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ABSTRACT

This report contains a method of approach and theoretical
framework which advances the state of the art in the design of
reliable multivariable control systems, with special emphasis on
actuator failures and necessaxry actuator redundancy levels.

The mathematical model consists of a linear time invariant
discrete time dynamical system. Configuration changes in the
system dynamics, (such as actuator failures, repalrs, introduction
of a back up actuator} are governed by a Markov chain that includes
transition probabilities from one configuration state to another.
The performance index ig a standard guadratic cost functional,
over an infinite time interval.

If the dynamic system contains either process white noise
and/or noisy measurements of the state, then the stochastic
optimal control problem reduces, in general, to a dual problem,
and no analytical or efficient algorithmic solution is possible.
Thus, the results are obtained under the assumption of full state
variable measurements, and in the absence of additive process
white noise.:

Under the above assumptions, the optimal stochastic control
solution can be obtained. The actual system configuration can
be deduced with an one step delay. The calculaticn of, the optimal
control law requires the solution of a set of highly coupled
Ricecati-like matrix difference equations; if these convexge (as
the terminal time goes to infinity) one has a reliable design with
switching feedback gains, and, if they diverge, the design is
unreliable and the system cannot be stabilized unless more reliable
actuators or more redundant actuators are employed. For the
reliable designs, the feedback system requires a switching gain
solution, that is, whenever a system change is detected, the feed-
back gains must be reconfigured. On the other hand, the necessary
reconfiguration gains can be precomputed, from the off-1i N
tions of the Riccati-like matrix difference equations.



Through the use of the matrix discrete minimum principle, a
suboptimal solution can also be obtained. In this approach, one
wishes to avoid the reconfiguration of the feedback system, and
one wishes to know whether or not it is possible to stabilize the
system with a constant feedback gain, which does not change even
if the system changes. Once more this can be deduced from another
set of coupled Ricecati-like matrix difference equations. If they
diverge as the terminal time goes to infinity, then a constant
gain implementation is unreliable, because it cannot stabilize the'
system. If, on the other hand, there exists an asymptotic solution
to this set of Riccati-like equations then a reliable control
system without feedback reconfiguration can be obtained. The
implementation requires constant gain state variable feedback, and
the feedback gains can be calculated off-line.

In summary, these results can be used for off-line studies
relating the open loop dynamics, reguired performance, actuator
mean time to failure, and functional or identical actuator
redundancy, with and without feedback gain reconfiguration
strategies.

!
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CHAPTER 1

INTRODUCTLON

1.1 Motivation for the Research.

This report addresses some of the current problems in interfacing
systems theory and reliability, and puts this research in perspective
with the open questions in this field. Reliability is a relative concept;
it is, roughly, the probability that a system will perform according
to specifications for a given amount of time. The motivating gquestion
behind this report is: What constitutes a reliable system?

Knowledge of the reliability of a system is crucial. In this
report, a system is reliablie if it has a (quantitative) reliability of
one, i.e., if the probability that the system will not perform according
to specifications for a given period of time is zero. Therefore, the
question "What constitutes a reliable system?" can be restated as:

What are the specifications which a system must meet in oxder to bhe
reliable?

A gystem is normally designed in two stages: First, the components
are selected in such a way as to meet the reliability specifications;
second, the control problem is formulated and solved for that configura- .
tion of components. Although this procedure is over-simplified, it
illustrates a second question: Should the control problem influence the
choice of the configuration, and if so, how can this be achieved? The
first part of the question is answered by history: The control problem
influences configuration design now by iteration between the two stages

of design. This is most likely not the best method! If a theory were
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available which allowed a comparison between alternate designs,; based

on beoth the expected system reliability and the expected system perfor-
mance, it would greatly simplify the current design methodology. It is
unfortunate that at present there is no accepted methodology for a
determination of expected system performance which accounts for changes
in the performance characteristics due to failure, repair or reconfigura-
tion of system functions. This report presents such a methodology for a

specific class of linear systems with gquadratic cost criteria.

1.2 General Nature gf_the Problem.

This Section presents the general theoretical framework néceé;;ry to
approach the problem of reliable control system design. First, a *
discussion of some of the concepts in reliability theory will be present-—
ed. The control-theoretic framework for the specific topics covered in
this report will then be developed. Finally, the interrelationships
between systems theory and reliability theory will be explored, leading
to a mathematical formulation of the reliable control system design .

problem and a discussion of the general nature of the results presented

in the remainder of this report.

1.2.1 Reliability Theory.

The generally accepted definition of reliability is stated in
Appendix L. Basically, the reliability of a system is the probability
that the system will perform-according to specifications for a given
amount of time. In a system-theoretic context, the specification which
a system must meet is stability; also, since, at least for most mathemati-

cal models of systems, stability is a long-term attribute of the system,
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the amount of time for which the system must remain stable is taken-to

be infinite. Therefore, the following definitions of system reliability
%

are used in this report:

Definition 1: A system (implying the hardware configuration, or mathe-—

maticail ‘model of that configuration, and .its associated control and
estimation structure) has reliability r where r is the probability that

the s¥ystem will be stable for all time.

Definition 2: A system is said to be reliable if r = 1.

Definition 3: A system design, or configuration, is reliable if it

is stabilizable with probability one.

These-definitions of reliability depend on the definition of stability,
and for:systems which can have more than one mode of operation, stability
is not-that easy to determine. In this report, stability will mean
either mean-sguare stability (over some random space which will be left

unspecified for the moment), or cost-stability (again, an expectation

over «a certain random space), which is basically the property that the
accumulated cost of system operation is bounded with probability one.
{(The definition of cost is also deferred.)

The reliability of a system will depend on'the reliabilities of its
various components and on their interconnections. Thus, the systems
engineer must have an understanding of the probabilistic mechanisms of
component failure, repalr, and system reconfiguration. There are a
multitude of models which can be used for component fallure and repair,

and reconfiguration. Two good references to the mechanics of reliability
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theory are [Shocman, 1] and [Green and Bourne, 21.
~ Consider a device which begins operation at time 0 and can experi-
ence catastrophic (i.e., instantaneous) failure to a non-operaticnal
state. Let the probability of Zailure of this device occuring in the
interval [0,t] be -
F(t} = prob. of failure in {0,t] {1.2.1)

This is the definition of the failure distribution function [Shooman, 11.

Define the hazard rate as
aF (t)

dt

1 - Fiey (1.2.2)

z{t)_ =

from [Shooman, i]. The hazard rate is the incremental failure probabil-
ity at time t, given that the device is operational at time . Now,
suppose the hazard rate of the device is independent of time:; i.e., the
pProbability that the device will fail sometime in a time interval -
starting at the present time is independent of how long the device has
been operational. This constant hazard rate

z{t) = c {(1.2.3)

results in the exponential failure distribution shown in Figqure 1.1.

The constant hazard rate is a close approximation to the actual hazard
rate of many devices., For example, the transistor has a hazard rate
similar to that shown in Pigure 1.2, This type of function is quite
common [Shooman, 13. Early failures in Region I of Figure 1.2 are
failures during the "burning-in" of the device; they are associated with
poor assembly, defective materials and other random fluctuations in the
manufacturing process. Failures in Region III are due to the wearing out

of elements in the part. Region IT is relatively constant and closely
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approximates the constant hazard rate function. In a large system, parts
are generally "burned-in" before assembly is completed; therefore, the
system begins operation in Region II. As the system ages, periodic
maintenance removes old parts before the hazard rate rises in Region III.
Therefore, the assumption of a constant hazard rate is usually Jjustified.
In this report, the constant hazard rate function is used exclusively.
This is due not .only to its broad applicability, but also to the fact that
any non-constant hazard rate requires a reliable control system to keep
track of the starting times of the system's mode of operation:

In the discrete~time case, to which this report is confined exclu-
sively, the hazard rate becomes the probability of failure (or repair ox
reconfiguration) between time t and time t+l. For a system with many
operating modes, the probability of being in a given mode at a given
time, given some past probability vector over the various operating

modes, can be modeled by a Markov chain. I£ W _ is a vector

t
T, e g (1.2.4)
-t
where there are L+l operating modes, then,gd: is propogated in time by
Tev1 = BT, (1.2.5)
where
b
+1 X L+1 bk
P = (p.) € RTLFE (1.2.6)
= g
and
P;i = prob. of system being in mode i at time t+l1, given it
J was in mode j at time t
(1L.2.7)

(see [Paz, 31). The probability Pij is the discrete-time equivalent of
the hazard rate, and is time-invariant. In the future, a time—-invari-

ant Markov chain will be assumed as a model of the modes of operation
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and the statistics of the random switchings between modes.

It is now necessary to define precisely these modes of operation

and their dynamic transitions. The terms system configuratiéon and

system structure will be used.

Definition 4: System Structure: A possible mode of operation for a
given system; the components, their interconnections, and the informa-

tion flow in the system at a given time.

befinition 5: System Confiquration: The original design of the system,

accounting for all modeled modes of operation, and the Markov chain

governing the configuration, or structural, dynamics (transitions among

the various structures).

an example of three possible structures for a given system is shown
graphically in Figure 1.3. In this report, structures are referenced by
convention by the set of non-negative integers

r = {o,1,2.3,...,1} - (1.2.8)
The configuration for the design illustrated in Figure 1.3 is depicted
graphically in Figure 1.4. The nodes of the graph in Figure 1.4
represent the system structures of Figure 1.3. The edges of the grabh
represent probabilities of transfer from one node to another, and are
elements of the matrix P.

prob. structure i at time t+1 given structure j at
time t.

Pit1,541
{(1.2.9)

The state of the system configuration at time t is the structure in

which the system is operating at that time.
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Figure 1l.1l: Exponential failure distribution.
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Figure 1.2:

Typical hazard rate function for a transistor.
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Figure 1.3: Three hypothetical system structures.
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k(t) = structural state at time t . {(1.2.10)

k{t) e I (1.2.11)

This structural state evolves in time to form the structural trajectory

{of length T+1)

Xy = (0),k(1), . . . k(D)) (1.2.12)
In general, this structural trajectory is a random variable with apriori
probability of occurance

(L.2.13)

P = M6y, 0 Pk (0)Pr(2)k (1)~ Pr(T)k (T-1)

(Figure 1.5).

1.2.2 cContrel Theory.

In this report, only linear systems with a quadralic cost index
are considered. @At this time, any more general formulation ig of dubious
value in that the linear quadratic problems c¢can demonstrate many of the
fundamental concepts of reliable control system design. It is
doubtful that any other formulation could be solved without the knowledge
gained from the linear quadratic solutions presented in the remainder of
this report. As a further restriction, pexfect observation of the system
state X is assumed. The general class of linear systems discussed in

this report is of the form

+ B

—}-{-t+l = -I}-k(t) it Zk(t) Et (1.2.14}

The set of pairs (ék:dik) describe the possible system structures,
where

k{t) e I (1.2.15)
The remainder of the configuration is specified by the Markov chain

eqguation (1.2.5). The objective of this research i1s to develop control
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laws which account for the possible structural trajectories (1.2.12)

while minimizing some function of the cost. The cost function for a

given random state and control trajectory ((x. K ,u )T_l,x ) is
=t =t "t=0"—7T
N T p T
= b4 + R + ’2‘ 6
Iz X Qx, +p Ru, + x.0x, (1.2.16)

The function of the cost which is minimized is generally taken to be the
expected value of JT over all possible structural trajectories Eé. it
is shown that this ¢lass of optimization problems yields solutions
which are sensitive to both system performance and system reliability,
as modeled in the configuration.

In the remainder of the report, only variations in the B-matrix,
or actuators are considered. BAn actuator is a device which transfers
the control input to the system dynamics. The actuator in the B-matrix
may model a physical linkage, such as is found on the control surfaces of
aircraft, oxr, for example, the effectiveness of a tax reduction on the
economy. A single actuator may fail in many different modes. For

example, the B-matrix can be of the form

B, = bylb, |- |p) (1.2.17)

=J
where the Qd"s are actuators which may £ail to an actuator having zero
gain with a failure probaility per unit time Pe:

b, 0 (1.2.18)
Then the system structures representing modes of failure would be modeled
as B-matrices having at least one zero column.

This class of linear models can also be used as a model for self-

reorganizing systems; the only restriction is that the reordanization,

or reconfiguration, process mist be modeled with a constant hazard rate.
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An important aspect of this research is the study of variocus types
of redundancy. At present, the effect of redundancy on system performance
is poorly understocd. There are two basic types of redundancy: component
redundancy: and functiohal redundancy. Component redundancy is the wuse
of two oxr more identical compenents (in this report, actuators} for the
same task. BA good example is provided by eguation (1.2.17). Suppose
two actuators, b . and Ej . are identical. If b, fails (Equation (.1.2.18)),
b 5 is still operational, and vice~versa. In order to lose the function
of actuators Qj_ and Ej , both actuators must fail; this event will
have a lower probability of occurance than the event of the failuxe
of 2&_; if Efi were not in the configuration the function of actuator
b : would be lost.

The problem with component redundancy in control theory is how
should the allocation of control rescurces be allocated to the redun-
dant components, and how should the component reliabilities affeect the
choice of an coptimal control law? The control methodologies presented
in this report answer the question for a specific class system confi-
gurations.

Functional redundancy implies the overlapping of function of two
or more components in a system. If one of the components fails, part
of its function is still performed by the other (redundant} component(s).
Functionally redundant actuators are modeled in this report in the same
way as component redundancy. The functional redundancy is accounted for
in the expectaion of the cost index over the structural trajectories.

The dynamics of repalr and reconfiguration are all modeled in this

report as exponential failure distributions {constant hazard rates).
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As an example, if two actuators (b o and 13_1) are in a system configura-

tion and can each fail with probability p £ and p £ per unit time,
0 1

respectively, to an actuator with zero gain (0}, then the configuration

dynamics are, assuming independence of failures:

B. = = 2.
By = b5, 1 (1.2.19)
By =[0{b,] (1.2.20)
B, = [EO|03 (1.2.21)
B, =1[0}oal (1.2.22)
Bo 7 QJ. with probability Pge (l—pf } per unit time (1.2.23}
0 1
> B with probability p. (1-p_ } per unit time {1.2.24)
—0 -2 £ £
. 1l 0
-+ B with probability p_p per unit time (1.2.25)
-0 -3 £°f
172
B, - §3 with probability pf per unit time (1.2.26)
2
B, - B, with probability Py per unit time {1L.2.27)
1

From this information, the Markov chain transition matrix P can be formed:

—?L-p fo—p fl-l-p fop f]_ 0 0 0-—

P = Pf0 v Pfl ) l_sz ° ’ (1.2.28)
P £ (l*pfo) 0 1-p fl 0
L pf0 Pfl sz Pfl l_

Repair is considered to be component replacement, and is modeled in the
same manner; e.g.,

0 +B with probability p . p (1.2.29)
- —0 rl r2
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Reconfiguration is the restructuring of the {actuator) configuration to

compensate for failure, and is modeled as
+ i i1 1.2.30
B,7 B, with probability p,, ( )

where B, is a new actuator configuration which will be used on xeconfi-

4
guration after failure.
The methodcologies presented allow the study of the effects .of

failure, repair and reconfiguration on the optimal control of linear

systems; they yield a guantitative analysis of the effectiveness of a

given system design, where effectiveness is a quantity relating both
the performance and the reliability of a configuration design {see

Appendix 1).

1.2.3 General Nature of Results.

There are three classes of reliable controller methodeclogies:

T) Passive (Robust) Controller Design

II) Active {(Switching) Controller, Passive Configuration Design

III} Active Controller, Active Configuration Design

This report concentrates entirely on classes I} and II). Class III)
methodologies are mucﬁ more difficult to study. The Markov chain models
of configuration dynamics which work in classes I) and II) do not hold
in class III); as yet, there is no satisfactory way to model the
configuration dynamics of a system in such a way that the control rules
are well-defined.

Class I) methodologies are passive designs. These designs account
for the occurance of failures in the initial selection of the control
law; on-line, this class of designs does not use any current estimate of

the structural state of the configuration. The design is "conservative"
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in that it continues to stabilize the system without regard to the current

structural state. & special sub-class of these designg is the robust

controller designs. A robust controller will stabilize any structure of

the system without regard to the configuration dynamics; i.e., if the

system remaing in any structural state forever, it will still be
stabilized. The class I) methodologies are represented by the
non-switching gain methodology of Chaéter 5.

Class 1I1) methodologies are active controllers;-in some sense,
they are adaptive. From knowledge ;f the system's past, these controllers
switch their control law on~line in order to compensate for what they
estimate to be the correct structural state. For deterministic systems,
these controllers can be determined analytically. For stochastic
systems, the optimization problems cannot be solved analytically in
general due to the dual control effect [Fel'dbaum, 4- 7]. Thus,
suboptimal control strategies mﬁst be used. The class II) methodologies
are represented by the switching gain methodology in Chapter 3 and

its suboptimal extensions in Chapter 4.
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1.3 Relations with Previous Iiterature.

This research is based on a background knowledge in both reliability
theory and systems theory. Both mathematics and probability theory are
fundamental in these fields. BAs general references to the techniques
used in this report, in real analysis, and measu&e and integration
theory, [Rudin,8], [Segal & Kunze, 9], and [Halmos,10] are good; in
matrix theory, [Gantmacher,ll] is the standard reference. In probabil--
ity theory, [Bauer,12] and [Doob,13] are definitive:; expansions on the
theory of Markov chains are found in [Chung,l4] and [Derman,15].

There are several good texts on reliability theoxry; of these,
[Greene & Bourne, 2] and [Shooman, l] are possibly the best. [Cox,l6]
and [Corcoran,l17] demonstrate the current methods of the scheduling and
use of redundancy in reliability technolegy. Other good treatments are
found in [Barlow and Proschan,l8] and [Gnedenko,l9].

In control theory, a good treatment of the deterministic dinear
quadratic regulator problem is found in the IEEE Transactions Special
Issue edited by [Athans, 20}, and in [Athans & Falb,21]. The dual
control problem is described in [Fel'dbaum, 4~ 7] and several other
publications.

Previously, several authors have studied the optimal control of
systems with randomly varying structure. Most notable among these is
[Wonham,22]1, where the solution to the continuocus time linear regulator
problem with randomly Jjumping parameters is developed. This solution is
similar to the discrete time switching gain solution presented in
Chapter 3. The random parameters are restricted to be a continuous

time Markov chain. The most notable difference is that in [Wonham, 22},
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the assumption is made that the controller has perfect information about
the present state of the random process on—line. The solution switches
gains in a linear state feedback control law whenever thg (Markowvian)
random parameter jumps. In the discrete time switching gain solution
presented in Chapter 3, the control law is determined from past observa-
tions which allow the deduction of the exact state of the random para-
meter process, and then the random parameter may switch values according
to the statisties given by the Markov chain. Thus, the control may be
applied to one of a number of possible structures at the next time
instant. In Wonham's development, the optimal control law is matched
specifically to one structure. The analogous continuous time version
to the switching gain solution of Chapter 3 would be to assume on-line
perfect observation of the random parameter with a fixed time delay.
Wonham's result has no such time delay.

Wonham also proves an existence result for the steady-state optimal
solution to the control of systems with randomly wvarying structure.
This result is based on conditicns of stabilizability of each system
structure and observability of each structure with respect to the
cost functional. The conclusion is only sufficient; it is not necessary
for existence of a steady-state solution. Similar results were cobtained
in [Beard,23] for the existence of a stabilizing gain, where the
structures were of a highly specific form; these results were necessary
and sufficient algebraic conditions, but cannot be readily generalized
to less specific classes of problems.

The time-varying solution of [Wonham,22] is computed using a set of

coupled Riccati-like matrix equations. The coupling is in the form of
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a linear term in thesolution to the matrix equations added to the normal
linear quadratic Riccati equation. The sciution can be precomputed by
solving the coupled Riccati-like equations off-line; the control law is
then switched on-line to a gain which corresponds to the current state
of the Markov process. The optimal solution requires perfect knowledge
of the structure.

In reality, the structure is seldom known perfectly, and a noisy
observation of the random process leads to a dual control problem.
Although much of 'Chapter 3 is based on the fact that the controller can
obtain the structural state with one-step delay in the deterministic
discrete time problem, this report makes the connection, for thé first
timé, of the existence of a steady-state switching gain controllier with
that system's reliability and effectiveness.

[Sworder, 24] has developed, using a version of the stochastic
maximum principle, an optimal feedback control law for a class of linear
systems with jump parameters which is almost identical to that of
faham, 22]; the coupled Riccati-like equations are identical except for
notation. The only difference is Sworder's assumption that the random
process is instantaneously observable from a set of sensors which are
unaffected by the choice of the control law. Using this assumption,
Sworder avoids the problems of dual control.

Sworder also comments on the usefulness of linear system models
with jump parameters in modeling possible failures in the system
{Sworder,24]. [Ratner & Luenberger,25]1 derive a control law for a
continuous time linear system. The system has one failure mode, and a

maximum number of renewals (repairs) can take place. The objective is
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to determine apriori the optimal time intervals in. which the system
should operate in the failure mode, and the optimal-control law, given
thé mode of operation, over a finite time interval. The failure process
is assumed to have an exponential failure distribution (constant hazard
rate) ; the renewal process is controlled, and is not random. The
contrel law is of the switching gain type, and the solution is in the
form of two coupled Riccati-like matrix eguations guite similar to those
in [Wonham,22] and [Sworder,24]. The optimal control policy and the
optimal renewal policy can both be calculated off-line. This class of
rroblems is further investigated by [Sworder,26] to determine over what
region immediate renewal is the optimal policy. Both of these papers
‘illustrate examples of class III) control methodologies; the structural
state as well as the system state is under the influence of the control-
ler. The simple structure of the class of systems studied by [Ratner &
Luenberger,25] allows a solution. There is need for much more work in
this area.

Stil! a third approach to the problems associated with multiple-
structure systems is given in [Bar-Shalom & Sivan,27]. Here, the
measurements of the- system state are corrupted by additive noise. The
open-loop controller and the open-loop feedback controller are derived
using dynamic programming. Knowledge of the presentstate of the randem
process governing the system configuration is not assumed. Therefore,
the (optimal) closed-loop controller would'be a dual control law. The
open—-loop controller assumes no on~line measurements of the system state;
the open-lcoop feedback contreoller assumes fubture on-line measurements

and thereby improves its performance. There is little correlation
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between this paper and the research on which this report is bhased.

[Willner,28] developed a suboptimal control scheme, which allowed
for imperfect observation of the random parameter process, known as
multiple-model . adaptive control. TIn this method, the parameters could
only take a discrete set of wvalues, a canse of recent disfévor, as MMAC
does not always work well when the parameters vary continuously and are
approximated by the mathematics. Similar work has been done in [Pierce &
Sworder,29]. The MMAC methodology is optimal one step backward from the
final time, as is the switching gain methodology in the example of
Chapter 2 when applied to systems with additive white control ncise.

The dual problem of state estimation with a systeﬁ with random
parameter variations over a finite set was studied in [Chang & Athans,30].
It is shown there that the optimal estimator consists of a geometrically
increasing set of Kalman filters, one for each possible structural
trajectory of length t+1 at time t, and an averaging process to compute
the minimum mean-square error estimate from the filter estimates. It
is also shown that when the parameter process is Markovian, a bank of
N2 estimators is optimal, where there are N possible valiies of the
parameters. Each estimator is then conditioned on the possible values
of the parameters at the two previous time instants.

Recently, the robustness of the linear guadratic regulator has been
studied in depth. This work is described in [Wong, et. al.,3l] and
in [Safonov & Athans,32]. A long-standing problem with the linear
quadratic design methodolegy has been the lack of analogs to the various
stability and robustness criteria of classical systems thecry. This

research was aimed at characterizations of robust solutions to,
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specifically, the linear quadratic regulator. Supporting research is
reported in [Safonov & Athans,331, [Wong & Athans,34], [Wong,35]1, and
. [Safconov,36]. The research in this report is related to the robust
controller problem, but the approach is different in that the performance
criteridén is modified to account for possible variations in structure,
such as those caused by failures, rather than depending on certain
properties of the linear quadratic regulator .solution to guarantee
robustness. In this research, the contept of stability is related to
the existence of a finite cost seolution to the non-switching gain
problem. For a specific class of configurations, this approach sclves
the robust controller problem (Chapter 5, Section 9).

Thé existence of an uncertainty threshold for the non-switching
controller of Chapter 5, that limit on parameter uncertainty beyond
which no controller can stabilize the system, is proven for an one-
dimensional example. This work is similar to the work by [Athang,
et. al., 37} on the Uncertainty Threshold Principle and the related
papers by [Ku & Athans,38] and [Ku, et. al.,39]. This research i=s
reported in Chaptexr 2, Section 7.

Tiastly, parts of this research have been presented in an unpub-
lished form at the 1977 Joint Automatic Control Conference in San
Francisco, and published for the 1977 IEEE Conference on Decision and

Control Theory in New Orleans [Birdwell & Athans,40].



35

1.4 Summary of Main Contributions.

There are two major contributions of this research. First, the

classification of a system design as reliable or unreiiable, for the

deterministic variable actuator linear system in Chapter 3, has been
egquated with the existence of a steady-state switching gain and cost

for that design. TIf the steady-state switching gain does not exist,

then the system design cannot Eg_s?abilized; hence, it is unreliable.
The only recourse in such a case is to use more reliable components
and/or more redundancy. Reliability of a system design can therefore
be determined by a test for convergence of the selt of coupled Riccati-
like eguations (3.3.6) as the final time goes to infinity.

A similar result holds for the non-switching gain methedology of
Chapter 5. Here, the system design is classified as reliable or

unreliable with respect to a constant gain linear feedback control law,

depending on the convergence, or divergence, respectively, of egquation
{5.6.16) as the final time goes to infinity. If equation (5.6.18)
converges to a 1limit cycle, then that limit cyele produces a stabilizing
cyclic steady-state gain.

The second major contribution lies in the robustness implications
of the non-switching gain methodology. Precisely, a constant gain fér
a linear feedback control law for a set of linear systems is said to

be robust if that gain stabilizes each linear system individually, i.e.,

without regard tc the configuration dynamics. The problem of determining
when such a gain exists, and of finding a robust gain, can be formulated
in the context of the non-switching gain methodology. As a result, the

non-switching gain methodology gives an algorithm for determining a
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robust gain for a set of linear systems which is optimal with respect to
a guadratic cost criterion. If the algorithm does not converge, then

no robust gain exists.

The following Section of this Chapter will outline the remainder

of this report.

1.5 Outline of Report.
IA Chapter 2, several one-dimensional examples are examined as
a clarification and motivation for the methodologies presented in
Chapters 3 through 5. In addition, Chapter 2, Section 7, deals with
the relationship between the Uncertainty Threshold Principle and the
existence of a steady-state solution to the non-switching gain problem.
Chapter 3 develops the optimal solution to the class of problems
described in Section 2 of this Chapter. The scolution is labeled the

switching gain solution because the gain of a linear feedback control

law switches in response to the exact observation of the system
structure with one-step delay.

Since Chapter 3 deals entirely with deterministic systems, and the
switching gain solution does not extend optimally to the stochastic
case, Chapter 4 presents some suboptimal methods which can be used to
extend the switching gain solution to stochastic problems. Two
methodologies are presented. One (hypothesis testing) is based entirely
on estimation of the structure. The second (dual identification} uses
the dual effect of the control law to determine more precisely what the
structure is with the next ohservation. The optimal contreol law would

have some characteristics of both methodologies, as is shown by example
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in Chapter 2, Section 5.

Chapter 5 derives a control law which ignores any on-line informa-
tion which might be gathered about the structural state, and results
in a non-switching gain solution used in a linear feedback control Jaw.
The stability of this non-switching solution is explored, along with
the existence of a steady-state solution, in Secicn 7. In Section 9,
the rcbustness isgsue is addressed, and the non-switching methodology is
used to define an algorithm which can determine the existence of a
robust gain and calculate an optimal robust gain with respect to a
guadratic cost functional, when one exists.

Chapter 6 focuses on the issues of computer-aided design and the
application of the nen-switching gain methodology to design problems.
Two examples are used to demonstrate the effectiveness of the non-
switching meth9dology in design.

Chapter 7 reviews the results described in the report and suggests

new directions for future research.
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CHAPTER 2

CLARIFICATION AND MOTIVATION OF RESEARCH

2.1 JIntroduction.

The purpose of this Chapter is to motivate all subsequent more
genera;'Chapters with simple one-dimensional examples. In particular,
in Section 2, a one-dimensional problem is formulated and solved to
illustrate the optimal (switching gain) deterministic control for
linear .quadratic systems with variable actuator configurations.

The effects of process noise on this solution are examined in
Section 3. The dual effects which occur in the stochastic systems
motivaté the suboptimal approaches described in Chapter 4.

The possibility of steady-state control of variable actuator
configuration systems with a single linear independent control law
is discussed in Section 6, motivating the work on the non-switching
gain solution and robust control laws in Chapter 5. 1In addition,
the possibility of existence of a steady-state stabilizing linear
feedback control law with constant‘gain is compared with the work on
the Uncertainty Threshold Principle [Athans,et.al.,37] in Section 7.
Section 7 contains the only case of this report where exact algebraic
conditions for the existence of a steady-state solution have been
derived. Unfortunately, these results do not readily extend in an
analytical manner to higher dimensions.

The question of existence of a steady-state solution to these
problems is of great importance. A system design is defined to be

reliable with respect to a certain class of control laws if there
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exists a control law from that class for which the infinite time

cost incurred using that control law is finite. Since the switching
and non-switching gain solutions are. the- optimal solutions for their
respective classes of control laws, if they incur an infinite cost, so
will any other control law frxom that class. In addition, since the
switching gain solution is the optimal control law for the determin-

istic problem, a system design is termed deterministically reliable,

or reliable if and only if the incurred infinite time expected cost
is finite. )

In the next Section, a one-dimensional example is presented
which will be used to motivate the remainder of this report by

examining the ramifications of the switching and non-switching gain

solutions through their specific application to the example.

2.2 A Simple Example--The Optimal Solution.

The following one-dimensicnal example is used to demonstrate the
switching gain methodology presented in Chapter 3, and to show that
the general stochastic problem is analytically intractable. All proofs

and derivations are given in Appendix 2.

2.2.1 Problem Statement.
Let the discrete-time system bhe one-dimensional with one control

variable ut and state variable %, related by

X 4 T ax, + bkut {2.2,1)

The value of the contreol multiplierx (bk) is a random variable which

takes on one of two discrete values at each time t.
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g b if k = 0
b, (£) = (2.2.2)

l /b if k = 1

The random process k{t) is governed by the Markov chain represented

by
i3 = '
Toeal = BT, (2.2.3)
where
2 .
T € R {2.2.4)
-t
P P
P = 112 (2.2.5)
Py1 Poy

At any given time t, the following seguence of events occurs:

I) x,_ is observed exactly, is computed, and k(t~L)is

t Py (t-1)
set to 0 or 1 depending on bk(t—l)

variable representing the Markov chain;

, where k{t-1)is the

II) may change values to b

Py (e-1) K(t)’

IIT) u is applied.

For any given sample path, the performance index is given by

NE

2
(qxt + rui) {(2.2.6)
t=0

where {0,1,...,T} is the time set over which the system is to be
controlled. The cbjective of the control problem is to minimize the
expected cost-to-go at time t, given by

Vix,  k(t-1),u,,t) = E i (@x> + ru’) |k (e-1) (2.2.7)
&= T T

where the expectation is taken over all possible sample paths of

k(T), t<T<T.
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2.2.2 Summary of Solution.

From Appendix 2.1, we find that the optimal control is given

by
Yy
o To,e WSy T (@/BIS)
- - : > X, (2.2.8)
Ty e P8y vy WIS
where
il
0,t :
T = = b7 (2.2.9)
Te T LU i
Lt -1

Thus, the control law is linear in the state X, s and switches between

two precomputable gains, depending on the value of k(t-1).

Given Xor xt—l and ut—l
1] x, -ax
ig £ L _y
= Y1 '
Bpn = _ « —ax (2.2.10)
+t T t-l
1 = 1/b
- Ye-1
- = { = ! i = r
and k{t-1) 0 if lr-t—l {1 01" or 1 if —Et-l [o 1]°.
The optimal cost-to-go is
2
* =3 =
v (xt,k i,t) xtsi,t (2.2.11)
where S and S are propagaﬁed backward in time by the following

0,t 1,t

equations:
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] — 1 = 1
Assuming k=0 at time t, then Eﬁ‘ {pll pzl] and
r[p, . abs +p.. (a/b)S 12
_ P112P% 417 P2y 1,t+1
So,e T2 F 2 2 2
' +
[x+p1107 80 1411Pp1 (/P S]]
blp.,.abs +p.. (a/b)S 1\ 2
R P117%%0, £41"P21 1l | o
11 2 3 0,t+l
r+py ) bUSy L4 #Py (/DTS L
bS e (a/B)S 2
vo la- P118%%g, £417 P21 '8 1,t+1 5
21 2 2 ) P1,e41  (2.2.12)
blr+py 078y 111*P2157 ¢41/P ]
Assuming k=1 at time t, then Eﬂ: = {912 p22} and
r[p. .abs + {a/b)Ys ]2
s = qu+ P12, £237P22 1875 4y
1,t 7] 2 2
[r4p),b Sy 41¥Py, (1/P7)S) o]
b(p. .abS +p.,. (a/b) S 112
vp |a- P1239% £4+37P22'8/075) vy S
12 2 2 0,t+1
TPy oD S 141t P (W/PIS) .
abs +p. . (a/b) 8 2
ep |a- Py58994 +437P2) 1,t+1 <
22 2 ) o2 1,t+1  (2.2.13)
blr+p, b7S) 11%P2551 , ee1/P !

Note from eguation (2.2.8) that u,_ switches from one linear gain

t

to another, depending on the value of x, —- thus, this solution depends

t

on an exact knowledge of x If knowledge of x_ is corrupted by measure-

t’ t

ment noise {or, if v is corrupted by control noise}, then it will be

shown by example that this becomes a dual control problem.
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2.3 The Dual Control Effect.

To demonstrate the difficulties encountered when white process
noise is present, the optimal soclution for the one diménsional
example is derived over the time interval {0,1,2} with additive white
contrel noise present. The system is now represented by

13

g (2.3.1)

x = ax, + b £

+
£+l t T x) ™k

Et is discrete time white noise with zerc mean, E[gth]_= Eat—r'
probability distribution p(£), and is uncorrelated with X and k(1)
for T<t.
Thus, the problem ig to find u; and uI such ghat the expected
cost—to-go is minimized. '
From Appendix 2.2, the optimal control one step back ig.time
{at t=1) is

[t wi(lll)biJ‘qa

w = - =220 - x (2.3.2)

L 9 1
r + L; TTi(lll)biJ T

where . (1]1) is the probability that k

= %

1= i, given the information

X ,u L x. }. As expected, this control is of the same

set 2, = {m  ,x .0 %

1
form as is the detefministic control law, equation (2.2.8), since
there is no benefit in tryving to determine kl more accurately through
the use of a special contrel value. In other words, there is no dual
control effect at £t = Tf—l {(in this example, t=1).

At =0, the situation is different. Now, the optimal control will

force the system to supply more information through the state at t=1

than it normally would in the absence of the procegss white noise Et.
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*

o a numerical minimization of a numerical

In order to compute u

*

integration (in general) must be performed. Thus,‘uo is the

solution of

* . s 2 2. =
Vv (x.,0) = min Xx.g+ur +2gq
0 0 =b (Z) l 0 0
(O & B
1 1
+ Z: Z x2 q(l+a2)
K= |¥=b J 1
) 1 Rix.)
1
1 2
dom alub, | g%’
=0 * 1’ l
- i ; dp(xllkl’ko'zo)Pklko Wk0,0$
r+ E T, (b | g
i i
1=0
(2.3.3)
where
1 pi{x,-ax_-b.u T,
: 1 O 0 O
m (1]1) = Z P, 22 J (2.3.4)

=y
-~ plxy-ax,=byugm; o

and p(x1|kl,k (2.} is the probability measure of Xy over R(xl),

0" 0

, given k., k , and Z_.

th £
e range of x 1 0 0

1
Equation (2.3.3) is very difficult to solve numerically, and

for any realistically-sized problem would be economically infeasible.

For the limited amount of computation that has been done with equation

(2.3.3), the dual control effect is ev@dent from Table 2.1. Note

that as the process noise variance increases, the trend is for the

control u; to increase. This is due to the need for a larger control

to lessen the effect of noise on future estimations of the structure.
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Table 2.1

* —

The optimal control u0 versus LN and =.
* 3 * 6 * o
X uy ({Z=3) a4, (E=686) u, (z2=10)
~2.0 2.3170089 2.3188635 2.3201611
-i.6 * 1.8550055 1.8559061
-1.2 1.3898305 1.3907551 1.3912676
~0.8 0.9255912 0.2259997 0.9261950
-0.4 0.4606236 0.4606920 0.4607206

0.0 -0.005 -0.005 -0.005

0.4 =0.4706236 -=0.4706920 -0.4707206
0.8 -0.9355912 -0.9359997 -0.9361950
1.2 —-1.3998305 =-1.4007551 -1.4012676
1.6 ~1.8635511 -1.8650055 | -1.8659061

# — calculation did not converge due to numerical errors

4

The system used in the calculations is described by eguation

(2.2.1) where

k(t) is 0 or 1
b0 = 2.
bl = .5
aq = 3. -
r=1.

.7 .3
p- [ 3)
- = .5
-0 .5

Table 2.1 is only.intended to demonstrate the difference in the

optimal control laws at time 0 for a two-stage process; numerical

accuracy is not assured. Specifically, the values of -.005 for

*
uO (xo

asymmetry between positive and negative values in the Table.

= 0} are highly doubtful, as well as the consistent
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2.3.1 A Special Case.
It is interesting that for one specialized probability distribu-

*
tion p(&), when the optimal control u

0 is large enough, the optimal

solution is identical with the deterministic solution of Section 2,

From Appendix 2.3, assuming

£§7%E , for i/??_g_g_g V32
P& = (2.3.5)
0 otherwise

*

as shown in Figure 2.1, if~u0 from the deterministic solution (equation

2.2.8) satisfies

*. .
|, =~ b.)u.| > 2/3E for k_ # i (2.3.6)
ko i""o0 0
* .
then u, is alsc the sclution to the stochastic control problem.

Physically, because the noise is amplitude limited, it is easy

to exactly deduce the structure if the control is large enough.
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Figure 2.l1: A probability distribution for amplitude-limited
white noise.
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2.4 Existence of a Steady-State Solution.

Although, as will be stated in Chapter 3, little can be said
about the existence of a steady-state solution to the general n-—dim-
ensional switching gain problem, for the one-dimensional example,
exact conditions for the existence of a steady-state solution can
be found. They are in the form of two simultaneous algebraic eguations

which can be solved analytically.

P b (a _ b[pllab+p2}(a/b)h] ) 2
11 2 2
pllb +p21(l/b }h
p..abtp,_ . (a/b)h 2
+ le (a - i 221 3 ) h (2.4.1)

b[plgab+p22(a/b)h] 2

p a
12 2 2
plzb +p22(l/b ‘h

ab+p. . (a/b)h 2
22 ) h (2.4.2)

p
12
22 2 2
bip, b +p,,h/b ]

The equations are derived in Appendix 2.4. In these equations the

variables ' and h are defined as

So £
' = 1lim E"L——— (2.4.3)
tr—co 0,t+1
and
-8
. t
h = lim Sl’ (2.4.4)
] 0,t
whenever both 5 and S increase without bound as t + -, as defined

0,t 1l,t
in equaticns (2.2.12) and 2.2,13).
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Since " is the limiting value of the ratio of the next value of

= to the present value S it is necessary that

o,t O,t+1’
r>1 ) {2.4.5)
for
©a
SO,t {2.4.6)
Similarily, if SO c has a limit, then ' can have a maximum value of
r

1. Therefore, a test can be made con the solution (h,[) to equations

(2.4.1) and (2.4.2) for the existence of a steady-state solution:

If
h#0or« (2.4.7)
then
- i > .4.8
SO,t' Sl,t o if T 1 (2.4.8)
. < v
( SO,t' Sl,t converge if T 1 (2.4.9)

and there is no conclusicn if T' = 1.
By way of eliminating all possibilities, as an aside, a limit cycle
to the solution of equations (2.2.12) and (2.2.13) cannot occur by

Lemma 1 of Chapter 3.

2.5 Conclusions on the Switching Gain Methodology.

The purpose of the last three Sections on the one-dimensional
switching gain example was to clarify the approach of this phase of the
research, and to motivate the approach of Chapters 3 and 4. In this
Section, some implications of the cne-dimensional example will be

discussed.
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2.5.1 Implications of the Dmnal Control Effect.

It was shown in Section 2 that the optimal solution to the deter-
ministic class of wvariable actuator linear quadratic control problems;,
i.e., the switching gain solution, is conceptually straightforward,
although computationally complex off-line. Unfortunately, in Section 3,
it was demonstrated that the optimal solution of the stochastic version
of the same problem is infeasible. (Witness the problems of calculating
the two-step optimal solution.) Therefore, since the switching gain
deterministic solution is essentially the only solution which can be
described analytically, the research involved in developing the
n-dimensional switching gain solution is justified. This is exactly
what 1s presented in Chapter 3.

It then remains to investigate any extensions (which will of
necessity be suboptimal) which may be made to the switching gain
solution to adapt the solution te the stochastic problem. In Chapter
4, a start is made in that direction. These are two basic routes
to follow: The various hypothesis testing algorithms in combination
with the switching gain solution, and a formulation developed in
Chapter 4 which gives the control vector a dual effect; the control
is changed to increase the accuracy of the estimation algorithm.

The optimal control would use technigues from both categories, as the

dual effect is clearly seen in Table 2.1.

2.5.2 Existence of a Steady-State.
Although for the one-dimensional example, it is possible to

determine the condition for convergence of the Riccati-like equations
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(2.2.12) and (2.2.13}, this method does not extend to the n-dimen-

sional solution. It is at present unknown under what conditions
the Riccati-like equations for the n-dimensional problem converge;
therefore, there is little comment on conditions for convergence in.

the remainder of this report.
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2.6 A Simple Example-—The Non-Switching Solution.

In the previous sections of this Chapter, motivation was given
for the development of the optimal (switching} solution to the linear
quadratic - variable actuator configuration control problem.
Several problems with the method were pointed out in Section 5.
Specifically, the methodology does not extend optimally to the stochas-
tic case due to the dual control effect. Secondly, the increase in
on-line complexity over the usual linear guadratic control problem
is significant, especially in the suboptimal stochastic schemes.

In many instances, a stabilizing solution to this class of
control problems is desired which exhibits the same complexity as
does the usual linear gquadratic controller. For instance, it may be
desired that a control law stabilize a system without requiring
error detection strategies and switching to a new form upon detection
of failure. A subclass of these problems occur when a robust gain
(one which stabilizes each configuration without regard for the
dynamics of structural changes) for a set of linear systems is
desired. The first problem within this subclass deals with the
existence of such a gain. The second problem deals with the choice
of an optimum robust gain with respect to some cost index.

Tn the following Subsections, an example of non-switching gain
methodology ié given as an illustration of the concepts; since the
derivations are gquite complex, proofs are deferred until Chapter 5,

where the entire development of the non-switching solution is presented.
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The following formulation is only for the steady-state solution;
in Section 7, the conditions for existence of the steady-state solu-
tion will be given and related to the Uncertainty Threshold Principle

[Athans,et. al., ]

2.6.1 Problem Statement
In Chapter 5, the non-switching control problem is solved for
linear systems with variable actuator configuratioﬁs and quadratic
cost. It was stated in the conclusion of the previous Section that
a relationship exists bhetween the existence of a steady-state solution
and the Uncertainty Threshold.Principle; In this Subsection, the
existence of a steady-state non-switching solution to the one dimen-
sional example presented in Section 2 will be studied to illustrate
this_relationship.
The system to be used is
X~ axt-f-bkut ) . (2.6.1)
where x, a, bi and u are scalars, Kk can be either 0 or 1, and i takes
on integer values.
L if k=0
b. = (2.6.2)
1/b if k=1
The index k represents the structural state of the system, and

is a random variable with statistics generated by the Markov chain
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T =BT, (2.6.3)
P 1-p

P = . (2.6.4)
1-p p

where T it is the probability that the structural state is i at time t,

I

given some initial condition W (P . .. ).
- init

The infinite-time, or steady-state non-switching control problem

is formulated by specifing that the solution u N is to minimize the

[++]
cost of a trajectory (kt ,11t) = given by the sum
o) 5 5 init
J = 2 qxt + ru, (2.6.5)

" " init
2.6.2 Summarxy of Solution

The solution is computed, from Chapter 5, equations (5.7.17)

and (5.7.18), when it exists, as the solution (SO,Sl) of

2 2
5 (bS+S, /b)bS (bso+sl/b) (r+b”S )
Sp=a {P{S - 2 5 + 5 2. 2
L (b SO+Sl/b Y +r 4 (b SO+Sl/b }+r)
(bs . +s_/b}S {bs _+s /b)2(r+S /b2)
01 1 01 1
+ A-p) [ 5 - 2 5 + 5 2 3
(b SO+Sl/b Y4r)b 44 SO+Sl/b Y4x)
+ q - (2.6.6)
2 2
2 (bso+sl/b)bs0 (bso+sl/b) {x+b SO)
8= a | I-p)| S4- 2 2 * ) 2 2
L(b s +5. /b ) +r 45 (b"s +5_ /b7 )Y+r)
0 "1 o 1
2 2
.o (S ) (bS+8,/b)S | . (bS+S. /b)” (x+S, /b") )
1 (%(bzso+sl/b2)+r)b 4(‘@(b250+sl/b2)+r)2

+q (2.6.7)
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and the control is given by
+
* (bS0 Sl/b)a

u, = - *x (2.6.8)
‘(r+1/a(b250+81/b2)) &

Note that the steady-state solution is a linear feedback control
law with a constant gain which is pre—computable using eqguations
{2.6.6) and (2.6.7). The on-line implementation of this solution has
the same compiexity as does the usual linear quadratic steady-state

solution.
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2.7 Existence of a Steady-State Solution and the Uncertainty
Threshold Principle.

In this Section, the existence of a steady-state solution to
equations (2.6.6) and {(2.6.7) is related to the Uncertainty Threshold
Principle [Athans et. al.,37]. This Principle states that for a
certain class of systemg, there exists a threshold, or bound, on the
degree of uncertainty in the system dynamics beyond which no control
1;w will stabilize the system. Furthermore, it is noted in
[Athans et. al.,37] that there does exist a "minimizing" control even
though the infinite~time cost in infinite.

. For the non-switching gain clagss of controllers, it will be
shown in this Section that, at least for the one-dimensional example
of Sections 2 and 6; such a threshold does exist; furthermore, it will
be explicitly calculated. In addition, it will be demonstrated that
the non-switching control gain .converges even when no finite cost

steady-state solution exists.

2.7.1 Formulation of Existence Problem.

The guestion is now asked: When does the steady state solution
exist? I.e., when is the cost, given by

3 =3(S. + S,)%° (2.7.1)

0 170

finite?

This problem is solved by showing when the sclution does not
exist.

Allowing

- o0
So (2.7.2)

and setting
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S

h = lim Sl’t (2.7.3)
tr-® "0,t
S.
' = 1lim EQJ-:— (2.7.4)
tr—= "0,t+1
where SO £ and Sl N are the values of the r.h.s. of equations (2.6.6)
r I

and (2.6.7) iterated backwards t times from an initial value Si 0=Q,
r

equations (2.6.6) and (2.6.7) become

2 2
e az(P (1 _ (ora/m)b | (bth/b) b )

%(b°+h/b%) (b>+h/b%)°
epy [nfo - m e et (2.7.5)
P L. 2. 2 2. 2.2 -1
2{b +h/b )b (b +h/b7)
o = 22 [(1opy (1 - CEra/0ID (b+h/b) *b
= a P . 22 Y T 33
(b +h/b") (b +h/b7)
2,2 ’
{b+h/b) ] (b+th/b} " /b
+Phl—1 5 5 + > > 5 | {2.7.6)
z(b +h/b7)b {(b"+h/b")

2.7.2 Summary of Solution.
Eguations (2.7.5) and {2.7.6) have 5 solutions. The solutions of h

and T of interest are:

For p # %;
h = —(p (b (6-2w)-3b°-3) +( (2b2~2) p-bL41)V
+ (4b8—-2b4+2) _p2+b8--2b4+l) /( (2b4+2 ) p2-2pW) {2.7.7)
1
T = a®(-pb (2p2+ap—2) + (bO+1) (po=2p+1) 1 2 (b2+1)p?)

/( (b2+1) 2 (2p-~1) (2.7.8)
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where

v = b2 (p(a-abd (2p2+dp~2) +b (p2-2p+1) +p°=2p+1] %)

+2p2-2) 408 (5p2—2p+1) +p2a2pl] 2 (2.7.9)

and

W= [bSopdi1) pe (~2bBeant-2) prpBooptinl (2.7.10)
For p = ’;

- (2.7.11)

e (2.7.12)

2(b41)
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2.7.3 Graphical Tllustration of Solution.

Eguations (2.7.7) through (2.7.12) are too complex for much
information to be gleaned from study. Therefore, their significance
is demonstrated graphically in this section.

These equaticons are used to compute the absclute values of a
versus b and p above which no stabilizing non-switching contrel exists;

i.e., since I' is the limiting ratio of S to S0 1’ what threshold
r

o,t
value of |a| yields I' = 1? Since the system (2.6.1) is a discrete
time one, this threshold guantifies how unstable the open-loop system

must be for there to be no stabilizing solution. This quantity is

called the uncertainty threshold value of Ial. For the case p = %,

|al

threshold 1S €Sy to compute from equation (2.7.12)
4 %
_ [2(b7+1)]
Ialthreshold - 2 {(2.7.13)
|p-1]
For p # %,
|a] = ®%+1) [(2p-1)
threshold

/(e (oh41) p- [b% (20%+4p-2)+ (542) (p7-2p411 %)) 1
{(2.7.14)

A plot of |a| versus p (long axis) and b is shown in Figure 2.2.

threshold
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Figure 2.2: Ialthreshold versus p, b.
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The In(b} axis 1s used because la[ is symmetric with respect

threshold

to 1n(b) around zero (lalthreshold(b) = Ia[threshold(l/b) ). b varies
from e 2> to e "0%; p varies from p = 1 to p = .01 . Note that

= 0 [y -5 - - - * -
]a|threshold as b 1 and/or p 0. This is because as b 1, the

syetem looks more and more like
= - ela
Xigp = 8% but (2.7.15)
which is controllable for all wvalues of a. As p + 0, the system is-
switching more and more rapidly between the two structures; therefore,

each structure has less time to influence the system unfavorably and

the system becomes easier to control, leading to ]a]

_>
threshold

2.7.4 Best Control with Infinite Cost.
Although the cost may be.- infinite, a finite gain control exists.

From equation (2.6.8}, and allowing S. + « and Sl/SO -+ h, the control

0
becomes

* (—b;—hﬂ’—%— x, (2.7.16)
(b +h/b%)

Note that the control gain does not depend on q or r, but only on p,

a and b, as in the work with the Uncertainty Threshold Principle. A
plot of h versus p (long axisg) and b is given in Figures 2.3a and 2.3b,
in the same manner as for I'. MNote that as p = O+, h = o (except at

b = 1). For this bhoundary, we rely oh a symmetric argument, switching

the roles of SO and S., since we only know that Sl > o,

1

An interesting symmetxy exists in h with respect to p. Tf h is
defined as

h = limh (2.7.17)
b>0



Figure 2.3a:

h wversus p, b.
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Pigure 2.3b: h versus p, b.
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then
5 = 1-p {2.7.18)
P
Letting p = & + x,
- 1 - 2x
hix) 17 ox (2.7.19')
and
— l .
hi{x) = — (2.7.20)
h(-x)
Thus, ln{ikp)] is symmetric around p = .5.. This solves the boundary

problem, because as p-> 1, h > 0 {(except at b = 1), and the condition
S, > © is satisfied (S;+0). Since h is symmetric, and h{p,b) +h(p)
for p+0, the solution is well-defined at p = 0.

In Figure 2.4, the control gain divided by a, ¢, is plotted as a

function of p and b.

*

u, = -gax

. (2.7.21)

t
+ + —

Note that as p >0 (and h+ o), g+ b, and as p=+ 1 {(and h + 0),

g > 1/b, and that by = b and by = 1/b. Thus, as P + 01, the optimal gain

tends towards the deadbeat controller for the gystem in structural

state 1, and as p >~ 1, the optimal gain tends towards the deadbeat

controller for the system in structural state 0.
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2.7.5 Conclusion.

In this Section, the steady-state properties of the non-switching
solution to a specific example of actuator failure were studied, and
were related to the Uncertainty Threshold Principle. In particular,
the exigtence of an uncertainty threshold hés been established, and
with the help of the high degree of symmetry in the example, the values

for |a[ + given b and p, were calculated. It was also shown

threshold
that the best control with infinite cost is a function only of a, b and
P, & situation analogous to the solution cbtained in the papers on the
Uncertainty Threshold Principle {Athans et. al.,37].

An analogous solution to that presented here should exist for the
switching gain problem, and in fact, the rudiments of such a solution
are given in Section 4. As a guide for future research, it would be
interesting to compare the two methodologies on the basis of these
solutions. Unfortunately, it is mathematically intractable to extend

this result to the multivariable case, although another approach may

be found.

2.8 Summary.
The unifying issue in this research is the interrelationship
between the issues of contreol and reliability. Section 7 brushes on

the question of when a system design is considered a reliable design.

In Chapter 3, a reliable design will be defined as one in which the
steady-state switching gain solution exists. Therefore, questions
concerning the existence of such solutions become guite important.
Unfortunately, little headway has been made in the development of any

simple test for the existence of the steady-state solution. Only in
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&
Section 7, in the specific case of the non-switching gain solution,

for a specific (relatively trivial) example, and in Section 4 for the
same example with the optimal solution, have conditions for existence
of a steady-state been resolved. In Section 7, these conditions are
given explicitly; in Section 4, they are given as the solﬁtion to two
simultaneous eguations. For the general n-dimensional problems in the
remainder of this report, existence can only be tested by iteration of

the solution equations.
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CHAPTER 3

THE SWITCHING GAIN SOLUTTON

3.1 Introduction.

In this Chapter, a control methodology for linear systems with
quadratic cost criteria and variable actuator configurations will be
developed which accounts for the failure, repair and reconfiguration
of the actuators by 'switching the control gain on detection of a
change in configuration. This problem is viewed as a control problem
rather than as the traditional estimation problem. Therefore, a
deterministic model is assumed, except for the random changes in
configuration, which are modeled by a Markov chain. This methodology
has the advantage that all gain and expected cost calculations are
done off-line. The gains switch on-linewith changes in the configura-
tion, which are observable with one-step delay for almost all values
of u, (i.e., except for a set of measure zero}. In addition, the
method is useful in the stochastic case, though not optimal, in
conjunction with identification methods such as hypothesis testing
and dual identification, which will be described in Chapter 4. The
gain and expected cost calculations can be used as an evaluation
technique in computer-aided design of linear systems. 2An example
would be in trade-off studies of various redundancy configurations
with respect to performance, reliability, and system effectiveness.
The disadvantages of the technique as it is presented here arxe that it

requires perfect measurement of the state and that only multiple
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actuator configurations are considered. The multiple sensor configura-
éion problem should be dual to this work. Changes in the A matrix
are a minor extension; however, the general problem allowing variations
in both the actuators and the observers would be a major result.

Previously, several authors have studied the optimal contrel of
systems with randomly varying structure. Most nqtable among these is
[Wonham, 22}, where he develops a solution to the linear regulator
pProblem with randomly jumping parameters in continuous time. The
solution assumes apriori that the controller has perfect information
about the present stﬁte of the random parameter process. Little work
was done on the steady-state existence problem.

The golution presented ig this Chapter is analogous to that of
Wonham's; however, the discrete time formulation of the problem allows
the controller to observe exactly with one step delay the wvalue of the
Markov parameter process. Thus, it is shown that for the discrete-
time process, the optimal controller is not dual.

Tn addition to this conclusion, this research makes the connection,
for the first time, of control and system reliability and effectiveness.
This is the unifying concept in the entire report, and has been discuss-
ed in detail in Chapter 1.

The procedure for determining the existence of a steady-state
solution to the switching gain control problem divides system designs
into two classes: If a design allows a steady-state solution, then
that solution is stabilizing (see ?ection 7, Chapter 5); therefore,

that design is classified as a reliable design. On the other hand, if
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no steady-state solution exists, then that deéign is classified as
inherently unreliable.

Although no easy test exists for the existence of a steady-state
solution, the computer can always be used to iterate equation (3.3.6)
backward in time and check for stability. Therefore, this methodolégy
y%glds a classification of systems into those which are inherently

reliable and those which are not.

3.2 Mathematical Formulation.

In this Section, the n-dimensicnal extension to the one-dimension-
al switching gain result presented in Chapter 2 will be developed.
The only non-trivial task is to prove that the system structure is

observable for almost all values of the control. The system model is

= + 2.
Eear T 2L T By B¢ (3.2.1)
whera
n
Xe £ R (3.2.2)
m
[ el
n, & R (3.2.3)
% )
ae rR " (3.2.4)
and, for each k, an element of an indexing set I
kezr=1{0,1,2, ... ,L} (3.2.5)
>
B. e RO © (3.2.6)
-k
where
B, e {B,}, (3.2.7)

The index k{t} is a random variable taking valuwes in I which is

governed by a Markov chain and
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Terr ~ ELg (3.2.8)
+ -
7 erT . (3.2.9)
—t
where 1Ti £ is the probability of k(t) = i, given no onr—line information

about k(t), and T 0 is the initial daistribution over I.

It is assumed that the following sequence of events occurs at
each time t:

1y x & is observed exactly

2) then switches to B

Bx(e-1) Bro)

3) then u, is applied.
The‘ control interval is assumed to be
{0,1,2, . . . ,T} {3.2.10)

and the cost function is selected as

-1
Jp (om0 x,)
=1
_ T T T . -
= t_uzits.?.zst +uiRu, + X, 0X, (3.2.11)

The cbjective is to choose a. feedback control law, which may

depend on any past information about x LOT L, mapping x £ into u £
%
¢, = RP—>R" (3.2.12)
* — 3.2
$, s x —u, (3.2.13)

such that the expected value of the cost function JT from equation
(3.2.11)

T, = ELJ T, ] (3.2.14)

T 0

*
is minimized over all possible mappings gtat glt .
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3.3 The Swiitching Gain Solution.

Normally, a control law of the form (3.2.13) must provide both
a control and an estimation function in this type of problem; hence
the label dual control is used. Here, the structure of the problem

allows the exact determination of k(t-1} from X and u

£ e L

for almost all values of u . This result is stated and proved in

t-1

the following theorem.

Theorem Jl: For the set {Ek} keI’ where the gk 's are distinct, the

L o
set {Ek,t+l = Ax, + B, u Y ' has distinct members for almost all

values of u, .
—t

Proof: See Appendix 3.1.

Ignoring the set of controls of measure zero for which the

members of

L
By, et im0 (3.3.1)

are not distinct, then for (almost) any control which the optimal

algorithm selects, the resulting state x can be compared with the

—t+1

members of the set (3.3.1) for an exact match (of which there is only
one with probability 1), and k(t) is identified as the generator of

that i mb -
at matching member X, 4l

Since perfect identification is the best any algorithm can achieve,
* *

£ ¢ ¢ &) can be calculated with the

the optimal control law u &

assumption that k(t-1} is known, since this is the case with probability

one. Thus, this solution will be labeled the switching gain solution,

since, for each time t, L+l optimal solutions are calculated apriori,

and one solution is chosen on-linefor each time t, based on the past



measurements x X and u £’ which yield perfect knowledge of

t " =t-1
k(t-1).
Dynamic programming will be used to derive the optimal switching

gain solution. At each time &, the expected cost-to-go using the

control sequence

* * *

Ber Bepnr Bevpr - - 0 7 Bpa (3.3-2)
and given the value of k(t-1) is defined as
V(§t 2, sk(E-1),1)
= x,0%, + uiRu,
* B g {V*(Bitﬂ Je(t),t+1) | k(1) } (3.3.3)

where * denotes the optimum value and v* is the optimal value of V.

Then, by dynamic programming

Se=2¢
B, = 80 )

*
+ Ek(t){v (Et'l‘l rk(t):t"l‘l) , k(t—'l)}) (3.3.4)

* . {.T
v (_}gt k(t=1),t) = min X, 0x

It is proved, from Appendix 3.2, that

* T
l‘k t- = P 3
V(:_c-t (t-1),t) Etg-k,t?it (3.3.5)
where the S T are determined by a set of L+l coupled Riccati-like
r

equations (one for each possible configuration):

o ff
1=0
T -1
4 pﬂ(g'ﬁﬁléi:][§+ Pix BiSi,e41 8
L1=0 i=0
r 3
’ & Pix Ei-—::,t+1] jf‘.” Q (3.3.6)
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The optimal control, given k({t-1) = k, is

U.* =-|R + 2 BTS B -1
—kt |= Pik 2125, e0124
1=0
T
ZO ik -——1—1 t—!—l——t (3.3.7)
Writing
x
B, Sx,e¥e _ (3.3.8)
then
T ~1
Sr,e” 7[R 120 Pie Bi8:, 184

lk-—ls—l t+l—- (3.3.9)
1=0

*
Thus, » o, =(bt(§42 is a switching gain linear control law which

depends on k(t-1). The variable k(t-1) is determined by

ki{t-l) = i1 1iff Et—g_i . E—igt-l (3.3.10)

Note that the 5 . s and the optimal gains G

€ can be computed
I

—k,t
off~line and stored. Then, at each time t, the proper gain is selected

on-line from k(t-1), using equation (3.3.10), as in Figure 3.1.

3.4 Discussion of Results.

The solution in section 3 is quite complex relative to the struc-
ture of the usual linear gquadratic solution. Each of the Riccati-like
equations (3.3.6) involves the same complexity as the Riccati equation
for the linear gquadratic solution. In addition, there is the on-line
complexity arising from the implementation of gain scheduling. In
Chapter 5, a non-switching gain scoluticon will be presented which has

an identical on-line structure to that of the linear gquadratic
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The switching gain control law.
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solution, but has similar off-line computational complexity to that of
the switching gain sclution. Depending on the system requirements,
either solution could be used; the non-switching gain solution is
suboptimal, but requires less on-line complexity. This trade-off may
favor the non-switching solution in some cases.

A steady-state solution to equation (3.3.6) may exist, but the
conditions for its existence are unknown. The steady-state solution
would have phe advantage that a time-invariant set of gains result.
Thus, only one set of gains need be stored on-line, instead of requir-
ing a set of gains to be stored for each time t. Since the steady-
state solution is simply the value to which equation (3.3.6) converges
as it is iterated backward in time, at present, the eguations can
be iterated numerically until either they converge or meet some test
of non;convergence. Unlike the non-switching solution presented in
Chapter 5, the pos;ibility of limit cycle solutions in the switching

gain computations is excluded by the following lemma:

Lemma l: If the optimal expected cost-to-go at time t is bounded
for all t, then eguation (3.3.6) converges.

Proof: See Appendix 3.3.

Once again, it is stressed that the existence of a steady-state
solution to the switching gain problem establishes a division of
system designs into those which are inherently reliable and those
which are unreliable. Even though conditions to test for the exis-
tence of the steady-state solution are unavailable,software can be

used with itexation for the test.



In Section 5, some numerical examples are given to illustrate

the switching gain solution.

77
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3.5 BExamples.

In this Section, a two-dimensional example is presented with three
different switching gain solutions to illustrate ‘the switching gain
computational methodology. The computer routines which are used in
the calculation of the switching gain solution are listed in the
Appendix. The primary subroutine is READY; it calls WEIGHT. Any other
routines which are used are from the standard ESI subroutine library.
The main program RDYMAIN is used to call READY.

Example 3.1 is a two—dimensional system with four structural
states corresponding to the failure modes of two actuators. In this
example, failure of an actuator is modeled as an actuator‘gain of

zero. Thus, the four structures are: I} Both- actuators working (B

0);

IT) One actuator failed (§_ and 2*2), and III) Both actuators failed

i
Q§3). The system is controllable in all structures except for the
sturcture represented by B 3"

Actuator failures and repairs are assumed to be independent events
with probabilities of failure and repair, per unit time, of pf and P
respectively, for both actuators.

In Example 3.1, the matrixes @ and R are the quadratic weighting

matrices for the state 51: and the control u

L respectively. The

matrix P is the Markov transition matrix, which is calculated from knowl-
edge of the system configuration dynamics, represented graphically

in Figure 3.2.



Figure 3.2:
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Markov transition probabilities for Example 3.1.
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There are three Cases to Example 3.1. Each Case assumes a different
failure rate and repalr rate for the actuators. Case i) has a high
probability of failure and a low probability of repair, relative to
Cases ii) and iii). The séitching gain solution is not convergent for
Case i}; the gains themselves converge, but the expected costs do not.
Only configuration state 0 is stabilized with its corresponding gain,
Sq -

Cases ii) and iii) both assume more reliable actuators than does

Case i). Both Cases ii) and iii) have convergent switching gain

solutions. Therefore, both Cases ii) and iii) represent reliable

configuration designs, while Case i) is unreliable. This difference
is due entirely to the different component rxeliabilities. Equivalently,
Cases ii) and iii) are stabilized by the switching gain solution, while

Case i) is not. WNote that in this Example, stabilizability is not

equivalent to stability in each configuration state, or robustness.
For this example, no robust gain exists because the system is
uncontrollable from configuration state 3.

Cases 1i) and iii) are also presented in Chapter 5, where their
non-switching gain sclutions are given. BAccording to the theory, it
should be more difficult to stabilize a given system with the non-switch-
ing gain than it is with the switching gain, because of the optimality
of the switching gain solution. This is demonstrated for this example;
in Chapter 5, the non-switching gain solution to Case ii) is not

convergent.



Example 3.1:

2.71828 0.0

A

0.0 .36788

- 1.71828 1.71828

| —. 63212 .63212

[1.71828 0.0

| -.63212 0.0

14. 8.
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B 2
1-2pgtp;
2
Pg (l-—pf)
2
pf(l-pf)

2
Pe

(1"Pf)Pr

| v

PrPe

(l_Pr)Pf

The system dynamics are

+ B

=ax,

e+l k{t) Et

k(t) € {o0,1,2,3}

1-pg—P,tPcP,

1

]

0

(1-pg)p,

P Ps

1-Pg P, *PeP, P (17P.)

(1—Pr)pf

The cost, which is to be minimized, is
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Example 3.1, Case 1)

-.9636

G=
-0 -.9134
-.9234

G"_".
1 -.8699
-.8094

G=
2 -1.020
~.9636

c =
3 -.9134

Stability:

Non-Convergent; but gains converge:

1.094 x 10°°

~5.835 x 10 °©

1.740 x 10

-5.136 x 10

.92186 x 10

-4.05 x 10

.7353 x 10 °

-3.923 x 10°°

Configuration

0 (B,)

1 (8)

2 (8,)

3 (B

Bj)

.21

.21

.09

Stable

ves

no

no

no
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Example 3.1, Case ii}
= .1, = .0
Pg pr

-.8890

i

-.7752

25.57

8.611

Stability:

.04222

.81

.09

.09

-.0%914] .

8.611

6.398

Configuration

0

1

2

'

@®,)

(B.)

i

(8,)

2

(B.)

3

]

Convergent Coupled Riccati Equations:

for i =0,1,2,3

Stable
yes
no
no

* o
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Example 3.1, Case iii)

Pf = -010 Pl’ = ,98

| =2

.9799
. 009999

. 009999

.0001020
L -

Convergent Coupled Riccati Equations:

-.7558
G =
0 1_.8073
15.88
s =1
° lsg.105
~.7060
—1 1 g4a1
[16. 06
S =
1 8.074
_.8375
G =
2 . 7543
16.31
5,=
8.199

-1270

-.1786

8.105

6.137

.1186

-1.723

8.074

6.143

-10920

-.1669

8.199

6.158
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Stability:

-.7863 .1023
6,= .
~. 7926 -.161%
16.54 8.170
54%
8.170 6.162
Configuration
0 q;oy
1 (§l)
2 Q@z)

3 (B,)
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3.6 Summary.

In this chapter, the optimal solution to the linear control
problem with variable actuator configuration was developed. It was
shown that the optimal sclution uses a linear switching feedback gain
which depends on the previous configuration. This configuration is
directly computable from the past measurements; this fact allows the
development of the switching gain sclution by eliminating dual con-
trol considerations. The exact measurement of the configuration with
one~step delay holds only for the deterministic case, %here there is
no corruption of the state or control observations by noise.

In Chapter 4, the use of the switching gain methods will be
demonstfated for stochastic problems in conjunction with two different
forms of identification: Hypothesis testing and dual identification,
a technique for "pushing" thé control variable ocut of the ncoisy
region, when the noise is amplitude limited, to cbtain an exact

identification of the system structure.
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CHAPTER 4

EXTENSIONS TO THE STOCHASTIC CASE

4.3 Introduction.

In Chapter 3, the optimal solution to the deterministic linear
gquadratic control problem with variable actuator configuration was
developed. It was also demonstrated that the optimal solution of
the general stochastic linear quadratic problem is hopelessly compilex
in Chapter 2. Therefore, in this Chapter, extensions to the detsr-
ministic solution to allow its operation in a stochastic environment
will be studied.

From the deriwvation of the switching gain solution, whenever
the structure of the system is known perfec?ly with one step delay,
and if it is assumed that it will be measured perfectly at the next
time instant,,the optimal solution is the deterministic switching
gain solution. In designing a suboptimal control system, a method
of identifying the system structure is used, with the assumption that
the identification is perfect, and the appropriaté deterministic
gain is Selected.‘

Two conceptually different methods of structure identification
will be presented in this Chapter. The first is c¢lassical hypothesig
testing. It is the easiest to implement, although extensions to
n-step hypothesis testing can be made which are very complex. The

second method is labeled dual identification; the expression is used

because it takes advantage of the dual effect of the control law to

guarantee perfect identification. 1In this method, a perturbation
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(which may or may not be that small) to the deterministic control is
introduced which separates the effect of ampliﬁude limited white
contrel noise from that of the system structure. As a worst case
control law, this perturbation Qould be applied at each time instant,
but in practice, it would only be applied once every n time instances
so that its overall effect on system performance wonld be lessened..
In the next Section, the system model will be described, and the

hypothesis testing identification algorithm will be presented.

4.2 Hypothesis Testing Identification.

The system model used here is the same as in Chapter 3, but with
the exception that additive white noiée is introduced into the
dynamics:

sl TRAEL P Ep Bt By (4.2.1)
For the hypothesis testing identification method, §1: is assumed to be
zero mean white noise with probability distribution p(§). It is
assumed to be uncorrelated with k(t) and 51;' Perfect measurement of
the state is retained.

The basic hypothesis testing method is very simple: At each time
t, one of L+l hypotheses is chosen, where each hypothesis Hi is

Hi :- k{t-1) = i (£4.2.2)

With each hypothesis Hi' there is a probability of Hi being

correct, given the measurement X and the past information:ﬂjt—l|t—l},

t

the probability distribution of k(t-1), given the measurements through

Kiq - Then the updated probability {see Appendix 2) ﬂi(tnllt), the
probability of k(t-1l) = i, given all measurements through Xy is
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given by
pix Ax, - -B.u, )W (t-1]t-1)
w (t-1e) = L= Lot S o S S (4.2.3)
J:io p(.}.&t- éﬁt_l - Ejy“t"l )Tr:] (t_llt—l)

_ Hypothesis Hi is assumed to be correct if

w, (e-1e) > ¥ (t-1]t) for all § # i (4.2.4)
Ties are resolved arbitrarily. Then, given the correct hypothesis Hi'
the corresponding deterministic optimal switching gain is used to
compute the control at time t

u =G,

4.2.5
By T2 e3¢ ( )

as in eguations (3.3.8) and (3.3.9).

The probability distribution is then propagated with the Markov
chain equation

wit|t) = 7 (e-1]¢) (4.2.6)
and the process repeats.

This algorithm can work well if there are significant differences
in the effect of the control variable between configurations. 'When
the differences are slight, a mistracking will result until the errors
are large enough to be detected through eguation (4.2.3). The method
does not exploit any of the dual effect of the control variable on
the measurement of the configuration. The method presented next does
use the dual effect to identify the correct structure. 2Znalytically,
it cannot be said which method is best, as the optimal control law
will lie somewhere between the two. It is possible to extend the
hypothesis testing procedure to n-step hypothesis testing where a

hypothesis is made about the last n values of k(t) and is then tested.
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Since this investigation is not within the primary scope of this
research, it is left as an open problem for future research. It is

also possible that a combination of hypothesis testing and dvwal identi-
fication may be used to gain some of the advantages of both methods;
dual identification yields fast identification of the correct structures
while hypothesis testing does not sacrifice control of the system

while there is a high probability that the structure is correctly

identified.

4.3 Dual Identification.

The underlying concept of dual identification is to periodically
change the control in order to increase the accuracy of identification
of the structure. In the limiting case, the control is changed
enough to guarantee perfect identification of the current structure
with the next observation. For this case only amplitude limited noise
is considered. The system model is

=Ax_ +

Ein =22t —B-k(t) u, # Pi.g,t (4.3.1)

where §_ & is %-dimensional white noise which takes on values in the

unit sphere with distribution p(gp and is uncorrelated with X, and

k(t). M is an nX % matrix which defines the ellipsoid in R" which
contains g.l___E"t.
Normally, if no identification were to be performed, and if k(t-1}

were known, the optimal detexministic switching gain EJ{(t 1)+ from
- r

equation {3.3.9) would be used to compute Eai.

=G (4.3.2)

*
e T Epe-1n,t 3

In dual identification, the goal is to compute a gain offget u 1.t
r
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such that when the control

*

By S otm, (4.3.3)

is applied to the system, identification of the structure k(t) with

the observation x £+l is guaranteed. To accomplish this, note that,

for a given B, , X will be in a bounded convex set determined by

k t+l

B and M. Thus,

~Ax, =B u_ +ME (4.3.4)

Zenl “xle

and £ can be any element in the unit sphere S(RR') . Thexrefore,

t

perfect identification of k(t) is guaranteed if no two of the domains

of x corresponding of the B

£+1 's have a non-empty open intersection.

k

That is, the following condition must be satisfied for each pair of

L
] -
Bki s and every El and Ez of S(R):

(Ekl _?-kz)-‘?-t +ME, -E,) # 0 (4.3.5)

This condition is the same as

Iu* @, -3

B u |l >2
kl k2 t
if (8, - B. Ju, & N(M)
X, k, 'St
otherwise,
(g_kl - gkz)gt # 0 (4.3.6)

where M # is the generalized inverse of M and NQ&_) is the nullspace
of M. Note that the inequality of (4.3.6) can be relaxed to equality,

since the intersection of the two domains of x would only be at

t4+1

the point of tangency, a set of measure zero in either domain.

The objective ig to choose u

¥, . such that (4.3.6) is satisfied

for all pairs B and -B-k in the reachable subset of all actuator

kl 2



configurations. The reachable subset refers to the subset of configu-
rations Ej, which have a non-zero probability of occurance at time t,

given ‘that thé configuration was_gk(t_l) at t-1. This is the same as

the condition that

Ed. is in the reachable subset from B

k{t~-1)

1 Py pogy >0 (4.3.7)

Suppose that there are J configurations in the reachable subset from

Ek&t-l)' Then there are J{J+1)/2 pairs of configurations for which

condition (4.3.86) must be satisfied. Also, since u, . affects the
rf

state Eit+1 ; it is reasonable to minimize its effect. Therefore,

since the effect of u is modified by B it is reasonable to

_l;t k(t) '

minimize the norm of u Thus, the minimization problem is formu-

=1,t°

lated subject to the constraints {4.3.6).

\ 2
winfn, |
1.t
subject to
* 2
4 - ” P‘k [Et-!- El,t] ” <0 ) (4.3.8)
where
D =M#(B - B.) (4.3.9)
=it (j-1)*J = =i =5 -3.

Formulating this as a nonlinear programming problem, the

Hamiltonian is

- 2 * 2
atwy o = ey 17+ 30 h e lipy i ny )
(4.3.10)
>
kk- v}
A, =0 if 4-|| * II? <o (4.3.11)
k=0 ARy Tatmy =
pifferentiating H with respect to A, and solving for u as a

1,t

+*
function of u

« and the parameter A,

92
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oH P T *
du, . = 0 = 21 - @ 20, DD, [u_+ 51,1:] (4.3.12)

or,
= T -1 gy *
S, " & ;Ak—?kgk] Zk:?\kBkBkgt (4.3.13)

Now, using (4.3.13) in the constraint eguation (4.3.11)

z : T -1 z-: T * 2
4 - ” Bk (L + [T~ = AkEkRk] = Akgkgk ]P'_t ” <0
{(4.3.14)

Noting that

(L -Az+a 01 ™ p) = r+aTot (4.3.15)
then (4.3.14) simplifies to
T -1 *
- - < .
4 “ Rk [£ ? Akg‘kp‘k] Et ” — 0 (4’3 16)

and if (4.3.16) is a strict inequality, then Ak = 0. In gehergl,

a numerical algorithm must be used to solve for A in the set of
equations (4.3.16); this can be a major drawback to the application
of this methodology if the on~line computer resources are unavailable.
although the computational burden of this technigque is a disadvantage,
dual identification would most likely be implemented in combination
with a hypothesis testing algorithm. Dual identification would then
form a test to be performed on the system after some interval of time
to ensure that the hypothesis testing algorithm correctly tracked the

configuration.
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4.4 Examples.

In this Section, the one-dimensional example of Chapter 2, Section 2
is implemented with additiwe white noise applied to the control input.
Three suboptimal control algorithms derived from this Chapter are imple-
mented: Hypothesis testing, dual identification, and hypothesis
testing in combination with dual identification, which is utilized every
fifth time instant. The purpose of this example is to illustrate the
degrading effect of the dual identification algorithm on the system
state.

The principle subroutine used to generate the computer simulations
of Example 4.1 is SWITCH; it is iisted in the Appendix. SWITCH calls
FIG and UCALC, also in the Appendix; any other routines which are used
are in the ESL subroutine library.

The system in Example 4.1 has two structures, represented by the

matrices B (b = 2.) and B {(1/b = .5); the Markov transition probabili-

0 1

ties are given by the matrix P. The switching gain solution was calcu-
lated using the software described in Chapter 3, Section 5. Case i)

of the Example corresponds to the hypothesis testing methodology described
in Section 2. The additive white noise was amplitude-limited with =ero
mean and variance = = 1, Case ii) of the example demonstrates the perfor-
mance degradation due to the exciusive use of dual identification. Note
that the variation among the values of the state and control are larger
than in Case i). The advantage of dual identification is that, for
amplitude-limited white noise, perfect identification of the system
structure with one-step delay is guaranteed. In Case 1iii), hypothesis

testing is used four-fifths of the time to partially aveid the degradation
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due to dual identification. The control is more effective in Case iii)
than in Case ii); however, for this example, it is not clear thét the
use of dual identification one-~-fifth of the time is waxranted, since a
performance degradation of Case iii) over Case i) is still evident in
this particular simulation. More simulation would have to be c;arried

out before the proper ratio of the use of hypothesis testing to the

use of dual identification could be determined.



Example 4.1:

A = 1.414
= 2. = .500
BO 2.000 Bl P
Q = 3.000 R = 1.000
.7 .3
P =
.3 .7

Switching Gain Deterministic Solution:

GO = ~-.7569

G -1.008

1

The system dynamics are

It

b4

+
t+1 Axt B

k() e
k(t) e {o,1}

The cost function which was minimized is

Lol
J = E[Z Qxi + Ruily_}
=0

where
T o= Ik 1357

Structural transitions are of the form

.3

When dual identification was employved, the control was set to

. *
n, = 1.25(51gn(ut))

This control was the minimum value regquired to establish perfect

identification.

bF

26
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ii) Dual Identification
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4.5 Summary.

*In this Chapter, two methods have been proposed to extend the
deterministic optimal switching gain sclution of Chapter 3 to the
stochastic case. The two methods represent the twe fundamental
concepts of identification: Estimation and dual control. The
-optimal stochasticé control law, if it could be computed, would rely
on both concepts, using estimation when the control variable is
large {(and the state is far from the origin) and dual control to
enhance estimation when the control and state variables are small.

In the dual identification technique presented here, control is
sacrificed to obtain an exact observation of "the structure. Thus,
the-system response would be roughly periodic; with the state being
driven away from the origin in order to obtain an accurate estimate
of the confiquration, and decaying back toward zero between identifi-
cations. 1In the period when the control is not modified, hypothesis

testing would be used to track the configuration.
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CHAPTER 5

THE NON-SWITCHING GAIN SOLUTIO&

5.1 Intrcduction

-In the previous two chapters, the switching gain solution was
developed énd studied. In this chapter, attention will be focused
on obtaining a constant, robust, or non-switching gain which solves
& variable actuator configurétion linear quadratic control problem,
with minimum cost for ‘this cla%s\of solutions. ‘It mﬁst be stressed
that this is a suboptimal solution; for the deterministic case,
Chapter 3 gives the optimal solution. The interest in this chapter
lies in determining a sequence of-'gains, for é linear control law,
which do not switch in response te the detection of a change in system‘
-structure. -Eor instance, it may be desirable to ensure the stability
i of a control system under certain types of failure without creating
the complexity necessary “to. detect those failures and compensate for
them, és is done in the switching gain solution.

This class of solutions is related éo the overall robustness
problem where fault-tolerant control systems are desired. Although
not formulated in this manner, the research described in this Chapter,
as in Chapter 3, is readily extéendable to syséém with variable system
matrices as well; i.e., where the system can be represented as a set

of possible structures (ék” Ek) over some Suitable index, even though

this class of problems is not as directly related to the underlying
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reliability theme of this report.

Non-switching gain solutions to the variable actuator configura-
tion class of problems can be obtained in different mathematical ways.
Problem A of Section 3 is reformulated as a deterministic control
problem (Problem AE), and is solved using the necessary conditions of
the Matrix Minimum Principle [Athans,41] in Section 5. Unfortunately
this approach, although yielding the necessary conditions for an opti-
mum, does not allow an-analytic solution. Therefore, in Section 6,

a second problem (Problem B) is formulated and solved using dynamic
pProgramming.

Section 7 is by far the most detailed and one of the most impor-
tant sections of the report, along with Sections 8 ahd 9. In Section
7, the concepts of stability and cost-stability are defined and are
used to prove an equivalence between the infinite-time versions of
Problems AE and B. In Subsection 7.6, the steady-state solutions for
both problems are defined. Unfortunately, nothing in the mathematics
appears to rule out the pogsibility of limit cycles in the infinite-
time solution; this is discussed in Subsection 7.7. When the constant
steady~state solutions to the two problems exist, it is proved in
Section 8 that they are identical. This is a very important result, as
it allows the steaey-state solution of a complex two~point boundary
value problem which is much more tractable.

In Section 9, it is demonstrated that the general robustness problem

for linear systems (where one wishes to determine a single stabilizing



gain for a set of linear systems) is solved in this framework for the
class of systems with variable actuator configurations. Examples of
both the non-switching sclution to Problem B and the robustness

result are given in Section 10, and a chapter summary in Section 11.

5.2 Problem Statement.

The objective of the research described in this Chapter is to
form a methodology which will be used to compute apriori a gain G
{(either time-varying or steady-state) which minimizes the expectation
of the guadratic performance index over a set of linear systems with
actuator variation and known transition probabilities of structural
change (Problem A). The necessary conditionsg for minimization are
given which this optimal gain must satisfy; it is shown that these
conditions result in a complex two-point boundary value problem.

A-second optimization problem is formulated which is based on
the restriction to non-learning control laws which are precomputed;
i.e., it is assumed that the control law cannot benefit from knowledge
of its past. Althouéh this formulation appears to be much weaker
than that of Problem A, it is shown in Theorem 2 that if steady-state
solutions to the two problems exist, then the steady-state solution
to Problem A is stabilizing {(in the sense that the mean sguare value
of the trajectory is exponentially bounded} if and only if the steady-
state solution to Problem B yields a system which is exponentially

stable. This result is very significant, in that a Corxollary to this

103
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Theorem solves the problem of finding a robust gain for a set of linear
systems and yields an explicit procedﬁre for its calculation.

The last. Theorem (Theorem 3) of the Chapter provés that the steady-
state solutions to the two optimization problems are identical. This
implies that not only does the procedure mentioned above determine a
robust gain if and only if such a gain exists, but also that the steady-
state gaiﬂ is optimal with respect to the specified quadratic cost

criterion.

5.3 Problem A.

Consider the system

Zed T BELT Brn) B (5-3.1)
where
n
X, ER (5.3.2)}
- m
a,  E R N {5.3.3)
k() ez ={0,1,2,---,L} (5.3.4)

I is an indexing set for the possible actuator strudnues{}hgkelf
where

B € R (5.3.5)
k(t) is a random variable with sufficient statistics given by the
Markov transition probabilities Pij' where the matrix

P = (p,.) {(5.3.86)

ij

is a stochastic matrix, and the initial probability distribution is
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Ty = &, , (5.3.7)
—1

Since k(t) is assumed to be a Markov chain, the probability wector

M, 1is propagated in time by

t

T o™ 20 (5.3.8)

where there is no real-time observation with which to update T, .

Consider the structure space {Ek} keT indexed by I. Define the

structural trajectory x Tto be a sequence of element k(t) in I which

select a specific structure at time t,

Bt

§T= (k(o)r k(l):---; k(T""l)) (5.3.9)

The structural trajectory ¥ _is a randomvariable with probability of

T

cccurance generated from the Markov equation (5.3.8).

. -1
P(XT) = t]_zo ﬁk(t),t (5.3.10}
where the contreol interval is
{o,1,2,...,7-1,7} (5.3.1L)

‘for the finite time problem with terminal time T. Then for a given

. T-1 —
state and control trajectory (Et ' Et)t—o generated by {(5.3.1) and xT
from a sequence of controls (u & )z:g ; the cost index is to be the

standard quadratic cost criterion

— _ T T T
Tp (e e )ig) = ; X QX TR RO, b X 0%, (5.3.12)

The admissible controls are restricted to be of the linear feedback form

u, =G x, (5.3.13)

* i,e, £0= (L0 ...0) or (O1 0...0) ox ... (0O 0...01).
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and the initial conditions; i.e., it cannot depend on 'x e The objective
is to minimize over the set .of admissible controls the expectation of
(5.3.12), where the expectation is taken over the set of possible

structural trajectories
x, e T (5.3.14)
T

and the set of initial conditions X 0"

* x

Thus, the optimal control law u _— G g should minimize the
cost

J. = E[J |m

. EMEPS

T T T :
= + -
E|Q, x Qx, +u Ru +x,0x |7, (5.3.15)

over the set of admissible controls.

Since the structure of u e G e Xt is fixed, the problem is egquiva-

lent o minimizing, in an open-locp sense, the cost function

m_
J _ T T T
ed |71 E X Qx_ +x_G

T
tx Ox |,

(5.3.16)

T
tBE Xy
with respect to the gain matrix Et s =0,1,...,7~1. Egquation (5.3.16)

is simply obtained by substitnting equation (5.3.13) into equation

(5.3.14).

5.4 The Method of Solution.

The matrix minimum principle [Athans,41] will be used to determine

*
the necessary conditions for the existence of u £ {or equivalently,

&
G £ ). To solve the problem using the matrix minimum principle, the
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formulation presented in the last section must be converted into an
equivalent deterministic problem. For this purpose, let the  initial
state x 0 be a zerc mean random variable which is independent of any

structure. Let

T

_ _ T
£, = E[iogc_oizo} = EBElx x,] (5.4.1)
be the convariance matrix of x 0"
Defining the covariance of x, as
A
= ’ 5.4.2
2y Bla,x, |m) ¢ )

then, by direct calculation, we obtain

E a & = p , LA P. A 'iT,
1=0 i ZO 1l 1 l—,o

i o0 ~1Me-2 Tez2te-3 270 ~0
1t- £-2 t l t T 1
t-1 t-1 T
. +B . +B . . 5.4.3
I @as, sofz, | I @B, 6,) ( }
J=0 J J=0 3

Similarly, if we define
T !

= — =‘ - .4

I ¢ Elx, x, [k(e-D=i,m 1] (5.4.4)

then, we deduce that

Ls L I
Lie =Tr.1 DD D 2:: i o T Pig

= = s l
lt-l _‘Lt»2 0 lt_3 ] t 2 t 27t-3 0
[ +-2
T, QBB G, ) .]',I (a+B . G| Z,
0 | 3= i |
t=2 T -
|00 a+e. ¢.)| (B. G ) (5.4.5)
=0 ——1j-j — —i—=t-1
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The matrix Ei ¢ ©can be defined recursively as

r

.
1 T
Ejen T w2y Pyl @B GOL  wis e (5.4.6)
L : j, 1= t-1
t
for £ > 1.
T
Ej,l - (A'FEJ ..C_';.O ).go {_pﬁ.+§.3 .cio) (5.4.7)
and the relation
= > -
Et t 1Ti Ei,t , t 0 (5.4.8)

1=0 t~1
is. obvious from direct calculation.

+

Remark 1: At this stage, an equivalent deterministic problem {(Problem AE)

will be defined with state {Ei £ )§..=O for t> 0 and state 20 at £t = 0.

The system dynamics are then defined by eqﬁations (5.4.6) and (5.4.7).
L

Definition (Problem AE): For the system with matrix state (Ei £ )i__ 0
, =

for t> 0 and EO for £t = 0 with dynamical equations (5.4.6) and (5.4.7)

and matrix control G £ minimize the eguivalent deterministic cost

=1
over (gt)t=0'
E =~ T T T
R 2 Q2 2 B RO X,
| &
T
+ }—{'TQETIZO"‘TE‘O
o1 .
= 1; tr[I, (@ + G RG] + trf gl (5.4.9)
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Note that since the expectation in equation (5.3.13) is over all

structural trajectories x and the initial x . also,

0

r o= g (5.4.10)

The symbol JT will be used exclusively in the future. The one-stage,
or instantaneous, cost at time t is

£ T
J = tr[zt(g_-i-gt

. RG

t)] (5.4.11)

Problem AE is completely deterministic in the state (Ei & )i’_o ¢ L 0
, = £

and control G £

At this point, the minimization will be decomposed into two parts
using the Principle of Optimality [Athans and Falb, 21]1. The first
minimization is over the interval {1,2,...,T-1}, and for this the matrix
minimum principle will be used. The resulting solution will depend

in general on the choice of G 0 and on the initial conditions X 0 and

il .
—0
*
Let V (G 0) be the optimal cost resulting from the use of ¢ 0 and
* * ES
the optimal sequence G, , G, ., « - - s Gp g for the interval {1,2,...,T}.
The seccnd minimization is then over G 0 of the cost
z T * 5.4.12
= + -4.
In trlZ (@ + G, RG )] vV (G, ( )

The Principle of Optimality states that these two minimizations

* o
result in the minimizing segquence (G t)‘i—é for Problem AE.


http:J(5.4.10

1i0

From [Athans,41], the Hamiltonian for the minimization over

{1,2,...,7-1} is

L ks
BOE, i By )50 &¢)
L T
1= t-1

L
i; 1 T
=3 +B . : . :
ot £\ £ pjiﬂit_l(égjgt)g-l,t BB G ) )55 en

Jt
for t € {1,2,3,...,7-1} (5.4.13)
.. 1.
tat . . .
where the costate matrix is (Ej,t+l)]=0

Remark: We have now formmlated Problem AE-1l, which minimizes the accumu-

lated cost over the interwval {1,2,...,7} with respect to the sequencé

T~ . . - s . . .
(Ed:)t=i using the matrix minimum principle and results in the optimum

*
cost, given G_ , V (§{)}. Problem AE-2 is then the minimization of

0

equation (5.4.12} over Q{).
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5.5 The Necessary Conditions.

The matrix minimum principle yvields necessary conditions which
an optimum must satisfy. There are two conditions of importance.
{(The third condition yields equation (5.4.6)}).

From the necessary condition for the costate,

* _ OH )
Sie = 3%, . ‘ (5-5-1)

_lpt *

the propogatiocn of_gi " backward in time is deriwved.
" ¥

T
S_ = Tr- O + G RG
_l,t lt_l{.—_-. ¢+ ="t
1 T T T
+ . . + .
P]l . [- —J,t'{'l"— Et"%] g]rt'*'l"'j_'t
1=0 e
¥ T_T
Ta —J.t+1—B—j§t +§—t§j—s—j,t+13*—] {5.5.2)
H - - . T_l
This egquation is well-defined for any sequence {gdz}t=0 and +> 0.

The cost V of using this arbitrary sequence over the interval
{1,2,...,7} is given by
SIS »
VGG ) 4 = tr[1=o §i,1§i,1] (5.5.3)

The total cost over the interval {0,1,...,T} using this sequence is

_ ) T
I, = tr [; §—i,1§i,1] + tri{Q + 90590)20] (5.5.4)
[ T
=t (A+B. G )L _(a+B. G )8 + I (Q+ G RG. )
- = & =120 ’20 FRiZ0) 24,0 2o 2 ¥ GRS,
) (5.5.5)

0" —i,

_ T T
= tr _Z_O{g+_q05g + (A+tB . G ) S . l(§+§i§_0)}](5.5.6)
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s & (BB .G _)'S. . (AB.G.) + O + G RG (5.5.7)
=0 & =—=i—-0’ =4i,1 =—i-0 = =0——=0
Then from equations (5.5.6) and (5.5.7)
Jp = tr[go_s_o] (5.5.8)
. T~1 .
Thus, the cost of a given sequence {( G £ )t=0 of length T is
JT = tr[gogo (_G_'O r§_1 :---JET_l) 1 (5.5.9)
t
For future reference, define the matrix S it by
S .
' A =it
§i,t = T, {(5.5.10)
-1
and ndte that equation (5.5.2) becomes
T T T T
- +
Sit Q+GE RE, * = Pygl 85 ¢ 2F EeBy8, 1 B58,
+al G, +G RBTg N (5.5.11)

25,600 258 T B 85 b 2

From the Hamiltonian minimization necessary condition

i
<

{5.5.12)

the following relation between I,

da i ined.
it Ej,t+l’ an Et is obtain

0 = RG ., L.
t =~ lt—l it
+ L ImTs B.G. +B.g N :p T, I
1= ‘n‘jt —J=J,t+¥tl—j—t =J~=J,t+1— &= Jji :Lt_l——l,t

{.5.13)

112
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Remark: At this point, a two-point boundary valuwe problem has been
defined with the constraint (5.5.13) relating equat'ions (5.5.2) and

{5.4.6). Equation (5.5.13) is not explicitly solvable for 94;

because L it cannot be factored out of the sum over j; thus, it cannot
!
be used as a substitution rule in the other two eguations. At this

time, the solution for G_ appears intractable. Thus, although necessary

t

E
conditions for the existence of G e the minimizing gain, have been

*

established, they do not readily allow for the sclution offit

, and

certainly de not admit a closed-form expression.
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5.6 Problem B: The Non-Switching Solution.

Although the methodology presented in Section 4 yields the
necessary conditions for an optimum, these conditions are not analyti-
cally illuminating. In this section, a second coptimization problem
is formulated. An equivalent formulation was presented in [Birdwell &

Athans,40]. The solution will admit a closed form expression for n, -

Although this solution is not the optimal solution for the first
problem, in that this solution does not necessarily satisfy the neces-
sary conditions for problem AE, it will be proved that the two solu-
tions are equivalent in the sense that for the steady-state solutions,
as defined in Section 7, either both solutions stabilize the system,
or neither one stabilizes the system. Even better, it will be proved
that the steady-state solutions to the problems are identical.

For the system (5.3.1), the objective is to minimize at each time

t the weighted sum, with respect to 7 , of the expected costs~to-go,

—t-1
) *
i = = > i
given the control u = ¢ (x.} and u. -g-)-'r (x_) for T>t, and given

that the structure at time t-1 was k(t-1) = i, for each i.

Formally, let C be the expected cost-to~go, given PR T and

k(t~-1) at time t be defined. as

. k(t-1), &) é_zgigﬁt +u

T
C{ix_.,1u u,.

+
£ Ru

t t

*
Ep gy [C Fpyp X, k(-] (5.6.1)

*

where * denotes the optimum value, and Ed:is computed as

*

u, = arg_n(;)in( | I,y sC(E)) (5.6.2)
ST e

= arg min gl C(t) {(5.6.3)
u =p, (x,)



and
£ *
where
c(}_{_t :Et T{t-1)=0,t}
cit) = . 7 (5.6.5)
L_C(—}E't 'Et ,k(t‘-l)=L,t)-
and
-7 -
c(T)y = c*(T) = . {(5.6.6)
D
_.}.C.TQET_
Thus, the problem is
. T T
min T, Ix X, +u Ru
u, =9 (x. ) 1= %rl_tg_t et
—t -t —t
* . - =3
+ E[C¥(xy ., ok(€), e+ D) k(t-1)=1]] (5.6.7)
. T T
= mMin T, x,Qx +u, Ru
~ — i ===ttt
Et—gt (_:St) 1=0 Tt-1
{5.6.8)

+ § * + j £+
& Pjic (A‘X‘t Ej}'l"t 1t 1)

From the formulation, u & is non-learning in that it depends only on

T for its knowledge of the past. Let C* be of the form

—t-1
* T '
c (-}Et k(t-1}),t) Etgk,t—}st (5.6.9)
Then for £ = T,
S = 0 (5.6.10)

—k,T
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and egquation (5.6.8) becomes

T

. T
min 2 'ni '5 g§ t
u 1= t-1

=t

|';U

T )
+ Ji; jl(é--}-{—t + Ejg‘t) ij,t-i—l (&_}it + Ejgt} | (5.6.11)

At the minimum, differentiating (5.6.1l1) with respect to P‘—t , We

obtain
T ' T !
0 = 5;'”- Ru,  + ZP--@-E- Bsu +§ 5 Ax
& i, t = Jji—=j=—3,etl=j—t 3 j,t+l t
(5.5.12)
Solvang for u,
* i ' -1 []
u,= —-}R+ T. B.S. Ax
(5.6.13)
and hence the gain matrix is given by
* 2 ] 1L '
G, = -|r+ W, B.S Z;“ s
—_— — — + — — ’ + —
t 4= JtJ J:tl] £ tJ Jtl
. (5.6.14)
* *®
where El__t Gtxt
From (5.6.11) and (5.6.4),
T ! T Yok
E—tgk,t-}it - '}it 2.+§_t.R_§_t
+ i: 3T * 5.6.15
= Py BB 38 ) Sy en BB E )] 2, (5.6-15)
or, since {(5.6.15) holds for all Xy
1 *T *
= +
Syt = 2+ G RG,
L T 1 * T T T
+
ji:;‘pk(é sj,t+l-A—+5 g:|,t+l§jEt +§'t—B"j—S‘j,t+l“'
* 1 *
+ . ] .
gtgjgjftﬂgjgt) (5.6.16)
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Thus, (5.6.16) proves by induction that equation (5.6.9}) is wvalid.
Note that equations (5.6.16) and {5.5.11) are identical.

*
Therefore, the unconditional cost of 91: , t=0,1,...,7-1, is, from

(5.5.9)
J o= z ‘e ’ .5.
P LT (PN IR TRIPop) (5.6.17)
which in this case is simply
T
Jp = X.8,(6,48, ,---,8, )%, (5.6.18)

*
The matrices G & are called the non-switching, or non-learning gains,

*
and will hereafter be denoted G ns. The liabel G will be reserved for

£ t

the sclution to eql._lation (5.5.13). The optimal value of the cost-to-go

at time t=0 for this problem will be called the non-switching cost index,

and is given by

B T T T
Jns - T El-s—i,lgil T Xy Q + g-ns EEns }EO (5.6.19)
T i= 8 0 0
=§§ gwi (a+B . G )T§.1(5+B_.g )
S o i-=ns, i, i=ns,
T
+0+G RG X (5.6.20)
= —ns_-——ns —0
0 0
*
Note that if G ns - G for all time (i.e., if the solutions to the

0
optimal control gain problem and to the non-switching control problem

are the same, then E [J 1 = g .
X ns&‘.,II T
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Summary: In this Section, the non-switching, or non-learning, gains
have been derived. These gains are called non-switching or non-liearning
because they do not depend o the past trajectory of x £ and u oy but
only on the initial probability vector over I, T 0" It was further
shownn that if the solutions to Problems AE and B were identical, then

E, o0 _1 =g (5.6.21)
X, nsp T


http:T(5.6.21

iis

5.7 &tability and the Steady-State Solutions.

In this Section, the concept of stability for this class of
systems will be preclsely defined. From this, a natural concept of a
steady-state soluticn to Problems AE and B will be given, and a very
strong result relating the solutions to the ;wo problems will be

proved.

5.7.1 Stability and Cost-Stability.

For this class of systems, two definitions of stability will ke
tendered. The first is the usual definition of mean-square stability;
the second definition, that of cost-stability, has a strohg relation to
the existence of solutions to the infinite time versions of Problems AE

and B.

Definition 1l: (Stability). G is a constant stabilizing gain if and

only if the resulting system given by equation (5.3.1) and repeated hexe

= 4= .3.
Eenn T B¢ T By B¢ (5-3-1)
is mean—-square stable:
T
+ > oo, 5.7.1
Ex, x ] 0 vas t ( )

Definition 2: (Cost-Stability). The system (5.3.1) is cost-stable

if and only if the scalar random variable

[+9]
T T
+ < [+ 5.7.2
E x1:Q35t utRut { )

with probability one.



120

5.7.2 Definiticon of +the:Infinite-Time Cost.
In this research, the infinite-time problem is defined as a
minimization of

J = 1lim JT (5.7.3)
T ’

where JT is the cost function for the corresponding finite-time prcblem.
The sequences which solve these infinite-time versions of Problems AE

* o0
and B are (G ) and (G }

<« ] . .
X t .
S¢ )iz ne,_ =0 * respectively, when a solu 1on'ex1sts

A solution will exist if there exists a sequence of gains for which the
limit in equation (5.7.3) exists. This definition of the infinite-time
problem is chosen rather than the definition requiring a minimization

of the average cost per uhit time

1
79 (5.7.4)

J = o

17 g
because there is a direct correlation between the boundedness of JT
over all T for a constant sequence of gains G and mean square stability
of the system (5.3.1). It is necessary, however, to prove_that the
set of problems for which JT is bounded for some seqguence of gains is
not vacuous. This fact is demonstrated by any of the convergent non-
switching gain examples in Section 10.

As further demonstration of the validity of using equation (5.7.3),
note that if 0 < Jl < o, then the cost per unit time has a non-zero
steady-state wvalue, which implies that the system (5.3.1) is not mean-

square stable since

g, 0= wlE__(@Q+6__RG _)] (5.7.5)

where 7 and G are the steady-state values of . and ¢, , when
—ss —ss —t —t

they exist, and, sincée Q + g:s Egss is positive definite, -E—ss # 0.
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5.7.3 Bounded Cost and Mean-Square Stability.

In choosing-equation (5.7.3) as the basis for the definition of an
infinite~time problem, a major reguirement was that the existence of
an infinite-time solution, namely of a sequence of gains which vields a
finite cost in equation (5.7.3), imply mean-square stability. For
the case where the sequence is constant, thé following result is

proved.

o

Theorem 1: A constant sequence of gains (Eﬂtfo

is mean-square stabiliz-
ing if and only if there exists a bound B < © such that

JT < B for all T (5.7.6)

Proof: ©See Appendix 5.1.

o
; J_<B<oyT implies (gt) is

0
Ry :
emark For a sequence (G t) £=0 £ =0

co
mean—square stabilizing, but Qgt)t_ mean-sguare stabilizing does not

4]
imply JT is bounded for all T.

Proof: See Appendix 5.2.

5.7.4 Cost-Stability.

As yet, the definition of cost-stability has not been utilized.
In this Subsectién, it will be shown that the system described by
o0
)

equation (5.3.1) is cost-stabilized by a sequence of gains qit =0

if and
only if J is finite-valued for this seguence. One direction of this

result is proved in the following theorem.

for which J <« cost-stabilizes (5.3.1)

oo
Th 2: An
eorem Y sequence “it)t=0
with probability 1.

Proof: See Appendix 5.3.
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The other direction of this result is obvious: If a sequence

is cost-stabilizing with probability one, then the random cost,

o0
€ eso

given by equation (5.7.2), is finite except on a set of structural
trajectories of measure zero. (The appropriate measure on this set is
given in the proof to Theorem 2.} Since the expected cost J is the
integral of eguation (5.7.2} with respect to the probability measure
on the set of structural trajectories (see Appendix 5.3), then J is
finite.

Thus, the cost-stability and the existence of an infinite—time

solution are equivalent. ~

5.7.5 Equivalence of Problems AE and B.
The first major result of this Chapter will now be stated. This
result establishes a strong equivalence between the solutions to

Problems AE and B.

[+s]
Theorem 3: A cost-stabilizing solution (Eqns )] exists if and only if

£ t=0

% "o
there exists a cost-stabilizing solution qit)t“ assuming ﬂi> 0 for

0'
all i and I >0. i

Proof : See Appendix 5.4,

Remark 1l: This result provides a computationally feasible methodo-

logy for arriving at a sequence of gains (G ) which cost-stabilize

oo
ns, =0
the original system (5.3.1) with probability 1, whenever such a se—
guence exists. The coupled matrix equations of Problem B (5.6.16) can
be iterated backward in time. If the weighted sum with respect to the

ergodic distribution T converges, then the resulting sequence of gains

cost-stabilizes the system (5.3.1) with probability one.
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5.7.6 The Steady-State Solution.

A steady—~state solution to optimization Problems AE and B can
exist only if there exists a steady-state probability distribution T

over the set of possible configurations indexed by I such that

T=P W (5.7.7)
and

lim T =T  (5.7.8)

gro T

From equation (5.7.7), it is apparent that for T to exist, the matrix
P must have an eigenvalue at 1, and T must be in the subspace spanned
by the eigenvectors of P corresponding to that eigenvalue. The fol-

lowing lemma states precisely when T exists.

Lemma 1: 7 exists if and only if one of the following three conditions
is satisfied for each diagonal element ai of the Jordan normal form_&

of P, where

-1

P=TAT . (5.7.9)
% B0
a1 B 0
Oz
A= . 8. =0or 1 {5.7.10)
= i
[ .
BL—l
0l']'_.

For each i,
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1) Je.l<1
1
ii) o, =1
1
1

iii) fai|= 1, o, # 1, (T E(ﬁi =0

Proof: Obvious.

5.7.6.1 Steady-State Solution to Problem AE.

* *
Note that for Problem AE, initially, the gainsgO ,Sil,...
* *
will depend on EO' and near the final time, the gains ... G r G

-2 —7-1
will depend on a time-varying §i,t' Thus, the steady-state solution for
Problem AE is defined as the limiting solution to equations (5.4.6)
(5.5.2) and {(5.5.13) at time t, first as T and then as t73e, if this
limit exist. The steady-state values for B, §ﬁi' and Ej s wWhen

they exist, satisfy the following equatiocons:

1 2} T
.= = . T . (BA+B, . . LT
§j T, Pyg Ty Uiéj G) El (éﬂij.ci) (5.7.31)
S, =T, |Q + G'RG+ s p..l IATS.A+GTB'I.'S.B.G+ATS.B.G
—i i e Jjim, — =)= = =31 i ¥
J= J
+ GBS .A] {5.7.12)
& 3:558
ol v T ET
0 =RG 1ri§i + e [B.S.B.G + B.S.Al p.i'rrigi
= ; 5 L 2 ! = 3
(5.7.13)

which are the limit of equations (5.4.6)},(5.5.2), and (5.5.13), given

*
that the limiting solution I, and Gt exist, where W satisfies

Jrt
equations (5.7.7) and (5.7.8). The cost of this steady-state solution

is

J = lim I (5.7.14)
300

as in equation (5.7.3).
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5.7.6.2 Steady-State Solution to Problem B.

The solution to Problem B depends on its past only through the
probability distribution W(t) over the structure index set I.
Therefore, to develop the steady-state solution, let the initial pro-
bability distribution T o equal the steady~state value T from eguations
(5.7.7) and (5.7.8). Then the steady-state solution can be defined as
the limit, when it exist, of the gain G ns .calculated for the problem
ending at time T, and of the solutions to the coupled Riccati-~like

equations (5.6.16), S i as the final time approaches infinite. Let

O L
]

SN (T) and S ; 0('1‘) be the solutions at time zero for Problem B with
0 T

final time T. Then

G = lim G s [Gith] {(5.7.15)
ns ns,
T 1
§;,=1lims, (T} , i€l i (5.7.16)
. Teo ’

when the limits exist. The steady-state solution is said to exist
whenever the limits of eguation (5.7.16) exist. If these limits exist,

[}
then _G_nS and §_i must satisfy, from equations (5.6.14) and (5.6.16).

L t — L
G _ = -IR+ 5.B. S. B.| - T.B. S. A (5.7.17)
~ns = o R Bt = S B

]

T
=Q +
Sy ~2+6& _RG o

T 1] T ]
+ Pk (A S.Aa + ATS.B.G + GT B?S..A
E ¥ ——=— —=i-J—ns —ns—j-j—

T '
+a’ BT

5.B.G_ ) (5.7.18)
—ns—j—j—j—ns

The cost of this steady-state solution, given x, is, when the limit

exists



J_=1limJ__ =x TS, x (5.7.19)

5.7.7 The Possibility of Limit Cycles.

The discussions in the last Section do not rule out the possibi-
lity of limit c¢ycles in an infinite-time solution. In Problem B,
the expected cost is directly computable from a set of coupled Riccati-
like equations (5.6.16), as is the non-switching gain (5.6.14). If-
these coupled matrix equations converge whenever the solution is
bounded, then the non-switching gain is always directly computable when
it exists. Boundedness implies convergence of the expected cost
(Lemma 2); however, the possibility of the existence ¢of a limit cycle
in the solution to equation (5.6.16) is not ruled cout. It is con-

jectured, but not proved, that such a limit c¢ycle cannot exist.

%
Lemma 2: If the expected cost JT for Problem A is bounded, then it
converges.
Proof: See Appendix 5.5.

*
Since E [J 1 =2J
X 0

J also converges.
5o T’ “ns verg

126
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X
5.8 Egquality o_f_gns and G .

In this Section it will be shown that when a steady-state G ns and
* * * .
G exist, with finite cost Jns and J , the gains are equal. This

LY

result is extremely important in that it yields a method of calculating
the steady-state solution to a two-point boundary value problem as the
limiting solution to an equivalent (in the steady-state) single boundary
value problem. It is taken as a working hypothesis in this Saction that
both problems have a steady-state solution and that the ergodic distribu-

tions of 7 and Ei , for all i, exist. Then the steady-state cost of the

optimal probklem is

* * * * *

J = tril J(@+ G, RG, )] + tr{Z . $,) {5.8.1)
i=

For any constant gain G for which the limits exist, the value would

be
- T
Jog (@ = tril ,(@+ G RG)] + 12‘5 trfZ . (G)s, (6] (5.8.2)
_ T T
= trlZ, @+ G RG] + :.Z: trl(atB , G)Z ( (A*B, G)'S . (G)]

{5.8.3)

I

T T .
tr [;0{2+g RG + 2 (a+B . G) "8, (G (3-4'—3-419)} (5.8.4)

l=

Similarly, egquation {5.8.1) becomes

* ) # * * [ % *
J = tr |T <0+ G RG + (A+B .G _ )8, (atB ., G )
= - — ——3i—0" —i =-—1i—0
1=0
(5.8.5)

For the non-switching, or non-learning problem, the steady-state cost

for any G for which the 5 ; ¢ converge is, given x , .,
r
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T T T .
Jns (E) - lc.o (_Q_ + EOEE)EO + E E Triil Ei (E)ﬁl (5.8.6;
SS 1=
— T T &
T
+ xT T, (A+B . G)°S . (G) (A+B . G)x (5.8.7)
=0 i——i~ —i — ——=i—-—0
1=0
Taking expectations with respect to Xy
E{J {G) —t[ZA(+GT
ns_ = B l¥g g+ G RG]
ss
T
+ ; tr[;z__o (§_+13_i§) Ei (G) (§_+§i§_)] (5.8.8)
or,
E[J‘ns (g)] = Jss(g_) - (5.8.9)
8s

Thus, the costs are equivalent for any G for which the eguations

converge.

By Lemma 3, if the non-switching expected cost is bounded for a single

G, then the equations converge; i.e., there can be no limit cycle.

Lemma 3: For a given gain G, if the expected cost J,(G) is bounded
then it converges.

roof: See Appendix 5.6.

Thus, either equation (5.8.9) holds, or both costs are infinite. There-

fore, if the cost is finite for any single G, then there exists a Eopt

which minimizes both costs. PFurthermore, given that Gns {(T) convexrges,
e o

G (T) = ¢ as T + e, This result with an extension is stated in
—nsg —opt

Theorem 4.
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* 1

Theor 4
em Assume the values Et (™), -c-;-ns (™, Ei,t (T}, Ei,t {(T), and
t
Ei,t converge. Then

a) G (T) -G as T * ®, which minimizes equation (5.8.9).
"'IlSt _OPt

*
B) G =G , where G is the steady-state value of G (T),
—ns - —ns —nst

* *
and G is the steady-state value of G & (T) :

* *
lm lim 6, (T) = G (5.8.10)

3 e

Proof: See Appendix 5.7.

Discuggion: The result of Theorem 4 B) gives a direct computational
procedure for f:alculating the, optimal steady-state gain G * as the
limiting gain G ns * Th‘ere are, however, still some open questions
concerning the existence of limit cycles in the calculation of G ns

(e~
Theorem 3, however, guarantees cost-stability using (g_‘ns )t—O if a
t

cost~stabilizing sequence of gains exigts.
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5.9 Robustness.
The original problem (Problem A} can be formulated in such a way

that the sequence (G will cost-stabilize a set of linear systems

)oo
nst =0

with different actuator structures individually whenever such a stabiliz-

ing or robust gain exists.

Definition 3: A gain G is robust if

Xy = @F+B Gx, (5.9.1)

is stable for all k. This is the same as requiring the matrix (équgga

to have eigenvalues inside the unit circle for all k.

Coxrollary l: For the set of L+l systems

Xiyp = Az, +Biu, (5.9.2}
with
P =1 (5.9.3)
1
T, = — 5.9,
i I+ {(5.9.4)
if a robust gain exists, then (§1u5 ):;0 is a stabilizing sequence for
t

(5.9.1) for each k, and if the gains gns (T) converge, then Ens is a
t

robust gain.
Proof: TFor the expected cost to be finite, for any G, G must be

robhust, since each structure is equally likely and no structural changes

L3

o
can occur. Therefore, if a robust G exists, then certainly (G _)

t " £=0
. [=v]
will be stabilizing, and by Theorem 3, so will (g.ns )t=0 . Also, if
t
gq“; {T) converges as T * <, the gqu; will be robust since it will have

t



finite cost J(Ewm;)’ which implies stability, in this case, for all
k g I.

Q.E.D.

Discussion: With Corollary 1, a specific existence problem for robust
linear gains is solved. Existence of a robust gain is made egquivalent
to the existence of a finite cost infinite-—time soluticn to Problem B,

which is readily computable from equations (5.6.14) and (5.6.16).

131
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5.10 Examples.

In this section, two examples are presentgd to illustrate the
non-switching gain computational methodology. Example 5.1 is ana-
logous to Example 3.1 of Chapter 3; it demonstrates the effect of
component reliability on system stabilizability with a non-switch-
ing gain control law. The first case of Example 5.1 is not conver-
gent;-the second case is convergent. The only difference between
the two cases is the reliability of the actuators. Case i) corresponds
to Case 1ii) of Example 3.1; Case ii} corresponds to Case iii) of
Example 3.1. Neither case results in a robust control law, but ro-
bustness is not possible because the system is un;ontrollable in
structural state 3. As an aside, it is interesting that the "optimal"
non-switching gain in Case i) ignoxes state X, the system is decoupled
in that there is no interaction between xl and x_,. Since state x2

2

has stable dynamics, and the dynamics of state xl are unstable, the

entire control effect is concentrated on state xl.

The computer routines which are used in the calculation of the
non-switching gain solution are listed in the Appendix. The primary
subroutine is AIM; it calls WEIGHT. Any other routines which are

used are from the standard ESL subroutine library.
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Example 5.1:

2.71828 C.0

_A—=
0.0 .36788
[1.71828 1.71828 (0.0 1.71828
Bpg = By =
-.63212 .63212 0.0 .63212
[1.71828 0.0 0.0 0.0
B = B, =
—2 ~.63212 0.6 -3 0.0 0.0
14 8 1.0 0.0
Q= R =
8. 6. 0.0 1.0
[ -2p 42 (1-p_) (1-p_) 2
PtPg PP, PP P
-p> 1-p_—p_+ i (1-p_)
pf pf Pf Pr PfPr prpf Pr Pr
P = 9
PePe PP I~p.~p *p P, P.{1-p)
2 (1=p ) (1-p ) 1-2p +p>
Pr P Pg P)Pg p_+p,
The system is
® =AX., + B u X = [x x ]T
Levl 228 7 Zk(w) =t e 1,6 “2,t

k(t) £ {0,1,2,3}

The cost to be minimized is

o
T T
= +
Y E[; ¥,9x, +u Ru |m
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Example 5.1, Case i) — 1
Pg~ -1, P, = .9 .81 1T0
-09 Wl
l]‘- = = ‘
.09 ‘ T
;Ol- Py
Non-Convergent; but gain converges at
-1.246 0.0
Sne”
-1.03% 0.0
Stability:
Configuration Stable
0(B,) no
1(B,) yes
2(B,) yes
3 (_113} ne

Interpretation: The coupled Riccati equations are unbounded. Note
that since state X, has stable dynamics, the convergent non-switching
gain G ns concentrates on stabilizing Xq s which is open-loop unstable.
From the above stability table, the control law

llt = gnsgit

stabilizes only configuration states 1 and 2; since the cenfiguration

has a high probability of being in state 0 (unstable), the cost diverges.
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= — - 1
pf .01, Pr .98 -9799% ‘ITO
.009999 'ITl
_'I_]: = =
.009999 ‘IT2
.0001020 T
- - 31
L

Convergent Coupled Riccati Equations.

~.7563 .1266
Cns T
~.8070 -.1784
Stability:
Configuration Stable

0 Qio) yes.
1 Q{l) no
2 (22) no
3 (_13_3) no

Interpretation: With more reliable actunators, the non-switching gain
expends less force on the stabilization of configuration states 1 and 2
(unstable); since configuration state 0 is stabilized, and the system
has a (relatively) higher prcbability of being in configuration state 0
than in Case i), the non-switching coupled Riccati equaticns converge,

resulting in a finite cost.
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Example 5.2 uses the same system dynamics as in Example 5.1;

however, only structures 0,1 and 2 (the controllable structures) are
considered. The configurdtion dynamics are m;deled as being in any
structural state with equél probability of occurance initially and
.remaining in that state forever; this model is illustrated graphically
in Figure 5.1.

The state dynamics are

Xerl ~ B2 Y Ero B¢ Xt 1,6 *2,t

x(t) € {0,1,2}

The cost to be minimized is
[+¢]
T T
J = E +
E _Oitgit EtEEt n

The non-switching methodology yields a robust control law of the

form

LI S
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76265AW030

Pigure 5.1: -Markov transition probabilities for Example 5.2.
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Example 5.2:

2.71828 0.0
é =
0.0 = 3679
[1.71828 1.71828 0.0 1.71828
By= By~
| —.63212 .63212 0.0 .63212
[1.71828 0.0] - 1. 0. o.
B,= :
| ~.63212 0.0 p= fo. 1. o.
0. 0. 1.
Convergent:
-1.089%9 -.008413
Ens -
-1.028 -.01444
, 112.8 8.992 A
i=0 8.992 6.835
Stability:
Confiquration Stable
0 (EO) ves
1(8,) yes
2(B,) yes

Robust: ves



Riccati Solution:

., [r1o09.8
S S
~0 |s5.030
. 114.3
S =
-1 6.285
. 114.4
5,=

11.66

9.030

6.821

6.285

6.836

11.66

6.849

139
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The non-switching solution converges for the system in Example 5.2,

and the three resulting configurations are sta:bilized. Therefore G ns
is a robust gain. Had the solution not converged, by Coroliary 1 of
Section 9, no robust gain would exist.

The apriori expected cost (before the configuration state is
known) is, given x

g = x'cx
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5.11 Summary.

In this Chapter, an optimization problem was defined on linear
systems with variable actuator configurations and qﬁadratic cost criteria.
The objective of this approach was to compute apriori a seguence of
gains to bhe used in linear feedback control which dc not depend on
any on-line information about the process. These gains were to
both stabilize the overall system, accounting for the various possible
structures and minimize the expected value of the quadratic cost crite-
rion, where the expectation is taken over the possible sequences of
actuator configurations. This solution depends on both the perfor-
mance, and on the reliability of the various structures, as represented
by the Markov transition probabilities between structures.

The matrix minimumiprinciple [Athans,41] was used to establish the
necessary conditions for optimality of a scolution te an egquivalent
deterministic problem tc that described above, known as Problem AE in
the Chapter. These conditions unfortunately do not yield an analytic
solution for the gain sequence, but instead vielded an ill-posed two-—
point boundéry value problem which must be solved numerically (Section 5).
Thexrefore, a second problem (Problem B) was formulated which was sélvable
analytically using dynamic programming (Section 6). This solution has
identical cost-stabilizing properties to the solution of Problem AR,
but has the advantage of being directly computable.

The steady-state solutions to the infinite-time versions of both
problems were defined, when they exist, and it was proved that, in addi-
tion to the equivalent stabilizing property of the two solutions, the

steady-state values are identical, and this value is the same as the
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optimal constant gain which minimizes the expected cost over the infinite
time interval.

In addition, the general xcobustness question of when one gain can
stabilize a set of linear systems w;th different actuator confiigurations
was formulated in the context of Problem & and was solved by Problem B.
Thus, a test_for when a robust gain exists can be performed by iterating
a set of coupled matrix Riccati-like equations and testing for converg-—
ence of a function of the solutions. If, in addition, the individual
solutions converge, then the robust gain which minimizes the expected
quadratic cost index can be calculated directly. It was noted that the
extension to systems with %ériable dynamics (variations in A), as well
as variable actuator structure, is trivial as long as the dimension of
the state is constant.

The major applications of -this work are in the calculation of a
robust gain for a set of linear systems and in the calculations of
stabilizing gains for systems with variable structure, such as occurs in
failure, repair, or reconfiguration. A second application will be ‘
covered in the next Chapter and involves using these calculations in a
computer—aided design procedure for the determination of the relative

effectiveness of various redundant component configurations.
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CHAPTER 6

COMPUTER-AIDED DESIGN

6.1 Introduction.

In this Chapter, two specific applications of the non-switching
gain methodology to computer-aided design are presented. Example 6.1
illustrates the usefulness of the non-switching gain methodology in
the selection of an actuator design. Five possible designs are
analyzed using the non-switching gain calculations as a basis for ranking
the designs with respect to their expected performance. Example 6.2
compares two actuators, of which one is more reliable, but less
effective (in that it incurs a greater cost for the same action) than
the other. Three cases with various actuator reliagilities are presented
as a study of the trade—off between actuator reliability and effective-
ness.

These two examples are intended to demonstrate the usefulness of
the non-switching gain methodology in design studies. No general method-
ology for computer-aided design using the results presented in this
report is presented. Instead, tools are presented which can be used in

the computer-aided design of system configurations.

6.2 The Design Decision.

A designer often has many means of achieving a desired goal;
however, no unified methodology exists which can be used to choose a
given design that is "better™ than any other. At best, a set of tools

can be developed which are applicable tc specific situations and classes



144
of systems. Of these toeols, all that are presently available evaluate

a system either on the basis of performance or on the basis of reliabil-
ity. The methodologies described in this report optimize a performance
index which depends oﬂ both system reliability and svstem performance.
Therefore, it is logical to apply these methodologies to the computer-
aided design of system configurations.

Example 6.1 is an aid in the desigﬁ of a linear system for whiqh the
state dynamics are fixed, but the actuator configuration is to be at
most two actuators (one level of either component or functional redundancy)

chosen from two types of actuators. The system in Example 6.1 is de-

fined by
CEe1 T BEC By Be (6.2.1)
k(t) eI ' (6.2.2)
where x = | » X, .. %, .1 . 1In Cases i) and ii), T ={o0,1} ;

£- 1wt *o,em %3¢

in cases iii), iv), v}, I = {0,1,2,3}. The cost to be minimized is
ael]
T T
= + L
J, =E Lz_; x 9x +u Ru | E} (6.2.3)

The cost of each actuator (labeled b, and gj_) is to~be the quadratic
cost incurred by the control input to that actuator. These costs are

represented by the quadratic weights IO and rl, respectively, and are

equal in Example 6.1. The actuators act on different states of the

system; actuator b Oapplies the control force to state x_, while _111

2
applies the control force to state x3. Bach actuator can fail to an
actuator with zero gain, 0. Repair constitutes replacement of the
failed component with a new -actuator, identical to the original ac-

tuator. The repair action is modeled using a Markov transition pro-

bability | the probability of repair pexr unit of time. The actuators
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have identical probabilities of failure and repair per unit time, pf and

P s respectively. The five possible actuator configurations are, in the

order in which they are presented in Example 6.1,

B = |p (6.2.4)
B = N (6.2.5)
B = |l (6.2.6)
B = o, b (6.2.7)
= bl (6.2.8)

Configurations g} and g? have two-state configuration dynamics directly
defined by the failure and repair probabilities per unit time. Con-
figurations §?, B and EF have four-state configuration dynamics re-
presented graphically by Figure 3.2 of Chapter 3, Section 5. It is
not immediately obvious from'ﬁhe configurations and the state dynamics
which configuration is optimal. When a non—-switching gain control is
used, the expected steady-state cost, given by equation (5.7.3), is

a measure of the expected performance of each configuration, and can be

used to rank the five configurations in order of system effectiveness.

System effectiveness is a measure of the expected performance of a
system, taking into account all postulated modes of operation. There-
fore, in Example 6.1, the non-switching gain and expected cost is com-

puted for each of the five design configuraitons.
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Example 6.1:

2.0000 .5000 -5000
A = 0.0 0.0 1.000
6.0 -1.000 C.0

0.0
b, = fo-0 , ry=1.0
1.0
0.0 |
b, = |10 ;= 1.0
0.0
0.0
o = Jo.0
0.0
r = p = p, = .01
f0 fl £
p. = p_ = p_ = .98
Pg.
b, > 0
b, = o]
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Example 6.1 Case i)

20 = [EO] = conf. O {conf. é configuration)

—B—]_ = 9 = conft. 1 E = [IO] = ll.D]
1—pf P .99 .98

P = =
P, 1-p_ .01 .02

_ . 9899 ﬁo

1 3 =

.01010 Wl

Convergent Coupled Riccati Equations:

G = [~4.863 -.2582 —1.733}
—ns

182.5 37.06 57.93
] = 37.06 2.943 12.32

57.93 12.32 22.81

.§188.6 37.39 60.09

S = 37.39 9.961 12.44

60.09 12.44 23.58

182.6 37.07 57.95

2 ’ﬂ”igi 37.07 9.943 12.33 c
1=

57.95 12.33 22.82

T
Expected cost = x C x
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Stability:
Configuration Stable
0.(B o ¥ yes
1 (_B_l) no

Interpretation: The steady-state non—swii:ching gain existsg; it
stabilizes c;)nfiguration o (B 0) ; but does not stabi_lize configuration
1 (3_3_1) . Since the probability of being in configuration 0 (stablel)
(Tro) is much’ greater than the probability ofbeing in configuration 1
(unstable) ('n'l), the system configuration is stabilized using the

non-switching gain G ns in the control law
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Example 6.1 Case 1ii)

By = lgl| = conf. 0
B, = 0 =cont. 1 R = [rol = [l.Ol
l—pf ' 1 .99 .98
P = =
|_pf l-pr -0L .02
L9899 T
T o= =|°
:01010 ﬂl

Convergent Coupled Riccati Equations:

G = [—12.59 ~1.484 —4-097}

—ns -
1035. 125.0 271.4

s, = [25.0 18.8¢4 33.04
271.4 33.04 73.80
1069. 129.0 282.6

s, = []120.0 19.31 34.34
282.6  34.34  77.43

1035. 125.0 271.6

125.0 i8.85 33.05

l_l
fingy
=1

'-J.
|t
'.-h -
Il
=
|2

271.6 33.05 73.83
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Stability:
Configuration Stable
-0 yes
1 no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration 0 (EO ), but does not stabilize configuration
1 (]_3_1 }. Since the probability of being in configuration 0 (stablé)
(T O) is much greater than the probability of being in configuration 1
(unstable)} (’iTl) s the system configuration is stabilized using the
non-switching gain.g_ ne in the control law

u = b4
-t g-ns_t
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Example 6.1 Case iii)

By, = [201 10_0] = conf. 0 B, = IP_Ol EI = conf. 2
B, = {g [ golzconf. 1 B, = (o] g|=conf. 3
r, 0.0 1.0 0.0
5 = =
0.0 x4 {o.0 1.0
B 2 : ' ' 2 il
1-2p +p; p (1-p.) | p {1-p.) ' P,
Pg(1-pg) 1-p, PR, Pe P Pe | (1P,
B = u* : .
p£(1~pf) p P, 1-p ~P+P P p (1-p )
2 (1-p ) (1-p_) 1-2p_+p>
Pg Pgii=Py PPy N ?r Pr
- i %
.9801  .9702  .9702  .9604
.0099  .0198 ° .0198  .0l96
.0099  .0098  .0098 0196
.0001  .0002 - .0002 ‘.0004
.97 ke
9799 "
.009999 T,
E = =
.009999 NES
{
.0001020 T,
= J o -




Convergent Coupled Riccati Equations:

F -2.469 ~.1279 -.898

—ns | —2.469 -.1279 -.898
153,1 32.81 48.01 |
I it
54 < 32,81 9.050 10.92
48.01 10.92 19.03
154.4  32.88  48.48
L4
s, = 32.88 9.054 10.95
48.48 10.95 19.20
154.4 32.88 48,48
— t ) ’ I
5, = 32.88. 9,054 10.95
'48.48 10.95 -19.20
[155.8  32.95 48.96
' )
S, = 32,95 9.058 . 10.97
48.96 10.97 19.38

153.2 32.82
3 .

2 T8, = 32.82 9.050
= i—i . -
48.02 10.92

T
Expected cost = x C x

]

48.02
10.92

19.04

ne=

el

152
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Stability:

Configuration Stable
0B, yes
1(B,) no
2(B,) no
3 (B3) no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration 0 (B o }: but does nothstabilize configqurations
1,2,0r 3. Since the probability of being in configuration 0 (stable)
(TFO} is much greater than the probability of being in any other con-
figuration (1Ti.. i=1,2 or 3} (unstable), the system configuration is

stabilized using the non-swithcing gain G in the control law
—ns
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Example 6.1 Case iv)

By = ,P-J_l E]_J = conf. 0 B, = Igll gl = conf. 2
B, = '_q | _I_J_l],=conf. 1 B, = ’_q | 9_‘ = conf. 3
L 0.0 1.0 0.0
B- = =
0.0 Ty -0.0 1.0

P and T are the same as for Case iii).
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Convergent Coupled Riccati Equations:

-6.097 -.7347 ~-2.011
G =
s -6.097 -.7347 -2.011
762.2 95.14 195.1
L}
s, = Jo5.14 15.18 24.64
195.1 24.64 52,13
768.7 95.92 197.3
1
s, = Jes.o2 15.27 2489
197.3 24.89 52.83
768.7 95.92  197.3
1
s, = |os.92 1s.27 24.89
197.3  24.89 52.83
775.3  96.71 199.5
)
5, 96.71 15.36 25.16
199.5 25.16 53.55
762.3 95.15 195.2
' A
ms, = |os.15 1s.18 24.84| = ¢

1=
195.2 24.64 52.14

T
Expected cost = X C X
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Stability:
Conficguration Stakle
0-(Bg) yes
1{8;7 no
2 (38,) no
3(8_) no
=3
Interpretation: The steady;state non-switching gain exists; it.

stabilizes configuration 0 (B 0),-but does not stabilize configurations
i, 2, or 3. 8ince the probability of being in confiquration 0 (stable)
('n'o) is much greater t,han the probability of being in any othex con-
figuration (ﬂi, i=1,2 ox 3) (unstable), the system configuration is
stabilized using the non-switching gain G ns in the control law

Et= EnsEt



Example 6.1 Case V)

= = f. =
B, = [by | by|=cont.0 B,
== = f. =
B, = o | By =om1 3,
_ r, 0.0 1.0 0.0
R = -
0.0 rl 0.0 1.0

P and T are the same as for Case iid).

H

conf. 2

conf. 3

157
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Convergent Coupled Riccati Eguations:

[.3.815 -.1312 —1.1Oé]
G =
ns  -2.956 -.5815 -1.486
126.5 24.86  32.32
S, = 24.86 7.066 6.842-
32.32  6.842  10.69|
128.4 24.93 32.88
s, = 24.93  7.096 6.863
32.88  6.863 10.85
- .
127.3  25.01 32.72
1
s, = 25.01 7.097 6.921
32.72 6.921 10.82|-
129.2 25.08 33.28
. _
5, = 25.08 7.100 6.942
33.28 . 6.942 11.05
126.5 24.86 32.33
' A
TS, = 24.86 7,067 6.843] £ ¢

1=
32.33 6.843 10.69

T
Expected cost = x Cx
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Stability:
Configuration Stable
0 (By) yes
1L (Bj) no
2 (B5) yves
3 (B 3) no .

Interpretation: The steady-state non-switching gain exists; it stabil-

and B, ). Since the probabilities of

izes configuration 0 and 2 (B 5

0
being in configuration 1 and 3 (_B_land B, ) are small (Trl and Tr3)
(unstable), the ‘system configuration is stabilized duringthe non-switch-

ing gain G ns in the control law

Et T ZIns -}it
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From the results in Example 6.1, the design configurations are
ranked as follows, where > is defined as "is better than®.

5° >8> >B'>p'> B (6.2.9)

One conflguration is more desirable than another (E? > EF) if

-
n

2 T o 1
s . ) - s ¥ > 0 (negative definite) (6.2.10)
=0 i—2 = i—1

(=

This criterion is reasonable; if g? > EF, then the expected cost using
design configuration E? is always less than that using E#. If the left
hand side of equation (6.2.10) is not negative definite, but is only
semi-definite, then some other criterion must be used in addition to
(6.2:10) to rank the various designs. For example, if one assumes a
uniform distribution of the initial system state E{) in the unit sphere,
and if the elements of the diagonal of the left hand side of equation
(6.2.10) are all non-positive, then the trace operator may be used as a
ranking function. If the trace of the left hand side of eguation (6.2.10)
is negative, then E? > §$. If the left hand side of eguation {6.2.10} is
not semi~definite, then the designer must choose which of the state
variables are most important in an effort to eliminate the ambiguity of
equation (6.2.10). In Example 6.1, equation (6.2.10) alone is sufficient
to rank the designs.

The results stated in (6.2.9) are somewhat surprising. First,
consider b

and b A control input at time t using b, enters the

0

]T. At time t+1,

0 1i°

syst dynamics in state =
vstem dy c x3, where E%: [Xl,t x2,t x3’t

the same control is applied to state X, with a gain of .5; also,

1

At time t+2, that control is again applied to state x

Xo,t+1 T *3,e0 1

with a gain of .5 . HWow, consider
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the same situwation, but with b instead of E{). In this case, at time

1

t+1l, the contrel is applied to state X with a gain of .5, but

X = =X . Therefore, at time t+2, the negative value of the original
3,641 2,t e

control is applied to state x_, thus partially cancelling the effect of

1

the origimal input. The same process occurs using E{), but is delayed
one time step; thus, the control affects stéte xl positively one additional

time step when E%) is used. Because of the added effectiveness of ELO

1 2

. 1 .
over b, , B > B, and in fact, B > B? Thus, even after accounting

1

for component reliability, configuration g}, which has no component
redundancy is more desirable than configuration g? or gé even though
configuration g% employs one level of component redundancy.

Using this reasoning, one would expect E? to be the optimal design
choice; however, the example demonstrates that this is not the case.

From G ns for Case iv), note that the control which is applied to b 0

depends mostly on the unstable state xl, while more emphasis is given

to states x2 and x3 in the calculation of the control for actuator;gl -

Thus, actuator b 0 acts partially to stabilize the dynamics of state Xl'

while actuator b . acts partially to counteract the negative effects of

1
the subsystem of states x, and x3. This type of control action is an
example of the use of functional redundancy, and is not possible with

. . . 3 4
design configurations B or B .

The non-switching gain analysis of the proposed design configura-—
tions yields information not only about the effect of wvarious actuator
1

configurations but alsc about the effect of component reliability on

4 . 2 3
the expected performance. Thus, B is more effective than B , and B

. . 4 3 . . .
is more effective than g}; B and B are versions of the configurations
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2

B and E}, respectively, with one level of component redundancy. Con-

. . 5 .
figuration B  is an example of functional redundancy; both actuators
provide control input te the same system, but are not identical components.

Thus, the additional reliability of component redundancy contributes

to ranking (6.2.9). The trade-off between system performance and system

reliability will be further demonstrated in Sectien 3.
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6.3 A Trade-Off of System Performance Versus Reliability.

The non-switching gain methodology can be used to study the
relative effects of actuator reliability and actuator effectiveness
on expected system performance., If a designexr has a choice between
using a high reliability actuator rather than one with relatively low
reliability, but with a higher effectiveness, on what basis can a
decision be made? In Example 6.2, two actuators are considered. Each
actuator may fail to an actuator of gain zero (0) and be repaired

{(replaced). The probabilities of failure and repair are pf and Pr '

i

where i=0 or 1 and refers to the actuatoxr (b, ox b. ; respectively).

8] 1
One actuator (Q{)) has good reliability, but the actuator gain is unity.
A second actuator @31) has an actuator gain of ten (higher effective-
ness), and a lower reliability. If the actuators had the same relia-

bility, then actuator b would be preferable——it incurs a smaller cost

1
for the same effect. In Case i) of Example 6.2, this reasoning is
demonstrated numerically; the steady-state non-switching gain favors

actuator b, (the second column of 243). (The two rows of the gain

1
matrix are compared; the top row corresponds to actuator_go.)

In Cases ii) and iii) of Example 6.2, the reliability of actuator
QJ_ is lower than the reliability of actuator 21). In Case ii) the
probability of failure per unit time of actuator gj_ is five times
greater than the probability of failiure pexr unit time of actuator b _ ;
in Case iii), it is ten times greater. The probabilities of repair per
unit time for actuator Eil are also lower thgn for actuator ;10.

Therefore, actuator b. is significantly less reliable than actuator 510'

1

Note that in Case ii), the optimal non-switching steady-state controller
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favors actuatox 91) by a gain factor of 2.5 - 2.6; in Case i), actuater

ECL is favored by a gain factor of 2.3. In Case iii), actuator E{) is
favored by a gain factor of 5.1. Tnus, the non-switching gain calcula-
tions -can be quite ‘sensitivé to changes in component reliability.

Although the configuration states are identical for all three Cases of
Example 6.2, the configuration dynamics are modified by the changes in
actuator reliability. The effect of modifications in actuator reliability

on the non-switching steady-state gain and cost is pronounced. The

steady-state gain is very sensitive to the actuator reliabilities; the

expected steady-state cost increases as the reliability decreases. A

second effect demonstrated by Example 6.2 is interesting. In Case i),
conf?guration state 2 is not stabilized by the non-switching gain. As
the reliability of actuator_ﬁll1 decreases, the average steady-state
probability that the configuration is state 2 (actuator E&' failed,
actuator 24) opérational) increases. Therefore, the non-switching gain
solution must concentrate more effort on stabilizing configuration state
2. MNote that in Cases ii) and iii), configuration state 2 is stabilized
by the non-switching gain solution. Tt is interesting to note also that
the non-switching gains in Cases ii) and iii) are robust with respect +o
configuration states 0, 1 and 2. (Configuration state 3 is uncontrolia-

ble.)

The system dynamics in Example 6.2 are

k(t) € 1 ) (6.3.2)
_ 1 T 3
where I = {0,1,2,3} and x, = [xl,t let X3,t] . The set { Ej‘ i=0

of configuration states is given in Example 6.2. The cost to be
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minimized is

oo
Jd =E E p
T

t=

¢t
ko

Fu Ru m (6.3.3)

ot
rs

|>‘|



Example 6.2:

2.0000 - 5000 .5000
a = }fo.0 0.0 1.0000
0.0 -1.0000 0.0
0.0 G.0 0.0
EO = 0.0 0.0 | = conf. O El = 0.0
1.0 '10.0 0.0
0.0 .0 0.0
£ . . = . 2 = .
Ez 0.0 0.0 conf ~B—3 0.0
1.0 0.0 0.0
rl.O 0.0 0.0 5.0
E =
9 = 0.0 1.0 0.0 ) 0.0
0.0 0.0 1.0
-
i-p_ -p. +p_. P {(1-p. )P
fl f2 fl f2 f2 r
pe. (1-p. ) i-p_-p. *p_ P
£ £ ry TE, g
P_ =
p. (1-p. ) PP
) £ £ry
P- P (1-p_ )p
f1 f2 xy £

conf. 1

conft.
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Example 6.2 Case i)

Convergent:

G
—ns

o1
.01 p = .98
1
-.2059 ~.01076
~.4829  -.02505
134.5 30.06  41.49
30.06 8.459 9.981
41.49 9.981 16.44
 134.5  30.06  41.49
30.06 8.459 9.981
41.49 9.981 16.44
[138.5  30.27 42.96
30.27 8.470 10.06
42.96  10.06 16.98
138.5 30.27  42.97
30.27 8.470 10.06
42.97 10.06 16.98
134.5  30.06
1 ]
= | 30.06 8.459
41.51 9.982

|=
I

-.07574

-.1789

41.51

9.982

16.45

=

. 9790
. 009999

.009999

.0001020
L

[

167
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Expected cost = x C x

Stability:
Configuration Stable
‘ 0 ‘(E’O) yes
1 (B,) yes
2 (E 2 ). no
3 (_% 3 ) no

Interpretations: The system X = [é + _]?_l G ns] X ‘ is stable only for

t+l
i=0 and 1. The probabilities of the configuration being in states 2 and 3
(‘n’2 and 1T3) are small; the system configuration is stabilized using the

control gain G ns in the control law

u =G X
-t —ns —t



Example 6.2 Case ii)

p. = .01l p_ = .98
% *o
p. = .05 p_ = .90 T
£ Ty
Convergent:
-1.041 ~.05848  ~.3639
G -
ns ~.4058 -.02163 -.l464
176.6 36.37 55.60
s, = |36.37 9.797 12.06
55.60 12.06 21.81
176.9  36.39 55.71
§, = |36.39 9.798 12.06
55.71  12.06  21.85
197.4 37.56  62.83
s, = [|37.5¢ o9.s68 12.46
62.83 12.46  24.35
[~ n
166.4 35.79 52.08
s, = }35.79 9.762 11.86
52.08 11.86  20.58
177.7 36.43 55.98
:g: .s. = |36.43 9.801 12.08
1—1
1=0
55.98 12.08 21.94

e

9378
.009212

.05206

.0005316
L. -

kg
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Expected cost = _:iTg x 170

Stability:
Configuration Stable
0 (Bg) yes-
1 (B 1 ) yes
2 (B,) yes
3(83) no

Interpretation: The system
= [A+B,G
5t-1~]. (2 —i —ns] Et
is stable for i = 0,1,2.

Configuration state 2 is stabilized because the probability of the

configuration state being 2 (B 2) is larger than in Case i).



Example 6.2 Case iii)

p = .01 p = .98
£ o
P = .10 p = .90 T
£y £y
Convergent:
-1.729 -.09453 ~.6062
—ns ~.3400 -.01858 -.1195
210.6 41.04 67.28
]
Sg = 41.04 10.76 13.61
67.28 13.61  26.29
[213.2  41.14  68.26
L]
s, = 41.14 10.75 13.66
| 6626 13.66 26.66
212.3  41.09 67.92
s, = 41.09 10.75 13.64
67.92 13.64 26.53
196.0 40.19 62.11 |
1
s, = 40.19 10.70  13.32
62.11 13.32 24.47
210.7 40.99 67.28
r
T.S, = l40.99 10.75 13.60
=0 l1—1

67.28 13.60

26.28

e

.8909
.009172

. 09891

.001010

)
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Expected cost = g?g_g_ 172

Stability:
Configuration Stable
0 (8g4) yes
1 (El) yes
2 (_B_z) yes
3 (33) no

Interpretation: The system
= +
Eepp T RTE; 6, T x
ig stable for i = 0,1,2.

Configuration state 2 is stabilized because the probability of the

configuration state being 2 (Ean is larger than in Case 1i).
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6.4 Summary.

In this Chapter, two applications of the non-switching gain method-
ology to computer-aided design (CAD) were presented. The purpose of
these examples was to demonstrate the usefulness of the non-switching
géin methodology in the design process. CAD has two uses: First, it is
used by the system designer in the evaluation and design of a system.
Second, it is guite useful to the theorist. TIn this research, for
example, without CAD technigues, a thorough knowledge of the methodologies
presented in this report could not have been gained. The équations
describing the switching and non-switching gaiﬁ methodologies can be
derived, but their meaning in a specific context cannot be determined
theoretically. The purposgse of this research was to study the inter-
actions between system reliability and optimal control. The method-
oclogies presénted in this report allcew this study to proceed. The two
Examples of this Chapter study two specific areas of interaction
between system reliability and contrcl. The door has now been opened to
the answers to questions on reliable control system designs. Computer-

aided design can provide the signposts to these answers.
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CHAPTER 7

CRITIQUE

7.1 Introduction.

In this Chapter, the major results of the report will be summarized.
In Chapters 3 and 4, the switching gain solution was develeoped and
extended suboptimally to stochastic systems. In Chapter 5, the non-
switching gain solution was developed. The problems associated with
system stability, including definitions of what constitutes a stable
system, and with the steady-state solutions to Problems A {Sections 3
through 5) and B (Section 6} were studied in detail in Section 7. The
equivalence of the two approaches to the non-switching gain solution is
proved in Section 8. The existence of a robust steady-state linear
feedback control system was studied in Section 9.

In the following sectionsg, each major result will be discussed; in
Section 5, some suggestions for future directions in research will

be made.

7.2 The Switching Gain Solution.

The switching gain solution was derived in Chapter 3 as a control
methodology for linear system with guadratic cost criteria and variable
actuator configurations. The resulting control law was to account for
the failure, repair and reconfiguration of the actuwators by switching
the control gain on detection of a change in configuration. This type
of control law is, from Chaptexr 1, Section 4, a class IT reliable control

methodology; an active {(switching} controller is used with a passive
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configuration design.

7.2.1 Deterministic Optimal Solution.

The switching gain golution of Chapter 2 is derived as the optimal
solution for the discrete-time deterministic optimal control problem.

It is the optimal control simply because the structure of the discrete-
time system allows perfect observations of the system structure with
one-step delay. Therefore, there is noc need for the control law to
have a dual effect; in fact, there can be no dual effect, since the
control law does not affect the observation process, for almost all
values of the control.

A minor drawbacg to the switching gain solution is the computa-
tional burden of iterating the Riccati-like equations (3.3.6), and solwving
for the optimal control using equation {3.3.7), backward in time for
each time instant of the control interval, or until the steady-state
solution is achieved, when one exists. Fortunately this computation is
done off-line, and the various optimal gains are then stored for on—line
use. On-line, the contrecller simply determines which structure the
system was in at the previous time instant and chooses the corresponding
(stored) gain. The control law is then a linear feedback control using-

that particular gain.

7.2.2 HNon-Extendability to Stochastic Systems.

Unfortunately, the switching-gain solution does not extend optimally
to systems where noise is.present. When noise is present, it is no
longer possible {in general) to determine exactly the previous value

of the system structure. It was shown in Section 3 of Chapter 2 that
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in such a case, the optimal control law exhibits a dual effect; i.e.,
the control law influences the measurement of the system structure. In
a real-life situation, at is unlikely that a system with no internal
noise will be found. Unfeortunately, the optimal (dual} control law is,
in practice, unsoclvable due to the immense computer resources which are

required.

7.2.3 BSuboptimal Extensions.

Because of tﬁe dual control effect, the deterministic optimal
solution ig the only closed-form solution available. Thus, it is in
our interest to look for suboptimal methodologies which extend the
switching gain solution to the stochastic case. In Chapter 4, two of
these méthodologies were studied: Hypothesis testing and dual identi-
fication. While hypothesis testing is a measurement strategy, dual
identification modifies the contrcol in order to guarantee a pexfect
cbservation of the system structure with the next measurement. Both
methodologies are presented in their simplest form, since the problems
of stochastic control of systems with variable structure are not within
the scope of this research. Two comments are in order, however:

First, at least in the form presented in Chapter 4, a dual identifica-
tion algorithm is computationally intensive. Since it is an on-line
algorithm, a significant computational capacity may be required in its
implementation., Second, it is observed that the optimal stochastac
control law, if it could be calculated, would rely on both estimation
and dual control, the two concepts which are represented in Chapter 4 by

hypothesis testing and dual identification, respectively.
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In a suboptimal implementation using dual identification, the
algorithm would most likely be used only at intervals; the implementa-
tion would rely on an estimation algorithm for the remainder of the
time. This scheme would attempt teo minimize the degrading effect of
dual identification on the state trajectory by using it only to guarantee
that the estimation algorithm was tracking the system configuration
properly. Thus, the system response would be roughly periodic, with
the state being driven away from the origin in order to obtain an
accurate estimate of the configuration, and decaying back toward zero
between uses of the dual identification algorithm.

This type of control strategy deserves some attention in future
research activities. It is similar to the class of self-testing
systems which perform diagnostic testing of their configurations
at intervals. It is also, .at present, the only methodology which takes
advantage of the dual property of the control law in systems with

variable, imperfectly observed, structure.
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7.3 The Non-Switching Gain Solution.

The non-switching gain solution of Chapter 5 was derived as an
alternative to the switching gain solution of Chapter 3. Although
the non-switching solution is, in general, suboptimal, the on~line
complexity of the solution is less demanding than that of the switching
gain solution. On-line, the non-switching gain solution has the same
complexity as does the standard linear quadratic solution. O0ff-line,
the computational réquirements are equivalent to those of the switching

gain solution.

7.3.1 The Necessary Conditions--Unsolvability.

When the non-switching control problem is formulated as an
equivalent detexministic contrel problem (Chapter 5, Section 4), the
negessary conditions from the matrix minimum principle [Athans,41]
vield a two—-point boundary value problem which is not explicitly
solvable; at the present time, the solution to this problem appears
intractable. The necessary conditions a?e used, however, in conjunction
with an equivalent problem (Chapter 5, Section 6}, to prove some strong

properties of the solution to the eguivalent problem.

7.3.2 The Egquivalent Problemn.

The equivalent problem formulated in Section 6 of Chaptexr 5 has
the advantage over the original formulation that a closed-form expression
for the solution can be readily obtained. From the necessary conditions
of Section 5 in Chapter 5 for the original formulation, it is shown that
the accumulated costs over the control interval for a specified gain

sequence are identical for the two formulations. From this, in Section 8
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of Chapter 5, it is shown that if the steady-state solutions to both
problems exist, then they are identical. This is a major result, since
the steady-state solution to the second formulation is calculable,

while the solution to the first formulation is not.

7.3.3 Existence of a Stabilizing Gain.

Only one major result remains; one would hope that the steady-state
solution to the second formulation exists if and only. is the steady-state
solution to the first formulation exists. In Section 7 of Chapter 5, the
meaning of "steady-state" is precisely defined for both problems. In
order for the concept of a steady-state solution to be well-defined, an
exact definition of stability must be given. Two definitions are present-—
ed. Stability is defined as the usual concept of mean-square stability.

A definition of cost-stability is presented as the condition when the

expected cost for the infinite horizon problem (unnormalized by time)
is bounded. It is proved that the solutions to the two foxmulations
are equivalent in that one solution is cost-stabilizing if and only if
the other is alsc. Cost stability is shown to imply mean—-square

stability; the reverse is not necessarily true.

7.3.4 Problems with Convergence.

There are two criticisms of the results of Chapter 5. PFirst,
although cost-stability is not implied by mean-square stability, it is
possible that, for the specific form of the non-switching gain solution,
the two definitions are equivalent. This is a minor point, in that the
equivalence result is already very strong; it yields a procedure for

the calculation of the steady-state solution to the two point boundary
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value problem which converges if and only if that solution exists.

Second, there is still a minor problem concerning the convergence
of the non-switching gain solution. The equivalence theorems of
Chapter 5 only reguire the solution to have a steady-state, which may
be a 1imit cycle. A limit cycle is still copacetic, but it is harder
to implement than one gain would be. Therefore, it is desired that
conditions be found for which the possibility of a limit cycle is
ruled out.

Thus, two possible topics for future research are the examination
of the exact relationship hetween cost-stability and mean-square stability
for the non~switching solution and the determination of conditions for

which the possibility of limit cycles as solutions is eliminated.

7.3.5 Existence of a Robust Gain.

A spin-off of the ﬁon-switching gain solution of Chapter 5 is
the development of an algorithm which determines when a rcobust gain
for a set of linear systems exists (Section 9). A robust gain is a
gain which stabilizes each mode of the system configuration regard-
less of the configuration dynamics. This algorithm is developed by
noting that the robustness problem can be reformulated as a non-switch-
ing gain problem. Since the non-switching gain ig, in the steady-state
case, the solution to the first formulation (Section 4, Chapter 5), and
since it is stabllizing if and only if a stabilizing gain exists, then
by the special structure of the robust formulation (Section 9), the
steady-state non-switching gain is robust when it exists. In addition,

if the non-switching solution is not cost-stabilizing, then no robust
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gain exists. This is a very important result; it is unfortunate that
determination of existence of the robust gain requires the solution

of the non-switching gain problem. At present, however, Tid test on -a
system exists which determines when the non-switching gain solution

is cost-stabilizing. It is hoped that such a test will be developed in

the future.
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7.4 Computer-Aided Design.

Chapter 6 demonstrates the usefulness of the nbn—switching
gain calculations in computer-aided design-(CAD). These calculations
provide the backbone for comparison studies on the relative system
effectiveness of various designs. In the first example, it is demon-
strated that the non-switching control methodology vields a numerical
value based on the expected performance of a design configuration
over the effect of the structural dynamics. This example demonstrates
that relatively subtle qualities of an actuator can be used to rank
various actuator configurations; in this case, the ranking depends
on the manner in which the control affectéd the system state and is
not obvious on a casual inspection of the configuration.

The second example demonstrates the ability of the non-switching
gain methodology to observe the trade—off between high reliability and
high effectiveness in an actuator. Both qualities are desirable, but
in this example, one actuator is highly reliable,. while the second
actuator is not as reliable, but is highly effective in-that it incurs
a much smaller cost in applying the same control effect to the system.
The non-switching gain problem is solved for a range of actuator reli-
abilities for the highly effective sensor., It is demonstrated that
the trend exists to depend more heavily on the high reliability sensor
as the reliability of the highly effective sensor decreases, even
though the operation of the highly reliable sensor incurs more cost.

Chapter 6 only touches upon the field of computer-aided design.
There is much work to be done in this field, and the purpose of Chapter 6

is only to estabilish the usefulness of the non-switching gain methodology
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in the design process. In the future, the applicability of the non-
switching gain methodology to CAD should be studied in great detail;
in particular, a comprehensive methodology for the application of the
techniques of Chapter 5 to CAD should be developed. This methodology
should include a strong argument for the validity of using the non-switch-
ing methodology in CAD. Specifically, research needs to be carried out
on the relationship of the costs incurred by various design configurations;
this is similar to justifying the use of the gquadratic cost criterion
in the linear quadratic regulator. In order to compare two designs, a
valid basis of comparison, oxr cost index, must exist. The non-switching
methcdology is proposed as being a valid cost index for the class of
systems for which it is applicable; this conjecture should be verified.

In addition to the usefulness of the non-switching methodology, it
has been mentioned previocusly that a valid definition for a reliable

design is that the design is cost-stabilizable. Since, for the deter-

ministic control problem presented in Chapter 3, the switching gain
solution is the optimal solution, the existence of the steady-state

switching gain solution is equivalent to the stabilizability of that

design. Hence, the existence of the steady-state switching gain solution
is necessary and sufficient to classify a design reliable.

In theory, the computation of the steady-state switching gain
solution can be used as a method in CAP for determining if a proposed
design meets the minimum requirement of stabilizability. In practice,
however,, the proposed design will operate in a stochastic environment;
therefore, the switching gain solution is not an absolute measure of the

stabilizability of the design. In the future, research should he
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concentrated on the development of the concept of Stabilizability to
more deneral stochastic systems than has been done previously. BAn
example of work in this direction has been given with the Uncertalnty
Threshold Principle [Athans, et. al.,37], which is basically the deter-
mination of conditions of stabilizabilit§ for a specific system with a
specific type of Fontrol law. The work on the existence of the non-
switching gain solution for a simple system (Chapter 2,. Section 7)

is another example. It has been demonstrated in this research that the
concepts of systems reliability and stabilizability are cruéially
interconnected. It is left to future research to determine more general
conditions of reliability and stabilizability and to implement these

conditions in computer algorithms which can be used by the designer.
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7.5 BSuggestions for Future Research.

Several suggestions for future research have been presented in
Sections 2,3 and 4 of this Chapter. In this Section, a summaxy of these
suggestions will be given.

In Chapter 1, three classes of reliable control methodologies
were given. These are

I) Passive (Robust) Controller Design

II) Active (Switching) Controller, Passive Configuration
Design

IIf) Active Controlier, Active Configuration Design

0f the methodologies presented in this report, the non-switching
gain design is a class I methodology, and the switching gain design is
a class II methodcology. Class III methodologies are not represented
in this report. This class is currently largely in the realm of
"blue sky" theory. Unfortunately, there is as yet no adeguate model
of configuration dynamics which exhibits a state and control structure.
Over the next ten years, one should see much research activity in the
area of class IIT methodologies and their control structures.

In class IT methodologies, much effort should be concentrated on
extensions, either optimal or suboptimal, of the switching class of
control laws to stochastic systems. At present, most work has been done
in estimation theory, since the difficulties associated with dual
control are widely recognized. The ability of a contrel law to perform
diagnogstic testing for changes in configuration has yet to be exploited
theoretically, although many heuristic algorithms have been used, both

in control systems and in the more established field of fault detection
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and identification in digital systems. Dual control is a form of self-
testing, and can be utilized as such, even if an optimal control is
not known. The dual identification methodology of Chapter 4 is an
example. This field reguires a large effort, and should be rich in
research opportunities.

The class I methodologies are represented in this research by the
non-switching gain solution. The work done in Chapter 5 on mean-square
stability and cost-stability of solutions is not unigque to this class of
problems. Much remains to be done in the classification of what consti-
tutes a stabilizable system, whether with respect to a non-switching
control law or something more general.

Since reliability can be defined as stabilizability with respect
to some class of control laws, research into the stabilizability of
dynamic configuration systems is the key issue in reliable control
system designs. Much work, including this research, has been done on
the assumption that the system is stabilizable; however, little progress
has been made in determining why a given design is stabilizable.
Although iterative tests were developed in this report for determining
stabilizability, a thorough understanding of the reason these tests
either converge or fail to converge is lacking. Much work still must be
done. With this should come a resolution of the problems with limit
cycle steady-state solutions to the non-switching gain methodology.

In Chapter 6, the usefulness of the non-switching gain solution in
computer—aided design was demonstrated. CAD is a field unto itself; many
opportunities exist for reseaxch in this area. Unfortunately, most

research is application-specific. CAD is useful not only to the designer,
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but also to the researcher. It is a powerful tool in the building of
the concepits of reliable control systems design, and it should be

developed in parallel with any future research.

7.6 Sumnmary.

In summary, the main purpose of this research was to establish a
foundation in reliable control system design methodolegy which would
provide the basic concept of a reliable control system. In achieving
this goal, the linear gquadratic variable actuator control problem was
studied in some detail. Optimization problems were formulated which
represented both system performance (in the quadratic performance index)
and system reliability (in the expectation of the performance index over
all possible structural trajectories). The optimal controcl law was
solved analytically for the deterministic system; this was the switching
gain solution. It was clearly illustrated by example in Chapter 2 that
the switching gain control law could not be extended analytically to
the control of stochastic systems. This example demonstrated the duwal
effect of the contrecl law; in general, the contrel law will influence
the measurement accuracy optimally (in the sense of minimizing expected
cost) when the control can influence the accuracy.

Stochastic extensions to the switching gain methodology were proposed
in Chapter 4. 1In particular, the dual identification algorithm is an

iliustration of the self-testing capacity of dual control laws. The

study of the uses of the dual control effect in the design of reliable

control systems is a promising research area of the future.
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In Chapter 5, the non-switching gain solution was developed. This
solution led to an algorithm for the determination of robust linear
constant gain control laws for a set of linear systems with different
actuator configurations. In addition, the resulting gains are optimal
with respect to a given quadratic performance index and exist if and
only if any robust gain exists.

In conclusion, the unifying concept of this report is: What
constitutes a reliable control system, or a reliable design? A major
connection was established in this research between the concepts of
reliability and stabilizability. Iterative procedures were developed
for the determination of whether or not a given linear system of the
type considered in this report is reliable, with respect to both class
I and class II controllers; i.e., non-switching and switching gain

controllers, respectively.
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DEFINITIONS FROM MIL-STD~721B
25 August 1966

RELIABILITY
The probability that an item will perform its intended function
for a specified interval under stated conditions.

AVATTABILITY

A measure of the degree to which an item is in the operable and
committable state at the start of the mission, when the mission is
called for at an unknown (random) point in time.

DEPENDABILITY

A measure of the item operating condition at one or more points
during the mission, including the effects of Reliability, Maintain
ability and Survivability, given the item condition(s) at the start
of the mission. It may be stated as the probability that an item will
(a) enter or occupy any one of its required operational modes during a
specific mission, (b) perform the functions associated with those
operational modes.

CAPABILITY
A measure of the ability of an item to achieve mission objec-
tives given the conditions during the missiom.

OPERABLE
The state of being able to perform the intended function.

MAINTAINABILITY

A characteristic of design and installation which is expressed
as the probability that an item will be retained in or restored to a
specific condition within a given pericd of time, when the main-
tenance is performed in accordance with prescribed procedures and
resources.

SURVIVABILITY

The measure of the degree to which an item will withstand hostile
man-made enviromment and not suffer abortive impairment of its
ability to accomplish its designated mission.
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A2.1 Exact Optimal Solution for Deterministic Case, Chapter 2,
Section 2.

From (2.2.7) and using dynamic programming, we wish to minimize

! 2 2
V(Xt. k’(t—l), . t) = E(qxt + rug

*
+ v (axt+bk(t) ut

JR(E), e+l x)  (A2.1.1)
*
where V (-,k(t), t+l) represents the minimum cost-to-go, given

k(t) at time t+1.

is known exactly

This minimization can be carried out because xt

at time t, and therefore m is knownexactly by eguation (2.2.10).

t-1
The control u, is computed f£rom
0= 2 (qx2 + ru2+'rr V*(ax +bu, , k=0,t+1)
1 t i Ot t t
* 1
+TrltV (a xt+, .}_a—u_t' k=1,t+1)) . (p2.1.2)
and the assumption that
* . 2 .
v (xt, k=i, t) = xts it {(a2.1.3)

resulting in equation (2.2.8). EBEgquations (2.2.12) and (2.2.13) are
then obtained by substitution of (2.2.8) into (A2.1.1); these

equations validate assumption {A2.1.3) by induction.
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A2.2 Exact Optimal Solution for Stochastic Case, T=0, 1, 2= 'I‘f
(1-d example).

The formulation is the same as in A2.1, except the system is
now répresented by

X4l = axt+ bk(t) u, + Et {a2.2.1)

& " is white noise with zerc mean, variance I, and probability dis-
tribution p(£), which is uncorrelated with any other variable. To

illustrate the complexity of the solution, the time set is chosen as

*

' *
{0,1,2}. The problem is to £ind u, and a, such that

' 2 2 2
V(xO,O) = EB(J} = B 2 (xtq+ utr) +x2q XO'TLO (A2.2.2)

+*
is minimized. Let V denocte the minimum value of V. Assume

u, =¢t(Zt) (r2.2.3)

where ¢ & is a mapping from the information at time t (Zt) into the

control space.

Zt =~{Tr0, Kor Ugreees U ooy xt} {(a2.2.4)
then
* . 2 - 2 *
vV (x.,0)= min Eix, g+u.r +V (x ,1)| 2 (22.2.5)
0 B 0 0 1 0
u, =0, (3,)

by dynamic programming. Also

* . [ .2
v (x.,1}) = min El xl

1 qg + u2
ul=¢1 (Zl)

%
- + V (x2,2)l Zl} (A2.2.6_}

* 2
But v (x2,2) = X, 4, S0 (a2.2.6) becomes

* . 2 2 2
vV o(x_,1) = min E{x;qg+u r+ x qg|lz (2.2.7)
1 _ 1 1 2 1
ul—(bl(zl)

. 2 2
= min E{x g+ ulr+ {ax

2
+ +
o= b (Z.) bklul £ 9z,
1" %1%

1
(r2.2.8)



now, Zl = {Ei)'xo’uo’xl}' SO

{(32.2.8) = min x2q + u2r
w=¢p (z){ ! :
1711

2
+ B :i: wi(1|1)(ax1+ b.uyt &) °q }

1=0

il

where ﬁi(l|l) is the probabkility that kl

expaectation inside the sum,

{a2.2.9) = min {:xzq + uir
ul=¢l{Zl)
2 2 2 2 —
+ & wi(lll)(a x] + biuy + E

i, given Z
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{a2.2.9)

1 Bringing the

+ 2abix1ul)q} (A2.2.10)

Differentiating (A2.2.10) w.r.t. ul and setting the result equal to

Zero:
. 2
0 = 2ru, + ;i; T, (1|1) (2blu, + 2ab.x.)q
or
.
:z: 7, (1]1)b, | ga
U.* = - - 1=0 - - p:d
1 5 1
T o T, (1|pS] g
i 1
1=0

Substituting (A2.2.12) back iAto (A2.2.10), define S

Tl = =-qgq

S = (a2 + 1l)g
1 2

7 (1| b, | o
1 1
2 —
a ~

r + 5:Tnuinb?]q
=0 + +

(A2,2.11)

(n2.2.12)

da
1 an Tl as

(a2.2.13)

(a2.2.14)
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and

*
V(e 1) = x2S, + T (32.2.15)

A few remarks must be made about the probability distribution over kt,

given Zt oxr Zt+l'

Notation:
ni(tlt) = probability that kt = i, given the available informatioﬁ Zt'
ﬁi(t|t+l) = probability that kt = i, given the available information
Bear”
From the Markov property,
melt) = PB7 (t-1]t) (a2.2.16)

Equation (A2.2.16) is the propagation equation for the distribution 7.
The form cof the update equation is given and prowved in the following

lemma :

Lemma AZ.l:

T, (¢ le+1) = P, -ax, ~bu )T, (tfe) (32.2.17)
& P(Xt+l~axt-bjut)ﬂj(t|t)
Proot:
Note that
Plrgyymaxebim) = Pl |2, u k(e)=i)

where u, is not a random variable. Aalso,

m, (e]e) plk(t)=i]z)

p(k(t)=1,34),xo,uo,...,xt)

P(EO rxoruo.'- .- rxt)
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then (A2.2.17) becomes:

plx, o |2  k@®)=1)p(E)=i]Z)

) —
£+
P

plk(t)=i|z |
Zt,ut)

which is Bayes rule. Q.E.D.

Returning to equation (A2.2.5), and substituting (A2.2.15),

*
V (x.,0) = min E {xzq +ulr + x5 + 7T |z } (A2.2.18).
0 @b (Z.) 0 0 1 1%
0 ‘0“0
= man E xzq + u2r + Eg
b (2.) 0 0
0 Y070

2
- 2 2
[Z; 'ni(lll)bi] a a

%
) 0
r + [Ji Tri(lll)bi]q

+ xi q(1+a2) -

(2.2.19}

2
22
ﬂi(l|l)bi] qa

o b
3 Dol I
.
b

=0 =0 2
L R R(x.) T, (lll)b.] q
1 i i
=0
'dp(xllkl,ko,ZO)pk e ™ o (22.2.20)
170 0
where
p(x.-ax -b.u }T,
|
m (1) = tp L 0 J0 3.0 (52.2.21)

kj
J1=0 - _
1; P (xy—axg=bu)m,



Eguation
Equation
reguires

requires
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(12.2.21) is a combination of equations (A2.2.16} and (A2.2.17).
{A2,2.20) can only be solved numerically (in general); this
a numerical minimization of a function the computation of which

four numerical integrations -- a difficult task.



A2.3 Exact Solution of Stochastic Case Qver T= 0, 1, 2 = T_
0 - _—— 4 s L
for a Specific Foxm of p(&), Chapter 2, Section 2.3.1.

Assume, for the problem in A2.2, that
1 =

2735 for =-v3E < § < ¥3E
p(E) = B

0 ; otherwise
Suppose Iuol > 0 is large enough such that -

o, -bu, +E) =0, i#%k and £ € [-/3%,/35]

0
Then
2/ Pijp(xl_axoﬂbjuo)“j,o .
T @b, = J i
1=0 1=
. ;i% plxy—ax b u)m o
2 dr ol
Pip \2/35 ) T Wi
0 0
— b-
=0 L\ (o] b *
2V3%] k :
0
= p., b,
1i=0 l'k'o t
Similaxly,
w.(l]l)b? = p.. b2
i i ik i
1= 1=0 0

Then, from eguation (A2.2.14),

199

(a2,3.1)

{(32.3.2)

(A2.3.3)

(r2.3.4)

{(h2,3.5)

(32.3.6)
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From eguation (A2.2.20},

%
Vv (x.,0) = min x, q + u21:+ HEqg
0 o= (z) 0 0
0 60
1 1 5
+ :E: (ax_. + b un, +&_ )
0 k0 0
= =)
kO 0 kl 0]
R(EO)
2 2
2 2 LZ; Fikg bl] !
. (a +1)g - a dp(&o) ﬂk
0
k. k 0
r+ [i: Pik b:. e o
1=0 (9]
{a2.3.7)
= min <2 q+u r+ Eg
: 4] 0 -
= Z
U d}o( 0)
> o 3 :
+ . Z P (a x. +b u + Zab, x_ u
ey k.0 o kK, 0" Pk o ky 00
_ 2 2
2 L.i—; piko bl] ?
+5) {a”+1) g- a a — {A2.3.8)

2
(B ]
i= 0

Differentiating with respect to uo, and noting that Sl does not depend

on u_,

0
0= Tv (xo;o)
. 2
= 2u,r+ E L) E P (2b,_ u_ +2ab_ x 3} S (a2.32.9)
0 k0=0 kc_,O kl=0 klko ko 0 ko 0 1

Then,



1 1
) r b S a
4 k_,0 :E: kk k"1
u* _ k0~0 0 kl—O 01 o
1, ! )
e 3w o 3 B s
k0=0 ko'O kl=0 klko ko 1
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{(A2.3.10)

This solution is valid only when [uo| >0 is large enough such that

D((bk_o—bi)u0 + £0)=0, i#k0 and EOE:[— /3%, /5?]. Thus,
](bko-bi)u0+-go[ >V/38, goe:[—JEE , V3E]

must be satisfied.

i) Assume (bk -bi)u > 0. Then (A2.3.11) is satisfied if

0 0
(by ~b.) - /35 > J/3E
0 0 '
oY
R 2v3%
0 )

ii)} Assume (b —bi)u < 0, Then (A2.3.11) is satisfied if
0 0

(b, ~b,} + ¥3Z < —V/3E
k u
or

(bk hbi)u < ~2v3E
Q 0

*
rherefore, U, must satisfy

| (6, -b.u'| > 2/38
ko i 0

for (A2.3.10) to hold.

(A2.3.11)

(r2.3.12)

(A2.3.13)

(A2.3.14)

(22.3.15)

(A2.3.16)

. *
Notice also that when (A2.3.10) is the optimal sclution, u, is

identical to the deterministic solution.
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A2.4 Existence of Steady-State Solution for 1-d Example.

From Chapter 2, Section 2.2, the coupled Ricecati eguations for

and
S0 S- are

2
r[pllal) SO,t+l + 921(a/b)51't+l]
S =

0,0 &7

2

5
Ir +P3b 78 14 ¥ Py (/RIS

1,t+411°

b[pllab So,t+l + le(a/b)S
+ pll a -

1,41 )2 .
2 2 0,t+1
T PP Sy g TPy (RIS

+ -
P,ab8, 3 TPy (a/bYs,
+P21 a -

2
> 2 51 e+
+ r
bz + p b8y g TPy (/BIS) ]

(2.4.1)
r[p,.2abs + (a/b)5 ]2
s, =qt P12% 0, ex1 T P22 P e’
1,t T2 2 2
+ b +
L2+ 210 Sy par T Pp/R)s, 0]
'Plpy,abS, g T Py lab)s; 0] )2
HESTH B 2 2 So,t+1
+ ’
EH Py P Sy i1 TPy (/DS Ly
+
e p (a PP S, g TR, EMDIS L, ) 2 o
22 5 2 1,41
Bl + P10 Sy 14g ¥ Ppp(l/B)S) 44y
(32.4.2)
Define
S
h = 2B (22.4.3)
t T s

Opt
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5
T 0,k (32.4.4)
t 5
0,41
Dividing both sides of eguaticons (A2.4.1) and (A2.4.2) by SO 1’
¥

manipulating terms, and using egquations (22.4.3) and (A2.4.4) yields:

2
P =4 ! rlp)qab + py,(a/bih, )]

0,t+1 So,e41 [ (£/S

2 2 2
) + PP+ py (/B)R ]

O,t+1

blpy,ab+ py) @/d)b 41 2
HRSAH Sl 2 2
/Sy 141) + PP+ R, /IR,
. (a _ Ppyabrpyy(a/bin )2 N
21 2 2 41
b{x/ SO,t+l) + Pllb + p2l(l/b )ht+l
(A2.4.5)
fp..ab + p..(a/b)h, . 1°
_q 1 TPy o Pio 41
htrt s * 3 2 2 2
0,t+1 O/6+1  [E/S) 4 + PP + Py, (/bR 1
b[pIZab + 922(a/b)ht+1] 2
MR ST Sl 2 3
(r/SO,t+l) + p,b ¥ 922{1/19 )ht+l

. p (a _ p,,ab + p,.(a/bdh, o )2h
22 3 ) e+l
PL@/Sy 1) + P,b7 + Poohy /b7

(a2.4.6)
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Assume SD,t' Sl't-*m as t * - and ht -+ h, Pt = ['. Then
Fe p (a ) b[Pllab +P2l(a/b)h] )2
11 2 2,
pllb- + pzl(lfb Yh
p..ab + p. . {a/b}h \2
* Py (a R > | n (A2.4.7)
blp b + p, h/b"]
and
bip ,ab + p,,(a/b)h] \2
= p,la - 3 2
Py,3b + Py, (@/b)h N2 (A2.4.8)
TPy |2 - 2 2 ] B
blp b + p,,h/b ]
Let
p P P, 1-p
P = 11 Fiz| 1 2 (A2.4.9)
Pr1 P2z 1) Py
Then
blp,ab + (l-pl) (a/b)h] \ 2
I'=p{a - 2 2
plb + (l-pl) {a/b")h
plab + (l—pl}(a/b)h 2
h (A2.4.10)

+ (I-pila -
. ( blp b + (1-p )h/b’]

and

b[(lupz)ab + pz(a/b)h} 2
hI' = (l—pz) a - 5 5
(1-p, )b~ + pz(l/b Yhi

(l—pz)a.b +p, (a/b)h 2
+ p,o{a - h (A2.4.11)

b[(l—pz)bz 4 pz(l/bz)h]
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Solving for h and I' from equations (22.4.10) and {(a2.4.11), if I' > 1,

then there exists no steady-state solution.
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23.1 Proof of Theorem 1.

Assume ik,t+l = g—ﬂ.,t+l for k#%. Then (-Pik_ _Big )Et—l = 0,
which implies u,; isin the null space of By~ By N (}_3_k - B, ).
Now, dimension (N(_B_k - E,Q,)) <m because the _I}_k's are distinct.
Therefore,

dimension (U WN(B _Bg,” <m (A3.1.1)

) —k - .

. m
Therefore the set U N{gk -B , ) has measure zero in K . Q.E.D.

X, % &
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23.2 Optimal Solution for Deterministic Problem.

For the system

= + .2,
£t+l é.}it Ek(t) .l_lt (A3.2.1).
B e{B,} L (a3.2.2)
=k (t) =k "k=0

L+l
LU R L m.ER (a3.2.3)

where T . . = probability of B . at time t.
_l;t -1
Assume that

1) Ed:is observed exactly

2} then changes to B

Pr(t-1) B
3) then uwiis applied

From dynamic programming, the optimal cost-to-go at time t is given

by
* T T
k - = I-
v (_}_:,t Kk (t-1}),t) iln=¢ x )Ek(t) l?_{.t 2£‘t+ EtB’.Et
—+ T+ =g
*
+ s la
VxR, | x (A3.2.4)
Assume
v (x . ,k(t-1),8) = x1s.  x (33.2.5)
=t =t =k,t=t
Then
T _ , T T
EeSx,e¥e 7 2”‘:& (x ) X 92, u Ru,
t 2 e
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Iz )l e+ erell
< for all T. (A5.1.10)

1=l e

Q.E.D
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A5.1 Proof of Theorem 1, Chaptexr 5.

(<
T=1 T
Tp = 4 tr[gt {(O+G~ RG)] + tr[g_T_g] (35.1.1)
and Jé<:B. Since @ + §?§§§_> 0 and is constant for all t, this implies
lim tr[Z 1 =0 {a5.1.2)
t-300 t

which is exactly Definition 1.

(=)

From equation (5.4.6), note that

L L
(Z. Yo A = FOE, _)._.)
—i,t+]l "i=0 —i,t " 1=0 (25.1.3)
where F{-) is linear in (_Z_i c )Ii'=0.
Since
lim tr[__ZFIt] =0 (A5.1.4)
trw
_ for any choice of I, || # || is bounded and ||F|[ < 1. (Otherwise,
} 2, SHEE 00
Then
1 s T 1
ndr T Ly tlEQFE RGN el (35.1.5)
it=0 % tr[_Z_t 1 % tr[Q + ETE_I + % tr[ET] %tr[g] (a5.1.6)
< MelF Tzl T+ rall 1=l N2l el (85.1.7)
T
<M1 izl o el o

t
741
1- | F T
3.—”}3'” ”EOH “2‘+9 R.G_” (A5.1.9)
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and

T,
T T T_T
+ +
12; Py [Etf‘- S 12X TR B;S, By
T _ T T_T
. B | +uTeTg
c2E5 B8y TLRB;S; BE, Jj (33.2.7)

Differentiating the r.h.s. of {(A3.2.7) w.r.t. a, and setting equal

to zZero:
0 = 2Ru + i: 2BTS B.u, + 2BTS AX
=2t T &g Pik| T=iZi,eelmist 224,125
(a3.2.8)
or
* 7 -1
Ure-1),e - TR ipikBisi,t-l-lBi
. 2 BTS AXx (A3.2.9)
PixmiZi,er1=%¢ et

*

is the optimal u £

, given k(t-1).

Since no noise is present in the system, k(t-1) is obtained from

b4 and x

N along with u i

as

=17 1’

k(e~1) =i iff %= Ax . +B,u (33.2.10)

Substituting (A3.2.9) into (A3.2.7), and eliminating x £ because the

equation must be true for all x £ and the matrix equation is symmetric,
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on simplification we obtain

oo
Sk,e - & l ipik St

1=0
L
( . .
2o Pixe 25 02 25 } [5 + D Py Eigi,t+l§i}
_1—0 1:0 ‘
[ 1 T l
| iZopik Bifi,en i A+ @ (a3.2.11)

which verifies assumption (A3.2.5) by induction, along with the initial

condition

(a3.2.12)
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A3.3 Proof of Lemma 1.

Consider the optimization of the cost—-to-go given k(t-1) at time

t with final time T. This optimal cost-to-go is simply

*
VT (it'k(t_l)'t) (23.3.1)

where T denotes the final time. Por the process with final time T+1,
the optimal cost-to~go is

*

~

T
_ T T T
- E TZ; R QX+ B RU, TR Q%qn RaC l)}
(A3.3.2)
Since this optimal sequence is not necessarily optimal for the problem

with final time T, it must not incur less cost over’ {t, ven ,'I‘}.

*
Vo &, k(E-1),0)

"
> -
2 Vg =, k(e-1),t)

T T
* E{ETEET * x5, 9% 0 | k(t~1)} (A3.3.3)

Since the expectation term of equation (A3.3.3) is non-negative,

*

*
— > — -
VT+1 (Et fR(E-1),t) —VT (Et fK{t-1),t} (a3.3.4)
Now, note that
* k{t-1 T A3.3.5)
Ve, k&1t = itgi'tht (a3.3.

and that equation (3.3.6) depends only on the number of iterations

(T-t) for the calculation of -S-i e ! and therefore,
r
T

* ®
Vo E, ok(E-D),E-1) = v (xR (E-1),E) (33.3.6)
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—~00

Therefore, {8. .}

is an increasing sequence in that
1,8 t=T7 g d

s - > .3.
Sie1 "85, 20 (A3.3.7)

*
Since, by hypothesis, VT is bounded over t, the S it converge.
I

Q.E.D.
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APPENDIX

TO

CHAPTER 5



A 5.2 Proof of Remark on Theorem 1, Chapter 5.

_ T
Ip = tr[§_t (Q + G RG )]+ tr[Z 0l

-.-at
triz, ol <3

Since Q>0

and

o
:E; tr[Z 1 is bounded.
£= —t

Therefore

tr@t]+0 as tro

The reverse implication is shown to be false by example*

Example 1: Consider

t+1 t
_JE
Uy t+1 Tt
Then
2 1
= x =
Ebxl =g 0" O
but
T

rfl
.y 3 L
Elxd =2, 7%

* Example 1 is provided by Dr. D. Castanon of ESL.

216

(a5.2.1)

(85.2.2)

(a5.2.3)

(h5.2.4)

(35.2.5)

(a5.2.6)

{(85.2.7)

(A5.2.8)
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A5.3 Proof of ‘Theorem 2, Chaptexr 5.

Let T = {0, 1, 2, ..., L} (a5.3.1)
and ‘

£7m = {xk©, k), -..)| ke 1} ' (5.3.2)
Define the function U on the cylinder sets of fw(l)

K = {(k(0), k(1), ...)| k(i) fixed for i <T} (35.3.3)
for-arﬁitrary T by

nik) = k(o) Pk Pr@xm” " Pmk(r-1) (a3.3.4)

where T , ig the initial probébility'distribu?ion ove£ I and P = 1pij)
is thé stochastic ﬁatrix of transition pxobabilitiés for the Markov
chain. By a theorem'of Andersen and Jessen,[Loeve, P.91,421, this
funétion defines a measure, U, on éhe U-algebra of 27 (1) generated Ey
the cylinder sets, G(Qé(I)). Since u(f?(I)) = 1, from the definition
pf 1t on the-cylinder ;ets of ﬁm(ILr: '

w: (2 (D) + [0,1] (a5.3.5)

is a probability measure, and since | extends uniquely from the cylinder

sets, it is the probability of occurance of elements of‘d(ﬁm(I)J.

Iet
I - R"+ [0,] " (A5.3.6)
— T_
J. =) x) = 4 . 0z, 4 u,Ru,
where
X =AXx + B u (Ar5.3.8)



218

By T Gox, (35.3.9)

x = (k(0), k(1), K(2),...) (A5.3.10)
and let.

J=1im J (35.3.11)

frco T
Since _'IT is constant on the cylinder sets with fixed sequences of

length T4+1, _TT is measurable. (There are a finite number of such

sets.) By Theorem A of [Halmos, p.84,10],J is measurable with respect

to .

T) x) 2 & (1) [0,e] ' (A5.3.12)
Iet

X, = {xef’ @] 3 @ <= for xer™} (A5.3.13)
and -

X, = £7(1) - X, (a5.3.14)

og
Then Xl and X2 are measurable subsets of & (I), and therefore

E[J] < = ?-"1.10(2} =0 (a5.3.15)

— . . 1
because J(x) is a non-negative function on R .

But

EX[E[JII = tr[E_0 S—’o] (a5.3.16)

from equation (5.7.14), and by hypothesis, r.h.s (a5.3.16) ig finite.
Therefore, any trajectory X is an element of Xl with probability 1,
and has finite cost.

(oo
Therefore, {Gt}t=0 cost-stabilizes (5.3.1) with probability 1. Q.E.D.



A5.4. Proof of Theorem 3, Chapter 5.

*
Notation: In the proof, the sequences (Et):=0 and (G n

*
be referred to by G and G ns respectively.

Proof:

)oo

st £=0

Z19

will

I} {=>) Suppose & ns is cost-stabilizing. Then J(G ns) < .,

* * *
But G minimizes J. Therefore, J(G )< J(gns)=>J(_G_ )< o,

&
Thus, G is cost-stabilizing.

* *
1I) (<=) Suppose G is cost-stabilizing. Then J(G )< « where

% *
J(G ) = lim JT(E)
Preo

Since Ex{JnsT 6] = JT(‘G-)'

3 = 1nE_[5__ €)1 =B I3 (€)1
oo X nST X ns

which implies
*) <
foe]
Tps ()
Since G minimizes J , then
—ns ns

x®
< < o
JI‘LS (-cins ) —-Jns (E )

and, since E [J 1 = 3 for all T, for fixed G,
b4 nsT T —

] <
JEe ) <=

which implies that -G—ns is stabilizing.

(35.4.1)

. (85.4.2)

{a5.4.3)

(a5.4.4)

{&5. 4. 5)

Q.E.D.
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A5.5 Proof of Lemma 2, Chapter 5.

For the control interval starting at time 0 and ending at time T,

&
the expected cost for the optimal control Gt ig

* .
Ig = tr[gogoT] (35.5.1)

from equation (5.5.8), where the subscript T refers to the endpoint
of the control interval. Similarly,,K for the same process ending at

T+1, the optimal expected cost is

*

JT+l

tr(L 8 (T+1)] (A5.5.2)

T

T “ T *
= E +
E x_ (Q G (T+1) R G” (T+l) x

T
A5.5.3
* Xy @ Xnyl Ep Io ¢ )
&= T % 1 T *
= E it(g_+_G_t(T+) Egt(T+l)£t
t=
T
+ ETQ ETl o’ ..TLO
T , % T * T
+E LRy @ (M1 RG, (T X+ X 02| 2450740
(35.5.4)

The first expectation of equation (A5.5.4) is the cost corresponding

*
to the interval [0,T], and must be greater than or egual to J_; the

T
second term is positive. Therefore,
* * 5.5.5
> .
JT+l —-JT & )
% . *
Since JT is bounded by hypothesis for all T, there exists a J such
that
. * &*
lim JT =J {a5.5.6)
bl g 2t

0.E.D.



A5.6 Proof of Lemma 3, Chapter 5.

By direct computation,

T iy
JTﬂ(g) = 7,6 + E[z_T GRGX

and since the expectation is positive,

Ipep () > T,(E)

Since J 7 (G) is bounded, it converges.

T

Q% ]
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(A5.6.1)

(a5.6.2)

O.E.D.
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A5.7 Proof of Theorem 4, Chapter 5.

A) G ——G

becaunse G converges to the steady-state value
-—~ns opt —ns .

t t
which minimizes the infinite~time horizon cost Jns . and therefore,

585
by the argument given above, alsc minimizes equation (5.8.9).

. . . * *
B) Given £>0, a T>Q can be c¢hosen which guarantees ” G.- ¢ [|< €,

||§f,t- 2. [l<eana [ln, - 7ll<e, for am £>1.
(o]

*
Then, by the Principle of Optimality, the segquence { G ¢ } o

minimizes the infinite-horizon cost-to-go at time T. Consider the

problem min J ss (G) for initial condition Ei , T , which has a solution
G

x % 0o
. . N
G . independent of _Zii . In the limit as €*0, the sequence { S, 1 =7 ()

* &
approaches the constant seguence of gains G . Suppose } &>0 }VT )"

the optimal cost-to-go, satisfies
*

Vo) S 9ss ” 8 (A5.7.1)

*
Then the sequence of constant gains G would yield a strictly lower

*
cost J_ (G )
ss —

* *
Jg _(G) <J (A5.7.2)
58— ss
* I3
since VT (€) approaches the optimal cost-to-go, given the constant

*
sequence of gains G , in the limit, which is the solution to the

equivalent problem min Jss (G} foxr initial conditions I RS
G -

Therefore
*
G =0 (a5.7.3)
- —ns

0.E.D.
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COMPUTER ROUTINES
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ATM FCRTRAN

COoOOO0OO0O0cOO0O000a0cO000cO000nO0O0aOOo0oGan

SUBROUTINE ATM(NAA,MN\, NB, NQ, NR, NG, NS, NRA, N, M, KON, A,B, R, Q, P,
Y

1 38T,E, S, 58,0, V,W, X, Y, R, FZ, @ORM, RAD, RADINV, BSB,WRK, IPVT, IEND,

2 TPRT)

*% % **DARAM ETERS 2

INTEGER NAA, N, DB, NO, MR, NG, NS, \RA, N, M, KCQN, IPVT () , IEND, IPRT
DOUBLE PRECISION BSB (NS,NAA, KCCN), X (A, N) ,RAD (NRA, N) , RADINV (NRA, N)
DOUBLE PRECISION E (KCOH),SBT (NS, N) ,A(NA,NBA) ,B(NB, NAA, KCON)
DOUBIE FRECISION QQ,N),RMNR,M) ,PNA,KCON),S NS, A, KCON)

DOUBIE PRECISION SB(NS,NAA, KCON),U@A,N),VMA,N) ,W(NA,N),Y (&, N)
DOUBLE PRECISION PR (N) WORK () ,FZ (N) ,QIORM (NG, NAA, KCON)

*x%k¥LOCAL VARIABIES:

DOUBIE FRECISION COND

INTEGER KIN, KOUT, I, K, KkM 1, KK, J, ZEND, L, kP, 11, ICTM1, IM 1
INTEGER ICOUNT '

*xk**S{BROUTINES CAILED;
MCF ,MALD, MLINE Q, TRNATB , MM UL, MSCAILE ,MATIO, EIGVA L, WEIGHT , TRNATA

-------------------------------------------------------------------
------------------------------------------------------------------

**%**PURFOSE:

THIS DOUBIE PRECISION SUBROUTINE COMFUTES THE STEADY-STATE OPTIVAL
SOLUTION AND THE CCRRESFONDING OPTIMAL GAINS F(R.THE PROBIEM
DESCRIBED IN THE PUBLICATION: ' ON THE RELATIONSHIP BETWEEN
RELIABILITY AND LINEAR QUATRATIC OPTIMAL CONTROL'

BY J. DOUGLAS BIRDWELL AND M. ATHANS,

(EQUATIONS (29) AND (38)).

*****PARMETER [ESCRIPTION:
CN INPUT:
NAA THE SECCHD DIMENSION OF THE ARRAYS 5,38, QGiORM,
BSB,B AS DECIARED IN THE CATILING PROGRAM
DIMENS ION STATEMENT

NA, M8, NQ,NR, THE FIRST DIMENSION OF THE ARRAYS

NG, NS, NRA A (AND P, X,U,V,W,Y¥),B(AND BSB),Q,R, QIORM,
S (AND SB,SBT),RAD (AND RADINV) RESPECTIVELY
AS DECIARED IN THE CALLING PROGRAM DIMENSION

STATEMENT ;
N THE NUMBER OF STATES;
M THE NUMBER OF CBSERVATIONS;
KCON THE NUMBER OF CONE'IGURATIONS ;
A N BY N SYSTEM MATRIX;

ORIGINAL PAGE IS
OF POOR QUALITY
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o NeXeNeKeNe e XeReRele ke XeRe o ke ke keReieReReie R Re e ReReReReReRo ke ReRe e N2 e R e X e

QN OUTFUD:
R, P

U, Vv, W, 8T,
XY

SB,BS3

@IORM

RAD, RALINV
WORK
IPVT

IEND

IPRT
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N BY M BY KCQN SET OF INPUT MATRICES;

‘M BY M CONTROL WEIGHTING MATRIX;

N BY N STATE WEIGHTING MATRIX;
KCON BY KCON PROBABILITY MATRIX;

VECTOR OF IENGTH KCON CONTA INING THE NORMALIZED
EIGENVECTOR OF P CCRRESFONDING TO THE EIGENVALUE

NE ;

SCRATCH VECTORS OF IENGTH N;

N BY N SCRATCH ARRAYS ;

N BY N BY KCON SET OF SOLUTIONS ;

N BY N BY KCON SCRATCH ARRAYS

N BY ¥ BY RCON ARRAY WHICH WILL CONTAIN THE
GA\IN MATRICES FCR THE NORMAL LINFAR QUALRATIC
GAISSIAN PROBIEM;

N BY N SCRATCH ARRAYS ;

SCRATCH VECTOR OF IENGTH N;

SCRATCH VECTIOR OF LENGTH Nj;

NUMBER OF ITERATIONS USED IN SOLVING BOTH THE
LINEAR QUALRATIC GAUSSIAN PROBIEM AND THE
FROBIEM DESCRIBED ABOVE ;

FIRST TTERATION AT WHICH THE SOLUTIONS WILL BE
IRINTED;

COMMQN /INCU/KIN, FOUT

ICOUNT = 4

DO 215 KK=l, KON

Do 4 J=1,N

po 314,N

3 Y(I,J)= 8.0y

4 Y{I,d)= 1.D0
DO 218 K=1,IEND

CAIL MCF (NA, N8, MNA, N,M, Y,B(1, 1, KK),U,WCRK)
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AIM FORTRAN
CALL MADD @A, NR,14,M,M, U, R, U) gﬁlgINAL PAGE IS
DO 14 J=1,M OOR QUALITY
Do 13 I=l,M
13 V(I,J)= §.@DH
14 VJ,d)= 1. D0

aan

CALL MLINEQA,NA,M,M, U, V,COND, IPVT, WCRK}
CALL TRNATS(NA,N8,N,M,B(1,1,KK),X)
CALL MMUL (NA,NA, NA, N,M, N, X, ¥, U)
CALL MMUL (NA, MR, MR, N,M, N, U, 3, X)
CALL MCF(NA,NA, NRA,M, N, V, X, RAD, WCRK)
CALL MSCAIE (NRA,N, N, -1. @8, RAD)
CALL M(F (NA, N, N8, N, N, Y, A, U,WORK)
CALL MALD A, NA, M, N, N, U, Q, U)
CALL MADD (NA,NRA, My, N, N, U, RAD, Y)
216  CONTINUE
KMl = KK - 1
WRITE (ROUL, 44441}
WRITE (KOUT, 44442) KrM1
CALL MATIO (A, N, N, Y, 3)
CALL MMUL (NG, NA, M&, N, M, M, V, X, GNORM (1, 1, KK))
CALL MSCAIE NG,M,N,-1. @8, @ORM(1, 1, RK))
CALL MMUL (NB, NG, Ma, N, N,M,B(1, 1, KK) ,@Q¥WORM(1, 1, 1),V)
WRITE (KOUT, 6003)
CALL MATIO (NG,M, N, QIORM (1, 1, KK),3)
CALL MADD A, NA, MA, N, N, V,A, V)
WRITE (KOUT, 44443)
CALIL MATIO MNA,N, N, V, 3)
CALL EIGVAL (A, N, V, V, R, PZ,WORK, IPVT)
215 CONTINUE
JEND= 1
WRITE (ROUT, 860%)
CALL MATIO (NA, KON, K4, P, 3)
DO 35 K=l, KN
DO 39 J=1,N
DO 49 I-l,N
S{I,J,K= 0.D0
46  CONTINUE
3 sI3,J3,K= 1.8
35 CONTINUE .
START ITERATION TO CAICULATE S (1),5(2),. . .SX),®PT

CAICULATE SB
1 CONTINUE
0 50 K=l, KON
CALL MMUL MS,M8,35,M,N,N,S(1,1,K),B(1,1,K) ,SB(1, 1,K))
5¢ CONTINUE
CALL WEIGHT (NS, NAA, KCON, NS, N,M, E, SB, BT)

CAICULATE RADICAL



227
AIM FORTRAN

DO 55 K=l, KGO
CAIL, M(F (NS, N8,18,N,M, S(1, 1, K) ,B(1,1,K),BSB(1, 1, K) ,WORK)
55 CONTINUE
CAIL WEIGHT (NB,NAA,KCQN, NRA,M,M, E,BSB, RAD)
CALL MAID NRA, MR, I,M,M, FAD, R, U)
PO 54 J=1,M
Do 53 I=1,M
53 RADINV (I, J)= 0. D9
54 RADINV(J,J)= 1.0D9
CALL MLINEQ®A, NRA,M,M, U, RADINV, CQD, IPVT,WORK)
C
C  CAICULATE WEW SI,I=},2,.....,KCON
199 DO 1890 K=, KON
CATL MMUL (NS, NRA, M, M, N,M, 8T, RADINV, U)
CALL WEIGHT (NS, NAA, KCON, MA, N,M, P(1,K) ,SB, V)
CALI, TRNATB (NA,Na, N,M, V,W)
CALL MMUL (&, 3, M, N, N, M, U, W, X)
CALL TRNATRE (NA,Na, N,M, U,W)
CALL MMUL (NA, N3, I, N, N,M, V,W, Y)
CALL MADD (NA,MA, M8, N, N, X, ¥, X)
CALL MSCAIE (NA,N,N,-1. @8, X)
CALL TRNATA (NA, N, X)
CALL WEIGHT (NA, Ma2, KCON, Ma, N, N, P(1,K) ,S, V)
CAIL MADD (¥A, M, M, N, N, X, V, X)
CALL WEICGHT (NB,N2A, KON, MA,M,M, P (1, K),BSB, Y)
CALL MADD (NA,MA, M, M,M, ¥, R, ¥)
CALL MMUL (NA,N&, Ma,M, N,M, U, ¥, V)
CALL MMUL (NA,Na, 14, N, N, M, V,W, ¥)
CALL MAID (NA, M3, M, N, N, %, Y, X)
CALL M(F (NA,NA, Na, N, N, X, A, U, WCRK)
CALL MALD (NQ,NA, NS, N, N, Q, U, S (1, 1, K))
1918 CONTINUE
iF (ICOUNT-IEND) 11, 12,32
11 ICOUNT= ICOUNT + 1
IF (ICOUNT. I, IPRT) GO TO 1
ICTM1 = ICOUNT -1
WRITE (KOUT, 5080) ICTM1
DO 1095 K=l, KON
K1 = K-1
WRITE (KOUT, 4098) KM1
CALL MATIO (N3,N,N,S(1,1,K),3)
1885 CONTINUE
@® 10 1
12 CONTINUE
C
C CQMFRUTE OPTIMAL COST FINCTION
CAIL WEIGHT (A, NA, KON, A, N, N, E, S, U)
WRITE {KOUT, 7903)
CALL MATIO (NA,N, N, U, 3)
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C

@ TO (23, 22),JEND

C CMRUTE G QFT

23 CALL MMUL (A, Na, N, N,M, N,W, 2, U)
CALL MSCAIE (NA, N, N, -1. D8, U)
WRITE (KOUT, 6883 )

CALL MATIC (NA,M, N, U, 3)

S
DO 217 KP=l, KCON ORIGINAL PAGE I
CALL MMUL NA, N8, N, N,N,M,B(1, 1, KP),U,w)  OF POOR QUALITY

CALL MADD (NA,NA, MA, N, N , A,W,W)
CALL EIGVAL (NA,N,W,W, R, P2 ,WCORK, IPVT)
217 CONTINUE

C CAICULATE COMEARISON WITH (NORM

TCOUNT= §
DO 134 K=l, KON
DO 120 J=1,N
DO 116 I=l,N
S(I,J,K) = 6. D8
116 CONTINUE
126 S¢J,J,K) =1.08
139 CONTINUE
JEND= 2
499 CONTINUE
0 98 K=l, KON
CALL WEIGHT (NS, MR, KCON, M, N, N, P(1,K),S, U)
CAIL MCF (NA,NA, M, N, N, U, A, X, WORK)
DO 9% L=l, KON
CALL M (NS,N8, N5, N,M,S(1,1,L),B(1,1,L),SB(1, 1, L) ,HORK)
96  CONTINUE
CALL WEIGHT (NS, NAA, KON, Ma, M, M, P(1,K),SB, ¥)
CALL M(F (NA,Na, NA,M, N, ¥, QIORM (1, 1, K) , U, WORK)
CALL MAID (NA, M, M, N, N, U, X, X)
DO 95 L=l, KON
CALL MMUL (NS, 8, ¥5,M,N, N, S (1, 1,L),B(1, 1,L},SB(1, 1, 1))
95 CONTINUE
CALL WEIGHT (NS, MAA, KCQN, N, N,M, P (1,K),SB, Y)
CALL TRNATSB (NA, N&, N, M, ¥, W)
CALL TRMNATA (NA, N, A)
CALL MMUL (A, N3, M8, M, N, N, A, ¥, V)
CALL MMUL (N3, NG, Na, N, N, ¥, V, QORM(1, 1, K) , ¥)
CALL MADD (N3, N3, M, N, N, ¥, X, X)
CALL TRNATB (NG, Na,M, N, QORM (1, 1, K), V)
CALL MMUL (NA, N, M, N, N,M, V,W, U)
CALL TRMATA (NA, N, A)
CALL MMUL (NA, N, M, N, N, N, U, A, W)
CALL MADD (NA, N, M, N, N, W, X, X)
CALL MADD A, Na, M, N, N, X, Q, X)
CALL M(F (NR, NG, NA,M, N, R, QIORM (1, 1, K) , U, WORK)
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98
4910

4411

1006

4049
5806
6908
7089
8643
9409
95248
9608
9749
9862
99249
44442
44443
4444]
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CALL MADD Na,Ma, My, N, N, %, U, X)
CALL SAVE (NA, NS, N, N, X, S(1, 1,K})

CONT INUE

IF (ICOUNT-IEND) 4010, 4611, 4511

TCOUNT= ICOUNT + 1

Q0 TO 400
WRITE (KOUT, 990%)
CALI M(F (NA,Na, M, N, N, X, A, U, WCRK)
DO 1386 L=l, KON

M1 = L-1

WRITE (KOUT, 4508) LM1

CALL MATIO (¥S,N,N,S(1,1,L),3)
CONTINUE
@ 10 12
FORMAT (/,41 S, 15,/)
FORMAT (//, 11 ITERATION ,I3)
FORMAT (//, 18 G OPTIMAL )

FCRMAT (//, 39 OPTIMAL COST FINCTION X'CX, WHERE C IS,/)

FORMAT (//,H P,/)

FORMAT (//, 380 CBT COMMARISON WITH NORMAL SOLUTION

FORMAT (2025. 15)

FORMAT (/,H A )

FORMAT (/,H Q)

FORMAT (/,H R )

FORMAT (/, H B, I5,/)
FORMAT(/, ¥ S ,15,/}
FORMAT (/,13H A + B*GZERQ)

FORMAT (/,45H SOLUTION 70 STANDARD OFTIMAL CONTROL PROBILEM)

STO0P
RETURN
END

229
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SWITCH FORTRAN

SUBROUTINE SWITCH (NA,NB, IC, NG, NAR, MAC, N, IR, BRA , KCON,M, A,B, P,C, G,
1X9,E, EFEMP, EM,WCRK, Y, U, V,W, W, IPVT, ARRAY, D', NFOINT, NGRIDH, MCQN)

(@R®]

* %%k ¥ PARAM ETERS :

INTEGER Na, N8, NC, NAR, NaC, N, IR, NBA , KON, M, NFOINT, NG

INTEGER MCQN (UPOINT), IPVT (N)

DOUBLE FRECISION A(NA,N),B(NB,MNAA, KON) ,C(NC,N),X0 M)

DOUBIE PRECISION G {NG,NAA, KCON),Y{N) WORK (V) ,EM(NA, N)

DOURBIE PRECISION U (M) , VW (N3, KON) ,W(NA,N),V@A,N)

DOUBLIE PRECISION ARRAY MNAR, MNaC) ,P (NA, ECQN) ,E (KCON) , ETEMP (KCON)

C **&*k*[OCAL VARIABIES:
INTEGER IN (27) ,NSW(1},TIT(108,1)
DOUBIE PRECISION WT(10),SWM, THOPL, WMIN, MAX, YSF(16) ,ZERQ, XMAX, T, DT
DOUBIE PRECISION DD :
DIMENSTION R (39)

*%%**SBROUTINES CAILED:
MMUL,MSCALE ,MEXP, SAVE, FIG, THFLT

*Hkkk FUNCTIONS :
GGUB, LCALC

------------------------------------------------------------------
------------------------------------------------------------------

*#***PURFOSE :

THIS DOUBLE FRECISION SUBROUTINE PERFCRMS THE CCMPUIATIONS
AND PRINTS THE DATA FOR SIMULATION OF THE SWITCHING GAIN
FROBIEM RELATING TO THE PUBLICATION: 'ON THE REIATIONSHIP
BETWEEN RELIABILITY AND LINEAR C(UADRATIC OPTIMAL CONTROL'
BY J. DOUGLAS BIRDWELL AND M. ATHANS.

*****PARAMETER DESCRIPTION:
NA, NB, NC, NG, THE FIRST DIMENSION OF THE ARRAYS A (AND EM,

NAR W,W,V),B,C,G AND ARRAY RESFECTIVELY AS
[ECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

NAC COLUMN DIMENSION OF THE ARRAY CONTAINING ARRAY
AS DECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

N NUMBER OF STATES;

R NUMBER OF CUTFHITS;

NAA THE SECCOND DIMENSION OF THE ARRAYS B AND G AS

LECIARED IN THE CAILING PROGRAM DIMENSION
STATEMENT ;

QOO0 CaNaaOANCA0NO0NNOOnNNOaNnan0
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NAR MIST BE GREATER THAN OR EQUAL TO NSTEES + 1
NAC MUST BE GREATER THAN OR EQUAL TO IR + M;

or STEP SIZE;

NPOINT NUMBER OF STEES + 1;

NGRIDH NUMBER OF MAJOR ORDINATE DIVISIONS USED
IN PLOTTING

NGRIDH MI{BT BE LESS THAN OR EQUAL TO 12;

%4k k*ANOTES 3
BOPH 'THE OUTFUT AND THE CONTROL U(T) = ~G (I)*X (T) ARE CQMFUTED.

o
C KON THIRD DIMENSION OF THE ARRAYS B AND G AS
C TECIARED IN THE CAILING PROGRAM DIMENSION
C STATEMENT ;

C

C M NIMBER OF CONTROLS ;

C

C A N BY N SYSTEM MATRIX;

C

C B N BY# BY KCON SET OF OUTHJT MATRICES:
C

C C IR BY N OUTHIP MATRIX;

C

C G M BY N BY XCON SET OF FEEDBACK MATRICES;
C

C X0 INITIAL CONDITION VECTOR OF IENGTH N:

C

C MCON VECTOR OF IENGTH NPOINT CONTA INING THE EXACT
C COWF IGURATION INDICES;

C

C E SCRATCH VECTOR OF IENGPH KCQN;

c

C ETEMP SCRATCH VECTOR OF LENGTH KCQN;

c

C WCORK SCRATCH VECTOR OF LENGTH N;

C

C Y VECTOR OF IENGTH N;

c

C U VECTOR OF IENGTH M;

C

C V,W, W, M N BY N SCRATCH ARRAYS ;

c

C IPVT SCRATCH VECTOR OF IENGTH N;

C

C ARRAY NAR ‘BY NAC WORKING ARRAY;:

¢

c

C

C

C

C

C

C

C

C

C

C

C

C
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C

Cc GGUB IS A RANDOM NUMBER ENERATOR

C

c UCAIC IS A (BER-SUPPLIED, AFPPLICATION SEECIFIC FINCTICON TO

C CAICIIATE THE CCQNTROL U,

C

Cc * k¥ *¥HISTORY:

C WRIITEN BY J.A.K. CARRIG (ELEC. S¥. IAB., M.I.T.,RM. 35-3%7,
C CAMBRIDGE, MA #2139, Hi.: (617) - 253-2165), JANUARY 1978.

C MCBT RECENI VERSION: MARCH 22, 1978,

c

C TissssreroscsssiisIiIsisisIIeiIsIIscIIIIsssIssisssivisiiIIiic:
C

COMMON/INOU/KIN, KOUT
Leow =1
DATA YSF/10%*1.@0/,IBLANK/4H /
DATA TWOPI /3. 1459/
DATA MSC,MAXES, IXY, IEGY, ZERO,MM, NLG, TZERO/1, 8, 8, 1, 1. 8, 1, 6, 8/
DATA IN(1),IN(2),IN(3),IN(4)/4H1 , 412 ,&3 ,44 [/
DATA IN(S),IN(5),IN(7),IN{8)/4H5 ,4&H6 ,&7 ,48 [/
DATA IN(9),IN(10),IN(11),IN(12)/4H9 ,41p , 41l ,4H12 /
DATA IN(13),IN(34),IN(15),IN(16)/4H13 ,4H14 ,4615 , 416 /
DATA IN(17),IN(18),IN{(19),IN(28)/4H17 ,4H18 ,&il19 , 4028 /
DATA IN (21),IN(22),IN(23),IN (24)/4H21 , 422 423 , 424 /
DATA IN(25),IN(26),IN(27)/4425 ,4 Y, & U/
DATA IT (3,1),TF (4,1),TIT(5,1)/4HVERS, 41US T, 4IIME /
DATA IT 6,1),IT(7,1),IT(@8,1)/48 ,&#H ,& /-
DATA IT(9,1),IT(10,1)/48 ,8  /
I%=35
DO 61 IZ=l,NPOINT

61 MCON (IZ)= MCON(IZ) + 1
TWOPL = 2. (DY*PWOPI
NSTEFS -= NFOINT -1
T= ., D0

3931 FORMAT (24 EXACT CONFIGURATION = ,13)
CALL MMUL (NC, N, N, MM, IR, N, C, X8, Y)
CALL MMUL (NA, N,M,MM M, N, G(1, 1,MCON (1)) , X8, U)
WRITE (KOUT, 1539)
WRITE (KOUT, 1206 )
WRITE (KOUT, 1363 )
WRTTE (KOUT, 1898) T
1931 FORMAT (/, 128 GAIN MATRIX)
WRIPE (KOUT, 1168) (Y (I),I=1,IR)
WRITE (KOUT, 1182) (U (1),I=l,M)
C ‘WRITE (KOUT, 1691 )

.38 ARRAY(1,J)= Y {J)
DO 40 J=1,M

49 ARRAY(1, IR+ )= U (J)

58 DO 188 K=l,NSTEFS



233

SAITCH FORTRAN

12

73.

55

56
52

881"

882

4991
1pe2

8

8o

93

WRITE (KOUT, 1802) K
IF(N.EQ. 1) GO TO 72
CALL GGUB(IX,1,R)
WI'(2)= TWOPL*R-(1)
CALL GGUB(IX,1,R)
WP (1) = R(1)*DCOS (WF(2))
WL (2)= R (1)*DSIN (WT(2))
GO TO 73
CALL GGUS(IX, 1,R)
WI(l) = (R(1)}*2.@0)~1.DO
CALL MMUL (NA, N, N, MM, N, N, BM,WT, AORK)
CALL MMUL (NA, N, N,M, N,M,B(1, 1, MCON (X)) , U, ETEMP)
CALL MADD @, N, N, N,MM, ETEMP, WCRK, ETEMP)
CALL MMUL (N2, N, N, MM, N, N, A, X8, WORK)
CALL MAID (N, N, N, N,MM, ETEMP,WORK, X&)
DO 52 KK = 1, CON
CAIL MMUL (N3, N,N,MM, N,M,B(1, 1, KK),U, ¥)
CALL MSUB(N, N, N, N, MM, ETEMP, ¥, ¥}
SWM= 6. Y
DO 55 IIJ= 1, KCON
SWM =S + Y (TIJ)*Y (I1J)
SM = DSCRT (5M)
WL (RR) = 8. D8 ‘
IF (SUM.IE. 1. D8) WF(KK) = 1. D9

CONTINUE _
CALL FIG (KCON, E, ETEMP,WT, ICON)
FORMAT (181 PI (C-1/T-1) = ,425,15)

WRTTE (ROUT, 881) (E (IQ),I0=1, KO¥)
CALL MMUL (NA, KCON, KCON, 1, KON, KON, P, ETEMPF, E)
WRTITE (KOUTF, 882) (ETEMP(IO),IO=L, K)
FORMAT (18 FPI (-1 /T) = 4025, 15)
ICOM1 = LCAN -1
WRICE (KOUP, 4981 ) LCONM1
MCOM1 = MCON K+1) - 1
WRITE (KOUI', 3381} MCOM1 -
FORMAT (2901 CAICTLATED CONFIGURATION 1I3)
FORMAT {/, 160 TIME STEP, 13)
CALL MMUL (NC, N, N, MM, IR, N, C, X8, ¥)
CALL MMUL NA,N,M,MM,M, N, G(1, 1, ICCN), X4, 0)
Do 79 1I=1,M

UM = UCALC(U,mM,B(1,1,1),B(1,1, 2))

= T+ DT
WRITE RKOUr, 1188) (Y(1),Isi,1IR)
WRITE (KOUT, 1102) (0 (1) ,1=1,M)
DO 86 J=l,1IR
ARRAY(14K,J)= Y {J)
BO 98 J=1,M
ARRAY(14K,IR+J )= U (J)

164 CONPINUE


http:IF(SU4.IE
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11¢

XIAX = DFLOAT NSTEES ) *DT
Iw= RKOUT
NSWM(1)= 25 ORIGINAL PAG‘Eh}g
IT(1,1)}= IN(26) OF POOR QUAL.
DO 116 J=1, IR
IF(J.LE. 25) IT (2,1)= IN(J)
IF (J.GT. 25) IT{(2,1)= IBIANK
CALL THFLT (IW, IEGY, NROINT,ZERO, XMAX, NGRIDH, W IN, MAX, ¥SF, IT,

1 ARRAY(1,J),MAR, NLG,MSC,MAXES, IXY, NSYM)

12¢

1108
1999
1182
1208
130@
1406
1568

IT(,1)= IN(27)

NSW(1l) = 21

DO 120 J=1,M

F(J.IE. 25) IT(2,1)= IN(J)

IF(J.GL. 25) IT(2,1)= IBIANK

CALL THELT (IW, IEGY, NFOINT, ZERO, R1AX, NGRIDH, Y IN, WAX, ¥SF, IT,

1 ARRAY(1, J+IR) ,MNAR, NLG,MSC,MAXES, IXY, NSW)

FORMAT (4H Y = ,5(2X, 1PD19. 8))
FORMAT (SH T = ,F5. 2)
FORMAT (4H U = , 5(2X, 1PD1S, 8))
FORMAT (118 OUTEUT Y)
FORMAT (124 CONTROL U)
FORMAT (/, 28H SIMULATION OF LINEAR SYSTEM,/)
FORMAT (/, 31H SIMUIATION OF LINEAR REGULATOR,/)
RETURN
END
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SUBROUTINE READY (NAA,MA, 1B, NQ, NR, NG, NS, NRA, N, M, KON, 4,8, R, Q, P,
IWR,WI, S, B, U, V,W, X, Y, @ORY, RAD, RADINV, BSB,WCRK, IPVT, IEND, NSTEFS )

*****PARAMEPEBS_:

INTEGER NAA,MNA, NB, NO, NR, NG, NS, NRA, N, M, KCON, IPVT (N)

DOUBIE PRECISION A (NA,N),XNA,N),QENQ, N) ,RHR,M)

DOUBIE PRECISION S (NS, NAA, KCON) ,P A, KCON) ,SB(NS, NAA, KCCN)
DOUBIE PRECISION GNORM (NG, NAA, KCON) ,BSB(NB,NARA, KEOW) ,WRM) ,WI ()
DOUBLE PRECISION B{N3,MNAA, KON} ,RAD {NRA,N) ,RADINV (NRA, N} )
DOUBLE PRECISION U @A, N),VMA,N) ,W(NA, N}, YMNA,N) ,WORK ()

**%**[OCAL VARTABIES:
OUBLE PRECTSION COND
INTEGER KIN, KOUT, KL, K41, J, I, K, JEND, NEND, L, IM 1

***kXGTBROUTINES CALLED:
M, MADD, MLINEQ, TRNATB , MM UL, MSCALE , EIGVAL, SAVE , WEIGHT

------------------------------------------------------------------
-

*% %%k PURFOSE:

THIS [OUBLE PRECISION SUBROUTINE SOLVES THE SWITCHING-GAIN PROBIEM
RELIATING TO THE PUBLICATION: 'ON THE RELATIONSHIP BETWEEN
RELIABLILITY AND LINEAR QUALRATIC OPTIMAI, CONTROL '

BY J. DOUGLAS BIRDWELL AND M, ATHANS.

#****PARAMETER DESCRIPTION:

ON INPUT:
MAA THE SECQND DIMENSION OF THE ARRAYS S, SB, QVORM,
BSB,B AS DECIARED IN THE CALLING PROGRAM
DIMENSION STATEMENT ;
NA,NB, NO,NR, THE FIRST DIMENSION OF THE ARRAYS
NG, NS, \RA A (AND P, X, U,V,W,Y),B(AND BSB) ,Q,R, QIORM,

S (AND SB} ,RAD (AND RADINV) RESFECTIVELY
AS DECIARED IN THE CALLING PROGRAM DIMENSION

STATEMENT ;
N THE NUMBER OF STATES;
M THE NUMBER OF OBSERVATIONS ;
KCON THE NUMBER OF CQNF IGURATIONS ;
A N BY N SYSTEM MATRIX;
B N BY M BY KCQ SET OF INPUT MATRICES;

R M BY M CONTROL WEIGHTING MATRIX;
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Q N BY N STATE WEIGHTING MATRIX;

P RCON BY KCON PROBABILITY MATRIX;
N OUTHIT:

WR,WI SCRATCH VECTORS OF IENGTH N;

vg]

N 3¥Y N BY XCQN¥ SET OF SOLUTIONS ; ORIGINAIL PAGE IS

S8, B,BSB N BY N BY KCON SCRATCH ARRAYS ; OF POOR QUALITY
U, vw, XY N BY N SCRATCH ARRAYS :
GNORM N BY 4 BY KCON ARRAY USED TO STORE THE

GAIN MATRICES FCR THE NORMAL LINEAR QUAIRATIC
ABSIAN PROBIEM. ON RETURN, NORM CONTAINS THE
RAINS ASSOCIATED WITH THE SWITCHING GAIN PROBIEM;

RAD, RADINV N BY N SCRATCH ARRAYS ;

WORK SCRATCH VECTOR OF IENGTH N;
IPVT SCRATCH VECTOR OF IENGTH N;
IEND NUMBER OF ITERATIONS USED IN SOLVING THE NORMAL
LINEAR CUAIRATIC GAUSSIAN PROBIEM;
NSTEES NUMBER OF TIME STERS USED IN COMAITING S
kR R RFNOTES :

THE SOLUTIONS TO THE NORMAL LINFAR CQUAIRATIC EROBIEM,

THE EIGENVAIUES OF THE MATRICES (A + B(I)*GNORM(EROC))
AS WELL AS THE EIGENVALUES OF THE MATRICES (A + B(I)*G(I))
ARE PRINTED.

**FXEHISTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. SYS. IAB., M.I.T., RM. 35-307,
CAMBRIDGE, MA 02139, Hi.: (617) - 253-2165), JANUARY 1978.
MCST RECENT VERSION: MARCH 22, 1978.

------------------------------------------------------------------
-------------------------------------------------------------------

IeleReieReieieieivieieieReieReieReieieReRe e e ke Rrie ke ke ke ke e Ne e Rt ke Rt Re A2 e NSRS RO RS NS

COMMQN /INOU/KIN, KOUT
WRITE (KOUT, 9600)

CALL MATIO (A, N, N, A, 3)
WRITE (KOUT, 9709)
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CAIL MATIO (NA,N,N, Q, 3)
WRITE (KOUT, 9864)
CALL MATIO MR, N, N, R, 3)
DO 222 KL=1, KON
RY1 = KL}
WRITE (KOUT, 9998) KM1
CALL MATIO M8, N,M,B(1, 1, KL), 3)
DO 4 J=1,N
DO 3 I<l,N
Y (I,J)= 9.0
Y (3,J)= 1.@0
DO 216 K=l,IEND
CALL M(F (N3, N8, M, N,M, Y,B(1, 1, KL) , U, WORK)
CALL MADD (N3, NR, M,M,M, G, R, U)
DO 14 J=1,M
Lo 13 I<l,M
13 V(I,J)= 9.D0
14 ViT,d)= 1. @0
CALL MLINEQA,Ma,M,M, U, V, COND, IPVT, WORK)
CALL TRNATS (NB, M, N,M,B(1, 1, KL) , X}
CALL MMUL (NA,NA, Mo, N,M, N, X, Y, U)
CALL MMUL (N3, Na, Ma, N,M, N, U, A, X)
CALL MCF (NA, Na, M@, M, N, V, X, W, WORK)
CALL MSCAIE {¥a, N, N, =1. €D 8,W)
CALL MCF (NA,Ma, M, N, N, Y, A, U, WCRK)
CALL MADD (A, M3, M, N, N, U, Q, U)
CALL MAID (A, M4, N, N, N, U, W, Y)
210 CONTINUE  °
WRTTE (KOUT, 44441)
WRITE (KOUT, 44442)
CALL MATIO (3, N,N, Y, 3)
CALL MMUL (NA, NA, NG, N,M, M, V, X, NORM (1, I, KL))
CALL MSCAIE MA,M, N, -1. D9, QIORM(1, 1, KL.))
WRITE (KOUT, 6800
CALL MATIO {NG,M,N, QIORM(1, 1, KL), 3)
CALL MMUL (N3, NG, M, N, N,M,B(1, 1, K.) ,QIORM(1, 1, 1), V)
CALL MADD (NA,NA, Na, N, N, V,A, V)
WRTTE (KOUT, 7988)
CALL EIGVAL @A, N, V, V,WR,WI,WCRK, IFVT)
222 CONTINUE
JEND= 1
26 CONTINUE
WRITE (KOUT, 8859 )
CALL MATTO (A, KCON, KCON, P, 3)
DO 5 K=1, KCON
CALL SAVE MNQ,NS,N,N,Q,S(1,1,K))
5 CONTINUE
0O 91 NEND= 1, NSTEES
WRITE (KOUT, 4543) NEND

W )
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200

88

97
98

6d
78

73

98

9l
2029
4085
2905
4900
4509
S804
6000
7000

FORTRAN

CONTINUE
DO 96 L=1, KON
DO 89 K=l, KCOW
CALIL MCF(NS,Ng,M8,N,M,S(1,1,K),B(1, 1,K),BSB(1, 1, K) ;WORK)
CALI, MMUL (NS,N3, NS,M, N, N, S (1, 1,K),B(1,1,K),88(1,1,K))
CONT'INUE
CAIL WEIGHT (NS, NRA, KCON, N, N,M, P (1, L) ,SB, V)
CALL WEIGHT (S, NAA, KCON, Ma,M, M, P(1, L) ,BSB, RAD)
CALL MADD (NR, NRA, M, M, M, R, FAD, U)
DO 98 J=l,M
DO 97 I=l,M
RADINV(I, J) = 0.0

238

RADINV(J, J)= 1.0D0 URIGINAL PAGE.IS
CALL MLINEQ (NA, NRA M, M, U, BADINV, COND, IPVT, WCRK) OF POOR QUALITY

DO 79 K=l, KCON
DO 68 J=1,N
DO 68 I=l,M
BSB(I,J,K) = SB(J,I,K)
CONTINUE
CAIL WEIGHT (NS, NaA, KCON, MB,M, N, P(1, L) ,BSB, U)
CALL MMUL (NRA,Na, N, N,M,M, RADINV, U, W)
CALL MMUL (N3, M, &, N, N, M, V,W, ¥)
CALL MMUL (NA, NA, NG, N,M, N, W, A, QIORM (1, 1, L) )
CALI, MSCAIE NG,M,N, -1, 08, QIORM(1, 1,L))
IM1l = L-1
WRTLE (KOUT, 2805) IM1
CALL MATIO @G,M, N, QORM(1, 1,L),3)
IF (NEND. NE. NSTEFS) GO TO 73
CALL MMUL (NB, NG, M, N, N,M,B(1, 1, L) ,@ORM(1, 1, L) ,W)
CALL MADD (NA, MA, N&, N, N, A, W, W)
WRITE (KOUT, 7899) IM1,IM1
CALL EIGVAL A, N,W,W,WR,WI,WRK, IPVT)
CAILL MSCAIE M3, N, N, -1. 08, Y)
CALL WEIGHT MA, AR, KCON,MA, N, N, P(1,L),S,W)
CALL MADD (A, Ma, N, N, N,W, ¥, ¥)
CALL M(F (NA, N, M, N, N, Y, A, W, WCRK)
CALL MADD (NA, Ma, N8, N, N,W,Q,S(1,1,L))
WRITE (KOUT, 4600} IM1
CAILL MATIO (NS,N,N,S(1,1,5),3)
CONTINUE
CONTINUE
FORMAT (3D25. 15)
FORMAT (M S)

FPORMAT (4 G, 13)

FORMAT (4 3, I3)

FORMAT (11H TIME= T2 -, 1I3)

FORMAT (11H ITERATION ,1I3)

FORMAT (16H G OPTIMAL )

FORMAT (400 OPTIMAL COST FINCTION X C X, WHERE C IS)
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7468 FORMAT (218 A + B({I)*GSTAR (ZERO)})
7489 PORMAT(7H A +3B,I3, 8 * G,I3)
8200 FORMAT (3 P)
9589 FORMAT (3D.25,.15)
970d FCRMAT (34 Q)
9609 FORMAT (3H A)
9300 FORMAT (3H R)
9990 FORMAT (3H B, I3)
44441 FORMAT (/,45H SOLUTION TO STAMDARD OPTIMAL CONTROL PROBLEM)
2 STOP
44442 FORMAT (34 S )
RETURN
END
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Qo

OO0 ONOQOOO0O0O0O00O00nnaO0oCO0on0an00n0n

SUBROUTINE WEIGHT (NA,NaA, KCON, NX, N, M, E, A, X)

* k%% DARAM ETERS :
INTEGER NA, NAA, KCON, NX, N, M
DOUBIE FRECISION E (KCON) ,A{NA,NAA, KCON) , X NNX,M)

*%***[OCAL VARIABLES:
INTEER I,J,K
DOUBLE BRECISION STM

#%%%%G(BROUTINES CAILED:
NONE
ORIGINAL PAGE 15

**k**PURFOSE 2 OF POOR QUALITY
THIS SUBROUTINE COMFUTES THE WEIGHTED SUM

SIMMATION E (I)*A(I,J,K); I=l,N; J=1,M; K=1,KON.
*kk**PARMMETER IESCRIPTTON:

NA THE FIRST DIMENSION OF THE ARRAY A AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT ;

NAA THE SECOND DIMENSION OF THE ARRAY AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT ;

Roas THE THIRD DIMENSION OF THE ARRAY A AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT;

NX THE FIRST DIMENSION OF THE ARRAY X AS DECIARED IN
CAILING PROGRAM DIMENSION STATEMENT ;

N THE ROWN SIZE OF A;

M THE COLUMN SIZE OF A;

E VECTOR OF IENGIH KCON;

A N BY;'M ARRAY

*****HISTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. S¥S. IAB., M.I.T., B, 35-347,
CAMBRIDGE, MA #2139, Hi.: (617) - 253-2165), JANUARY 1978,
MCST RECENT VERSION MARCH 22, 1978.

----------------------------------------------------------------

DO 18 J=1,M
0 16 I=1,N
X(I,J) =0. @0
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DO 18 K=1, KON
1g X{,J) = ¥{I,Jd} + EK)*A(1,J,K)
RETURN
END-
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FINCTION  UCAIC(U,HM,B,C)

DOUBLE PRECISION U (16, 2),EM(18, 2),B(18, 2),C(10, 2)
RETURN

END
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SIBROUDINE FIG (KCOW, E, ETEMP, WORK, ICCN)

**%*k*PARAM ETERS :
DOUBLE PRECISION WORK(KCQN).,E (KCON)-, ETEMP-(RCN)

0o ONS

*x %% OCAL VARIABIES:
INTEGER MM, LTEMP, IFLAG, KK, 1P, I0
DOUBLE PRECISION SUM

***xxSBROUTINES CALLED:
NONE

------------------------------------------------------------------

&%%**PURFOSE :
THIS DOUBLE PRECISION SUBROUFINE IS USED IN HYPOTHESIS TESTING.
AT EACH TIME T, ONE OF KCON HYPOPHESES IS CHOSEN.

RHO (X (T') - A*X(I'-1) - B(I)*U (T-1))*PI ([-1,7-1)
I .
PIL (I-1/T) =

I
SIM(RHO (X (T) - A*X {T'-1) -B(J)*U(I'-1))*PI (T-1/T-1)
J
HYPOTHESIS H (I) IS ASSIMED TO BE CCRRECT IF

PL (I/T-1) > PI (-1/T) FOR ALL J NOT EQUAL I
I J

TIES ARE RESOLVED ARBITRARILY.
REO (X) DENOTES THE PROBABILITY DISTRIBUIION OF X,

x%x*x*PARAMETER DESCRIPTION:

SESEs R NSNS NS NN RoNsNo o N No NoNoNe ReNeNoRe R Ke e e N okt Xe Xe kel ke ReRe R R Re Ro R e L)

al INPUT:
Koon THE NUMBER OF HYPOTHESES ;
E VECIOR OF LENGrH KCON CONTAINING PI (F-1/T-1);
WORK VECTOR OF LENGTH KCQN CONTAINING
RHO (X (T) — A*X (P-I1) - B(I)*U(T-1));
ON OUPEUT:
ETEMP VECTOR OF IENGTH KCON T0 STORE PI (F/1-1);
ICON INDICATES WHICH HYPOTHESIS HAS BEEN CHOSEN;
* kXX ISTORY:



244
FI1G FORTRAN

WRITTEN BY J.A.K. CARRIG (ELEC. S¥S. IaB., M,I.T., RM. 35-307,
CAMBRIDGE, MA #2139, M.: (617) - 253-2165), JANUARY 1978.
MOST RECENT VERSION MARCH 22, 1978,

------------------------------------------------------------------
--------------------------------------------------------------------

noaoaonn

COMMON /INOU/KIN, KOUD
MM =1
LTEMP = LCCN
SWM = 0. Y
DO 16 IP = 1,KCON
15 S =S + WORK (IP)*E (IP)-
DO 26 IP=1, KON
20 ETEMP(IP) = WORK (LP)*E (IP)/SIM
DO 60 KK = 1, KON
_ IFIAG =1
DO 89 IU= 1, KN
IF (KK. EQ. IU) GO TO 79
IF (ETEMP (KK ) .CGT. E(fU)) IFIAG = IFIAG + 1
79 CONTINUE
89 CONTINUE
IFTAG = IFIAG + 1
IF (IFIAG. EQ. KCON) LCON= KK

60 CONT'INUE
IF (LCON. EQ. ) LCON = LTEMP
RETURN
END o
? AGE
oRIGINAM *ryy gy
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¢ TATEST VERSION 3/9/77

22
9500

11

DOUBIE PRECISION COND,BEE,WR(19),WI(16)
DOUBLE PRECISION A (18, 3),X(19, 3)

INTEGER MDOMYR (2),HRMNSC (2)., VPIME(2)., RTIME (2)

DOUBLE PRECISTION GNORM (14, 3, 4)

DOURIE FRECISION BSB (14, 3, 4)

DOUBIE PRECISION S (16, 3,4),P(16, 4),SB(19, 3, 4)

DOUBIE FRECISION S8BT (19,3 ),0{(18, 3),R(18, 3)},B(14, 3,-4)
DOUBLIE PRECISION PR (4),Pl,P2,F.(4),FD(16,4),F (4)
INTEGER IPVC (10)

DOURIE FRECISION AZERO,AONE, ATWO

DOUBIE PREC ISION RAD (18, 3),RADINV (14, 3),0(19, 3

DOUBIE FRECISION V(1¢,3),W(18 ,3),¥(1d, 3),SWM,WORK(18)
COMMON /INOU/KIN, ROUT

NAA= 3

ATWO= -3, (DY

AZERO = -4, D8

AONE = 6.8

Pl= . B5Dd

P2 = ,75D8

KIN= 5

KOUT= 6

N= 3

M= 3

N2 =6

KCay = 3

NS= 18

IPRT= 17

IEND= 25

ICOUNT
NSTEES
Na= 10
NV =NA
MRA= 10
NR= 10
NB= 10
NQ= 19
NG=19

i 0
b
w

IF (ICOUNT.NE. ) READ(KIN, 95986,END=2)} (PR(I),PZ(1},I=l,N)

FORMAT (3D 25. 15)

DO 11 JK=1,N

Do 11 JL =1,N
Q(JL,JK) = 0.0
RJK,JL) = @, MO
A(JL, JK) = @. D8
BEE = ~10. P
P(1,1) = 1. DP-P1
P(2,2) = 1.D0- P2

P(3,3) = 1.0
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P(,2) = 0,08
P(l,3) = 9.6
P(2,1) = P1
P(2,3) = 9.0
P(3,1) = 0.6D9
P(3,2) = P2

A(l,1)= 8, D0
A(2,2)= 9.@D0

A(3,3) = -AZERO

A(1,2) = 1.08

A(2,3) = 1.0

A(3,1) = ~ATWO

A(3,2) = -AQNE

o(1, 1)= 3. ®8.

Q(2,2) = 3.06

0(3,3) = 3.080

R(l,1)= 1.000

R(2,2) = 1. @6

R(3,3) = 1.0 on

B(1,1,1)= 89. DY OrIG

B(2,2,1) = 0. DO oF P(I}NogL PAGE 15
B(2,1,1)= 0. D9 QUALIY

B(1,2,1)= 6.0
B(1,3,1)= 6.0D0
B(2,3,1) =8. D0

B(3,3,1) = 1.9
B(3,1,1) = 1. D
B(3,2,1) = 1.0
B(1,1,2) = 8. D
B(2,2,2) = 0. DY
B(2,1,2) =0.M0
B(1,2, 2) = . D0
B(1,3,2) = 8.9
B(2,3,2) = 8.0
B(3,3,2) = BEE
B(3,1,2) = 1. D5
B(3,2,2) = 1. MY
B(1,1,3) = 0. DO
B(2,2,3) = 8. D0
B(2,1,3) = 8. @O0
B(L,2,2) = 6.0
B(1,3,3) = 8.0
B(2,3,3) = 0. DY
B(3,3,3) = 0.0
8(3,1,3) = 1. D0
B(3,2,3) = 1.9
PR(l) = .085D@

PR(2) = .75D@

P{l,1) = 1,08 - PR(1)
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P2,1) = PR(1}
P(3,1) = 3.0
P(,2) = 0.@0
P(lr 3,) = 3.
P(2,2) = 1.0 ~ PR (2)
P(3,2) = PR(2)
P(2,3) = 4.0
P(3,3) = 1. @2
C CALL TIME (MDOMYR, HRMN, SC, VD TME, RTIME)

CALL READY (NAA, N, DB, NO, MR, NG, NS, NRA, N, M, KCON, B,B, R, Q, P,
1 WR,WI,S,S3,U, V,W, X, ¥, QNORM, RAD, RADINV, BSB, WCRK, IPVT, TEND,
2 NSTEES)
2 STOP
END
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SWMAT FORTRAN

C IATEST VERSION 2/17/78

33333
11111

44444

22222
55555

DOUBLE PRECISION E (4),ETEMP(4),SM, SIGMA, SIGM 1, ESINV, ESIGMA, STNW 1
DOUBLE PRECISION COND, IUDOLF, LUDINV, DOLFMI, B (18, 2), X2 (18) ,DINWMI
DOUBLE FRECISION ARRAY (108, 58) ,Y0 (18) ,00 (16}
DOUBIE PRECISION A(19, 3),C(16, 3),R1, R2,X(18, 3)
BE(l) = 1.8
EM(1,1) = 1.@89
E4(2,2) = 1.8
E(2) = 8.0
ETEMP(2) = E (2)

E@3) = 0. D0 ORIGINAL PAGE IS

ETEMP (3) = E (3) O0R QUALITY

E(4) = 6, D0

DOUBIE PRECTSION GNORM (14, 2, 4)

DOUBLE PRECISION BSB(14, 4, 3)

DOUBLE PRECISION S (19, 3,4),DT, P(18, 4) ,$B(18, 3, 4)

DOUBLE PRECISION WR(4),WI(4),HH(4,4),%%(4,4) ,ACL(16, 3)
DOUBIE FRECISION SBT (14,3 },0(18, 3),R(1¢, 3),B(19,2,4)
DOUBLE PRECISION PR (4),F%(4),PD (18, 4) ,F5 (4)

INTEGER IPVT (18) ,MCON (166) ,NSTEPS, NGRIDH , ICON (198)

DOUBIE PRECISION RAD(1@, 3) ,FADINV (10, 3) ,SNEW (10, 3, 4),U(16, 3)
DOUBLE PRECISION V{18, 3),Wwi(18,3),4(18 ,3)},Y(10, 3),SW,WORK (10)
LOGICAL NOISE

CQMMCN /INOU/KIN, KOUT

Ko=D

Ia =1

READ(5, 11111) NPQINT

READ(S, 11111, END=22222) ITIME,K

FORMAT (21 4)

DO 44444 IXYZ = IA, ITIME

MCON (I1XYZ) = K@

MCON (ITME)= K

Ia = ITIME

Kg= K

GO TO 33333

DO 55555 IXYZ = ITIME, NPFOINT
MCON {(IXYZ) = K@

LUDOLF= 2. 718281828453845D8
LUDINV= 1. D8/LUDOLF

DOLFM] = LUDOLF - 1.0
DINW 1 = LUDINV - 1. @6

=2

1a

5

I

8
=
I
&

[T S 3

2 A=
.

LRSI I



SAMAT

15
22

FORTRAN

KCON =4
NH= 4

NS= 19
IPRT= 17
IEND= 5%
IPRT = 49
ICCOUNT = @
NA= 19

NB= 18

NM=NA

NRA= 19

NR= 10

NQ= 18

NG=16

PzZ(1) = .1DB

PR(l)= .1D0O

Do 15 1=2,N

PR(L)= PR(1)

PZ(I)= PZ(1)

IF (ICOWNT. NE. §) READ (KIN, 9520, END=2) (PR(L),FZ(I),I=l,N)
SI@iA= 1.0

ESIGMA= LUDOLF**SIMA
ESINV= LUDINV**SIGMA

C(l,1) = 1.0
C(2,2) = 1.8
C(%L,2) = 8.1
C(2,1) = 0.DB
DI = 1,06
NSTERS = 5@
A(l,1)= ESIGMA
NAR= 108

NAC = 58

A(2,2)= ESINV
a(2,1) = 0. DY
A(1,2) =0.@D0
Q(l,1)= 14. D

Q(2,1)= B.DDH

0(,2) = 8. @A

Q(2,2) = 6.0

R{l,1)= 1.8D89

R{2,1) = 8.3

R(1,2) = 4. DY

R{2,2) = 1. @9
B(l,1,1)= ESIGMA -1.D@
B(2,1,1)= ESINV-1,@M8

B(2,2,1) = -B(2,1, 1)
B(%,2,1)= B(1,1,1)
B(1,21,2) = 0.8
B(2,2,2) = -DINWM1]
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46
47

222
44

14
667

B(2,1,2)= 8.0

B(L, 2,2) = DOLFM1

8(1,1,3) = DOIFM]

8(1,2,3) = 6. (DB

B(2,1,3) = DINWM1

B(2,2,3) = 8. M0

PR1 = . 1D

PR2= . IDO

P(,1) = .81D0

P(2,2) = .@9D0

P(3,2) = 0. 2900

P(3,3) = . @96

P(l,2) = .81D0

P(3,1) = .@PD0

P(2,1) = .096

P(i,3) = .8IDO

P(2,3) = . 0959

P{4,1) = ,01DG

P(1,4) = .81D®

P(4,2) = .0lD@ ggIgng?{L PAGE 1s
P{4,3) = .0lDB QUALITY
P(4,4) = .QlDO ‘
P(2,4) = .08

P(3,4) = .00D0

WRITE (KOUT, 9903)

CALL MATTO (A, KCQN, KCQN, P, 3)
WRI{E (KOUT, 46)

FORMAT (/,41 PI,/)

FORMAT (3D25. 15)

WRITE (KOUT, 9650)

CALL MATIO MA,N, N, 3, 3)

WRITE (KOUT, 9704)

CALL MATIO VA, N, N, Q, 3)

WRITE (KOUT, 9858 )

CALL MATIO MR, N, N, R, 3)

DO 222 K=1, KCON

Ril = K-1

WRITE (KOUT, 9920) Km1l

WRITE (KOUT, 9509) ({(B(I,J, K),J=1,M) ,I=l,N)
CONTINUE

D0 14 IN=1, 50

ICON (IN) = LCQN (1)

CONTINUE

FORMAT (515)

X6 (1) = . 0200

GNORM(1, 1, 1)= -1. 86336184D0
GNORM (2, 1, 1)= -7.9015188D-1
GNORM {1, 2, 1)= -1.88787889D-02
GNORM (2, 2, 1)= -5.83582495D 2



SAMAT FORTRAN

57

sReNeoXe! @] man

9!

9529
2064
9500
97u¥
9849
9949
9343
9922

GNORM (1, 1, 2)=
GNORM(2, 1, 2)=
GNORM (1, 2, 2)=
GNORM(2, 2, 2)=
GNORM (1, 1, 3)=
GNORM(2, 1, 3)=
GNORM (1, 2, 3)=
GNORM (2, 2, 3)=
IR =2

NFRFL =1

-3.69012096D-31
-1, 34816534D0
1, 24948339D-41
-1.36328767D-41
-1, 4256676708
~2. 87451393D-31
1,51884285D-92
-7.27812438D-22

DO 57 IK = 1, KCQN

IRl =1IK - 1

WRITE {KOUT, 9922) 1K1

WRITE (KOUT, 9599) ( (GNORM(IJ, IL, IK),IL=l,N),IJ=1,N)

NGRIDH =5 :
vil,1l) =8(1,1,1)
ViZ,2) = B(2,2,1)
Viz, 1) = B(2,11)

V{l,2) = B(1,2,1)

CALL MMUL (NA, NA, MNA, N, N, M, V, QIORM, U)
CALL MADD (NA, NA, NA, N, N, U, 3, 2CL)
"CALL MSCAIE (NG, N,M, -1, D3, QIORM)

IONE = 1

CAIL MMUL C, N, N, IONE, IR, N, C, X0, Y9)
65 FORMAT (1X, 225, 15)
CALL DRGSIM(NA,NC, NG, MAR, MAC, N, IR, M, ACL, C, QIORM, X, WORK,
1Y, U, IPVT, ARRAY, OT, NSTEFS, NPREL)
CAIL READY2(NAR, M, NB, NQ, NR, NG, NS, IRA, N, M, KON, A, B, R, Q, P,
1 WR,WI, S, B, U, V,W, X, Y, QIORM, FAD, RADINV, B3 ,WORK, IPVT, IEND)

DT = 1.8

X6 (1) = , 6209
CALL MSCAIE (NG, N,M, -1, (D&, GNORH)
X3 (2) = 9.3
CALL SWTICH A, NB, N, NG, NAR, NAC, N, IR, NBA, KCON, M, A, B, P,

251

1 C, GORM, X8, E, ETEMP, BM,WCRK, Y@, UB, V,W, W, IPVT, ARRAY, IT, NSTEES,

2 NGRIDH,MCQ)

FORMAT (2D 25, 15)

FORMAT {/, 3 25.

FORMAT (/,3H A

15)
)

FORMAT (/,H Q )

FORMAT (/, M R
FORMAT (/,H B

)
+ 15,/)

FORMAT (/,H P )
FORMAT (/, 3 G ,15,/)

S5TOP
END
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C IATEST VERSION 2/17/78
DOUBLIE PRECTSION E (4),ETEMP(4),SIM, SIGMA, SIG 1, ESINV, ESIGMA, SINW 1
DOUBIE PRECISION CQND, IHDOLF, LUDINV,DOLFM1, BM(18, 2), X0 (18) ,DINWM1
DOUBLE PRECISION ARRAY (188, 58),Y0 (18) ,00 (18)
DOUBLE PRECISION A{14, 3),C(18, 3),R1, 1382, X (16, 3)
E(l) = 1.8
EM(1,1) = 1.0
EM(2,2) = 1.0
E(2) = . DO
ETEMP(2) = E(2)
E(3) = 8. D9
ETEMP (3) = E (3) ORIGINAY, PAGE 1S
ETEMP (1) = E (1) OF POOR QT*AYITYV
E@) = 0, Do
DOUBLE PRECISION QIORM (18, 2, 4)
DOUBLE PRECISION BSB (19, 4, 3)
DOUBLE PRECISION S (19, 3, 4) O, P(10, 4) SB(l@ 3, 4)
DOUBLE PRECISION WR(4),WI(4),HH(4,4),%X(4,4),ACL(10, 3)
DOUBLE PRECISION SBT(14,3 ),008, 3),R(18, 3),8(18, 2, 4)
DOUBIE PRECISION PR (4),¥2(4),P (19,4),5B 4)
INTEGER IPVT (10),MCCN (193) ,NFOINT , NGRIDH, ICON (160)
DOUBLE PRECISION RAD(1#, 3),RADINV (16, 3),SNEW(1@, 3,4),0(18, 3}
DOURLE PRECISION V (18, 3),W(1®,3),W(18 ,3),Y(18, 2),SU,WORK(18)
LOGICAL NOISE
COMMON/INOU/KIN, FOUT
KO=3
1a =1
READ (5, 11111)NPOINT
33333 READ(5, 11111, END=22222)ITIME, K
11111 FORMAT (2I4)
DO 44444 IXYZ
44444 MCQN (IXYZ) =K@
MCON (ITIME)=K
A = ITIME
K6=K
0 1O 33333
22222 DO 55555 IXYZ = ITIME, NFOINT
55555 MCON (I1XYZ) =
LUDOLF= 2. 718281828459345D8
LUDINV= 1. @8 /LUDOLF
[OLFM1 = LUDOLF - 1. @9
PDINW1 = LUDINV - 1.8
NAR = 2
NC = 10
KIN= 5
®OUT= 6
N=1
M= 1
N2 =2

13, ITIME
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15
22

KN =2
NH= 4
NS= 18
IPRT= 17
IEND= 50
IFRT = 49
ICOUNT = 3
NA= 10
NB= 10
M=2A
NRA= 10
NR= 19
NQ= 10
NG=lU .
PZ(1l) = .1D6
PR(1)= . 1DD
Do 15 1=2,N
PR(I)= PRI(1)
Pa(I)= PZ(1)

IF (ICOUNT. NE. §) READ(KIN, 9509, END=2) (PR(I),F3(1),I=l,N) .

SIMa= 1, D0
ESI@MA= LUDOLF**SIGMA
ESINV= LUDINV**5IQMA

C(1,1) = 1.D&
C(2,2) = 1.DP
C(l,2) = 3.8
C(2,1) = 8.
DT = 1.0

A(l,1)= 1.4140D5
NAR= 102

NAC = 5@

Q(,1) = 3.9
R(1,1)= 1.0

R{2,1) = @4.DY
B(l,1,1)= 2.6
B(1,1,2)= .50
P(lrl) = , DB
Pf2.r 2) = DB
P(3,2) = 0.uSDDO
P{3,3) = ..9DF
P(1,2) = . DY
P(3,1) = .09D8
P(2,1) = . DB
P(l,3) = .8lDO
P(2,3) = 8.2900
P4,1) = .01DH
P{i,4) = .8lD@
P(4,2) = .¢1DG
P(4,3) = .01D%

253



SWMATZ FORTRAN

P{4,4) = .41D@
P(2,4) = . 090

P(3,4) = .09D8

WRITE (KOUT, 9983)
CALL MATIO A, KON, KON, P, 3)

C WRITE {&OUT, 46)

46 FCRMAT (/,41 PIL,/)

47 FORMAT (3D25. 15)

WRITE (®OUL, 60@)
CALL MATIO (NA, N, N, A, 3)

WRTTE (KOUT, 9709)
CALL MATIO NA, N, N, Q, 3)
WRITE (KOUT, 9863)
CALL MATIO (NR, N, N, R, 3)

DO 222 K=1, KN

K1 = K~1

WRITE (ROUT, 89008) KM1
222 WRITE (ROUT, 9509) ((B(I,J,K),J=1,M) ,I=l,N)

44 CONTINUE
Q@ORM (1,1, 1)
GNOR# (1, 2, 1)
GNORM (2, 1, 1)
GNORM (2, 2, 1)
GNORM (1, 1, 2)
GNORM (1, 2, 2)=1.
GNORM (2, 1, 2)
GNORM (2, 2, 2)

LI O [ I

~1. 86336184D§
-1. 88787889D-42
7. 99151884D-01
~5. 8358246082
-3. 69912096D-01
$4948339D-91
-1, 14816354DY
-1, 36388767001

GNORM(L, 1, 3)= ~1. 42566767D9
GNORM (2, 1, 3)= —2.87451388D-01

GNORM (2, 2, 3)
GNORM (1, 2, 3)
GNORM (1, 1, 4)
GNORM (2, 2, 4)
GNORM (1, 2, 4)
GNORM (1, 2, 4)
DO 14 IN=l, 50

| T T I

-7.27812438-92
1. 51884285042
B. DY
9. D6
9. @00
7.6

ICON (IN}) = LCON (1)

14 CONTINUE

667 FORMAT (515)
X@ (1) = . 02D8
IR =1
NPREL =1

DO 57 IK = 1, KCN

IMl =IK -1

WRITE (ROUT, 9992) IRM1

57  WRITE (ROUT, 9594) ({GNORM(I1J, IL, IK),IL=l,N},1J=1,N)

NGRIDH =5
Vi, 1) = B(1,1,
V(2,2) = B(2,2,

1)
1)

ORIGINATL, PAGE IS
OF POOR QUALITY]
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V2,1) = 8(2,11)
V(l,2) = B(1,21)
CAIL MMUL (NA, N, N, N, N, M, V, GIORM, U)
CAIE MADD (™A, MNa, My, N, N, U, A, 2CL)
CAIL MSCALE MG, N,M, -1, M@, QIORM)
IONE = 1
CALL MMUL (NC, N, N, IONE, IR, N, C, X9, ¥0)
66 FORMAT (1X, D 25. 15)
CALL DRGSIM(NA,IC, NG, MAR, MAC, N, IR,M, ACL, C, QNORM, X8, WORK,
1Y, U, IPVT, ARRAY, DT, NFOINT, NPREL)
CALL READY2 (NAA, N, I8, NO, NR, NG, NS, NRA, N, M, KCON, A, B, R, O, P,
1 WR,WI, S, B, U, V,W, X, ¥, QORM, BAD, RADINV, BS3,WCRK, IPVT, TEND)
DT = 1. 008 ‘
X6 (1) = . 8200
C CAIL MSCALE (NG, N,M,-1. (D8, GIORM)
X0 (2) = 9. D6
CALL SWIICH A, N3, T, NG, NAR, MAC, N, IR, IAA, KCON, M, A, B, B,
1 C, QIORM, X8, E, ETEMP, EM,WCRK, Y8, UB, V,W, Wi, IPVT, ARRAY, DT, NEOINT,
2 NGRIDH,MCON)
9543 FORMAT (2D 25. 15)
2228 FORMAT {/, D 25. 15)
9698 FORMAT (/, ¥ A )
9789 FORMAT (/, ™ Q)
)
r
)

x amon

QaaaOon

9809 FORMAT (/,

0
R

9949 FCORMAT(/,3 B ,1I5,/)
P
G

I5,/)

9933 FORMAT {/, M
9942 FOCRMAT(/, B
2 STOP
END
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