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COMPOSITE STRUCTURES FOR
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Louis F. Vosteen
Langley Research Center

SUMMARY

The development of grephite-epoxy composite structures for use on
commercial transport aircrait is one of six major technology development
efforts being conducted by the National Aeronautics and Space Administra-
tion (NASA) as part of its Aircraft Enerqy Efficiency (ACEE) program.
Taken collectively, these six technologies have the potential for reducing
the fuel consumption of commercial transports by up to 50 percent compared
to today's jet transports.

Composite structures have a high potential for early application to
transport aircraft, and the objective of the NASA prougram is to accelerate
their development to the point where the commercial aircraft builders can
incorporate these structures into their prcduction aircraft. Six components,
three secondary structures, and three primary structures, are presently
under development. The six components are described along with some of the
key features of the composite designs and their projected weight savings.

INTRODUCTION

In late 1975, the National Aeronautics and Space Administration (NASA)
initiated an extensive program to improve the efficiency of current commer-
cial transport aircraft through the development and application of some
emerging technologies that, taken collectively, could reduce the fuel con-
sumption of new aircraft by up to 50 percent in comparison to todav's
transports. This program, called the Aircraft Energy Efficiency (ACEE)
Program 1s made up of six principal activities. These six activities are
listed in Table I along with the percent fuel savings that cach, taken
alone, might contribute.

The objective of the ACFE program is to accelerate the development of
these technclogies to the point where commercial transport builders can
incorporate the technology into their production airc-aft. The time re-
quired to accomplish this will vary and depends on the current state of each
technology and the rate at which the required additional development can
proceed. O0f the six technologies listed in Table I, composite structures
are generally considered to have a high potential for early application to
commercial transports. Additional information on overall program objectives
and work content are describad in reference 1.



TABLE I.- FUEL SAVING POTENTIAL OF TECHNOLOGIES
INCLUDED IN THE AIRCRAFT ENERGY EFFICIENCY (ACEE) PROGRAM

o ENGINE COMPONENT IMPROVEMENT 5%
o ADVANCED "ENERCY EFFICIENT ENGINE" 10%
o ADVANCED TURBOPROPS 15-20%
o (OMPOSITE STRUCTURES 10-15%
0 AERODYNAMICS AND ACTIVE CONTROLS 10-20%
o LAMINAR FLOW CONTROL 20-40%
o COMBINED POTENTIAL 50%

This paper will describe the NASA-Indusiiy program expected to lead to
more extensive use of advanced composites. The term "advanced composites"
generally refers to organic or metallic matrices rein,orced with graphite,
boron, or aramid fibers. In the remainder of this paper, these materials
will be called simply composites.

Composite materials have been under development for more than 15 years.
However, they have not been used extensively on commercial aircraft. A
number of factors must be considered and certain information must be acquired
before a new material or structural concept can be integrated into a pro-
duction aircraft. Important considerations include a materials data base
adequate for design; established, verified design procedures; experienced
designers; demonstrated tangible benefits such as weight reduction or im-
proved structural performance; assurance of durability, maintainability, and
repairability; life-cycle costs comparable to or less than that of current
materials and structures; adequate facilities; trained manufacturing per-
sonnel; and confidence that the product can be delivered in a timely way for
a predictable and acceptable cost. Some of the factors can become barriers
if sufficient information is not available. Some of the factors are largely
technical while others are largely economic. Some technical concerns may
become economic if the cost of solving them is prohibitive; and, conversely,
what appears to be an economic concern might be resolved by the proper appli-
cation of technology. The purpose of the ACEE composites program is to
provide support to the transport aircraft industry that will develop the
technology required.

The approach being taken in the ACEE program is to develop, for existing
aircraft, components that have potential for significant weight savings,
coulc, if economically practical, be integrated into current aircraft pro-
duction, and serve as prototypes for similar classes of composite structure
on future new aircraft.
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COMPOSITE COMPONENTS

The components that have been selected for development are shown in
fiaure 1 and their overall size and weight are shown in Table II.
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Figure 1.- Composite components being developed as part of ACEE program.

TABLE II.- SIZE AND WEIGHT OF ACEE COMPOSITE COMPONENTS

COMPONENT DATA
AIRCRAFT
AND pLQgEgR” Bﬁé%é;¥5 RoogHORglp SPAN | COMPONENTS
COMPONENT + = X L " PER A/C
SECONDARY
STRUCTURES
727 ELEVATOR 4.1 128.3 | 1.24 0.53 | 5.26 2
DC-10 RUDDER 3.0 a1.3 | 0.97 0.60 | 4.00 1
L-1011 AILERON 3.2 63.5 | 1.34 1.39 | 2.49 2
PRIMARY
STRUCTURES
737 HORIZ. STAB. 4.8 118.4 | 1.31 0.61 ] 5.09 2
DC-10 VERT. FIN 9.36 a23.4 | 2.07 1.10| 6.95 1
Le-rom vert. Fin | 13.9 389.0 | 2.73 1.31 ] 7.62 1




The selected components show potential for significant weight savings and
offer an opportunity to develop design and manufacturing experience that could
be applied to other aircraft components in the future. 1In all cases, the
composite components are being designed to meet the same design requirements
as the metal parts they replace. In addition, the parts are being designed
to be inierchangeable with the existing metal parts. For control surfaces,
this means that existing hinge and actuator points are retained. Also, for
both the secondary and primary components, the distribution and magnitude of
loads being introduced into adjoining structure must be compatible with those
structures in order to maintain interchangeability and avoid expensive modi-
fications of existing structures. The design of each of the components will
be described in subsequent sections of this paper.

DC-10 Rudder

The development of the DC-10 graphite-epoxy rudder began several years
ago. The parts produced in the initial development program received FAA approval
for use on the DC-10 and eight rudders have been installed. The results of
the initial development programs are presented in references 2 and 3.

Fijure 2 shows an exploded view of the upper aft rudder. This rudder
segment is of multi-rib construction with two spars. Fiberglass leading
and trailing edge members, a tip fairing, and aluminum hinge fittings com-
plete the assembly. The structural box, consisting of the ribs and the two
spars, is all graphite-epoxy and manufactured as a single, cocured unit.
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Figure 2.- Construction of graphite-epoxy
DC-10 upper aft rudder.



Silicone rubber, which has a high coefficient of thermal expansion, is

used within a steel mold tool to apply pressure to the graphite-epoxy
material as the entire assembly is heated in an oven. Because the expanding
rubber provides the pressure, an autoclave is not required. The first
rudders were made by laying up 7.6 cm (3-inch) wide unidirectional tapes
for both the substructure and the skins. In a follow-on effort, the con-
tractor, Douglas Aircraft Company, investigated alternate material forms
and fabrication techniques to try to further reduce the manufacturing

cost of the graphite-epoxy rudder. The outcome of this study effort is
shown in figure 3. Significant manhour savings are projected for the manu-
facture of additional rudders in the current program. These savings arise
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ACTUAL MAN HOURS) T IMATED MAN MOUS §)

Figure 3.- Distribution of manufacturing labor for prior
rudder program and estimate of labor savings
for revised manufacturing process.

from improvements in the assembly tooling ard manufacture of common parts
as well as improvements in the layup and fabrication of the graphite parts
The reduction in g.aphite layup time accounts for about one-third of the
estimated labor savings and results primarily from a change from narrow,
unidirectional tape to broadgoods and woven fabric. Unidirecticnal broad-
goods are being used for skins and woven fabrics are being used for ribs
and spars,

The graphite-epoxy upper aft rudder is 30 percent lighter than its
aluminum counterpart and initial cost projections indicate a cost comparable
to the aluminum part once production is underway. Because the rudder is
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a ma~s balanced part, further weight savings could be achieved by re-
ducing the balance weights. Howe:ver, the composite rudder is interchange-
ab'e with the aluminum rudder, and therefore, the balance weights (which
are forward of the hinge 1ine of the forward rudder) would have to be
replaced if an aluminum rudder was ever installed to replace a composite
rudder. Since extra balance weight is acceptable from aeroelastic con-
siderations, the contractor has chosen to avoid this comp'ication at the
present time but would probably incorporate such a change when composite
rudders become production ftems.

Ten rudders will be built during this year to obtain quantitative
cost data.

L-1011 Inboard Aileron

The inboard aileron of the L-1011 is located aft of the wing-mounted
engines. Design concepts for the aileron were investigated by the
Lockheed-California Company in an earlier NASA contract and the results
of the study are given in references 4 and 5. As part of the ACEE program,
a new contract has been initiated with Lockheed for the composite aileron
development.

The design of the present aluminum aileron is shown in figure 4.

Several designs have been considered for the composite aileron. One
design has been selected for further analysis and is also shown in figure 4,
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Figure 4.- Comparison of current L-1011 aluminum aileron
design and selected composite design.



The composite design features a thin syntactic-foam-core sandwich with
graphite-epoxy face sheets, Thz internal structure is primarily graphite-
epoxy and the number of intemediate ribs has been reduced from 13 in the
aluminum design to 5 in the composite design. The syntactic-foam sand-
wich appears to be more resistant to impact damage than a honeycomb-core
sandwich, The impact damage environment the aileron must be able to
withstand comes from hailstone impact on the ground. Some preliminary
tests show that the syntactic foam sandwich covers will sustain no detect-
able damage at impact energies wel® above that produced by an 18-mm
diameter hailstone falling at terminal velocity.

The program has been underway for only a short time, so little
quantitative data are avaiiable.

Preliminary design work indicates the potential for about 25 percent
weight saving in relation to the metal aileron and a substantial reduction
in the number of separate parts and fasteners that will be needed in the
final assembly. Part reduction and fastener reduction are two important
factors that can make composite structure more economical to assemble than
conventional aluminum structur:,

Ten shipsets of ailerons (10 right hand and 10 left hand) will be
fabricated to establish a basis for projecting production costs.

727 Elevators

A graphite-epoxy elevator is being developed by the Boeing Commercial
Airnlane Company under a NASA contract. The design makes extensive use of
honeycomb sandwich structure for both the surface panels and interior ribs.
A comparison of the graphite-epoxy elevator with the present aluminum design
is shown on figure 5. The efficiency of sandwich construction for carrying
normal pressure loads and in-plane shear permit a design in which most of
the interior ribs are removed. Over most of the surface, the honeycomb
face sheets are two plies thick. One ply is unidirectional tape and the
other is woven fabric. The tape is used as the outer ply on the outer
skin because it gives a better surface for finishing. On the inner face,
the tape is next to the core and “abric is used on the exposed surface.
Fabric is somewhat more resistant to fiber breakout during drilling and,
therefore, is used on the exit side of drilled holes.

A number of major subcomponent tests are planned to verify the design.
An outline of the subcomponents, showing their locations on the elevator,
can be seen on figure 6. The elevator lies in a strong acoustic field,
therefore, some of the early tests will evaluate the response of the large
unsupported skin panels to acoustic loads and the adequacy of the skin to
spar attachments. The design of the elevator is dictated primarily by
stiffness requirements, so the strain levels tend to be low. The calculated
strain at ultimate load is generally less than 0.002 with a maximum of 0.004
in a limited region near the actuator rib.
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Figure 5.- Comparison of current 727 aluminum elevator
design and selected composite design.
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Figure 6.- Major design verification test
components for 727 elevator.

The composite portion of the elevator weighs 22 percent less than the
aluminum part. (See Table III.) The elevator is also mass-balanced, and a
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TABLE III.- COMPARISON OF WEIGHT DISTRIBUTIONS FOR
ALUMINUM AND COMPOSITE ELEVATOR DESIGNS

ALUMINUM | COMPOS ITE | WEIGHT | oo o\
DESIGN WT.| DESIGN WT. | CHANGE ?m%‘(

PRONY AND REAR SPARS 1~ B2+ 2y 1 %o 15
RIBS 121 .1 <50 | -4
SKIN PANELS 521 “s 82| <18
CONTROL TAB .1 61 50 | -4
HORN STRUCTURE 6.0 16 24| -®
CORROS 10N PROVIS IONS 0 30 +10 .
LIGHTNING STRIKE PROVISIONS | 0 1.2 1.2
TOTAL REPLACED STRUCTURE nmir | s | 33 -2
| (METAL TO COMPOSITE)

WAREY P tn 16H*S 2o |0 | ®ol 0 |
BALANCE PANEL HINGES 54,6 M9 | -97l -1
TOTAL REVISED STRUCTURE .6 “9 a7 | -8
NOSE RIBS AND SKINS 18.0 180 0o | o
n;;mc: PANEL STRUCTURE 16.0 16.0 0 0
HORN BALANCE WEIGHT | 188 1 ,

TOTAL COMMON STRUCTURE 528 28 'gj ” _J?_«
TOTAL FOR AIRPLANE SYSTEM e SN
WO ELEVATORS) | 265 | 5 | 40| -

furt..er weight saving can be effected. The amount of balance weight
that can be removed actually exceeds the weight saving on the elevator
box because of the difference between the effective lever arms. In this
case, the contractor will take advantage of the weight saving on the
balance weights because the weights can be readily replaced along with
the elevator. An overall weight saving of 26 percent is estimated.

L-1011 Vertical Tail

The overall configuration of the L-1011 vertical tail is shown in
figure 7. The aluminum design has 2 main spars and 17 ribs. Load is
introduced into the fuselage at the spars and through a continuous skin
splice joint. The canposite design retains the same basic 2-spar con-
figuration, but the number of ribs has been reduced to 12. The estimated
weight saving in iLhe new design is 28 percent.

Epoxy resins are known to absorb moisture and both moisture and temper-
ature affect the strength of graphite-epoxy composites. Figure 8 shows the
tensile and compressive strengths of notched cross-plied laminates as a



Figure 7.~ L-1011 vertical tail configuration,
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Figure 8.- Effect of temperature on the strength
of notched laminates (Narmco 5208/7300).
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function of temperature over the range of temperature of particular interest
for commercial aircr 't, The data were obtained by the Lockheed-California
Company under the present contract. The data at 220K and 295K are for “dry"
laminates. The laminates tested at 360K had 1 percent muisture by weight.

The lower temperatures can be reached at high altitude on a cold day. The
higher temperature would occur only rarely, but represents an extreme design
condition. As shown on the figure, moisture and elevated temperatur: have
only a small effect on the properties over this rature range. Additional
data on behavior of this material (Narmco 5208/7300) is given in reference 6.

Both woven fabric and unidirectiopal tape material have been considered
for the skin plies. Unidirectional tape was selected because it offered
slightly better weight savings, and, more importantly, it has a higher poten-
tial for manufacturing cost savings because tape is more adaptable to auto-
mated layup processes. Automated layup is particularly advantageous for this
part because the large surface area and physical dimension of the skin compli-
cate hand layup.

The present skin design uses hat-shaped stiffeners cocured with the skin
layup. A process being investigated to form the hats is a roll-forming
process not unlike that used to form metal parts., A schematic of the
process '35 shown in figure 9. Layers of material, some of them

TEFLON TAPE

5 PLY
9 -TAPE REELS
4 CONSOLIDATION FORMING
@ STAGE STAGE
— FEED RATE
13 QO | ninin
_—f:“__—_- L-1-N-1-1.] @ O —
- (o} [e— S
@ e —— PUILLER-TABLE
( —Wr— d 75 m LONG
o DEVELOP | FORMED AUTOMATIC
6 WIDTH HAT CUT OFF SAW

TEFLON TAPE

Figure 9.- Schematic diagram of proposed roll-form
process for producing composite hat section stiffeners.
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preplied to facilitate handling, are passed through heated rollers that
align the layers and provide initial compaction. This “flat stock” then
passes through the forming rolls and is partially cured to assure shape
retention. The preformed hats are placed on the skin layup and the
assembly is cocured in an autoclave.

The long-term durability of composites in the operating environment
is still a question of concern to the manufacturers. As part of the tail
development program, a series of long-term cyclic load environmental tests
will be performed. The component configurations are shown on figure 10
and represent a spar segment near the root attachment and a cover panel

‘AR SEGMENT ) COVER SEGMENT
10 DURABILITY SPECIMENS 10
10 STATIC STRENGTH SPECIMENS A0
N 2

Figure i10.~- Spar and skin panel components
to be used in long-term durability test program
(all dimensions are in centimeters)

ir luding the skin root joint. Twenty components of each will be built.
Cae purpose of the program is to better define the types of manufacturing
defects that might be expected in production. The components will be built
in production facilities on production tools. Parts will be carefully
inspected to locate possible defects. Some defects may require repair;
others will be allowed to remain and their rate of growth will be monitored
during the tests. A typical test cycle is shown in figure 11. Temperature,
humidity, and ‘oad will be varied. The ground-air-ground cycle will be
simulated in .ear real time, but loads will be applied in blocks of about
40 cycles spectrum load in each flight phase. Temperature extremes will
not occur on each flight, but will still be more severe than those expected
in normal service. The tests will run for sufficient time to simulate

a 20-year service life. Other major test components, and the regions

of the fin which they will represent, are shown in figure 12,
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Figure 11.- Typical test cycle for long-term aurability tests.
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Figure 12.- Major design verification test components

for L-1011 vertical tail.
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Early in the program, a manufacturis jevelopment component was made
to chack the manufacturing and assembly processes. A photograph of the
completed box is shown in figure 13, The box was about 3-m long and
1.5-m wide. A comparison of the weight of the original aluminum tail and
the current design weight of thi mposite tail is shown in Table IV.

Figure 13.- L-1011 vertical tail manufacturing
development component.

TABLE IV.- COMPARISON OF WEIGHT DISTRIBUTIONS FOR
ALUMINUM AND COMPOSITE L-1011 VERTICAL TAIL
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737 Horizontal Tail

A composite horizontal tail is being developed by the Boefn? Commer-
cial Airplane Company for the model 737 aircraft. The present aluminum
design, figure 14, is a 2-spar, multi-rib box with unstiffened skins.

FUSELAGE

LEADING EDGE -

STABILIZER BOX

\-CENTER SECTION
STRUCTURE

M. ELEVATOR BALANCE PANELS

ELEVATOR

Figure 14.- General arrangement of
aluminum 727 horizontal tail.

The box attaches to the fuselage structure through 5 lugs, 2 on the front
spar and 3 on the rear. The composite desigrn, shown in figure 15, retains
the same fuselage attach points, but about two-thirds of the ribs have
been removed and an integrally stiffened skin 1s used. The inspar ribs
will have honeycomb sandwich webs.

Major load transfer points pose special design problems fur composites.
In the horizontal stabilizer, all the load must be transferred to the lug
attachments. The composite stabilizer will use titanium reinforcement
straps that are bonded and bolted to built-up spar chords. A sketch of the
reinforced Tug and the buildup of the spar chords is shown in figure 16.
The heavy chord sections will be made by bonding precured chord elements
into the spar assembly during its cure.
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Figure 15.- Design features of composite 737 horizontal tail.
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The weight of the composite stabilizer compared to the aluminum sta-
bilizer is shown in Table V. Major weight savings are in the ribs and
spars. The composite skins are only slightly lighter than the aluminum
skins, but because of their increased stiffness, the rib spacing, and, in
turn, the number of ribs are reduced substantially,

Five shipsets of stabilizer~ will be constructed to establish manu-
facturing costs.

TABLE V.- COMPARISON OF WEIGHT DISTRIBUTIONS FOR
ALUMINUM AND COMPOSITe 737 HORIZONTAL TAIL

l ALUMINUM COMPOSITE | WEIGHT | PERCENT

DESIGN W7, | DESIGH WT, CHANGE CHANGE. |
| kg | kg | kg l ‘
T 3 .
FRONT SPAR 3.3 20.2 - 11,1 -5 |
REAR SPAR 71.1 [ 42,9 - 28,2 - 40
RIBS 60.9 | 30,3 - 30,6 - 50 ‘
COVERS | 72,4 [ 64,6 - 7.8 - 11 \
CORRDSION PROTECTION } 6.8 ¢+ 6.8
LIGHTNING PROTECTION \ 0.4 + 0.4
| | |
ACCESS DOORS 0.7 ‘ 0.9 + 0.2 + 31 .
TOTAL WE [GHT ‘ 1
(INCLUDES LH & RH I 236.4 166, 1 - 70,3 - 29,7 ‘
STABILIZERS) [

DC-10 Vertical Stabilizer

The size and general arrangement of the DC-10 vertical stabilizer is
shown on figure 17. The stabilizer is attached to the fuselage through
8 tension bolts, 2 on each spar. As they were for the 737 horizontal sta-
bilizer, these major load transfer points are an important part of the
composite design. The present design is a stepped titanium fitiing bonded
into the spar during cure. Bolts will be added to reduce the peel loads
on the bond. A sketch of this arrangement is shown in figure 18.

The skin of the stabilizer is lightly loaded and wi'l be honeycomb
sandwich construction. An integrally stiffened skin was also considered
for this design, but sandwich skins appear to have manufacturing advantages.
In addition, some of the spar cap material will be i-ntcarated with the skin
by replacing the honeycomb over the spars by solid laminate.

17
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Figure 17.- Overall size and arrangement of DC-10 vertical tail.
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The present design of the interior structure includes sine-wave webs
on both ribs and spars. Honeycomb webs may be used near the root end of
the spars to effect the transition to the bonded titanium attach fittings.

A large number of development and design verification test components
will be built and tested during the program. Some of the major design veri-
fication components are shown on figure 19,
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7 AT TIE ROD
&Y/
X/
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S REAR SPAR
BEAM
——— ATTACH
FITTINGS

Figure 19.- Major design verification test
components for DC-10 vertical tail.

The interior arrangement of the structure is constrained by the loca-
tion of rudder hinges and actuators, the actuator and root-end attachment
access panels, and the antenna. (See figure 17.) However, the improved
stiffness characteristics of the composite material are expected to result
in about a 27 percent weight savings in the redesigned structure. A pre-
liminary weight comparison is shown in Table VI.

Six vertical stabilizers will be manufactured to verify the processes
and obtain manufacturing costs.,
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TABLE VI.- COMPARISON OF WEIGHT DISTRIBUTIONS
FOR ALUMINUM AND COMPOSITE DC-10 VERTICAL TAIL

ALUMINUM COMPOSITE WEIGHT | PERCENT
DESIGN WT. DESIGN WT,| CHANGE | CHANGE
kg | kg kg

SPAR CAPS 158.4 107.3 - 51.1 -32
SPAR WEBS 62.4 50.2 - 12.2 -20
RIBS 67.9 58.4 - 9.5 -14
COVERS 87.5 61.7 - 25.7 -29
ACCESS DOORS 18.5 16.6 - 1.9 =10
MISC. STRUCTURES 28.7 15.4 - 13.3 -46
TOTAL 423.4 309.6 -113.8 -26.8

SPECIAL DESIGN CONSIDERATIONS

Some of the features of composite structure design are common to all
the components being developed. Where possible, the structure is being
designed to reduce the number of parts that go into the final assembly.

The cocuring of stiffeners and attachment angles to interior ribs and spars
reduces the number of parts as well as reducing the number of fasteners
used. Wherever possible, skin panels are made as one part with integral,
cocured, stiffening. The advantages of one-step curing processes has re-
sulted in some recent changes to the prepreg materials used in graphite-
epoxy composites. Most prepreg fabrics and tapes have resin contents in
excess of that desired for optimum laminate properties. This excess resin
improves the handling qualities of the material during layup but, in most
applications, requires a separate pressure-temperature cycle to bleed off
the excess resin. Material suppliers have cooperated with the aircraft
builders to develop prepregs that do not require bleeding. Although the
resin content is still slightly higher than that needed in the final lami-
nate, the new materials are an acceptable compromise between manufacturing
ease and laminate properties. Another desirable feature, but one that has
not yet been developed, is a self adhesive resin that could be particularly
useful for sandwich structure. Self adhesive resins are available for low
temperature applications, but the present 450K curing systems require a
separate adhesive layer to bond to other materials or to pre-cured laminates.
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Because advanced composite materials are more expensive than aluminum,
manufacturing cost reductions must be achieved through a reduction in the
labor hours that go into each part. In general, fewer separate narts and
larger individual parts require less ilabor than many small parts

Composite designers must provide for adequate corrosion protection.
Graphite acts as a noble metal and metals such ac steel and aluminum will
corrode when in contact with graphite and a suitable electrolyte. When
aluminum must be attached to the graphite, a barrier layer, such as glass/
epoxy, or a faying surface seal must be used. Also, fasteners must be
installed with nonreacting sealants., Generally titanium fasteners are used
because titanium is less reactive than aluminum,

The conductivity of graphite-epoxy composites is much lower than that
of aluminum and this difference must be considered in relation to the
electromagnetic environment of the part. For lightning protection, a
conductive layer or conductive straps must be added to the composite part.
The proposed 1ightning protection system for the 727 elevator is shown in
figure 20. The system consists of a grid of aluminum straps electrically
connected to the mass balance weight, the stabilizer structure and the
static discharge probes along the trailing edge. Because of the location on
the airplane, only the outboard portion requires lightning protection. The
L-1011 and DC-10 vertical fins will P ve a conductive coating over their
entire surface to serve as a ground plane for antennas and to protect the
structure from a swept stroke. The metal leading edge and tip structures
are most probable points for a direct strike to attach.
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Figure 20.- Lightning protection system for 727 elevator.
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CONCLUDING REMARKS

The National Aeronautics and Space Administration's Aircraft Energy
Efficiency Program is a cooperative government-industry program aimed
toward improving the efficiency of commercial transport aircraft. Emerging
technologies, such as advanced composite structures, are being brought to
maturity through a series of development contracts. These contracts focus
on the design and development of specific structural components to establish
the weight savings that can be achieved with production parts in a cost-
effective production environment,

The principal U.S. transport manufacturers, Boeing, Douglas, and Lock-
heed, are each developing two components that have significant weight-
saving potential. The components will be totally interchangeable with the
existing structures and, if economically practical, could be integrated
into current aircraft production. In addition, the components will serve
as prototypes for the development of similar classes of composite structures
on future new aircraft,

The components are in various stages of development at this time.
Preliminary weight estimates show from 25 to 30 percent weight savings frcm
the use of composites. Design concepts and methods of construction are
being selected that will enhance structural reliability and keep manufactur-
ing costs low. For all the components presently under development, the
goal is to make the composite component cost less than its metal counterpart.

As aircraft builders gain experience in producing composite hardware
an.! develop confidence in their designs and manufacturing cost projections,
the use of composites will increase substantially.
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