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1. The physicalrp oble.i;;;,

We considered a flow about an oscillating thin airfoil in

a transonic stream. We assume that ":he flow field can be

decomposed into a mean flow plus a periodic perturbation.

Letting cp(x,y) denote the velocity potential associated with

the latter we have

(1) ([K - (Y- 1 ) uo I cpxlx + 
cpyY	

(2iw/e)Tx

+ 
[ w2

/e - iw(Y-1)u
ox lCP = O,

where K = (1-M2 )/M2 e, M is the free stream Mach number, y is

the ratio of specific heats, c = (6/M) 2/3 , b is a measure of the

airfoil thickness, u 0 (x,y) is the mean flow velocity, x ane, y

hve been suitably scaled, and ep is the velocity potential of

the flow perturbation. On the surface of the airfoil the usual.

Neumman conditions are imposed. For the problem considered here,

this boundary condition takes the form

(2) cpy = (f+ ) x + iw(f+) for y = ±0, x on the wing

where f
+
 (x) and f_(x) described the spatial behavior of the

upper and lower surfaces of the wing, respectively. 	
jI

Since the mean flow is transonic, (1) is a partial differen-

tial equation of the mixed tape. Furthermore, for large enough 	 ^f

values of the frequency, (1) is an indefinite equation. If in

the far field the flow is uniform and subsonic, (1) reduces to

(3) (1-M2 ) cpxx - 2 iwMCPx + 
cPyy 

+ wz cP = 0,

which is a. convected Helmholtz equation.
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Of crucial importance is the correct radiation at infinity.

M. Gunzburger* has shown that this is given by

(4) (n ^0)	 + (Y-)CPy '^ (iwM22) I 1 - R) CP = O

where R = (x 2 + (1 - M2)y2)1/1 is large.

To complete the specification of the problem we need to

impose a condition across the wake. Following standard practice

we assume that the wake is a line starting at the trailing edge

of the airfoil. Continuity of prsssure and normal velocity are

required, and assuming the airfoil lies on the line y = O, these

become

[cnx + iwcP] = O

(5) Y = O, x in the wake region

[(^oy] = o

where

(6) ^(X ' O+) - ^(x,o-) .

The problems of numerical approximation are two fold.**

The first and more serious one is that for a range of w of

physical interest, the matrix problem resulting from a discriti-'

	

	

zation of the partial differential equations is indefinite and

non-symmetric. This has made the use of standard iterative

i
techniques for solving this sparse matrix system impossible to

use. The second difficulty is that different, descritizations

See Final Report on NASA contract NSG-1366.

W. H. Weatherill, F. E. Ehlers, and J. D. Sebastian, NASA CR-2599,
as 1975.
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Ihad to bpi used in 'the hyperbolic region and the elliptic region.

The new method outlined in the next section obviates both of,

these difficulties.

2. The least squares finite element- metho d.

As a first step we reduce the governing system (1), (2), (3)

and (h) into an equivalent first order system

([IC - (Y •I. 1)u011.1)x + vy - (2iw/c)u + [w 2/a - iw ( Y- 1 ) uox ) Ca = 0

CPx-u=0

cpy-v=0

i'

v = fX + iwf on the wing

Au •I• iwAtP = 0

on the wake

AV = 0

2
x u k Y v •t iwM2 (1 - R)cP = 0 in the far field.

1-M

Gunzburger's radiation condition (3) will be imposed on a rectangle

enclosing the wing, and whose edges are "far removed" from ite

wing. The least squares method consists of minimizing, over a

finite element space of vector valued function, a functional

which is obtained by taking the square of the absolute value of

each of the above terns and integrating over the appropriate

region.
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This yields a linear system of algebraic equations whose

coefficient matrix is banded , sparse,H ermitian and positive

definite. Therefore iterative methods, which take full advantage

of the sparci.ty, can be used. Furthermore, the method uses the

same discritizati.on technique in elliptic and hyperbolic regions.

3. Implementation of method.

Two computer programs have been written, both using linear

basis functions over triangles for the finite element space. The

first program uses a banded Gaussian elimination solver to solve

the matrix problem, while the second uses an iterative technique,

namely SOR. Both programs are considered to be working, but

certainly not optimized. The only results obtained are for an

oscillating flat plate (not a true transonic problem) although the

programs have been written to admit general input. The major

accomplishment of these programs is their success for values of

m, using SOR, well above the critical value at which other

approaches failed.

The following projects would be of immediate interest:

a) Improving the accuracy of the codes by using different grids.

Theoretical and numerical experiments on model problems have

shown that a triangulariza.tion of the type (i) below yields

answers on order of magnitude more accurate than that using

type (ii) (which is prr.5ently being used in the program). It

is a relatively triv;i.al matter to convert the program to type

(ii) triangles.
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(i)
	

(ii)

b) Inputing some realistic transonic mean flows. The programs

are built to accept such input, so this is also a. relatively easy

matter.

c) Optimize the codes to achieve maximum efficiency.

d) Write an extensive report detailing the method and results of

its implementation.

Of longer range interest are the solution of 3-D problems

and of problems with complicated geometries. In both cases the

difficulty of the task is alleviated by the least squares method,

in the first case because of the ability to use iterative method=.,

and in the second by the flexibility of finite element methods.
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