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SUMMARY 

The problem of obtaining accurate estimates of suction requirements on 
swept laminar flow control wings is discussed. A fast accurate computer code 
developed to predict suction requirements by integrating disturbance amplifica- 
tion rates is described. Assumptions and approximations used in the present 
computer code are examined in light of flow conditions on the swept wing which 
may limit their validity. 

INTRODUCTION 

The development of viable laminar flow control technology requires 
consideration of aerodynamics, structures, and maintainability. Advancements 
in aerodynamics and structures since the X-21 project of the early/middle ' 
sixties together with the projected world fuel supply/price situation have 
resulted in new efforts to develop laminar flow- control (LFC) technology for 
subsonic CTOL transports (ref. 1). Both ,the aerodynamic and structural 
considerations in the design of an LFC transport are impacted by the gross 
amount and detailed distribution of the suction air flow required for laminar 
flow. The problem of predicting required suction flow rates on swept LFC 
wings has received little attention in the past 10 years. In this time span, 
new powerful computers and numerical techniques have evolved which permit the 
development of practical suction prediction methods using advanced boundary- 
layer stability theories. (See refs. 2 to 4.) The more sophisticated 
theories account better for the real-life physics of the boundary-layer 
stability/transition problem (ref. 5), and thus, allow a higher confidence 
level in the predicted suction rates for wing configurations and pressure 
distributions which may be considerably different from those for which experi- 
mental data are currently available. 

This paper includes (1) a brief look at the physics of the transition 
problem; (2) a short review of prior methods for determining suction flow rates 
on swept LFC wings; (3) a general description of the present updated method 
and computer code and finally (4) other effects not accounted for in the present 
method, their relative importance, and regions of the swept wing for which they 
may have to be considered in future suction prediction techniques. 

375 



SYMBOLS 

C 

C 
P 

wing chord taken parallel to free-stream direction 

P - PC0 
pressure coefficient, 

0*5P,, urn 
2 

L length scale 

N natural logarithm of the ratio of a boundary-layer disturbance 
amplitude to its amplitude at neutral stability. 

n crossflow boundary-layer velocity component (perpendicular to 
local potential velocity) 

P static pressure 

R local length scale Reynolds number, 
'e 'e L 

Pe 

r radial distance to chord line in conical wing approximation 

Rn 

Rt 

S 

t 

UO 

U 

V 

vG 

W 
0 

'e nmax60 In . 
crossflow Reynolds number, max 6 is the 

1-Ie 
, where O.ln 

IIBX 

height at which the crossflow velocity attains 10% of its maximum 
value (point furthest from the surface) 

tangential or streamwise Reynolds number, 
‘e te f3 

pe 

surface distance 

streamwise or tangential boundary-layer velocity component 
(parallel to local potential velocity) 

component of boundary-layer velocity in direction normal to 
radial boundaryalayer coordinate 

total velocity 

component of boundary-layer velocity normal to surface 

group velocity 

component of boundary-layer velocity along radial boundary-layer 
coordinate 

X distance in chord direction 

376 



Y distance normal to surface 

nondimensional wavenumber in u 2nL o direction (see figs. 4 and 5),~ 

2TfL uO 
nondimensional wavenumber in w o direction, x 

wO 
boundary-layer thickness 

0 boundary-layer momentum thickness of t profile 

?J viscosity 

P 

X 

density 

crossflow Reynolds number, 'e nmax ' 
ue 

JI angle of line that is normal to the disturbance wavefront, tan -1(8/a> ; 
also perturbation stream function (eq. (5) and (6)) 

w nondimensional complex frequency 

Subscripts 

e local potential flow 

i imaginary part 

max maximum 

min minimum 

r real part 

W wall 

co free stream 

PHYSICS OF THE STABILITY/TRANSITION PROBLEM 

A simple visualization of the flow development on a flat plate would 
include sequentially an initial laminar linear region, a laminar nonlinear 
region, a transitional nonlinear region, and finally, turbulent flow. The 
relative length of the pre-turbulent regions depends to a significant extent 
on a multitude of factors such as surface roughness, free-stream noise and 
vorticity, and pressure gradient. Any of these factors, if strong enough, may 
cause some of the preturbulent region to be shortened or bypassed. A detailed 
discussion of such phenomena may be found in the literature (refs. 5 and 6). 
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For a laminar boundary layer exposed to relatively weak external disturbances, 
small disturbances undergo linear amplification. In two-dimensional incompres- 
sible flow, the disturbance waves which are amplified the most are those moving 
in the direction of the external flow (two-dimensional waves). They are due to 
viscous instability of the boundary layer (refs. 7 and 8). 

The situation on a swept wing is complicated by the presence of boundary- 
layer crossflow. (See refs. 9 and 10.) Figure 1 indicates that near the 
leading and trailing edges of a swept wing, the slow moving fluid elements in 
the boundary layer close to the surface are more strongly deflected by the 
pressure gradients than fluid elements nearer to the edge of the boundary layer. 
Figure 2 illustrates the resulting boundary-layer profiles. The crossflow 
profile has an inflection point which is strongly destabilizing (inflexional 
instability). Thus, on a swept wing there are normally two types of instabili- 
ties: the viscous or Tollmien-Schlichting instability and the inflexional or 
crossflow instability. Figure 3 illustrates the stabilizing effect of suction 
on these profiles. This.!effect results from a thinning and alteration of the 
boundary-layer profile, and also, in the case of the crossflow instability, 
stronger damping when the inflexion point is brought nearer to the surface. 
If suction is strong enough, complete stabilization will result with all 
boundary-layer disturbances being damped. However, this condition would mean 
excessive suction rates with corresponding system penalties. (See ref. 11;) 
A more efficient design is to use suction rates and distributions which would 
allow disturbance growth to the point, of incipient transition,. The points 
that have been discussed so far are not new and have been known for the past 
10 to 20 years. What is new is the methodology being developed to compute the 
amount and distribution of suction that will allow disturbances on a swept 
wing to grow to the point of incipient transition. This will be discussed 
after a brief review of some previous methods for swept LFC wings. 

PREVIOUS METHODS 

The method of direct integration of disturbance amplification rates 
obtained from linear/parallel stability theory computations has been recently 
used extensively for problems involving axisymmetric bodies in water (ref. 12). 
However, for the three-dimensional swept-wing problem, local methods have 
traditionally been used (ref. 13). By local is meant that at selected points 
along the chord, a flow quantity is examined, and flow stability evaluated 
solely from an experimental correlation involving that local quantity. One 
such method is known as the x method (ref. 14). 

In figure 2 there is a maximum crossflow velocity inside the viscous 
boundary layer. This velocity together with the boundary-layer thickness can 
be used to form a Reynolds number called the crossflow Reynolds number or x. 
For a given experimental airfoil pressure distribution, x can be calculated 
along the chord, and the value of x obtained which corresponds to the physical 
transition location. A correlation is .then obtained between allowable x values 
and the extent of laminar flow. The idea is to apply suction to keep x below 
a certain critical value so that laminar flow is not lost due to crossflow 
instability. The problem with this method is that the local crossflow Reynolds 
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number does not contain any information at all about the disturbance amplifica- 
tion history of the boundary layer which is vital to reliable transition 
predictions (ref. 5). Wing configurations and pressure distributions signifi- 
cantly different from those used in the correlation may have different levels 
of X at transition. 

Another 1ocaPmethod is known as the X-21 method and was used to determine 
X-21 suction rates and distributions (ref. 15). This method incorporates 
stability calculations, but in a local sense. What is done is'that the stream- 
wise and crossflow boundary-layer profiles on a swept wing are first normalized 
in an appropriate fashion and neutral stability curves are then obtained from 
linear, parallel stability theory. Neutral stability means that condition 
where boundary-layer disturbances are neither amplified nor damped. The 
so-called crossflow and streamwise minimum critical Reynolds number (R, min 

and R t,min' respectively) obtained from neutral stability curves are th& 

related to the second derivative of the appropriate velocity profile (stream- 
wise or crossflow). 

The relations that were obtained are (from ref. 15): 

Streamwise (Rt min) l/3 = 6 - 127 
, 

(1) 

(2) 

where n and t are the crossflow and streamwise velocities, respectively, (see 
fig. 2), y is distance normal to the surface, 8 is the streamwise momentum 
thickness, and 6 

O.lnmax 
is the distance above the surface where the crossflow 

velocity is 10 percent of its maximum value. These relations are valid only 
for the class of boundary-layer profiles for which they were derived. Addi- 
tionally, they only track neutral stability. 

For the X-21 suction predictions, it was necessary to obtain an idea of 
the margin by which computed neutral stability Reynolds numbers might be 
exceeded. This was done by comparison with experiment and it was found that 
the crossflow Reynolds numbers could be exceeded by about 80 percent and the 
streamwise criterion by 200. 

This comparison results in the following criteria: 

R n,max = 1.8 Rn min 
, (3) 
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R =R t,max t min + 2oo , (4) 

Numerous examples of the use of these criteria may be found in the literature 
(refs. 15 to 18). 

The obvious advantage of local methods such as these is that they are easy 
to apply and do not consume large amounts of computer time. The obvious 
disadvantage is, of course, the confidence level of these methods. They do not 
account in any way for the disturbance growth history, which is a necessary 
part of a rational transition prediction method. Thus, it may be dangerous to 
rely exclusively on such methods for wing configurations and pressure 
distributions which depart significantly from those used in their calibration. 

The ideal advanced method should account for as much of the physics as 
possible, should not require an inordinate amount of computer time, and finally, 
should be user oriented with relative ease of operation. The method to be 
described in the following section was developed with these goals in mind. 

PRESENT METHOD 

Description 

The present method is designed to compute the incompressible stability 
characteristics of laminar compressible boundary layers on swept, tapered wings 
with suction. The boundary-layer profiles are computed by program MAIN 
(-ref. 19). Program MAIN is laminar, compressible, with adiabatic wall and wall 
suction boundary conditions. Taper effects are incorporated by assuming that 
the wing can be represented as part of a semi-infinite conical surface. The 
assumption of conical similarity then allows the results of a computation at 
one spanwise position to be simply scaled to obtain boundary-layer profiles at 
any other spanwise station. Boundary-layer computations are made along an arc 
of constant radius Cr). Wing geometry and surface pressures are specified 
along a chordline parallel to the free stream which intersects the arc of 
constant radius at the leading edge. Figure 4 indicates these relationships. 

The results of program MAIN are input into stability program SALLY, which 
performs incompressible, linear, and parallel stability computations. SALLY 
solves the Orr-Sommerfeld equation: 

+ 6 Wo, - W> ’ C d2 --a 

dy2 

2 - fj2 $ 
1 

- a ( 2 
3I.l a2w ' 

>+fi-Q II, 

3Y2 3Y2 
i> 

(5) 
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where the quantity + is the perturbation stream function with boundary 
conditions 

Jl(O) .= g (0) = 0 ($(a)Bounded) 

a, B are the wave number components of the disturbance, w is the complex 
disturbance frequency, u. and w. are mean flow velocity components, and R is 
the Reynolds number. (See fig. 4.) 

A spectral technique involving Chebyshev polynominals is used to obtain 
solutions to this equation. This solution technique has the advantages of 
high accuracy combined with computational speed and efficiency. Details of 
the solution procedure are available in reference 2. 

SALLY obtains at each chordwise computational station for given wavenumber 
components a, 8, the frequency of the disturbance wr, the disturbance amplifica- 
tion rate wi, and the group velocity vector VC where wr and Wi are the real 
and imaginary parts of w in equation (5). This information is used to determine 
the integrated disturbance amplitude ratio in the following manner. First, the 
frequency of the disturbance that is to be followed is specified, and SALLY 
proceeds from station to station along the chord until an instability of the 
required frequency is detected. An iteration is then performed to obtain the 
wave of maximum amplification at that frequency. This amplification rate is 
then integrated to the next station (-see fig. 5) along the surface distance 
determined by the direction of the group velocity vector. In addition to 
determining the direction of integration, the group velocity is used to convert 
temporal amplification rates obtained from the stability solution to the 
spatial amplification rates that are actually integrated. Thus, at each 
station, the amplitude ratio of the disturbance is available. The logarithm 
of this ratio gives the so-called "N-factor" of the disturbance. A detailed 
discussion of the present mehtod may be found in reference 20. 

Figure 6 illustrates schematically how disturbance growth information can 
be used to determine suction rates. Assume that an airfoil (without suction) 
is placed in a wind tunnel, and surface pressures and transition location are 
determined. The surface pressures and wing geometry are used by program MAIN 
to compute the boundary-layer profiles which are input to the SALLY stability 
code. SALLY computes integrated disturbance growth along the chord, and the 
growth "N factor" at the transition location is determined. If suction is now 
applied to the surface of the wing so that it is below the disturbance growth 
factor corresponding to transition, then laminar flow should be maintained. 
Thus, the first task is to determine allowable disturbance growth factors. 
This is done by calibration with experiment. 

Calibration 

Since transition is affected by factors such as free-stream noise and 
turbulence, calibration of a transition prediction method should involve data 
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in a low disturbance environment. For this reason data obtained in the Ames 
12-foot tunnel was used (refs. 21 and 22). This question will be discussed 
only briefly here, and the reader is referred to reference 20 for more detail. 
Figure 7 illustrates the calibration process. Results are shown for two 
separate experimental investigations in the Ames 12-foot tunnel. One investi- 
gation involved an unsucked two-dimensional wing section at various sweeps and 
Reynolds numbers; the other was a two-dimensional 30° swept wing with suction 
through spanwise slots. The procedure then is to obtain boundary-layer profiles 
with program MAIN for the test Mach number and pressure distribution. These 
profiles are input to SALLY and the disturbance growth N-factor corresponding 
to the experimentally observed transition location is obtained. Figure 7 
gives an example of such a calibration for stationary crossflow disturbances. 
The curves marked 40B and 40C do not have a transition location because 
transition occurred forward of the first measuring station at 20 percent chord. 
Note that the N-factors for the other curves at transition fall in a band 
9.5 2 N ,' 11. This then gives an indication of allowable crossflow disturbance 

growth for laminar flow over the front part of the wing. It turns out that 
three separate calibrations need to be carried out: (1) front part of wing 
crossflow; (2) mid-chord Tollmien-Schlichting (streamwise disturbances); and 
(3) rear part of wing crossflow. This aspect will not be addressed here, 
and the reader is again referred to reference 20. Reference 22 indicates that 
suction was adjusted on the wing of that experiment so that laminar flow would 
be maintained along the entire chord with minimum suction flow rates. Note 
that maximum growth factors obtained for the suction case S2 fall within the 
range of N factors at transition. 

Sample Application 

Figure 8 shows the pressure distribution over the upper and lower surface 
of an LFC applicable supercritical wing section for a design shockless 
condition. Note the large supercritical region on the upper surface and the 
very small region of supercritical flow along the lower surface. Figure 9 
shows two suction distributions for the upper surface of the airfoil of fig- 
ure 8. Note the higher suction rates at the front and rear for control of the 
crossflow, and the relatively low mid-chord suction for control of streamwise 
Tollmien-Schlichting disturbances. The solid suction curve corresponds to a 
suction level that allows the highest possible disturbance growth without 
exceeding established growth limits. This suction distribution should maintain 
laminar flow to 100 percent of the chord. Figure 10 shows the corresponding 
crossflow growth factors; solid and dashed curves of figure 10 corresponding 
to those of figure 9. The dashed curve represents a slightly lower suction 
level with the result that the solid curve limit is exceeded by about 84 per- 
cent chord. This indicates that full-chord laminar flow cannot be maintained 
with the lower suction level. 
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Status 

The SALLY stability code is operational with 

(a) Typical run times: 3 minutes on Control Data CDC 6600 for one 
spanwise station 

(b) 160,000 octal words of storage 

Improvements forthcoming are 

(a) 40 percent decrease in memory requirements 

(b) 45 percent decrease in run times. 

OTHER EFFECTS 

The assumptions contained in SALLY are that (-1) it is incompressible, 
(2) it is linear, (.3) it is parallel, and (4) it has no wall curvature terms. 
These assumptions are now considered and the flow situations on the wing for 
which they may have limited validity are examined. 

Compressibility 

From figure 8 it can be seen that a significant portion of the upper 
surface is in a region of locally supercritical flow. Although the profiles 
used by SALLY are generated by a compressible boundary-layer program, SALLY 
itself solves the incompressible stability equations. So the question is, how 
much of an error is incurred by using incompressible stability for wings with 
significant supercritical regions. Figure 11 gives a comparison between 
compressible and incompressible growth rates for Tollmien-Schlichting 
(streamwise) disturbances in the. upper surface supercritical region of the 
wing of figure 8. Calculations performed by L. Mack of Jet Propulsion Labora- 
tory (unpublished) indicate that compressibility decreases the local disturbance 
growth rates and, in addition, it changes the bandwidth of unstable frequencies. 
Incompressible calculations in supercritical regions would therefore tend to 
be conservative (and would estimate higher suction rates). It turns out that 
the crossflow disturbances are dominant in the lower Mach number regions of 
the flow and calculations for the upper surface of the configuration of fig- 
ure 8 indicate about a 10 percent decrease in growth rates due to compress- 
ibility. Since most of the suction is needed to control crossflow (see fig. 9), 
it is seen that compressibility effects will not significantly change the total 
required suction flow, but may be important in determining the details of the 
suction distribution. Also, because of the low local pressure levels in the 
supercritical region, the compressibility effects may have a sizeable favorable 
influence upon the pumping power. 
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Nonparallel Effects 

The assumption of parallel flow in the equations used in SALLY may be 
violated to some extent. For example, figure 12 shows that in the region in 
the near vicinity of the slot, streamlines diverge, and the flow is obviously 
not parallel. How important this effect is has not yet been established. 
Figure 13 gives an example of the type of calculation (obtained from A. Nayfeh 
of Virginia Polytechnic Institute and State University) that can only be done 
accurately by including nonparallel effects. A flat plate, six units long, is 
placed in a stream of Mach number 0.8, and the integrated growth of a distur- 
bance of nondimensional frequency 1 x 10-5 is determined for a number of 
suction conditions on the plate. All growth factor levels shown are at the 
end of the plate. If a given total suction is distributed evenly along the 
plate, a growth factor of slightly over 4.5 is abtained. If the total suction 
amount is kept fixed but now distributed only over the first half of the plate, 
the growth factor goes up to almost 8. Further concentration of the suction 
results in growth factors which start to approach those obtained with no 
suction (level indicated by top bar). Increasing suction concentration results 
in increasing severity of nonparallel flow in the region where suction 
terminates. A series of alternate s.uction no-suction strips approximates the 
real life case of suction through spanwise slots. Also, however, if many fine 
slots are used, the nonparallel and "solid surface".effects, as shown on fig- 
ure 13, are probably not very severe , since continuous suction would be 
approached. When such nonparallel calculations are performed, they may reveal 
that certain critical slot spacings will result in a resonance phenomenon 
greatly increasing the normal amplification rates of particular frequencies of 
streamwise Tollmien-Schlichting disturbances. 

Nonlinear Effects 

Use of linearized stability equations assumes that growth rates of any 
wave can be calculated independently of the growth of any other wave. In 
certain situations, this may not hold. Figure 14 illustrates three situations 
where nonlinear effects may be important. First, waves may grow to amplitudes 
where streamwise and crossflow type disturbances begin to interact with each 
other. Second, although wings will ideally be designed for shockless conditions, 
off-design shocks will occur and may result in sufficiently rapid mean flow 
changes to cause nonlinear effects to become important. A third possibility 
is that the suction slots themselves may induce disturbances sufficient to make 
nonlinear effects important. 

Wall Curvature Effects 

It is known that in regions of concave curvature, such as on the lower 
surface of the wing of figure 8,a centrifugal instability known as Taylor- 
Goertler instability will occur (ref. 23). These are vortex type instabilities 
and are due solely to centrifugal effects. New computational stability codes 
are being developed which will have the capability of computing Taylor-Goertler 
instabilities quickly and accurately. 
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CONCLUDING REMARKS 

An advanced three-dimensional boundary-layer stability code has been 
developed to optimize LFC suction requirements. A new version 45 percent 
faster and requiring 40 percent less computer storage will soon be available. 
Compressibility effects have been found to be important in the sense that they 
will impact the details of the suction distribution. The importance of non- 
parallel, nonlinear, and Taylor-Goertler effects is being investigated. 
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Figure l.- Flow conditions on typical sweptback wing. 
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Figure 2.- Swept-wing boundary-layer profiles. 
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Figure 3.- Effects of suction on 
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streamwise and crossflow 
boundary-layer profiles. 
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Figure 4.- Coordinates for wing boundary-layer solutions. 
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STATION NO. NZ-1 

STATION NO. NZ 

Figure 5.- Schematic of stability code integration path. 

DI 

Figure 6.- Illustration of effect of suction on disturbance growth. 
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Figure 7.- Integrated "N factorsr' for stationary crossflow disturbances. 
(Front part of wing.) 

Figure 8.- Laminar flow control applicable supercritical wing section. 
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Figure 9.- Suction distributions on upper surface of wing of figure 8. 
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Figure 10. Integrated disturbance growth for upper surface crossflow 
corresponding to suction distributions of figure 9. 
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Figure ll.- Effect of compressibility on streamwise (Tollmien-Schlichting) 
growth rates and frequencies in upper surface supercritical region. 

,Ej 

Figure 12.- Nonparallel flow near a slot. 
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Figure 13.- Example of nonparallel di.sturbance growth calculation over 
a flat plate. Total suction fixed; distribution varied. 
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Figure 14.- Illustration of conditions for which nonlinear effects 
may be important. 

394 


