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ON RELIABLE CONTROL SYSTEM DESIGNS
 

by 

JOHN DOUGLAS BIRDWELL
 

Submitted to the Department of
 

Electrical Engineering and Computer Science
 

on May 18, 1978 in partial fulfillment of the requirements
 

for the Degree of Doctor of Philosophy.
 

ABSTRACT
 

This report contains a method of approach and theoretical
 
framework which advances the state of the art in the design of
 
reliable multivariable control systems, with special emphasis on
 
actuator failures and necessary actuator redundancy levels.
 

The mathematical model consists of a linear time invariant
 
discrete time dynamical system. Configuration changes in the
 
system dynamics, (such as actuator failures, repairs, introduction
 
of a back up actuator) are governed by a Markov chain that includes
 
transition probabilities from one configuration state to another.
 
The performance index is a standard quadratic cost functional,
 
over an infinite time interval.
 

If the dynamic system contains either process white noise
 
and/or noisy measurements of the state, then the stochastic
 
optimal control problem reduces, in general, to a dual problem,
 
and no analytical or efficient algorithmic solution is possible.
 
Thus, the results are obtained under the assumption of full state
 
variable measurements, and in the absence of additive process
 
white noise..
 

Under the above assumptions, the optimal stochastic control
 
solution can be obtained. The actual system configuration can
 
be deduced with an one step delay. The calculation of.the optimal
 
control law requires the solution of a set of highly coupled
 
Riccati-like matrix difference equations; if these converge (as
 
the terminal time goes to infinity) one has a reliable design with
 
switching feedback gains, and, if they diverge, the design is
 
unreliable and the system cannot be stabilized unless more reliable
 
actuators or more redundant actuators are employed. For the
 
reliable designs, the feedback system requires a switching gain
 
solution, that is, whenever a system change is detected, the feed­
back gains must be reconfigured. On the other hand, the necessary
 
reconfiguration gains can be precomputed, from the off-li:
 
tions of the Riccati-like matrix difference equations.
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Through the use of the matrix discrete minimum principle, a
 
suboptimal solution can also be obtained. In this approach, one
 
wishes to avoid the reconfiguration of the feedback system, and
 
one wishes to know whether or not it is possible to stabilize the
 
system with a constant feedback gain, which does not change even
 
if the system changes. Once more this can be deduced from another
 
set of coupled Riccati-like matrix difference equations. If they
 
diverge as the terminal time goes to infinity, then a constant
 
gain implementation is unreliable, because it cannot stabilize the'
 
system. If, on the other hand, there exists an asymptotic solution
 
to this set of Riccati-like equations then a reliable control
 
system without feedback reconfiguration can be obtained. The
 
implementation requires constant gain state variable feedback, anL
 
the feedback gains can be calculated off-line.
 

In summary, these results can be used for off-line studies­
relating the open loop dynamics, required performance, actuator
 
mean time to failure, and functional or identical actuator
 
redundancy, with and without feedback gain reconfiguration
 
strategies.
 

Thesis Supervisor: Michael Athans
 
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1
 

INTRODUCTION
 

1.1 Motivation for the Research.
 

This report addresses some of the current problems in interfacing
 

systems theory and reliability, and puts this research in perspective
 

with the open questions in this field. Reliability is a relative concept;
 

it is, roughly, the probability that a system will perform according
 

to specifications for a given amount of time. The motivating question
 

behind this report is: What constitutes a reliable system?
 

Knowledge of the reliability of a system is crucial. In this
 

report, a system is reliable if it has a (quantitative) reliability of
 

one, i.e., if the probability that the system will not perform according
 

to specifications for a given period of time is zero. Therefore, the
 

question "What constitutes a reliable system?" can be restated as:
 

What are the specifications which a system must meet in order to be
 

reliable?
 

A system is normally designed in two stages: First, the components
 

are selected in such a way as to meet the reliability specifications;
 

second, the control problem is formulated and solved for that configura-.
 

tion of components. Although this procedure is over-simplified, it
 

illustrates a second question: Should the control problem influence the
 

choice of the configuration, and if so, how can this be achieved? The
 

first part of the question is answered by history: The control problem
 

influences configuration design now by iteration between the two stages
 

of design. This is most likely not the best method! If a theory were
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available which allowed a comparison between alternate designs, based
 

on both the expected system reliability and the expected system perfor­

mance, it would greatly simplify the current design methodology. It is
 

unfortunate that at present there is no accepted methodology for a
 

determination of expected system performance which accounts for changes
 

in the performance characteristics due to failure, repair or reconfigura­

tion of system functions. This report presents such a methodology for a
 

specific class of linear systems with quadratic cost criteria.
 

1.2 General Nature of the Problem.
 

This Section presents the general theoretical framework necessary to
 

approach the problem of reliable control system design. First, a
 

discussion of some of the concepts in reliability theory will be present­

ed. The control-theoretic framework for the specific topics covered in
 

this report will then be developed. Finally, the interrelationships­

between systems theory and reliability theory will be explored, leading
 

to a mathematical formulation of the reliable control system design .
 

problem and a discussion of the general nature of the results presented
 

in the remainder of this report.
 

1.2.1 Reliability Theory.
 

The generally accepted definition of reliability is stated in
 

Appendix 1. Basically, the reliability of a system is the probability
 

that the system will perform according to specifications for a given
 

amount of time. In a system-theoretic context, the specification which
 

a system must meet is stability; also, since, at least for most mathemati­

cal models of systems, stability is a long-term attribute of the system,
 



14
 

the amount of time for which the system must remain stable is taken-to
 

be infinite. Therefore, the following definitions of system reliability
 

are used in this report:
 

Definition 1: A system (implying the hardware configuration, or mathe­

maticail'model of that configuration, and its associated control and
 

estimrtion structure) has reliability r where r is the probability that
 

the systemwvill be stable for all time.
 

Definition 2: A system is said to be reliable if r = 1.
 

Definition 3: A system design, or configuration, is reliable if it
 

is stabilizable with probability one.
 

Thesa-definitions of reliability depend on the definition of stability,
 

and for'-systems which can have more than one mode of operation, stability
 

is not-that easy to determine. In this report, stability will mean
 

either->mean-square stability (over some random space which will be left
 

unspecified for the moment), or cost-stability (again, an expectation
 

over a-certain random space), which is basically the property that the
 

accumulated cost of system,operation is bounded with probability one.
 

(The definition of cost is also deferred.)
 

The reliability of a system will depend on the reliabilities of its
 

various components and on their interconnections. Thus, the systems
 

engineer must have an understanding of the probabilistic mechanisms of
 

component failure, repair, and system reconfiguration. There are a
 

multitude of models which can be used for component failure and repair,
 

and reconfiguration. Two good references to the mechanics of reliability
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theory are [Shooman, 1] and [Green and Bourne, 2].
 

-Consider a device which begins operation at time 0 and can experi­

ence catastrophic (i.e., instantaneous) failure to a non-operational
 

state. Let the probability of failure of this device occuring in the
 

interval [0,t] be
 

F(t) = prob. of failure in [O,t] (1.2.1) 

This is the definition of the failure distribution function [Shooman, 1].
 

Define the hazard rate as
 

dF(t)
dt 

z(t) - 1-rFt) (1.2.2) 

from [Shooman, 1]. The hazard rate is the incremental failure probabil­

ity at time t, given that the device is operational at time t. Now,
 

suppose the hazard rate of the device is independent of time; i.e., the
 

probability that the device will fail sometime in a time interval
 

starting at the present time is independent of how long the device has
 

been operational. This constant hazard rate
 

z(t) = c (1.2.3)
 

results in the exponential failure distribution shown in Figure 1.1.
 

The constant hazard rate is a close approximation to the actual hazard
 

rate of many devices. For example, the transistor has a hazard rate
 

similar to that shown in Figure 1.2. This type of function is quite
 

common [Shooman, 1]. Early failures in Region I of Figure 1.2 are
 

failures during the "burning-in" of the device; they are associated with
 

poor assembly, defective materials and other random fluctuations in the
 

manufacturing process. Failures in Region III are due to the wearing out
 

of elements in the part. Region II is relatively constant and closely
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approximates the constant hazard rate function- In a large system, parts
 

are generally "burned-in" before assembly is completed; therefore, the
 

system begins operation in Region II. As the system ages, periodic
 

maintenance removes old parts before the hazard rate rises in Region III.
 

Therefore, the assumption of a constant hazard rate is usually justified.
 

In this report, the constant hazard rate function is used exclusively.
 

This is due not only to its broad applicability, but also to the fact that
 

any non-constant hazard rate requires a reliable control system to keep
 

track of the starting times of the system's mode of operation.
 

In the discrete-time case, to which this report is confined exclu­

sively, the hazard rate becomes the probability of failure (or repair or
 

reconfiguration) between time t and time t+l. For a system with many
 

operating modes, the probability of being in a given mode at a given
 

time, given some past probability vector over the various operating
 

modes, can be modeled by a Markov chain. If It is a vector
-t
 

+
T RL	 (1.2.4)-t
 

where there are L+l operating modes, then 7r is propogated in time by
-t 

SPit (1.2.5) 

where 

E) L+I x L+I1"
P = (p...) e R-~ xLl(1.2.6) 

and
 

pij = 	 prob. of system being in mode i at time t+l, given it 
was in mode j at time t 

(1.2.7)
 

(see [Paz, 33). The probability p.j is the discrete-time equivalent of
 

the hazard rate, and is time-invariant. In the future, a time-invari­

ant Markov chain will be assumed as a model of the modes of operation
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and the statistics of the random switchings between modes.
 

It is now necessary to define precisely these modes of operation
 

an& their dynamic transitions. The terms system configuration and
 

system structure will be used.
 

Definition 4: System Structure: A possible mode of operation for a
 

given system; the components, their interconnections, and the informa­

tion flow in the system at a given time.
 

Definition 5: System Configuration: The original design of the system,
 

accounting for all modeled modes of operation, and the Markov chain
 

governing the configuration, or structural, dynamics (transitions among
 

the various structures).
 

An example of three possible structures for a given system is shown
 

graphically in Figure 1.3. In this report, structures are referenced by
 

convention by the set of non-negative integers
 

I = {0,l,2,3,... ,L} (1.2.8) 

The configuration for the design illustrated in Figure 1.3 is depicted 

graphically in Figure 1.4. The nodes of the graph in Figure 1.4 

represent the system structures of Figure 1.3. The edges of the graph 

represent probabilities of transfer from one node to another, and are 

elements of the matrix P.
 

pi+l,j+l = 	prob. structure i at time t+l given structure j at
 
time t.
 

(1.2.9)
 

The state of the system configuration at time t is the structure in
 

which the system is operating at that time.
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k(t) = structural state at time t (1.2.10) 

k(t) E I (1.2.11) 

This structural state evolves in time to form the structural trajectory 

(of length T+l)
 

xT = (k(0),k(1), . . ,k(T)) (1.2.12) 

In general, this structural trajectory is a random variable with apriori 

probability of occurance 

p(XT) = -"(..3
T ( Tk(0) ,O Pk(1)k(0)Pk(2)k(1) Pk(T)k(T-) (1.2.13) 

(Figure 1.5).
 

1.2.2 Control Theory.
 

In this report, only linear systems with a quadratic cost index
 

are considered. At this time, any more general formulation is of dubious
 

value in that the linear quadratic problems can demonstrate many of the
 

fundamental concepts of reliable control system design. It is
 

doubtful that any other formulation could be solved without the knowledge
 

gained from the linear quadratic solutions presented in the remainder of
 

this report. As a further restriction, perfect observation of the system
 

state x is assumed. The general class of linear systems discussed in
-t
 

this report is of the form
 

xt+l = k(t) x t +B k(t) ut (1.2.14) 

The set of pairs (Ak , k ) describe the possible system structures, 

where 

k(t) C I (1.2.15)
 

The remainder of the configuration is specified by the Markov chain
 

equation (1.2.5). The objective of this research is to develop control
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laws which account for the possible structural trajectories (1.2.12)
 

while minimizing some function of the cost. The cost function for a
 

given random state and control trajectory ((x ,u T-1
 
-t -at t=O'T isT T 

=TQx + T Ru + x Tx (1.2.16)
T t--t -t--t' -T-- T 

The function of the cost which is minimized is generally taken to be the 

expected value of 3T over all possible structural trajectories x . It 

is shown that this class of optimization problems yields solutions
 

which are sensitive to both system performance and system reliability,
 

as modeled in the configuration.
 

In the remainder of the report,/only variations in the B-matrix,
 

or actuators are considered. An actuator is a device which transfers
 

the control input to the system dynamics. The actuator in the B-matrix
 

may model a physical linkage, such as is found on the control surfaces of
 

aircraft, or, for example, the effectiveness of a tax reduction on the
 

economy.. A single actuator may fail in many different modes. For
 

example, the B-matrix can be of the form
 

B0 = [b (, I I " (1.2.17) 

where the b. Is are actuators which may fail to an actuator having zero 

gain with a failure probaility per unit time pf:
 

b. -0 (1.2.18) 

Then the system structures representing modes of failure would be modeled 

as B-matrices having at least one zero column. 

This class of linear models can also be used as a model for self­

reorganizing systems; the only restriction is that the reorganization,
 

or reconfiguration, process must be modeled with a constant hazard rate.
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An important aspect of this research is the study of various types
 

of redundancy. At present, the effect of redundancy on system performance
 

is poorly understood. There are two basic types of redundancy: component
 

redundancy-and functional redundancy. Component redundancy is the&use
 

of two or more identical components (in this report, actuators) for the
 

same task. A good example is provided by equation (1.2.17). Suppose
 

two actuators, b. and b. , are identical. If b . fails (Equation,(1.2.18)),
 

b . is still operational, and vice-versa. In order to lose the function
 
-J
 

of actuators b. and b. , both actuators must fail; this event will 

have a lower probability of occurance than the event of the failure
 

of b. ; if b were not in the configuration the function of actuator
 

b. would be lost.
 

The problem with component redundancy in control theory-is how
 

should the allocation of control resources be allocated to the redun­

dant components, and how should the component reliabilities affect the
 

choice of an optimal control law? The control methodologies presented
 

in this report answer the question for a specific class system confi­

gurations.
 

Functional redundancy implies the overlapping of function of two
 

or more components in a system. If one of the components fails, part
 

of its function is still performed by the other (redundant) component(s).
 

Functionally redundant actuators are modeled in this report in the same
 

way as component redundancy. The functional redundancy is accounted for
 

in the expectaion of the cost index over the structural trajectories.
 

The dynamics of repair and reconfiguration are all modeled in this
 

report as exponential failure distributions (constant hazard rates).
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As an example, if two actuators (b 0 and b ) are in a system configura­

tion and can each fail with probability Pf and Pf per unit time,
 

respectively, to an actuator with zero gain (0), then the configuration
 

dynamics are, assuming independence of failures:
 

= b0 1l (1.2.19) 

= El 1-b 1 (1.2.20) 

(1.2.21)
12= [ 01 0] 

B 3 = 10 (1.2.22) 

B B 1 with probability p0(
1 -pl)per unit time (1.2.23)
 

B 4 - 2 with probability pf (l-p ) per unit time (1.2.24)
 

-- 41 f 0
 

B 1 B3 with probability pf P2 per unit time (1.2.25)
 

Bi 3B with probability f2per unit time (1.2.26)
 

B2 B 3 with probability Pfl per unit time (1.2.27)
 

From this information, the Markov chain transition matrix P can be formed: 

1 -Pf0 Pf +Pf0Pf 0 0 0 

Pt (I - ) 1-Pf 0 0 
P 0 1 2 (1.2.28) 

pfl(l-pf0) 0 1-pf1 0
 

Pf0 Pfl Pf2 Pfl 1
 

Repair is considered to he component replacement, and is modeled in the
 

same manner; e.g.,
 

0 B with probability pr Pr (1.2.29)
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Reconfiguration is the restructuring of the (actuator) configuration to
 

compensate for failure, and is modeled as
 

B + 	 B4 with probability P41 (1.2.30) 

where 	B is a new actuator configuration which will be used on reconfi­

guration after failure.
 

The methodologies presented allow the study of the effects ,of
 

failure, repair and reconfiguration on the optimal control of linear
 

systems; they yield a quantitative analysis of the effectiveness of a
 

given 	system design, where effectiveness is a quantity'relating both
 

the performance and the reliability of a configuration design (see
 

Appendix 1).
 

1.2.3 	 General Nature of Results.
 

There are three classes of reliable controller methodologies:
 

I) Passive (Robust) Controller Design
 

II) Active (Switching) Controller, Passive Configuration Design
 

III) Active Controller, Active Configuration Design
 

This report concentrates entirely on classes I) and II). Class III)
 

methodologies are much more difficult to study. The Markov chain models
 

of configuration dynamics which work in classes I) and II) do not hold
 

in class III); as yet, there is no satisfactory way to model the
 

configuration dynamics of a system in such a way that the control rules
 

are well-defined.
 

Class I) methodologies are passive designs. These designs account
 

for the occurance of failures in the initial selection of the control
 

law; on-line, this class of designs does not use any current-estimate of
 

the structural state of the configuration. The design is "conservative"
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in that it continues to stabilize the system without regard to the current
 

structural state. A special sub-class of these designs is the robust
 

controller designs. A robust controller will stabilize any structure of
 

the system without regard to the configuration dynamics; i.e.., if the
 

system remains in any structural state forever, it will still be
 

stabilized. The class I) methodologies are represented by the
 

non-switqhing gain methodology of Chapter 5.
 

-Class II) methodologies are active controllers;-in some sense,
 

they are adaptive. From knowledge of the system's past, these controllers
 

switch their control law on-line in order to compensate for what they
 

estimate to be the correct structural state. For deterministic systems,
 

these controllers can be determined analytically. For stochastic
 

systems, the optimization problems cannot be solved analytically in
 

general due to the dual control effect [Fel'dbaum, 4- 7]. Thus,
 

suboptimal control strategies must be used. The class II) methodologies
 

are represented by the switching gain methodology in Chapter 3 and
 

its suboptimal extensions in Chapter 4.
 



29 

1.3 Relations with Previous Literature.
 

This research is based on a background knowledge in both reliability
 

theory and systems theory. Both mathematics and probability theory are
 

fundamental in these fields. As general references to the techniques
 

used in this report, in real analysis, and measure and integration
 

theory, [Rudin,8], [Segal & Kunze, 9], and [Halmos,10] are good; in
 

matrix theory, [Gantmacher,ll] is the standard reference. In probabil-,
 

ity theory, [Bauer,12] and [Doob,13] are definitive; expansions on the
 

theory of Markov chains are found in [Chung,14] and [Derman,15].
 

There are several good texts on reliability theory; of these,
 

[Greene & Bourne, 2] and [Shooman, 1] are possibly the best. [Cox,161
 

and [Corcoran,17] demonstrate the current methods of the scheduling and
 

use of redundancy in reliability technology. Other good treatments are
 

found in [Barlow and Proschan,18] and [Gnedenko,19].
 

In control theory, a good treatment of the deterministic linear
 

quadratic regulator problem is found in the IEEE Transactions Special
 

Issue edited by [Athans,20], and in [Athans & Falb,21]. The dual
 

control problem is described in [Fel'dbaum, 4- 7] and several other
 

publications.
 

Previously, several authors have studied the optimal control of
 

systems with randomly varying structure. Most notable among these is
 

[Wonham,22], where the solution to the continuous time linear regulator
 

problem with randomly jumping parameters is developed. This solution is
 

similar to the discrete time switching gain solution presented in
 

Chapter 3. The random parameters are restricted to be a continuous
 

time Markov chain. The most notable difference is that in [Wonham,22],
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the assumption is made that the controller has perfect information about
 

the present state of the random process on-line. The solution switches
 

gains in a linear state feedback control law whenever the (Markovian)
 

random parameter jumps. In the discrete time switching gain solution
 

presented in Chapter 3, the control law is determined from past observa­

tions -which allow the deduction of the exact state of the random para­

meter process, and then the random parameter may switch values according
 

to the statistics given by the Markov chain. Thus, the control may be
 

applied to one of a number of possible structures at the next time
 

instant. In Wonham's development, the optimal control law is matched
 

specifically to one structure. The analogous continuous time version
 

to the-switching gain solution of Chapter 3 would be to assume on-line
 

perfect observation of the random parameter with a fixed time delay.
 

Wonham's result has no such time delay.
 

Wonham also proves an existence result for the steady-state optimal
 

solution to the control of systems with randomly varying structure.
 

This result is based on conditions of stabilizability of each system
 

structure and observability of each structure with respect to the
 

cost functional. The conclusion is only sufficient; it is not necessary
 

for existence of a steady-state solution. Similar results were obtained
 

in [Beard,23] for the existence of a stabilizing gain, where the
 

structures were of a highly specific form; these results were necessary
 

and sufficient algebraic conditions, but cannot be readily generalized
 

to less specific classes of problems.
 

The time-varying solution of [Wonham,22] is computed using a set of
 

coupled Riccati-like matrix equations. The coupling is in the form of
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a linear term in the solution to the matrix equations added to the normal
 

linear quadratic Riccati equation. The solutidn can be precomputed by
 

solving the coupled Riccati-like equations off-line; the control law is
 

then switched on-line to a gain which corresponds to the current state
 

of the Markov process. The optimal solution requires perfect knowledge
 

of the structure.
 

In reality, the structure is seldom known perfectly, and a noisy
 

observation of the random process leads to a dual control problem.
 

Although much of Chapter 3 is based on the fact that the controller can
 

obtain the structural state with one-step delay in the deterministic
 

discrete time problem, this report makes the connection, for the first
 

time, of the existence of a steady-state switching gain controller with
 

that system's reliability and effectiveness.
 

[Sworder, 24] has developed, using-a version of the stochastic
 

maximum principle, an optimal feedback control law for a class of' linear
 

systems with jump parameters which is almost identical to that of
 

51cnham,22];the coupled Riccati-like equations are identical except for
 

notation. The only difference is Sworder's assumption that the random
 

process is instantaneously observable from a set of sensors which are
 

unaffected by the choice of the control law. Using this assumption,
 

Sworder avoids the problems of dual control.
 

Sworder also comments on the usefulness of linear system models
 

with jump parameters in modeling possible failures in the system
 

[Sworder,24]. [Ratner & Luenberger,25] derive a control law for a
 

continuous time linear system. The system has one failure mode, and a
 

maximum number of renewals (repairs) can take place. The objective is
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to determine apriori the optimal time intervals in.which the system
 

should operate in the failure mode, and the optimal-control law, given
 

the mode of operation, over a finite time interval. The failure process
 

is assumed to have an exponential failure distribution (constant hazard
 

rate);, the renewal process is controlled, and is not random. The
 

control law is of the switching gain type, and the solution is in the
 

form of two coupled Riccati-like matrix equations quite similar to those
 

in [Wonham,22] and [Sworder,2 4 ]. The optimal control policy and the
 

optimal renewal policy can both be calculated off-line. This class of
 

problems is further investigated by [Sworder,26] to determine over what
 

region immediate renewal is the optimal policy. Both of these papers
 

illustrate examples of class III) control methodologies; the structural
 

state as well as the system state is under the influence of the control­

ler. The simple structure of the class of systems studied by [Ratner & 

Luenberger,25] allows a solution. There is need for much more work in 

this area. 

Still a third approach to the problems associated with multiple­

structure systems is given in [Bar-Shalom & Sivan,27]. Here, the
 

measurements of the-system state are corrupted by additive noise. The
 

open-loop controller and the open-loop feedback controller are derived
 

using dynamic programming. Knowledge of the presentstate of the random
 

process governing the system configuration is not assumed. Therefore,
 

the (optimal) closed-loop controller would be a dual control law. The
 

open-loop controller assumes no on-line measurements of the system state;
 

the open-loop feedback controller assumes future on-line measurements
 

and thereby improves its performance. There is little correlation
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between this paper and the research on which this report is based.
 

[Willner,28] developed a suboptimal control scheme, which allowed
 

for imperfect observation of the random parameter process, known as
 

multiple-model, adaptive control. 'In this method, the parameters -could
 

only take a discrete set of values, a cause of recent disfavor, as MMAC
 

does not always work well when the parameters vary continuously and are
 

approximated by the mathematics. Similar work has been done in [Pierce &
 

Sworder,29]. The MMAC methodology is optimal one step backward from the
 

final time, as is the switching gain methodology in the example of
 

Chapter 2 when applied to systems with additive white control noise.
 

The dual problem of state estimation with a system with random
 

parameter variations over a finite set was studied in [Chang & Athans,30].
 

It is shown there that the optimal estimator consists of a geometrically
 

increasing set of Kalman filters, one for each possible structural
 

trajectory of length t+1 at time t, and an averaging process to compute
 

the minimum mean-square error estimate from the filter estimates. It
 

is also shown that when the parameter process is Markovian, a bank of
 

N2 
estimators is optimal, where there are N possible values of the
 

parameters. Each estimator is then conditioned on the possible values
 

of the parameters at the two previous time instants.
 

Recently, the robustness of the linear quadratic regulator has been
 

studied in depth. This work is described in [Wong, et. al.,31] and
 

in [Safonov & Athans,32]. A long-standing problem with the linear
 

quadratic design methodology has been the lack of analogs to the various
 

stability and robustness criteria of classical systems theory. This
 

research was aimed at characterizations of robust solutions to,
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specifically, the linear quadratic regulator. Supporting research is
 

reported in [Safonov & Athans,33], [Wong & Athans,34], [Wong,35], and
 

[Safonov,36]. The research in this report is related to the robust
 

controller problem, but the approach is different in that the performance
 

criteri6n is modified to account for possible variations in structure,
 

such as those caused by failures, rather than depending on certain
 

properties of the linear quadratic regulator ,solution to guarantee
 

robustness. In this research, the concept of stability is related to
 

the existence of a finite cost solution to the non-switching gain
 

problem. For a specific class of configurations, this approach solves
 

the robust controller problem (Chapter 5, Section 9).
 

The existence of an uncertainty threshold for the non-switching
 

controller of Chapter 5, that limit on parameter uncertainty beyond
 

which no controller can stabilize the system, is proven for an one­

dimensional example. This work is similar to the work by [Athans,
 

et. al.,37] on the Uncertainty Threshold Principle and the related
 

papers by [Ku & Athans,38] and [Ku, et. al.,3 9]. This research is
 

reported in Chapter 2, Section 7.
 

Lastly, parts of this research have been presented in an unpub­

lished form at the 1977 Joint Automatic Control Conference in San
 

Francisco, and published for the 1977 IEEE Conference on Decision and
 

Control Theory in New Orleans [Birdwell & Athans,40].
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1.4 Summary of Main Contributions.
 

There are two major contributions of this research. First, the
 

classification of a system design as reliable or unreliable, for the
 

deterministic variable actuator linear system in Chapter 3, has been
 

equated with the existence of a steady-state switching gain and cost
 

for that design. If the steady-state switching gain does not exist,
 

then the system design cannot be stabilized; hence, it is unreliable.
 

The only recourse in such a case is to use more reliable components
 

and/or more redundancy. Reliability of a system design can therefore
 

be determined by a test for convergence of the set of coupled Riccati­

like equations (3.3.6) as the final time goes to infinity.
 

A similar result holds for the non-switching gain methodology of
 

Chapter 5. Here, the system design is classified as reliable or
 

unreliable with respect to a constant gain linear feedback control law,
 

depending on the convergence, or divergence, respectively, of equation
 

(5.6.16) as the final time goes to infinity. If equation (5.6.16)
 

converges to a limit cycle, then that limit cycle produces a stabilizing
 

cyclic steady-state gain.
 

The second major contribution lies in the robustness implications
 

of the non-switching gain methodology. Precisely, a constant gain for
 

a linear feedback control law for a set of linear systems is said to
 

be robust if that gain stabilizes each linear system individually, i.e.,
 

without regard to the configuration dynamics. The problem of determining
 

when such a gain exists, and of finding a robust gain, can be formulated
 

in the context of the non-switching gain methodology. As a result, the
 

non-switching gain methodology gives an algorithm for determining a
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robust gain for a set of linear systems which is optimal with respect to
 

a quadratic cost criterion. If the algorithm does'not converge, then
 

no robust gain exists-


The following Section of this Chapter will outline the remainder
 

of this report.
 

1.5 	 Outline of Report.
 

In Chapter 2, several one-dimensional examples are examined as
 

a clarification and motivation for the methodologies presented in
 

Chapters 3 through 5. In addition, Chapter 2, Section 7, deals with
 

the relationship between the Uncertainty Threshold Principle and the
 

existence of a steady-state solution to the non-switching gain problem.
 

Chapter 3 develops the optimal solution to the class of problems
 

described in Section 2 of this Chapter. The solution is labeled the
 

switching gain solution because the gain of a linear feedback control
 

law switches in response to the exact observation of the system
 

structure with one-step delay.
 

Since Chapter 3 deals entirely with deterministic systems, and the
 

switching gain solution does not extend optimally to the stochastic
 

case, Chapter 4 presents some suboptimal methods which can be used to
 

extend the switching gain solution to stochastic problems. Two
 

methodologies are presented. One (hypothesis testing) is based entirely
 

on estimation of the structure. The second (dual identification) uses
 

the dual effect of the control law to determine more precisely what the
 

structure is with the next observation. The optimal control law would
 

have some characteristics of both methodologies, as is shown by example
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in Chapter 2, Section 5.
 

Chapter 5 derives a control law which ignores any on-line informa­

tion which might be gathered about the structural state, and results
 

in a non-switching gain solution used in a linear feedback control law.
 

The stability of this non-switching solution is explored, along with
 

the existence of a steady-state solution, in Secion 7. In Section 9,
 

the robustness issue is addressed, and the non-switching methodology is
 

used to define an algorithm which can determine the existence of a
 

robust gain and calculate an optimal robust gain with respect to a
 

quadratic cost functional, when one exists.
 

Chapter 6 focuses on the issues of computer-aidedldesign and the
 

application of the non-switching gain methodology to design problems.
 

Two examples are used to demonstrate the effectiveness of the non­

switching methodology in design.
 

Chapter 7 reviews the results described in the report and suggests
 

new directions for future research.
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CHAPTER 2
 

CLARIFICATION AND MOTIVATION OF RESEARCH
 

2.1 introduction.
 

The purpose of this Chapter is to motivate all subsequent more
 

general 'Chapters with simple one-dimensional examples. In particular,
 

in Section 2, a one-dimensional problem is formulated and solved to
 

illustrate the optimal (switching gain) deterministic control for
 

linear quadratic systems with variable actuator configurations.
 

The effects of process noise on this solution are examined in
 

Section 3. The dual effects which occur in the stochastic systems
 

motivate the suboptimal approaches described in Chapter 4.
 

The possibility of steady-state control of variable actuator
 

configuration systems with a single linear independent control law
 

is discussed in Section 6, motivating the work on the non-switching
 

gain solution and robust control laws in Chapter 5. In addition,
 

the possibility of existence of a steady-state stabilizing linear
 

feedback control law with constant gain is compared with the work on
 

the Uncertainty Threshold Principle [Athans,et.al., 3 7] in Section 7.
 

Section 7 contains the only case of this report where exact algebraic
 

conditions for the existence of a steady-state solution have been
 

derived. Unfortunately, these results do not readily extend in an
 

analytical manner to higher dimensions.
 

The question of existence of a steady-state solution to these
 

problems is of great importance. A system design is defined to be
 

reliable with respect to a certain class of control laws if there
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exists a control law from that class for which the infinite time
 

cost incurred using that control law is finite. Since the switching
 

and non-switching. gain solutions are-the-optimal solutions for-their
 

respective classes of control laws, if they incur an infinite cost, so
 

will any other control law from that class. In addition, since the
 

switching gain solution is the optimal control law for the determin­

istic problem, a system design is termed deterministically reliable;
 

or reliable if and only if the incurred infinite time expected cost
 

is finite.
 

In the neit Section, a one-dimensional example is presented
 

which will'be used to motivate the remainder of this report by
 

examining the ramifications of the switching and non-switching gain
 

solutions through their specific application to the example.
 

2.2 	 A Simple Example--The Optimal Solution.
 

The following one-dimensional example is used to demonstrate the
 

switching gain methodology presented in Chapter 3, and to show that
 

the general stochastic problem is analytically intractable. All proofs
 

and derivations are given in Appendix 2.
 

2.2.1 	Problem Statement.
 

Let the discrete-time system be one-dimensional with one control
 

variable ut and state variable xt related by
 

xt+1 = ax t + 'k t (2.2.1) 

The value of the control multiplier (bk) is a random variable which 

takes on one of two discrete values at each time t. 
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bk(t) = b if k =0 (2.2.2) 
1/b if k = 1 

The random process k(t) is governed by the Markov chain represented 

by 

7 = P r (2.2.3)
-t+1 -- t
 

where
 

R2IE 	 (2.2.4) 

= 	 p1 1 P 1 2  (2.2.5) 

P21 P2 2J 

At any given time t, the following sequence of events occurs: 

I) xt is observed exactly, bk(tl)is computed, and k(t-1)is 

set to 0 or 1 depending on bk(t-l), where k(t-1)is the 

variable representing the Markov chain; 

II) 	 bk(t-) may change values to bk(t);
 

III) ut is applied.
 

For 	any given sample path, the performance index is given by
 

= 2 (qx + ru) (2.2.6) 

t=0 

where {0,1,....,T} is the time set over which the system is to be 

controlled. The objective of the control problem is to minimize the 

expected cost-to-go at time t, given by 

v(xt*k(t-l,)utt) = E (q2 + ru2)Ik(t-l4 (2.2.7) 

where the expectation is taken over all possible sample paths of
 

k(T), t<T<T. 
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2.2.2 Summary of Solution.
 

From Appendix 2.1, we find that the optimal control is given
 

by
 

ut
 

Ot abSot + IlTt (a/b)S t+l 
 (2.2.8) 

b2S + t (1/b2)Slt+1r+ 7T 


where
 

--t7= 7r ] (2.2.9)it [lt I = Pit-- t-

Thus, the control law is linear in the state xt, and switches between 

two precomputable gains, depending on the value of k(t-l). 

Given xt, xt 1 and ut_1
11 f x t-axt-1 

t-1
1 (2.2.10) 

107 xtaxu" - 1/b 

t-l 

and k(t-1) = 0 if t1 =[1 0]' or 1 if it- =[0 1]K. 

The optimal cost-to-go is 

V*(xtk=i,t) = x2S (22.11)
t i't
 

where S0 t and SI't are propagated backward in time by the following
 

equations:
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' 
Assuming k=O at time t, then nt = 11 P21 ] and 

r[p labSo,t+l+p2 (a/b)Slt+l]2
 

S q +222
S0t = q 	+[r+p b2Sot+l+P2 (1/b2)Sl't+l] 2
 

+ 	 b [PllabS0' t+l+P21 (a/b) Sl' t+l ] 2 
r 11l b So,t+l+p21(1/b2)Sl,t+l 

+2 1p	 p1 1ahSo t+1+P21(a/b) Sl t~i)l/
S21b[r+p 1 1b

2SO++pl2 Sit+_/b 2 S1,t+l (2.2.12)
 

Assuming k=l at time t, then 7t = [P12 P22]' and 

r[p12abS ,tl+P22(a/b),Sl,t+l
] 2
 

lt =q+[r+P12b2SO,t+l+p22 (1/b2 ) S t+ 2
 

a b[P12abSort+l+P2 2 (a/b)Sl,t+l 2
 

2 12 2l2,t+1 (2.2.13)
 

+ (a _ P12abSO t+l+P22 (a/b)Sl,t+ _ 2
b[r+p1 2b2So,t++P221, lt+/b2
 

Note from equation (2.2.8) that ut switches from one linear gain 

to another, depending on the value of xt -- thus,, this solution depends 

on an exact knowledge of xt. If knowledge of xt is corrupted by measure­

ment noise (or, if ut is corrupted by control noise), then it will be 

shown by example that this becomes a dual control problem.
 



43 

2.3 The Dual Control Effect.
 

To demonstrate the difficulties encountered when white process
 

noise is present, the optimal.solution for the one dimensional
 

example is derived over the time interval f0,1,21 with additive white
 

control noise present. The system is now represented by
 

xt 1 = axt + bk(t)ut + Et (2.3.1)
 

Et is discrete time white noise with zero mean, E[t ]. I
 

probability distribution p(C), and is uncorrelated with x and k(T)
 
T 

for T<t. 

Thus, the problem is to find u 0 and uI such that the expected
 

cost-to-go is minimized.
 

From Appendix 2.2, the optimal control one step back in time
 

(at t=l) is
 

*,= xi.Ib~ (2.3.2) 

r + U7iTl ) b, 

where ii(l11) is the probability that k= i, given the information
 

set Z1 = NO ,x0'ux1X}. As expected, this control is of the same 

form as is the deterministic control law, equation (2.2.8), since
 

there is no benefit in trying to determine k more accurately through
 

the use of a special control value. In other words, there is no dual
 

control effect at t = Tff-l (in this example, t=l).
 

At t=0, the situation is different. Now, the optimal control will
 

force the system to supply more information through the state at t=1
 

than it normally would in the absence of the process white noise t"
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In order to compute u0 , a numerical minimization of a numerical
 

integration (in general) must be performed. Thus, u0 is the
 

solution -of
 

* 12 2
 

V (x 0 ,0) = rain x + u0r + Eq
 

kO f=0 0 ( ) xq(l+a2) 
SR(x I ) 

2 1r (111)b] 222 

d~ O) k k10lO Jf oO )
r+ ~ 2 i 

(2.3.3)
 

where
 

(2.3.4)

k P(xl-aX0-bU 0 


;6 P(xl-ax0-biu 
0 )TTi, 0
 

and p(xljkl,k0 ,Z0 ) is the probability measure of xI over R(xl)
 

c, and ZO
the range of xi , given k1, kO
 .
 

Equation (2.3.3) is very difficult to solve numerically, and
 

for any realistically-sized problem would be economically infeasible.
 

For the limited amount of computation that has been done with equation
 

(2.3.3), the dual control effect is evident from Table 2.1. Note
 

that as the process noise variance increases, the trend is for the
 
, 

control u0 to increase. This is due to the need for a larger control
 

to lessen the effect of noise on future estimations of the structure.
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Table 2.1
 

The optimal control u0 versus x0 and
 

x-0 0 (E-=3) "0 (0=6) 0 (=10) 

-2.0 2.3170089 2.3188635 2.3201611 
-1.6 * 1.8550055 1.8559061 
-1.2 1.3898305 1.3907551 1.3912676 
-0.8 0.9255912 0.9259997 0.9261950 
-0.4 0.4606236 0.4606920 0.4607206 
0.0 -0.005 -0.005 -0.005
 
0.4 -0.4706236 -0.4706920 -0.4707206
 
0.8 -0.9355912 -0.9359997 -0.9361950
 
1.2 -1.3998305 -1.4007551 -1.4012676
 
1.6 -1.8635511 -1.8650055 -1.8659061
 

• - calculation did not converge due to numerical errors
 

The system used in the calculations is described by equation
 

(2.2.1) where
 

a = 2.
 
k(t) is 0 or 1
 
bo= 2.
 
b I = .5
 
q=3.
 
r= 1. 

Table 2.1 is only.intended to demonstrate the difference in the
 

optimal control laws at time 0 for a two-stage process; numerical
 

accuracy is not assured. Specifically, the values of -.005 for
 

* 
u0 (x0 = 0) are highly doubtful, as well as the consistent
 

asymmetry between positive and negative values in the Table.
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2.3.1 	A Special Case.
 

It is interesting that for one specialized probability distribu­
* 

tion p(c), when the optimal control u0 is large enough, the optimal
 

solution is identical with the deterministic solution of Section 2.
 

From Appendix 2.3, assuming
 

, for '/W= < < 

00 = (2.3.5) 
0 otherwise
 

* 
as shown in Figure 2.1, if u0 from the deterministic solution (equation
 

2.2.8) satisfies
 

I (bko 	 - b.)u0 > 2v37- for k' 3 i (2.3.6) 
*( 0 
 0
 

then u 0 is also the solution to the stochastic control problem.
 

Physically, because the noise is amplitude limited, it is easy
 

to exactly deduce the structure if the control is large enough.
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2/ 

Figure 2.1: A probability distribution for amplitude-limited
 
white noise.
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2.4 Existence of a Steady-State Solution.
 

Although, as will be stated in Chapter 3, little can be said
 

about the existence of a steady-state solution to the general n-dim­

ensional switching gain problem, for the one-dimensional example,
 

exact conditions for the existence of a steady-state solution can
 

be found. They are in the form of two simultaneous algebraic equations
 

which 	can be solved analytically.
 

b[Pllab+P2 (a/b)h] 2
 

Pll S= 
 +p2 1 (l/b2)h
 

+ + 21 a~ Pllab+P21(a/bh ) 2h 	 (2.4.1)b l21 +p21h/b21
 

hr = 	 p b[P12ab+P 22 (a/b)hl\2 

2=12a b
12b2+p22 (1/b2)h
 

1 2 b+p 2 2 (/b)h)2
 

+ P22 a - P12ab+P22h(a/b) 2h 	 (2.4.2) 

The equations are derived in Appendix 2.4. In these equations the
 

variables F and h are defined as 

r = 	lim So't (2.4.3)
 
t -- Sot+l
 

and
 

h = 	 lim i't (2.4.4) 
t -co O,t 

whenever both S0,t and SIl t increase without bound as t + - , as defined
 

in equations (2.2.12) and 2.2.13).
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Since r is the limiting value of the ratio of the next value of 

SO' t to the present value Sot+l, it is necessary that 

r > 1 (2.4.5) 

for 

SO' (2.4.6)t 

Similarily, if SO't has a limit, then F can have a maximum value of 

1. Therefore, a test can be made on the solution (h,F) to equations
 

(2.4.1) and (2.4.2) for the existence of a steady-state solution:
 

If
 

h 7 0 or (2.4.7) 

then 

SO,S lt if r > 1 (2.4.8) 

SOft, Sl1 t converge if r < 1 (2.4'.9) 

and there is no conclusion if F = i. 

By way of eliminating all possibilities, as an aside, a limit cycle 

to the solution of equations (2.2.12) and (2.2.13) cannot occur by
 

Lemma 1 of Chapter 3.
 

2.5 Conclusions on the Switching Gain Methodology.
 

The purpose of the last three Sections on the one-dimensional
 

switching gain example was to clarify the approach of this phase of the
 

research, and to motivate the approach of Chapters 3 and 4. In this
 

Section, some implications of the one-dimensional example will be
 

discussed.
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2.5.1 Implications of the Dual Control Effect.
 

It was shown in Section 2 that the optimal solution to the deter­

ministic class of variable actuator linear quadratic control problems'
 

i.e., the switching gain solution, is conceptually straightforward,
 

although computationally complex off-line. Unfortunately, in Section 3,
 

it was demonstrated that the optimal solution of the stochastic version
 

of the same problem is infeasible. (Witness the problems of calculating
 

the two-step optimal solution.) Therefore, since the switching gain
 

deterministic solution is essentially the only solution which can be
 

described analytically, the research involved in developing the
 

n-dimensional switching gain solution is justified. This is exactly
 

what is presented in Chapter 3.
 

It then remains to investigate any extensions (which will of
 

necessity be suboptimal) which may be made to the switching gain
 

solution to adapt the solution to the stochastic problem. In Chapter
 

4, a start is made in that direction. These are two basic routes
 

to follow: The various hypothesis testing algorithms in combination
 

with the switching gain solution, and a formulation developed in
 

Chapter 4 which gives the control vector a dual effect; the control
 

is changed to increase the accuracy of the estimation algorithm.
 

The optimal control would use techniques from both categories, as the
 

dual effect is clearly seen in Table 2.1.
 

2.5.2 Existence of a Steady-State.
 

Although for the one-dimensional example, it is possible to
 

determine the condition for convergence of the Riccati-like equations
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(2.2.12) and (2.2.13), this method does not extend to the n-dimen­

sional solution. It is at present unknown under what conditions
 

the Riccati-like equations for the n-dimensional problem converge;
 

therefore, there is little comment on conditions for convergence in.
 

the remainder of this report.
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2.6 A Simple Example--The Non-Switching Solution.
 

In the previous sections of this Chapter, motivation was given 

for the development of the optimal (switching) solution to the linear 

quadratic - variable actuator configuration control problem. 

Several problems with the method were pointed out in Section 5.
 

Specifically, the methodology does not extend optimally to the stochas­

tic case due to the dual control effect. Secondly, the increase in
 

on-line complexity over the usual linear quadratic control problem
 

is significant, especially in the suboptimal stochastic schemes.
 

In many instances, a stabilizing solution to this class of
 

control problems is desired which exhibits the same complexity as
 

does the usual linear quadratic controller. For instance, it may be
 

desired that a control law stabilize a system without requiring
 

error detection strategies and switching to a new form upon detection
 

of failure. A subclass of these problems occur when a robust gain
 

(one which stabilizes each configuration without regard for the
 

dynamics of structural changes) for a set of linear systems is
 

desired. The first problem within this subclass deals with the
 

existence of such a gain. The second problem deals with the choice
 

of an optimum robust gain with respect to some cost index.
 

In the following Subsections, an example of non-switching gain
 

methodology is given as an illustration of the concepts; since the
 

derivations are quite complex, proofs are deferred until Chapter 5,
 

where the entire development of the non-switching solution is presented.
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The following formulation is only for the steady-state solution;
 

in Section 7, the conditions for existence of the steady-state solu­

tion will be given and related to the Uncertainty Threshold Principle
 

[Athans,et. al., ]
 

2.6.1 	Problem Statement
 

In Chapter 5, the non-switching control problem is solved for
 

linear systems with variable actuator configurations and quadratic
 

cost. It was stated in the conclusion of the previous Section that
 

a relationship exists between the existence of a steady-state solution
 

and the Uncertainty Threshold Principle. In this Subsection, the
 

existence of a steady-state non-switching solution to the one dimen­

sional example presented in Section 2 will be studied to illustrate
 

this relationship.
 

The 	system to be used is
 

x t+l= ax t + bkut (2.6.1)
 

where x, a, b. and u are scalars, k can be either 0 or 1, and t takes
 

on integer values.
 

(bif k=O
 
b.i = 	 lb (2.6.2) 

(1/b if k=l
 

The index k represents the structural state of the system, and
 

is a random variable with statistics generated by the Markov chain
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Eit+lr P f t (2.6.3) 

P = [r -P (2.6.4) 

where 7 . is the probability that the structural state is i at time t, 

given some initial condition 7 (T init ) . 

The infinite-time, or steady-state non-switching control problem 

is formulated by specifing that the solution u t is to minimize the 

cost of a trajectory (kt u ) given by the sum 
s2 2 init 

j = E qx + rut (2.6.5) 
t= T init 

2.6.2 Summary of Solution
 

The solution is computed, from Chapter 5, equations (5.7.17)
 

and (5.7.18), when it exists, as the solution (So,S1 ) of
 

2 1 (bS0+S1/b)bS0 (bS0+S 1 /A)
2 (r+b2S0s o a S - (b 2 S0+S /b2)+r 4(+ (b2S 0 +S 1 /b )+r) 

( (bS0+s1/b)S 1(bS 0+sI/b) 2(r+S 1/b ) 
+(Np) 1 ­ 21 12+ 2 

4( (b2S +S1/b2)+r)
+ ) ( (b2So+S1/b2)+r)b 


+ q (2.6.6) 

a2 ( p) /b)bS (bSo+S1/b) (r+b280 )
S So 
(b2So+S1/b 2) +r 4 (1(b2So+Sl/b2 )+r) 

a p S-)\o0 (( 2 s/ 2 +) 

/ (bS0+S1/b)S I(bS 0+S1/b) 2(r+S1T/b 

(- (b 2s0+S l/b2 )+r)b 4 ( (b2S0+S/b2 )+r)2 

+ q(2.6.7) 
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and the control is given by
 

(bS0+S 1/b)a
 u t = -•xt (2.6.8) 

(r+ (b S0+S /b )) 

Note that the steady-state solution is a linear feedback control
 

law with a constant gain which is pre-computable using equations
 

(2.6.6) and (2.6.7). The on-line implementation of this solution has
 

the same complexity as does the usual linear quadratic steady-state
 

solution.
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2.7 	 Existence of a Steady-State Solution and the Uncertainty
 
Threshold Principle.
 

In this Section, the existence of a steady-state solution to
 

equations (2.6.6) and (2.6.7) is related to the Uncertainty Threshold
 

Principle [Athans et. al.,37]. This Principle states that for a
 

certain class of systems, there exists a threshold, or bound, on the
 

degree of uncertainty in the system dynamics beyond which no control
 

law will stabilize the system. Furthermore, it is noted in
 

[Athans et. al.,3 7] that there does exist a "minimizing" control even
 

though the infinite-time cost in infinite.
 

For the non-switching gain class of controllers, it will be
 

shown in this Section that, at least for the one-dimensional example
 

of Sections 2 and 6; such athreshold does exist; furthermore, it will
 

be explicitly calculated. In addition, it will be demonstrated that
 

the non-switching control gain -converges even when no finite cost
 

steady-state solution exists.
 

2.7.1 Formulation of Existence 'Problem.
 

The question is now asked: When does the steady state solution
 

exist? I.e., when is the cost, given by 

J2S0 + 2 (2.7.1) 

finite? 

This problem is solved by showing when the solution does not
 

exist.
 

Allowing
 

SO (2.7.2)
 

and setting
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h = 	 lir l't (2.7.3) 
t -- So,t 

F' = 	 lrn S(2.7.4)-
t S0, t+l
 

where S0, t and Sl' t are the values of the r.h.s. of equations (216.6)
 

and (2.6.7) iterated backwards t times from an initial value Si,0=Q,
 

equations (2.6.6) and (2.6.7) become
 

r a2 ( (1 (b+h/b)b +(b+h/lb)2 b2
 

(b2+h/b2 )2
'(b 2+h/b
2) 


+ 	 (l-p) h I - (b+h/b) + (b+h/b)2/b2 (2.7.5) 
(b2+h/b2 )b (b2+h/b2 )2 

2
hi aa ((1-p) (1_ (b+h/b)b + (b+h/b)2 2
 

3(b 2 +h/b 2 ) (b 2 +h/b 2 ) 2 /
 

' / 	 b+h/b) (2~/)2I(h 	(I- -2(b2_/b_2)b (b2+h/b) 2bI (2.7.6) 

2.7.2 Summary of Solution.
 

Equations (2.7.5) and (2.7.6) have 5 solutions. The solutions of h
 

and r of interest are:
 

For 	p ; 

h = 	 -(p(b 4 (6-2W)-3b8-3)+((2b4-2)p-b4+l)V 

+(4b 8-2b4+2)p2+b8-2b4+1)/((2b4+2)p -2pW) (2.7.7) 

2 4 2 8 2 4 2
 
r = a (-p[b (2p +4p-2)+(b +1)(p -2p+l)] +(b +l)p2)
 

/((b2 +1) 2 (2p-1) 	 (2.7.8) 
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where 

V = 
4 4 2 8 2 2 

[b (p(4-4[b (2p +4p-2)+b (p -2p+l)+p -2p+l] 

2 8 2 2 
+2p -2)+b (5p -21p+-1)+p -2p+l] 2 

2) 

(2.7.9) 

and 

W=b 8 4 2 8 4 8 4 
W = [(b +2b +l)p +(-2b +4b -2)p+b -2b +] 

(..0 
(2.7.10) 

For p = ; 

h= 1 (2.7.11) 

= a2 (b 2-1)2 
2(b4+1) 

<2.7.12) 
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2.7.3 Graphical Illustration of Solution.
 

Equations (2.7.7) through (2.7.12) are to6 complex for much
 

information to he gleaned from study. Therefore, their significance
 

is demonstrated graphically in this section.
 

These equations are used to compute the absolute values of a
 

versus b and p above which no stabilizing non-switching control exists;
 

i.e., since F is the limiting ratio of SO,t to S ,t+l, what threshold
 

value of lal yields r = 1? Since the system (2.6.1) is a discrete
 

time one, this threshold quantifies how unstable the open-loop system
 

must be for there to be no stabilizing solution. This quantity is
 

called the uncertainty threshold value of lal. For the case p k,
 

Ia'threshold is easy to compute from equation (2.7.12)
 

athreshold [ (b2+1] 
Iahl 2b_l)] (2.7.13)
 

For p = 1, 

lalthreshold = (b2+1) [(2p-l)
 

/(p((b 4+l)p-[b4(2p2+4p-2)+(b8+l)(p -2p+l]))]
2
 

(2.7.14)
 

A plot of laithreshold versus p (long axis) and b is shown in Figure 2.2.
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The in(b) axis is used because Ialthreshold is symmetric with respect
 

to in(b) around zero (lalthreshold (b) = Ialthreshold (1/b) ). b varies
 

-2.5 -.05 
from e to e ; p varies from p = 1 to p = .- 1. Note that 

Ialthreshold - as b - l and/or p 4 0. This is because as b - 1, the 

system looks more and more like 

xt+1 = axt + but (2.7.15)
 

which is controllable for all values of a. As p 0, the system is­

switching more and more rapidly between the two structures; therefore,
 

each structure has less time to influence the system unfavorably and
 

the system becomes easier to control, leading to althreshold ­

2.7.4 Best Control with Infinite Cost.
 

Although the cost may be-infinite, a finite gain control exists.
 

From equation (2.6.8), and allowing S0 and S /S0 - h, the control 

becomes
 
* (b+h/b) a 

u = - 2 2 x (2.7.16)
(b2+h/b2 ) 

Note that the control gain does not depend on q or r, but only on p,
 

a and b, as in the work with the Uncertainty Threshold Principle. A
 

plot of h versus p (long axis) and b is given in Figures 2.3a and 2.3b,
 

in the same manner as for F. Note that as p -* 0 , h -) - (except at 

b = 1). For this boundary, we rely on a symmetric argument, switching
 

the roles of S and SI, since we only know that S 1 .
 

An interesting symmetry exists in h with respect to p. If h is 

defined as 

= lim h (2.7.17) 
b 0 
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then
 

= 	 -p (2.7.18) 
p 

Letting p = + x, 

1 - 2x (2.7.19) 
1 + 2x 

and 

h(1) = (2.7.20)"
 

Thus, ln[h(p)] is symmetric around p = .5.. This solves the boundary 

problem, because as p- 1, h 0 (except at b = 1), and the condition 

SO - is satisfied (S1 -0). Since h is symmetric, and h(p,b) +(p) 

for p- O, the solution is well-defined at p = 0. 

In Figure 2.4, the control gain divided by a, g; is plotted as a
 

function of p and b.
 

* 
ut = -gax t 	 (2.7.21) 

Note that as p -) 0 (and h+), g - b, and as p ) 1 (and h -* 0), 

g-) l/b, and that b0 = b andb = /b. Thus, as p 0, the optimal gain 

tends towards the deadbeat controller for the system in structural 

state 1, and as p + 1, the optimal gain tends towards the deadbeat 

controller for the system in structural state 0. 
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2.7.5 Conclusion.
 

In this Section, the steady-state properties of the non-switching
 

solution to a specific example of actuator failure were studied, and
 

were related to the Uncertainty Threshold Principle. In particular,
 

the existence of an uncertainty threshold has been established, and
 

with the help of the high degree of symmetry in the example, the values
 

for Ialthreshold' given b and p, were calculated. It was also shown
 

that the best control with infinite cost is a function only of a, b and
 

p, a situation analogous to the solution obtained in the papers on the
 

Uncertainty Threshold Principle (Athans et. al., 3 7].
 

An analogous solution to that presented here should exist for the
 

switching gain problem, and in fact, the rudiments of such a solution
 

are given in Section 4. As a guide for future research, it would be
 

interesting to compare the two methodologies on the basis of these
 

solutions. Unfortunately, it is mathematically intractable to extend
 

this result to the multivariable case, although another approach may
 

be found.
 

2.8 Summary.
 

The unifying issue in this research is the interrelationship
 

between the issues of control and reliability. Section 7 brushes on
 

the question of when a system design is considered a reliable design.
 

In Chapter 3, a reliable design will be defined as one in which the
 

steady-state switching gain solution exists. Therefore, questions
 

concerning the existence of such solutions become quite important.
 

Unfortunately, little headway has been made in the development of any
 

simple test for the existence of the steady-state solution. Only in
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Section 7, in the specific case of the non-switching gain solution,
 

for a specific (relatively trivial) example, and in Section 4 for the
 

same example with the optimal solution, have conditions for existence
 

of a steady-state been resolved. In Section 7, these conditions are
 

given explicitly; in Section 4, they are given as the solution to two
 

simultaneous equations. For the general n-dimensional problems in the
 

remainder of this report, existence can only be tested by iteration of
 

the solution equations.
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CHAPTER 3
 

THE SWITCHING GAIN SOLUTION
 

3.1 Introduction.
 

In this Chapter, a control methodology for linear systems with
 

quadratic cost criteria and variable actuator configurations will be
 

developed which accounts for the failure, repair and reconfiguration
 

of the actuators by switching the control gain on detection of a
 

change in configuration. This problem is viewed as a control problem
 

rather than as the traditional estimation problem- Therefore, a
 

deterministic model is assumed, except for the random changes in
 

configuration, which are modeled by a Markov chain. This methodology
 

has the advantage that all gain and expected cost calculations are
 

done off-line. The gains switch on-line with changes in the configura­

tion, which are observable with one-step delay for almost all values
 

of u (i.e., except for a set of measure zero). In addition, the
 

method is useful in the stochastic case, though not optimal, in
 

conjunction with identification methods such as hypothesis testing
 

and dual identification, which will be described in Chapter 4. The
 

gain and expected cost calculations can be used as an evaluation
 

technique in computer-aided design of linear systems. An example
 

would be in trade-off studies of various redundancy configurations
 

with respect to performance, reliability, and system effectiveness.
 

The disadvantages of the technique as it is presented here are that it
 

requires perfect measurement of the state and that only multiple
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actuator configurations are considered. The multiple sensor configura­

tion problem should be dual to this work. Changes in the A matrix
 

are a minor extension; however, the general problem allowing variations
 

in both the actuators and the observers would be a major result.
 

Previously, several authors have studied the optimal control of
 

systems with randomly varying structure. Most notable among these is
 

[Wonham,22], where he develops a solution to the linear regulator
 

problem with randomly jumping parameters in continuous time. The
 

solution assumes apriori that the controller has perfect information
 

about the present state of,the random parameter process. Little work
 

was done on the steady-state existence problem.
 

The solution presented in this Chapter is analogous to that of
 

Wonham's; however, the discrete time formulation of the problem allows
 

the controller to observe exactly with one step delay the value of the
 

Markov parameter process. Thus, it is shown that for the discrete­

time process, the optimal controller is not dual.
 

In addition to this conclusion, this research makes the connection,
 

for the first time, of control and system reliability and effectiveness.
 

This is the unifying concept in the entire report, and has been discuss­

ed in detail in Chapter 1.
 

The procedure for determining the existence of a steady-state
 

solution to the switching gain control problem divides system designs
 

into two classes: If a design allows a steady-state solution, then
 

that solution is stabilizing (see Section 7, Chapter 5); therefore,
 

that design is classified as a reliable design. On the other hand, if
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no steady-state solution exists, then that design is classified as
 

inherently unreliable.
 

Although no easy test exists for the existence of a steady-state
 

solution, the computer can always be used to iterate equation (3.3.6)
 

backward in time and check for stability. Therefore, this methodology
 

yields a classification of systems into those which are inherently
 

reliable and those which are not.
 

3.2 Mathematical Formulation.
 

In this Section, the n-dimensional extension to the one-dimension­

al switching gain result presented in Chapter 2 will be developed.
 

The only non-trivial task is to prove that the system structure is
 

observable for almost all values of the control. The system model is 

xt+l A +B (t) ut (3.2.1) 

where 

x E R7 (3.2.2)-t 

u ER (3.2.3)-t 
nxn 

A S R (3.2.4) 

and, for each k, an element of an indexing set I 

k e I = {0,1,2, .. }T. (3.2.5) 

B1k (3.2.6) 

where 

Bk S fB1. i(3.2.7)
-k f -1 1ST 

The index k(t) is a random variable taking values in I which is
 

governed by a Markov chain and
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-t+1 pitt = --- t (3.2.8) 

tIr (3.2.9)-t 

where Ti,-t is the probability of k(t) = i, given no on-lineinformation 

about k(t),, and 1Yo is the initial distribution over I. 

It is assumed that the following sequence of events occurs at 

each time t: 

1) x is observed exactly 

2) then B k(t-) switches to Bk(t) 

3) then u t is applied. 

The control interval is assumed to be
 

{0,,2, .. . T} (3.2.10) 

and the cost function is selected as 

JT (xt'--t) t0 -T 
T-I T3.Rt
 

- 2tQxt + Tu + 
 XTQ (3.2.11) 

The objective is to choose a.feedback control law, which may 

depend on any past information about xt or u t , mapping x t into ut 

Rm)* :RP -- (3.2.12)
-t
 

4t : x-- U t (3.2.13)
 

such that the expected value of the cost function JT from equation
 

(3.2.11)
 

JT = E [ JT -- 0] (3.2.14) 

is minimized over all possible mappings 4tat t 
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3-3 The Switching Gain Solution.
 

Normally, a control law of the form (3.2.13) must provide both 

a control and an estimation function in this type of problem; hence 

the label dual control is used. Here, the structure of the problem 

allows the exact determination of k (t-l) from x t , xtl and ut-i 

for almost all values of u - This result is stated and proved in 

the following theorem. 

Theorem 1: For the set {B k} kEI' where the B. s are distinct, the 

set {x = Ax + B u has distinct members for almost all}
-k,t+l ---- kt
t k=O
 

values of u
-t
 

Proof: See Appendix 3.1.
 

Ignoring the set of controls of measure zero for which the
 

members of
 

{X, t} (3.3.1) 

are not distinct, then for (almost) any control which the optimal 

algorithm selects, the resulting state x t+l can be compared with the 

members of the set (3.3.1) for an exact match (of which there is only
 

one with probability 1), and k(t) is identified as the generator of
 

that matching member xk,t+l
 

Since perfect identification is the best any algorithm can achieve, 

the optimal control law u = t(xt) can be calculated with the 

assumption that k(t-l) is known, since this is the case with probability 

one. Thus, this solution will be labeled the switching gain solution,
 

since, for each time t, L+1 optimal solutions are calculated apriori,
 

and one solution is chosen on-linefor each time t, based on the past
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measurements x , xt_ and u , which yield perfect knowledge oft 


k (t-l). 

Dynamic programming will be used to derive the optimal switching
 

gain solution. At each time t, the expected cost-to-go using the
 

control sequence
 

t ,U t+ 1 , ut ... UT- (3.3.2) 

and given the value of k(t-l) is defined as 

V(x ,u ,k(t-l) ,t)t t 

STQx + u TRu-t--t -t--t 

+ Ek(t){v*(xt+ ,k(t) ,t+l) k(t-l)} (3.3.3) 

where * denotes the optimum value and V* is the optimal value of V.
 

Then, by dynamic programming 

V Cx ,k(t-l),t) = min TQxt + uTRu 
(X t R~t = t(xt) t - -t 

,~ (3.3.4)
 

It is proved, from Appendix 3.2, that
 

+ Ek(J{VCX Ik(t),t+l) Ik(t-.l)0 

V (xt ,kt-l),t) = xTSk (3.3.5) 

where the Sk,t are determined by a set of L+l coupled Riccati-like
 

equations (one for each possible configuration):
 

~t= -- Pik S i, t+l 

j + t i 
,IT 

--
-tPk 
 ±, t+ 1 j Kkt~
 

*~~ ] ~Ait+Q+>±~ (3.3.6) 
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The optimal control, given k(t-l) = k, is
 

1Tik i,t+l-k,t = - [ + -

T 
i t (3.3.7)
 

Writing
 

Rk,t =G k,tt (3.3.8) 

then 

ak,t= - + ik i-i,t+l i 

(3.3.9)
Pik S Ai,t1 

Thus, u t (X ) is a switching gain linear control law which
 

depends on k(t-l). The variable k(t-i) is determined by
 

k(t-l) = i iff x =Ax + u (3-3.10) 

Note that the S it's and the optimal gains G k,t can be computed
 

off-line and stored. Then, at each time t, the proper gain is seledted
 

on-line from k(t-l), using equation (3.3.10), as in Figure 3.1.
 

3.4 Discussion of Results.
 

The solution in section 3 is quite complex relative to the struc­

ture of the usual linear quadratic solution. Each of the Riccati-like
 

equations (3.3.6) involves the same complexity as the Riccati equation
 

for the linear quadratic solution. In addition, there is the on-line
 

complexity arising from the implementation of gain scheduling. In
 

Chapter 5, a non-switching gain solution will be presented which has
 

an identical on-line structure to that of the linear quadratic
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Figure 3.1: The switching gain control law.
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solution, but has similar off-line computational complexity to that of
 

the switching gain solution. Depending on the system requirements,
 

either solution could be used; the non-switching gain solution is
 

suboptimal, but requires less on-line complexity. This trade-off may
 

favor the non-switching solution in some cases.
 

A steady-state solution to equation (3.3.6) may exist, .but the
 

conditions for its existence are unknown. The steady-state solution
 

would have the advantage that a time-invariant set of gains result.
 

Thus, only one set of gains need be stored on-line, instead'of requir­

ing a set of gains to be stored for each time t. Since the steady­

state solution is simply the value to which equation (3.3.6) converges
 

as it is iterated backward in time, at present, the equations can
 

be iterated numerically until either they converge or meet some test
 

of non-convergence. Unlike the non-switching solution presented in
 

Chapter 5, the possibility of limit cycle solutions in the switching
 

gain computations is excluded by the following lemma:
 

Lemma 1: If the optimal expected cost-to-go at time t is bounded
 

for all t, then equation (3.3.6) converges.
 

Proof: See Appendix 3.3.
 

Once again, it is stressed that the existence of a steady-state
 

solution to the switching gain problem establishes a division of
 

system designs into those which are inherently reliable and those
 

which are unreliable. Even though conditions to test for the exis­

tence of the steady-state solution are unavailable,software can be
 

used with iteration for the test.
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In Section 5, some numerical examples are given to illustrate
 

the switching gain solution.
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3.5 Examples.
 

In this Section, a two-dimensional example is presented with three
 

different switching gain solutions to illustrate'the switching gain
 

computational methodology. The computer routines which are used in
 

the calculation of the switching gain solution are listed in the
 

Appendix. The primary subroutine is READY; it calls WEIGHT. Any other
 

routines which are used are from the standard ESL subroutine library.
 

The main program RDYMAIN is used to call READY.
 

Example 3.1 is a two-dimensional system with four structural
 

states corresponding to the failure modes of two actuators. In this
 

example, failure of an actuator is modeled as an actuator gain of
 

zero. Thus, the fou5 structures are: I) Both'actuators working (B 0);
 

II) One actuator failed (B and B 2 ), and III) Both actuators failed
 

(B 3). The system is controllable in all structures except for the
 

sturcture represented by B 3 "
 

Actuator failures and repairs are assumed to be independent events
 

with probabilities of failure and repair, per unit time, of pf and pr'
 

respectively, for both actuators.
 

In Example 3.1, the matrixes Q and R are the quadratic weighting
 

matrices for the state x and the control ut, respectively. The
-t 

matrix P is the Markov transition matrix, which is calculated from knowl­

edge of the system configuration dynamics, represented graphically
 

in Figure 3.2.
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There are three Cases to Example 3.1. Each Case assumes a different
 

failure rate and repair rate for the actuators. Case i) has a high
 

probability of failure and a low probability of repair, relative to
 

Cases ii) and iii). The switching gain solution is not convergent for
 

Case i); the gains themselves converge, but the expected costs do not.
 

Only configuration state 0 is stabilized with its corresponding gain,
 

G,
 

Cases ii) and iii) both assume more reliable actuators than does
 

Case i). Both Cases ii) and iii) have convergent switching gain
 

solutions. Therefore, both Cases iiy and iii) represent reliable
 

configuration designs, while Case i) is unreliable. This difference
 

is due entirely to the different component reliabilities. Equivalently,
 

Cases ii) and iii) are stabilized by the switching gain solution, while
 

Case i) is not. Note that in this Example, stabilizability is not
 

equivalent to stability in each configuration state, or robustness.
 

For this example,-no robust gain exists because the system is
 

uncontrollable from configuration state 3.
 

Cases ii) and iii) are also presented in Chapter 5, where their
 

non-switching gain solutions are given. According to the theory, it
 

should be more difficult to stabilize a given system with the non-switch­

ing gain than it is with the switching gain, because of the optimality
 

of the switching gain solution. This is demonstrated for this example;
 

in Chapter 5, the non-switching gain solution to Case ii) is not
 

convergent.
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Example 3.1:
 

L2.71828 0.01
 

10.0 .36788j 

[1.71828 1.71828] [0.0 1.71828 
[-.63212 .63212] B10.0 .63212
 

1.71828 0.0] [o-o 0-0]
B2 = 13 

-.63212 0.0 0.0 0.0
 

t]e10
[1 ::]8. . 0.0 1.0
 

2 2 
1-2p +p2 (1-p )pr (l-Pf)pr p2 

Nf±f f
2 

p -

Pf (1-pf)2Prpf l-Pf-pr+PfPr Pr (1-Pr)
 

2 2 
pf (l-P Pf (l-Pr) 1
 

The system dynamics are
 

n=xA= [Xx 2,] T
 t =L [x l t ,t ]
-- B k (t) 

k(t) S {0,1,2,31 

The cost, which is to be minimized, is 

XEt+l --2 t + a 

jE[~ LT2~t +iua Rut 



Example 3.1, Case i) 
pf = .3 

Pr =7 
rT 

.49 

.21 

.21 

.09 

T0 

TI 

7t2 

T3 
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Non-Convergent; but gains converge: 

9636 1.094 x 10-6 ] 
20= 1-.9134 -5.835 x 10-6] 

GI= 
-9234 

[1-.8699 

1.740 x 10 
­ 6 

-5.136 x lo0- 6 

1_2= 

-. 8094 

[-1.020 

.9186 

-4.05 

x 

x 

l0 - 6 

10 - 6 

2 

-. 9636 

[-.9134 

.7353 x 10 - 6 ] 

-3.923 x 10-6] 

Stability: 

Configuration 

0 (B ) 

1 (B ) 

2 (B ) 

3 (B ) 

Stable 

yes 

no 

no 

no 



Example 3.1, Case ii) 

Pf = .I, Pr = .9 .81 

.09 

It0 
iT1 

83 

.09 

.01 

2 

113 

Convergent Coupled Riccati Equations: 

-890 
.04222[:.-1 -' s:52 ~ n ] 

1 -.7752 -.09914 

for i = 0,1,2,3 

[25.57 

-8.611 

8. 611] 

6.398] 

Stability: 

Configuration 

0 (B ) 

1 (B) 

2 (B) 

3 (B 3 ) 

Stable 

yes 

no 

no 

•no 



84 Example 3.1, Case iii) 


Pf .01, pr . 9 8 .9799 

.009999 

.009999 

.0001020 

0 

1 

i2 

I 3 

Convergent Coupled Riccati Equations: 

[-.7558 .1270 1
£ = I-.8073 

-.17 8 6j 

15.88 

S8.10O5 8.105]6.137] 

•1= 

,= 

- " 7060 

-8441 

.1186 

-1.72 

S =16.06 

18.074 
8.0741 
6.143 

G375 
G -.7543 

.1090] 
-.1669] 

16.31 

[8.199 

8.1991 

6.158_1 
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[-7863 .1023 ] 
3 [-.7926 -. 16 19J 

[16.54 8.170] 

- [8.170 6.162] 

Stability: 

Configuration Stable 

0 (B ) yes 

1 (B ) no 

2 (B ) no 

3 (B ) no 
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3.6 	 Summary.
 

In this chapter, the optimal solution to the linear control
 

problem with variable actuator configuration was developed. It was
 

shown that the optimal solution uses a linear switching feedback gain
 

which depends on the previous configuration. This configuration is
 

directly computable from the past measurements; this fact allows the
 

development of the switching gain solution by eliminating dual con­

trol 	considerations. The exact measurement of the configuration with
 

one-step delay holds only for the deterministic case, where there is
 

no corruption of the state or control observations by noise.
 

In Chapter 4, the use of the switching gain methods-will be
 

demonstrated for stochastic problems in conjunction with two different
 

forms 	of identification: Hypothesis testing and dual identification,
 

a technique for "pushing" the control variable out of the noisy
 

region, when the noise is amplitude limited, to obtain an exact
 

identification of the system structure.
 



87 

CHAPTER 4
 

EXTENSIONS TO THE STOCHASTIC CASE
 

4.1 Introduction.
 

In Chapter 3, the optimal solution to the deterministic linear
 

quadratic control problem with variable actuator configuration was
 

developed. It was also demonstrated that the optimal solution of
 

the general stochastic linear quadratic problem is hopelessly complex
 

in Chapter 2. Therefore, in this Chapter, extensions to the deter­

ministic solution to allow its operation in a stochastic environment
 

will be studied.
 

From the derivation of the switching gain solution, whenever
 

the structure of the system is known perfectly with one step delay,
 

and if it is assumed that it will be measured perfectly at the next
 

time instant, the optimal solution is the deterministic switching
 

gain solution. In designing a suboptimal control system, a method
 

of identifying the system structure is used, with the assumption that
 

the identification is perfect, and the appropriate deterministic
 

gain is selected.
 

Two conceptually different methods of structure identification
 

will be presented in this Chapter. The first is classical hypothesis
 

testing. It is the easiest to implement, although extensions to
 

n-step hypothesis testing can be made which are very complex. The
 

second method is labeled dual identification; the expression is used
 

because it takes advantage of the dual effect of the control law to
 

guarantee perfect identification. In this method, a perturbation
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(which may or may not be that small) to the deterministic control is
 

introduced which separates the effect of amplitude limited white
 

control noise from -hat of the system structure. As a worst case
 

control law, this perturbation would be applied at each time instant,
 

but in practice, it would only be applied once every n time instances
 

so that its overall effect on system performance would be lessened.-


In the next Section, the system model will be described,and the
 

hypothesis testing identification algorithm will be presented.
 

4.2 Hypothesis Testing Identification.
 

The system model used here is the same as in Chapter 3, but with
 

the exception that additive white noise is introduced into the
 

dynamics:
 

xt+l = Ax +B+--Bk(t) tEt (4.2.1) 

For the hypothesis testing identification method, Et is assumed to be 

zero mean white noise with probability distribution p(t). It is 

assumed to be uncorrelated with k(t) and x - Perfect measurement of 

the state is retained.
 

The basic hypothesis testing method is very simple: At each time
 

t, one of L+l hypotheses is chosen, where each hypothesis H. is
1
 

H. : k(t-l) = i (4.2.2)
1
 

With each hypothesis H., there is a probability of H. being
1 1 

correct, given the measurement x and the past information It(t-lit-l),
 

the probability distribution of k(t-l), given the measurements through
 

Then the updated"probability (see Appendix 2) i(t-ilt), the
 

probability of k(t-1) = i, given all measurements through t , is
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given by 

Axx~2t.- B u )lri t-lit- l) ' 

Ti (t-l 't) t t-i - t-l ) (4.2.3) 

t~3=0 P(Xt - - j -lt-l j 

Hypothesis H. is assumed to be correct if 

li(t-lIt) > 7rc(t-lilt) for all j 3 i (4.2.4) 

Ties are resolved arbitrarily. Then, given the correct hypothesis Hi, 

the corresponding deterministic optimal switching gain is used to 

compute the control at time t 

at = ,t~t (4.2.5) 

as in equations (3.3.8) and (3.3.9). 

The probability distribution is then propagated with the Markov 

chain equation 

Tr(tlt) = Pu (t-llt) (4.2.6) 

and the process repeats. 

This algorithm can work well if there are significant differences 

in the effect of the control variable between configurations. 'When 

the differences are slight, a mistracking will result until the errors 

are large enough to be detected through equation (4.2.3). The method 

does not exploit any of the dual effect of the control variable on 

the measurement of the configuration. The method presented next does 

use the dual effect to identify the correct structure. Analytically, 

it cannot be said which method is best, as the optimal control law 

will lie somewhere between the two. It is possible to extend the 

hypothesis testing procedure to n-step hypothesis testing where a 

hypothesis is made about the last n values of k(t) and is then tested. 
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since this investigation is not within the primary scope of this
 

research, it is left as an open problem for future research. It is
 

also possible -that a combination Of hypothesis testing and dual identi­

fication may be used to gain some of the advantages of both methods;
 

dual identification yields fast identification of the correct structure;
 

while hypothesis testing does not sacrifice control of the system
 

while there is a high probability that the structure is correctly
 

identified.
 

4.3 Dual Identification.
 

The underlying concept of dual identification is to periodically
 

change the control in order to increase the accuracy of identification
 

of the structure. In the limiting case, the control is changed
 

enough to guarantee perfect identification of the current structure
 

with the next observation. For this case only amplitude limited noise
 

is considered. The system model is
 

+=At+lt + k(t) !t Mit (4.3.1) 

where t is Z-dimensional white noise which takes on values in the 

unit sphere with distribution p(g) and is uncorrelated with x and
 

k(t). M is an n xZ matrix which defines the ellipsoid in R which
 

contains ME t'
 

Normally, if no identification were to be performed, and if k(t-l)
 

were known, the optimal deterministic switching gain Gk(t-l),t from
 

equation (3.3.9) would be used to compute u*
 
-t 

=0 x (4.3.2)

n t = fk(t-l),t t g i o m a i 

In dual identification, the goal is to compute a gain offset u '
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such that when the control
 

-tU u-t +U l,t (4.3.3) 

is applied to the system, identification of the structure k(t) with 

the observation x is guaranteed. To accomplish this, note that, 

for a given B , xt+1 will be in a bounded convex set determined by 

B k and M. Thus, 

xt+I -Ax = B ku + M (4.3.4)t t 

and Et can be any element in the unit sphere S(R . Therefore,
 

perfect identification of k(t) is guaranteed if no two of the domains
 

of xt+1 corresponding of the Bk s have a non-empty open intersection.
 

That is, the following condition must be satisfied for each pair of
 

Bk. 's and every E-1 and _--2 of S(R):
 

(BkI - Bk2 )ut + M( - I -- ) 0 (4.3.5) 

This condition is the same as
 

IM*(Bk - ik2 ) 1 > 2 

if (Bkl - Bk2 )u t F N(M) 

otherwise,
 

(B ) 0 (4.3.6)_k 1 - Bk2 )ut 

where M# is the generalized inverse of M and N(M) is the nullspace
 

of M. Note that the inequality of (4.3.6) can be relaxed to equality,
 

since the intersection of the two domains of xt+1 would only be at
 

the point of tangency, a set of measure zero in either domain.
 

The objective is to choose ul't such that (4.3.6) is satisfied
 

for all pairs B and B in the reachable subset of all actuator
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configurations. The reachable subset refers to the subset of configu­

rations B . which have a non-zero probability of occurance at time t, 

given-thatthe configuration was Bk(t-l) at t-l. This is the same as 

the 	condition that
 

B 	 . is in the reachable subset from B k't- I . 

if Pik(t-l) > 0 (4.3.7) 

Suppose that there are J configurations in the reachable subset from
 

Then there are J(J+l)/2 pairs of configurations for which
 Bk(t-l) .
 

condition (4.3.6) must be satisfied. Also, since u., t affects the
 

state xt+1 , it is reasonable to minimize its effect. Therefore,
 

since the effect of ulIt is modified by Bk(t) , it is reasonable to 

minimize the norm of ulIt . Thus, the minimization problem is formu­

lated subject to the constraints (4.3.6).
 

,I 	 2
minjf 1
 

--l,t
 

subject to
 

4 - k f-~kut+ _l't]l 2 <0 	 (4.3.8) 

where
 

M#D= (B i -B.) 	 (4.3.9) 

Formulating this as a nonlinear programming problem, the
 

Hamiltonian is
 

H( _l't, l,t p2 + Xk(4- Rk[ t+u l,t] 2 

(4.3.10)Xk>0 

2
k = 0 if 4-jjD k Jut++uul,t] <0 (4.3.11) 

Differentiating H with respect to .,and solving for ul't as a 

function of u and the parameter A,-t 
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3H 0 2u 	 2 T * 

2 k Dk-k [ut + l ] (4.3.12)au ­

2l't k
 

or,
 

u I jD E~!Drr..,A 	 AD U*(.13-lit [- k k-k k Dk k t 	 (4.3.13) 

Now, using (4.3.13) in the constraint equation (4.3.11)
 

-' Z k ­11Rk (-I + - Z'kDkDk k - lkt l 0k 	 k 

(4.3.14)
 

Noting that 

(I - X[ + DTD]-IDT T D (I A T D I-1 (4.3.15) 

then (4.3.14) simplifies to 

- II - - ] t Ii < 0 (4.3.16) 

k 

and if (4.3.16) is a strict inequality, then Ak = 0. In general, 

a numerical algorithm must be used to solve for A in the set of
 

equations (4.3.16); this can be a major drawback to the application
 

of this methodology if the on-line computer resources are unavailable.
 

Although the computational burden of this technique is a disadvantage,
 

dual identification would most likely be implemented in combination
 

with a hypothesis testing algorithm. Dual identification would then
 

form a test to be performed on the system after some interval of time
 

to ensure that the hypothesis testing algorithm correctly tracked the
 

configuration.
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4.4 Examples.
 

In this Section, the one-dimensional example of Chapter 2, Section 2
 

is implemented with additive white noise applied to the contro input.
 

Three suboptimal control algorithms derived from this Chapter are imple­

mented: Hypothesis testing, dual identification, and hypothesis
 

testing in combination with dual identification, which is utilized every
 

fifth time instant. The purpose of this example is to illustrate the
 

degrading effect of the dual identification algorithm on the system
 

state.
 

The principle subroutine used to generate the computer simulations
 

of Example 4.1 is SWITCH; it is listed in the Appendix. SWITCH calls
 

FIG and UCALC, also in the Appendix; any other routines which are used
 

are in the ESL subroutine library.
 

The system in Example 4.1 has two structures, represented by the 

matrices B (b = 2.) and B 1 (1/b = .5); the Markov transition probabili­

ties are given by the matrix P. The switching gain solution was calcu­

lated using the software described in Chapter 3, Section 5. Case i) 

of the Example corresponds to the hypothesis testing methodology described 

in Section 2. The additive white noise was amplitude-limited with zero 

mean and variance E = 1. Case ii) of the example demonstrates the perfor­

mance degradation due to the exclusive use of dual identification. Note
 

that the variation among the values of the state and control are larger
 

than in Case i). The advantage of dual identification is that, for
 

amplitude-limited white noise, perfect identification of the system
 

structure with one-step delay is guaranteed. In Case iii), hypothesis
 

testing is used four-fifths of the time to partially avoid the degradation
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due to dual identification. The control is more effective in Case iii)
 

thdn in Case ii); however, for this example, it is not clear that the
 

use of dual identification one-fifth of the time is warranted, since a
 

performance degradation of Case iii) over Case i) is still evident in
 

this particular simulation. More simulation would have to be carried
 

out before the proper ratio of the use of hypothesis testing to the
 

use of dual identification could be determined.
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Example 4.1:
 

A = 1.414
 

B0 = 2.000 B1 = .5000
 

£ = 3.000 R = 1.000
 

P=[.7i] 
Switching Gain Deterministic Solution:
 

= -.7569
Go 


= -1.008
G1 


The system dynamics are
 

xt+ 1 = Axt + Bk(t)ut
 

k(t) {0,kt 


The cost function which was minimized is
 

J = E Qxt + Rut _ 

where
 

= [1 1 T 

Structural transitions are of'the form
 

.3
 
B B
0 * 1

.3 

When dual identification was employed, the control was set to
 

ut = l.25(sign (t)) 

This control was the minimum value required to establish perfect
 

identification.
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4.5 	 Summary.
 

'In this Chapter, two methods have been proposed to extend the
 

-deterministic optima-i switching gain solution of Chapter 3 to the
 

stochastic case. The two methods represent the two fundamental
 

concepts of identification: Estimation and dual control. The
 

optimal stochastic control law, if it could be computed, would rely
 

on both concepts, using estimation when the control variable is
 

large (and the state is far from the origin) and dual control to
 

enhance estimation when the control and state variables are small.
 

In the dual identification technique presented here, control is
 

sacrificed to obtain an exact observation of the structure. Thus,
 

the system response would be roughly periodic, with the state being
 

driven away from the origin in order to obtain an accurate estimate
 

of the configuration, and decaying back toward zero between identifi­

cations. In the period when the control is not modified, hypothesis
 

testing would be used to track the configuration.
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CHAPTER 5
 

THE NON-SWITCHING GAIN SOLUTION
 

5.1 Introduction
 

*In the previous two ch&pters, the switching gain solution was
 

developed and studied. In this chapter, attention will be focused
 

on obtaining a constant, robust, or non-switching gain which solves
 

a variable actuator configuration linear quadratic control problem,
 

with minimumost for this class,of solutions. 'Itmust be stressed
 

that this is a suboptimal solution; for the deterministic case,
 

Chapter 3 gives the optimal solution. The interest in this chapter
 

lies in determining a sequence of-gains, for a linear control law,
 

which do not switch in response to the detection of a change in system
 

-structure. For instance, it may be desirable to ensure the stability
 

of a control system -under certain types of failure without creating
 

the complexity necessary-to detect those failures and compensate for
 

them, as is done in the switching gain solution.
 

This class of solutions is related to the overall robustness
 

problem where fault-tolerant control systems are desired. Although
 

not formulated in this manner, the research described in this Chapter,
 

as in Chapter 3, is readily extendable to system with variable system
 

matrices as well; i.e., where the-system can be represented as a set
 

of possible structures , ) over some suitable index, even though
 

this class of problems is not as directly related to the underlying
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reliability theme of this report.
 

Non-switching gain solutions to the variable actuator configura­

tion class of problems -an be obtained in-di-fferent mathematical ways.
 

Problem A of Section 3 is reformulated as a deterministic control
 

problem (Problem AE), and is solved using the necessary conditions of
 

the Matrix Minimum Principle [Athans,41] in Section 5. Unfortunately
 

this approach, although yielding the necessary conditions for an opti­

mum, does not allow an-analytic solution. Therefore, in Section 6,
 

a second problem (Problem B) is formulated and solved using dynamic
 

programming.
 

Section 7 is by far the most detailed and one of the most impor­

tant sections of the report, along with Sections 8 ahd 9. In Section
 

7, the concepts of stability and cost-stability are defined and are
 

used to prove an equivalence between the infinite-time versions of
 

Problems AE and B. In Subsection 7.6, the steady-state solutions for
 

both problems are defined. Unfortunately, nothing in the mathematics
 

appears to rule out the possibility of limit cycles in the infinite­

time solution; this is discussed in Subsection 7.7. When the constant
 

steady-state solutions to the two problems exist, it is proved in
 

Section 8 that they are identical. This is a very important result, as
 

it allows the steaey-state solution of a complex two-point boundary
 

value problem which is much more tractable.
 

In Section 9, it is demonstrated that the general robustness problem
 

for linear systems (where one wishes to determine a single stabilizing
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gain for a set of linear systems) is solved in this framework for the
 

class of systems with variable actuator configurations. Examples of
 

both the non-switching solution to Problem B and the robustness
 

result are given in Section 10, and a chapter .summary in Section Li.
 

5.2 Problem Statement.
 

The objective of the research described in this Chapter is to
 

form a methodology which will be used to compute apriori a gain G
 

(either time-varying or steady-state) which minimizes the expectation
 

of the quadratic performance index over a set of linear systems with
 

actuator variation and known transition probabilities of structural
 

change (Problem A). The necessary conditions for minimization are
 

given which this optimal gain must satisfy; it is shown that these
 

conditions result in a complex two-point boundary value problem.
 

A second optimization problem is formulated which is based on
 

the restriction to non-learning control laws which are precomputed;
 

i.e., it is assumed that the control law cannot benefit from knowledge
 

of its past. Although this formulation appears to be much weaker
 

than that of Problem A, it is shown in Theorem 2 that if steady-state
 

solutions to the two problems exist, then the steady-state solution
 

to Problem A is stabilizing (in the sense that the mean square value
 

of the trajectory is exponentially bounded) if and only if the steady­

state solution to Problem B yields a system which is exponentially
 

stable. This result is very significant, in that a Corollary to this
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Theorem solves the problem of finding a robust gain for a set of linear
 

systems and yields an explicit procedure for its calculation.
 

The last Theorem CTheorem 3-) of the Chapter proves that the steady­

state solutions to the two optimization problems are identical. This
 

implies that not only does the procedure mentioned above determine a
 

robust gain if and only if such a gain exists, but also that the steady­

state gain is optimal with respect to the specified quadratic cost
 

criterion.
 

5.3 	Problem A.
 

Consider the system
 

t +xt+l _k(t) ! t 	 (5.3.1) 

where
 

x E 	 R (5.3.2)-t 

ER (5.3.3) 

k(t) E I ={ 0,1,2,''',L} (5.3.4) 

I is an indexing set for the possible actuator structures {JB2kEI 

where
 
nxmn 

-B R x (5.3.5) 

k(t) 	is a random variable with sufficient statistics given by the
 

Markov transition probabilities p.j, where the matrix
 

p = (Pij) (5.3.6)
 

is a stochastic matrix, and the initial probability distribution is
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(5.3.7) 

Since k(t) is assumed to be a Markov chain, the probability vector
 

-t is propagated in time by
 

=lt+l P!_ t (5.3.8) 

where there is no real-time observation with which to update 

Consider the structure space {Bk } k6I indexed by I. Define the 

structural trajectory 3E to be a sequence of element k(t) in I whichT 

select a specific structure Bk(t) at time t, 

= (k(0), k(l),..., k(T-l)) (5.3.9)T 

The structural trajectory XT is a random variable with probability of 

occurance generated from the Markov equation (5.3.8). 

T-1 

P(xT ) = 1 Ik(t),t (5.3.10) 
t=0 

where the control interval is 

{0,1,2 ,... T-l,T} (5.3.11) 

for the finite time problem with terminal time T. Then for a given 

T-1 
state and control trajectory (xt ,ut t=0 generated by (5.3.1) and x T
 

T-I
 
from a sequence of controls (u ) , the cost index is to be the 

-t t=0 

standard quadratic cost criterion 

T- T-I xxQx + uRu + x QX (5.3.12) 

T T -t -t t-= _~tkx ± uT _ -T 

The admissible controls are restricted to be of the linear feedback form 

ut= Gtx t (5.3.13) 

= * i,e, f0 (1 0 ... 0) or (0 1 0...0) or ... (0 0...0 1). 
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where the gain matrix G t is restricted to be a function only of time
 

and the initial conditions; i.e., it cannot depend on x t The objective
 

is to minimize over the set-of admissible controls the expectation of
 

(5.3.12), where the expectation is taken over the set of possible
 

structural trajectories
 

xT E: u (5.3.14) 
T 

and 	the set of initial conditions x0
 

Thus, the optimal control law u = -txt should minimize the 

cost
 

JT E[) 	Hi-F 

E[ TQx + u TRu + x TQ xTI T 	 (5.3.15) 

over 	the set of admissible controls.
 

Since the structure of u = txt is fixed, the problem is equiva­• -t -­

lent to minimizing, in an open-loop sense, the cost function 

EElfir0] = E [ttQ t + t _GGtt. XQXT %0] 

(5.3.16)
 

with respect to the gain matrix Gt , t=0,l,...,T-l. Equation (5.3.16) 

is simply obtained by substituting equation (5.3.13) into equation 

(5.3.14).
 

5.4 	The Method of Solution.
 

The matrix minimum principle [Athans,41] will be used to determine
 

* 

the 	necessary conditions for the existence of u t (or equivalently,
 

t )"	 To solve the problem using the matrix minimum principle, the
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formulation presented in the last section must be converted into an
 

equivalent deterministic problem. For this purpose, let the initial
 

state x 0 be a zero mean random variable which is independent of any
 

structure. Let
 

Ko E[XoXTLf 0] = E[Xoxo ] (5.4.1) 

be the convariance matrix of x
-0 

Defining the covariance of x-t as 

t E[xt x- I-0] (5.4.2) 

then, by direct calculation, we obtain
 

L L T 

i t -=0 it 2 0 0 t- t-2 t-2 t-3 ac 0 

t-1 t-2 T 

(A+B. G ) I0 (A+B . G) (5.4.3) 

j=0 3 Lj=O I j I'-J 


Similarly, if we define
 

Z. = E[x xT k(t-1) =i10 (5.4.4) 

then, we deduce that
 

1r3
 

- t j=0 

[tE AB. G. ) (A+BiGt T (5.4.5)__=0 . j. . 
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The matrix E-iSt can be defined recursively as 

,t+l P it (A+Bat ) , (A+B GT (5.4.6) 

for t > 1. 

--jS l = (A+B a )S0 (A+Bj G 0 ) T  (5.4.7) 

and the relation 

-i,t , t > 0 (5.4.8) 

is.obvious from direct calculation.
 

Remark 1: At this stage, an equivalent deterministic problem (Problem AE) 

will be defined with state ( ) for t>O and state E at t = 0.
-±4 i=0 -0 

The system dynamics are then defined by equations (5.4.6) and (5.4.7). 

For the system with matrix state (Z-It) L
Definition (Problem AE): 

-it i=0 

for t>0 and Z for t = 0 with dynamical equations (5.4.6) and (5.4.7)-0 

and matrix control G , minimize the equivalent deterministic cost 

T-l 
-
over (G T
 

-t t=0 

=- - X t+xTG
JT x'x -- ---- R~2
0 


ST Qx
 

T-1 

-trE ( + C RC + trEE QJ (5.4.9)
-t -t--t -T­
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Note that since the expectation in equation (5.3.13) is over all
 

structural trajectories x and the initial x 0 also,
 

JT = J(5.4.10)
 
T T
 

The symbol JT will be used exclusively in the future. The one-stage,
 

or instantaneous, cost at time t is
 

+
Jt = tr[t (Q G RG t (5.4.11). 

TL=0 0 

Problem AE is completely deterministic in the state (i,t )
 

and control Gt
 

At this point, the minimization will be decomposed into two parts
 

using the Principle of Optimality [Athans and Falb, 21]. The first
 

minimization is over the interval {1,2,.... T-11, and for this the matrix
 

minimum principle will be used. The resulting solution will depend
 

in general on the choice of G0 and on the initial conditions 20 and
 

7T
0 '
 

Let V (G0) be the optimal cost resulting from the use of G0 and
 

the optimal sequence i , 2 . G- for the interval {l,2,... ,TI.
 

The second minimization is then over G of the cost
-0 

+J = tr[E 0 (Q G T RG )] + V (G O) (5.4.12) 

The Principle of Optimality states that these two minimizations
 

*T-I.
 

result in the minimizing sequence (G )T-1 for Problem AE.
 
t t=0
 

http:J(5.4.10
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From [Athans,41], the lamiltonian for the minimization over
 

{1,2,...,T-l} is
 

H( (Ei,)L (S L G,t i=0 ' -j,t+l j=O -t 

L
 
tr 6 irt Ai~ (Q+ Gt t
 

( 7- ppr (A+BG ta t (A+B G t )T
+ 	 tr 


j t+l
1_l
itit 


for t 6 {1,2,3,...,T-lI (5.4.13)
 

where the costate matrix is (S L
 
-j,t+l j=O
 

Remark: We have now formulated Problem AE-I, which minimizes the accumu­

lated cost over the interval {l,2,... ,T} with respect to the sequence
 

T-i
 
(Gt) using the matrix minimum principle and results in the optimum 

cost, given G , V (G ). Problem AE-2 is then the minimization ofo 


equation (5.4.12) over G O .
 



5.5 The Necessary Conditions.
 

The matrix minimum principle yields necessary conditions which
 

an optimum must satisfy. There are two conditions of importance.
 

(The third condition yields equation (5.4.6)).
 

From the necessary condition for the costate,
 

* t (5.5.1) 
S l -i,t I 

the propogation of S. backward in time is derived.
 

S.lt t_ Q + 
T 

RG t 

++ _ Pji t j,t+A - t-- j,t+l--j-t 

+A TS A~sjt+IB--j Gt +GTBTS-t-jB ]}.(5.5.2)
t ,t+l-- I1 

T-l
 

This equation is well-defined for any sequence {G t and t >0.
 

The cost V of using this arbitrary sequence over the interval
 

{l,2,...,TI is given by 

)V( (Gt = tr [ il,l] (5.5.3) 

The total cost over the interval {O,l,... ,T} using this sequence is
 

tr S Ei + tr[(Q + G RG0 (5.5.4)
JT t -il , 0 -o -0 

+tr (A+B G )z0 (A+BiG0)Tsi, + GoRG-

1__ . . . . .0-- ­i=0 


(5.5.5)
 

= tr + G TRG + (A+Bi_ T_ (A+Bfi.0 (5.5.6)] 
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Define
 

s o (A+B+B0 )GSi l(A+i 30)+ Q + 	 GT RG_ (5.5.7) 

-0--a 

Then from equations (5.5.6) and (5.5.7) 

JT = tr[0 S ] (5.5.8) 

T-I 
Thus, the cost of a given sequence ( G t )T-1 of length T is 

-tt=0 

JT = tr[S-0 S 0 (Go 'GI .. GT-1) ] (5.5.9) 

For future reference, define the matrix S.i-,t by
 

I ASi't 
(5.5.10)
--it 
 7T.


it­ 1 

and note that equation (5.5.2) becomes
 

SG TRG + Pi[ATsj,t+IA + GT BTS tB 
j=0 

A S BBt+ _ +C B.~jS j A] (5.5.11)
+ATSi+GT t 13T 

-t-3 --- j,t+l-!-j 4 t+l-j-t 

From the Hamiltonian minimization necessary condition 

= 0 (5.5.12) 

-t * 

the following relation between Z S 	 and G is obtained.
 
i't ,t~l -t
 

= t 7 it_1 hit 

+ 1]3 	 +J T A ]i,t 

(5.5.13) 
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Remark: At this point, a two-point boundary value problem has been
 

defined with the constraint (5.5.13) relating equations (5.5.2) and
 

(5.4.6). Equation (5.5.13) is not explicitly solvable for G-t
 

because E . cannot be factored out of the sum over j; thus, it cannot
-i,t
 

be used as a substitution rule in the other two equations. At this 

time, the solution for Gt appears intractable. Thus, although necessary 

conditions for the existence of GC , the minimizing gain, have been 
--t
 

established, they do not readily allow for the solution of and
 

certainly do not admit a closed-form expression.
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5.6 Problem B: The Non-Switching Solution.
 

Although the methodology presented in Section 4 yields the
 

necessary conditions for an optimum, these conditions are not analyti­

cally illuminating. In this section, a second optimization problem
 

is formulated. An equivalent formulation was presented in [Birdwell &
 

Athans,40]. The solution will admit a closed form expression for u "
 

Although this solution is not the optimal ,solution for the first
 

problem, in that this solution does not necessarily satisfy the neces­

sary conditions for problem AE, it will be proved that the two solu­

tions are equivalent in the sense that for the steady-state solutions,
 

as defined in Section 7, either both solutions stabilize the system,
 

or neither one stabilizes the system. EVen better, it will be proved
 

that the steady-state solutions to the problems are identical.
 

For the system (5.3.1), the objective is to minimize at each time
 

t the weighted sum, with respect to It , of the expected costs-to-go, 

given the control u = it (x t ) and u = - (x ) for T>t, and given 

that the structure at time t-i was k(t-l) = i, for each i. 

Formally, let C be the expected cost-to-go, given xt , !I , and 

k(t-1) at time t be defined as 

C(x , it' k(t-l), t) A xT + TR u + 
-t -t = t -t- -t 

Ek(t) [C (x t+ ,k(t)'t+l)l k(t-l)] (5.6.1) 

where * denotes the optimum value, and u is computed as-t 
t = arg min (Tt-1 ,C(t)> (5.6.2) 

L t t (x t) 

T 
= arg min 7t C(t) (5.6.3) 
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and
 
* * 

o (x t ,k(t-1),t) = C(x ,u t ,k(t-1),t) (5.6.4)t 

where
 

[c(x ,u ,k(t-1)=Ot)t t 

C(t) =t(5.6.5)
 

C(x ,u ,k(t-l)=L,t)t 

and
 

T 

C(T) = C*(T) = (5.6.6) 

T" 

Thus, the problem is
 

T Q x t +min 7 i uTRu 
t)

uEt[ t (x t 

+ E[C*(x-t+l k(t),t+l)Ik(t-l)=il] (5.6.7) 

+ RUT i. XTQ
min 

I-iTQt= (x t)u t =it 

+ ZPjiC*(Ax + Bj u t j,t+l)] (5.6.8)t 

From the formulation, u is non-learning in that it depends only on
 

E-t-1 for its knowledge of the past. Let C* be of the form
 

T
 
C*(x ,k(t-1),t) = XtS x (5.6.9)t -t -t--k,t-Xt 

Then for t =T,
 

I 

Sk, T =Q (5.6.10) 
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And equation (5.6.8) 	becomes
 

T 

min 7it_l t Q 	 _ utRujt 
u-t
 

+ tPj(Axt + Bju t TS (Ax + Bju (5.6.11)t 

At the minimum, differentiating (5.6.11) with respect to u , we 

obtain
 

0 7rRT 	 BB u Bs Ax
t-l[----t + pji(Bjj,t+E j liu t +Bj-j,t+1-x 

(5.5.12)
 
Solving for u
 t
 

ut= + 	 F .Sj,t+ AX 
- t RBisit+iliJ j- JtJJit t 

t 

(5.6.13)
 

and hence the gain matrix is given by


* 
G1 A
 

a t = k + i j jlt+l !j jjt+la
 

(5.6.14) 

where -tu = G tx t 

From (5.6.11) and (5.6.4),
 

T ' 	 T [ *T 
Xt-k,t-t xt +tR t
 

+ Pjk(A+B jG )T - (A+BjGt jfx	 (5.6.15)t 	 i --t t0 --- t ~ 

or, since (5.6.15) holds for all x
-t
 

I+ *T *
 
Sk = Q+ tRG
t 

+A T S T*A 	 + G T AS*T 	 S 

Pjk ,t+lA + A 	 -j,t+ jt -t-j-j,t+l­
+G*BS , .G ) (5.6.16)-tG -R -jt+l -J -t 
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Thus, (5.6.16) proves by induction that equation (5.6.9) is valid.
 

Note that equations (5.6.16) and (5.5.11) are identical.
 

* 
Therefore, the unconditional cost of Gt , t=0,l,...,T-l, is, from 

(5.5.9)
 

tr[0 ' .... T-1J = S0 (G0 ,1" ) 	 (5.6.17) 

which 	in this case is simply
 

J = TS (G Gl ... ,G )x 	 (5.6.18)T - 0 -o- T-l -o
 
*
 

The matrices G are called the non-switching, or non-learning gains,
-t
 
* 

and will hereafter be denoted G . The label Gt will be reserved for 
-nst 	 ­

the solution to equation (5.5.13). The optimal value of the cost-to-go
 

at time t=0 for this problem will be called the non-switching cost index, 

and is given by 

JlirS x CRG- T x + T (Q + GG (5.6.19) 

ns T i--- 1- -ons0 -- ns 0 )-0 

TT 

-x T ? I. (A+B .G Ts. (A+B. G-0 Z 1_0 - -ns 0 i,l 1+ins 0 

(5.6.20)
+ 	Q+ G RG X0 

- ns -- ns
0
 

Note that if G = t for all time (i.e., if the solutions to thens0 ­

optimal control gain problem and to the non-switching control problem
 

are the same, then E [n ] = JT 
T 
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summary: In this Section, the non-switching, or non-learning, gains
 

have been derived. These gains are called non-switching or non-learning
 

because they do not depend on the past trajectory of x t and ut , but
 

only on the initial probability vector over I, 70" It was further
 

shown that if the solutions to Problems AE and B were identical, then
 

E 1J J = T(5.6.21) Nx0 nsTT
 

http:T(5.6.21
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5.7 	 Stability and the Steady-State Solutions.
 

In this Section, the concept of stability for this class of
 

systems will be precisely defined. From this, a natural concept of a
 

steady-state solution to Problems AE and B will be given, and a very
 

strong result relating the solutions to the two problems will be
 

proved.
 

5.7.1 Stability and Cost-Stability.
 

For this class of systems, two definitions of stability will be
 

tendered. The first is the usual definition of mean-square stability;
 

the second definition, that of cost-stability, has a strohg relation to
 

the existence of solutions to the infinite time versions of Problems AE
 

and B.
 

Definition 1: (Stability). G is a constant stabilizing gain if and 

only if the resulting system given by equation (5.3.1) and repeated here 

xt+l =Ax + Bk(t) ut (5.3.1) 

is mean-square stable: 
P 

]
E[x xT 0 as t .	 (5.7.1)
-t -t 

Definition 2: (Cost-Stability). The system (5.3.1) is cost-stable,
 

if and only if the scalar random variable
 

T x 	 + uTRu < (5.7.2) 

t=0
 

with 	probability one.
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5.7.2 	 Definition of the Infinite-Time Cost.
 

In this research, the infinite-time problem is defined as a
 

minimization of
 

J = li 	T (5.7.3) 
T"K 

where JT is the cost function for the corresponding finite-time problem. 

The sequences which solve these infinite-time versions of Problems AE 

and B are (Gt )= and (G )wO , respectively, when a solution exists. 
_t t=_0 -ns tt=0
 

A solution will exist if there exists a sequence of gains for which the
 

limit in equation (5.7.3) exists. This definition of the infinite-time
 

problem is chosen rather than the definition requiring a minimization
 

of the average cost per unit time
 

1
 
Jl = lim 1JT (5.7.4)
TO T
 

because there is a direct correlation between the boundedness of JT
 

over all T for a constant sequence of gains G and mean square stability
 

of the system (5.3.1). It is necessary, however, to prove that the
 

set of problems for which JT is bounded for some sequence of gains is
 

not vacuous. This fact is demonstrated by any of the convergent non­

switching gain examples in Section 10.
 

As further demonstration of the validity of using equation (5.7.3),
 

note that if 0 < Jl < -, then the cost per unit time has a non-zero
 

steady-state value, which implies that the system (5.3.1) is not mean­

square stable since 

= tr[s (Q + G TRGs)J (5.7.5) 
ss - ss--ss 

whereZss and Gss are the steady-state values of E t and Gt , when 

they exist, and, since Q + G T RG is positive definite, E 5 0. 
-	 -ss--ss -ss 
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5.7.3 Bounded Cost and Mean-Square Stability.
 

In choosing equation (5.7.3) as the basis for the definition of an
 

infinite-time problem, a major requirement was that the existence of
 

an infinite-time solution, namely of a sequence of gains which yields a
 

finite cost in equation (5.7.3), imply mean-square stability. For
 

the case where the sequence is constant, the following result is
 

proved.
 

Theorem 1: A constant sequence of gains (G) is mean-square stabiliz­

ing if and only if there exists a bound B < - such that
 

JT < B for all T (5.7.6)
 

Proof: See Appendix 5.1.
 

Remark: For a sequence (Gt)t=0 J <B<cVT implies (Gt) istt-0 t. -t t=o 

mean-square stabilizing, but (G )t= mean-square stabilizing does not 

imply JT is bounded for all T.
 

Proof: See Appendix 5.2.
 

5.7.4 Cost-Stability.
 

As yet, the definition of cost-stability has not been utilized.
 

In this Subsection, it will be shown that the system described by
 

equation (5.3.1) is cost-stabilized by a sequence of gains (G ) w if and
 
-t t=o 

only if J is finite-valued for this sequence. One direction of this 

result is proved in the following theorem.
 

Theorem 2: Any sequence (Gt)t= for which J< w cost-stabilizes (5.3.1)
 

with probability 1.
 

Proof: See Appendix 5.3.
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The other direction of this result is obvious: If a sequence
 

(Gt)t=0is cost-stabilizing with probability one, then the random cost,
 

given by equation (5.7.2), is finite except on a set of structural
 

trajectories of measure zero. (The appropriate measure on this set is
 

given in the proof to Theorem 2.) Since the expected cost J is the
 

integral of equation (5.7.2) with respect to the probability measure
 

on the set of structural trajectories (see Appendix 5.3), then J is
 

finite.
 

Thus, the cost-stability and the existence of an infinite-time
 

solution are equivalent.
 

5.7.5 Equivalence of Problems AE and B.
 

The first major result of this Chapter will now be stated. This
 

result establishes a strong equivalence between the solutions to
 

Problems AE and B.
 

Theorem 3: A cost-stabilizing solution (Gns) t= exists if and only if 
,t 

there exists a cost-stabilizing solution (Gt) , assuming I.> 0 for 
-t t=0 a. 

all i and 0>0. 

Proof : See Appendix 5.4. 

Remark 1: This result provides a computationally feasible methodo­

logy for arriving at a sequence of gains (Gnst)t= which cost-stabilize 

the original system (5.3.1) with probability 1, whenever such a se­

quence exists. The coupled matrix equations of Problem B (5.6.16) can 

be iterated backward in time. If the weighted sum with respect to the 

ergodic distribution i converges, then the resulting sequence of gains 

cost-stabilizes the system (5.3.1) with probability one.
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5.7.6 The Steady-State Solution.
 

A steady-state solution to optimization Problems AE and B can
 

exist only if there exists a steady-state probability distribution it
 

over the set of possible configurations indexed by I such that
 

T= P I (5.7.7)
 

and
 

= lim 7t F (5.7.8) 

From equation (5.7.7), it is apparent that for it to exist, the matrix
 

P must have an eigenvalue at 1, and it must be in the subspace spanned
 

by the eigenvectors of P corresponding to that eigenvalue. The fol­

lowing lemma states precisely when t exists.
 

Lemma 1: 7F exists if and only if one of the following three conditions 

is satisfied for each diagonal element a. of the Jordan normal form A 

of P, where 

P = T A T (5.7.9) 

0 0 

a1 51 0 

A =.i 

0. 

a 2 

= 0 or 1 (5.7.10) 

L
 

LL
 

For each i,
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i) aj1 <i
 

ii) a. = 1
 

I	 -
iiX) j 1i1, ai 1, (T 7r0) =0 

Proof: Obvious. 

5.7.6.1 	Steady-State Solution to Problem AE.
 

Note that for Problem AE, initially, the gains G , G,
 o 

will depend on Z, and near the final time, the gains ... G , am 
O -T-2 -T-1 

will depend on a time-varying SI. Thus, the steady-state solution for 

Problem AE is defined as the limiting solution to equations (5.4.6) 

(5.5.2) and (5.5.13) at time t, first as T +* and then as tc, if this 

limit exist. The steady-state values for B, S i , and E. , when 

they exist, satisfy the following equations: 

13g Pj (A+B.G )_ -. (A+B.G)T--	 (5.R _ -- 7'. 11) 
-J~ A pji i --- - 3 

S. =. + GTRG+A S.A + B.S.B.G + A s..
 

~~T 
T
 
+ GB3SjA 	 (5.7.12)
 

O=RG [B.S.GB+.S.BS.G 	 A 

(5.7.13)
 

which are the limit of equations (5.4.6),(5.5.2), and (5.5.13), given
 

that the limiting solution E, and G exist, where Trsatisfies
 
-j't -t
 

equations (5.7.7) and (5.7.8). The cost of this steady-state solution
 

is
 

J 	 = lim J (5.7.14) 

T_) 

as in equation (5.7.3). 
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5.7.6.2 Steady-State Solution to Problem B.
 

The solution to Problem B depends on its past only through the
 

probability distribution lr(t) over the structure index set I.
 

Therefore, to develop the steady-state solution, let the initial pro­

bability distribution 7 equal the steady-state value 7 from equations
 

(5.7.7) and (5.7.8). Then the steady-state solution can be defined as
 

the limit, when it exist, of the gain G .calculated for the problem
-ns
 

ending at time T, and of the solutions to the coupled Riccati-like
 

equations (5.6.16), S ' as the final time approaches infinite. Let
 

I 

S (T) and S i(T)be the solutions at time zero for Problem B with
-ns
 0
 

final time T. Then
 

G = lim G (T) (5.7.15)
-ns 	 T -ns 0
 
T 0
 

S.=lim Si,0 (T) , iEI (5.7.16)
.T 

when the limits exist. The steady-state solution is said to exist
 

whenever the limits of equation (5.7.16) exist. If these limits exist,
 

then G and S . must satisfy, from equations (5.6.14) and (5.6.16).--ms -.
 

G -- + .B S.B.]l Z .BT S. A 	 (5.7.17)-ns 	 -3 -3 -3 -- 3-3 -3 -

TT
 

S=Q+GT RG
k - -ns - -ns
 

( T T' T T'
 
+ 	 A S.B.G + G B.S..A .. . I -ns -ns - - --

T T'
 
+ G B.,S.B.G ) 	 (5.7.18)-ns - -- ns 

The cost of this steady-state solution, given x, is, when the limit
 

exists
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1=
Jns T+ -1l­lim Jn sT =x$ 7.S. x (5.7.19)
 

5.7.7 The Possibility of Limit Cycles.
 

The discussions in the last Section do not rule out the possibi­

lity of limit cycles in an infinite-time solution. In Problem B,
 

the expected cost is directly computable from a set of coupled Riccati­

like equations (5.6.16), as is the-non-switching gain (5.6.14). If­

these coupled matrix equations converge whenever the solution is
 

bounded, then the non-switching gain is always directly computable when
 

it exists. Boundedness implies convergence of the expected cost
 

(Lemma 2); however, the possibility of the existence of a limit cycle
 

in the solution to equation (5.6.16) is not ruled out. It is con­

jectured, but not proved, that such a limit cycle cannot exist.
 

Lemma 2: If the expected cost JT for Problem A is bounded, then it
 

converges.
 

Proof: See Appendix 5.5.
 

]
Since Ex[Jn = JT, Jns also converges. 
T T 
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5.8 Equality of G and G
-ns
 

In this Section it will be shown that when a steady-state G and
-ns 

G exist, with finite cost J and J , the gains are equal. This -- ns
 

result is extremely important in that it yields a method of calculating
 

the steady-state solution to a two-point boundary value problem as the
 

limiting solution to an equivalent (in the steady-state) single boundary
 

value problem. It is taken as a working hypothesis in this Section that
 

both problems have a steady-state solution and that the ergodic distribu­

tions of ffand Z. , for all i, exist. Then the steady-state cost of the 

optimal problem is 

J = tr[_ (Q + GRG 0 )] + tr[ZiS i ) (5.8.1) 

For any constant gain G for which the limits exist, the value would
 

be
 

Jss(G) = tr[ 0 (Q + GT RG)] + Z tr[Ei (G)S (G)] (5.8.2)i 

= tr[Z 0 (2 + G T RG)] + Z tr[l(A+BiG)S 0 cA+BiG)Tsi (G)] 

(5.8.3) 

tr [ { + GTRG + (A+B.G)T. (G)(A+BiG)}] (5.8.4) 

Similarly, equation (5.8.1) becomes
 

Jss = tr Z Go Go + (A+BG )S (A_+Bi 0 

(5.8.5)
 

For the non-switching, or non-learning problem, the steady-state cost
 

for any G for which the Si converge is, given x 0 ,
t
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J nss(G) = XT Q+ GTRG)x 0 + E [V x S (G)X] (5.8.6) 

T (Q +-GT R-G)-x 0 

0 =0 
+T r. (A.G)TS G AB(5.8.7)
 

0 __: I. (C (A+B . G3
i)x0
 

Taking expectations with respect to x
 

E J(C)] = tr[E-0 ( + GTRG)]E Js - I 

+ tr[E 0 (A+B )T -(A+B (5.8.8) 

or,
 

Ej J (G)] =J (G) (5.8.9) 

Thus, the costs are equivalent for any G for which the equations
 

converge.
 

By Lemma 3, if the non-switching expected cost is bounded for a single
 

G, then the equations converge; i.e., there can be no limit cycle.
 

Lemma 3: For a given gain G, if the expected cost JT (G) is bounded
 

then it converges. -

Proof: See Appendix 5.6.
 

Thus, either equation (5.8.9) holds, or both costs are infinite. There­

fore, if the cost is finite for any single G, then there exists a Gopt
 

which minimizes both costs. Furthermore, given that G (T) converges,
-nst
 

G (T) - G as T . This result with an extension is stated in 
nst Gopt 

Theorem 4.
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Theorem 4: Assume the values G (T), G (T), S (T), S (T), and
-t ~-ns -i,tit

t
 

,t converge. Then 

-nstA) G (T) -opt'G o as T + % which minimizes equation (5.8.9). 

B) G = G , where G is the steady-state value of G (T),-ns -- ns -ns
 t
 

and G is the steady-state value of C (T):
 

lim lim G (T) = G (5.8.10)-t­
t+ 
 I
 

Proof: See Appendix 5.7.
 

Discussion: The result of Theorem 4 B) gives a direct computational
 
* 

procedure for calculating the,optimal steady-state gain G as the 

limiting gain G . 
-ns 

There are, however, still some open questions
 

concerning the existence of limit cycles in the calculation of G
 -ns
 

Theorem 3, however, guarantees cost-stability using (Gnst) t= if a 

cost-stabilizing sequence of gains exists. 
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5.9 Robustness.
 

The original problem (Problem A) can be formulated in such a way
 

that the sequence (Gnst) t= will cost-stabilize a set of linear systems
 

with different actuator structures individually whenever such a stabiliz­

ing or robust gain exists.
 

Definition 3: A gain G is robust if 

(At+l(A + B kc)t (5.9.1) 

is stable for all k. This is the same as requiring the matrix (A+BkG)
 

to have eigenvalues inside the unit circle for all k.
 

Corollary 1: For the set of L+l systems 

2tx l =tAx + uBkt (5.9.2) 

with 

P= I (5.9.3) 

7T (5.9.4)
L+I
 

if a robust gain exists, then (G ) is a stabilizing sequence for
 
nst t=0
 

(5.9.1) for each k, and if the gains G (T) converge, then G is a
-ns t -ns
 

robust gain. 

Proof: For the expected cost to be finite, for any G , G must be 

robust, since each structure is equally likely and no structural changes 

can occur. Therefore, if a robust G exists, then certainly (Gt)t=0 

will be stabilizing, and by Theorem 3, so will (Gs ) Also, if 
-ns t t0* 

-ns , the Gns
G (T) converges as T + will be robust since it will have 
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finite cost J(G ), which implies stability, in this case, for all
-ns
 

k E I. 

Q.E.D.
 

Discussion: With Corollary 1, a specific existence problem for robust
 

linear gains is solved. Existence of a robust gain is made equivalent
 

to the existence of a finite cost infinite-time solution to Problem B,
 

which is readily computable from equations (5.6.14) and (5.6.16).
 



132
 

5.10 Examples.
 

In this section, two examples are presented to illustrate the
 

non-switching gain computational methodology. Example 5.1 is ana­

logous to Example 3.1 of Chapter 3; it demonstrates the effect of
 

component reliability on system stabilizability with a non-switch­

ing gain control law- The first case of Example 5.1 is not conver­

gent;.the second case is convergent. The only difference between
 

the two cases is the reliability of the actuators. Case i) corresponds
 

to Case ii) of Example 3.1; Case ii) corresponds to Case iii) of
 

Example 3.1. Neither case results in a robust control law, but ro­

bustness is not possible because the system is uncontrollable in
 

structural state 3. As an aside, it is interesting that the "optimal"
 

non-switching gain in Case i) ignores state x2 ; the system is decoupled
 

in that there is no interaction between x1 and x2. Since state x2
 

has stable dynamics, and the dynamics of state xI are unstable, the
 

entire control effect is concentrated on state xI .
 

The computer routines which are used in the calculation of the
 

non-switching gain solution are listed in the Appendix. The primary
 

subroutine is AIM; it calls WEIGHT. Any other routines which are
 

used are from the standard ESL subroutine library.
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Example 5.1: 

A [2.71828 0.0A = 

0.0 .36788]
 

[1.71828-.63212 1.71828- [0.0 1..6321271828S .63212 0.0 

]3R =-[1.718280.1
- 01 

0.1 1.0 

-­ 2 2 
-2fpf (-pf )P(1-f r Pr 

2(-

PfPf lPf-Pr+PfPrfr PrP Pr 

- pP 2=- Pp (-

PfPf Prf f Pr(1-P) 

2 2 
Pf (lpr)pf (lPr)pf 1_2pr+p2 

The system is 

tx [x x2,t]TXt+l =Axt + Bk(t) ut t 

k(t) E {0,1,2,3} 

The cost to be minimized is
 

J = E g tQx t -+ 
[t=0 ­
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Example 5.1, Case i) 

Pf = Pr =9 .81 0 

.09 Tr1 

.09 r2" 

.01 rr3 

Non-Convergent; but gain converges at
 

G = [-1.246 0.0] 

1.039 0.0
 

Stability:
 

Configuration Stable
 

o(B 0 no 

1 (B ) yes 

2 (B ) yes 

3 (B 3 no 

Interpretation: The coupled Riccati equations are unbounded. Note
 

that since state x2 has stable dynamics, the convergent non-switching
 

gain G concentrates on stabilizing x1 , which is open-loop unstable.
-ns
 

From the above stability table, the control law
 

u1 =0 x
 
-t -ns -t 

stabilizes only configuration states 1 and 2; since the configuration
 

has a high probability of being in state 0 (unstable), the cost diverges.
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Ppf = .01 p = .98 


.009999 IT1
 

.009999 it2
 

.0001020 3IT
 

.01, .9799 00
 

Convergent Coupled Riccati Equations.
 

G = [-.7563 .1266
 

-.8070 -.1784
 

Stability:
 

Configuration Stable 

0 (B0) yes 

1 (B ) no 

2 (B2) no 

3 (B3) no 

Interpretation: With more reliable actuators, the non-switching gain
 

expends less force on the stabilization of configuration states 1 and 2
 

(unstable); since configuration state 0 is stabilized, and the system
 

has a (relatively) higher probability of being in configuration state 0
 

than in Case i), the non-switching coupled Riccati equations converge,
 

resulting in a finite cost.
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Example 5.2 uses the same system dynamics as in Example 5.1;
 

however, only structures 0,1 and 2 (the controllable structures) are
 

considered. The configurition dynamics are modeled as being in any
 

structural state with equal probability of occurance initially and
 

,remaining in that state forever; this model is illustrated graphically
 

in Figure 5.1.
 

The state dynamics are
 

t+l = Axt +B uk(t)1t-tx = [Xl t x2,t ] T 

k(t) E {O,1,21 

The cost to be minimized is
 

J = E EtQxt + u RUtI7 
[t=0
 

The non-switching methodology yields a robust control law of the
 

form
 

u t 0 x
-t -ns-t
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76265AW030
 

Figure 5.1: -Markov transition probabilities for Example 5.2. 
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Example 5.2:
 

=2 .71828 
 0 . ]9
A= 
[0.0 A 679
 

[1.71828 1.71828- [0.0 1.71821
 

-0= 1 =311
J 
1-63212 .63212 [0.0 .63212
 

21.71828 0.0 1. 0. 0. 

2 16321 2  0.0] P 0 1. 

0. 0 

Convergent:
 

"-1.089 -.008413] 

S -1.028 -.01444
 

I 1 
- FS [112.8 8.992]]=C2. 1 S. = A
 

i= 0 8.992 6.835
 

Stability:
 

Configuration Stable
 

0 (B 0 ) yes 

1(B) yes 

2 (B ) yes 

Robust: yes
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Riccati Solution: 

L09.8 9.030] 

-0 -9.030 6.821] 

114.3 6.2851 

S1= 16.285 6.836] 

[114.4 11.66] 
-2 [11.66 6.849 



140
 

The non-switching solution converges for the system in Example 5.2,
 

and the three resulting configurations are stabilized. Therefore G
 
-ns
 

is a robust gain. Had the solution not converged, by Corollary 1 of
 

Section 9, no robust gain would exist.
 

The apriori expected cost (before the configuration state is
 

known) is, given x
 

J = x Cx 
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5.11 	Summary.
 

In this Chapter, an optimization problem was defined on linear
 

systems with variable actuator configurations and quadratic cost criteria.
 

The objective of this approach was to compute apriori a sequence of
 

gains to be used in linear feedback control which do not depend on
 

any on-line information about the process. These gains were to
 

both 	stabilize the overall system, accounting for the various possible
 

structures and minimize the expected value of the quadratic cost crite­

rion, where the expectation is taken over the possible sequences of
 

actuator configurations. This solution depends on both the perfor­

mance, and on the reliability of the various structures, as represented
 

by the Markov transition probabilities between structures.
 

The matrix minimum principle [Athans,41] was used to establish the
 

necessary conditions for optimality of a solution to an equivalent
 

deterministic problem to that described above, known as Problem AE in
 

the Chapter. These conditions unfortunately do not yield an analytic
 

solution for the gain sequence, but instead yielded an ill-posed two­

point boundary value problem which must be solved numerically (Section 5).
 

Therefore, a second problem (Problem B) was formulated which was solvable
 

analytically using dynamic programming (Section 6). This solution has
 

identical cost-stabilizing properties to the solution of Problem AE,
 

but has the advantage of being directly computable.
 

The steady-state solutions to the infinite-time versions of both
 

problems were defined, when they exist, and it was proved that, in addi­

tion to the equivalent stabilizing property of the two solutions, the
 

steady-state values are identical, and this value is the same as the
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optimal constant gain which minimizes the expected cost over the infinite
 

time interval.
 

In addition, the general robustness question of when one gain can
 

stabilize a set of linear systems with different actuator configurations
 

was formulated in the context of Problem A and was solved by Problem B.
 

Thus, a test for when a robust gain exists can be performed by iterating
 

a set of coupled matrix Riccati-like equations and testing for converg­

ence of a function of the solutions. If, in addition, the individual
 

solutions converge, then the robust gain which minimizes the expected
 

quadratic cost index can be calculated directly. It was noted that the
 

extension to systems with variable dynamics (variations in A), as well
 

as variable actuator structure, is trivial as long as the dimension of
 

the state is constant.
 

The major applications of this work are in the calculation of a
 

robust gain for a set of linear systems and in the calculations of
 

stabilizing gains for systems with variable structure, such as occurs in
 

failure, repair, or reconfiguration. A second application will be
 

covered in the next Chapter and involves using these calculations in a
 

computer-aided design procedure for the determination of the relative
 

effectiveness of various redundant component configurations.
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CHAPTER 6
 

COMPUTER-AIDED DESIGN
 

6.1 Introduction.
 

In this Chapter, two specific applications of the non-switching
 

gain methodology to computer-aided design are presented. Example 6.1
 

illustrates the usefulness of the non-switching gain methodology in
 

the selection of an actuator design. Five possible designs are
 

analyzed using the non-switching gain calculations as a basis for ranking
 

the designs with respect to their expected performance. Example 6.2
 

compares two actuators, of which one is more reliable, but less
 

effective (in that it incurs a greater cost for the same action) than
 

the other. Three cases with various actuator reliabilities are presented
 

as a study of the trade-off between actuator reliability and effective­

ness.
 

These two examples are intended to demonstrate the usefulness of
 

the non-switching gain methodology in design studies. No general method­

ology for computer-aided design using the results presented in this
 

report is presented. Instead, tools are presented which can be used in
 

the computer-aided design of system configurations.
 

6.2 The Design Decision.
 

A designer often has many means of achieving a desired goal;
 

however, no unified methodology exists which can be used to choose a
 

given design that is "better" than any other. At best, a set of tools
 

can be developed which are applicable to specific situations and classes
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of systems. Of these tools, all that are presently available evaluate
 

a system either on the basis of performance or on the basis of reliabil­

ity. The methodologies described in this report optimize a performance
 

index which depends on both system reliability and system performance.
 

Therefore, it is logical to apply these methodologies to the computer­

aided design of system configurations.
 

Example 6.1 is an aid in the design of a linear system for which the
 

state dynamics are fixed, but the actuator configuration is to be at
 

most two actuators (one level of either component or functional redundancy)
 

chosen from two types of actuators. The system in Example 6.1 is de­

fined by
 

+
xt+l Ltx+t Bk(t) (6.2.1
 

k(t) c 1 (6.2.2) 

wherex t = [xlxt' x2,t X3,t.
T 

In Cases i) and ii), I = f ,i 

in Cases iii), iv), v), I = {0,1,2,3}. The cost to be minimized is 

J = E TI +T (6.2.3) 

The cost of each actuator (labeled b and b ) is to-be the quadratic
-o -i
 

cost incurred by the control input to that actuator. These costs are
 

represented by the quadratic weights r0 and rl, respectively, and are
 

equal in Example 6.1. The actuators act on different states of the
 

system; actuator b 0 applies the control force to state x2, while b
-i
 

applies the control force to state x3. Each actuator can fail to an
 

actuator with zero gain, 0. Repair constitutes replacement of the
 

failed component with a new actuator, identical to the original ac­

tuator. The repair action is modeled using a Markov transition pro­

bability pr' the probability of repair per unit of time. The actuators
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have identical probabilities of failure and repair per unit time, pf and
 

Pr" respectively. The five possible actuator configurations are, in the
 

order in which they are presented in Example 6.1,
 

E'= IL.(] (6.2.4) 

R2 
= l1 (6.2.5) 

= I 0 (6.26) 

~= 9 (6.2.7) 

- =bo (6.2.8) 

Configurations B and B have two-state configuration dynamics directly
 

defined by the failure and repair probabilities per unit time. Con­

figurations B3 , B4 and B5 have four-state configuration dynamics re­

presented graphically by Figure 3.2 of Chapter 3, Section 5. It is
 

not immediately obvious from the configurations and the state dynamics
 

which configuration is optimal. When a non-switching gain control is
 

used, the expected steady-state cost, given by equation (5.7.3), is
 

a measure of the expected performance of each configuration, and can be
 

used to rank the five configurations in order of system effectiveness.
 

System effectiveness is a measure of the expected performance of a
 

system, taking into account all postulated modes of operation. There­

fore, in Example 6.1, the non-switching gain and expected cost is com­

puted for each of the five design configuraitons.
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Example 6.1:
 

[2.0000 .5000 .5000] 

A = [o.U 0.0 1.ooo] 

.0 -1.000 0.0 

oao1.0 0.0 0.0
 

bo 0.0 ro 1.
[ .] 1.0
b. 1. 

1.00
 
--. 0
 

0
 

0 01 

Pr = p = p = .98 

Pf. 
b. < 0 
-1 l r. ­

2l
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Example 6.1 Case i) 

= [!,] = conf. 0- (conf. = configuration)B 0 

B 1 0 = cant. 1 R = r 0 ] = 1.] 

-pf Pr] 99 .91
 

[ =t I =I
 

pf 1-P 01 .02
 

[98991
 

[.01010]I1]
 

Convergent Coupled Riccati Equations:
 

G = [-4.863 -.2582 -1.7331 

-0n
 
182.5 37.06 57.93
 

S 0 37.06 9.943 12.32
 

57.93 12.32 22.81
 

.188.6 37.39 60.09]= 

37.39 9.961 12.44 

[60.09 12.44 23.58]
 

182.6 37.07 57.95 

. = 37.07 9.943 12.33 C 

57.95 12.33 22.82 

TExpected cost = x C x 
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Stability: 

Configuration Stable
 

045B0 ), yes 

I (Bi) no 

Interpretation: The steady-state non-switching gain exists; it 

stabilizes configuration 0 (B0), but does not stabilize configuration 

1 (B) Since the probability of being in configuration 0 (stable) 

(T0 ) is much greater than the probability of being in configuration 1 

(unstable) ( ), the system configuration is stabilized using the
 

non-switching gain G in the control law
 

!It= *ns-t 
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Example 6.1 Case ii) 

B 0 = 1l = conf. 0 

B1 0 conf. 1 R = Vi 10

p = r 

[ - 1-P L9- .02] 

=f .9899] [ro] 

Convergent Coupled Riccati Equations:
 

s = [-12.59 -1.484 -4.097--ns
 

1035. 125.0 271.4
 

33.04
18.84
125.0
0 

271.4 33.04 73.8a0
 

1069. 129.0 282.6
 

S. = 129.0 19.31 34.34 

[282.6 34.34 77.43]
 

1035. 125.0 271.6]
 

Si 125.0 18.85 33.05 AC
 

[271.6 33.05 73.83]
 

TExpected cost = x C x 
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Stability:
 

Configuration Stable
 

-0 yes
 

1 no
 

Interpretation: The steady-state non-switching gain exists; it 

stabilizes configuration 0 (B 0), but does not stabilize configuration 

1 (B ). Since the probability of being in configuration 0 (stable) 

( T0 ) is much greater than the probability of being in configuration 1
 

(unstable) (7i), the system configuration is stabilized using the
 

non-switching gain G in the control law
 
-ns 

-t - ns-t 
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Example 

=0 

B.1 

6.1 Case 

bo 

1 

iii) 

= conf. 

=o=con. 

0 

1 

B.2 

, 

= _0 1 

i 

] = conf. 2 

=ojcont. 3 

r 0 0.0 [1.0 

P = 

1-pfP2 

-pfIp f 

p2pf 

pf (-fp 

Pt 

--

(1-

Pr 

2 "
Pr(pf) 

l-rP +p 

r 

f(­ r 

IPrl-P p 

1P1-

-Pfr 

f{­ r 

f 

f 

21Pfp(­

21Pr 

+P2Pr 

Pr -r 

l 2 Pr+Pr 

.9801 

.0099 

.0099 

.0001 

.9702 

.0198 

.0098 

.0002 

.9702 

.0198 

.0098 

" .0002 

'9604 

.0196 

.0196 

.0004 

Tr 

.9799 

.009999 

.009999 

.0001020 

'if 

Tr2r 

73 

it4 
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Convergent Coupled Riccati Equations:
 

-.8983]
f-2..469 -.1279 


1-2.469 -.1279 -.8983]
 

15.1 32.81 48.01]
 

32.81 9.050 10.2]
 

[48.01 0.92 19.03]
 

154.4 32.88 48.48
 

S32.88 9.054 1095
 
48.48 10.95 19.20j
 

154.4 32.88 48.48
 

2 :32.88 9.054 10.951 
48.48 10.95 -19.20
 

155.8 32.95 48.96 

S3 = 32.95 9.058 .l0.97j 

[48.96 10.97 lb.38_
 

153.2 32.82 48.021 

= 32.82 9.050 10.92 A.S i 


48.02 10.92 19.04J
 

Expected cost = xTC x
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Stability:
 

Configuration Stable 

0 (B0 ) yes 

1 (Bi) no 

)2 no 

3 (B3 ) no 

Interpretation: The steady-state non-switching gain exists; it
 

stabilizes configuration 0 (B 0), but does not stabilize configurations
 

1,2,or 3. Since the probability of being in configuration 0 (stable)
 

(O0) is much greater than the probability of being in any other con­

figuratibn (Ci i=1,2 or 3) (unstable), the system configuration is 

stabilized using the non-swithcing gain G in the control law 
- ns 

ut =G x
 
-t-ns-t
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Example 6.1 Case iv)
 

B k =lj cant. 0 B = can. 2
 

BLf canf. I B3 = IaIa conf. 3
 

an r10] =1.0
 

P and R are the same as for Case iii). 
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Convergent Coupled Riccati Equations:
 

6.097 -.7347 -2.011]
 

-ns 6.097 -.7347 -2.011
 

762.2 95.14 195.1
 

S o = 95.14 15.18 24.64
 

195.1 24.64 52.13
 

[768.7 95.92 197.3 

= 195.92 15.27 24.89 

[197.3 24.89 52.83
 

768.7 95.92 197.3 

-2 195.92 15.27 24.89 

197.3 24.89 52.83
 

775.3 96.71 199.5
 

S 96.71 15.36 25.16
 

199.5 25.16 53.55]
 

762.3 95.15 195.2
 

. = 95.15 15.18 24.64 C 

195.2 24.64 52.14
 

Expected cost = x C x 
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Stability:
 

Configuration Stable
 

0 -(B0 yes 

1 (Bi1 no 

2 (B 2 ) no 

3 (B3) no 

Interpretation: The steady-state non-switching gain exists; it.
 

stabilizes configuration 0 (B 0 ),.but does not stabilize configurations
 

1, 2, or 3. Since the probability of being in configuration 0 (stable)
 

(Tr
0 ) is much greater than the probability of being in any other con­

figuration (T., i=1,2 or 3) (unstable), the system configuration is 

stabilized using the non-switching gain G in the control law ­
-xns
 

Ut G x
 
-- ns- t
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Example 6.1 Case v)
 

BO = L, =onf.0 B 2 [ 0 I 
 cont.2
 

B h conf. 1 B 0 con. 3
 

R r 0.0: ]1 [ 1.0
 

P and Tr are the same as for Case iii).
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Convergent Coupled Riccati Equations:
 

-3.815 	-.1312 -1.106]
 

ns-s -2.556 -.5815 -1.486]
r
 

126.5 24.86 32.32
 

0 24.86 7.066 6.842­

32.32 6.842 10.69 

128.4 24.93 32.8
 

S1 24.93 7.096 6.863
 

32.88 6.863 10.85 

127.3 25.01 32.72 

S = 5.01 7-097 6.921 

32.72 6.921 10.89]. 

S 129.2 25.08 33.28 

3 	 25.08 7.100 6.942 

E33. 2 8 6.942 1:.05J 

126.5 24.86 32. 3 
__ .S '= 24.86 7.067 6.843 1 c 

k32.33 6.843 10.69 

Expected cost =xTC X 
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Stability: 

Configuration Stable
 

0 (B 0 ) yes 

1 (B) no 

2 (B 2 ) yes 

3 (B 3 ) no 

Interpretation: The steady-state non-switching gain exists; it stabil­

izes configuration 0 and 2 (B0 and B ). Since the probabilities of 

being in configuration 1 and 3 (B 1 and B 3 ) are small (ai and if3 

(unstable) , the system configuration is stabilized during the non-switch­

ing gain G in the control law
 
-ns
 

-t - ns-xt
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From the results in Example 6.1, the design configurations are
 

ranked as follows, where > is defined as "is better than".
 

B> B> 2
B5 > > (6.2.9)
 

One configuration is more desirable than another (BJ > Bk) if
 

tz - . > 0 (negative definite) (6.2.10) 

This criterion is reasonable; if Bj > Bk, then the expected cost using
 

k

design configuration Bj is always less than that using B . If the left 

hand side of equation (6.2.10) is not negative definite, but is only
 

semi-definite, then some other criterion must be used in addition to
 

(6.2.10) to rank the various designs. For example, if one assumes a
 

uniform distribution of the initial system state x 0 in the unit sphere,
 

and if the elements of the diagonal of the left hand side of equation
 

(6.2.10) are all non-positive, then the trace operator may be used as a
 

ranking function. If the trace of the left hand side of equation (6.2.10)
 

is negative, then Bj > Bk. If the left hand side of equation (6.2.10) is
 

not semi-definite, then the designer must choose which of the state
 

variables are most important in an effort to eliminate the ambiguity of
 

equation (6.2.10). In Example 6.1, equation (6.2.10) alone is sufficient
 

to rank the designs.
 

The results stated in (6.2.9) are somewhat surprising. First,
 

consider b 0 and b " A control input at time t using b 0 enters the
 

x T
 
system dynamics in state x3, where x = [xlt x2,t x3,t I . At time t+l,-3,t
 

the same control is applied to state x1 with a gain of .5; also,
 

x2,t+ = x3, t . At time t+2, that control is again applied to state x1
 

with a gain of .5 . Now, consider 
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the same situation, but with b instead of b In this case, at time
 

t+l, the control is applied to state xi , with a gain of .5, but
 

x3,t+1 = -x2,t . Therefore, at time t+2, the negative value of the original
 

control is applied to state x1 , thus partially cancelling the effect of
 

the original input. The same process occurs using b 0 , but is delayed 

one time step; thus, the control affects state xI positively one additional
 

time step when b is used. Because of the added effectiveness of b0
 

1 2 1 4 over bl I B > B , and in fact, B > B. Thus, even after accounting 

for component reliability, configuration B , which has no component 

redundancy is more desirable than configuration B2 or even though 

configuration B4 employs one level of component redundancy. 

Using this reasoning, one would expect B3 to be the optimal design
 

choice; however, the example demonstrates that this is not the case.
 

From G for Case iv), note that the control which is applied to b0
--ns
 

depends mostly on the unstable state x1l,while more emphasis is given
 

to states x2 and x3 in the calculation of the control for actuatorb 


Thus, actuator b acts partially to stabilize the dynamics of state x I ,
 

while actuator b acts partially to counteract the negative effects of
-i
 

the subsystem of states x2 and x3. This type of control action is an
 

example of the use of functional redundancy, and is not possible with
 

3 4
 
design configurations B or B .
 

The non-switching gain analysis of the proposed design configura­

tions yields information not only about the effect of various actuator
 

configurations but also about the effect of component reliability on
 

4 2 3
the expected performance. Thus, B is more effective than B , and B
 

is more effective than B ; B4 and B3 are versions of the configurations
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2 1
 
B and B1, respectively, with one level of component redundancy,. Con­

5
 
figuration B is an example of functional redundancy; both actuators
 

provide control input to the same system, but are not identical components.
 

Thus, the additional reliability of component redundancy contributes
 

to ranking (6.2.9). The trade-off between system performance and system
 

reliability will be further demonstrated in Section 3.
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6.3 A Trade-Off of System Performance Versus Reliability.
 

The non-switching gain methodology can be used to study the
 

relative effects of actuator reliability and actuator effectiveness
 

on expected system performance. If a designer has a choice between
 

using a high reliability actuator rather than one with relatively low
 

reliability, but with a higher effectiveness, on what basis can a
 

decision be made? In Example 6.2, two actuators are considered. Each
 

actuator may fail to an actuator of gain zero (0) and be repaired
 

(replaced). 	The probabilities of failure and repair are pf and pr. 

i 1 

where i=0 or I and refers to the actuator (b or b ' respectively). 

One actuator (b 0) has good reliability, but the actuator gain is unity. 

A second actuator (b I) has an actuator gain of ten (higher effective­

ness), and a lower reliability. If the actuators had the same relia­

bility, then actuator b would be preferable--it incurs a smaller cost 

for the same effect. In Case i) of Example 6.2, this reasoning is 

demonstrated numerically; the steady-state non-switching gain favors 

actuator b (the second column of B 0 ). (The two rows of the gain 

matrix are compared; the top row corresponds to actuator b 0.) 

In Cases ii) and iii) of Example 6.2, the reliability of actuator 

h 1 is lower than the reliability of actuator b 0 In Case ii) the 

probability of failure per unit time of actuator b is five times 

greater than the probability of failiure per unit time of actuator b 0 

in Case iii), it is ten times greater. The probabilities of repair per 

unit time for actuator b are also lower than for actuator b0 

Therefore, actuator b is significantly less reliable than actuator b0 

Note that in Case ii), the optimal non-switching steady-state controller
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favors actuator b by a gain factor of 2.5 - 2.6; in Case i), actuator

-0
 

b is favored by a gain factor of 2.3. In Case iii), actuator bo is
 

favored by a gain factor of 5.1. TnUs, the non-switching gain calcula­

tions-can -be quita sensitIve to changes in component reliability.
 

Although the configuration states are identical for all three Cases of
 

Example 6.2, the configuration dynamics are modified by the changes in
 

actuator reliability. The effect of modifications in actuator reliability
 

on the non-switching steady-state gain and cost is pronounced. The
 

steady-state gain is very sensitive to the actuator reliabilities; the
 

expected steady-state cost increases as the reliability decreases. A
 

second effect demonstrated by Example 6.2 is interesting. In Case i),
 

configuration state 2 is not stabilized by the non-switching gain. As
 

the reliability of actuator b decreases, the average steady-state
 

probability that the configuration is state 2 (actuator b failed,
 

actuator b 0 operational) increases. Therefore, the non-switching gain
 

solution must concentrate more effort on stabilizing configuration state
 

2. Note that in Cases ii) and iii), configuration state 2 is stabilized
 

by the non-switching gain solution. It is interesting to note also that
 

the non-switching gains in Cases ii) and iii) are robust with respect to
 

configuration states 0, 1 and 2. (Configuration state 3 is uncontrolla­

ble.)
 

The system dynamics in Example 6.2 are
 

+= Axt+lt +Bt k(t) (6.3.1) 

k(t) e I (6.3.2) 

where I = 10,1,2,31 and x =[x x x T The set { .i 
-t lt 2,t 3,t i= 

of configuration states is given in Example 6.2. The cost to be
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minimized is 

E xT R T (6.3.3) 
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ExamPle 6.2: 

[2.0000 .5000 .5000]
 

A [0.0 0. 1.0000
 

.0 -1.0000 0.0
 

O. 0.0 0.0 0.0 

B0 0.0 0.0 conf. 0 B1 0.0 0.0 conf. 1 

1.0 "0.0 	 0.0 10.0 

o 0 00] 	 0 0. 

0.0 0.0 = conf. 2 B = 0.0 0.0 conf. 3B 2 

1.0 0.0 	 0.0 0.0
 

1.0 0.0 0.0 	 [5.0 0.0
 

Q 	= 0,0 1.0 0.0 0.0 5.0 

I0.0 0.0 1.0 

1t-Pfl-Pf2+pf1Pf2 
 (1-Pf2)pr1 (1-Pfl1 ) pr2 Prl1Pr2 

Pfl1(l-Pf2 +r 1f 2 Pf Pr2 (1-Pr2 ) 1 

P = 

Pf2 (1-pfl) Pf2Pr l-Pf-pr2+Pfr2 (1-PrI 2 

fi2 (lr )Pf (1-p )Pf 1 -rr -prlr pPf1 f2 
 1 2 	 2 1 1 2r 21 
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Example 6.2 Case i) 

.01 

0 

= .1O
011 

Pr = .98 _i = 

.9799 

.0 0 9 9 9 9 

.009999 

.0001020 

-T0 

I I 

iT2 

iT3 

Convergent: 

rs-.2059 
-.4 8 2 9  

-. 01076 

-.02505 

-. 07574] 

-.1789 

SO= 

134.5 

30.06 

30.06 

8.459 

41.49 

9.981 

41.49 9.981 16.44 

S 13 4 . 5 

30.06 

[41.49 

30.06 

8.459 

9.981 

41.49] 

9.981 

16.44] 

S 

[138.5 

I30.27 
[42.96 

30.27 

8.470 

10.06 

42.96] 

10.06 

16.98] 

3= 

[138.5 

30.27 

30.27 

8.470 

42.97] 

10.06I 

42.97 10.06 16.98] 

= .S 

134.5 

30.06 

30.06 

8.459 

41.51] 

9.982 C 

[41.51 9.982 16.45] 
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x C x
Expected cost = 

Stability: 

Configuration Stable 

0 -M0) yes 

1 (B1 ) yes 

2 (B2 no 

3 (B) no 

Interpretations: The system x = [A + B.G ] xt is stable only for-t+l - i--s--n
 

i=0 and 1. The probabilities of the configuration being in states 2 and 3
 

('It2 and T3 ) are small; the system configuration is stabilized using the 

control gain G in the control law 
-ns
 

n =G xt
 
-t -ns ­
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Example 6.2 Case ii) 

= .01 = .98 -.9378 T0 
f0 0
 

.009212 Ti1 
fl = .05 prl- = .90 If = 

.05206 T2 

.0005316 _f3
 

Convergent:
 

[-1.041 -. 05848 -.36391
 
G 1 I
 

n-.4058 -.02163 -.1464
 

176.6 36.37 55.60
 

S 36.37 9.797 12-061
 
0I
 

55.60 12.06 21.81]
 

[176.9 36.39 55.71]
 

=l -1 36.39 9.798 12.06 

[55.71 12.06 21.85]
 

197.4 37.56 62.83
 

= 37.56 9.868 12.46
 

[62.83 12.46 24.35]
 

166.4 35.79 52.08
 

3 35.79 9.762 11.861 

52.08 11.86 20.58] 

177.7 36.43 55.981
 

iTS = 36.43 9.801 12.08 =c 

55.98 12.08 21.94
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Expected cost = xTC x 


Stability:
 

Configuration Stable
 

0 (B 0 ) yes­

1 (B ) yes 

2 (B 2 ) yes 

3 (B 3 ) no 

Interpretation: The system 

xt+ 1 = [A + B . G J x t 

is stable for i = 0,1,2. 

Configuration state 2 is stabilized because the probability of the 

configuration state being 2 (B2 ) is larger than in Case i).
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= .01 p = -98 .8909 -%Pfo 
 0 

0
 

.009172 'I1
 
= .10 pr = .901 


.09891 
 72
 

.001010 713_
 

Convergent:
 

-.,729 -. 09453 -. 6062
 

-ns 
 -.3400 
 -.01858 
 -.1195
 

[210.6 


So = 41.04 

[67.28 


, 213.2 


1 
= 4j1.14 

L68.26 


212.3 


1s
41.09 


[67.92 


[196.0 


, I40.19 

[62.11 


ii= 


41.04 67.28] 

10.76 13.61 

13.61 26.29] 

41.14 68.26] 

10.75 13.66 

13.66 26.661 

41.09 67.92 

10.75 13.64 

13.64 26.53] 

40.19 62.11] 

10.70 13.32 

13.32 24.471 

210.7 40.99 

1 
40.99 10.75 

[67.28 13.60 

67.281
 

1 0
 
13.60 I 
26.28
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Stability:
 

Configuration Stable 

0 (B 0) yes 

1 (B 1) yes 

2 (B 2) yes
 

3 (B ) no
 

Interpretation: The system
 

x t+ = [A + B.G ] x t 

is stable for i = 0,1,2.
 

Configuration state 2 is stabilized because the probability of the
 

configuration state being 2 (B2 ) is larger than in Case i).
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6.4 	Summary.
 

In this Chapter, two applications of the non-switching gain method­

ology to computer-aided design (CAD) were presented. The purpose of
 

these examples was to demonstrate the usefulness of the non-switching
 

gain methodology in the design process. CAD has two uses: First, it is
 

used by the system designer in the evaluation and design of a system.
 

Second, it is quite useful to the theorist. In this research, for
 

example, without CAD techniques, a thorough knowledge of the methodologies
 

presented in this report could not have been gained. The equations
 

describing the switching and non-switching gain methodologies can be
 

derived, but their meaning in a specific context cannot be determined
 

theoretically. The purpose of this research was to study the inter­

actions between system reliability and optimal control. The method­

ologies presented in this report allow this study to proceed. The two
 

Examples of this Chapter study two specific areas of interaction
 

between system reliability and control. The door has now been opened to
 

the answers to questions on reliable control system designs. Computer­

aided design can provide the signposts to these answers.
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CHAPTER 7
 

CRITIQUE
 

7.1 	 Introduction.
 

In this Chapter, the major results of the report will be summarized.
 

In Chapters 3 and 4, the switching gain solution was developed and
 

extended suboptimally to stochastic systems. In Chapter 5, the non­

switching gain solution was developed. The problems associated with
 

system stability, including definitions of what constitutes a stable
 

system, and with the steady-state solutions to Problems A (Sections 3
 

through 5) and B (Section 6) were studied in detail in Section 7. The
 

equivalence of the two approaches to the non-switching gain solution is
 

proved in Section 8. The existence of a robust steady-state linear
 

feedback control system was studied in Section 9.
 

In the following sections, each major result will be discussed; in
 

Section 5, some suggestions for future directions in research will
 

be made.
 

7.2 	 The Switching Gain Solution.
 

The switching gain solution was derived in Chapter 3 as a control
 

methodology for linear system with quadratic cost criteria and variable
 

actuator configurations. The resulting control law was to account for
 

the failure, repair and reconfiguration of the actuators by switching
 

the control gain on detection of a change in configuration. This type
 

of control law is, from Chapter 1, Section 4, a class 1I reliable control
 

methodology; an active (switching) controller is used with a passive
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configuration design.
 

7.2.1 Deterministic Optimal Solution.
 

The 	switching gain solution of Chapter 2 is derived as the optimal
 

solution for the discrete-time deterministic optimal control problem.
 

It is the optimal control simply because the structure of the discrete­

time 	system allows perfect observations of the system structure with
 

one-step delay. Therefore, there is no need for the control law to
 

have 	a dual effect; in fact, there can be no dual effect, since the
 

control law does not affect the observation process, for almost all
 

values of the control.
 

A minor drawback to the switching gain solution is the computa­

tional burden of iterating the Riccati-like equations (3.3.6), and solving
 

for 	the optimal control using equation (3.3.7), backward in time for
 

each 	time instant of the control interval, or until the steady-state
 

solution is achieved, when one exists. Fortunately this computation is
 

done 	off-line, and the various optimal gains are then stored for on-line
 

use. On-line, the controller simply determines which structure the
 

system was in at the previous time instant and chooses the corresponding
 

(stored) gain. The control law is then a linear feedback control using,
 

that particular gain.
 

7.2.2 	Non-Extendability to Stochastic Systems.
 

Unfortunately, the switching-gain solution does not extend optimally
 

to systems where noise is present. When noise is present, it is no
 

longer possible (in general) to determine exactly the previous value 

- of the system structure. It was shown in Section 3 of Chapter 2 that 
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in such a case, the optimal control law exhibits a dual effect; i.e.,
 

the control law influences the measurement of the system structure. In
 

a real-life situation, it is unlikely that a system with no internal
 

noise will be found. Unfortunately, the optimal (dual) control law is,
 

in practice, unsolvable due to the immense computer resources which are
 

required.
 

7.2.3 Suboptimal Extensions.
 

Because of the dual control effect, the deterministic optimal
 

solution is the only closed-form solution available. Thus, it is in
 

our interest to look for suboptimal methodologies which extend the
 

switching gain solution to the stochastic case. In Chapter 4, two of
 

these methodologies were studied: Hypothesis testing and dual identi­

fication. While hypothesis testing is a measurement strategy, dual
 

identification modifies the control in order to guarantee a perfect
 

observation of the system structure with the next measurement. Both
 

methodologies are presented in their simplest form, since the problems
 

of stochastic control of systems with variable structure are not within
 

the scope of this research. Two comments are in order, however:
 

First, at least in the form presented in Chapter 4, a dual identifica­

tion algorithm is computationally intensive. Since it is an on-line
 

algorithm, a significant computational capacity may be required in its
 

implementation. Second, it is observed that the optimal stochastic
 

control law, if it could be calculated, would rely on both estimation
 

and dual control, the two concepts which are represented in Chapter 4 by
 

hypothesis testing and dual identification, respectively.
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In a suboptimal implementation using dual identification, the
 

algorithm would most likely be used only at intervals; the implementa­

tion would rely on an estimation algorithm for the remainder of the
 

time. This scheme would attempt to minimize the degrading effect of
 

dual identification on the state trajectory by using it only to guarantee
 

that the estimation algorithm was tracking the system configuration
 

properly. Thus, the system response would be roughly periodic, with
 

the state being driven away from the origin in order to obtain an
 

accurate estimate of the configuration, and decaying back toward zero
 

between uses of the dual identification algorithm.
 

This type of control strategy deserves some attention in future
 

research activities. It is similar to the class of self-testing
 

systems which perform diagnostic testing of their configurations
 

at intervals. It is also, at present, the only methodology which takes
 

advantage of the dual property of the control law in systems with
 

variable, imperfectly observed, structure.
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7.3 	The Non-Switching Gain Solution.
 

The non-switching gain solution of Chapter 5 was derived as an
 

alternative to the switching gain solution of Chapter 3. Although
 

the non-switching solution is, in general, suboptimal, the on-line
 

complexity of the solution is less demanding than that of the switching
 

gain solution. On-line, the non-switching gain solution has the same
 

complexity as does the standard linear quadratic solution. Off-line,
 

the computational requirements are equivalent to those of the switching
 

gain solution.
 

7.3.1 	 The Necessary Conditions--Unsolvability.
 

When the non-switching control problem is formulated as an
 

equivalent deterministic control problem (Chapter 5, Section 4), the
 

necessary conditions from the matrix minimum principle [Athans,41]
 

yield a two-point boundary value problem which is not explicitly
 

solvable; at the present time, the solution to this problem appears
 

intractable. The necessary conditions are used, however, in conjunction
 

with an equivalent problem (Chapter 5, Section 6), to prove some strong
 

properties of the solution to the equivalent problem.
 

7.3.2 The Equivalent Problem.
 

The equivalent problem formulated in Section 6 of Chapter 5 has
 

the advantage over the original formulation that a closed-form expression
 

for the solution can be readily obtained. From the necessary conditions
 

of Section 5 in Chapter 5 for the original formulation, it is shown that
 

the accumulated costs over the control interval for a specified gain
 

sequence are identical for the two formulations. From this, in Section 8
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of Chapter 5, it is shown that if the steady-state solutions to both
 

problems exist, then they are identical. This is a major result, since
 

the 	steady-state solution to the second formulation is calculable,
 

while the solution to the first formulation is not.
 

7.3.3 	 Existence of a Stabilizing Gain.
 

Only one major result remains; one would hope that the steady-state
 

solution to the second formulation exists if and only.is the steady-state
 

solution to the first formulation exists. In Section 7 of Chapter 5, the
 

meaning of "steady-state" is precisely defined for both problems. In
 

order for the concept of a steady-state solution to be well-defined, an
 

exact definition of stability must be given. Two definitions are present­

ed. Stability is defined as the usual concept of mean-square stability.
 

A definition of cost-stability is presented as the condition when the
 

expected cost for the infinite horizon problem (unnormalized by time)
 

is bounded. It is proved that the solutions to the two formulations
 

are equivalent in that one solution is cost-stabilizing if and only if
 

the other is also. Cost stability is shown to imply mean-square
 

stability; the reverse is not necessarily true.
 

7.3.4 Problems with Convergence.
 

There are two criticisms of the results of Chapter 5. First,
 

although cost-stability is not implied by mean-square stability, it is
 

possible that, for the specific form of the non-switching gain solution,
 

the two definitions are equivalent. This is a minor point, in that the
 

equivalence result is already very strong; it yields a procedure for
 

the calculation of the steady-state solution to the two point boundary
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value problem which converges if and only if that solution exists.
 

Second, there is still a minor problem concerning the convergence
 

of the non-switching gain solution. The equivalence theorems of
 

Chapter 5 only require the solution to have a steady-state, which may
 

be a limit cycle. A limit cycle is still copacetic, but it is harder
 

to implement than one gain would be. Therefore, it is desired that
 

conditions be found for which the possibility of a limit cycle is
 

ruled out.
 

Thus, two possible topics for future research are the examination
 

of the exact relationship between cost-stability and mean-square stability
 

for the non-switching solution and the determination of conditions for
 

which the possibility of limit cycles as solutions is eliminated.
 

7.3.5 Existence of a Robust Gain.
 

A spin-off of the non-switching gain solution of Chapter 5 is
 

the development of an algorithm which determines when a robust gain
 

for a set of linear systems exists (Section 9). A robust gain is a
 

gain which stabilizes each mode of the system configuration regard­

less of the configuration dynamics. This algorithm is developed by
 

noting that the robustness problem can be reformulated as a non-switch­

ing gain problem. Since the non-switching gain is, in the steady-state
 

case, the solution to the first formulation (Section 4, Chapter 5), and
 

since it is stabilizing if and only if a stabilizing gain exists, then
 

by the special structure of the robust formulation (Section 9), the
 

steady-state non-switching gain is robust when it exists. In addition,
 

if the non-switching solution is not cost-stabilizing, then no robust
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gain exists. This is a very important result; it is unfortunate that
 

determination of existence of the robust gain requires the solution
 

of the non-switching gain problem. At present, however, no test on -a
 

system exists which determines when the non-switching gain solution
 

is cost-stabilizing,. It is hoped that such a test will be developed in
 

the future.
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7.4 Computer-Aided Design.
 

Chapter 6 demonstrates the usefulness of the non-switching
 

gain calculations in computer-aided design (CAD). These calculations
 

provide the backbone for comparison studies on the relative system
 

effectiveness of various designs. In the first example, it is demon­

strated that the non-switching control methodology yields a numerical
 

value based on the expected performance of a design configuration
 

over the effect of the structural dynamics. This example demonstrates
 

that relatively subtle qualities of an actuator can be used to rank
 

various actuator configurations; in this case, the ranking depends
 

on the manner in which the control affected the system state and is
 

not obvious on a casual inspection of the configuration.
 

The second example demonstrates the ability of the non-switching
 

gain methodology to observe the trade-off between high reliability and
 

high effectiveness in an actuator. Both qualities are desirable, but
 

in this example, one actuator is highly reliable, while the second
 

actuator is not as reliable, but is highly effective in-that it incurs
 

a much smaller cost in applying the same control effect to the system.
 

The non-switching gain problem is solved for a range of actuator reli­

abilities for the highly effective sensor. It is demonstrated that
 

the trend exists to depend more heavily on the high reliability sensor
 

as the reliability of the highly effective sensor decreases, even
 

though the operation of the highly reliable sensor incurs more cost.
 

Chapter 6 only touches upon the field of computer-aided design.
 

There is much work to be done in this field, and the purpose of Chapter 6
 

is only to establish the usefulness of the non-switching gain methodology
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in the design process. In the future, the applicability of the non­

switching gain methodology to CAD should be studied in great detail;
 

in particular, a comprehensive methodology for the application of the,
 

techniques of Chapter 5 to CAD should be developed. This methodology
 

should include a strong argument for the validity of using the non-switch­

ing methodology in CAD. Specifically, research needs to be carried out
 

on the relationship of the costs incurred by various design configurations;
 

this is similar to justifying the use of the quadratic cost criterion
 

in the linear quadratic regulator. In order to compare two designs, a
 

valid basis of comparison, or cost index, must exist. The non-switching
 

methodology is proposed as being a valid cost index for the class of
 

systems for which it is applicable; this conjecture should be verified.
 

In addition to the usefulness of the non-switching methodology, it
 

has been mentioned previously that a valid definition for a reliable
 

design is that the design is cost-stabilizable. Since, for the deter­

ministic control problem presented in Chapter 3, the switching gain
 

solution is the optimal solution, the existence of the steady-state
 

switching, gain solution is equivalent to the stabilizability of that
 

design. Hence, the existence of the steady-state switching gain solution
 

is necessary and sufficient to classify a design reliable.
 

In theory, the computation of the steady-state switching gain
 

solution can be used as a method in CAD for determining if a proposed
 

design meets the minimum requirement of stabilizability. In practice.,
 

however., the proposed design will operate in a stochastic environment;
 

therefore, the switching gain solution is not an absolute measure of the
 

stabilizability of the design. In the future, research should be
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concentrated on the development of the concept of stabilizability to
 

more general stochastic systems than has been done previously. An
 

example of work in this direction has been given with the Uncertainty
 

Threshold Principle [Athans, et. al., 3 7], which is basically the deter­

mination of conditions of stabilizability for a specific system with a
 

specific type of control law. The work on the existence of the non­

switching gain solution for a simple system (Chapter 2,-Section 7)
 

is another example. It has been demonstrated in this research that the
 

concepts of systems reliability and stabilizability are crucially
 

interconnected. It is left to future research to determine more general
 

conditions of reliability and stabilizability and to implement these
 

conditions in computer algorithms which can be used by the designer.
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7.5 Suggestions for Future Research.
 

Several suggestions for future research have been presented in
 

Sections 2,3 and 4 of this Chapter. In-this Section, a summary of these
 

suggestions will be given.
 

In Chapter 1, three classes of reliable control methodologies
 

were given. These are
 

I) Passive (Robust) Controller Design
 

II) Active (Switching) Controller, Passive Configuration
 
Design
 

III) Active Controller, Active Configuration Design
 

Of the methodologies presented in this report, the non-switching
 

gain design is a class I methodology, and the switching gain design is
 

a class II methodology. Class III methodologies are not represented
 

in this report. This class is currently largely in the realm of
 

"blue sky" theory. Unfortunately, there is as yet no adequate model
 

of configuration dynamics which exhibits a state and control structure.
 

Over the next ten years, one should see much research activity in the
 

area of class III methodologies and their control structures.
 

In class II methodologies, much effort should be concentrated on
 

extensions, either optimal or suboptimal, of the switching class of
 

control laws to stochastic systems. At present, most work has been done
 

in estimation theory, since the difficulties associated with dual
 

control are widely recognized. The ability of a control law to perform
 

diagnostic testing for changes in configuration has yet to be exploited
 

theoretically, although many heuristic algorithms have been used, both
 

in control systems and in the more established field of fault detection
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and identification in digital systems. Dual control is a form of self­

testing, and can be utilized as such, even if an optimal control is
 

not known. The dual identification methodology of Chapter 4 is an
 

example. This field requires a large effort, and should be rich in
 

research opportunities.
 

The class I methodologies are represented in this research by the
 

non-switching gain solution. The work done in Chapter 5 on mean-square
 

stability and cost-stability of solutions is not unique to this class of
 

problems. Much remains to be done in the classification of what consti­

tutes a stabilizable system, whether with respect to a non-switching
 

control law or something more general.
 

Since reliability can be defined as stabilizability with respect
 

to some class of control laws, research into the stabilizability of
 

dynamic configuration systems is the key issue in reliable control
 

system designs. Much work, including this research, has been done on
 

the assumption that the system is stabilizable; however, little progress
 

has been made in determining why a given design is stabilizable.
 

Although iterative tests were developed in this report for determining
 

stabilizability, a thorough understanding of the reason these tests
 

either converge or fail to converge is lacking. Much work still must be
 

done. With this should come a resolution of the problems with limit
 

cycle steady-state solutions to the non-switching gain methodology.
 

In Chapter 6, the usefulness of the non-switching gain solution in
 

computer-aided design was demonstrated. CAD is a field unto itself; many
 

opportunities exist for research in this area. Unfortunately, most
 

research is application-specific. CAD is useful not only to the designer,
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but also to the researcher. It is a powerful tool in the building of
 

the concepts of reliable control systems design, and it should be
 

developed in parallel with any future research.
 

7.6 Summary.
 

In summary, the main purpose of this research was to establish a
 

foundation in reliable control system design methodology which would
 

provide the basic concept of a reliable control system. In achieving
 

this goal, the linear quadratic variable actuator control problem was
 

studied in some detail. Optimization problems were formulated which
 

represented both system performance (in the quadratic performance index)
 

and system reliability (in the expectati6n of the performance index over
 

all possible structural trajectories). The optimal control law was
 

solved analytically for the deterministic system; this was the switching
 

gain solution. It was clearly illustrated by example in Chapter 2 that
 

the switching gain control law could not be extended analytically to
 

the control of stochastic systems. This example demonstrated the dual
 

effect of the control law; in general, the control law will influence
 

the measurement accuracy optimally (in the sense of minimizing expected
 

cost) when the control can influence the accuracy.
 

Stochastic extensions to the switching gain methodology were proposed
 

in Chapter 4. In particular, the dual identification algorithm is an
 

illustration of the self-testing capacity of dual control laws. The
 

study of the uses of the dual control effect in the design of reliable
 

control systems is a promising research area of the future.
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In Chapter 5, the non-switching gain solution was developed. This
 

solution led to an algorithm for the determination of robust linear
 

constant gain control laws for a set of linear systems with different
 

actuator configurations. In addition, the resulting gains are optimal
 

with respect to a given quadratic performance index and exist if and
 

only if any robust gain exists.
 

In conclusion, the unifying concept of this report is: What
 

constitutes a reliable control system, or a reliable design? A major
 

connection was established in this research between the concepts of
 

reliability and stabilizability. Iterative procedures were developed
 

for the determination of whether or not a given linear system of the
 

type considered in this report is reliable, with respect to both class
 

I and class II controllers; i.e., non-switching and switching gain
 

controllers, respectively.
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DEFINITIONS FROM MIL-STD-721B
 
25 August 1966
 

RELIABILITY
 
The probability that an item will perform its intended function
 

for a specified interval under stated conditions.
 

AVAILABILITY
 
A measure of the degree to which an item is in the operable and
 

committable state at the start of the mission, when the mission is
 
called for at an unknown (random) point in time.
 

DEPENDABILITY
 
A measure of the item operating condition at one or more points
 

during the mission, including the effects of Reliability, Maintain
 
ability and Survivability, given the item condition(s) at the start
 
of the mission. It may be stated as the probability that an item will
 
(a) enter or occupy any one of its required operational modes during a
 
specific mission, (b) perform the functions associated with those
 
operational modes.
 

CAPABILITY
 
A measure of the ability of an item to achieve mission objec­

tives given the conditions during the mission.
 

OPERABLE
 
The state of being able to perform the intended function.
 

MAINTAINABILITY
 

A characteristic of design and installation which is expressed
 
as the probability that an item will be retained in or restored to a
 
specific condition within a given period of time, when the main­
tenance is performed in accordance with prescribed procedures and
 
resources.
 

SURVIVABILITY
 
The measure of the degree to which an item will withstand hostile 

man-made environment and not suffer abortive impairment of its 
ability to accomplish its designated mission. 
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A2.1 	Exact Optimal Solution for Deterministic Case, Chapter 2,
 
Section 2.
 

From (2.2.7) and using dynamic programming, we wish to minimize
 

2 2
 
V(X , 	 k(t-l), ut, t) = E(qxt + ru t
 

+ v*(axt u ,k(t), t+lI x ) (A2.1.1)
 

where V (-,k(t), t+l) represents the minimum cost-to-go, given
 

k(t) at time t+l-.
 

This minimization can be carried out because xt is known exactly
 

at time t, and therefore ft-lis knownexactly by equation (2.2.10).
 

The control ut is computed from
 

0 qs2 + ru t + 0tV (ax +bu t , k=0,t+l) 

+Tr V (axt+ ut k=l,t+l) (A2.1.2)
 

t
 

and the assumption that
 
* 	 2 

V (Xe k=i, t) = xt Si~ 	 (A2.1.3), 


resulting in equation (2.2.8). Equations (2.2.12) and (2.2.13) are
 

then obtained by substitution of (2.2.8) into (A2.1.1); these
 

equations validate assumption (A2.1.3) by induction.
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A2. 2 Exact Optimal Solution for Stochastic Case, T=0, 1, 2= Tf 
(l-d example). 

The formulation is the same as in A2.1, except the system is 

now represented by 

Xt+l =axt+ bk(t) ut + t (A2.2.1) 

t is white noise with zero mean, variance E, and probability dis­

tribution p (i), which is uncorrelated with any other variable. To
 

illustrate the complexity of the solution, the time set is chosen as
 

{0,1,2}. The problem is to find u0 and uI such that
 

v(x ,0) = E(J) . [ ( q+ u2r) +2q(A2.2.2) 
t=0
 

* 
is minimized. Let V denote the minimum value of V. Assume
 

ut = t(Zt) (A2.2.3) 

where t is a mapping from the information at time t (Z ) into the 

control space. 

Zt =47T0' x 0' u 0'' u t-I I xt] (A2.2.4) 

then * 12 * 
V (x 0 , 0) min Ejx 0 q+u 0 r +V (x 1 ,l)I Z0 (A2.2.5)

0u0= 0 (Z0 

by dynamic progranming. Also
 

2
V*(xl) mi E x g + u2 r + V (x 2)J zj (A2.2.6)
1
 

1 ) 1
U= 1 (Z

* 2 
But V (x2 ,.2) = x2g, so (A2.2.6) becomes 

V* 1) rmin ) E Ix2lq+ u{2r+ x2qiz1 } (A2.2.7)1 Ul= 01l(Z 1 1 1 

S min E x2 q + u2r+ (ax 1 + b u +C qiZl 
Ul= i (Z1 ) 1 

(A2.2.8)
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now, Z1 = {Tr0 'X0u0xl}' so 

(A2.2.8) = min xq + n2r 

14)q(+
U (Z) )1I2r=1 I ) 2 

+ E [t Ifi (l1) (axl+ biUl+ l2q] (A2.2.9) 

where i (lll) is the probability that kI = i, given Z1. Bringing the 

expectation inside the sum, 

(A2.2.9) = in xgq + u~r 
u1 1 (Z1) 

2x2 2 2
 

+ t r(11) (a x +bu I + n + 2abixlUq (A2.2.1O0 

Differentiating (A2.2.10) w.r.t. u1 and setting the result equal to 

zero: 

2ru1 + i (Illl) (2b2 1 + 2ab xl)q (A2,2.11) 

or 

= - Jr (ll)bi qa q (A2.2.12)
 

r + [t ii(l11)b q 

Substituting (A2.2.12) back into (A2.2.10), define S1 and T as 

T1 = -q (A2.2.13) 

S1 = (a2 + 1)q 

2 1 (411)b2 i (A2.2.14) 

a rTr (1I1)b] q 
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and
 
* 	 2 
V(xl) = XlS + T 	 (A2.2.15)

1 11 1 

A few remarks must be made about the probability distribution over kt
 

given Zt or Zt+.
 

Notation: 

r.(tlt) = probability that kt = i, given the available information Zt ­
1. 	 t 

I'.(tlt+l) 	 = probability that kt = i, given the available information
 
Zt+t
 

From the Markov property, 

7r(tlt) = pi7(t-1It) (A2.2.16) 

Equation (A2.2.16) is the propagation equation for the distribution W.
 

The form of the update equation is given and proved in the following
 

lemma:
 

Lemma A2.1:
 

7Fi(tlt+l) = P(xt+ 1 t-b ut)T±(tlt) (A2.2.17) 
30 p(Xt+l-aXt-bjut )7 j (tlt) 

Proof:
 

Note that 

P(Xt+l-axt-biu = P(xt+iztut,k(t)=i) 

where ut is not a random variable. Also, 
7i(tlt) = p(k(t)=iZt) 

p(k(t)=i,Tf 0 'x 0 ,Uo ... xt) 

P O 0 ' xt)XOUo.... 
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then (A2.2.17) becomes:
 

P(Xt+iIzt ut k(t)=i)p(k(t)=iIzt)
p(k(t)=ilz )

t l P(x t+l Zt , ut ) 

which is Bayes rule. Q.E.D. 

Returning to equation (A2.2.5), and substituting (A2.2.15), 

V (x0 ,0) = min E x2q + u2r + x2S + T1 (A2.2.18).
Uo=4 o(Z0o) 0 0 1 lo
 

=mn E x2q + u 0r + 7q Uo=4 o(Zo0 (
 

[trcI1b2q2a2] 
1+) r + (I1)b2q] Zo} (A2.2.19)- [ 


2V2 

minu x q + u0r + q
 
u0 

0 
0 (x
 

r ii1)bij2q2 a2
 rr 2 

= ( I0 r + ITi(lIl)b] qJ 

dp(xl)k l , k 0 , Z 0 ) p k l 1 k I (A2.2.20) 

±Ikrkw&Pk] ir0, 

where 

Ik = p(xl-ax0 -b j(A I 2.21)Pkt 0 )iuj,0 


irk ( I  
 121) )k 
( l
4 p x -ax0-b

i u 0 ) i, 0
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Equation (A2.2.21) is a combination of equations (A2.2.16) and (A2.2.17).
 

Equation (A2.2.20) can only be solved numerically (in general); this
 

requires a numerical minimization of a function -he -computationof which
 

requires four numerical integrations -- a difficult task.
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A2.3 Exact Solution of Stochastic Case Over T '0, 1, 2 = Tf 
for a Specific Form of PQ(), Chapter 2 Section 2.3.1. 

Assume, for the problem in A2.2, that 

2/SE , for -V3= < C <y7
P( ) =(a2.3-1) 

0 ,otherwise 

Suppose Iu01 > 0 is large enough such that 

P(2(b k-bi)u 0 + = 0, i k0 and 0 s [-E/i0C,9 

Then 

t 1 l__i 3 0 pi j p (x1 -ax0 -b
ju0)b. (A2.3.2) 

4-O P(xl1-axO-b.k uO Fk,G 

2v'E)= 0 b}T (01 1) (A2.3.3) 

= tpikb, (A2.3.4) 

Similarly, 

IT.(11l)b 
=I 

b2(235
ik b (A.35 

Then, from equation (A2.2.14), 

S(a +)q - a 

r + 

Pikbi 2 q 2  

[ Opi q 

(A2.3.6) 



200
 

From equation (A2.2.20),
 

* 	 2
 
x0,0) = min x2 q + u0 r+ Eq
u0=oo
 

+ 	 (ax +b u + 2 

d0 (k)O kR(Ek0 4
Ca a 


2 ~~ ~ r2 

(A2.3.7)
 

=mi.n . x02 q + u20 r + HEq 

u0=00(z)
 ++Uor+ 	 o 
+ 	 tko 0 Pkk 0 (ax + u + 2 abk X 0 

k 0=0 a' O k1 k 0 ( 2o0 0 

-	 + ik0 q2 ' ) 
2+± (a2+1) q- a 	 bik0 __ (A2.3.8) 

r ik 0 i 

Differentiating with respect to u0 , and noting that S does not depend 

on a0, 

aV*(XC0 ,0)0 	Du
 

1 1 

= 2u 0 r+ L t k kk( 2b2 u +2ab0x 0 ) S (A2.3.9)
0=0 0 k0 

0
 

Then,
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1 1
 

u0 x (A2.3. 10) 

r + k00 7k,0 Pklk b SZ 
k00 0 1= 1o 00
 

This solution is valid only when iu 0 ! >0 is large enough such that 

Q((bk0-bi)u0 + g0 )=o, i7k0 F0 Thus,and [- V3-, V3ET. 

+ - 3 -I (bk0-b i ) u0 C0 1 > V3 n , t 0 E: [ ,3 V (A2.3.11) 

must be satisfied. 

i) Assume (bk -bi) u0> 0. Then (A2.3.11) is satisfied if 

(bk -bi)u 0- > V (A2.3.12) 

or
 

(bk-b.)u0> 23r-E (A2.3.13)
 

ii) Assume (bk-b )U0< 0, Then (A2.3.11) is satisfied if
 

(bk-bi)u0 + V < -V3= (A2.3.14) 

or 

T
(bk-bi)u0 <-2jr3 (A2.3.15)
 

Therefore, u0 must satisfy
 

I(b -b )uI > 2V(2 

for (A2.3.10) to hold.
 

Notice also that "when (A2.3.10) is the optimal solution, no0 is
 

identical to the deterministic solution.
 

http:2jr3(A2.3.15
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A2.4 Existence of Steady-State Solution for l-d Example.
 

From Chapter 2, Section 2.2, the coupled Riccati equations for
 

S and S1 are
 

S,t+1 + P21 (a/b)S ,t+l
] 2
 

r[p lab 


0,t q + pl1
1[r 0,t+l + P21 (1/b2)Sl,t+]2
 

b[pp a b S 0 ,t + 
 + P21(a/b)S ,t+l 12
 

++ p b 
S + p 	 '1/b2)Sl
,t+l 

+p1 a - 11 0t+1t P 21(a/b)S 1~ S 

0 ,t +
 p 1 abs 1 + P 2 1 (a/b)-Sl,t+l 2 
+ (a1 br l 2 ,t+1 P21(1/b2)Sl,t+l] SI,t+l 

(A2.4.1)
 

r [p12abS0,,t+l + P22 (a/b)Sl,t+l
] 2
 

SI~ q + -[r 
 + pl b2S0, + P22(1/b2)Sl 2l 

12 O,t+ l 22 a t+l 

rP2 + p2 b 2oSt,t+l 
+ P22 (1/b2)S,t+
 

t +
+ (a P1 2abS 0 1+ 22 (a/b)S l,t+l ) 2 

22 	 a b[r + p 1 2 b So,t+1 + p2 2 (1/b
2 )S ,t+l lt+1 

(A2.4.2) 

Define
 

Sih t (A2.4.3)
 
ht S0, t
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S
 

r = 0,t (A2.4.4)

S0,t+l
 

Dividing both sides of equations (A2.4.1) and (A2.4.2) by Sot+l
 ,
 

manipulating terms, and using equations (A2.4.3) and (A2.4.4) yields:
 

2 1 (a/b)h
t+ 1 2
 

r[P 11ab +p
+ _ 1 
- qr 
 Sot+l So't+l [(/SOt+l) + Pllb + P21 (/b2 )h2t+l
 

a 2
+b [pll1 b+ p21 (a/b)ht+l].
1 (r/S0,t+l) + Pllb2 + P2l(1/b2)ht+l )
 

pl1
a b + P 2 1(a/b)ht+l 2 h 

b 2 
+ P21 (a -b(r/ So,t+1 a)+ P + p 2 1 (1/b
2 )ht+) ht+i 

(A2.4.5)
 

r[P 1 2ab + p 2 2 (a/b)ht+ l2 

- qh F + 1 
b 2 2
S0,t+l S0,t+l [r/S 0 + p + P2(11b2)ht1l


2 b[Pl2ab + P2 2 (a/b)ht+l] 2 
2
12 (r/S0,t+l) + P 12 h +P 22 ( 1 h~
 

P2abS + p 22 (a/b)ht+ 2 

p b[(r/S0,t+l) +lb12 + P22ht/lb 2] t+12 2  


(A2.4.6)
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Assume S 0 ,t " as t - and ht h, r t - r. Then 

S1b[p lab + p 2 1 (a/b)h] 2 

2 + P2 1 (/b2)-­p1 1­

+ p 21h/b2]	 A2.7+ 21 P1labb[pll1b+2 p 2 1 (a/b)h 2h 	 (A2.4.7) 

and 

( b[Pl2ab + p 2 2 (a/b)h] )2 

h' = p1 2  - 2 + p2 2 (1/b
2 )h 

(A2-4.8)
 
2ab + p+2p222h/b( ]2 \P22 b [p12 b2 2 P 1


Let 

[P p1 21  [P 1- 2 ](A2.4.9) 

[p21 p22] 1il 2 

Then
 

b2p=1 (a-b[lab Sp I -+ +(1-p(l-pl)(a)1 (a/b2)hh /)2
 

(a aib (1-p) )h
+ (a/b 

+ 	 (-p pab + (-p)(a/b)h 2h (A2.4.10) 
[p 11b2 + (1-Pl)h/b 2 

and
 

b[(1-P2)ab + P2 (a/b)h] \2
 

hr (1-p 2 ) (a - (1-p 2 )b 2 + p2 (i/b 2 )h]
 

/ (-P 2)ab + p 2 (a/b)h 2h (A2.4.11) 

P2a b[(l-p2 )b2 + p2 (1/b2)h] 
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TO
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Solving for h and F from equations (A2.4.10) and (A2.4.11), if r > 1, 

then there exists no steady-state solution. 
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A3.1 Proof of Theorem 1. 

Assume x k, = x ,t+ 1 for k/i. Then (Bk - B )ut 1 = 0, 

which implies ut-1 is in the null space of B - B P .N (B k - B ).k
 

-- k -k
Now, dimension (N(Bk - B'')<m because the Bk'arditn. 

Therefore,
 

dimension (U N(B -B )) <m (A3.1.1) 
k,i m 

Therefore the set N(Bk -13 has measure zero in R . Q.E.D.
k, P 
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A3.2 Optimal Solution for Deterministic Problem.
 

For the system
 

x t+ l Axt+ Bk(t ) ut (A3.2.1)­

Bk(t) k (A3.22) 

= RL+ llt+l Eat t E (A3.2.3) 

where Ti = probability of B at time t. 

Assume that 

1) x is observed exactly
-t
 

2) then Bk(t-l) changes 
to Bk(t) 

3) then ut is applied
 

From dynamic programming, the optimal cost-to-go at time t is given
 

by 

V*(x t ,k(t-l),t) = min E x T +Qx RuT 
ut 4¢-t It ( 

+ V (xt+ 1 ,k(t),t+l) k t (A3.2.4) 

Assume 
T 

V*(x ,k(t-l),t) = xT S x (A3.2.5)
-t -t-k,t-2Et 

Then
 

T inxtT Qxx + 
Xt~kmt rant-ut ( 

uT 
x t I x t ) tt 

+ ZPik(AXt + Bit )Tsi,t+l (Axt + Biuti (A3.2.6) 



lz+IIQ+G G 11 215 

- -II II 
for all T. (A5.1.10) 

Q.E.D 
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A5.1 Proof of Theorem i, Chapter 5.
 

JTT = tr[Et (Q+GT RO )] + tr[ETQ ] (A5.1.1) 

T 

and JT<B. Since Q + G RG > 0 and is constant for all t, this implies 

lir tr[StI = 0 (A5.1.2) 
t 

which is exactly Definition 1. 

From equation (5.4.6), note that 

()L(--i,t+l i=0 = F((-i't L)=0(A5.1.3) 

L
where F(-) is linear in (E-

i=0" 

Since 

lim tr[E ] = 0 (A5.1.4) 
t+>­

for any choice of - , F 11 is bounded and F 11< (Otherwise,Ii 1. 


1-"0 :J F n (Z--0 )11-_4 0.)
 

Then
 

1 J =T + G T R
1 tr[Z(Q G + 1 tr[)Z (A5.1.5)
 
n JT A.4 n -t-n-T 

< 1tr[ t 1 1 tr[Q + GTRG] + 1 tr[Z I -tr[Q] (A5.1.6)
n n n -T n
 

< 4-IIt 1Eo11II1Q + GTRGII +jF IIT 1II 1111211 (AS.1.7) 

<tS lFIjlt (iII iIQ + G TRGII ) (A5.1.8) 

- F iII 11Ri 
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and
 

(A3.2.6) = main xTQx + uT Ru
 

-t - (xt-tt )
 

+ 	 A x T S Biu+ 	 Pk x i't+iLxt + ut-Ti-i't+ 1 li~ 

T T T T i 1 
+ tA i't+lBit -utBSi' A (A3.2.7) 

Differentiating the r.h.s. of (A3.2.7) w.r.t. u t and setting equal
 

to zero:
 

-l-~ Ax
 

(A3.2.8)
 

or
 

0 = 	 2Ru--t + Pik 2B .S B iu + 2BS 

U 	 R + PikBiS i,t+l Bi
 

f i ik S i,t+l AxL	 (A3.2.9) 

is the 	optimal ut given k(t-1).
 

Since no noise is present in the system, k(t-l) is obtained from 

x-t andx , along withu , as 

k(t-l) = i iff xt = ---- t-l + Biut_ 1 	 (A3.2.10) 

Substituting (A3.2.9) into (A3.2.7), and eliminating x t because the
 

equation must be true for all x and the matrix equation is symmetric,
-t 
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on simplification we obtain 

k = AT Pik Si,t+l 

M Pik 2i,t+l~i 1 + = ik -I] %i-it+itj 


(A3.2.11)

Pik 4i -i,t+l A + Q 

which verifies assumption (A3.2.5) by induction, along with the initial 

condition 

Sk,T (A3.2.12) 
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A3.3 Proof of Lemma 1.
 

Consider the optimization of the cost-to-go given k(t-l) at time
 

t with final time T. This optimal cost-to-go is simply
 

* 

V (xt ,k(t-1),t) (A3.3.1) 

where T denotes the final time. For the process with final time T+l, 

the optimal cost-to-go is 

V T (x ,k(t-1),t) 
T T-t
 

E~~~~xQx + uT Ru +XTQk(t1---- T -T+l Q-T+l I kt-l) 

(A3.3.2)
 

Since this optimal sequence is not necessarily optimal for the problem
 

with final time T, it must not incur less cost over It,...,T}.
 

VT+l (x t ,k(t-l),t) 

> V T (x t ,k(t-l),t) 

+ E UT hUT + X T Qx I k(t-) (A3.3.3) 

Since the expectation term of equation (A3.3.3) is non-negative, 

VT+ (xt ,k(t-l),t) > V T (x t ,k(t-l),t) (A3-3.4) 

Now, note that
 
* T 

VT (x ,k(t-l),t) x TS (A3.3.5) 

and that equation (3.3.6) depends only on the number of iterations
 

(T-t) for the calculation of S itT and therefore,
 

VT (x t ,k(t-1),t-1) = VT+ 1 (x ,k(t-l),t) (A3.3.6) 
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Therefore, {S i't) t=T is an increasing sequence in that 

S -S >0 (A3.3.7)-i,t-1 -lt -


Since, by hypothesis, VT is bounded over t, the S converge.

Q-i,t
 

Q.E.D.
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A 5.2 Proof of Remark on Theorem 1, Chapter 5.
 

J tr[Et ( + TRGt)]+ tr[T (A5.2.1-) 
= trt 2tL -T- (S2L 

and
 

(A5.2.2)t= tr[Z tQ <_ JT 

Since Q > 0 

t tr[ t ] is bounded. (A5.2.3)
 

Therefore
 

tr[Z t ] +0 as t-+-. (A5.2.4) 

The reverse implication is shown to be false by example* 

Example 1: Consider 

= 	 (A5.2.5)
xt+1 ut 


ut = (A5.2.6)
xt 


Then
 

22 	 1 0 (A5.2.7)E[x ] = t l 0
 
't t-Il 0
 

but
 

T 	 2T
 

S] =0t=0 +
 

* Example 1 is provided by Dr. D. Castanon of ESL. 
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A5. 3 Proof of'Theorem 2, Chapter 5.
 

Let I = {O, 1, 2, -.. , L}(A5.3.l)
 

and
 

= {(k(O), k(1), --1 k(i)t I (A5.3.2) 

Define the function 11on the cylinder sets of £ (I) 

K- {(k(O), k(l), ... )I k(i) fixed for i<T} (A5.3.3) 

for arbitrary T by 

P(k) = k() 0Pk(1)k(0) 'k(2)k(1) Pk (T)k (T-) (A53.4 

where 7 0 is the initial probability distribution over I and P = '(p..)
0- i
 

is the stochastic matrix of transition probabilities for the Markov
 

chain. By a theorem of Andersen and Jessen [Loeve, p.91,42], this
 

fun6tion defines a measure, x , on the a-algebra of 2P(I) generated by
 

the cylinder sets, cit(I)) Since p(C(I)) 1, from the definition
 

of jion the-cylinder sets of k.(I-,.
 

U: a(. (I)) + [0,1] CA-5.3.5) 

is a probability measure, and since V extends uniquely from the cylinder
 

sets, it is the probability of occurance of elements of'C(9 (1)).
 

Let
 

RnT (x) : [0,-] (A5.3z6) 

T-

JT(;) (x) = + utRu tAitQxt 

+ XTQXT (AS.3.7) 

where
 

x = A x +B k n (A5.3.8) 
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Ut = Gtx t (A5.3.9) 

xc= (k(0), k(1), k(2),...) (A5.3.10) 

and let 

.1.= lim (A5.3.11)

T+ 

Since JT is constant on the cylinder sets with fixed sequences of
 

length T+l, JT is measurable. (There are a finite number of such
 

sets.) By Theorem A of [Halmos, p.84,101,J is measurable with respect
 

to ]. 

J() £ (1) [0.,c] (A5.3.12) 

Let 

X, Ix Ckw(I)1 J(x) (x) <- for xEsRn } (A5.3.13) 

and 

X = -x 1 (A5.3.14) 

2Then X andX2 are measurable subsets of (I), and therefore 

EU] < * P X2) = 0 (A5.3.15) 

because J(x) is a non-negative function on R
1
 

But
 

3x[E[]] = tr[Z0 sJ (A5.3.16) 

from equation (5.7.14), and by hypothesis, r.h.s (A5.3.16) is finite.
 

Therefore, any trajectory x is an element of X 1 with probability 1,
 

and has finite cost.
 

Therefore, {Gt= cost-stabilizes (5.3.1) with probability 1. Q.E.D.
0
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A5.4. Proof of Theorem 3, Chapter 5.
 

Notation: In the proof, the sequences (G)m and (G will
 

be referred to by G -- -ns
and G respectively.
 

Proof:
 

-
I) (>) Suppose G is cost-stabilizing. Then J(G ns ) < -ns -

But G minimizes J. Therefore, J(G )< J(G ns )=>J(G )< m.
 

Thus, G is cost-stabilizing.
 

II) (<=) Suppose G is cost-stabilizing. Then J(G )< where 
** 

J(G ) = JT(G (A5.4.1)Jrn ) 

E fls - = JT(G),Since E [J (G)] 


(C)] = E [Jns(G ] (A5.4.2)J(G ) = r [J
T+ x ns- x 

which implies
 

J(G )< ((A5.4.3) 
** 

Since GCn minimizes Cln, then 

ns -ns )- ns ­

and, since Ex[Jns ] = JT for all T, for fixed G, 

<J(Gns ) -. (A5.4.5) 

which implies that G is stabilizing. Q.E.D.

-hs
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A5.5 Proof of Lemma 2, Chapter 5.
 

For the control interval starting at time 0 and ending at time T,
 

the expected cost for the optimal control Gt is
 

JT = tr[z 0 S 0] (A5.5.1) 

T 

from equation (5.5.8), where the subscript T refers to the endpoint 

of the control interval. Similarly,, for the same process ending at
 

T+l, the optimal expected cost is
 

* 

JT+l = tr[Z 0 S 0 (T+1)I (A5.5.2) 

E T x T +* T R T+I)= E r t(Q + G (TI) R Gt4l x t

t( _t - -t
 

+ xTIQ XTl z_0 I Tr (A5.5.3) 

= Ex T+)T R Gt(T+l)
 

-t -t ­t-- t 
011
 

+XTQX IhL0 , io
 

+E xT (G* (T+l)T R G (T+l) x + Q I -0 ,--0 
-T -T - -T -T -T+12---T+l -­

(A5.5.4) 

The first expectation of equation (A5.5.4) is the cost corresponding
 

to the interval [0,T], and must be greater than or equal to JT; the
 

second term is positive. Therefore,
 

(A5.5.5)
JT+I > JT 


Since JT is bounded by hypothesis for all T, there exists a J such
 

that
 

lim JT = J (A5.5.6) 

T.
 
Q.E.D. 



A5.6 Proof of Lemma 3, Chapter 5. 

By direct computation, 
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JT+(G) = JT(G) + E[x T GT R G x - -- - --. ..-f 

and since the expectation is positive, 

J T+(G) > J T(G) 

+ xT- T+1 g x T+T (A6.1)(5..1 

(A5.6.2) 

Since JT(G) is bounded, it converges. Q.E.D. 
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A5.7 Proof of Theorem 4, Chapter 5.
 

A) G -- - because G
nst -.-G optbeas converges to the steady-state value
 

which minimizes the infinite-time horizon cost J , and therefore, 
ns
 

ss
 
by the argument given above, also minimizes equation (5.8.9).
 

,B) Given E>0, a T>0 can be chosen which guarantees I - G I<e 

ljji*t- F IIt- JTr<E , for alli<and t>T. 

Then, by the Principle of Optimality, the sequence { }It 


minimizes the infinite-horizon cost-to-go at time T. consider the
 

problem min Jss(G) for initial condition E, , ir , which has a solution
 

G independent of . In the limit as S 0, the sequence 2* 1-- *ns t t=T(6) 

approaches the constant sequence of gains C . Suppose }6>0 -VT(s),
 

the optimal cost-to-go, satisfies 

VT() < Jss 6 (A5.7.1) 

Then the sequence of constant gains G would yield a strictly lower
 

cost J (G)
ss -

J (G) < J (A5.7.2) 

since VT(S) approaches the optimal cost-to-go, given the constant
 

sequence of gains G , in the limit, which is the solution to the 

" equivalent problem min Jss(G) for initial conditions E' i-

G 

Therefore 

G G (A5.7.3)
-Ens Q-


Q..E.DJ.
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SUBROUTINE AIM(NAAjX,t B, NQ,NR, GS,hA, N,M, ICCN,A,B, R,Q,P, 
1 SBT, E, S, M, U,V,W,X, Y, R,PZ, GNORM, R\D, PADINV, BSB,WCRK, IPVI, IEND, 
2 IPRT) 

C
C 	 *****PARV4ETERS: 

INTEcER NAA, A,N3,NQ, NR, NG,NS,bA, N,M, ICN,IPVT (N) ,IEND, IPRT
 
DOUBLE PRECISION BSB (NS, ?SA, IWCN),X (A, N) ,RAD (QRA, N) ,RADINV NRA, N)
 
DOUBLE PRECISION E (KCCN) ,SBT(NS,N) ,A(NA,RkxA) ,T(NB,NAA, BCCN)
 
DOUBLE PRECISION Q(NQ,N) ,R(NR,M) ,PC'A,1ICCN ) ,S (NS, A,ECCN)
 
DOUBLE PRECISION SB(NS,NhA,ICON) ,U(NA,N) ,VVNA,N)
,W(NA,N),YNA,N)
 
-DOUBLE PRECISION PR() ,WRK(N),PZ(N) ,(GORM(NG,&AA,kON)
 

C
 
C 	 *****LOCAL VARIABLES: 

DOUBLE PRECISION COND 
INTE(ER KIN, BOUT, I, K, KKM ,KK, J,JEND,L,KP,KN 1,ICTM1,IM I 
INTEGER ICOUNT 

C
 
C *****SUBROURINES CALLED;
 
C M F,MAUD,MLINE Q, TRNATB, MMUL, MSCAIE,MATIO,EIGVAL,WEIGIT,WNATA
 
C
 

C ....... ::::::.. :::::..............: " :':: .......... :......... 
C 
Cc *****PURPOSE: 
C THIS DOUBLE PRECISION SUBROUTINE CCMIUES THE STEADY-STATE OPTIMAL 
C SOLUTION AND THE CCRRESE0NDING OPTIMAL GAINS FCR.THE PROBLEM 
C ESCRIBED IN THE PUBLICATION: ' ON THE RELATIONSHIP BETWEEN 
C RELIABILITY AND LINEAR QUALRATIC OPTIMAL CCNTROL' 
C BY J. DOUGLAS BJRU9ELL AND M. ATHAN3. 
C (EQUATIONS (29) AND (30)). 
C 
C *****pARMEa'ER DESCRIPTION: 
C I4 INPUT: 
C NAA THE SECOND DIMENSION OF THE ARRAS S,SB,Ci4ORM, 
C BSB,B AS EECLARED IN THE CALLING PROGRAM 
C DIMENSION STATEMENT; 
C 
C NA,B,NQ, NR, THE FIRST DIMENSION OF THE ARRAS 
C NG,NS,NRA A (AND P, X,U,V,W,Y) ,B(AND BSB) ,Q,R, NOR4A, 
C S (AND SB,SBT) ,FAD (AND RADINV) RESPECTIVELY 
C AS DECIARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
C 
C N THE NU14BER OF STATES; 
C 
C M THE NU4BER OF OBSERVATIONS; 
C 
C ICCN THE NUMBER OF CCNIGURATIONS; 
C 
C A N BY N S)STEM MATRIX; ORIGINAL PAGE IS 

OF POOR QUALITY 
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C 
C B N BY M BY KCN SET OF INPUT MATRICES; 
C 
-C R -MBY M CONTROL WEIGHTING MATRIX; 
C 
C Q N BY N STATE WEIGHTING MATRIX; 
C 
C P KCCK BY KCCN PROBABILITY MATRIX; 
C 
C E VEC2OR OF LENGTH KCCN CONTAINING THE NORMALIZED 
C EIGENVEC[OR OF P CRRES FUNDING TO THE EIGENVALUE 
C ONE; 
CC Q'J O1.WHIT:
 
C FR, FZ SCRA'ICH VEC1IORS OF LENGTH N;
 
C
 

C U,V,W, ST, N BY N SCRATCH ARRA)S; 
C X, Y 
C 
C S N BY N BY KCN SET OF SOLUTIONS, 
C 
C SB,BSB N BY N BY KCCN SCRATCH ARRA\S; 
C 
C NORM N BY M BY KCCN ARRAY WHICH WILL CCNTAIN THE 
C MXIN MATRICES FCR THE NOPRAL LINEAR QUAERATIC 
C @J[SSIAN PROBLEM; 
C 
C RAD, RADINV N BY N SCRATCH ARRA)S;
 
C
 
C WORK SCRATCH VECTOR OF LENGTH N;
 

C IPVT SCRATCH WCWOR OF IENGTH N;
 
C
 
C IEND NUMBER OF ITERATIONS USED IN SOLVING BOTH THE
 
C LINEAR WUAERATIC A\LSIAN PROBLEM AND THE
 
C PROBLEM DESCRIBED ABOVE;
 
C 
C IPRT FIRST ITERATION AT WHICH THE SOLUTIONS' WILL BE 
C PRINTED; 
C 

CG&4CN/INOU/KIN, N0O1
 
ICOULNT =
 

DO 215 KK=1,ECN
 
DO 4 J=1,N 

DO 3 I=1,N
 
3 Y (I, J)= 0.0D0
 
4 Y(J,J)= 1.2D0
 

DO 210 K=1,IEND
 
CALL MF(NA,?B,lA,N,M,Y,B(1,1,RK) ,U,WCRK)
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CALL MADD qA,NR,,DA,M,M, U,R, U) ORI QUALITYPOOR 

DO 14 J=1,M 
DO 13 I=1,M
 

13 V (I, a)= 0.00
 
14 V(J,J)= 1.0)0
 

CALL MLINEQ(NA,W\,M,M, U, V,CCND, IPVr,WCRK) 
CALL TRNATB (NA, M, N,M,B (1, 1, KK) ,X) 
CALL MMUL (NA, NA, DA, N,M, N, X, Y, U) 
CALL MML VA, NA, M, N,M, N, U, A, X) 
CALL M[F'(NA,I'&,NRA,M,N, V,X,PADWCRK) 
CALL MSCAIE 6qRA,N,N, -1. 030, PAD) 
CALL M F (NA, M , NA, N, N, Y, A, U,WCRK) 
CALL MAD) (NA, NA, 1A, NN, U, Q, U) 
CALL MAUD (NA, NRA, NN, N, N, U, RAD, Y) 

210 CONTINUE 
KKqMI = KK - 1 
WRITE (KOUT, 44441) 
WRITE (KOUT, 44442) KKMI 
CALL MATIO (NA,N, N, Y, 3) 
CALL MMUL 0G, NA\,M, N, M, M,V, X, NORM (1, 1, XK)) 
CALL MSCAIE (NG,M, N, -1. OD0, (NORM (1, 1, K)) 
CALL MI4L (NB,NG, M&, N,N,M,B(1, 1, KK) , (NORM (1, 1, 1) ,V) 
WRITE (KOUT, 6000) 
CALL MATIO (NG,M, N, (NORM (1, 1, KK) , 3) 
CALL MADD (A, NA, NN, N, N, V,A, V) 
WRITE (KOU.P, 44443) 
CALL MATIO (NA, N, N, V, 3) 
CALL EIGVAL (NA, N, V, V, FR, PZ,WORK, IPVT) 

215 CONTINUE 
JEND= 1
 
WRITE KOUT, 8000) 
CALL MATIO (NA, ICON, ICON, P, 3) 
DO 35 K=I,ICCN 

DO 30 J=4,N
 
DO 40 I=1,N
 

S(I,J,K)= 0.00 
40 CONTINUE 
30 S (J, J, K)= 1.DO 
35 CONTINUE 

C START ITERATION TO CALCULATE S(1),S(2),. .S(K),(I)P 

C 
C CALCULATE SB 

1 CCTINUE 
DO 50 K=I,ICON 

CALL MMULNS,bN,b,M,N,N,S(1,1,K),B(1,1,K),SB(1,1,K)) 
50 CONTINUE 

CALL WEIGHT (NS, NAA, CON, IS, N,M, E, SS, EBT) 
c 
C CALCULATE RADICAL 
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DO 55 K=I,BCQN 
CAIL MCF (NS,I8, 1B, N,M, S (I, I, K) ,B(1, 1, K) ,BSB(1, 1,1K) ,WORK) 

55 	CONTINUE
 
CATL WEIGHT (NB,M*A,C-C, NRA,M,M,E, BSB, RD)
 
CALL MADD (NRA,lMR,N,M,M, MD, R, U)
 
DO 54 J=I,M
 

DO 53 I=1,M
 
53 RADINV(IJ)= 0.EDO
 
54 RADINV(J,J)= 1.OD
 

CALL MLINEQ(NA,NRA,MM,U, RAaI[NV, CCND, IPV ,WCR K) 

C 
NEW 	 ,OCCNC CALCULATE SI,I=1,2 ......
 

100 DO 1000 K=1,ICCN
 
CALL MMUL (IS, NRA, IA,M, N,M, BT, RADINV, U)
 
CALL WEIGHT CNS,NAA,ICCN,lM,N,M, P(1,K) ,SB,V)
 
CALL TRNATB(NA,M, N,M,V,W)
 
CALL MMUL (NA,MI<A, N,N,M, U,W,X)
 
CALL TRNA h (NA, M, N,M, U,W)
 
CALL MUL (NA, M, IA, N,N,M, V,W, Y)
 
CALL MAID (NA, U, M, NN, X, Y, X)
 
CALL MSCALE (NA,N,N,-1. OD0, X)
 
CALL TRNATA (NA, N, X)
 
CALL WEIGHT (NA, WA, ICN, A, N, N, P (1, K) ,S, V)
 
CALL MAE CNA, M, A, N,N, X, V, X)
 
CALL WEIGHT (NB, 1N1A, CN, ,M,M, P (1, K) ,BSB, Y)
 
CALL MAED (NA, NA, Mk,M MI Y, R, Y)
 
CALL MMDL NA, M, MA,M, N,M, U, Y, V)
 
CALL MMUL (NA, M, IA, N N,M, V,W, Y)
 

CALL MAID (NA, M, M, N, N, X, Y, X)
 
CALL M F (NA, M, IA, N, N, X, A, U, WCRK)
 

CALL MAID (NQ, M, NS fN, N, Q,U,S (1, 1, K))
 
1000 CONTINUE
 

IF (ICOUNT-IEND) 11, 12, 12
 
11 ICOJNT= ICOUNT + 1
 

IF(ICOUr. IT. IPRT) GO TO 1
 

ICM1 = ICCUNT -I
 

WRITE (KOU, 5000) IC241
 
DO 1005 K=1,ICCN
 

K41 = K-I
 
WRITE (KOUL, 4000) KMI
 
CALL MATIO CS, N, N, S (1, 1, K), 3)
 

1005 CCNtrINUE
 
a TO I
 

12 CONTINUE
 
C
 

* 	 C CCMI{TE OPTIMAL CCST FUNCTION 
CAIL WEIGHT (NA, MlA, lCCN, bA, N, N, E, S, U) 
WRITE (KOU, 7000) 
CALL MATIO GqA, N, N, U, 3) 
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GD TO (23, 22),JEND 
C 
C C(IMFUrE G OPT 

23 	CALL MMUL NA, A, N,M, N,W, A, U) 
CALL MSCALE (NA,N,N,-1. MD0, U) 
WRITE (KOUT, 6000) 
CALL MATIO NA,M, N, U, 3) ORIGINAL PAGE IS 
DO 217 KP=1,ICCN 

CALL MMUL (NA, B,I, N,N,M,B(1, 1, NP) ,U,W) OF POOR, QUALITY
 
CALL MAED (A, MA, N, N, N, A,W,W)
 
CALL EIGVAL (NA, N,W,W, R, PZ ,WCRK, IPVr)
 

217 CqTINUE 
C 
C CALCULATE CCMI4ARISON WITH GNORM 

ICOUNT= 0
 
DO 130 K=1, ICCN
 

DO 120 J=I,N
 
DO 110 I=1,N
 

S(I,J,K) = 0.00
 
110 CONTINUE
 
120 S(J,J,K) = 1.0
 
130 CCGflINUE
 

JEND= 2
 

400 	CCNrINUE
 
DO 98 K=,ICCN
 

CALL WEIGHT (NS, bMA, KCN, M, N, N, P (1, K) ,S, U)
 
CALL M (F (NA, NA, D, N, N, U, A, X,WCRK)
 
DO 96 L=1,ICCN
 

CALL MQ((NS, N, IZ, N,M, S (1, 1, L) ,B (1,1, L) , SB (1, 1, L) ,WORK) 
96 	 CCWTINUE
 

CALL WEIGHT (NS, MYA, fC1'ON, DA,M,M, P (1, K) ,SB, Y)
 
CALL MF (NA, NA, M, N, Y, GNORM (1, 1, K) ,O, WORK)
 
CALL MAD (NA, NA, M', N, N, U, X, X)
 
DO 95 L=I, lCQN
 

CALL MMUL (NS,tB,M,N,N,S(1,1,L),B(1,1,L),SB(1,1,L)) 
95 	 CC TINUE
 

CALL WEIGHT (NS,NA, 1caN,b&, N,M, P(1,K) ,SB,Y)
 
CALL TRNATB (NA, NA, N,M, Y,W)
 
CALL TRNATA (NA, N, A)
 
CALL MMUL NA, A,M, N, N, A, Y, V)
 
CALL MMUL CA, NG, NORM (1,
DA, N, N,M, V, 1, K) ,Y)
 
CALL MAWDD L&,A,%, A,N, N, Y, X, X)
 
CALL TRNATB (NG, NA, M, N, (NORM (1, 1, K) , V)
 
CALL MM (NA, A, M,NN, M, V,W, U)
 
CALL TRNATA (NA, N, A)
 
CALL MMUL (NA, b, DA, N, N, N, U, A,W)
 
CALL MADD (NA, NA, M, N, N,W, X, X)
 
CALL MADD (NA, NA, M'A, N,N, X, Q, X)
 
CALL MQF (NR, NG, Wk,M, N, R, (NOR4 (1, 1, K) ,U,WCRK)
 



229 

AIM FORTRAN 

CALL MADD NA, N, NA, N,N, X, U, X)
 
CALL SAW (NA, NS, N, N, X, S (1, 1, K))
 

98 CONTINUE
 
IF(ICOUNT-IEND) 4010,4011, 4011
 

4010' ICONT= ICOUNT + 1
 
GO)O 400
 

4011 	WRITE (KOUP, 9000)
 
CALL MCF (NA, NA, bl, N, N, X,A, U,WCRK)
 
DO 1006 L=1,ICCN
 

LMI = L-1
 
WRITE (KOUT, 4000) LM11
 
CALL MATIO fS, N,N, S (1, 2, L) , 3)
 

1006 	CONTINUE
 
G) TO 12 

4000 	FORMAT (/, 41 S,1I5,/) 

5000 FORMAT (/,1H ITERATION ,I3)
 
6000 FOEMAT (//,10H G OPTIMAL )
 
7000 FORMAT(//,39H OPTIMAL COST FflCTION X'CX, WHERE C IS,/)
 
8000 PORMAT(//,31 P,/)
 
9000 FORMAT (/, 38H CCST COM1ARISON WITI NORMAL SOLUTION
 
9500 FORMAT (2D25.15)
 
9600 FORMAT (/,31 A
 
9700 FORAT(/,31 Q
 
9800 FORMAT (/,31 R
 
9900 FOEMAT(/,3 B,15,/)
 
44442 FORMAT (/,31 S , I5,/) 
44443 FORMAT(/,13H A + B*GZERO) 
44441 FORMAT (1,45H SOLUTION TO STANDARD OPTIMAL CONTROL PROBLEM) 

2 STOP 
22 RETURN 

END
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SUBROUTINE SWITHI Aq , N S,NGR,NIC, N, IR, IAA, ICCN,M, A,B, P,C,G, 
IX0, E, ETEMP, EM,WCRK, Y, U, VW,Vq, IPVr, ARRAY, Dr, NFOINT, NGRIDH,MCGq) 

C *****PARAM ETERS : 

INTE (ER NA, Nb, K, IAR, MC, N, IR, AA,ICCN,M, NroINT, NG 
INTE(aR MCO CNPOINT) ,IPVr (N) 
DOUBLE PRECISION A(NA, N) ,B(NB,NAA, ICCON) ,C(NC,N) ,X0 (N) 
DOUBLE PRECISION G qG,NILA,Ic0N) ,YN) ,WCRKq) ,EM(NA,N) 
DOUBLE PRECISION U(M),V1(NA, 1ON) ,W(NA,N) ,V (A,N) 
DOUBLE PRECISION ARRAY(NAR, NNC) ,P(NA, BCCN) ,E(KCCN) ,ETEZ4P(KCCN) 

C 
C *****LOCAL VARIABLES:

INTE(ER IN (27) ,NSY4(1),r (10, I) 

DOUBLE PRECISION WT(1) ,SUM, TtOPI,YMIN, MAX, )SF(10),ZERO, X4AX,T, Dr 
DOUBLE PRECISION DD 
DIMENSION R(30) 

C 
C *****SWBROUINES CALLED: 
C MiMUL,MSCAIE ,MEXP, SAWE,FIG, THPLT 
C 
C C<**B, UCAIOS-

C 
C :::::::::... 

.....................o 

.. ::: -:......... .... . ....... 
o.. 
.... •: 

•...........• o•....... 
••........... ...... 

C 
C *****PUROSE: 
C THIS DOUBLE PRECISION SUBROUTINE PERFORMS THE CCMFUPRATIONS 
C AND PRINTS THE DATA FOR SIMULATION OF THE SWITCHING GAIN 
C PROBLEM RELATING TO THE PUBLICATION: 'ON THE RELATIONSHIP 
C BETWEEN RELIABILITY AND LINEAR QUADRATIC OPTIMAL CONTROL' 
C BY J. DEOUGLAS BIRDWELL AND M. ATHANS. 
C 
C *****PARAM EER DESCRIPTION: 
C NN, 0B, NC,W., IHE FIRST DIMENSION OF THE ARRAS A (AND EM, 
C MR VA,W,V) ,B,C,GAND ARRAY RESFECTIVELY AS 
C LECIARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
C 
C NNC COLUMN DIMENSION OF HE ARRAY CCNTAINING ARRAY 
C AS DECLARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
C 
C N NUMBER OF STATES; 
C 
C IR NUMBER OF OUTPUTS; 
C 
C NAA THE SECCND DIMENSION OF THE ARRA)S B AND G AS 
C DECLARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
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C 
C ICCN THIRD DIMENSION OF THE ARRA)S B AND G AS 
C DECLARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
C 
C M NUMBER OF CCNTROLS; 
C 
C A N BY N S)STEM MATRIX; 
C 
C B N BY M BY KCCN SET OF OUTPUT MATRICES; 
C 
C C IR BY N OUTPUT MATRIX; 
C 
C 
C 

G M BY N BY KCCN SET OF FEEDBACK MATRICES; 

C X0 INITIAL CONDITION VECTOR OF LENGTH N; 
C 
C MCCN VECTOR OF LENGTH NPOINT CCNTAINING THE EXACT 
C CCFIGURATION INDICES; 
C 
C E SCRACH ECTOR OF ENGFH ICCN; 
C 
C 
C 

ErEMP SCRATCH VECTOR OF LENGTH KCCNt; 

C WCRK SCRATCH VECOR OF LENGTH N; 
C 
C Y VECTOR OF LENGTH N; 
C 
C U VEC'IOR OF LENGTH M ; 
C 
C VW,iMEM N BY N SCRATCH ARRA)S; 
C 
C IPVT SCRATCH VECTOR OF LENGTH N; 
C 
C ARRAY NAR BY NAC WCRKEING ARRAY; 
C DAR MUST BE GREATER THAN OR EUAL TO NSTEPS + 1 
C NAC MUST BE GREATER THAN OR EQJAL TO IR + M; 
C 
C Dr STEP SIZE; 
C 
C NFOINT NUMBER OF STEPS + 1; 
C 
C NGRIDH NUMIBER OF MAJOR ORDINATE DIVISIONS USED 
C IN PLOTTING 
C NGRIDH MLST BE LESS THAN OR EQUAL T10 12; 
C 
C 
C *****NOTES: 
C BOrH THE OUTPUT AND THE CCNTROL U () = -G (I)*X (T) ARE CC4PUED. 
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C 
C GGUB IS A RANDOM NLI4BER (NERA'IOR 
C 
C ICALC IS A LEER-SUPPLIED, APPLICATION SECIFIC FWCTION 'TO 
C CALCULATE THE CCJTROL U. 
C 
C *****HIS'IORY: 
C WRTI'TEN BY J.A.K. CARRIG (ELEC. S)S. LAB., M.I.T.,R4. 35-307, 
C CAMBRIDGE, MA 02139, H. : (617) - 253-2165), JANUARY 1978. 
C MCST RECENr VERSION: MARCH 22, 1978. 
C 

C .... :o ::.... ::- .::::.....:::: ....... :......... ::.........."..--....: 

C 
Ca4McN/INOU/KIN, LOUt 
LCON = 1 
DATA SF/10*. D 0/,IBANK/4H / 
DATA TWOPI/3. 1459/ 
DATA MSC,MA2ES, IXY, IEGY, ZERO,MM, NLG, IZERO/1, 0, 0, 1, 1. OD0, 1, 0, 0/
 
DATA IN (1), IN (2), IN(3), IN (4)/4HI ,412 ,4H3 ,4H4
 
DATA IN (5) ,IN (6) ,IN (7) ,IN (8)/4H5 ,4H6 ,47 ,4118
 
DATA IN(9),IN(10),IN(11),IN(12)/4H9 ,4H10 ,411 ,441H2 /
 
DATA IN(13),IN(14),IN(15),IN(16)/4H13 ,414 ,4i15 ,4H16 /
 
DATA IN(17),IN(18),IN(19),IN(2)/4H17 ,4H18 ,419 ,4H20 /
 
DATA IN(21),IN(22),IN(23),IN(24)/4H21 ,4H22 ,4123 ,4124 /
 
DATA IN(25),IN(26),IN(27)/4H25 ,q4 Y,41 U/
 
DATA Ir(3, 1),IT (4, 1),TI (5, 1)/4HVERS, 4HUS T, 4HIME /
 
DATA IT (6, 1),IT (7, 1), IT (8, 1)/4H ,41 ,41
 
DATA IT (9, 1),IT (10, 1)/4H ,48 /
 
IX=35
 
DO 61 IZ=1,NPOINT
 

61 MC'N (IZ) = MCCN (IZ) + I 
TWOPI = 2. D0*iWOPI 
NSTEPR - NPOINT -1 
T= 0. OD0 

3001 	 FORMAT (24H EXACT CCNFIGURATION = 13) 
CALL MMUL (NC, N, N, M, IR, N, C, XS, Y) 
CALL MMEL (NA, N,M,MM,M, N, G(1, 1,MCCON (1)) ),O,U) 
WRITE (KOUr, 1500) 
WRpE (KOUF, 1200) 
WRITE (KOtIr, 1300) 
WRIEE (KOUr, 1000) T 

1001 FORMAT (/, 12H GAIN MATRIX) 
WR~rE (KOUt, 1100) (Y (I) ,I=I,IR) 
WITE CKOUr, 1102) (0(I),I=1,M) 
WRITE (KOU, 1001) 

-30 ARRAY(1,J)= Y(J) 
DO 40 J=1,M 

40 ARRAY(1,IR+J)= U (J) 
50 DO 100 K=1,NSTEFS 

C 
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WRITE (KOUr, 1002) K
 
IF(N. EQ. 1) GO TO 72
 
CALL 	GGUB(IX,1,R)
 
WI (2)= TWOPI *R-(L)
 
CALL GGUB(IX, 1,R)
 
WT(1) = R(1)*DCCS (WT(2))
 
WI (2)= R (1)*DSIN (WT(2))
 
GO TO 73
 

72 	 CALL GGUB(IX, 1,R)
 
WT(1) = (R(1)*2.QD)-I.DO
 

73, 	 CALL MMJL VA, N, N,MM, N, N, EM,WT, WORK) 
CALL MMUUL(NA, N, N,.M,N,M, B(1, 1, MCQN (K)) , U, ETEMP) 
CALL MADD ( ,N, N, N,MM, ETEMP,WCRK, ETEMP) 
CALL MMUL (NA, N, N,MM, N, N, A, XG,WCRK) 
CALL MAID (N, N, N, N,MM, ERtEMP,WCRK, XO) 
DO 52 KK = 1,ICON 

CALL 	 MMUL (NA,N,N,MM, N,M,B(1, 1,1KK) ,U, Y) 
CALL MSUB (N, N, N, N, MM, EIEMP, Y, Y) 
SLM= 0. OD0 
DO 55 IIJ= 1,ICN 

55 	 SLM = SUA + Y(IIJ)*Y (IIJ)
 
SU4 = DSQRT (SM)
 
WI (KK) = 0. 0
 

56 IF(SU4.IE. 1. OD 0) WT (KK) = 1. D0
 
52 CONTINUE
 

CALL 	 FIG (KCN, E, ETEMP,WT, ICON) 
881 	 FcPMAT(181 PIUr-I/T-i) = ,4)25.15)
 

WRITE (KOUt, 881) (E (IO) ,0=1, 1CON)
 
CALL MMUL (NA, LCON, iCON, 1, iCCN, ECON, P, EJEMP, E)
 
WRITE (KOUT, 882) (ETaMP(IO) ,IO=1, lCN)
 

882 	 FOQMAT (18H PI M -1/T) = ,4D25.15)
 
ICQNM1 = LCN -1
 
WRITE (KOU.T, 4001) LCON1M
 
MCCNMI = MCON (K+) - 1
 
WRITE (KOUr, 3001) MC(ONM1
 

4001 	 FORMAT (291 CAICLIATED CO'NFIGURATION = ,13) 
1002 	 FCR4AT (/,10H TIME STEP, 13) 

CALL MMUL (NC, N, N, M, IR, N,C, X0, Y) 
CALL MMUL (NA,N,M,MM,M, N, G(1, 1, ICCN) ,X0, U) 
DO 70 	II= 1,M 

70 U(M) = UCAIC(U, IM,B(1,1,1),B(1,1, 2))
 
T= T+ DT
 
WRITE (KOUti,1100) (Y(I) ,I=1,IR)
 
WRITE (KOUT, 1102) (0(I) ,I=,M)
 
DO 80 J=I,IR
 

80 ARRAY(14K, J)= Y(J)
 
DO 90 J=I,M
 

90 ARRAY(I+K, IR+J)= U(J)
 
100 CONTINUE
 

http:IF(SU4.IE
http:R(1)*2.QD)-I.DO
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M4AX = DF LOAT (NSTEFS)*I)T
 
IW= KOE!r
 
NSYA(1)= 25 ORIGINAL PAGE 18 
IT (1, 1)= IN (26) OF POOR QUALITY 
DO 110 J=i,IR 

IF(J.LE.25) IT(2,1)= IN(J) 
IF(J.G. 25) IT(2,1)= IBIANK 

110 CALL THPLT (IW, IEGY, N1OINT,ZERO, MAX, NGRIDH, YMIN, Y4AX, \SF, IT, 
1 ARAY(I,J) ,1IJR,NLG,MSC,MAXES, IXY,IS4) 

IT (1, 1)= IN (27) 
NS)M(1) = 21
 
DO 120 J=1,M
 
IF(J.LE. 25) IT(2,1)= IN(J)
 
IF(J.GT. 25) IT(2,1)= IBTANK 

120 CALL THELT (IW, IEGY, NPOINT, ZERO, X-4AX, NGRIDH, Y4IN, MIAX, )F, IT, 
1 ARRAY (1, J+IR) ,NMR, NLG,MSC,MAXES, IXY, NS74)
 

1100 FOR4AT (4H Y = ,5(2X, PD19.8))
 
1000 FORMAT(5H T = ,F5.2)
 
1102 FORMAT(4H U = ,5(2X,IPD19.8))
 
1200 FOP4AT (11H OLUTR) Y)
 
1300 FORMAT (12B CCNTROL U)
 
1400 FORMAT (/, 28H SIMLIATION OF LINEAR S)TEM,/)
 
1500 FORMAT(/,31H SIMLIATION OF LINEAR REGJLATOR,/)
 

RETURN
 
END
 

http:IF(J.LE.25
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SUBROUTINE READY (NAA,tA, NB, NQ,NRNG,NS,NRA,N,M, CCN,A,B,R, Q, P, 
IWR,WI, S, S, U, V,W, X, Y, NOB, LAD, WADINVBM,WCRK, IWIT,IEND, TERS) 

C
C *****PAR t4ETERS : 

INTE ER NAA, MB, NQ, NR, N, NS, NRA, N,M, ICON, IPVT (N) 
DOUBLE PREC ISION A(NA, N) ,X A,N) ,Q1Q, N) ,R-qR, M) 
DOUBLE PRECISION S (S,k4A,ICON) ,P(NA,ICON) ,SB(NS,nA, ICON) 
DOUBLE PRECISION GNOR4 (NG, l'A, ICON) ,BSB(NB,MKA, ICON) ,WR(N) ,WI (N) 
DOUBLE PRECISION B(NB,MWA, ICON) ,IAD(NRA,N) ,RADINV(NRk,N) 
DOUBLE PRECISION U(NA,N),V(NA,N),W(NA,N),YNA,N),WORK ') 

C 
C *****LOCAL VARIABLES: 

DOUBLE PRECISION COND 
INTEGER KIN, kOUI, L, 4 1, 3,1, K, JEND, NEND, L, EM I 

C 
C *****SUBROUTINES CALLED: 
C M F ,MAII, MLINEQ, TRNATB,WIMUL,MSCAIE, EIGVAL, SAVE,WEIGHT 
C 

C 
C 

c THIS1 DOUBLE PRECISION SUBROUTINE SOLVES THE SWrICHIING-GAIN PROBLEM 
C RELATING '10 THE IUBLicATIOR4: 'ON THE RELATIONSHIP BETWEEN 
C RELIABLILITY AND LINEAR QUIADRATIC OPTIMAL CONTROL' 
C BY 3. OUGJLAS BIREWELL AND M. ATBAbS. 
C 
C ****R DESCRIPTION: 
C ON INPUT: 
C NAA THE SECOND DIMENSION OF THE ARA S S,SGORM, 
C BSB ,B AS LEGCLARED IN THE CALLING PROGRAM 
C DIMENS ION STATEMENT; 
C 
C NAM, NQ,TNR, THE FIRST DIMENSION OF THE ARRA)S 
C NG,NS,SRA A (AND P, X, U,VW, Y),B(AND BSB) , Q, R,C(NORM, 
C S (AND SB) ,RAD (AND RADINV) RESPECTIVELY 
C AS ECLEARED IN THE CALLING PROGRAM DIMENSION 
C STATEMENT; 
C 
C N THE NUMBER OF STATES; 
C 
C M THE NUMBER OF OGSEVAETIONS; 
C 
C ICON THE NUMBER OF CONFIGURATIONS; 
C 
C A N E NNSYTEM OATRIX; 
C 
C B N BYM BYLK4C SET OF INRT MATRICES; 
C 
C R M BY M CONTROL WEIGHTING MATRIX; 
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c 
C Q N BY N STATE WEIGHTING MATRIX; 
c 
C P KCGq BY KCCN PROBABILITY MATRIX; 
C 
C ON OUTPUT: 
C WR,WI SCRATCH VECTORS OF LENGIH N; 

C S N BY N BY KCN SET OF SOLUTIONS; ORIGINAL PAGE IS 
C 
C SB,B,BSB N BY N BY KCCN SCRATCH ARRA)S; OF POOR QUALITY 
C 
C U,VWJX, Y N BY N SCRATC H ARR)S; 

C ERM N B' M BY KCON ARRAY USED TO STORE THE 
C GIN MATRICES FOR THE NORMAL LINEAR QUk1ATIC 
C G(AESIAN PROBLEM. ON RETURN, GNORM CONTAINS THE 
C GAINS ASSOCIATED WITH THE SWITCHING GAIN PROBLEM; 
C 
C RAD, RADINV N BY N SCRATCH ARMAS ; 

C WORK SCRATCH VECTOR OF LENGTH N, 
C 
C IPVI SCRATCH VECTOR OF LENGTH N; 
C 
C LEND NUMBER OF ITERATIONS WSED IN SOLVING THE NORMAL 
C LINEAR QUAERATIC @1SIAN PROBLEM; 

C NSTERS NU4BER OF TIME STEPS WSED IN COMPUTING S 
C 
C *****NOTES: 
C THE SOLUTIONS TO THE NORMAL LINEAR QUADRATIC PROBLEM, 
C 'TE EIGENVALUES OF THE MATRICES (A + B(I)*GNOPM(ERO)) 
C AS WELL AS THE EIGENVALUES OF THE MATRICES (A + B (I)*G (I)) 
C ARE PRINTED. 
C 
C *****HISIORY: 
C WRITTEN BY J.A.K. CARRIG (ELEC. S)5. LAB., M.I.T., FM. 35-307, 
C CAMBRIDGE, MA 02139, HI. : (617) - 253-2165), JALNUARY 1978. 
C MCST RECENT VERSION: MARCH 22, 1978. 
C 
c C .... ::::.:::::-.:::.......:::....... .............. ......... 

c 
c 

CCN/INOU/KIN, IDUf 
WRITE (KOUT, 9600) 
CALL M4ATIO 6qA, N, N, A, 3) 
WRITE (KOUT, 9700 ) 
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CALL MATIO (NA, N, N, Q, 3)
 
WRITE (KOMr, 9800)
 
CALL MATIO (NR, N, N, R, 3)
 
DO 222 KL=l,COCN
 

Ml = KL-1
 
WRITE (KOU, 9900) KMI1
 
CALL MATIO (B,N,M,B(1, 1,1L),3)
 

DO 4 J=I,N 
DO 3 I=1,N
 

3 Y (I, J)= 0.EDO
 
4 Y(J,J)= I. D0
 

DO 210 K=1,IEND 
CALL MQF (NA, B,, IN,M, Y,B(1, 1, L) ,U,WORK) 
CALL MADD (NA, NR, DA,M,M, U,R, U) 

DO 14 J=1,M
 
DO 13 I=I,M
 

13 V (I, J)= 0. OD0
 
14 V(J,cJ)= i.0O
 

CALL MLINEQ(NA,bk,M,M, U, V,CQND, IPVr,WCRK)
 
CALL TRNATB (NB,MA,N,M,B (1, 1, KL) ,X)
 
CALL MMUL (NA, , mN,M, N, X, Y, U)
 
CALL MM4UL (NA,, N , N,M, N, U, A, X)
 
CALL MOF (NA, N DA£,M, N, V, X,W,WORK)
 
CALL MSCAIE CA,N,N, -1. OD0,W)
 
CALL MF M(NA, g,Mr,N, N, YA, U,WCRK)
 
CALL -MAED QA, NA, N'., N, N, U, Q, U)
 
CALL MADD NA, NA, IA, N, N, U,W, Y)
 

210 	 CcWTINUE
 
WRITE (KOUT, 44441)
 
WRITE (KOME, 44442)
 
CALL MATIO VqA,N,N, Y, 3)
 
CALL M1UL A, NA, NG, N, M, M, V, X,QOR (1, 1, L))
 
CALL MSCALE VA,M, N, -1. ED0, (NORM (1, 1, XL))
 
WRITE CKOU, 6000)
 
CALL MATIO (NG,M, N, (NORM (1, 1, 1L) , 3)
 
CALL MI4UL NB, NG, M, N, N,M,B (1, 1, KL) ,fNOR M(1,1,1 ) ,V)
 
CALL MADD VA, NA, DA, N, N, V,A, V)
 
WRITE (KOU, 7008)
 
CALL EIGVAL (NA, N, V, VWRWI,WCRK, IPVI')
 

222 COTfINUE 
JEND= 1
 

26 CONTINUE
 
WRITE (KOMi, 8000)
 
CALL MATIO (NA, ECCN, ICON, P, 3)
 
DO 5 K=I, ICON
 

CALL SAVE VQ, %, N, N, Q,S (1, 1, K))
 
5 CWEINUE
 

DO 91 NEND= 1,INETEtS
 
WRTE (KOU, 4500) NEND
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200 	 CONTINUE
 
DO 90 L=I,ECCN
 

DO 80 K=1, ICON 
CALL MCF(NS,bB,hB,N,M,S(1,1,K),B(1,1,K),BSB(1,1,K),WRK) 
CALL MMUL(NS,B,S,M,N,N,S(1,1,K),B(1,1,K),SB(1,1,K)) 

80 	 CONTINUE
 
CALL WEIGHT (NS,PA,4CaqrN,M,P(1,L) ,SB,V)
 
CALL WEIGHT (NS, C, DA,M,M, P (1, L) ,BSB,
IN, AD) 
CALL MADD NR, NRA, M,M,M, R, RAD, U) 
DO 98 J=1,M 

DO 97 I=1,M 
97 RADINV(I,J) = 0.OD0 
98 RADINV(J,J)= 1.0D0 RO'UGINAL PAGE .1 

CALL MLINEQ (NA, NRA,M,M, U, PADINV, CCND, IPVT,WCRK) POOR QUJA 
DO 70 K=I, CON 

DO 60 J=1,N 
DO 60 I=1,M
 

60 BSB(I,J,IK) = SB(J, I, K)
 
70 CONTINUE
 

CALL WEIGHT (NS, 10A, ICON, NN,M, N, P (1, L) ,BSB, U)
 
CALL MMUL (NRA,N, A, N,M,M, PADINV, U,W)
 
CALL MMUL (NA, NN, A, N, N,M, V,W, Y)
 
CALL MMUL NA, NN, N,N,M, N,W,A, (NORM (1, 1, L))
 
CALL MSCAIE (NG,M, N, -1. 0D0, (NORM (1, 1, L))
 
IMI = L-1
 
WRITE CKOUr, 2005) EMI1
 
CALL MATIO CqG,M, N,G'ORM (1, 1,L), 3)
 
IF(NEND.NE.hWTEIS) GO TO 73
 
CALL M4UL 60B, WG,NN, N,N,M,B(1, 1,L) ,ORM(1, 1,L) ,W)
 
CALL MADD (NA,M , M, N, N,A,W,W)
 
WRITE (KOUt, 7009) EM1, IM1
 
CALL EIGVAL (NA, N,W,W,WR,WI,WCRK, IPVT)
 

73 	 CALL MSCAIE VA,N,N, -1. E0, Y) 
CALL WEIGHT NA, IA, ICON, M, N, N, P (1, L) ,S,W)
 
CALL MADD UA, NN, NN, N, N,W, Y, Y)
 
CALL M-F (NA, NA, MA, N, N, Y,A,W,WCRK)
 
CALL MADD eNA, NN, M, N, N,W, Q, S (1, 1, L))
 
WRITE (KOUT, 4000) [M1 
CALL MATIO (NS,N, N, S (1, 1, L) , 3)
 

90 CONTINUE
 
91 CONTINUE
 

2000 FORMAT (3D25. 15)
 
4005 FO14AT (3H S)
 
2005 FOR4AT (4H G,13)
 
4000 FORKAT(4H S,13)
 
4500 FORMAT (11H TIME= T2 -,13)
 
5000 FOI4AT(11H ITERATION ,13)
 
6000 FOMAT(10H G OPTIMAL )
 
7000 FCRMAT (40H OPTIMAL COST FLUCTION X C X, WHERE C IS)
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7008 FOR4AT (21H A + B (I) *GSTAR (ZERO))

7009 FORMAT (7H A + B, 13, 1 * G, 13)
 
8000 FOGMAT (3H P)
 
9500 FORMAT,(3D.25._15)
 
9700 FOR AT (3H Q)
 
9600 FOR4AT(3H A)
 
9800 FOR'4AT (3H R)
 
9900 FORMAT (3H B, I3)


44441 FC4AT (/, 45H SOLUTION TO STANDARD OPTIMAL CONTROL PROBLEM) 
2 STOP 

44442 FORL4AT(3f1 S 
RETURN 
END
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SWIBROU INE WEIGHT (NA, 1bUA, KCCN, NX, N, M, E, A, X) 
C 
C ******PARAKETERS: 

INTEGER NA, NA, 1GN,NX,N,M 
DOUBLE PRECISION E (KCCN) ,A(NA,lkA, CN) ,X(X,M) 

C 
C *****LOCAL VARIABLES: 

INTE(ER I, J, K 
DOUBLE PRECISION SUM 

C 
C *****SWBROUTINES CALLED: 
C NONE 
c ORIGINAL PAGE IS 
C *****PURFOSE: -F POOR QUALITY 
C THIS S.RBOUTINE COMATES THE WEIGHTED SUM 
C 

C S[MMATION E(I)*A(I,J,K); I=1,N; J=1,M; K=IICON.
 
C
 
C *****PARAMETER DESCRIPTION:
 
C NA THE FIRST DIMENSION OF THE ARRAY A AS DECIARED IN
 
C THE CALLING PROGRAM DIMENSION STATEMENT;
 

C tAA THE SECCND DIMENSION OF THE ARRAY AS DECEARED IN
 
C TE CALLING PROGRAM DIMENSION STATEMENT;
 
C
 
C ICCg THE THIRD DIMENSION OF THE ARRAY A AS DECLARED IN
 
C 'IHE CALLING PROGRAM DIMENSION STATEMENT;
 
c 

C NX THE FIRST DIMENSION OF THE ARRAY X AS DECLARED IN
 
C CALLING PROGRAM DIMENSION STATEMENT;
 
C
 
C N THE ROW SIZE OF A;
 

C M THE COLUMN SIZE OF A; 
c 
C E ECIOR OF LENQrH KCCN;
 
C
 
C A N BY;'M ARRAY
 
C
 
C *****HISTORY:
 
C WRITTEN BYJ.A.R. CARRIG (ELEC. SYS. LAB., M.I.T., RA. 35-307,
 
C CAMBRIDGE, MA 02139, Hi.: (617) - 253-2165), JANUARY 1978.
 
C MCST RECENT wRSION MARCH 22, 1978.
 
C
 
C 
c
 

DO 10 J=1,M
 
DO 10 I=1,N
 

X(I, 3) =0. ED0
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DO 10 K=1,lCN
 
10 X(I,J) = X(1,J) + E(K)*A(I,J,K)
 

RE PURN
 
END­
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F WNCTIO UCAIC (U, EM, B,C)
 
DOUBLE PRECISION U (10, 2) ,EM(10, 2) ,B(10, 2) ,C(10, 2)
 
RETURN
 
END
 

O
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SUBROUTINE FIG (KCcN, E, ETEMP,WORK, rCCN) 
C 
C *****PAPAMETERS: 

DOUBLE PRECISION WCRK(KCCN)-, E(KCCN)-,ET4P-(KCCQN) 
C 
C *****LOCAL VARIABLES: 

INTEGER MI, LTEMP, IFIAG, KK, IP, IU 
DOUBLE PRECISION St4 

C 
C *****SLBROUTINES CALLED: 
C NONE 
C 
C C ... . .. . ......."° "-::::::.:" -::-::......... .. .... ::......... ... o..:.....o:...... ........ :. 

C 
C *****PURFOSE: 
C THIS DOUBLE PRECISION SUBROUTINE IS [EED IN HYPOTHESIS TESTING. 
C AT EACH TIME T, ONE OF ICON HTHESES IS CHOSEN. 
c 
C RHO(X(r) - A*Xfr-1) - B(I)*U T-I1))*PI (T-I/T-1) 
C 
C Pi (r-1/T)= 
C I 
C SM(RHO (X1T) - A*X f-1) -B(J)*U (-1))*PI fr-I/T-i) 
C J 
C 
C HYPOTHESIS H (I) IS ASSUI4ED TO BE C(RRECT IF 
C 
C PI (T/T-i) > PI (T-IT) FOR ALL J NOT EQUAL I 
C I J 
C 
C TIES ARE RESOLVED ARBITRARILY. 
C 
C RHO (X) DENOTES THE PROBABILITY DISTRIBUTION OF X. 
C 
C *****PARAMErER LESCRIPTION: 
C CN INPUT: 
C NON THE NUMBER OF HYPOTHESES; 
C 
C E VECTOR OF LENGtH KCI'N CONTAINING PI (-I/T-I); 
C 
C WORK VECTOR OF LENGTH KCCN CONTAINING 
C RHO (X(r) - A*X(r-I) - B (I)*U (T-1)); 
C 
C (N OUTPUT: 
C ETEMP VECTOR OF LENGTH KCCN TO STORE PI (T/1-1); 
C 
C ICON INDICATES WHICH HYPOIHESIS HAS BEEN CHOSEN; 

C *****HIS'IRY: 
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C WRITTEN BY J. A.K. CARRIG (ELEC. S)S. AB., M.I.T., R4. 35-307,
 
C CAMBRIDGE, MA 02139, P.: (617) - 253-2165), JANUARY 1978.
 
C MCST RECEaf VERSION MARCH 22, 1978.
 
C
 

C :-:::::-:--:-:-::................ ........ . .:............".
 

C 
CC4CN/INOU/KIN, IcUr 
MM = 1
 
LTEMP = LCCN
 
SUM = 0.QD0
 
DO 10 IP = 1,ICCN
 

10 SLM = SM + WORK(IP)*E (IP)
 
DO 20 IP=1,ICCN
 

20 ETEMMP(IP) = WORKRU P)*E (IP)/SLM
 
DO 60 KK = 1, ICON
 

IFEAG = 0
 
DO 89 IU= 1,INOCN
 

IF(KK. EQ. IU) GO TO 79 
IF(ETE4P(KK).Gr.E(IU)) IFlAG = IFIAG + 1
 

79 CONTINUE
 
89 CONTINUE
 

IFIAG = IFIAG + 1
 
IF (IFLAG. EQ. ECGN) LW= K
 

60 CONtINUE
 
IF (LCq. EQ. 0) LCON = LTEM P
 
RETURN
 
END
 

V3? p0?-2JJr
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C LATEST WRSION 3/9/77 
DOUBLE PRECISION COND,BEE,WR(10) ,WI (10) 
DOUBLE PRECISION A(10, 3) ,X(10, 3) 

INTECER MDOMNR (2)., HR4MC C(2-), VPME(2-), rIME (2) 
DOUBLE PRECISION GNORM(10, 3, 4) 
DOUBLE PRECISION BSB(10, 3,4) 
DOUBLE PRECISION S (10, 3, 4) ,P(10, 4) ,SB(10, 3, 4) 
DOUBLE PRECISION SBT(10,3 ) ,Q(10, 3) ,R(10, 3) ,B(10, 3,4) 
DOUBLE PRECISION PR(4),Pl,P2,FZ(4),HD(10,4),S(4) 
INTECER IPVT (10) 
DOUBLE PRECISION AZERO,ACNE, ATWO 
DOUBLE PRECISION RAD (10, 3) ,PADINV(10, 3) ,U(10, 3) 
DOUBLE PRECISION V(10,3),W(10 ,3),Y(10, 3),SM,WORK(10) 
Cat4MCNiINOU/KIN, IOUT 
NAA= 3 

=A WO -3. 0
 
AZERO = -4.EDO
 
AONE =6.E 0
 
P1= 05D0
 
P2 = .75D0
 
KIN= 	5
 
KOUT= 6 
N= 3 
M= 3
 
N2 = 6
 
KCCW = 3
 

=NS 10
 
IPRT= 17
 
IEND= 25
 
IcOUNr = 0
 
NSTEFS = 25
 
NA= 10
 
NM=NA
 
NRA= 10
 
NR= 10 
NB= 10
 
NQ= 10
 
NG=10
 

22 IF(ICOUNT.NE.0) READ(KIN, 9500, END=2) (PR(I),PZ(I),I=1,N)
 
9500 	 FORMAT (3D25.15)
 

DO 11 JK= 1,N
 
DO 11 JL = 1,N
 
Q(JL, JK) = 0.00
 
R(JK, JL) = 0.0M0
 

11 A(JL, JK) = O0.D 
BEE = -10. CD
 
P (1, 1) = . 0-PI
 
P(2,2) = .tD0- P2
 
P(3,3) = .D0
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P(1, 2) = 0. ED0
 
P (1,3) = 0. M30
 
P (2, 1) = P1
 
P(2,3) = 0.030
 
P(3,1) = O.QDO
 
P (3, 2) = P2
 
A(1,1)= 0.O3
 
A(2,2)= 0.D00
 
A(3, 3) = -AZEPkO
 
A(1,2) = 1. 00
 
A(2,3) = I..ODO
 
A(3, 1) = -ATWO
 
A(3,2) = -AONE
 
Q(1, 1)= 3.D030 
Q(2,2) = 3.OD0 
Q(3,3) = 3.0)0 
R(1,1)= 1. D 
R(2,2) = I.030 
R(3,3) = .D0O 
8 (1, 1, 1)= 00.03 paGOWO / 
B8(2, 2, 1) = 0. OD0 OF Poem QG 
B(2, 1, 1)= 0.O00 Lt2'y 
B(1, 2, 1)= 0.30 
B(1, 3, 1)= 0.00 
3(2, 3, 1) =O. 00
 
B(3,3,1) = 1.03
 

=B(3, 1, 1) 1. WO
 
B(3,2,1) = 1. OD0
 
B(1,1, 2) = 0. 0A
 
B(2,2,2) = 0.030
 
B(2,1,2) =0.00
 
B(1,2,2) = 0. 030
 
5(1,3,2) = 0.D03
 
B(2,3,2) = 0. WD
 
B(3,3,2) = BEE
 
B(3,1,2) = 1. W0
 
8(3,2,2) = 1.03
 
B(1, 1, 3) = 0. M0
 
B(2,2,3) = 0.OD0
 
B(2,1,3) = 0. OD0
 

=B(1, 2, 3) 0.0
 
B(1,3,3) = 0.0DO
 
B(2,3,3) = 0. M0
 
B(3,3,3) = 0.D03
 
B(3,1,3) = 1. W0
 
B(3,2,3) 1.0DO
 
PR(1) = .05D0
 
PR(2) = .75D0
 
P(1,1) = .00 - PR(1)
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P(2,1) = PR(1)
 
P(3,1) = 0. D0
 
P (1,2) = 0. OD0
 
P(1,3) = 0.DO
 
P(2,2) = 1. EDO - PR(2)
 
P(3,2) = PR(2)
 
P(2,3) = 0. O0
 
P (3, 3) = 1. ODO
 

C CAIL TIME (MEGYR, HRfMN, SC, Vrf4E, TIME) 
CALL READY (NAA, NN, N3, NQ, NR, NG, NS, IRA, N,M, ICON, A,B, R, 9, P, 

1 WR, W I, S, S3, U, V,W, X, Y, NORA, PAD, MhDIN V,BS,WCRK, IPvr, TEND, 
2 NSTE PS) 

2 STOP 
END 
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C LATEST \ERSION 2/17/78 
DOUBLE PREC IS ION E (4), ETEMP (4), SLM, SIGMA, SIG4 1, ES INV, ESIGMA, SIN V4 1 
DOUBLE PRECISION CCND, WUDOLF', LDItV, DOLFMI,Er(10, 2) ,X0 (10) ,DINM1 
DOUBLE PRECISION ARRAY(100, 50) ,YO (10) ,UO (10) 
DOUBLE PRECISION A(10, 3) ,C(10, 3) ,FR1, FR2, X(10, 3) 
E(1) = 1. a)0 

EM(1, 1) = 1.O 0 
E4(2, 2) = 1. OD0 
E(2-) = 0. D0 
ETEMP(2) = E(2) 

E (3) = 0. O0 ORIGINAL PAGE IS 
ETEMP (3) = E (3) 	 OF POOR QUALITY
ETEMP(1) = E (l) 

E(4) = 0.0)
 
DOUBLE PRECISION IORM (10, 2, 4)
 
DOUBLE PRECISION BSB(10,4, 3)
 
DOUBLE PRECISION S (10, 3, 4) ,DT, P(10, 4) ,SB(10, 3,4)
 
DOUBLE PRECISION WR (4) ,WI (4) ,HH (4, 4), XX (4, 4) ,ACL (10, 3)
 
DOUBLE PRECISION SBT(10,3 ),Q(10, 3),R(10, 3),B(10,2,4)
 
DOUBLE PREC IS ION PR (4),,PZ (4), PD (10, 4), S (4)
 
INTEGER IPVT (10) ,MCCN (100) ,DSTERS, NGRIDH, ICON (100)
 
DOUBLE PRECISION RAD(10, 3),fDINV(10, 3),SNEWq(10, 3,4),U(10, 3 )
 
DOUBLE PRECISION V(10, 3) ,Vq(10, 3) ,W(10 , 3) ,Y(10, 3) ,SLM,WORK (10)
 
LOGICAL NOISE
 
CC4N/INOU/ IN,IoUE
 
K0=0
 
IA = 1
 
READ(5, 11111) NPOINT
 

33333 READ (5, 11111, END=22222) ITIME, K
 
11111 FORMAT (214)
 

DO 44444 IXYZ = IA, ITIME
 
44444 	NCCN (IXYZ) = K0
 

MCCN (ITIME)= K
 
IA = ITIME
 
K0= K
 
GO 10 33333
 

22222 DO 55555 IMYZ = ITIME, NPOINT
 
55555 MC(!' (IXYZ) = K0
 

LUDJLF= 2.718281828459045D0
 
LUDINV= 1. 0O/LUDJLF
 
DOLFM1 = LUDOLF - 1.0)0
 
DINWM1 = LUDINV - 1.0)0
 
NAA = 2
 
NC = 10
 

=
KIN	 5
 
KOOT= 6 
N= 2
 
M= 2
 
N2 = 4
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S MAT FCRTRAN 

iCN = 4 
=NH 4
 

NS= 10
 
IPR= 17
 
IEND= 50
 
IPRT = 49
 
IcOUNr = 0
 
NA= 10 
.NB= 10 

=NA
 
NRA= 10 -
NR 10 

NQ = 10 
NG=10 
PZ(1) = ]DO
 
PR(1)= .DO
 
DO 15 I=2,N
 
PR (1)= PR (1)
 

15 PZ(I)= PZ(1)
 
22 IF(ICOUNT.NE.0) READ(KIN, 9500, END=2) 

SIG4A= 1.030
 
ESIG4A= LUDOLF**SIGMA
 
ESINV= LUDINV**SIYIA
 
C (1,1) 1. a.)0 

C(2,2) = .D0
 
C(1,2) = 0. OD0
 
C(2,1) =0.ODD
 
Ur = 1. OD 

NSTEFS = 50 
A(1, 1)= ESIGMA 
MR= 100 
NAC = 50 
A(2,2)= ESINV
 
A(2,1) = 0.D0
 
A(1,2) =0.0DO
 
Q (1,1)= 14. O0
 
Q (2, 1)= 8.00
 
Q(1,2) =8.OD
 

Q(2,2) = 6.OD0
 
R (1, 1)= 1. W0
 
*R(2,1) = 0. O0
 
R(1,2) =O.fD
 
R(2,2) = i.LDO
 
B(1,1,1)= ESIG4A -l.flOD
 
B(2,1,1)= ESINV- 1. OD 0
 
B(2,2,1) =-B(2,1,1)

B (1,2, 1)= B (1, 1, 1) 

B(1,1,2) = 0.G02 
B(2,2,2) = -DINV41 

(PR(I),PZ(I),I=1,N)
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S*MAT FORTRAN
 

B(2, 1,2)= 0. OD 
B(1, 2,2) = DOLFM1 
8(1,1,3) = DOLFMI1 
B(1,2,3) = 0. O30 
B(2,1,3) = DINM1 
B(2,2,3) = 0.030 
PRI =. DO 
PR2= .ID0 
P(1,1) = .81D0 
P(2,2) .09D0 
P(3,2) = 0.09D0 
P (3, 3) = .09D 
P(1,2) = .81D0 
P(3,1) = .09D0 
P(2,1) = .09D0 
P(1,3) = .81D0 
P(2,3) = 0. 09D 
P(4,1) = .01D0 
P (1, 4) = .81D0 ORGNAL 
P14, 2) = . 1DO OFPOOR QUALImy 

=P(4,3) .01D0 
P(4,4) = .01D0 
P(2,4) = .09D0 
P(3,4) = .09D0 
WRITE (KOUT, 9903) 
CALL MATIO VA, ICON, ICON, P, 3) 

C WRfE (KOU, 46) 
46 FORAT(/,4 PI,/) 
47 FO4AT (3D25. 15) 

WRITE (KOUT, 9600) 
CALL MATIO NA, N, N, A, 3) 
WRITE KOLT, 9700) 
CALL MATIO GA, N, N, Q, 3) 
WRITE (KObT, 9800) 
CALL MATIO R, N, N, R, 3) 
DO 222 K=1,ICON 
K41 = K-i 
WRITE (KOU, 9900) R41 

222 WRITE (KOU, 9500) ((B(I,J,K),J=,M) ,I=1,N) 
44 COGNTINUE
 

DO 14 IN=1,50
 
LCCN (IN) = ICCN ()i
 

14 CONTINUE 
667 FORMAT (515)
 

Xo (1)= .02D0 
GNORM(1, 1,i)= -1.06336184D0
 
GNORM (2,1,i)= -7.9015188D-1 
GNOPM (1,2, 1)= -1.88787889D-02 
GNORM(2, 2,1)= -5.83582496D-02 
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S'JMAT 	 FORTRAN 

(NORM (1, 1, 2)= -3.69012096D-01
 
NORM4(2, 1, 2)= -1. 14016534D0
 

GNOR4(1, 2, 2)= 1. 04948339D-01
 
NOP1(2, 2, 2)= -1.36308767D-01
 

GNORP(1, 1, 3)= -1. 42566767D0
 
GNORIM(2, 1, 3)= -2. 87451308D-01
 
GNORM(1, 2, 3)= 1.51884285D-02
 
GNORM(2, 2, 3)= -7.27012438D--02
 
IR = 2
 
NPRRL = 1
 
DO 57 1K = ICCN
 
IK40l = IK - 1
 
WRITE (KOUr, 9992) IN41
 

57 WRITE (KOUT, 9500) ((GNOt'4(IJ, IL,IK) ,IL=1,N),IJ=,N)
 
NGRID= 5

V (l, ) B(1,B 1, 1) 
V(2,2) = 8(2,2,1) 
V(2,1) = 8(2,1,1) 
V(1,2) = B(1,2,1) 

C CALL MEL (NA, M, MA, N, N,M, V, QNORM, U) 
C CALL MADD CA, t, M, N, N, U, A, ACL) 
C CALL MSCAIE CAG,N,M, -1. D,(ORM) 

IONE = I 
C CALL MMUL (NC,N, N, ICOE, IR, N,C, XO, YO) 

65 FORMAT (1X, 3)25. 15) 
C CALL DR(1IM (NA, NC, MG, MAR, MAC, N, IR,M, ACL, C, QORM, X0,WORK, 
C 1Y, U, IPVr, ARRAY, Dr, bSTEFS, NPREL) 
C CAL READY2 (NAA, bA, IB, NQ, NR, NG, N, MtA, N,M, fCCN,A,B, R, Q,P, 
C 1 WR,WI, S, SB, U, VW, X, Y, W3ORM, FAD, PADINV, B3 ,WCRK, IPVr, IEND) 

DT = 1. WD0 
XO(1) = .02D0 

C CALL MSCAIE (NG, N, M, -1. OD0, GNOR4) 
XO (2) = 0. 0)0 
CALL SWITCH QNA, ENZ, %R, AC, N, I,N3, MA, XON,M, A,B, P, 

1 C, C ORM, XO, E, ETEMP, EM,WCRK, YO, U0, VW, \W, IPVT, ARRAY, Dr, izTES, 
2 NGRIDH ,MCCUq) 

9500 FOR14AT (2D25. 15)
 
2000 FOR4AT (/,3)25. 15)
 
9600 FORMAT(/,31 A
 
9700 FORM4AT(/,31 Q
 
9800 FORMAT (/,3 R
 
9900 FOMAT(/,31 B ,15,/)
 
9903 FO4AT (/,31 P )
 
9902 FORMAT (/,3H ,I5,/)
 

2 	 STOP 
END 
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S4MAT2 FORTRAN 

C LATEST VERSION 2/17/78 
DOUBLE PRC IS ION E (4),ETEMP (4) ,S14, SIG4A, SIG1 , ESINV, ESIQIA, SIN41 

DOUBIE PRECISION CCND, UJWLF, UDINV,DJLFM1, EM(10, 2),X0 (10) ,DINM 1 
DOUBLE PRECISION ARPY(100, 50) ,Y0 (10) ,U0 (10) 
DOUBLE PRECISION A(10, 3) ,C(10, 3) ,PR1,HR2, X(1C, 3) 
E(1) = 1. DO 
EM(I,1) = 1.D0 
EM(2, 2) = 1.a)0 
E(2) = 0.W0 
ETEMP(2) = E (2) ODLA 
E(3) = 0. 
E'rM4P(3) = E(3) ORIGINAL PAGE 18 
ETU4P(1) = E(l) OF POOR OTTATTPV 
E(4) = 0.QDO 
DOUBLE PRECISION GiNORM(10, 2, 4)
 
DOUBLE PRECISION BSB (10, 4, 3)
 
DOUBLE PRECISION S (10, 3, 4) ,Dr, P(10, 4) ,SB(10, 3, 4)
 
DOUBLE r-ECISION WR (4) ,WI (4) ,HH (4, 4) ,XX (4, 4) ,ACL(10, 3)
 
DOUBLE PRECISION SBT(10,3 ),Q(10, 3),R(10, 3),B(10,2,4)
 
DOUBLE PRECISION PR (4) ,PZ (4) ,PD (10, 4) ,FS (4)
 
INTEGER IPV (10) ,MCCN (100) ,NFOINT, NGRIDH, CON (100)
 
DOUBLE PRECISION RAD(10, 3) ,PADINV(10, 3) ,SNEW(10, 3,4) ,U(10, 3)
 

DOUBLE PRECISION V(10, 3),SI(10,3),W(10 ,3),Y(10, 3),SM,WORK(10)
 
LOGICAL NOISE
 
CCMMCN/INOU/KIN, NDUr 
KO=0 
IA = 1 
READ (5, 11111)NPOINT
 

33333 READ(5, 11111, END-22222)ITI4E, K
 
11111 FORMAT (214)
 

DO 44444 IXYZ = IA, ITIME 
44444 	MCN (IXYZ) =K0
 

MCCN (ITIME)=K
 
IA = ITIME
 
KG=K
 
GO TO 33333
 

22222 DO 55555 IXYZ = ITIME, NPOINT
 
55555 MCCN (IXYZ) = K0
 

LUDOLF= 2. 71828182845945D0 
=LUDINV 1. WO/LUDOLEF 

OLFM1 = LUDOLF - 1. 0D 0
 
DINM1 = LUDINV - 1. O0
 
NAA = 2
 
NC =10
 
KIN= 5
 
KOUIT= 6
 
N= 1 
=
M 1
 

N2 = 2
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SWMAT2 FORTRAN 

KCCN = 2 
=
NE 4 

NS= 10
 
IPRT= 17
 
IEND= 50
 

IPRT = 49
 
ICOUNT = 2
 
NA= 10
 
NB= 10
 
NR NA 
NRA= 10
 
NR= 10
 

NQ= 10 
NG=10 
PZ(1) = .1]0
 
PR(1)= .ID0
 
DO 15 I=2,N
 
PR (I)= PR (1) 

15 PZ(I)= Pz(1)
 
22 IF(ICOUNT. NE. 0) READ (KIN, 9500, END=2) (PR(I),FZ(I),I=1,N)-


SIG4A= 1. DO
 
ESIG4A= LUDOLF**SIG4A
 
ES INV= LUDINV**S ICMA 
C(1,1) = 1.00
 
C(2,2) = 1.D 0
 
C(1, 2) = 0.00
 
C(2,1) = 0.O0) 
Dr = 1.9 0 
A(,1)= 1.4140D0
 
NAR= 100
 
NAC = 50
 
Q(1,1) = 3.00
 
R(1,1)= 1.ADO
 
R(2,1) = 0.O 0
 
B(1,1,1i)= 2.EDO 

B(1,1,2)= .M0
 
P(1,1) = .7D0
 
P(2,2) = OD
 
P(3,2) = 0.0DD9
 
P(3, 3) = .. 09D0
 
P(1,2) =.30 
P(3,1) = .09D0 
P(2,1) =.30
 
P(1, 3) = .81D0
 
P(2,3) = 0.09D0
 
P(4,1) = .01D0
 
P(1, 4) = .81D0
 
P(4,2) = 01D0
 
P (4, 3) = .01D0
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S[lAT2 FCRTRAN 

P(4,4) = .01D0 
P(2,4) = .09D 0
 
P(3,4) = .09D0
 
WRITE (KOUT, 9903)
 
CALL MATIO (NA, ICCN, 1CN, P, 3)
 

C WRITE (KOUT, 46) 
46 FOPf4AT(/,41 PI,/) 
47 FORSAT (3D 25. 15) ORIGINAL PAGE IS 

WRITE KOUr, 9600)
 
CALL MATIO NA,N,N,A, 3) OF POOR QUALIT
 
WRPE (KOUr,9700)
 
CALL MATIO INA, N, N, Q, 3)
 
WRITE (KOUT, 9800)
 
CALL MATIO (NR, N, N, R, 3)
 
DO 222 K=TICON
 
lMl = K-i
 
WRITE KOUT, 9900) IM1
 

222 	WRITE (KOUT, 9500) ((B(I,J,K),J=1,M) ,I=1,N) 
44 COorINUE
 

WOR4(l, 1, 1) = -1.06336184D0
 
GNOR,4(1,2,1) = -1.88787889D-02
 
GNOR (2,1,1) = 7.90151884D-01
 
GNORM (2,2,1) = -5.8358246D-02
 
GNORM(1,1,2) = -3.69012096D-01
 
GALIRM(1, 2, 2)=1. 04948339D-01
 
GNOM (2, 1,2) = -1.14016354D0
 
GNOP(2, 2, 2) = -1.36308767D-01
 
GNOR14 (1,1, 3)= -1. 42566767D0
 
GNOBM(2, 1,3)= -2.87451308D-01
 
GNORM (2, 2, 3) = -7. 27012438-02
 
G40IR(1, 2, 3) = 1.51884285D-02
 

OPNOM (1, 1, 4) = 0. WO
 
GNORM(2, 2, 4) = 0. 302
 
GNORA (1, 2, 4) = 0.0:0
 
GNORM(1, 2, 4) = O. DO
 
DO 14 IN=l, 50
 

CON 	 (IN) = LMCN (1) 
14 CCNUUE 

667 	 FOR4MAT (515)
 
X0(1) = .02D0
 
IR = 1
 
NPRPL = 1
 
DO 57 1K = 1, CCN
 
IM1 = IK - 1
 
WRITE (KOUT, 9902) IKI1
 

57 WRITE KOUT, 9500) ((GNOI l(IJ,IL, IK) ,IL=1,N) ,IJ=1,N) 
NGRIDH 5 
V(1,I) B (2,I,1)
V (2, 2) BB(2, 2, 1) 
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&%?NAT2FOIrRAN 

V(2,1) = 8(2,1,1) 
V(1,2) = (1, 2,1) 

C CALL M4-L (NA, M, M, N, N,M, V, 'OM, U) 
C CAIL MADDINA, M\, A, N, N,1J- A, AC ) 
C CALL MSCALE aqG, N,M, -1. OD0,CNORM) 

1ONE = I 
C CALL MMLJL (NC, N, N, IONE, IR, N, C, X0, Y0) 

66 Fg'AT (lX, 3325. 15) 
C CALL DRnflIM(NA, DC, NG,MR, NMC, N, IR,MLACL,C, (NORM, X0,WORK, 
C IY, U, IPVT, ARRAY, DP, NFOINT, NPRFL) 
C CALL READY2 (NAA, YNQ, NR, W, NS, CN, A,B, R, Q,P,M, A, NM, 
C I WRW I, S,S U, VW, X, Y,CNOR4, RAD, PADINV, BS,WCRK, IPVr, SND)S, 

DT = 1. OD0 
X0(1) = . 02DO 

C CALL MSCALE NG, N,M,-1. ED0, NOPM)
XO (2) = 0. OD0 
CALL SWITCH (NA, M, C, IC, MR, AC, N, IR, NIA, ON,M,A,B, P, 

1 C, GNORM, X2, E, ETEMP, D4,WCRK, YO, UO, V,W, SW, IPVr, ARRAY, Dr, NPOIR , 
2 NGRIDH,MCaq) 

9500 FOMAT (2D25. 15) 
20@0 FORMAT (/, 3325.15) 
960 FOMdAT(/,31 A 
9700 FORMAT (/,3 Q 
9800 FCMATyV,31 R 
9900 FOP!AT(/, MB ,I5,/) 
9903 FcORMAT(/,ai P ) 
9902 FOQ4AT(/,31 G ,I5,/) 

2 STOP 
END
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