General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A FLUCTUATION-INDUCED PLASMA TRANSPORT DIAGNOSTIC
BASED UPON FAST-FOURIER TRANSFORM SPECTRAL ANALYSIS

by E. J. Powers, Y. C. Kim, and J. Y. Hong
The University of Texas at Austin
Austin, Texas

and

J. R. Roth and W. M. Krawczonek
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER presented at the
International Conference on Plasma Science
sponsored by the Institute of Electrical and Electronics Engineers
Monterey, California, May 15-18, 1978
A FLUCTUATION-INDUCED PLASMA TRANSPORT DIAGNOSTIC
BASED UPON FAST-FOURIER TRANSFORM SPECTRAL ANALYSIS

E. J. Powers, Y. C. Kim and J. Y. Hong
The University of Texas at Austin
Austin, Texas 78712 U.S.A.

and

J. R. Roth and W. M. Krawczokek
NASA Lewis Research Center
Cleveland, Ohio 44135 U.S.A.

ABSTRACT

The objective of this paper is to describe a diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport. The key ideas underlying the approach have been described elsewhere. In this paper, we review the model upon which the diagnostic technique is based, describe its experimental implementation, and present as examples some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis Bumpy Torus plasma.

INTRODUCTION

The theoretical principles on which this diagnostic is based have been described by Powers (1). To apply this diagnostic technique it is not necessary to have detailed knowledge of the physical processes
which give rise to the fluctuation spectra. All that is required is
the capability to measure certain characteristics (described in (1))
of the density and potential fluctuation spectra. This is done by
digitizing signals proportional to the density \tilde{n} and potential $\tilde{\phi}$
fluctuations and computing their respective Fourier transforms using
the FFT algorithm (2). From the transforms various spectral quantities
are computed, the most important of which is the transport spectral
density function $T(\omega)$ which indicates in a quantitative way how much
transport (particles/area-time-frequency) is associated with various
spectral bands. To gain further experimental insight into the factors
affecting the magnitude and direction of transport, additional spectral
functions are generated which indicate the frequency dependence of (1)
the rms amplitudes of \tilde{n} and $\tilde{\phi}$ (2) the phase angle between \tilde{n} and $\tilde{\phi}$
and (3) the degree of mutual coherence (1) between \tilde{n} and $\tilde{\phi}$.

Low frequency ($\omega < \omega_{ci}$) fluctuations are assumed such that the
fluctuating particle velocity is given by $\tilde{E} \times B/B^2$, where \tilde{E} is the
fluctuating electric field and B is the static confining magnetic field.
The particle flux is given by

$$\Gamma = <\tilde{\n}> = <\tilde{n}\tilde{E}> / B \tag{1}$$

To relate potential $\tilde{\phi}$ and electric field \tilde{E} fluctuations, we assume
a quasi-static approximation $\tilde{E} = -\nabla\phi$. As is shown in (1), the particle
flux Γ can be expressed in terms of a transport spectral density function
$T(\omega)$ as follows
The quantity $Q_n^\phi(\omega)$ is the quadrature spectrum between the density and potential fluctuations and indicates that the transport associated with any spectral band depends upon the product of the density and potential fluctuation components which are in phase quadrature. The factor $k(\omega)$ in Eq. (3) comes from the quasi-static approximation relating \hat{E} and $\hat{\phi}$. The factor 2 in Eq. (3) takes into account the "negative frequency" contributions to the particle transport ($T(\omega)$ is an even function of frequency).

Although Eq. (3) is used to compute the transport spectra shown in this paper, additional physical insight may be obtained by noting that the transport associated with a small spectral band of width $\delta\omega$ and centered at ω may also be expressed as (1)

$$T(\omega)\delta\omega = \frac{k(\omega)}{B} \frac{n_{\text{rms}}(\omega)}{n_{\text{rms}}(\omega)} \phi_{\text{rms}}(\omega) \sin \alpha_n^\phi(\omega) |\gamma_n^\phi(\omega)|$$

where n_{rms} and ϕ_{rms} denote the rms values of the density and potential fluctuations associated with those spectral components of bandwidth $\delta\omega$ centered at ω. The quantities $\alpha_n^\phi(\omega)$ and $|\gamma_n^\phi(\omega)|$ denote the phase difference and degree of mutual coherence between the density and
potential fluctuations, respectively. The appearance of the degree of mutual coherence $|\gamma_{n\phi}(t)|$ is a consequence of the polychromatic nature of the fluctuations. Further discussion of both Eqs. (3) and (4) may be found in (1).

EXPERIMENTAL IMPLEMENTATION

In order to implement the concepts reviewed in the previous section and described more fully in (1), it is necessary to develop a data acquisition system that enables one to simultaneously acquire and digitize density and potential fluctuation data, and transfer the raw time series data to a computer for processing. Since we wish to express all spectra of interest (particularly the transport spectra) in absolute physical units, it is also necessary to enter into the computer system calibration data (e.g., voltage range settings on the digitizer, preamplifier gain settings, etc.). The system used to acquire the data shown in the next section is described in detail in (4). Transient recorders were used to digitize both the density and potential fluctuation data. All the spectra included in this paper were computed from a digitized version of \tilde{n} or ϕ consisting of 2048 8-bit words.

The experimental data presented in the next section was taken during the course of a study of fluctuation-induced transport in the NASA Lewis Bumpy Torus plasma (3,5). This steady-state magnetically confined toroidal plasma is acted upon by strong electric fields externally imposed along the minor radius of the plasma. It employs a modified Penning discharge to produce and heat a plasma in a bumpy toroidal
magnetic field geometry produced by 12 superconducting coils, each having an I.D. of 19 cm and capable of producing 3 Tesla on axis. The coils form a toroidal array 1.52 meters in major diameter. A steady-state plasma is created when electrodes are placed at the midplane of one or more of the twelve toroidal sectors. The electrodes can be biased with positive or negative d.c. potentials in excess of 10kV, with respect to the grounded magnet dewars. This combination of strong crossed electric and magnetic fields can produce a steady-state deuterium plasma of density 10^8-10^{12} cm$^{-3}$, ion kinetic temperatures of 340-2500 eV, and electron kinetic temperatures of 8-140 eV. Since Langmuir and capacitive probes are used to measure \hat{n} and $\hat{\psi}$, the operating conditions had to be restricted to the low end of these ranges of kinetic temperatures in order to avoid damage to the probes.

The strong radial electric field (≈ 100V/cm) associated with the Penning discharge and the strong toroidal magnetic field give rise to a diversity of $\mathbf{E} \times \mathbf{B}$ phenomena such as rotating waves and spokes, which in turn manifest themselves as space-time fluctuations of the plasma density and potential. These fluctuations are monitored with an array of three probes shown schematically in Fig. 1. Fluctuations in ion density were monitored with the aid of a Langmuir probe biased into the ion saturation regime. Potential fluctuations were measured with the two capacitive probes.

The probes were mounted on a fixture which is hydraulically actuated into the steady-state plasma for no more than 1/2 second. The travel of the probes was adjusted so that both capacitive probe no. 1 and the Langmuir probe were positioned 7 cm from the plasma axis.
in the equatorial plane of the torus, midway between two coils, when
data were being taken. Capacitive probe no. 1 and the Langmuir probe
were displaced axially 1 cm from each other. This arrangement allows us
to measure the density and potential fluctuations at the same minor
radius in the plasma, without reference to the axial dimension in the
case of waves whose axial wavelength, $\lambda_{||}$, is much larger than 1 cm.
Capacitive probe no. 2 was located 30° above the equatorial plane, in
the same vertical plane and at the same plasma radius as the Langmuir
probe. The probe array was inserted into a sector which did not
contain an electrode.

As indicated schematically in Fig. 1, the signals from all three
probes are digitized, and transferred to a computer where their respective
Fourier transforms are computed. From the Fourier transforms we compute
a variety of spectra to be described in the next section. At this
point we wish to emphasize that the azimuthal wave number $k_\phi(\omega)$ can be
determined from the phase of the cross-power spectrum between the two
potential probe signals by following the procedures outlined in (6,7).
The quadrature spectrum $Q_{n\phi}(\omega)$ between density and potential fluctuations
is computed from the Fourier transforms of $\hat{n}(t)$ and $\hat{\phi}_1(t)$ following
the procedures outlined in (1). Eq. (3) is then used to compute the
transport spectrum $T(\omega)$.

CHARACTERISTIC EXPERIMENTAL RESULTS

We now present examples of transport spectra, and other spectra
of interest, that were obtained during a study of fluctuation-induced
transport on the NASA Lewis Bumpy Torus plasma. It is our purpose to
offer these examples as "proof of the concept" originally described in
(1). A detailed discussion of transport in this particular plasma is
beyond the scope of this paper. Further information on this latter
topic may be found in (5).

All the spectra shown in this paper were computed following the
procedures described in (7). The spectra were computed from a time
series consisting of 2048 8-bit samples taken every 1 usec. Thus, the
duration of each record is 2.048 ms, and the Nyquist frequency is
500 kHz. The plots were frequency averaged over m=9 elementary
frequency bands, resulting in a spectral bandwidth (the frequency
separation between the discrete points) of 4.39 kHz (= 9/2.048 ms).
A cosine bell data window was applied to the raw time series data in
order to reduce the effects of leakage.

Although Eq. (3) indicates that one only need to compute \(k(\omega) \)
and \(Q_n(\omega) \) to get \(T(\omega) \), Eq. (4) suggests that additional insight may
be obtained from knowledge of \(n_{\text{rms}}(\omega), \phi_{\text{rms}}(\omega), \alpha_n(\omega) \) and \(|\gamma_n(\omega)| \). Thus, for each experimental run we generate 6 spectral plots which
permit us to measure each of the six parameters mentioned in the preceding
sentences. In addition, we plot the transport spectrum \(T(\omega) \) and the
cumulative transport spectrum, which is to be defined later.

To demonstrate the usefulness of the fluctuation-induced plasma
transport diagnostic we have selected four experimental data runs, and
present the relevant spectral plots for each run in Figs. 2-5, respectively.
Note that each figure consists of eight computer-generated spectra. The spectra labeled (a) through (f) correspond to the six spectral quantities that appear on the right hand side of Eqs. (3) and (4). Spectra (g) and (h) are plots of the transport spectrum and the cumulative transport spectrum.

Spectrum (a) is a plot of the auto-power spectrum of $\hat{\chi}_1(t)$. All system calibration factors have been taken into account so that the ordinate of each data point corresponds to the mean square value (i.e., $\phi_{\text{rms}}^2(\omega)$) of the potential fluctuations over a spectral bandwidth of 4.39 kHz. Spectrum (b) is the auto-power spectrum of the density fluctuations (i.e., $n_{\text{rms}}^2(\omega)$).

Spectra (c) and (d) are both phase spectra. Spectrum (c) corresponds to the phase $\theta_{12}(\omega)$ of the cross-power spectrum computed from $\hat{\chi}_1(t)$ and $\hat{\chi}_2(t)$. From the phase spectrum $\theta_{12}(\omega)$, one can readily determine $k_0(\omega)$, in the fact the right-hand axis has been scaled directly in terms of $k_0(\omega)$ using the approach described in (6,7). Knowing $k_0(\omega)$ one can compute the azimuthal phase velocity $\omega/k_0(\omega)$.

We note that, generally speaking, the phase velocities associated with the $k_0(\omega)$ plots in Figs. (2-c), (3-c), (4-c), and (5-c) are of the order of 10^6 cm/sec. We also note that this is within a factor of two of the E_xB drift, where E_r (100V/cm) is the static radial electric field resulting from d.c. voltage applied to the electrode rings and $B(0.67T)$ is the toroidal magnetic field at the point at which the measurements are being made.
Spectrum (d) is the phase of the cross-power spectrum computed from \(\hat{\phi}_1(t) \) and \(\hat{\nu}(t) \) and thus represents the phase difference \(\alpha_{n\phi}(\omega) \) between the density and potential fluctuations on a spectral basis.

The quadrature spectrum \(Q_{n\phi}(\omega) \) is plotted as spectrum (e) and is used along with \(k_0(\omega) \) from spectrum (c) to compute the transport spectrum \(T(\omega) \) from Eq. (3).

The square of the degree of mutual coherence \(|\gamma_{n\phi}(\omega)|^2 \) is plotted as spectrum (f). It enters into Eq. (4) because we are considering polychromatic fluctuations rather than the special case of monochromatic fluctuations where \(|\gamma_{n\phi}| = 1 \). Further properties of coherence spectra are discussed in (8).

The transport spectrum \(T(\omega) \) is plotted as spectrum (g). Since the transport spectrum is computed from digitized data we actually plot a transport spectrum (no. particles/area-time) not a transport spectral density function (no particles/area-time-frequency). Thus the ordinate of each point in the transport spectrum denotes the fluctuation-induced transport associated with a spectral-band of width 4.39 kHz, centered at the point in question. The transport spectrum \(T(\omega) \) is a real quantity and may take on either a positive or negative value indicating that the transport is in either the inward or outward direction, respectively. Note that Eq. (3) indicates that there are only two quantities which determine the sign of \(T(\omega) \), and hence the direction of transport. The first quantity is the phase-difference \(\alpha_{n\phi}(\omega) \) between density and potential fluctuations. If \(\alpha_{n\phi}(\omega) \) changes sign, \(T(\omega) \) changes sign, since \(T(\omega) \) is proportional to \(\sin[\alpha_{n\phi}(\omega)] \).
The second quantity determining the sign of \(T(\omega) \) is the sign of \(k_\theta(\omega) \), which in turn is determined by the direction of propagation (in the azimuthal direction) of the wave.

Spectrum (h), \(CT(\omega) \), is the cumulative transport spectrum which is found by summing the transport spectrum \(T(\omega) \) from zero frequency up to the frequency in question. The value of \(CT(\omega) \) at 500 kHz denotes the total fluctuation-induced transport associated with the fluctuation spectrum extending from zero to 500 kHz.

All data presented in Figs. 2-5 were obtained with D-shaped electrode rings inserted into the midplane of two (of the twelve) adjacent toroidal sectors. The operating conditions under which the data were taken is listed at the top of each figure, where \(V_A \) denotes the bias voltage applied to each electrode ring, \(I_A \) the discharge current, \(P_o \) the neutral gas pressure, and \(\bar{n}_e \) the average electron density as measured by a microwave interferometer. All measurements were taken in deuterium gas.

The crucial difference between Figs. 2 and 3 is that data in Fig. 2 were taken while the electrodes were biased negatively, whereas the data taken in Fig. 3 were obtained with the electrodes biased positively. In Fig. 2 the transport spectrum \(T(\omega) \) and the cumulative transport spectrum \(CT(\omega) \) is positive (corresponding to radially inward fluctuation-induced transport), whereas in Fig. 3 \(T(\omega) \) and \(CT(\omega) \) are for the most part negative, indicating radially outward transport. Examination of Figs. (2-d) and (3-d) indicates that the phase difference between density and potential fluctuations \(\alpha_n(\omega) \) is for
the most part negative in both cases and thus is not responsible for
the reversal of the transport direction. However, comparison of
Figs. (2-c) and (3-c) indicate that $k_0(\omega)$ has changed sign, which,
according to both Eqs. (3) and (4), results in a change in the direction
of the fluctuation-induced transport. We attribute the change in
sign of $k_0(\omega)$ (which indicates a reversal in the direction of azimuthal
propagation) as being due to a reversal of the static radial electric
fields, resulting from the reversal of polarity of the bias voltage
applied to the electrodes.

In the two runs represented by Figs. 4 and 5, the voltage applied
to the electrode rings was the same in both magnitude and polarity.
However, the strength of a weak vertical magnetic field was changed
from 7.5 Gauss in Fig. 4 to 12.5 Gauss in Fig. 5. We note that in
Fig. 4 $T(\omega)$ and $CT(\omega)$ are positive, whereas, in Fig. 5 they are
negative. Comparison of Figs. (4-d) and 5-d), indicate that the
reversal in the direction of transport is due to a reversal in the sign
of the phase relations $\alpha_{n\delta}(\omega)$ between the density and potential
fluctuations.

DISCUSSION

Although probes were used to monitor density and potential
fluctuations, the diagnostic technique described in this paper may
be utilized in conjunction with other methods (e.g., heavy-ion beam
probes) of measuring density and potential fluctuation data.
The digital spectral analysis techniques applied in the examples above are capable of: (1) providing a quantitative measure of the fluctuation-induced transport in absolute physical units, (2) indicating the spectral dependence of the transport, and (3) providing additional experimental insight into the factors affecting both the magnitude and direction of transport. For example, Figs. 2-5 indicate that the radial fluctuation-induced ion transport observed in the NASA Lewis Bumpy Torus plasma at the probe location may be radially inward or outward. Generally speaking, it is found that for negatively biased electrodes (and a suitably adjusted vertical magnetic field) the fluctuation-induced ion transport is radially inward, except in those sectors containing the electrode rings, where the ion transport is outward. For positively biased electrodes, the ion flux reverses direction in both the empty sectors and those containing the electrode rings. This results in a lower overall steady-state plasma density (5).

The diagnostic technique described in this paper provides important experimental insight into the fluctuation-induced transport processes governing the plasma confinement in this particular Bumpy Torus experiment (5). We anticipate that it could also be used quite fruitfully in measurements of fluctuation-induced transport in other magnetic confinement experiments as well.
REFERENCES

Figure 1: Schematic of the probe assembly and data acquisition system. The potential fluctuations are measured by capacitive probes, the ion density fluctuations by a Langmuir probe biased to ion saturation.

\[\rho_p = 7 \text{ cm, } \Delta \theta = 90^\circ \]

\[\tilde{\Phi}_p \text{ measured with capacitive probe no. 1} \]

\[\tilde{\Phi}_p \text{ measured with capacitive probe no. 2} \]

\[\text{FT} \]

\[\text{A/D} \]
Figure 5. - Computer generated fluctuation spectra for same conditions as figure 4, but with a weak vertical field of 12.5 gauss.
The objective of this paper is to describe a diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport. The key ideas underlying the approach have been described elsewhere. In this paper, we review the model upon which the diagnostic technique is based, describe its experimental implementation, and present as examples some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis Bumpy Torus plasma.