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An air ejector was designed and built to remove the boundary-layer
air from the inlet of a turbofan engine during an acoustic ground test
program. The test program objective was to evaluate an acoustically

•

	

	 treated inlet and to detetmino the effect of the boundary layer on the
acoustic properties of this inlet. This report describes (1) how the
ejector was sized to meet the required 6.35 kilogram per second (14 lb/

sec) bleed flow rate, (2) how the ejector performed during the acoustic

test program, and (3) the performance of a scale-model ejector built

and tested to verify the design. The noise output of the ejector was

reduced to a minimum of 10 decibels below that of the engine for most

test con6itions by wrapping the ejector with acoustic in-.ulation and
exhausting into a muffler. Lonsequently, the ejector system proved to

be an effective way of reducing the boundary layer thickness in the in-

let of the tested turbofan engine.

INTRODUCTION

Noise research on turbofan engines has led to using acoustic treat-

ment on the inlet walls to attenuate fan noise. A test program on at-

ionuating turbofan englne noise by using inlet acoustic treatment was

conducted at the Lewis Research Center. This treatment was specially

designed to reduce tht • noise produced by the acoustic propagation of

various spinning modes in the inlet which arc• produced by fan rotor--

stator and inlet distortion-rotor interactions. Also investigated was

the effect of the turbulent boundary layer on the attenuation character-
istics of the inlet acoustic treatment. A third objective of this test

prograin was to determine the effect of the boundary layer on fun source

noise. In order to evaluate the effect of the boundary layer in this
test program, a method of varying this boundary-layer thickness was .e-

quired. Several methods were considered, .end an air ejector was

selected.

The test program was performed at the vertical lift facility (VT.F),

an outdoor acoustic test facility at the Lewis Research Center. A
Lycoming YF-102 turbofan engine rated at a thrust of 32 470 newtons

(7300 lb) was used. The boundary-layer bleed airflow requirement was
approximately 6.35 killograms per second (14 lb/sec) naximum from an
inlet air pressure of 87 600 newtons per square meter (12.7 psia).

This report describes the procedures used in design`ng an oir

• ejector to remove this boundary-layer air, and it shows how the acLu.,l

performance of the ejector compares with the predicted design perform-

ance. It also describes how effective the ejector was in reducing the

bo ,.tndary-layer thickness during the test program. A major concern in

using; an air rjector at an acoustic test facility Is whether the ejector
noise can be suppressed enough so that it will not interfere with the
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acoustic measurements being taken of the engine. A description of the

noise suppression techniques used to reduce the ejector noise is in-

cluded, and a comparison of the noise difference between the suppressed
ejector and the engine was made. A scale model of the ejector was

built and tested to verify the adequacy of the design process before

fabricating the full-scale ejector. An evaluation of this scaling is
.also presented. Tne effect of boundary-laver thickness on fan noise
and inlet acoustic attenuation is not included in this report.

SYMBOLS

ejector mixing tube area

ejector primary nozzle throat area

nozzle flow coefficient

distance from wall of tube N

ejector mixing tube diameter

ejector primary nozzle throat diameter

static pressure

pressure drop through ejector primary nozzle

total pressure

ejector primary air pressure

ejector discharge pressure

ejector suction pressure

suction air temperature

primary air total temperature

free-stream velocity

velocity at tube N

specific volume of fluid at inlet to nozzle

expansion factor for compressible flow
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`*	 boundary-layer dirmplacement thickness

&P 	ejector primary flow rate

C S	 elector suction flow rate

DES ICh

EJPctor Requirements

The maximum boundar y -layer bleed flow requirement for the test pro-

gram was 6.35 kilograms per second (14 lb/sec) or approximately 10 per-

cent of the total engine flow at maximum lower. This bleed flow which

would he drawn from a minimum inlet pressure of 87 600 newtons per
square meter (12.7 psis) was -, be varied from essentially zero to the

maximum obtainable during; a particular test run of the engine. The de-

sign of the inlet bleed ring required that the eje-tor he connected to

the bleed ring through six 10.16-centimeter-(4-In.-)diameter flexible

hoses (fig. 1). Each of these lines was approximately 7.6 meters

(25 It) long; beeause of certain facilit y restrictions requiring the po-

sittoning of the ejector Homo• distance from the engine (fig. 2). The

bleed ring was constructed of perforated aluminum sheet with a pressure
drop of approximately 3447 newtons per square meter (0.5 psig) for the

maximum flow rate of 6.35 kilograms per second (14 lb/sec). 	 In order

to obtain the required airflow with these line losses. it was determ-

ined that the ejector suction pressure should be approximately 0.5

atmosphe r e or 55 158 newtons per square meter absolute (8.0 psia).

Therefore, the basic elector design requirement was a maximum flow
rate of 6.35 kilograms per second (14 lb/sec) at a suction pressure of

55 158 newtons per square meter absolute (8.0 psia). Throttling the

suction flow would he accomplished by varying the vlvctor primary air-

flow. Another eery important requirement war: that the noise produced
by the ejector would have to he a minimum of 10 decibels below that

prod-red by the engine in order to obtain valid acoustic data during

the test.

Ejector Sizing

One of the prime considerations In sizing the ejector is the avail-

able pressure and flow capabilities of the primar` • air supply. the VLF

factlit y at Lewis is supplied with 1 135 000 newtons per square meter

(150 prig) of air at a 45L kilogram per second (100 lb/sec) maximum

through a 61-centimeter (24--in.) line. The location of this line to-
gether with the need to be able to position the movable shelter required

extending the aii	 appl y line, approximately 30.5 meters (100 ft) through

several bends to reach the elector nozzle as shown in figure 3. The
maximum available primary nozzle pressure for the required 20.3-
centimeter-(8-'.n.-) diameter pipe with a shutotf and flow control valve

r
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was calculated to be approximately 689 476 newtons per square meter ahso-

lute: (100 psia). The 20.3-centimeter-(8-in. -) diameter pipe was chosen
its a p • actical size for both installation purposes and tlow capacity.

The ejector was to exhaust to atmosphere through a muffler for noise sup-
pression. 'I'he ejector was sized according to the methods described in

references 1 and 2. The final design curve shown in figure 4 was pro-

duced by the prose , lurk- described in reference 1. The design c-crve con-

s:iats of two curves. one showing the e .Jc-ctor pressure r.ltio and the other

the mass flow entrainment ratio; both of these curves, are functions of
the ratio of suction to motive pressure. The design, for an area ratio
(A/A t ) of 15, was picked from a family of curves with varyin); are.: ratios

(ref.  1) .	 It was chosen because it gave i n i t Lit. values of r/tot ive gas
pressure and flow entrainment ratio that were the most compatible with
the requirements. and It also allowed for a reasonable elector size for

the facility. The sizing procedure for the effector begins by entering
the curve .it the required effector pressure ratio of 1.81 and reading the
ratio of suction to motive pressure of 0.072 and entrainment ratio of

0.40. To achieve a suction to motive pressure ratio of 0.072 requires a
ruot tvc , gas pressure of 758 000 newtons her squire meter (111 psia).
which is very close to the available faciIIt y air pressure of 689 476

newtons per square meter (100 psia) . W: th an ent r.c inment ratio of 0.4.
the required primary nozzle flow rate i; 15.9 kilograms per second

(35 lh/sec). As a safety factor to insure that the elector suction flow

rate would not be m.irginal. it was size.: for a required flow rate of
9.07 kilograms per second (20 lb/sec) instead of 6.35 kilograms per sec-
ond (14 lb/sec); this resulted in it pricurry nozzle flow of 22.7 kilograms
per scc • ond (50 lh/sec). This satety factor was included to account for

flow losses which might occur because of small deviations In the required

flow areas resulting from the use of standard size piping, slight inaccur-

acies in the tlow equations and the des , pn turves used, and losses :rntisi-

pated in the bleed ring acrd flexlines between the elector and Lite engine
inlet. The next step was t •r determine *,hc primary nozzle size that would
parts it flow of 22.7 kilograms per seconc (50 lb/sec) with a nozzle pro.--,-
sure of 68 9 476 newtons per s cp:ire meter absolute (100 psia). 	 It was

assumed that the nozzle would be exhausting to atmospheric pressure in

the ejector mixing tehe. A nozzle diameter d	 of 13.21 centimeters
(5.2 in.) was calculated from equation (1)(reft 3):

p	 0.525 Yd^C ^ /.Z
1

'lhe nozzle exit area was sized for a supersonic tiezzle with an exit Mach
number of 2.0 (ref. '). The mixing tube diameter was then calculated
for an area ratio of 15 as follows:

2

- `^ - d - • 15
A t	d2

t

(1)
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where

d - rV15 d  • 51.2 cm (20.1 in.)

For ease of fabrication. the nozzle throat diameter and the mixing

tube diameter were changed to the closest standard pipe sizes of 12.82
and 49.53 centimeters (5.047 and 19.5 in.). The area ratio was then re-

calculated at

A	 (49-53) 2
 . 14.95 a 15

At	 (12.82)2

For this area ratio, the flow through the primary nozzle i!; 2C.4 kilo-

grams per second (45 lb/sec) and the expected ruction flow is 8.16 kilo-

grams per second (18 lb/sec).

A mixing tube length to diameter (I_/D) ratio of 10 was recommended
in reference 2 for optimum ejector performance. However. because of

limited space . ► t the test facility the actual mixing; tube L/D ratio was
8. f,. The mixing tubetube flow exhausted through a short ditfuser section

into the acoustic muffler which exhausted to atmosphere. The total
length of the complete ejector and muffler system wits 11.7 meters (58 ft).

Figure 5 shows the full-scale ejector flow path geometry,.

A 11200 scale model of the ejector (fig. 6) wits built and tested to

verify the adequacy of the design. The model was built from stainless

steel tubing and fittings with several sizes of contoured inlet nozzles
made from Lucite. A metal plate with six holes simulating the six-tuba

inlet to the ejector was also tested.

Noire Considerations

The ejector wits exhausted into a large muffler (fig. 3) capable of
it 	 reduction in sound power level at frequencies from 500 to
8000 hertz.. The muffler. which was approximately 5.49 meters (18 ft)

in length by 2.?3 meters (7 ft) in diameter. was capable of handling

2832 cubic metor:i (100 COO actual ft 3 ) of air per minute. The maxim.im

total design airflow for the ejector s ystem was 1555 cubic meters

(54 895 ft 3 ) per minute.

All the primary air piping that vas above the ground plane was
wrapped with a foam-lead acoustic insulation. The insulation contained

three separate layers of acoustic ,reatrient: A lead barrier with it
density of 16.02 kilogram~ per cubic meter (I lb/ft 3 ) was sandwiched

between 2.54-centimeter-(1-in.-) thick foam absorption layer and a

1.27-centimeter-(' 1-in.-) thick foam insulation layer. This material

was also used to wrap the complete ejector assembly up to the exhaust

t
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muffler. Sound attenuation through this insulation was expected to be

20 to 35 decibels in the- 500- to 4000-hertz frequency range.

FACILITY AND TEST HARDWARE

Fac it It 

The vertical lift facility (fig. 7) is an outdoor acoustic test

facility capable of testing turbofan en „itivs up to a maximum thrust

level of 133 440 newtons (30 000 lb). The large tripod structure sup-

ports the cantilevered, overhead, thrust-measuring engine mount; the
engine centerline is 2.9 meters (9.5 ft) above ground. The area around

the test stand is paved with concrete to provide a flat, consistent
ground surface for acoustic measurements. The engine support and thrust

measuring system can be rotated to allow the movable shelter to be rolled

in place over the test stand. For this test program, a large engine

muffler (fig. 2) was used to suppress engine exhaust noise in order to

properly evaluate the effectiveness of thi• acoustic inlet.

They engine and ejector were operated from the control room located
approximately 120 mrtersi (394 ft) from the engine test :stand. The ejec-

tor primary nozzle flow was controlled by tar, valves in the 20.3-

centimeter-(8-in.-) diameter feedline, a motor-operated gate valve and
an air-operated butterfly valve. The butterfly valve had a position

controller that allowed it to be set at any desired opening through an

electrical to pneumatic transducer operated from the control room. The
gate valve was used onl!. as a snutoff valve. Various ejector parameters

(fig. 8) were monitored in the control. room on digital panel meters and

analog chart recorders. A digital data acquisition system capable of
recording pressures, temperatures, and ether engine parameters and con-

nected withz, computer system prints out engineering units in the con-
trol room.

Twelve 1.27-centimeter-(0.5-in.-) :ondenser microphones were used

to measure far field noise. These microphones at ground level were
spaced loo apart, startirg at lo o from the engine inlet centerline on a

30.5-meter (100-ft) radius from the engine.

Test Hardware

Engine. - The Aveo Lycoming YF-10? engine used for this test is a

two-spool turbofan engine with a bypass ratio of b and a rated thrust

of 32 470 newtons (7300 lb). The engine core consists of an eight
stage compressor, a reverse flow annular combustor. and a four stage

turbine. The compressor, which consists of seven axial and one centrif-
ugal stage, i5 driven by the first two (high pressure) stages of the
turbine. The 102-centinicter-(40.0-in.-) diameter fan and one supercharger
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+.ige are driven through a 2.3 to 1. speed reduction gear by the Lost

two (low pressure) turbine stag_Lw.

A coniluent flow nozzle arrangement carries both the fan and core

•	 exhaust through it muffler transit for Ripe into the muffler. Figure 9

shows the complete engine, , • oniluent nozzle, and muf f ler extension pipe

wrapped with acaustis Insulation to iorther attenuate anv engirt • and

exhaust noise.

Acoustic t alet. -- 1'he acoustic inlet is made up of several alumi-

num cylindrica. sections Mg. 10) and a IIberglass bellmouth. There
are two spacers. four st•,tions which accept acoustic liners, a boundary-

layer b1ced ring. and a seal section which uncouples the weight load of
the inlet from the engine. The inle' is supported from the facility

thr.ist structure. The acoustic liners used during the test program

were of aluminum honeycomb sandwich construction. The honeycomb is
bonded on one side to an aluminum backing sheet and on the other to all

aluminum perforated slu • c•t . These liners are bolted into the four cylin-

drical acoustic sections as required during the test program. The

boundary-layer bleed ring has six 10.16-centimeter-(4-in.-) diameter
openings which receive the boundary-layer air after it passes throu!Al

a perforated aluminum skin with a 20-percent open area. Six 10.16-

:• entimete7-(4 -in. -) diameter flex hoses are attached to the bleed ring

at one end and the ejector at the other. The overall length of the com-

plete acoustic inlet assembl y is 371 -entimeters (140 in.) with an inside

flc,w diamc;er of 102 centimeters (40 in.). The inlet was instrumented to
measure static pressures and inlet air temperatures; it also had provis-

ions .̀.or installing boundar y -layer total pressure rakes to determine the

thickness of the boundary layer.

TEST PROCEDURE

Ejr ,i.or and Engine

First, ~ever. ► ! eni;ine tests were run to evaluate the performance of
the various acoustic treatment sections installed in the engine inlet.

Next, the ejector was used to var y the boundary-layer thickness o ► c the
treated sections. To measure the boundar y-laver thickness a boundary-

. layer rake with 10 total-pressure tubes was installed in the middle of
the first acoustic ring downstream of the bleed ring. An online com-
puter program calculated the boundary-layer thickness; from the total-

.	 pressure readings on the rake and printed the results in the control room.

The ejector was always started before the engine to avoid a back

flow of air from the ejector into the engine inlet. Th, engine was

started with the ejector at it 	 suction flow rate and suction pressure.
As the engine wa brought up to the desired power .;et t ing, the ejector
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e	 primary flow was increased to keep a slight positive suction flow ..t all

times during engine operation. Data were taken at three engine fan

speeds. 7070. 5900, and 4500 rpm. Three boundary - la yer bleed flow set-
tings were , used at each engine speed. .here were near zero flow (as

close to zero as practical without getting reverse flow), maximum flow.

and one intermediate flow.

Ejector

To determine ejector alone performance, the ejector was tested with-

out the engine running. Three configurations were tented. The first was

the basic ejector with the six 10.16-centimeter-(4-in.-) diameter tubes
on the• inlet of the suction tube open to the .itmosphere. 'me second was
with the flex lines connected from the ejector to the bleed ring -- the

same as for testing; with the engine running,. For the third test. the
holes in the perforated sheet of the bleed ring were taped; this effec-

tively deadheaded the ejector suction flow. For eacli of the test condi-
tions the ejector was run from minimum ro maximum flow by varying the

primary air pressure from 172 370 to 689 476 newtons per square meter

absolute (25 to 100 psis). All of the ejector performance parameters

listed in figure 8 were recorded. For the second test configuration,
acoustic data were token to evaluate the acoustic performance of the

ejector.

Scale Model

The 1.1200 scale-model ejector was liench tested using 1 034 214

newtons per square meter (150 psig) nitrogen as :he primary nozzle driv-

ing medium. Four different inlet nozzles were used, three ASME long
radius inlets and a 6-hole inlet which mimulated the flow area of the

tubes on the inlet of th. , full-scald suction tube. The model was also

run with the suction tube deadheaded. The primary pressure was varied
from .a minimum to approximately 827 376 newtons per square meter absol-

ute (120 psia), and all ejector parameters were recorded at each nuzzle

pressure.

RESULTS AND DISCUSSION

There are two t - ull-scale ejector configurations which will be re-
ferred to in the discussion of results. The first is the ejector alone	 t.

(not connected to the engine bleed ring) which will be called the ejector.

The second i5 the basic ejector connected to the engine bleed ring through 	 1

the six flex lines which will he calle.. the ejector system. All of the

scale-wLidel ejector performance data wkre ob..ined in tb, eject. r
configuration.
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Ejector Performance

A -omparison of full-scale eject-r performance with lesign and

scale-model data is shown in figure 	 The full-scald ej ector performed

very close to that predicted by the design curves. 'fhe compression ratio

fell right on the design curve at 1.83, and the flow entrainment ratio

wits 0.38 as compared to 0.40 for the design point. Foe ,if -design con-
ditions. the compression ratio curve followed the design ,hroughout a

large range of suction to motive pressure ratio values, wh'le the entrain-

ment ratio fell off considerably from the design curve at nigher suction

to motive pressure ratios.

This deviation from the design performance at off-design operation

IN explained in reference 1. In theory each point on the design curve
is associated with an optimum ejector for the operating; conditions in

question. Adjacent points on this design curve represent theoretically
different ejectors; that is, for each value of the auction to motive

pressure ratio, there is an optimum area for the exit of the motive gas

itOZRle. The perfornince curves for the full-scale ejector then show the
deviation from the design condition with a variation in the suction to

motive pres5ur,• ratio both above and below Ow design value. This per-

formance deviation did not hinder the test since the ejector was designed

for it maximum required flow. Suction flow rates lass than this maximum
were easily obtained as the elector wa-: throttled down in flow to achieve

the variation in boundary-layer bleed.

The primary and suction flow rates obtained over the complete 4)1)era-

ting; tango are shown in figure 11. Th(- maximum extrapolated ejector pri-
mary and suction flow rates of 21. 9) and 7.94 kilograms per second (47.5

and 17.5 lb/sec), respectively, compare very well with our calculated d!-

sign flow rates of 20.4 and 8.16 kilograms per second (4 '1 and 18 lb/sec).

The ejector primary flow rate was calculted from the isentropic flow. re-

lations for a perfect gas through a sonic nozzle (wp a 0.532 AtPp!`':p).
The ejector suction flow rate was measured with a commercial flowmeter

element sized for the suction tube diameter ,ind expected flow rate. Two

pressure transducers, one for a low flow range and one for a high range,

were connected to the flow sensing; elements.

Scale-Model Ejector Performance

The results from the scale-model ejector tests are compared to the

full-scale ejector performance and design in figure 4. The flow entrain-
ment ratio curve for the scale model shows good .agreement at the design

point and falls between the design curve and the full-scale data at higher
suction to motive pressure ratios. The coir,ression ratio curve shows good
agreement with deF.ig;n and full-scale data over most of the range of suc-

tion to motive p r eFsure ratios. At the design suction to motive ;pressure

ratio of 0.072 the compression ratio is 1.58 as compared to the 1.83

r
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requ ► te.t. 'llictetore. the expected suction preHsur y would be 64 121

newtons per square meter (9.3 psla) compared to the desired 55 15N

newtons per square meter (8.0 psia). The results of the mcale--model

tests verified the adequacy of the design process to eonti.iue the fab-

rication of the full-ticale ejector as originally designed.

F:je.-tor System Pertorn ►ance

Ejector system performance data were taken without the engine oiler

sting. The resultR shown; In figure 12 	 learly indicate a drol l in the

ejector system flow entrainment ratio throughout the c.miplete range of

Ruction to motive pressures, while the compression ratio is slightly

higher thin the basic ejector. Thi exi ►e.ted decrease in performance
iR a result of the losses in the flex lines and the perforated sheet of
the bleed ring. As a result. thr	 i.imum suction flow for the ejector
bleed system without the engine running was approximately 4.3 kilograms

per second (9.5 lb/sec) compared to the expected 6.35 kilograms per

second (14 lb!sec).

Even thuuwht thy' tn:tximum suction flow was somewhat less than was

planned for, it was still enough to produce significant reductions in
the boundary-layer thickness is shown in figure 13. The displacement

thicknes q was reduced from 1.9 millimeters (0.075 in.) at zero bleed

flow to 0.74 millimeter (0.029 in.) at maximum bleed flow; this Is a
61-percent reduction in displacement thickness. uisplacement thickness

is a calculated value by which the floe , streamlines are shifted away

from the wall owing-, to the boundar y layer. Equation (2) was used to

calculate the displacement thi:kni-ss 6* from the total-pressure data

taken near the wall of Ov inlet with a boundary-layer total-pressure

rake:

N	 10

6*	 J7	 - VH i)N
VN 1

N	 1

Acoustic Comparison of Ejector and Engine

If an ejector is to be usable in an acoustic evaluation of the ef-
fect of boundary-layer bleed on jet engine fan noise, it should be at
least 10 decibel's quieter than the engine. Since the predominant fan

noise occurs at a frequency called blaee passage frequency. the ejector
must meet this 10-decibel requirement mainly at that frequency. Also,
since tl.is test was to evaluate fan noise, the data from the forward

quadrant of the microphone arrav is thr most significant and is used
A	 in the comparison. The noise difference between the engine operating
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alone and the ejector system operating alone is shown is figure 14.

Acoustic data from two engine fan speeds are compared w:Lh data from
the maximum ejector suction flow condition. At an engine fan speed of

7070 rpm, which was the maximum speed reached in the test program, the

ejector was considerably quieter than the 10 decibels required through

the complete 1201 microphone array. At the minimum engine fan speed

tested (4465 rpm), the noise difference was less than the required 10
decibels at microphone: angles greater than 700 from the engine Inlet.

Even so, the acoustic performance of the ejector system, wrapped with
acoustic insulation and exhausting into a muffler, was considered ade-

quate (especially at the higher engine speeds) to properly evaluate the
effect of boundary-layer thickness on the engine ;an noise and the inlet
acoustic treatment. It seems probable that with additional acoustic

insulation and a muffler designed specifically for this test, the
ejector noise could be suppressed even further, especially at the rear

quadrant angles.

CONCLUDING REMARKS

Al. air ejector wao designed and built to remove boundary-layer air
from the inlet of a jet engine during performance testing of an acous-

tic inlet. The performance of the ejector was predicted very well by

the design curves used in sizing the ejector. A scale model of the
ejector was built to verify ejector performance.

Test results indicated that the ejector design would be adequate.
The ejector was wrapped with acoustic insulation and exhausted into a

muffler to reduce the noise output to a minimum of 10 decibels below

that of the engine for most test conditions. As a result, the ejector

system proved to be an effective way of reducing the boundary-layer

thickness in the inlet of the test turbofan engine in order to obtain

the desired acoustic test conditions.
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Figure 6. - Scale mndel (1(2001 ejector.

	

p	 ►	 .

:.l
	

If	 \	 I

4
!^	 r

r

Fig-ire 7. - Perspective view of NASA Lewis test facility.

ORIGINAL PAGE IS
OF P0( K QUALITY

I



e9

1W

`	 ► 	 ;	 r	 ',
t	 ^	 4

it

Location Range Func;ion

A 6994 NIm 2 GP Suction flow rate Ihlghl
694. 4 NIm 2 GP Suction flow rate Ilowi
112 500 NIm 2 Suction flow static pressure Ubsolutel
Chromel - Alumel Suction flow temperature

B 1 68440 NIm 2 Suction pressure 14 wall stalicsl; 	 manifold
C Chroniel - Alumet Suctior air temperature i 1 1.C.1

111500 NIm 2 Secondary flow	 total pressure ialnolute ►
172500Nlm 2 Secondary flow.	 staticpressureiabsolutel

0 168940 NIm 2 Diffuser discharge pressure
E Chromel - Atufrsl Primary air temperature Itotall

1 035 000 Nim Primary air total pressure labsolutel
1 035 000 Nlm l Primary air s!atu pressure labsolutei

Bounders - layer

bleed ring

Bellmouth inlet

IQ 16	 cm dlam flex hot•
I6repuiredi	 - -W 102 engine

Sial'on Muffler

0	 3.96m 595m6.51m 122m
D

i	 A	 B	 C

^liuction tube 7--L__E Mixing section

Primary air supply LFJector nozzle
I L Diffus p r section

Figure a - EJaetor instrumentation

ii

^s
41

f

rl
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