs would provide a measure of the scale of chan-

nel tortuousity (i.e. file mean rlcnicnl length) and by inference of the step IL-nglh ut

the stepped leader. Secondly, establishing the rate of decrease of the spectrum at freoluen-

ties beyond Ihr transition would yield insight into the shape of the current pulse because

in this regime the spectrum is dominated by the pulse shape. Certainly, if a transition to

1/v2 were to be found in the data, it would support the transmission line model Mid the ^'ur-

rent waveform in most common use (Equation 10).
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the hencial ,hal ►►. ,t the sheetnnn ohtainr ► I h^ in ► luding rllrct, of Iorluousily i. in

keel v ing Willi Plata	 It	 a heak in file correct I re,l ucncy regime followed h li a do-

creas ► • .i% the ntvow of Ir►y lucney. ,► hich l lvrsi,l, to a frolueney devemi, • nt on the Icnwlli

of 1114.• elcmcnt, in the ch:ntnel. lilt% sheortim is in limes agreenx•nt wills data than the

sh► clruni l^rc,licic ►I I+> the ..Incs 	 nto ► Icl ^^ilhout hnhnosit\ li.r, th, long strutght ,hmnuell. 	 I

which deea), at it tale hroliortimul to I p2.

I'hcse conclusions were ,1erilie,l from a hiecewise-linen "Transmission line ., model for

the channel hoth using simhlilyinp ,i,.untl%Iimi% to arrive at closed form e\hressions for

(lie sla• ctiunt and from numerical calculation. on simulated channels. the	 suggest,

an eventual Iransition to I/v= ►iecrease earn for the tortuous ch.tnnel, which suggests a

votenUal means for testing the model mid gaining an%i E.ht into return stroke current and

'. lt.innel 1 1 .ir.1 nn•ters.
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I I+ m y I. %timmary of sliedral nleasulrnnut. from II);hlimig. Fh;•; dMa ha. , 1vol noa-
I,

t	
nctli/ed it, a '11%un.e of So kill .110 mill band%%itith. Ih; slie..trunl is hltyorliom.11 t^^

(fr;tlmetio 1° I in the fre%lueney r.rlll;e fnon1 a few IU's of hlltihrrl/ to ahoul IINI

n1;}^ahert /.

Figure '. Ili• curn• nl l+ml,; tied in Ih; :al:ulation..nl.t il• %pe tlmnl (i.e. n1.I l^nitu^l; 1 ►f

it% I'miner tr.m lomil. Hie current	 is represent.lnw of .urrrnl In IIIst return

Arokes. In On% ;%aml+I;, A 	 J \ I (r+ .e: -1 : = 13	 I 05 wcl 

and 1 11	 .ill LA and I I = '.S kA.

I Igille ?. 1 \.Ilnl l le tit' a wilkloul+:hannd 1 1rotin.x.1 b% the coml l lll;r .Imulatiml.

I Igure -l.	 I11; -yoAIunl ►.I I; III.II;.I Ir.l'n1 a Ar31ghI Ji.l titl e l t.1 lit, u1 *- krll I%mgI and .I Ior-

lulus .• h.►nr I (the one xht,Hn Ill I : Igure 1). ()Ill) the enveloly% of the :.11:ulat;.l

.i
yeitr.1 are 1 1 1otled.	 171; curr;llt bills; Shown Ill I IpIle 2 N.1, 	 ;d .I--stimill) . .1

%clocity of propagation equal it, , '. M.- ol+smer is SU Ln1 from the channel.

Figme S. Fite calculated spectra (from figure 4) with r.liresentati%e dma points .ulvr- 	 i

iml lo %c1.	 Ill; tI.II.I Acre 1.11.;11 from I\impaia (1 11111`.11.1. 1 00) iwllll.11lh• 11 to So kill

and unit hand\%I ' ll It.
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APITNI)IX A

In this appendix the average <sin 2 (ax)> will be perfortned in the limit of large and

small a. It will be shown that the limits are independent of' the probability density lunc-

tion, P(x), for a large class of N(x).

A. Tltc large n limit:

,n
<sin2 (ax )> = f P(x)sin2(ax)dx

0

"hich is absolutely convergent because j p IP(x)Idx = 1. Now letting sin 2 (ax) = IMI -

cos2ax), one obtains:	 ^)

<sin 2 (ax)> = /: - "i f PW cos(2ax)dx
0

13iii the integral 4m the right is zero in the hnut a -i m I*or piccewise continuous P(x) (e.g.

see the Rieman n-I_esbegtic theorem, or Churchill, 1969),

B. The small a limit:

1'rom the theory fur power series one can write:

4
sin 2 (y) = y 2 + (I - 2 cos2y) 3

where the last tcrnn on the right is the reimmi er after 4 terms of the Mad aurin series I'm

sin 2 (y) and y is some particuLir y Chosen to make both sides equal (e.g. Kaplan, 1952).

With this result one obtains:

A-I
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'^'	
r

<sin 2 (ax)> = a 2 J\ 2 [Nx)d\ + u4 III-2eos2 y) ; I II \ ►dr
0	 0

a 2 <x 2 > + ; cr4 1 1-2Cos 2A ) <x4>

Now noting Ihat II-2rus 2 yl < I. and assuming 111.11 the second all 	 nfoult11 uonlents of x

exist, one has for sufficiently small a:

sin 2 (ax) ='± a2<0>

Summarizing. -.sin-'(ax)> approaches ' • fur very large a and is proportional to a-' for

sull'icieWk small a. A specific example has been calrula.ecl n1 Ibe text employing rxpu-

nentially (list rihuted x with mean LO for which one obtains

I	 (2aLO)2
<sill (ax )> _ — --------

2 1 +(2aLO )'-

I his is clearly equal to 1!:: for very large a anal proportional to a2 fur small a.

1
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