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FFFECTS OF PRESSURE. AND TEMPERATURE ON HOT PRFSSING A SIALON

by Pun C. Yeh and William J. (Waters

Uwis Research Center
National Aerriautics and Space Administration

Cleveland, Ohio

INTRODUCTION

Sialons are ceramics composed of elements silicon (Si), aluminum (Al),

oxygen (0) and nitrogen M. It was suggested that fully dense single phase
sialons might be more attractive than Si 3N 4 for high temperature structure.

applications, especially from an ease of fabrication point of view. 112

In addition, the strength of a truly single phase 8' (8' is formed by dis-

solving various amounts of AIN and Al 203 into the structure of 8-Si 3N 4 ) body

shuuld not degenerate as significantly at high temperature as does ho'-prese-d
N
rnSi

3N 4 which usually contains a lower melting second phase.

W	 Jack and Wilson claimed that they were able to pressureless sinter

mixes of Al 2O 3 and Si 3N 4 powders to maximum density 8' bodies. 1 however,

the moderate room temperature bend stret,bth reported by them would suggest

the presence of additional phase(s) and/or pores in the sintered body. They

did not report any high temperature bend strength results. Arrcl reported a

fully dense hot-pressed 8' body having bend strength of 825 MPa (120 Ksi) at as

high as 12000C. 2 The best 8' body produced by pressureless sintering report-

ed in his paper was only 91 percent dense with a room temperature bend strength

of 330 MPa (48 Ksi).

Subsequently, many attempts were made by other investigators to pressure-

less sinter single phase 8' bodies without success. 
3,4,5 

Layden successfully

made 8' directly into powder form but then found that this powder did not

sinter. lie concluded that a certain amount of liquid phase was necessary

to accomplish pressureless sintering of dense 8' bodies. 5 Consequently, a
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transient liquid phase (TLP) process was developed. 6 The resulting S ' body

a till contained a very minor amount of other phase(s) as reflected by the low

room temperature bend strength and the deterioration of strength at higher

temperatures. In view of the difficulties encountered in the pressureless

sintering process, hot-pressing, although usually more expensive, should

still be investigated further as an alternative process for producing dense

sialon materials with minimal amounts of second phase.

Almost all earlier hot-pressing studies of Si-Al-O-N ceramics reported

employed a pressure 27.5 MPa (4 Ksi) or higher and a temperature 1700 0C or

higher. Two recent papers by one of the authors of this paper dealt with

the hot-pressing behavior of 60 m/o Al 203 40 m/o Si 3N4 powder compacts 7,8

concentrating on temperature effects, microstructure, and phase transforma-

tions. The present paper is a continuation of the above work, investigating

the effect of pressure in combination with temperature.

The objective of this investigation was to determine the combined

effects of temperature and pressure on the resulting density of sialon.

The composition studied (60 m/o Al 203-40 m/o Si 3N4) has now been

established to lie in a phase region (b ' and X) in the Si3N4:Al203)

AIN and Si02 "equilibrium" diagram rather than in the homogeneity region of

$' phase 9 ; therefore, it may not have as attractive applicati m s as it was

once believed to have. However, the results of this investigation may pro-

vide more basic understanding about the as yet not fully explored family of

nitrogen ceramics with respect to processing and phase equilibria.

The pressure and temperature ranges studied in this paper were 3.5 MPa
2

(0.5 Ksi) to 27.5 MPa (4 Ksi) and 1550a to 17500C.

i
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EXPFRI LN"1'AL PROCEDURES

Materials

Starting materials consisted of commercially produced powders of

a -Si 3N4 and Y-Al 2 Ci 3 . Tht• supplier of the Si 3N4 powder reported it to be

94 percent a phase and 6 percent R phase. The total impurity of the Si3N4

was reported as 1. ' wt.%. The impurities were reported to be 0.92 percent

0, 0.22 percent C, <0.01 percent Ca, <0.12 percent Al, and < 0.05 percent Fe.

The Al 2 0 3 powder was reported to have a inetallic impurity level of less than

0.1 percent. Nonmetallic impurities were not reported. The , Al 
203 

powder was

reported to be essentially 100 percent Y phase.

The morphology and size range of the as received powders were determined

by transmission electron microscopy. Tile Si 3N 4 powder consisted of both

fibrous and flakelike crystallites. Ttte fibres had diameters ringing from

0.04 to 0.3 ilrr, and random lengths. Platelet type flakes rang,?:! from 0.02

to 1.0 um in maximtun dimension with random thicknesses, orders of magnitude

tt.inner than the maximum dimension. The Al 2O 3 powder was spherical and

ranged in size from 0.005 to 0.09 um with a predominant size range of from

0.01 to 0.02 um.

Apparatus and Procedure

The powders used in this investigation were mixed in the mol ratio of

6C Al 0 3AC Si N . This resulted in a powder mixture of 52.2 wt." A110 3 4

and 47.8 wt.% Si 3N4 . Charges of mixed powder of 100 gm. were processed

in the following manner: The as received powders were weighed and charged

into a O.1M diameter oteel attritor. Added to the attritor were 2200 gm.

of 3nan diameter steel balls together with about 400 ml (380 ml heptane, 20

ml of grain alcohol) of liquid cavrier. The attritor was run in air at 350

WOWW
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rpm. for 2 hours.

Blended powders were removed from the attritor and dried in two steps.

Preliminary drying; was done in air and final drying was done in vacuum. Toted

drying time was 24 hours and resulted in maximkmi moisture removal. Based on

previous studies, 7 estimated pickup of oxygen was 1.6 tc 2.5 wt.% and of iron

was 0.4 to 0,8 wt.7.

1'ransmission electron microscopy examination of the p rocessed powders

revealei that the spherical Al 2 0 3 and flakelike Si 3N4 particles were unchanged

in morphology while the fibrous Si 3N 4 had been broken into smaller lengths.

Hot pressing; of the blended powders was accomplished in a noncommercial

induction heated vacuum hot press facility, powered by a 960011z, 50 101 motor

generator. A graphite susceptor 16.5 cm O.D., X 15.5 cm I.D. x 20 cm long;

was used to evenly heat the graphite die assembly which measured 15 em diameter

by 15 cm long. Temperatures were monitored with a W-Re thermocouple inserted

in the die body, adjacent to the powder cavity. Previous runs in this unit

had indicated good agreement between optical and thermocouple readings.

Blended powder (20 to 40 gm) was precompacted by pressing at room tEmnpera-

tune and 27.5 MPa (4 KSO in the graphite die assembly. The powder was contained

in the die cavity (5.7 cm x 1.25 cm). The die cavity was lined with graphite

inserts (.1 cm thick) that had been coated with boron nitride. The boron

nitriae had been painted on as a water suspension (90 percent distilled water,

10 percent BN powder) and air dried with a heat lamp. Inserts coated with BN

acted as a reaction barrier between the powder compact and the graphite die

body.

The graphite die containing the cold pressed powder was loaded into the

hot press and a specified pressure was applied under vacuum. After 5 minutes

of vacuum pLunpdown, a flowing helium atmosphere was introduced into the system

and the heating cycle started. The pressure on the powder die was maintained
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by a sell-adjusting control valve during the heating and hold cycle of the

hot pressing operation. Holding time (at temperature) was generally about 2

hours. Hold temperatures ranged ftom 13500 to 17000C. Pressure ranged from

15 to 27.5 MPa (.5 to 4 ksi). Figure 1 shows the hot-pressing; conditions chosen

for investigation. Single tests were run for all conditions. Temperature and

ram travel were continuously recorded. Temperature was monitored by a digital

millvolt meter. Temperature control was maintained by the test facility

operator who controlled the power imput. Temperatures were generally main-

tained at	 200C during the 2 hour hold portion of the hot press cycle. Heat-

ing cycles were rot automatically controlled so the rate of temperature in-

crease varied to some degree. A typical heating, rate curve is saowli in

Figure 2.

To monitor the compacting behavior of the powder compact during both the

heating and the hold cycles of the hot pressing operation, ram travel was

measured with an LVIT (variable resistance) extensometer and recordeu. A

typical ram travel plot is also shown in Figure 2.

Transmission electron microscopy specimens were prepared from the hot-

pressed specimens using a commercial ion beam thinning apparatus and were

examined oil 	 electron microscope. X-ray diffraction patterns were obtained

on powders ground from the center portion of each trot-pressed specimen.

RE:SITLTS AND DISCUSSION
	 . - .

Density and Microstructure

All density values were measured after a 2-hour h.-)ld at the specified

temperature and pressure. For the purpose of uiscussion and comparicon,

the measured density results were also expressed in percent of the theoretical

density, PR of t-Si 3N4 (3.18 gm/cc). Figure 3 shows the effect of hot press-

ing pressure on the density of the specimen for the four different holding
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temperatures chosen for bt"dy, For the lowest temperature investigated, 15500C,

the density increased drastically as the pressure was increased from 3.5 to

14 MPa (0.5 to 2 Ksi); essentially, no noticeable density increase was

observed from 14 to 21 M1'a (2 Ksi to 3 Ksi); and then another drastic in-

crease in density was observed when the pressure was raised to 27.5 M1'a (4 Ksi).

The initial Increase in density at 1550 0C in the pressure range 3.5 to

14 MPa (0.5 to 2 Ksi) was attributed to particle rearrangement and sliding

mechanisms. This resulted in a partially sintered structure containing

many voids as shown b y the TFN micrograph in Fig. 4a. The grains are pre-

dominantly equiaxed ranging from 0.3 to 1 um in size. Very few, it any, of

the starting fine spherical )-Al 2 0 3 particles ('L 0.02 um) were found in the

micrograph (Fig. 4a). X-ray diffraction data of samples }Lessed at 15500C

showed a significant amount of a-Al 20 3 but no y-Al 20 3 . Thus, it was apparent

that the starting y-Al 20 3 had transformed to a-Al 20 3 and part of the equiaxed

grains in the micrograph are a-Al 20 3' Solid state reaction had already taken

place between particles (grains) as evident by the good bonds formed between

grains; th.ia is more clearly shown in Fig. 4b. Striated grains typical of

X-phase 10 were not observed in the micrographs and this was in agreement

with the X-ray results to he presented.

The marked increase in density when 27.5 MPa (4 KSI) was used can be

explained by plastic deformation that occurred in the sample. This was

evidenced by dislocation lines and networks and pore-free microstructure.

found in figure 5. X-ray results to be presented will reveal more informa-

tion on the densification mechanism.

For the 16000C runs, the density increased drastically to nearly fell

density when the pressure was increased from 7 to 14 MPa (1 to 2 KSI) and

then no further increase in density was observed when pressure was increased

from 14 to 27.5 MPa (2 to 4 KSI).
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For 17000C runs, a full density body was obtained at as low as 7 MPa (1 Ksi)

while a pressure of only 3.5 Pu'a (0.5 Ksi) was sufficient to produce a fully

density body at 17500C. Transmission electron microscopy examination of the

fully dense specimens made at 1600 00, 170000 and 1750 0C did not st=ow any

significant difference from the microstructure shown in figure 5.

The minio.im pressure required to produce a full de.isity body decreased

as the temperature was increased. It is interesting that a pressure of 7 MPa

(1 Ksi) was sufficient to produce a full density body at 1700 00 as compared

with the general practice of using 27.5 MPa (4 Ksi) or higher.

The effect of temperature on density at a given level of applied pressure

can be more clearly observed it. Fig. 6 where the measured density is plotted

against temperature.

lso-density contours at 5 percent p  interval as shown in Fig. 7 can also

be constructed based on the curves in Fig. 6. The shaded area outlines the

full density region which is 98% of the theoretical density of B Si 3N4 . Such a

map could be used to define the broad range of temperature and pressure conditions

to obtain a specific density. This then ma y assist in predicting microstructures

of sialon materials.

X-ray Phase Analysis

A semiquantitive method was used to express the trend of relative change

of phases in samples. Figures 8a through 8c arc• such plots showing the varia-

tion in phase content as a function of pressure for 15500 16000, and 17000C

runs, respectively. These results support and supplement the observation

presented in the previous section.

For the 1550 0C runs, one of the most significant features was the appear-

ance of a trace amount of X-phase at 17 MPa (2.5 Ksi) and the increased levels

of X-phase at 21 and 27.5 MPa (3 Ksi and 4 Ksi). The much higher density value

4.

i



8

of the 27.5 MI'a (4 Ksi) sample as compared with the 21 Ml'a (3 Kai) sample (fig.

3) could reflect possible plastic deformation in the material as indicated by

the dislocations evident in Fig. 5. The continued :eduction in@i-Si 3N4 phase

as the pressure was increased might also play a role in the densificatian pro-

cess. A significant amount of a-Al 20 3 was present in all samples but no

y -Al 2 0 3 was detectable. Our earlier work  showed that ) -Al 2 0 3 began trans-

forming to a-Al 20 3 below 1200°C and had comp;:etely transformed at 1300jC.

It is interesting to note in comparing Figs. 8(a) and (b) that with an increase

of 50°C, from 1550°C to 1600 0C, all a-Si 3N4 was eliminated even for the 7 MI'a

(1 KBi) sample--the lowest pressure investigated at 1600°C; also, the X-please

was present at 7 MI'a ( 1 KSI) and had a higher relative X-ray peak intensity

than that of a-A1 0 3 out to 27.5 MPa (4 KSI). As the pressure was increased
2

to 27.5 MPa (4 Ksi), 8' phase became predominant and only tract- amounts of

a-Al203 and X-phase were detected. This probably was the equilibrium state

of the specimen at .600°C.

i
Figure 9 is a behavioral or quasi phase equilibrium diagram for the

sialon system y . The composition chosen for study in this paper is the

60 m/o Al 20 3 - 40 m/o Si 3N4 composition and is so marked on the figure.

This composition is located in the ( h'+X) region. Figure 9 may be used

as a guide to understand the reaction between Al 2 0 3 and Si 3N 4 particles

in the powder compact under hot-pressing. As the reaction progresses to-

ward the equilibrium state ( P' and X-phase), Al 2 03 should diminish as more

S' and X-pleases are formed. Eventually, Al 20 3 disappears and X-phase also

reduce:, in amount relative to the increased amount of B' formed. The

above trend was observed for the 1600°C runs as pressure increases (Fig.

8b). With increasing pressure, the continued change in phase Content

toward "more equilibrium state" suggested that pressure enhances the

ORIGINAL PAGE I'$
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reaction.

For the 17000C runs, Fig. 8c, Al 204 did not appear even in the sample

hot-pressed at only 3.5 Mra (0.5 Ksi). The decline in X-phase with in-

creasing; pressure could be due LL further interaction between X and F'

to reach an equilibrium condition.

Figure 10 shows the consistent increase in unit cell size of the H

phase as a function of pressure for all temperatures investigated using

C -axis as an indicator. The systematic increase in C-axis as pressure in-

creases is further evidence that pressure enhances the phase equilibria

reaction. It is also of interest to note the slower but continuous in-

crease in" C" for 1600 0C runs beyond 14 MI'a (2 Ksi) and the 17000C runs

beyond 7 MPa (1 Kai). Both conditions (16000C - 14 M1 1a, 1700 0C - 7 M11a)

correspond to the first full density samples of their respective temperature

series of runs.

CONCLUDING REMARKS

1. Fully dense sialon bodies (+98-/. p R ) can be produced by hot-press-

ing at a pressure much lower than the general practice in the field. For

0
example, only 7 MPa (1 Ksi) was sufficient at 1700 C and 14 MPa (2 Ksi) at

0
1600 C as compared with 27.5 MPa (4 Ksi) at the lower temperature of 15500C.

2. Increased pressure enchances the phase equilibrium reaction.

3. Iso-density contour can be constructured for the sialon composition

chosen for study. This diagram has potential to help design desired micro -

structures.

4. The densificat,on of the sialon studied was very sensitive to the

phase changes (solids or liquids) taking place in the sample durinV hot press-

ing.

5. Micrestructures of samples exceeding 98% theoretical density offer

evidence that plastic deformation has contributed to densification.

6
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