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EXPERIMENTAL STUDIES ON THE INFLUENCE OF THE DEGREE OF TURBULENCE
 
AND OF A TURBULENCE THREAD ON THE COMPRESSIBLE SUBSONIC FLOW
 

THROUGH FLAT COMPRESSOR CASCADES
 

K. Barsun
 
Institute for Aerodynamics, German Aeronautics and Space
 

Research Center, Braunschweig
 

SynoPsis 71*
 

The study concerns the influence of an increased gegree of
 

in the oncoming flow and the influence of a turbulence thread
 

placed on the vane suction side on the flow through two straight
 

compressor cascades. The cascades consist of profiles NACA 65-608
 

and NACA 65-612 with a vane angle of 5S = 1300 (measured against
 

the cascade front) and a spacing ratiohof tZ = 1.
 

The study included wake and pressure distribution measurements
 

and were carried out at Reynolds numbers of Re, = 1 x 105 and
 

4 x l5, angles of incidence between 1 = 1300 and 1481 and at
 

mach numbers between Ma1 = 0.3 and 0.9.
 

The measurements revealed that at low Reynolds numbers the
 

profile loss is considerably reduced both by the increased degree
 

6f turbulence and by a turbulence thread, while it is somewhat
 

increased at high Reynolds numbers, and that a profile loss
 

reduction is connected with an increase in deflection and in
 

pressure shift.
 

The turbulence generator is most effective on the one hand
 

in the middle of the operating range of the cascades, and on the
 

other at very high Mach numbers together with a large angle of
 

incidence.
 

*NumbeFs -h the margin indicate pagination in the foreign text.
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1. Introduction /3
 

As everyone knows, turbulence boundary layers can tolerate
 

a considerably greater increase in pressure without separation
 

than laminaryboundary layers. Therefore, it is of critical
 

importance for flows through retarding vane cascades whether the
 

boundary layers on the bladesaare laminar or turbulent and how
 

the laminarturbulent transition procedds.
 

Since the calculation of the transition has so far not been
 

solved for all cases, one still has to fall back on measurements
 

in studying this problem for blade cascades. For this reason,
 

the high velocity cascade wind tunnel of the German Aeronautics
 

and Space Research Center is well suited for this because it
 

allows the Mach number and Reynolds number of the cascade flow to
 

be varied independently of one another. On the other hand,
 

however, measuremeht7 facilitibs, for direct bo7,ndary layer measure

ments on the blade cascades are not available so that these studies
 

remain restricted to wake and pressure distribution measurements.
 

Using this wind tunnel, studies have been done in past years
 

on the influence of the degree of turbulence and of the surface
 

roughness on the flow through straight vane cascades.
 

The studies on turbine cascades (NACA 8410) are summarized
 

in El]. As a followup to this, two compressor cascades made of
 

profile NACA 65-608 and NACA 65-612 were studied with different
 

types of turbulence [2], to be sure only at one angle of incidence
 

in the middle of the operating range.
 

This report concerns the extension 6f the studies described
 

in [2],t the entire useful angle of incidence range of both
 

compressor cascades. The measurements were carried out in the
 

high velocity cascade wind tunnel between March and July, 1966.
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In addition, a few measurements with incompressible flow,
 

which were carried out as preliminary studies to [2], are
 

evaluated in this report and compared with the results obtained /4
 

by J. Bahr [3,41
 

The experiment covered in report [2] and in this report,
 

insofar as they concern compressible flow, were reported on in
 

a brief paper (formal contribution) at the Royal Society
 

Conference on Internal Aerodynamics (Turbo-machinery). "Wates
 

Foundation" in Cambridge, England, July 19-21, 1967.
 

2. Notation (See Fig. 1)
 

This list contains the most important variables; additional
 

symbols are explained in the text..
 

2.1 Geometric Vdriables
 

4 6lird length
 

t cascade spacing
 

t/l cascade spacing ratio
 

d greatest progile thickness
 

d/l profile thickness ratio
 

h vane height (span width)
 

h/Z vane aspect'ratio
 

8S vane angle, measured against the cascade
 
front
 

angle of flow, measured against the cascade
 
front
 

deflection of flow through the cascade
 

x;y perpendicular profile coordinates, x in the
 
profile bhord direction
 

a;u;z rectangular cascade coordinates; a perpen
.diPularto the cascade front, u in the
 
drection of the cascade front, z in the
 
span width direction
 

e distance of the wake measurement plane from
 
the vane cascade
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yf median line ordinate /5 

yd 
YS 

local profile thickness 

suctionside ordinate 

YD 

dF 

pressure side ordinate 

turbulence thread diameter 

xF rearward position of thread (position of 
the turbulence thread on the profile 
suction side) 

NACA 65-612 Profile d6signation, interpreted as follows: 

6 serial number 

5 position of the pressure minimum 
on the symmetric profile with parallel 
oncoming flow at x/l = 0.5 

6 camber; CA* = 0.6 

12 thickness ratio; d/i = 0.12. 

2.2 Flow Variables
 

CA* 	 potential theory lift coefficient of a 
single median line (t/l 9 -) with chord 
parallel oncoming flow 

PO 	 total -flowpressure
 

p 	 static flow pressure
 

q = PO - p 	 dynamic flow pressure
 

P(x) 	 static pressure on the blade contour
 

SClocal 	 pressure deofficient
 

Pabove; Pbelow 	 static pressure on the bottom walls of the
 

working section in front of the suction
 

slots
 

w 	 flow velocity
 

wr 	 turbulent velocity fluctuation in the
 
direction of flow
 

a sound velocity of the flowing air /6
 

P air,density
 

V kinematic viscosity 6$ the air
 

Ma= w/a Mach number
 



Re =-I Reynolds number
 
=V
 

Tu = W i100 O/o degree of turbulence in % 
W 

average value of the square variation in
 
velocity over time
 

0-1-P2 loss coefficient of the flat compressor
 

cascades
 

P2 - P1 

q pressure shift of the flat compressor cas-

cqde
 
q2W2a
 

' qlWla contraction coefficieh 

2.3 Indicies
 

1 homogeneous oncoming flow state
 

2 homogeneous outflow state (far behind the
 
cascade)
 

outflow state in the wake measurement
2u 

plane
 

m mean value
 

S profile suction side
 

D profile pressure side
 

/7
3. Measurement Procedure 


3.1 Apparatus
 

The low speed cascade wind tunnel (LST) of the DFL Institute
 

for aerodynamics is described in detail in [53, and the high
 

speed cascade wind tunnel (HST) in [6].
 

The maximum air speed in the working section of the LST
 

(if notturbulence screen is built in) is about wI = 65 m/s with
 

= 38 m/s with a working
a working section height of 250 mm and w1 


section height of 500 mm. The corresponding Mach numbers are
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Ma1 = 0.19 and 0.11 respectively and the corresponding Reynolds 

numbers Re1 = 2.5 x 105 and 1.5 x 105 respectively, with respect 

to a profile depth of i = 60 mm. 

The HST stands in a chamber which can be evacuated to 0.05
 

ata (corresponding to an altitude of 20 km). Therefore, by
 

changing the static pressure and dynamic pressure, the Mach
 

number and the Reynolds number can be adjusted largely indepen

dently of one another.
 

Since the working sections of both tunnels have the same
 

dimensions, the same cascade can be built into both working
 

sections. The oncoming flow angle B1 can be continuously adjusted,
 

since both vane carriers of the cascade are fixed into two turn

tables on the end of the dise walls. The vane angle aS is
 

changed by turning the individual blade around its longitudinal
 

axis.
 

The boundary layers on the bottom walls of both working
 

sections can be sucked off through slots in front of the cascade.
 

On so doing, the amount of air sucked off is set by throttle
 

slides so that the static pressure on the bottom walls in front
 

of the suction slots equals the static pressure on the side
 

walls.
 

The boundary layers on the side walls of the working section
 

cannot be sucked off because the existing suction facilities are
 

not powerfullenough for this.
 

The total pressure pol of the oncoming flow is measured in /8
 

the prechamber and the static pressure p1 of the oncoming f1Gw
 

is measured through bore holes in the sidewalls of the working
 

section. Th@ total pressure P02 (u), static pressure P2 (u) and
 

the outflow angle 82 (u) are measured in the wake working plane
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with a wake probe. The outflow angle is measured by setting the
 

probe parallel to the flow direction. This setting is carried
 

out in the range between the wake depressions and is maintained
 

within the wake depression.
 

If a turbulence screen is built in between the prechamber
 

and the working section, the total pressure of the oncoming
 

cascade flow p0 1 cannot be measured in the prechamber. In this
 

case, a pitot tube is inserted into the flow through one of the
 

turntales just in front of the cascade. The probe opening is ha
 

halfway up the height of the working section, 50 mm from the
 

sidewall and the same distance in front of the cascade as the
 

Since as a result of the built-in turbulence
Pl borb.holes. 

screen the total pressure in the z direction (span width direction)
 

was no longer constant, the reading fon pol in the wake
 

measurements was corrected such that pol equaled the reading
 

for po2(g), which was measured behind the cascade between two
 

wake depressions. (The wake probe is in the cross-section of
 

the cascade, the pitot tube in front of the cascade is 100 mm
 

away from the wake probe in the z direction.)
 

If no turbulence screen is built in, the degree of turbulence
 

of the flow in the working section depends only on the size of
 

the working section cross-section and (in the HST) on the static
 

pressure' In the LST, the degree of turbulence for an average
 

working section height of 350 mm is about TuI = 0.3%; in the
 

HST, depending on the-height of the working section and the
 

static pressure, it lies between Tu1 = 0.15% and 1%.
 

Tn the measurements reported in [2], a wire mesh screen
 

was built into the parallel pprtion of the oncoming TIow
 

channel perpendicular to the flow and 500 mm in front df the
 

central vane. In this arrangement, the wake depressions of the
 

screen wires inierfereddwith the measurement behind the cascade,
 



and for this reason in our measurements we used a turbulence
 

screen like that shown in Fig. 2. This was built into the nozzle
 

and produced a degree of turbulence between TuI = 2.5% and 4.5% /9
 

in the working section. The degree of turbulence produced by this
 

screen was obtained from earlier cascade experiments [73 in which
 

the same turbulence screen was used. Fig. 3 shows the degree of
 

turbulence for an average working section height of 350 mm. The
 

figure shows that the degree of turbulence wtih a built-in
 

turbulence screen also depends on the Mach number.
 

The degree of tubbulence in [73 was measured with DISA hot
 

wire probes (wire diameter 0.005 mm) and with a DISA constant
 

temperature anemometer No. 55 A 01.
 

3.2 The Cascades Studied
 

In each situation a cascade of profiles NACA 65-608 and
 

NACA 65-612 were studied. For these profil&s it was known [3,43
 

that with normal wind tunnel turbulence and at small Reynolds
 

numbers small laminar separation bubbles appear on the contour.
 

The cascade arrangement is the same as in [2], namely t/Z = 1 

and 9S = 1300. The profiles and cascade arrangement are shown 

in Fig. 4, and the profile coordinates and location of the 

pressure measurement boreholes can be obtained from Tables 1 and 2. 

The vanes have a profile depth of Z = 60 mm, a height
 

(span width) of h = 300 mm and an aspect ratio of h/1 = 5. Each
 

.
cascade consists of 7-8 vanes- The two central vanes each contain
 

12 or 13 pressure measurement boreholes on the suction side or
 

pressure side in the cross-section, all of which lie on the same
 

cascade flow channel..
 

3.3 Types of Turbulence Studied
 

The following types of turbulence were studied:
 

1) the blades have a smooth surface, oncoming flow turbulence
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is normal (TuI = 0.15% to 1%).
 

2) The blades have a smooth surface, oncoming flow turbulence
 

is increased by a screen (TuI = 2.5% to 4.5%).
 

3) The blades have a turbulence thread (d = 0.06 mm) on the /10 

suction side (at x/1 = 0.25), the oncoming flow turbulence 

is normal (TuI 0.15% to 1%). 

Case 4 (sand roughness on the profile nose), in contrast
 

to [2], was not further investigated. On the one hand, the
 

measurement program was not meant to be too comprehensive, and
 

on the other it had been shown [21 that at small Reynolds numbers
 

the sand roughness had an effect of similar size on the separation
 

bubbles as the turbulence thread, but that at higher Reynolds
 

numbers the additional resistance of the sand roughness is con

siderably greater than that of the turbulence thread.
 

In case 3, the pressure measurement bore hol& on the suction
 

side at x/Z = 0225 cannot be used because of the turbulence thread
 

f n the same place.
 

Iu Measurement-Program
 

The measurements consisteddof wake measurements over a vane
 

spacing and pressure distribution measurements (both in cross

section),=and were carried out on the high speed cascade wind
 

tunnel at Reynolds numbers of Re1 = 1 x 105 and 4 x l05. As
 

a followup to this, using the low speed cascade Wind tunnel at
 

= 
a Reynolds number of Re1 1 x l05, the vane boundary layers were
 

visualized by painting the vanes with an emulsion of benzene,
 

petro&Fum and aluminum oxide powder.
 

In April, 1964, measurements on the same cascade (with /11
 

turbplence type 1) were made by H.H. Hebbel for the case of
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TABLE 31: MEASUREMENT PROGRAM FOR COMPRESSIBLE FLOW
 

Profile 	 NACA 65-608
 
NACA 65.612
 

Spacing ratio t/Z 	 1.,0
 

Vane angle a 	 1300
 

1 x 105
Reynolds number Re1 


4 x 1C
5
 

Mach number Ma1 	 0.3 to 0.9
 

Oncoming flow angle 61 	 1300

1350 
14o ° 

1450 
1480
 

Type of turbulence 	 1 2 3
 

Working plane position e/ 	 0.5
 

incompressible flow over the entire operating range. These
 

measurements in which the boundary layer was sucked off on the
 

bottom walls, were preliminary experiments to [2]. From these
 

it should be determined how the operating range of the cascade
 

changes in comparison tot[31, since for the measurements reported
 

in[B3] only adjustable baffle plates were aVailable instead of

suction. These measurements will be compared in this report,
 

since so far they have nbt been evaluated in any report.
 

1. Tables land 2 appear at the end of the article.
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/12 TABLE 4: MEASUREMENT PROGRAM FOR INCOMPRESSIBLE FLOW 


Profile 	 NACA 65-608
 
NACA 65-612
 

Spacing ratio tZl 	 1.0
 

Vane angle S 	 130
 

1 x l -
Reynolds number R% 1 


Dynamic pressure q 	 39 mm H20
 
157 mm H20
 

ach number M&1 	 0.08

0.15
 

Oncoming flow angle S1 	 1303 - 1500 

Typp of turbulence 	 l(Tu 0.3%)
 

Working plane position e/Z 	 0.-5
 

4. Evaluation of Measurements
 

4.1 Wake Measurement
 

The wake measurement for incompressible and compressible
 

flow were evaluated according to the momentum method outlied by
 

N. Scholz [8] for flat incompressible cascade flow. This method
 

basically consists of using a momentum theorem to convert the
 

flow in the wake working plane to a homogeneous outflow (cf. Fig.l).
 

As shown by G. Kynast [9], the method may also be used for com

pressible flows, because the equalizing of the wake flow to a
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homogeneous flow generally takes place with an insignificantly
 

small density change. In order to use this method on compressor /13
 

cascades the following variables must be measured along a wane
 

spacing (from u to u + t, Fig. 1).
 

Measuring point coordinate u 

Dynamic pressure of the on- ql = Pol Pl 
coming flow 

- P0 2 ( u ) Local total pressure loss APO(u) = Po1 

Local static pressure dif: Ap(u) = p2(u) - P1 

ference 

Local outflow angle P2(u )
 

Using the Scholz method presupposes that the wake depressions
 

of the individual vanes are still separate from one another,
 

but that the static pressure P2(2' over the vane spacing is
 

already nearly constant. Both requirements can be fulfilled by
 

setting the wake measurement plane a suitable distance away
 

(e/Z)", except if the flow on the vane is very strongly separated.
 

It has also been shown that it is'sufficient to determine the
 

local outflow angle B2 (u) as'the arithemetic mean value of a
 

fewmmeasured values of 2 (u) outside the loss depression. There
 

the gradient of P2 (u) in the u direction is zero. This has been
 

amply confirmed by numerous measurements (cf. also [8]).
 

The results,of the wake measurement give the following
 

aerodynamic coefficients for flat compressor cascades-according
 

to [8]:
 
-Poi - Po2 
 G


loss coefficient: qI GK1
__-o 


pressure shift; _2 P2 - P1 =Ft2K sin2 (2) 
q1 q 22m 
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I q2

dynamic pressure of outflow: =1 - - AR3 

outflow angle: cKcot P2 = i+T cot("ct2m 

flow deflection: i 2-l. (5) /14 

The following abbreviations are used in these equations: 

,Mean v&3tue of the local total pressure loss: 

G IJ 

Pol - Po2 (u 

q, 

-d 
(6) 

Mean value of the local static pressure difference: 

uetF P,2( u ) - 1Pd 

Scholz correction: 

t~ f/qrK 41 ---- du -[ f 

-u u(8) 
2 (u) 21&uIl 

Mean outflow angle in the wake measurement plane: 

-= 4 p2(u), 

All coefficients are related to the dynamic pressure ql = 

Pol -P of the oncoming flow. Eq. (8) was evaluated according 

to the method given in [8]. For the formation df,sums.in 

Eqs. (6Q and (7) the weights gV as per Eltermann [0 were 

calculated with the following formulas for nonequidi~tant 

support points uV and quadratic interpolation: 
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+
= hv-1 3 hV + 3 h 2 ; v uneven 

v -[4 hv + 4 hv+i , v even (10) 

V =1,2, 3 ..... , 2n + ; n integer 

hV uV - Uv-1- __ 

The total number of measurement points must be uneven if /15
 

the integration weights as per Eq. (10) are calculated.
 

For incompressible flow, CNl = 
M/qlZ was also calculated
 

in addition to the normal force coefficient. (N-= normal
 

force per unit length of the vane, acting perpendicular to the
 

chord.) The weight measurement gives the following:
 

1oin2PCN oIA'cos a + *sin cc 
Ssin2lP 
 (11)
 

with aa = Ps 
1t
 

cotpP = (cot P1 + cot P2)
 

A 2 
 . to sin C
 
2 1)
cA " - (cot P2 -cot • Uoo ++ sinA 2 P,
 

=
andW a n d "vl sin3 pc
CW sin2 0 

4.2 Pressure Distribution
 

The local static pressure p(x) on the vane contour is
 

measured against the static pressure p1 of the oncoming flow and
 

divided by the dynamic pressure of the oncoming flow q1 = pol-p1.
 

The resulting pressure coefficient
 

(2
opi x)W-P, 
Cpl ql= 



is plotted over the profile depth x/ referred to.
 

By integrating the pressure distribution we can calculate
 

insn approximate manner the normal force coefficient cN1 of
 

the cascade if we ignore the frictional force on the vane sur

face. -With the flow under consideration this can be done without
 

any hesitation because then the frictional force is directed
 

almost parallel to the profile chord. Then according to [8] the
 

normal force coefficient turns out to be:
 

= e 1 d( V) (cl) " gV (13)
 

The coefficient cNi is given with the correct sign (positive, 7/16
 

if N points in the positive y direction), if the pressure dis

tribution on the pressure side is progressively integrated in the
 

posittveex direction and on the suction side in the negative x
 

direction. Eq. (13) is evaluated numerically according to Eq.
 

Eq. (10).
 

4.3 Jet Contraction
 

The growth of the side wall boundary layers in the flow
 

direction within the vane grid results in the fact that even in
 

the cross-section the two-dimensional continuity equation is no
 

longer satisfied; instead the mass flow density increases there.
 

This deviation from flat flow is expressed by the contraction
 

coefficient
 

q2 W2a = q2 '2 sin 02
 - 1 v1 sin P1 
 (14)
 

in the compressible case. In this equation the angles 1 and 2
 

are known directly from the wake measurement; the relationship
 

of the densities and velocities can be calculated as follows from
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the results of the wake measurements [1i]:
 

1 it-i
 

'q2 7E 

w2 - U (16) 
01 

W2 ____2____(16 

M-1a 2.
 

For the sake of brevity, the pressure ratio n and the loss factor
 

0(also called the throttle factor) are introduced into
 

Eqs. (15) and (16). They are obtained from the'wake measnrement"
 

results:
 

1 -P2(1 + Ma 2 ) (17)
 

1 q, 2-- 11 

01  1 1 -1 Ma (18) 17 

With Eqs. (15) and (16), Eq. (14) for the contraction doefficient
 

becomes:
 

1 x- 1 (14a)in 


The method given by N. Scholz [8] for correcttng jet contraction
 

was not used. The measured contraction coefficients are given.
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4.4 Degree of Turbulence
 

The degree of turbulence is the relationship of the average
 

turbulent velocity fluctuation to the mean flow velocity. As
 

measurements by H.L. Dryden have shown, the fluctuations in all
 

directions are the same size in wind tunnels at some distance
 

behind the screensanaed rectifiers, so that the degree of turbulence
 

for the working section of a wind tunnel can simply beewritten
 

as follows:
 

Tu r _100 0 

(19)
 

To determine this, a calibration curve Ecal = f(w) is first 

plotted, and in so doing the temperature must be constabt and 

therefore monitored with a thermoelement next to the hot~wire 

probe. The velocity w is measured with a Prandtl.tube. As per 

DISA, from the slope of the calibration curve the degree of 

turbulence turns out to be
 

Tu = Ef ioo 0/0dEtcal 
w • - - (20) 

The potentials Eeff and E.cal.are indicated by the anemometer.
 

5. Results of Preliminary Experiments with Incompressible Flow /18
 

In the cascade measurements by J. Bahr E3,4] no boundary
 

layer suction was available on the working sections of the
 

LST and HST. The static pressure pabove and pbelow on the
 

bottom walls was made equal to the static pressure p1 on the
 

side walls by adjusting moVable baffle plates. After suction
 

was installed, H.H. Hebbel carried out measurements on the NACA
 

65-608 and 65-612 compressor cascades with top and bottom suction
 

in order to determine the effect of suction on the cascade flow,
 

in partiuclarly the operating range. In so doing, the same vanes;,
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V56 game number of vanes in the cascade and the same weight.
 

probe were used as by J. Bahr. The Reynolds numbers used differ
 

by about 20% or 10% and are shown in the figures. Only case 1
 

was studied.(smooth vanes, low degree of turbulence).
 

Fig. 5 shows the results of the wake measurements, namely
 

the loss coefficient Vl the deflection A , the pressure shift
 

Ap/ql and the contraction coefficieht V. The numerical values
 

of these measurements with suction are listed in Table 5.
 

The loss coefficients measured by Bahr (dashed curve, without
 

suction) and Hebbel (solid curve, with suction) agrees fairly
 

satisfactorily in the left and central portion of the polar
 

curves for the cascade. The fluctuations in this regionscan be
 

attributed to the difference in Reynolds numbers, since precisely
 

in this Reynolds number range the influence of the Reynolds number
 

change is very large, as can be seen from Fig. 10. By contrast,
 

the cascade polar curvesgdiffer greatly from one another on the
 

right branch. With suction, the loss increase first begins at
 

greater oncoming flow angles, i.e. the useful oncoming fTow angle
 

regionsoD the cascade (operating range) in increased by the
 

suction.
 

Based on the measurement results for incompressible flow
 

with suction (above and below), the five oncoming flow angles
 

(6 = 1300, 1350, 1400, 1450, 1480) were determined for the
 

experiments with compressible flow (also with suction).
 

The purpose of the preliminary experiments was to determine /19
 

the above five values for P,. In addition, they offer the
 

possibility of studying the effect of boundary layer suction on
 

the cascade flow by comparison with Bahr's measurements. This
 

will be done usifig the results of the wake and pressure distribution
 

measurements.
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The cascade polar curves (especially NACA 65-608) and also
 

the pressure shift curve show that the jet contraction in the
 

cascade has a noticeable effect on the vane boundary layers at
 

higher vane loads. This becomes smaller with decreasing vane
 

loadsand, moreover, in this case is covered by the effect of the
 

Reynolds number change. Since the vane proDiles studied are
 

only slightly cambered (CA* = 0.6), "high vane load" in this case
 

means a deflection of flow of about 150=20c. In other wordd,
 

the assumption made by Scholz [8], that the repercussion of
 

jet contraction on the vane boundary layers is insignificantly
 

small, applies in the case of compressor cascades only if the
 

deflection of flow is not greater than about 10'-15'.
 

The flow deflection with suction was measured about 10 less
 

than without suction, while the pressure shift was measured
 

larger with suction. With planar flow, however, a smaller
 

deflection also corresponds to a smaller pressure shift (as
 

long as 2 > 900). From this it follows that at least the
 

cascade flow without suction studied by Bahr was not two-di
 

dimensional. It also follows from the equations Wor the
 

Scholz jet contraction correction [8] that as a result of
 

contracted flow the pressure shift drops, but the deflection
 

increases. For example, the following equation is valid for the
 

outflow angle:
 

cot 02eben rA"cot P2
 

with 1iA = outflow contraction (TA > 1), i.e. in planar flow
 

cot 2 and 02 are larger and the deflection 1-62 is smaller.
 

Likewise, the differences in the pressure shift, which rise
 

sharply with large oncoming flow ang~ls are to be attributed
 

to contraction of the jet.
 

The contraction coefficient V curve with and without suction /20
 

is plotted in Fig. 5. The jet contraction effect further
 

results from the pressure distributions which are plotted for
 



the NACA 65-608 cascadd in Figs. 6 and 7 and for 65-612 in Figs.
 

8 and 9. The pressure distributions are valid Cor Re, = 1 x 105
 

and 1.2 x l05 respectively. The pressure distributions for
 

Re2 = 2 x l05 do not contribute anything hew with respect to
 

jet contraction. Therefore, each figure shows only one pressure
 

distribution for Re, = 2 x 105 in order to keep the graphs as
 
clear as possible. (On the pressure side of the vanes the
 

pressure distributions for Re1 = 1 x l05 and 2 x l05 coincide.)
 

We see that with the cascade flow without suction the velocity
 

level on the vanes is considerably increased as a result of
 

jet contraction and that even in the outflow (curve plotted
 

at x/l = 1) the same pressure increase is nbt obtained as with
 

-suction.
 

The contraction coefficients V for the measurements without
 

suction plotted in Fig. 5 are not given in [4], but they can
 

easily be calculated from the results of the wake measurements.
 

Comparison of the contraction coefficients between the
 

measurements with and without suction in Fig. 5 shows how strong
 

the flow in the- middle of the cascade is accelerated if the
 

boundary layers on the fTur walls are hot sflcked off.
 

The claim made in- ['3 and [4] that the jet contraction due
 

to the absenne of suction is insignificant, is thus not true.
 

A,numbrical example may suffice to explain this:
 

Cascade dimensions: NACA 65-612
 

t/.I
 

PS = 1300 cf. Fig. 5, 

Reynolds numbers: 
n P = 1400 

2,2105 
lower row of 
diagrams 

Mach number: 
Mai =*0,15
 

For this cascade flow the following measurements were made
 

by Bahr 14],(first row of figures in the following table):
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Measured values from [4] 0,0159 0,2493 13,10 1,066
 

0,3397 0,997
Corrected values 0,0142 12,90 


For the correction as per [8, the value of the contraction 

function was assumed to be , i.e. 90% of the total jet 

contraction takes place between plane "Il"and the plane of the 

center of life of the profile. The corrected values must give 

the contraction coefficient U = 1, which is also the case within 

the limits of rounding off error.
 

Although in the example chosen the deflection and contraction
 

coefficient are relatively small, the correction gives a change
 

in the loss coefficient of 11% and in the pressure shift of 36%
 

(with respect to the measured values). The differences cannot
 

be termed insignificant. Another question, to be sure, is
 

whether the coefficients ( Vl' Ap/ql, A8) calculated by the
 

correction can also be realized in a two-dimensional flow,
 

expecially with strong deflection.
 

In opposition to this numerical example is Table 1 in [4],
 

page 9, in which measured values and corrected values are also
 

compared. The corrected values given there for VI and Ap/q1
 

are wrong. Moreover, the correction does not apply to the out

flow angle. If, as a check, we calculate the new contraction
 

coefficient from the corrected values in [43 including the corp
 

rected outflow angle, we do not obtain p = 1, as is required, but
 

S= 1.07, i.e. almost the same result as from the measured values.
 

The curves for V in Figs. &ndnd 28 show that with compressor
 

cascades with more than 100-150 deflection a two-dimensional flow
 

without suction on all sides cannot be achieved. Whether with
 

smaller deflections the measured coefficients correspond to those
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for planar flow, must be checked by measurements with boundary
 

layer suction on all sides.
 

Besides the contraction doefficient., a measure of the two- /22 

dimensionality of cascade flow -is the difference between the 

normal force coefficiets cN which can be calcualted from the 

wake and pressure distribution measurements. In the case of 

adjacent flow, this difference (within the limits of measurement 

accuracy) must be zero if the flow is two-dimensional. The 

CM Values in Table 5 already at = 1400 a difference of 

about 100, whi;IE the values for p are around 1.02 here. If we 

do not want to attribute this contradiction exclusively to 

measurement error, then only jet measurements over an extended 

range behind-the cascade can provide information on how far the 

flow is three-dimensional. 

After this manuscript was finish~d-a pappr appeared by
 

Heilmann [l?] in which detailed experimental and boundary layer
 

theory studies are described on the effect of jet contraction on
 

cascade flow.
 

6. Results-for Compressible Flow
 

6.1 Summary of a Few Results from [2]
 

Before discussing the results of the measurements over the
 

entire oncoming flow angle range, we will once more briefly give
 

the most important results from [2]. These are shown in Fig. 10.
 

Hebbel [2] studied only one oncoming flow angle in the middle of
 

the operating range. Fig. 10 shGes the influence of the degree
 

of turbulence (case 2) and the surface roughness (turbulent thread
 

and sand roughness, cases 3 and 4) on compressible flow due to
 

a NACA 65-612 compressor cascade at different Reynolds numbers.
 

The oncoming flow angles studied,% I = 1400, lies in the middle
 

of thle operating range, i.e. the flow is completely adjacent
 

at high Reynolds numbers. The mach number is Ma1 = 0.5 and the
 

flow on the profile is therefore subcritical.
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Fig. 10 shows that in case 1 (smooth vanes, low degree of
 

turbulence) the loss coefficient of the cascade below a certain
 

Reynolds number rises sharply. Connected with this is a simul

taneous drop in deflection and pressure shift. The reason for /23
 

this is the appearance of locally limited separations of the
 

laminary boundary layer (Eeparation bubbles) on the profile. The
 

appearance of the separation bubbles can be shifted to smaller
 

Reynolds numbers both by increasing the degree of turbulence of
 

the oncoming flow and by increasing the roughness on the profile.
 

On the other hand, increasing the degree of turbulence or
 

roughness causes the loss coefficient to rise in the region of
 

high Reynolds numbers, because no separation bubbles appear there
 

in case 1.
 

This report studies only thi effect of increased turbulence
 

=in the entire operating range for both Reynolds numbers: Re1 


1 x 105 (appearance of laminar separation in case 1) and Re1 = 

4 x l05 (adjacent flow in case 1). Case 4 (sand roughness) was
 

not investigated further.
 

The results of the comprehensive measurements are summarized
 

in tables 6 and 7.
 

6.2 Flow Less
 

Low Reynolds Number
 

For the two compressor cascades studied, NACA 65-608 and
 

NACA 65-612,1'he loss coefficient V1 is plotted -over the oncoming
 

flow angle (cascade polar curves) in Figs. 11 and 12, and in
 

Figs. 13 and 14 over the Mach number (transverse plot to the
 

cascade polar curves). The upperdiagrams in the,figures are for
 

= 1 x l05
the low Reynolds number Re, 


The cascade polar curves in Figs.. 11 and 12 shows that the
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separation bubbles in case 1 (smooth vanes, low degree of
 

turbulence) are more pronounced in the center of the operating
 

range (smooth flow) than at the edges. With a jerky oncoming
 

flow, the collecting point on the profile nose obviously counter

acts the formation of separation bubbles. The p~lar curves also
 

show that with the thicker profile the separation bubbles allow
 

the loss to increase more sharply than with the thinner profiles
 

This can be easily explained, since the excess velocities on the
 

profile and thus the necessary deceleration with the profile /24
 

thickness increase.
 

By increasing the degree of turbulence (case 2) or by
 

attaching a turbulence thread (case 3) the loss coefficient
 

can be considerably reduced with respect to case 1 of normal
 

cascade flow. At mach numbers Ma1 = 0.3-0.7, ths reduction
 

(with respect to case 1) on a percentage basis is of the same
 

order of magnitude and therefore, in absolute terms, greater
 

at higher mach numbers, because here the loss is also greater.
 

In the middle of the polar curves the loss reduction is greater
 

than at the edges.
 

With profile NACA 65-608, cases 2 and 3 are about equivalent
 

with respect to the loss reduction, while with profile NACA 65

612 in the lower mach number-range, case 3 gives better results
 

than case 2. From this it fellows that both formthe magnitude
 

of the degree of turbulence and also for the thickness and
 

position of the turbulence thread.there are optimum values which
 

depend on the profile geometry and pressure distribution (pres

sure gradient, boundary layer thickness), but which were not
 

present in these experiments.
 

This is also confirmed by the flow patterns shown in Fig. 15
 

(Re, = 1 x l05, incompressible flow), which show that in cases
 

2 and 3 the separation bubbles are indeed reduced in size, but
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they have not disappeared. According to these patterns, the
 

result of increasing the degree of turbulence Cease 2) is that
 

the width of the separation bubble on the pressure side is
 

reduced. In this connection-the beginning of the bubble (point

of separation) remains unchanged, while the end of the bubble
 

(ptxnt of reattachment) on the profile migrates forward. This
 

is the same effect-which is observed when the Reynolds number is
 

increasea [2]. Thus, with respect to the laminaryturbulent
 

transiti6n; increasing the degree of turbulence increases the
 

effective Reynolds nCmber of the cascade. On the suctiondtide,
 

on the other hand, increasing the degree of turbulence surprisingly
 

does not reduce the size of hhe separationbbubble, but shifts
 

it downstream, and indeed this shift is greater, the greater-the
 

oncoming flow angle. To be' sure, this also reduces the flow loss,
 

but not to the same degree as if the size of the-separation
 

bubble were reduced. It can also be seen thattthe range of
 

oncoming flow angles in which the separation bubbles occur is /25
 

narrowed down at a higher degree of turbulence.
 

For the turbulence thread on the suction side of the vanes
 

(case 3), the flow patterns do not show any significant dif4
 

ference in comparison with case 1, although the measured losses
 

differeconsiderably in the middle of the polar curves. Obviously
 

the paint patterns on the vanes cannot always be produced with
 

sufficient accuracy. On the-onehhand, gravity affects the
 

distribution of the emulsion with the low dynamic pressures, and
 

on the other hand the cascade flow is disturbed by the application
 

of the emulsion and by the emulsion layer on the vanes. Yet the
 

layer thickness is of the same order of magnitude as the
 

turbulence thread, which in this case has a diameter of only
 

0.06 mm. We therefore suspect that the effectiveness of'the
 

turbulence thread on the emulsion-dovered vane was cancelled by
 

the emulsion. In comparing flow patterns.and loss curves it
 

must also not be fopgotten that the flow patterns show only the
 

length of the bubble, but not its thickness.
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It is also evident from Figs; 11 and 12 that the polar
 

curves for cases 2 and 3 deviate sharply from one another at the
 

greatest oncoming flow angles and mach numbers (Mal = 0.7).
 

In case 3 the flow separates considerably earlier than in case
 

2. This can be explained by~means of the pressure distribution
 

shown in Figs. 23 and 27. Since tfith increasing -Mach number the
 

beginning of the bubble migrates upstream (also see [2]), the
 

turbulence thread at these Mach numbers lies within the
 

separation bubble or just in front of it in such a thick
 

boundary layer that its effectiveness is cancelled. This effect
 

could supposedly be prevented by selecting the turbulence thread
 

so thick that the separation bubble disappears completely.
 

The phenomenon mentioned in the last paragraph also shows up
 

in the graphs of the loss coefficient over the Mach number (Figs.
 

13 and 14). Here, too, the sharp increase in loss begins earlier
 

in case 3 than in case 2, especially with large oncoming flow
 

ang1.s. On the other hand, the loss in case 3 is smaller as
 

long as the flow has net-yet separated. Thus in the range of
 

subcritical flow, cases 2 and 3 are suitable for reducing the /26
 

loss, and in this connection-case 3 (turbulence thread) is better.
 

On the other hand, case 2. (high degree of turbulence) is better
 

suited than case 3 for increasing the critical Mach number (i.e.
 

Mach number of the incipient loss increase). It must be horne
 

in mind, however, that this result can turn out differently if
 

other values are chosen for the thickness of the turbulence
 

thread or for the degree of turbulence.
 

High Reynolds Number
 

The lower diagrams in Figs. 11-14 show the measured
 

losses for-the Reynolds number Re1 = 4 x 105. Comparison of
 

the two Reynolds numbers studied shows first of all that the
 
=
loss level at Re1 4 x l05 is considerably lower. Separation
 

bubbles are present on the profine not at all or only to a small
 

26 



extent. Also compare this with Figm 10. Accordingly, the polar
 

curves are flhtter, especially with the thicker of -the two
 

profiles.
 

It is to be expected with high Reynolds numbers that bhrth a
 

turbulente thread on the profile,(case 3) and the increased
 

degree of turbulence (case 2) will cause an additional flow loss
 

with respect to normal flow (case 1>. For the degree of turbu

lence this is confirmed by the measurements on th6 thicker
 

profile. For the thinner profile, on the other hand, the polar
 

curves for cases, l and 2_over~%pi With small and averageoon

coming flow angles the loss in case 2 is a little higher, and
 

with large oncoming flow ang&hs .it is sometimes lDower than in
 

case 1. The accompanying pressure distributions do not give a
 

sufficient.explanation 66 this-. Therefore, it is assumed that 

the collecting point on the profile nose plays. a role. Perhaps 

the flow behind the collecting point can be more favorably 

slowed down at certain oncoming flow angles and mach numbers at 

a higher degree of turbulence, although even at lower degrees 

of turbulence the boundary layer is already turbulent. This is 

also in accordance with the fact that the increase in loss for 

large oncoming flow angles and large Mach numbers in cases 2 and 

3 begin somewhat later than in casell. p 

For the turbulence thread (case 3) the increase in loss is
 

smaller than expected. In places-the differences between case 1 /27
 

e wliewithin-the accuracy of measurement. _Howevet ... 

evenaat this Reynolds ntmber it could still not be determined if 

the loss at large oncoming.r'iow ang&&s is decreased by the 

turbulence thread. Evidently, at large oncoming flow angles the 

turbulence thread has a favorable effect Dn the turbulence 

boundary layers so that the friction loss within the boundary 

layer becomes smaller. 
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633 Flow Deflection
 

The measured deflections A5 are plotted over the oncoming
 

flow angle in Figs. 16 and 17 and the pressure shifts p/ql are
 

plotted in Figs. 18 and 19, also over the oncoming flow angle.
 

Low ReynodAs Number
 

With the Reynolds number Re. = 1 x 105, the pressure
 

shift in cases 2 and 3 is significantly higher than- in case 1,
 
in accordance with the lower losses. In this connection, the
 

difference with the thicker profile is considerably greater, so
 

that the reduction in size of the-separation bubbles also mani

fests itself here in an increase in deflection, whiib with the
 

thinner profile differences in deflection are present only at
 

high Mach numbers, where in fact the separation biibhles increase
 

in size due to the Mach number influence. The additional loss
 

caused by the laminar separation bubbles therefore primarily
 

affects the static pressure shift, While it less strongly
 

influences the deflection.
 

With respect to deflection and pressure shift, cases 2 and 3
 

are fattly equivalenh+ as with flow loss, with the exception of
 

large oncoming flow angles wihh simultaneously high mach numbers.
 

Here, especially with the thicker prfile, case 2 (high degree of
 

turbulence) is clearly the best. At high (i.eq supercritical)
 

oncoming Eiowamach numbers and low Reynolds numbers, the increase
 

in the degree of turbulence could be termed a suitable means for
 

increasing the maximum lift.
 

High Reynolds Number /28
 

For the thinner profile at Re1 = 4 x 105 no differences 

apppar ih deflection and pressure shift, and only slight 

differences appear with the thicker profile. 
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6.4 Pressure Distributions
 

The pressure distributions for cascade NACA 65-608 are
 

shown in Figs. 20-23 and those for cascade NACA 56-612 are shown
 

in Figs. 24-27. At x/l = l, the values -Op/q1 of the wake
 

measurements are redorded in order to farily qorrectly infer
 

the pressure distributions.
 

Low Reynolds Number
 

The pressure distributions, bust like the loss and
 

deflection, also differ significantly from one another in cases
 

1-3. The differences are greatest at high Mach numbers. The
 

influehce of the degree of turbulence and the turbulence thread
 

can clearly be seen in the region of the separation bubbles,
 

especially on the suction side. To a vast extent the pressure
 

distribution is improved hore by the increasedddegree of turbulence
 

than by the turbulence thread. This is not in agreement with
 

the fact that the turbulence thread often causes smaller losses
 

than the increased degree of turbulence (for example) NACA 65

608; 81 = 1450 at Ma1 = 0.3=0.6). This'strengthens the assumption
 

mentioned in section 6.2 that in fact the turbulence thread
 

reduces the friction loss in the boundary layer in many cases.
 

High Reynolds Number
 

Here the pressure distributions in cases 1-3 differ
 

only slightly from one another. Even at Re, = 4 x 105 saint
 

separation bubbles are still present on the suction side dnd
 

pressure side. Presumably these should be totally suppressed by
 

a higher degree of turbulence or a thicker turbulence thread.
 

6.5 'Jet Contraction 


Because of the lake of side wall suction it was not possible
 

to influence the flow density ratio in the axial direction.
 

Therefore a jet contraction deviating more or less from 1 was
 

/29 
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present in the measurements. This is plotted in Figs 28 over the
 

deflection AD for both compressor cascades studied and for both
 

Reynolds numbers. Fig. 28 clearly shows that with compresrsor cas
cades the deflection df flow is crucial for the size of the con
traction coefficient p. By contrast, the effects of the Mach
 
number, Reynolds, profile thickness and three types of turbulence
 

on the contraction c&efficient can be &gnored.
 

A fairly two-dimensional flow with the two cascades exists
 

only in the range of AB= 00 up to about l00 (this corresponds
 

to a D up to about 1370. However, since the contraction coef
ficient for the three types of turbulence studied are about equal,
 
the results of cases 1-3 can be compared with one another without
 

reservations.
 

The jet contraction is also the main reason why the curves
 

Ap/q1 over 61 become horizontal earlier than the curves A0 over
 

Afiother reason for this is the loss already increases (right
 

branch of polar curve) before the flow separates.
 

7. Summary
 

This report is concerned with the effect of an increased
 
degree of turbulence and a profile turbulence thread on the com

pressible flow through two straight compressor cascades at
 
dffferent Reynolds numbers, mach numbers and oncoming flow angles.
 

The two compressor cascades consist of NACA 65-608 and NACA 
65-612 vane profiles. The Vane angle was 0= 1300 and the spacing 
rationt/l = 1. The oncoming flow angle was varied from 1 = 1300 

to 1480, the Reynolds numbers were Re, = 1 x l05 and 4 x l05, and 
the Mach numbers were between Ma1 = 0.3 and 0.9. 

The cascades were studied for the following three cases: /30
 

1) Smooth vanes, low degree of turbulence (0.2-1%)
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2) Smooth vanes, high degree of turbulence (2.5-4.5%)
 

3) Vanes with turbulence threads (d = 0.06 mm) on the 

suction side (at x1L = 0.25), low degree of turbulence 

(0.2-1%). 

The experiments included wake and pressure distributihn
 

measurements and formed the continuation of the studies begun in
 

[21. The strong influence of the Reynolds number on the action
 

of the turbulence generator found in [2] was confirmed.. Further

more, it turns out that also the Mach number and especially the
 

oncoming flow angle are important,
 

Low Rdynolds Numbers, Re1 = 1 x 105
 

The reduction in profile loss in cases 2 and 3 as against
 

case 1 is zero at oncoming flow angles close to the vane angle.
 

It is greatest in the middle of the operating range of the
 

cascade and falls off again at large oncoming flow angles. In
 

this connection,- &ase 3 (turbulence thread) is sometimes just as
 
good as case 2 (high degree of turbulence) sometimes better.
 

In the range below the critical Mach number (i.e. the Mach
 

number at Which the loss coefficient suddenly increases) the
 

relative decrease in the loss coefficient over the Mach number
 

is faAtly constant (for a fixed oncoming flow angle). Above
 

the critical Mach number the separation of flow is shifted
 

towards largerroncoming flow angles, and to be sure considerably
 

more so in case 2 than in case 3.
 

Together with the drop in profile loss we obtain an increase
 

in the pressure shift, and to a smaller extent also an increase
 

in deflection. The effectiveness of the turbulence generator
 

is more prominent with the thicker profile than with the
 

thinner one.
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High Reynolds Numbers, Re1 = 4 x l0
5
 

In all three cases the profile losses are without exception
 

smaller than with ReI = 1 x 105 . As a result, in cases 2 and 3
 
the separation bubbles on the profile were only reduced in size
 

at the lower Reynolds number but they were not entirely sup

pressed. This is confirmed by the pressure distribution.
 

At ReI = 4 x lo5 an additional loss frequently arises in 

cases 2 and 3, but this is small in comparision with the decrease 

in loss at Re, = 1 x 105. 

With large oncoming flow angles a drop in the loss
 

coefficient can occur even at Re, = 4 x l05 in cases 2 and 3,
 

in particularly if at the same time the Mach number of the
 

oncoming flow is high. It appears athat the friction resistance
 

of the turbulent, compressible boundary layer can also be
 

reduced in these cases by an increased degree of turbulence,
 

but especially by the turbulence thread.
 

In the lightcoT preliminary experiments with incompressible
 

flow, the importance of sucking off the boundary layer for the
 

two-dimensionality of the cascade flow was also discussed.
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' POOR QUALITY
 

Deuische Porschangsansifall Degree of turbulence in the P 38 
fOrLul u.Raumfahrt (DFL) working section of the HST 

Insti. far Aerodynamik Wig. j 

Turbulence screen as per Fig. 6 installed in
 

the nozzle.
 

Height of working section 350 mm
 

Measured degree of turbulence values from [7] 

Institute Report 65/30 

Re _with respect to 1 = 60 mm 

A Re, =0,5 105 
0' Re, = 1 - 105 
o Re, = 2 - 105 

O3 Re, =3 - 105 

* Re, =4 .105 

Tu [4] 
4 __ __ _ __ __ 

0 

2 

1
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Deutsche FocungsensatU 0 

frLuft- Roumf hrt (DFL) Vane profile and grid P 
Inh,, fu,fA.,od.no arrangement studied Fig.,k : 

® vane profile studied 
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ORIGINAL PGM IS-
Of pOOR QUALITY 

9
DoeutscheF romchangsansft Profile coordinates and lo- p._ 

h Laifabri (DFL) catioa of measurement points 
t f4o . .mak ProfileMACA 85-608 _Tfbloe I 

- Nose radius 100v=0,425 

1oo 13 15 18 20 22 

1001, 10 ,-- otto n top
0 0 0 0 0 2 1 

1.25 og,324 -063 1,33 0945 1- 

2,50 0.558 -0.73 188 1,267 4 3 

5.00 0,9468 - 0.78 2.74 %745 6 5 

75 1.72 -0.83 3.35 Z.118 - -

10 1,551 -0o 3.9t 2,432 8 7 

f5 Z,019 -0,95 4,8 2.931 to 9 

20 2.388 -08 5,55 3,312 12 11 

30 2,916 -0.33 8.88 3.05 14 

40 3.213 -0o,81 ZI 3.398 10 15 

50 3.30.9 -0.80 7.09 3,857 18 17 

50 3.213 -0,15 5,52 3,337 20 15 

70 2,916 0.,35 545 2.553 22 z1 

80' 2,388, f-0.70, 3,98 1,617' 24 ?3 

s0 1,551 *0.90' 2,24 0,664 - 

35 0,948 tO,68 120 0.Z52 - From 

100 a a a - __ eport 5 

t 8/34'thtt"" Schugoe 22.8.50 
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DeutscheForschungsanstand Proflle coordinates an ooal n ferLuttfohrt(DnJ o1 measurement pointsb',htu fo, Aerodynntt ... . Prof'LeNALCA 65-812 Table z 

- -NO°erodkts 100 r 1,000 

100 f ioj1,000 

100 joj0Y5 meas. pts.' 

0 0 0 0 0 ./ 

125 0324 -05 1.0 1,997 - -_ 
2,5 0,558-,s .! .. l f 3 

5,0 0,348 -163 3.7? 2,6.0 6 5 

75 1,272 -1.83 45f 3,178 -

10 1,551 -13In ,24 3,548 6 7 
75 
20 

2,019 
2,388 

-2,31 
- .54 

6,44 
7,33 

4 .94 
,,3 6 4 

10 
12 

9 
7 -

30 Z,8lb -2,84 8,52 -77o4 14.- 13 
-40. 3,2.13 - 2,89 0,05. 9 6 f5 1 -' 
50 3,302 - 2,57 8.95 5-,800 18 17 
50 AM21 -1,83 L3,12 5,035 20 73q 
70 2315 - o8 6.75 3, 70 22 21 
80 2,388 0 0,ql Z,46 24 23 
90 1.551 0,O 2,51 10ZO Z 25. at 
95 

100 

0,948 

0 

-0,51-

0 

1,33 

0 

0,390 

0 

- 2.
from 
R-eport 

BoabiheiDot., 22.800 Skannbo: N, Beka HtMI. 
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Table 5 

Re1 [0] Ap/q B2[] 440] Ce ra. el D 

1105 

130 0,036 
135 0,018 
140 0,019 
145 0,013 

147,5 0,031 

-0,003 
0,153 
0,277 
0,396 

0,397 

128,3 
128,0 
128,3 
129,1 

130,6 

1,7 0,053 
7,0 0,279 
11,7 0,455 
15,9i 0,591 

16,9 0,615 

0,060 
0,265 
0,408 
0,559 

0,551 

1,011 
1,61A 
1,025 
1,036 

1,067 

0 

i2 

2-105 

130 0,022 

135 0,017 
140 0,014 
145 0,016 

147,5 0,025 

0,054 

0,195 
0,P98 
0,387 

0,408 

127,0 

127,1 
127,9 
129,0 

130,6 

3,0 

7,9 
12,1 
16,0 

16,9 

0,113 

0,312 
0,468 
0,593 

0,621 

0,114 

0,309 
0,419 
0,543 

0,558 

1,002 

1,001 
1,017 
1,046 

1,065 

1 

1.105 

130 0,027 
135 0,026 
140 0,028 
145 0,020 
147,5 0,019 
150 0,027 

0,025 

0,145 
0,265 
0,359 
0,407 
0,397 

127,8 

128,3 
129,1 
129,4 

129,7 
130,9 

2,2 

6,7 
-10,9 
'15,6 
17,8 
19,1 

-0,077 

0,257 
0,425 
0,581 

0,644 
0,676 

0,092 

0,263 
0,374 
0,503 
0,534 
0,596 

1,004 

1,011 
1,016 
1,061 

1,084 
1,148 

a 
1A 

2.105 

130 0,019 

135 0,G17 
140 0i016 
145 0,013 
147,5 C,016 

150 0,058 

0,020 

0,196 
0,297 
0,383 
0,4P0 

0,398 

128,8 
127,7 
128,1 
128,6 
129,0 

131,5 

1,2 

7,3 
11,9 
16,4 
18,5 

18,5 

0,042 

0,291 
0,461 
0,606 
0,662 

0,656 

0,098 

0,275 
0,428 
0,532 
0,568 

0,598 

0,998 

0,992 
1,014 
1,059 
1,086 

1,125 

Q 

arid arrangement t/1 = 1 

Bs =1300 

Vanes: 

m pe of turb. 

smooth 

QD T uiir0,3 0/o 

Boundary layer sucked off through top and bottom slots 

htBa/Sd-a *d19. 10. 1967 A~ 68/34 
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Or ll.. ortfl),urements for•__ _fN Pt PdeA NAcA 65-608 TableD
 

NACA __ Re=1105 

65-608 smooth vanes Smooth vanes -vanes with u Retu4.7Q5with turb. scifl thread sm ohvawe smiooth vanes --smooth varies wi-thTu 2 - Tu-2,5 - 4 o/o ITu .2 - 1 0/0
u . 

Tu o0, - I 
]
o/o wlth tuLb sor turb. thread 

1 
..! q I 011 P ICV1 JAi/q, 40 r P 14vt JA?/IqJAO fL < Ap/q, Ao[P iC, A AOI,P/1, Ac[A. F C,CVI"tzlplqMA1 L[ t,Pw r 

0.1 0.0"- 0.021 3.1 I 01l 0,031 0.029 3,? 1,011 0,03' O,0.j 3,2 0,1194 0,0160,4 0.011 0.010 P2, 1,01" 0,0 0,014 3,1 1.014 ,01 0,043 0,06, 3.7 1,0"3 0,02,1 0,0y, 3,1F 1,01? 0,0, 0,066 3,5 1,504.I30 0,; .1,246 -0,0? ', 1,020 0,0 p 0,99( 0,011 0,066 3.71, 1 0,50,086 3.5 .,. ,6640 2,0 1,01 0,04 0,07 2, 0,99 0,O 0,062 3,5 1,01 0,07 0,05( 3,1 1,011, 0,.08 3, 1,006 0 64 3,1 1,000,1 0,060 -0,07 
 1.3 1,015 0,054 -04 1,9 1,014 0,06 -0,06 1p 1,00O1 0,030 004 3,2 1,010 0,033 0,036 3,00,65 0,07? -0,1 -0, 1,010 0,0 -0,0 I,2 1,01 0,00 1,01 0.036 0,053 2,0 1,000-0,1 -Ie: 0,901 0,043 O,025 
 3.0 1,01C 0.05t 0,015 3,0 1,009 0.045 0,031 2,0 1,005
0,3 0,026 0.16V a,0 1,023 0,0101 8,6 1,023 0,023 0_PI_,192 7,9 0.01i 0198__ 1,00( 0,6 19 T012017 101013,0311090.4 0,03, 15C ?,6 I,200 .1 864029 0,0P4 0,110,5 0,036 0,15 8,0 1,014 0,01P 0.20E 8,5 1,017 0,0 2 0,p060,5 1,0187:5 1,024 0,027 0,181 805 1,03 0,;0147910403024861020040 0,0,40 ,147 6,5 1,1 0,03 0,18 0,1 1,026 0,03 0, 04 7,6 1,021 ,015 O.49 0,5 

0,216 o,5 1019 0.O01 0,15 0,3 1,1)171,012 0,014 0,22 0,4 i021 0,015 0,26 8,0 1,017506 0,0,1 0.I24 6,0 1,024
3507 0,054 0,109 5, 1,021 0,045 0,169 6,01,020 0,04 0,193 7,4 1,0 
0,018 0,244 8,4 1,025 0,017 0,243 
 8, 105 0,017 0,?44 0,0 I,02O
0,75 0,057 0.077 4,8 1.025 0,053 0,14 5,. ",016 0,056 0,13 5, 1,0110,7z0,0 0,074 0,05 3, 1,O0 ,03P 0,25 0,11,025 0,04 0,249,0O830,107 4,5 10 8,1 1,031 0,05 0,265 8,1 I,030,007 0,094 3.5 0,938

0,3 ,027 0,2865
0,4 0,0290.297 1,6 1,032 0 ,,01 17 1,0,34 0 1 04 ,01 0,015 1,4 1,036 O1014 0,30 23,2 1,027 0,013 0,316 13,1 1,O00,5 0,030 0,301 12,5 1,039 0,02 0,31 1,6 1,041 0,02 0,30412,5 1,045 0,01 0,331 ,1 1,03 0,023 0.33 13.0 20 70,6 0,015 13.20070,06 1, 1,42 ,0 0,1712,51.460050317 13,1 1,040 0,340 2,034 0,024 0,334 l3,l2,4 ,46, 131 ,04 3, ,03?7 0,014 0,34 1,0370,4 0,014 0,33 130 1,0460 7 0, 0 , 8, 1,0 0 .0 ? 0 1, 6 1,05 7 0 .0 3 0.3 2 3 1 , 5 1, 5 0,P4,0 4 0,19 0 3 3 3 .0 00 
0,7 0,0 0,323 4, ;, , 6:01 3 

0 15 0,070 0,34 0, 1,019 0,0 3 0,31 I 041 0,05 0,39 1 , 1,04 30,0 2 0,3 3 13,5 1, 4 0, 0 5 0, 7 13.2 ,06 0,017 0,370 13 .1 ,07
 
0,9'.Q081 0,24 8,8 1,037 0,03 0,32 
 41,7 1,064 0,07 0,261 10,0 2,051 0,02 0,36 13,5 1,090 0,034 0,376 12,7 1,065 0,025 0,365 13,2 1,085
0 9 0 7 3O1 0 ,0 4 0 , 6 9 0 1 , 603 00 7 9 0, 3 41 10, 1 , 3 0,06 6 0,352 , 3 1 , 4 0 ,0 72 ,310 1, 0 1 , 0 0
 
, ,4 , 7, ,0 0 ,3 16, ,0 7 0,2 0,7 17, 0 3 1,5 0,3 1 1,03 0,0 0,35 1 1,0
 

0,4 0,044. 0,375127,0 1.071 0,03 
 0
 
, 0 ,0 4 0 , 7 1 00 , 0,373 16,92,079 0,02 0,305 17,4 l. t 0032 0,306 46,9 1,07% 0,0270,399917,1 2,067 O,01 0,387
0 0 3 0 3 1 1, 7 2 0 17,5 1,09 ,0,029 0,4 0 , 19 17411 , 11006
1,0 5 0,0 1 0,3 3 0 0 17, 01,07 , 9 7 96
0,8 7 0 4 ap050 037I,~ 0.05 0,3831022.9 1,01 009 0,3941350,08 7, 2.076 0:721:1 :G
1 :4 08i 00715D 0,014 0,370 17,8 1,156
145 ,6 0, 5 3 , 34 1 , 1 ,090 ,0 3 0,3725,,37 1,1084
66 0 , 0 6 3 , 3 0 10,.09 3 16, 0 1,10 8 ,0, 4 0, 39 17, 2 111 5 0,03 , 9 1 17, ,10 6 0,036 0,40 ,395 17 , 2 1,1 12 , 1 1
 , 3 8 9 7 , 0, 6, ,01,4, 0,00 .0702 1 0 , 3 9 17 1
0,85 0,094 0,26 3C 0,059 0,406 17,C 2,122 0,70,8:, ,0
91142,080,511,
0,7 ,17 0, 0 0,03 1,4300,07 0,39 14,2 ,04605 11,10 ,03 , 6 14,2 1,055,6
14,6 ,99 ,38 170 0.93 ,10.3 0,376 ,P
,41 7,1 ,10 0,022 ,97 173 1,35
 

, 3 , 4 6 0, 6 8 , 3 1 1 6 , 0 5 , 3 9 18 6 1 1 0 2 0 0 3 O0379 1 0 2 05 0 , 3 9 17 , 1 1 ,0 7 5 0 ,05 4 0 , 4 0 9 10, 3 1 , 07 0 , 0 31 0,3 19 3 1 7,5 2 0 4
 
0,4 0,04 0,379 18,01 ,119 0,5 0,38?18,6 1,?? 0,04 0,303 18, 1,14 8,48 0,393 17,0 1,091
05 0, 0 5 3 0.386 1 7 , 0,067 0,403 17,9 1,07 0,034 0,392 17.51,413
0 ,0 5 , 3 4 1 , 1 0, 3 7 2 1 7 ,7 1 , 1 1 1
 

148 0.750,5 0671 0,8 7,4 1,2 008 ,31 17,6 104 0114 0032 ,064 17,3 ,06 0,395 169 ,9901,1310;9 
 3 7 17
 
010!0:09 Q; :6 1 00C0,120 


,6 0,07 ,380 16. ,06 0,0 0 386 18,6 11450,4 093, 17,21,06 0,5 11 0,39 1, 10
 
6 ,1020,6 16,2 ,012,06 0 8 1,29 0,3 ,75 1, 1,07 0,397 41,09, 0,09 0,38 17.2 ,97

75 ,090,138 10,1 01,0 7,91,03 ,0930,40 1,1 1,11
9: ,6 

78216 0.t2e haSo 
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T. ,o.2 I ' J , .. . -' lOthvanes,t - - t a -m65- 612 smooth vanps - -?n P vnes -vanes with . mooths o vanese o h v n s vanes With _- "-T--2 ' 4' r.red.,t" T.o,,  , turk cr. turb. thread
DII1' F A p c, Ap/q ol 3 p4/q48 p/ 1 o pq 00 ~C 0A r/1 Al , : 013 -il 


0,507 -0, i 
,040 '0,O ,1 00 . 0, 0,02
0,003075 0,8-1,0 2,008 0,07305 -0,14-0,0 -0,24 ,1 ,6 

-0,04 770
I"

2 
0 000

0 0,049 3 140
130 06 1 
03 0,3 321050,04 0-0,1I -00 ,008 01 

0 0,00 2, 1,016 0,3 I0-4, 5 0,99 0 0 0 -0, - 1. 0P94 0,03 2, 1,0056511 - .9 7 -07 04430 -i1.01 .o1 ,.?0, 007o0. 20-. 0 098 
0 5 3,0
0 , 4 0 0 43 0 ,09 9 5.4 0,032'1357 00;60 6,6 m I6. 4 1,01 6 0,03 5 0 .14 9 7 , 1 0 5 0 0 2 0 2 0 7,7 0 000u7 p 8 40,O,5P,9 , 

0.1 0 , 0O 0,205 1,017 0 ,017 8 , . 1 9,,1? 000020 
 :07a0
72 105 0,035 0,50135 66 1,: 0,041 0 ,055 .058 0,066 4. 1,012 00,051 0013 ,1 1,17 0,06 1940,65 0,041 0, 140 7 , 1 02 0,125 15,8 
7, 1.20 0015 0,226 7,8 1,0913 0,017 0,024 8,l 1,010 0.010 0,703
0,7 7,6 1,021 0,015 0,2250.06 -0,04 7,8 1,014
007-0,06 1.7 1,007 0,0650,060 0,0400,07220 1,015 ,4,6 2,017
1,01? 0,075 -0,01
075 0 77 10,039 2,3 2,005 0 O)OP, ? ,0}00 ,¢ 7O, P 7, ,01 1,I019 0,01 0, 23a? 7. 1,01, 
 64 1,006 0,050 0,171 
 6,0 1,006 0,04 0,238 7.6 2,020


0 ,70,054 
3 0,030 0,245 0,299 6,1 1.002
1, 1,039 0,079 0 275 
 13 036 0,023 0,89
0 2,2 1,09 09,040 0,266 2,4 12,029
0,046 0,250 0,029 0,?86 2P,P 1,035 0 
 ,,71,034 0,034 0 290 19 1,035 0 o7 0,900,29 12P9'1035 (1,013
0:320 13,3 2,03I
0.6 005 03 0 14 0 03 ,9,6 1,031 0,030 ,29 , 0 ,0 9; 11,6 1,042 0014 3 1 1 1 029 003 

0, 0,084 0,167 ,045 0,01 034 22,4 1,0 0,0 5 0,42145'0o0, , 67 2,025 0,042 0.:306 11,4 2,043 0,041 0,209 1 39
122020050302,1:91,05. 0150,35 1 , .54.o :1,o064 2 0 3 6 IP2 , :02303610017o1o17i 0o,00 0,50058 0,245 20,1 1,056 3 , 0, 0:35} 4 2 094 S0093 0,153 6,7 1,027 0,052 0290 10,5 ,053 0,0 2 0 1 

0303 
 10 
 06 ,40 17,,068 0,02 0
0,00 0381 6'20 275 1,0590 ,3 0 ,0 0,375 20 0,078 163 01 27,5,0505 0,36 3 1 5 1 0 050 028 0,377, 1 ,0 0 ,40C a01 1,015 033 
1,69 1,055

0,2 
0015- 00407 67,01, 07 

, 00 4 ,0, 1,00 03640. ),035 :5 154 2093 00 076 16;7 0 3 0 9145 0 0 ,35 ,1 0,022 0414 16,8 1,090 0,017 04,40 ,7,39 7,24,6 1,ogp 4, ,1180,7 0",1 00,59 :0,0.980 0,030 0,374 0,109 0.000 269;:I0a6, , 030 0,06 96 0019 03940.75 77 147 02 0430,058 0,362 1 0,2055 
27 117 0,020 91.1475 0,0, , 5 1,055 0,027 0,8 7,P 1.50 0,070422 1 ,25 0,2 0,9
N7 , 0 ' 56 0 17 1,155


0,911 0,9 1,0363 0044
 
0 0025 1 
 0 04 0,6 10 1 0,0203 0
0,028 87 ,245 1 4 0 43 0,4 7, 1,063 0,035 424 28,0
,4 
 0 , 8 070 0 08 0,43 70 2,084
,028 0384 1 o,3 V,9 ,6 ,1 0 0,391 9,0 1,14
050,042 038 0,0 2,3 ,3 ,8 0 53 0,47 , 064 0,0
,06 862100000322,
0, 0,38721,0 107 ,6 ,50 0,1, 1 4 

426 10, ,087 0,052 42 1
4 0 00,121 00320 0,396 23,5 ,086 0039 04l7 20,2
0 5 3 4 39 2,164 0,05 0,4 17,9 2.1,2 10 0,059 0,406 17. 2084
0,5 0,5 306 20.3 
 0 0,22 0 9 2 ,40 6 1 46 0,03627 0 0 5 0 011 1, 4 15 0,7 47 0 , 0 ,
0,060,06 0,7 ,9
. 0 ? 000,61";P96 .9 1 11e0.0 1 0, 
12
 

0 1 7 9 !6 1
7100,954 0,309 10,62
3,0 6
 

066 IslaIll 

00 , g 0 3N 2 a

,9 ,9 84 112 ,3 ,1 
s7117 63 0391, 1
 


