INTEGRAL METHOD FOR THE CALCULATION OF THREE-DIMENSIONAL, LAMINAR AND TURBULENT BOUNDARY LAYERS

H. W. Stock

INTEGRAL METHOD FOR THE CALCULATION OF THREE-DIMENSIONAL, LAMINAR AND TURBULENT BOUNDARY LAYERS

H. W. Stock
Dornier, Inc.

Leo Kanner Associates,
Redwood City, California 94063

Translation of "Integralverfahren zur Berechnung Drei­dimensionaler, Laminarer und Turbulenter Grenzschichten," Dornier GMBH,
Friedrichshafen, West Germany, Report, 77/51 B, BMV-Vertrag Nr.
T/RF 410/51 154, October 1977, 129 pages

Integral methods for the calculation of three-dimensional, laminar and turbulent boundary layers are presented. The method for turbulent flows is a further development of an existing method; profile families with two parameters and a "lag-entrainment method" replace the simple "entrainment" method and power profiles with one parameter. The method for laminar flows is a new development. The "moment of momentum" equations are used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings are calculated. The influence of wing tapering on the boundary layer development is shown. The turbulent boundary layer for a revolution ellipsoid has been calculated for 0° and 10° incidence angle.
Table of Contents

<table>
<thead>
<tr>
<th>Designations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. General Fundamentals</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Choice of Coordinates</td>
<td>2</td>
</tr>
<tr>
<td>2.2 The Metric Coefficients of the Coordinate System</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Basic Equations</td>
<td>4</td>
</tr>
<tr>
<td>3. An Integral Method for the Calculation of Three-dimensional Turbulent, Incompressible Boundary Layers</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Empirical Statements</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1 Velocity Profiles</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1.1 Direction of Main Flow</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1.2 Direction of Crossflow</td>
<td>11</td>
</tr>
<tr>
<td>3.1.2 Wallfriction Equation</td>
<td>13</td>
</tr>
<tr>
<td>3.1.3 Entrainment Coefficient F</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Final Form of the Differential Equations</td>
<td>16</td>
</tr>
<tr>
<td>3.3 Numerical Integration</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Comparison with Experiments</td>
<td>19</td>
</tr>
<tr>
<td>3.4.1 van den Berg and Elsenaar [11]</td>
<td>19</td>
</tr>
<tr>
<td>3.4.2 Johnston [14]</td>
<td>21</td>
</tr>
<tr>
<td>3.4.3 Vermeulen [16]</td>
<td>21</td>
</tr>
<tr>
<td>3.5 Discussion</td>
<td>22</td>
</tr>
</tbody>
</table>
4. An Integral Method for the Calculation of Three-dimensional, Adiabatic Laminar, Compressible Boundary Layers

4.1 Velocity Profiles

4.1.1 Similitude Solutions for the Two-dimensional Incompressible Boundary Layer

4.1.2 Direction of Main Flow

4.1.3 Direction of Crossflow

4.2 Determination of Integral Functions

4.3 Numerical Integration

4.4 Comparison with the Calculated Results of a Difference Method

4.5 Discussion

5. Boundary Layers on Wings

5.1 The Influence of Wing Tapering on the Development of a Three-dimensional, Turbulent Boundary Layer on a Transsonic Wing

5.1.1 The Metric Coefficients

5.1.2 Descriptions of the Various Types of Calculations

5.1.3 Discussion of Results

5.2 The Development of the Laminar Boundary Layer on a Transsonic Wing

6. Turbulent Boundary Layers on Bodies (Revolution Ellipsoid)

6.1 The Metric Coefficients

6.2 Results

7. Summary
References 44

Appendix A. Definition of functions a_i and b_i 47

Appendix B. The integral functions in the x,y,z coordinate system 48

Appendix C. Relation between the integral functions in the x,y,z and t,n,z coordinate system 50

Appendix D. (Turbulent Boundary Layer) Calculation of the integral functions of the boundary layer in the t,n,z coordinate system 55

Appendix E. (Turbulent Boundary Layers) The integral functions of the boundary layer in the x,y,z coordinate system 58

Appendix F. (Turbulent Boundary Layer) The right-hand sides of equations (31)-(36) 61

Appendix G. (Turbulent Boundary Layer) Calculation of the initial condition 64

Appendix H. (Laminar Boundary Layer) The transformed and physical integral functions 66

Appendix I. (Laminar Boundary Layer) The right-hand sides of the equations (62)-(66) 74
Designations

A function defined in eq. (19)

a velocity of sound

a variable function, eq. (54)

a main axis of revolution ellipsoid

ai functions defined in appendix A, i=1.5

B constant in eq. (14)

b variable function, eq. (55)

b main axis of revolution ellipsoid

bi functions defined in appendix A, i=1.5

c variable function, eq. (59)

c wing chord

cf wall friction coefficient

cfx, cfy, cfz, cfw components of the wall friction coefficient in the x,y,t, resp. n-direction

Di functions defined in appendix I, i=1.5

f current function

f' defined as \(\frac{df}{d\eta} = \frac{U}{U_e} \)

f''', f''' higher derivations of f after \(\eta \).

f''w velocity gradient of the main flow direction at the wall

\[
\frac{f''}{w} = \left[\frac{\partial(U_e/V)}{\partial \eta} \right]_w
\]

h1, h2 metric coefficients

H shape factor \(H = \frac{\delta^X}{\delta_{11}} \)

\(\tilde{H} \) shape factor \(\tilde{H} = \frac{1}{\int_0^\delta \frac{\varphi}{\delta e} (1 - \frac{U}{U_e}) \, dz} \)
shape factor \(H = \frac{\delta - \delta_i}{\theta_{11}} \).

functions defined in appendix F, \(i = 1.6 \)

von Kármán constant

Mach number

exponent in eq. (41)

crossflow direction

transformed dissipation integrals, appendix H

transformed integral functions, appendix H

static pressure

function defined in appendix A

dissipation integrals of the profiles in the directions of main current and crossflow current, appendix C

main flow direction

resultant velocity at the outer edge of the boundary layer

components of the velocity in the directions of main flow and crossflow

components of the velocity in the \(x,y,z \) direction

components of the velocity \(U_e \) in \(x \) and \(y \) direction

universal wake function

Cartesian coordinates

curvilinear, nonorthogonal coordinates

length defined in Fig. 29

angle between the projection of the flow line at the outer edge of the boundary layer onto the body surface and the \(x \)-direction
\(\alpha \) \hspace{1em} \text{angle of attack}
\(\beta \) \hspace{1em} \text{pressure gradient factor}
\(\beta \) \hspace{1em} \text{wallcurrent line angle}
\(\delta_1 \delta_2 \) \hspace{1em} \text{boundary layer thickness in the physical, resp. transformed plane}
\(\delta^x \) \hspace{1em} \text{displacement thickness of the three-dimensional boundary layer}
\(\delta^x_1 \delta^x_2 \) \hspace{1em} \text{displacement thicknesses of the profiles in the main flow and crossflow directions, appendix C}
\(\Delta^x_1 , \Delta^x_2 \) \hspace{1em} \text{displacement thicknesses of the profiles in the } x, \text{ resp. } y \text{-direction, appendix B}
\(\Delta^x_1 , \Delta^x_2 \) \hspace{1em} \text{displacement thickness, appendix B}
\(\eta \) \hspace{1em} \text{similitude variable}
\(\eta_\delta \) \hspace{1em} \text{value of the similitude variables for which } \frac{U}{U_e} = 0.99 \
\(\Theta_{11}, \Theta_{12}, \Theta_{21}, \Theta_{22} \) \hspace{1em} \text{moment loss thicknesses of the profiles in the } x, \text{ and } y \text{-directions, appendix B}
\(\Theta_{11}, \Theta_{112}, \Theta_{221}, \Theta_{222} \) \hspace{1em} \text{moment loss thicknesses of the profiles in the directions of main flow and crossflow, appendix C}
\(\Theta_{11}, \Theta_{112}, \Theta_{221}, \Theta_{222} \) \hspace{1em} \text{energy loss thicknesses of the profiles in the } x \text{- and } y \text{-direction, appendix B}
\(\Theta_{111}, \Theta_{112}, \Theta_{221}, \Theta_{222} \) \hspace{1em} \text{energy loss thicknesses of the profiles in main flow and crossflow directions, appendix C}
\(\lambda \) \hspace{1em} \text{angle between the } x \text{- and } y \text{-directions}
\(\lambda_0 \) \hspace{1em} \text{angle between the } x \text{- and } y \text{-directions at the origin of the coordinates}
\(\mu \) \hspace{1em} \text{coefficient of viscosity}
\(\nu \) \hspace{1em} \text{kinematic viscosity}
\(\pi \) \hspace{1em} \text{pressure gradient factor}

vii
\[\rho \] density
\[\sigma \] wall friction factor
\[\tau_x, \tau_y \] shear stress in the x-, resp. y-direction
\[\phi_v, \phi_H \] angle of sweepback of the leading, resp. trailing wing edge
\[\phi_i, j \] functions defined in appendix E, \(i=1.2; j=0.2 \)
\[\phi, \psi \] angle defined in Fig. 37
\[\phi, \psi \] coordinates of the revolution ellipsoids
1. Introduction

Methods of calculation for three-dimensional, laminar and turbulent boundary layers and their application for three-dimensional aircraft wings and bodies will be described in this study. The methods of calculation are based on integral methods which, when compared to difference methods, suffer a loss of accuracy and are less flexible with regard to the use of various turbulence models. On the other hand, they require much shorter calculation times and storage facilities.

The integral method for the calculation of turbulent flows is an improved version of an existing method, the method for laminar flows is a new development.

2. General Fundamentals

2.1 Choice of Coordinates

There are two directions marked for three-dimensional boundary layer currents, as shown in Fig. 1. One direction results from the projection of the flow line at the outer edge of the boundary layer onto the body surface and indicates the direction of the main flow \(t \); the other one runs vertical to the main flow direction \(t \) and represents the crossflow direction \(n \). The distribution of the three-dimensional velocity

*Numbers in the margin indicate pagination in the foreign text.
profile into main flow and crossflow directions is shown in Fig. 1.

Three-dimensional boundary layers in the flow line coordinates \(t \) and \(n \) were often calculated; where \(t \) and \(n \) are curvilinear, orthogonal coordinates. Significant drawbacks result from the use of flow line coordinates. 1. The course of the flow lines at the outer edge of the boundary layer must be calculated. 2. The flow line coordinates must be newly determined for the same body geometry when the flow situation changes (change of angle of attack for instance). The introduction of arbitrary, curvilinear nonorthogonal coordinates \(x \) and \(y \) removes these drawbacks. In Fig. 1 the distribution of the three-dimensional velocity profile into the \(x \)- and \(y \)-directions is shown. There are simple relations between the velocity profiles in the \(t \)-, resp. \(n \)- and \(x \)- resp. \(y \)-direction, in Fig. 2, through the angles \(\alpha \) and \(\lambda \):

\[
\begin{align*}
\mathcal{U} &= \frac{U \sin (\lambda - \alpha) - V \cos (\lambda - \alpha)}{\sin \lambda} \\
\mathcal{U}_n &= U_n \frac{\sin (\lambda - \alpha)}{\sin \lambda} \\
V &= \frac{U \sin \alpha + V \cos \alpha}{\sin \lambda} \\
V_i &= U_i \frac{\sin \alpha}{\sin \lambda}
\end{align*}
\]
U_e is in this case the resultant velocity at the outer edge of the boundary layer, u_1 and v_1 are its components in the x- and y-directions. U and V are the velocity components in the t- and n-directions, see Fig. 1.

λ is the angle between the x- and y-direction; α is the angle between the flow line projection at the outer edge of the boundary layer onto the body surface and the x-direction and $\alpha + \beta$ is the angle between the wallflow line and the x-direction.

2.2 The Metric Coefficients of the Coordinate System

When the body surface, for which the boundary layer is to be calculated, is given in Cartesian coordinates X,Y,Z, then a curvilinear coordinate system x,y can be so chosen on the surface that each point x,y defines a single point X,Y,Z. The transformation of the Cartesian coordinate system into the curvilinear one can be written as

\[X = X(x,y) \]
\[Y = Y(x,y) \]
\[Z = Z(x,y) \] \hspace{1cm} (2)

and the metric coefficients h_1,h_2 and g of the curvilinear system are given by

\[h_1^2 = \left(\frac{\partial X}{\partial x} \right)^2 + \left(\frac{\partial Y}{\partial x} \right)^2 + \left(\frac{\partial Z}{\partial x} \right)^2 \]
\[h_2^2 = \left(\frac{\partial X}{\partial y} \right)^2 + \left(\frac{\partial Y}{\partial y} \right)^2 + \left(\frac{\partial Z}{\partial y} \right)^2 \]
From eq. (2) one gets, after differentiation over x and y,

\[
\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad (4)
\]

and

\[
\frac{\partial h_n}{\partial x} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2} \quad (4)
\]

with similar expressions for $\frac{\partial h_n}{\partial x}$, $\frac{\partial h_n}{\partial y}$, $\frac{\partial h_n}{\partial x}$, and $\frac{\partial h_n}{\partial y}$

2.3 Basic Equations

It is sufficient for the derivation of integral equations to start with the equations of the laminar boundary layers, since the integral equations for laminar and turbulent boundary layers are identical.
In nonorthogonal curvilinear coordinates the continuity equation and the x- and y- pulse equations are

continuity equation

$$\frac{\partial}{\partial x} \left(\frac{\rho}{h_x} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho}{h_y} \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\rho}{h_z} \frac{\partial w}{\partial z} \right) = 0 \quad (5)$$

x-pulse equation

$$\rho \left(\frac{u}{h_x} \frac{\partial u}{\partial x} + \frac{v}{h_y} \frac{\partial u}{\partial y} + \frac{w}{h_z} \frac{\partial u}{\partial z} + a_1 u^2 + a_2 v^2 + a_3 w^2 + a_4 u v + a_5 w v \right) \quad =$$

$$\tau_x \frac{\partial p}{\partial x} + \alpha_x \frac{\partial p}{\partial y} + \frac{\partial \tau_x}{\partial z} \quad (6)$$

y-pulse equation

$$\rho \left(\frac{u}{h_x} \frac{\partial v}{\partial x} + \frac{v}{h_y} \frac{\partial v}{\partial y} + \frac{w}{h_z} \frac{\partial v}{\partial z} + b_1 u^2 + b_2 v^2 + b_3 w^2 + b_4 u v + b_5 w v \right) \quad =$$

$$\frac{\partial p}{\partial x} \quad (7)$$

\(\tau_x \) and \(\tau_y \) are the shearstresses in the x- and y- directions, \(u, v, \) and \(w \) are the velocity components in the x, y and z directions, \(\rho \) is the density and \(p \) the static pressure. The functions \(a_i \) and \(b_i \) are functions of the metric coefficients, as per appendix A. After integrating equations (6) and (7) from \(z=0 \) to \(z=\delta \) (where \(\delta \) is the boundary layer thickness) and using equation (5) one gets for the

x-pulse integral equation

$$\frac{4}{h_x} \frac{\partial \Theta_{1x}}{\partial x} + \frac{1}{h_y} \left\{ \frac{(2-M_e^2)}{u_e} \frac{\partial U_e}{\partial x} + \frac{1}{\rho} \frac{\partial}{\partial x} \left(\frac{q}{h_1} \right) + a_1 \right\} + \frac{1}{h_2} \frac{\partial \Theta_{1z}}{\partial y} \quad (8)$$

ORIGINAL PAGE IS OF POOR QUALITY
The y-pulse integral equation

\[\frac{1}{h_y} \frac{\partial \Theta_{x2}}{\partial x} + \Theta_{x2} \left\{ \frac{(2-M_e^2)}{h_y} \frac{\partial U_e}{\partial x} + \frac{1}{q} \frac{\partial}{\partial y} \left(\frac{\varphi}{h_y} \right) \right\} = \Delta_x \left\{ \frac{1}{h_x} \frac{\partial v_x}{\partial x} + b_1 \frac{U_x}{U_e} \right\} + \Theta_{x1} b_1 = \frac{c_{f_x}}{2} \]

The equations employed here, which are known as "moment of momentum" equations in the English language literature and have so far been used only for the calculation of two-dimensional currents, are derived in the following manner. The x-pulse equation, which is multiplied by the velocity component \(\dot{u} \), is integrated from \(z=0 \) to \(z=\delta \) and by using the continuity equation multiplied by \(\dot{u}^2/2 \) one gets the

x- "moment of momentum" equation

\[\frac{1}{h_x} \frac{\partial \Theta_{x1}}{\partial x} + \Theta_{x1} \left\{ \frac{(3-M_e^2)}{h_x} \frac{\partial U_e}{\partial x} + \frac{1}{q} \frac{\partial}{\partial x} \left(\frac{\varphi}{h_x} \right) + 2 \alpha_x \right\} = \frac{1}{h_x} \frac{\partial \Theta_{y1}}{\partial y} \]

M_e is the Mach number of the outer edge of the boundary layer in this case and \(c_{f_x} \) and \(c_{f_y} \) are the components of the wall friction coefficient \(c_f \) in the x- and y- directions.
In the same way one gets the y-"moment of momentum" equation by integrating the y-pulse equation multiplied by the velocity component v from $z=0$ to $z=\delta$ and using the continuity equation multiplied by $v^2/2$.

y-"moment of momentum" equation

\[
\begin{align*}
\frac{1}{h_x} \frac{\partial \Theta_{221}}{\partial x} + \Theta_{221} \left\{ \left(\frac{3-M_e^2}{h_x^2} \frac{1}{U_e} \frac{\partial U_e}{\partial x} + \frac{1}{q} \frac{\partial}{\partial x} \left(\frac{q}{h_x} \right) + 2b_3 \right) + \frac{1}{h_x^2} \frac{\partial \Theta_{222}}{\partial y} \right\} \\
+ \Theta_{222} \left\{ \left(\frac{3-M_e^2}{h_x^2} \frac{1}{U_e} \frac{\partial U_e}{\partial y} + \frac{1}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_x} \right) + 2b_2 \right) + 2(\Delta_x^L - \Delta_e^L) \left\{ \frac{1}{h_x^2} \frac{1}{U_e^2} \frac{\partial v_x}{\partial y} \right\} \right. \\
+ b_4 \frac{u_x^2}{U_e^2} + b_5 \frac{v_x^2}{U_e^2} \left\} + 2(\Theta_{221} - \Theta_{22}) \left\{ \frac{1}{h_x} \frac{1}{U_e} \frac{\partial v_x}{\partial x} + b_3 \frac{v_x}{U_e} \right\} \\
+ 2b_3 \Theta_{412} = 2S_y
\end{align*}
\]
in addition the "entrainment" equation is used for calculation of turbulent flows since it describes the change of mass flow in the boundary layer.

"Entrainment equation"

\[
\frac{1}{S_e U_e} \left[\frac{\partial}{\partial x} \left(\frac{S_e q}{h_a} \left(u_e \delta - U_e \Delta^x \right) \right) + \frac{\partial}{\partial y} \left(\frac{S_e q}{h_2} \left(v_e \delta - U_e \Delta^x \right) \right) \right] = F
\]

The displacement thickness \(\delta^X \) of the three-dimensional boundary layer, which is often required as result of a boundary layer calculation, can be calculated from

\[
\frac{\partial}{\partial x} \left(\frac{S_e q \Delta^x}{h_a} \right) + \frac{\partial}{\partial y} \left(\frac{S_e q \Delta^x}{h_2} \right) = \frac{\partial}{\partial x} \left(\frac{S_e q U_e \Delta^x}{h_a} \right) + \frac{\partial}{\partial y} \left(\frac{S_e q U_e \Delta^x}{h_2} \right)
\]

Equation (13) has been derived by Myring [1] according to the concept of the equivalent sources by Lighthill [2]. Equation (13) can be solved as soon as the functions \(\Delta^X_1 \) and \(\Delta^X_2 \) are known. It should be mentioned that equation (13) is not required for determination of the boundary layer development; it is solved independently of the boundary layer equations and serves only for the determination of the displacement thickness \(\delta^X \).
The integral functions of the boundary layer in the x,y,z coordinate system, Fig. 1, which appear in equations (8)-(13), are listed in appendix B. The integral functions of the x,y,z coordinate system can be expressed by the appropriate integral functions of the t,n,z coordinate system, with the help of equation (1), as per appendix C.

Three-dimensional laminar and turbulent boundary layers in curvilinear nonorthogonal coordinates can now be calculated with the above listed basic equations. Velocity profiles for the main flow and crossflow directions [t,n,z coordinate system] and temperature profiles are required for that. If those are available, the integral functions in the x,y,z coordinate system can be calculated in a simple manner, as shown in appendices B and C.

3. An Integral Method for the Calculation of Three-dimensional Turbulent, Incompressible Boundary Layers

Cooke and Hall [3] have shown in their study that for three-dimensional boundary layers the flow in the direction of the main flow corresponds to a two-dimensional boundary layer flow. Myring [1] has accepted this assumption in his method for the calculation of three-dimensional, turbulent, incompressible boundary layers through nonorthogonal, curvilinear coordinates. He used the pulse equations (9) and (10) and the entrainment equation (13) for determination of the boundary layer development. The description of the entrainment coefficient F, equation (13), is based on the concepts by Head [4]. The differences between the present method and that of Myring are as follows:

1. Power profiles of a single parameter for description of the velocity distribution in the direction of the main flow
have been replaced by Coles' profiles of two parameters [5]. The wall friction parameter describes the velocity distribution close to the wall and the pressure gradient parameter determines velocity distribution in the outer part of the boundary layer.

2. The additional empirical information required about the wall friction coefficient, when power profiles are used, drops out in this case.

3. Instead of the entrainment method used by Myring, in which the entrainment coefficient is determined directly, a "lag-entrainment" method has been employed in the present method which considers the nonequilibrium effects of the boundary layer.

3.1 Empirical Statements

When calculating incompressible, adiabatic boundary layers the need to provide temperature profiles for the determination of integral functions is eliminated. The static temperature does not change in the boundary layer along coordinate z.

3.1.1 Velocity Profiles

3.1.1.1 Direction of Main Flow

The velocity profiles with two parameters by Coles [5] are used, as described by the wall principle and the wake principle,

\[
\frac{U}{U_e} = \frac{\tau}{k} \ln \frac{z}{\delta} + \frac{\tau}{k} \frac{\nu}{k^2} W \left(\frac{z}{\delta} \right) + \sqrt{B}
\]

(14)
where k is the von Kármán constant, δ is the boundary layer thickness, π the pressure gradient parameter, W the universal wake function which can be approximated (6) through

$$W\left(\frac{z}{\delta}\right) = 1 - \cos\left(\pi \frac{z}{\delta}\right)$$

(15)

and θ the wall friction parameter which stands in the following relation to the wall friction coefficient c_{ft}

$$\theta = \left(\frac{c_{ft}}{2}\right)^{1/2}$$

(16)

The velocity distribution can also be written in a form such as is used here for determination of the integral functions, with the values for $z=\delta$, as determined from equation (14), entered into equation (14) with $U=U_e$

$$\frac{U_e - U}{U_e} = \frac{\theta}{k} \left\{ \Pi \left[2 - W\left(\frac{\xi}{\delta}\right) \right] - \ln \frac{\xi}{\delta} \right\}$$

(17)

3.1.1.2 Direction of Crossflow

As in Myring's [1] study, the statement by Mager [7] and Johnston [8] describing the crossflow profiles as functions of those in the main flow direction are applied here.

Mager [7] suggested the following relation

$$\frac{V}{U_e} = \frac{U}{U_e} A \left(1 - \frac{z}{\delta}\right)^2$$

(18)
where A has the following relation to the wall flow line angle β, as seen in Figs. 1 and 2, which is equal to the angle between the projection of the flow line at the outer edge of the boundary layer of the body surface and the wall flow line,

$$A = \tan \beta$$ \hspace{1cm} (19)

Johnston [8] provides for the boundary layer flow next to the wall the correlation

$$\frac{V}{U_e} = \frac{U}{U_e} \tan \beta$$ \hspace{1cm} (20)

and for the remaining part of the boundary layer

$$\frac{V}{U_e} = A (1 - \frac{U}{U_e})$$ \hspace{1cm} (21)

Johnston has shown that it is sufficient to use equation (21) for the calculation of integral functions of the crossflow.

The relation between A and β is given by Johnston as

$$\tan \beta = A (0.1 \left[c_{ft} \cos \beta \right]^{-1/2} - 1)$$ \hspace{1cm} (22)

with the aid of the profiles in the directions of main flow and crossflow the integral functions in the t,n,z coordinate system can be stated as functions of δ,n,σ and A, in appendix D, which, in that way, become variable functions in the proposed method of calculation.
Integral functions of the x, y, z coordinate system are listed as functions of $\alpha, \lambda, \delta, \pi, \varpi$ and A in appendix E.

The necessary derivations of the integral functions from $\alpha, \lambda, \delta, \pi, \varpi$ and A can easily be determined.

3.1.2 Wallfriction Equation

So far only three equations are available for the calculation of four dependent variables δ, π, ϖ, and A: two pulse equations and one entrainment equation. A differential equation which can be derived from the expression for the wallfriction parameter ϖ, will be used as the fourth. Inserting $z=0$ with $U=U_e$ in equation (14) results in an implicit equation for

$$\frac{1}{\varpi} - \frac{1}{k} \ln \varpi = \ln \left(\frac{\partial U_e}{\nu} \right) + \frac{2\pi}{k} + B \right)$$

Equation (23), differentiated for x, represents the fourth differential equation that must be solved simultaneously with the pulse equations and the entrainment equation

$$\frac{1}{\delta} \frac{\partial \delta}{\partial x} + 2 \frac{\partial \pi}{\partial x} + \left(\frac{1}{\varpi} + \frac{k}{\nu^2} \right) \frac{\partial \varpi}{\partial x} = - \frac{1}{U_e} \frac{\partial U_e}{\partial x}$$

3.1.3 Entrainment Coefficient F

Myring [1] used in his study the relation between F and the form parameter H_1 as suggested by Head [4] for two-dimensional flows. This empirical relation is based on measurements in boundary layers at equilibrium. Another suggestion was made by Horton [9], which takes into consideration
the so-called "upstream history effects" on the coefficient F in boundary layers of nonequilibrium.

The entrainment coefficient F is not given as the function of the form parameter H_1, as by Head, but is calculated through a differential equation, which is solved simultaneously with the abovementioned four differential equations,

$$\frac{\partial F}{\partial x} = C \frac{F_e - F}{\delta_c}$$

(25)

and where F_e is the entrainment coefficient under conditions of equilibrium, δ_c is a characteristic boundary layer thickness and C is a constant.

Horton [9] assumes that entrainment is closely bound up with the average shear stress in the outer part of the boundary layer and showed that measurements in the boundary layers at equilibrium can be correlated with

$$F_e = \frac{0.122}{(H_1 - 2.3)^{1.38}}$$

(26)

where $\tau_{0.5}$ represents the shear stress for $z/\delta = 0.5$. A mixing method relation of the Prandtl type is used for conversion of equation (26) into a relation between F_e and $(\partial U/\partial z)_{0.5}$,

$$\frac{\tau_{0.5}}{\gamma_e U_e^2} = \left(\frac{\partial U}{\partial \frac{z}{\delta}}\right)^2 \left(\frac{\rho}{\sigma}\right)^2$$

(27)

where $1/\lambda = 0.083$.
With the aid of Coles' profiles it can be shown that

\[
\left(\frac{\partial U}{\partial \xi} \right)_{0.5} \approx \frac{1.87}{H_4 - 2.3}
\]

(28)

The equations (26)-(28) result in

\[
F_G = 1.585 \left(\frac{\tau_{0.5}}{\delta_c U_e^2} \right)^{0.69}
\]

(29)

with

\[
H_4 = \frac{\delta - \delta_1^x}{\Theta_{11}}
\]

(30)

In Horton's study [9] the characteristic boundary layer thickness \(\delta_c \) in equation (25) was equal to the pulse loss thickness \(\theta_{11} \) and the corresponding value for \(C \) was \(C = 0.012 \). It turned out, however, that boundary layer thickness \(\delta \) represents a more suitable measure of the characteristic thickness since it fits better into the order of magnitude of the big "eddies" that produce entrainment. The corresponding value for \(C \) is \(C = 0.1 \). This \(C \) value corresponds to a typical relaxation length of 10 and agrees with the value by Bradshaw [10] in the equation for scaling of the dissipation length, which takes on a form similar to equation (25).

Since entrainment occurs in the outer part of the boundary layer, where velocities of the crossflow are small, the two-dimensional view can be extended to three-dimensional flows when entrainment is coupled to the velocity profiles in the main flow direction.
3.2 Final Form of the Differential Equations

Equations (8), (9), (12), (13) and (25) can be written with the aid of the empirical statements.

x-pulse equation

\[
\phi_{14} \frac{\partial \Sigma}{\partial x} + \delta \phi_{14} \frac{\partial \Sigma}{\partial x} + \delta \phi_{14} \frac{\partial \Sigma}{\partial x} + \delta \phi_{14} \frac{\partial A}{\partial x} = J_1 \quad (31)
\]

y-pulse equation

\[
\phi_{24} \frac{\partial \Sigma}{\partial x} + \delta \phi_{24} \frac{\partial \Sigma}{\partial x} + \delta \phi_{24} \frac{\partial \Sigma}{\partial x} + \delta \phi_{24} \frac{\partial A}{\partial x} = J_2 \quad (32)
\]

entrainment equation

\[
\phi_3 \frac{\partial \Sigma}{\partial x} + \delta \phi_3 \frac{\partial \Sigma}{\partial x} + \delta \phi_3 \frac{\partial \Sigma}{\partial x} + \delta \phi_3 \frac{\partial A}{\partial x} = J_3 \quad (33)
\]

Wall friction equation

\[
\frac{\partial \Sigma}{\partial x} + \delta \left(\frac{1}{\dot{v}} + \frac{k}{\dot{v}^2} \right) \frac{\partial \Sigma}{\partial x} + 2 \delta \frac{\partial \Sigma}{\partial x} = J_4 \quad (34)
\]

entrainment coefficient equation

\[
\frac{\partial F}{\partial x} = J_s \quad (35)
\]
displacement area equation

\[
\frac{\partial \delta x}{\partial x} = \gamma_s
\]

(36)

The expressions \(I_i \) are listed in appendix F and the functions \(\phi_{ij} \) are listed in appendix E.

3.3 Numerical Integration

Equations (31)-(35) are solved simultaneously. If desired, the displacement area of the three-dimensional boundary layer can be calculated with equation (36).

Myring [1] has pointed out that the differential equations (31)-(33) are of hyperbolic nature. Of the resultant three characteristic directions the two outer ones describe the areas of influence and dependence in a calculated point. These areas are limited by two straight lines that pass through the calculated point and form the angles \(\alpha \) and \(\alpha + \beta \) with the \(x \)-axis. When determining the \(y \)-derivations contained in the functions \(I_i \), this situation is taken into account.

When both angles \(\alpha \) and \(\alpha + \beta \) are positive backward directed differences are used

\[
\left(\frac{\partial Q}{\partial y} \right)_{m,n} = \frac{Q_{m,n} - Q_{m,n-1}}{\Delta y}
\]

(37)

when \(\alpha \) and \(\alpha + \beta \) are negative forward directed differences are used

\[
\left(\frac{\partial Q}{\partial y} \right)_{m,n} = \frac{Q_{m,n+1} - Q_{m,n}}{\Delta y}
\]

(38)
and when α and $\alpha + \beta$ have different signs centered differences are used

$$
\left(\frac{\partial Q}{\partial y} \right)_{m,n} = \frac{Q_{m,n+1} - Q_{m,n-1}}{2\Delta y}
$$

(39)

Q is a dependent variable, m is the counter for integration in the x-direction and n the counter for integration in the y-direction.

When the y-derivations of the dependent variables along line $x=constant$ are known integration in the x-direction can be accomplished through an explicit intermediary step method

$$
Q_{m+1,n} = Q_{m,n} + \Delta x \left(\frac{\partial Q}{\partial x} \right)_{m+\frac{1}{2},n}
$$

(40)

$(\frac{\partial Q}{\partial x})_{m+1/2,n}$ is found by extrapolation of the value $(Q)_{m+1/2,n}$ at a distance of $\Delta x/2$ from $(Q)_{m,n}$ with $(\frac{\partial Q}{\partial x})_{m,n}$.

$(\frac{\partial Q}{\partial x})_{m+1/2,n}$ can then be calculated with $(Q)_{m+1/2,n}$.

Boundary conditions are required where characteristic directions run into the calculated area from the outside. For the three-dimensional boundary layer this corresponds to a situation in which the boundary layer flow enters the calculation area from outside. It also follows that boundary conditions are not required in places where the boundary layer flow leaves the calculation area.

For the initial conditions of the calculated results shown in 3.4 the measured values of θ_{11}, H and β are used and
converted into the dependent variables δ, π, ∇ and A, as per appendix G. The initial value for coefficient F was determined from the measured value of form parameter H_1 and the relation valid for flows in equilibrium, by Head [4].

3.4 Comparison with Experiments

3.4.1. van den Berg and Elsenaar [11]

Berg and Elsenaar's experiment is of special significance since it best simulates the flow conditions at sweptback wings of all known measurements of three-dimensional boundary layers. Berg and Elsenaar have measured the turbulent boundary layer on a yawed plate (angle of sweepback 35°) in the low velocity area. The wall of the wind channel above the panel was so constructed that the generated pressure increase was large enough to cause separation of the boundary layer. Beyond that, it has been attempted to approach conditions for an infinitely long sweptback wing through shaping of the end plates of the panel measured.

A nonorthogonal, straight line coordinate system was used for the calculation in which the x-direction is identical with the approach flow direction and the y-direction is parallel with the leading edge of the panel.

In Fig. 3 the results for the moment loss thickness θ_{H_2}, the form parameter H of the velocity profile in the main flow direction and the wall flow line angle β were compared with the measurements. In addition the results of calculations, according to the methods of Cousteix [12] and Smith [12], are shown. Cousteix used the pulse equations and the entrainment equation. He determined the velocity profiles from the similar solutions of the turbulent boundary layer.
Smith expanded Myring's [1] method to compressible flows and carried out the verifications shown here of experiments in the incompressible area. The results correspond, therefore, to Myring's method. The curves by Smith, shown in Fig. 3, correspond to the results shown at the Euromech 60. The letters M and J in Fig. 3, and in all subsequent figures, next to the present method and that of Myring, correspond to the results for crossflow profiles by Mager or Johnston. For the calculations in Fig. 3 the measured wall pressure distribution and the condition of infinitely long yawed wings was used as input. Up to a panel depth of $x=0.9$ the present procedure shows better agreement with the measurement than that of Myring.

Small digressions in the distribution of the resultant velocity U_e and of angle α resulted from different interpretations of the data measured, in Fig. 4. In Fig. 5 the results of calculations for crossflow profiles according to Mager are shown for input of different velocity data at the edge of the boundary layer. The curves $/1/$ correspond to the measured values of U_e and of α, the curves $/2/$ were determined from U_e and the condition of infinitely long yawed wings and curves $/3/$ from the wall pressure distribution measured and the condition of infinitely long yawed wings. From the results it becomes clear that small disturbances in the velocity data of the friction-free flow for boundary layer flows close to detachment, can provide widely varying results. Fig. 6 shows the corresponding results, as in Fig. 5, for Johnston crossflow profiles. In Fig. 6a a comparison with difference methods (Schneider [12], Krause [12]) is demonstrated. Curves $/1/$ and $/3/$ correspond to the conditions mentioned before. No advantage can be seen in the more complicated difference method. The detachment of the boundary layer is not

ORIGINAL PAGE IS OF POOR QUALITY
calculated by any difference method. For crossflow profiles, according to Mager and Johnston, the present method determines the point of separation in the area of the experimentally determined separation, after input of measured values for U_e and α.

3.4.2 Johnston [14]

Johnston [14] examined the development of the boundary layer in the area of low velocity, as shown in Fig. 7. Air comes out of a rectangular channel and flows between two test plates, the height of the channel corresponding to the distance between them. The rear end of the measured distance is formed by a wall that is placed at right angle to the test panels and to the channel axis. The velocity distribution in the plane that is imagined stretched in the middle between the test panels, corresponds to the distribution for a two-dimensional ray incident on a wall at right angle. Since too few values are given for the outer velocities to calculate the boundary layer at the lower test panel, such velocities are used as would result for such a configuration according to potential theory [15]. The calculation is carried out with orthogonal, linear coordinates, the results are shown in Figs. 8. The calculated results by Smith [13] are shown for comparison. (A continuous curve of Smith's results cannot be reproduced since his results were shown only for discrete points.) The differences between the results of the present method and that of Myring are only small.

3.4.3 Vermeulen [16]

Vermeulen [16] measured the development of the boundary layer at the bottom panel of a rectangular channel that
had a 60° curvature. Fig. 9 shows a sketch of the measured distance together with the flow lines at the edge of the boundary layer and the wall flow lines. A curvilinear coordinate system was used in which the x-direction followed the test stations in the flow direction, with the y-direction at right angle to it. The values measured on lines A and E were used for limit conditions. Figs. 10 show a comparison with measurements and results by Smith [13]. The digressions of the present method from the measurements are clearly smaller than those of Myring's method. In Figs. 11 and 12 the velocity profiles in main flow and crossflow directions, that were measured and calculated for Mager crossflow profiles, are shown along line C. For the test case of Vermeulen and for the tests (11), (14), Figs. 13-17, the calculated results from both methods show the expected differences. In the area close to the wall and in the outer part of the boundary layer, Coles' profiles show better agreement with the measurements for the main flow direction than the power profiles of Myring. Agreement with the crossflow profiles is bad in both cases, though measurements are reproduced slightly better by the present method.

3.5 Discussion

The two parameter profile family by Coles, for description of the velocity profile in the direction of the main flow, showed better results for three-dimensional boundary layers than the use of one parameter power profiles, something already known for the two-dimensional case. An attempt has been made to include conditions of nonequilibrium, that should be considered for the calculation of turbulent boundary layers, by means of the "lag-entrainment" method. Agreement between measurements and calculations is good considered the effort
invested in the method. The proposed integral method provides
good results even when compared with difference methods.

4. An Integral Method for the Calculation of Three-
dimensional, Adiabatic, Laminar, Compressible
Boundary Layers

The pulse equations (8) and (9) and the "moment of momen-
tum" equations (10) and (11) should be employed for the calcu-
lation of three-dimensional laminar boundary layers. As in the
case of turbulent boundary layers, chapter 3, temperature and
velocity profiles are required for determination of the integral
functions appearing in equations (8)-(11).

4.1 Velocity Profiles

It is assumed that velocity profiles for the main flow and
crossflow directions can be determined from similar solutions
of two-dimensional laminar boundary layers. Since the flows in
question are compressible but adiabatic, a solution of the
Cohen-Reshotko equations (17) can be dispensed with. The solu-
tion of the Faulkner-Skan equation (18) for similar incompres-
sible flows provides the foundation for the putting together
of the profile families, together with the Stewartson (19)
transformation which provides a correlation between the adi-
abatic, compressible and incompressible flows. The use of the
Stewartson transformation also alleviates the need to generate
a temperature profile.

4.1.1 Similitude Solutions for the Two-dimensional
Incompressible Boundary Layer

A simple type of solution for the two-dimensional
Prandtl boundary layer is the similitude solution. These are
solutions that are so constituted that velocity profiles at various distances X can be made to fit them through proper scaling of the velocity U and the distance at right angle to the wall, Z (Z is identical with the independent variable y used otherwise for two-dimensional problems). For this case the boundary layer equations are reduced from partial differential equations to regular ones.

Similitude solutions exist for when the velocity of the potential flow U_e is proportional to a power of the running length measured from the stagnation point

$$U_e(X) = \text{const } X^m$$

(41)

The similitude transformation of the independent variable Z, which then leads to an ordinary differential equation, is

$$\eta = Z \left(\frac{m+1}{2} \frac{U_e}{v_e X} \right)^{1/2}$$

(42)

The known Faulkner-Skan differential equation then becomes

$$f'''' + ff' + \beta (1-f'^2) = 0$$

(43)

with limit conditions

$$\eta = 0: f = f' = 0 \quad \text{and} \quad \eta = \infty: f' = 1$$

(44)

(43)

where $f' = \frac{df}{d\eta} = \frac{U}{U_e}$ and β represents the pressure gradient parameter which stands in the following relation to the exponent in equation (44):
Fig. 18 demonstrates the results for U/U_e for $2 \geq \beta \geq -0.199$. The curve for $\beta=0$ corresponds to the Blasius solution for a flat plate, $\beta=-0.199$ provides the velocity profile for retarded flow, which leads straight to separation, and $\beta=2$ is valid for highly accelerated flows.

4.1.2 Direction of Main Flow

It is assumed that the velocities shown in Fig. 18 can represent the velocities in the direction of the main flow.

4.1.3 Direction of Crossflow

It is assumed that the velocity profiles in the direction of the crossflow can be represented by

$$\frac{V}{U_e} = c\left(\frac{V}{U_e}\right)^x$$

where $\left(\frac{V}{U_e}\right)^x$ describes a certain type of profile and c is an arbitrary constant. A possibility for generation of the various types of profiles in the crossflow direction is shown in Fig. 19. The sectioned line represents the reference profile $\left(\frac{V}{U_e}\right)^x$, which corresponds to the velocity distribution U/U_e for $\beta=2.0$ with a freely chosen value for $\eta^x=6.75$. η is the transformed boundary layer thickness and is defined as the distance from the wall in the transformed plane, for $U/U_e=0.99$. The curves drawn correspond to velocity distributions U/U_e for values of $2.0 \leq \beta \leq -0.18$. The following relation provides the curves for $\left(\frac{V}{U_e}\right)^x$.
\[
\frac{(V - U_e)}{(U_e)^2} = \frac{(U - U_e)}{(U_e)^2} - \frac{(U - U_e)}{(U_e)^2}
\]

which includes also such profiles of the "cross-over" type where \(\frac{V}{U_e}\) changes signs in the boundary layer. To maintain conditions of symmetry after the passage through "cross-over" profiles, curves III and IV correspond to the curves for \(\beta = 2.0\) and \(1.0\) with changed signs. Curves I and II result from interpolation between curve III and the curve for \(\beta = 0.18\).

4.2 Determination of Integral Functions

The example of the energy loss thickness at the main flow profile

\[
\Theta_{\text{eff}} = \frac{\Delta}{\rho_0 U_e} \left(1 - \frac{U_e^2}{U^2}\right) \, d\bar{z}
\]

is to show how the integral functions of the profiles in the main flow and crossflow direction, see appendix C, can be determined with the aid of the velocity profiles in Figs. 18 and 19 and the Stewartson transformation [19]. The Stewartson transformation

\[
d\bar{z} = \frac{\gamma}{\rho_0 a_0} \, d\bar{z}
\]

permits the recalculation of compressible integral functions into incompressible ones. \((\rho_0\) and \(a_0\) are the density and sound velocity in a reference state of the gas.) Equations (48) and (49) lead to
where δ_i is the transformed boundary layer thickness in the incompressible plane.

Velocity profiles are shown as function of the similitude variable η in Figs. 18 and 19. With the aid of equation (42), equation (50) can be redefined to

(51)

with

The moment loss thickness of the velocity profile in direction of the main flow, Θ_{11}, is chosen as scaling function for the boundary layer.

As per equation (51)

(52)

with
Equations (51) and (52) then show

\[\theta_{111} = \theta_{11} \frac{K_{111}}{K_{11}} \]

(53)

All physical integral functions \((\theta_{111}, \delta_1^X, \text{etc.})\) can therefore be expressed by the physical scaling function \(\theta_{11}\) and by the relation of the corresponding transformed integral functions \((K_{111}, K_1, \text{etc.})\).

The transformed integral functions, which depend only on the profiles in the main flow direction, shown in Fig. 18, are demonstrated in Fig. 20 (see appendix H for definition of the \(/31\) functions), plotted over the parameter

\[a = f''_w K_1 \]

(54)

where

\[f''_w = \left(\frac{\frac{U}{\eta}}{d\eta} \right)_w \]

\(a=0\) corresponds to the detachment profile \(\beta = -0.199\) and \(a=0.38954\) to the profile of the strongly accelerated flow \(\beta=2.0\).

The transformed integral functions, which depend only on the profiles in the crossflow direction \((\frac{V}{U})_X\), see Fig. 19, are demonstrated in Fig. 21 (for definition of the functions see appendix H) plotted over the parameter

\[b = K_2 = -\frac{1}{(U_e)^x} \int (\frac{V}{U_e})^x \, d\eta \]

(55)
K_2 is the transformed displacement thickness of the crossflow profile \(\left(\frac{V}{U_e} \right)^{\gamma} \) for a transformed boundary layer thickness \(\eta \delta = 1 \).

The transformed integral functions K_{112}, K_{221}, K_{12} and L_{12} (see appendix H for definitions), which depend on the profiles in the directions of main flow and crossflow, are shown in Figs. 22-25 plotted over b with a as parameter. For determination of these mixed functions the transformed boundary layer thickness of the crossflow profile has been set equal to the main stream profile.

The following approach is suggested for determination of the constant c in equation (46), which permits calculation of the desired crossflow velocity profile \(V/U_e \) from \((V/U_e)^{\gamma} \). The physical displacement thickness in the crossflow direction is

\[
\delta_2^\gamma = - \int_0^a \frac{\eta}{\eta_{\delta}} \frac{V}{U_e} \, d\eta
\]

With equation (49) we get

\[
\delta_2^\gamma = - \frac{\Theta_{11}}{K_{11}} \int_0^a \frac{V}{U_e} \, d\eta = - \frac{\Theta_{11}}{K_{11}} \, c \int_0^a \left(\frac{V}{U_e} \right)^\gamma \, d\eta
\]

or

\[
\delta_2^\gamma = - \frac{\Theta_{11}}{K_{11}} \, c \, \eta_{\delta} \int_0^1 \left(\frac{V}{U_e} \right)^\gamma \, d\left(\frac{\eta}{\eta_{\delta}} \right) = \frac{\Theta_{11}}{K_{11}} \, c \, \eta_{\delta} \, K_2
\]

Consequently constant c is
All physical integral functions in the t,n coordinate system can then be determined in the following manner.

\[Q(t,n) = f(\theta_{11}) g(c) h(a;b) \]

where \(Q \) is an integral function. All the required physical integral functions have been listed in appendix H. \(\theta_{11}, a, b \) and \(c \) thus become the dependent variables in the method of calculation suggested here.

The physical integral functions in the x,y coordinate system, which appear in the pulse equations \(x \) and \(y \) used here and in the "moment of momentum" equations (8)-(11), can be calculated from the physical functions of the t,n coordinate system through the relations given in appendix C.

\[Q(x,y) = Q(\theta_{11}, a, b, c, \alpha, \lambda) \]

The required derivations of functions \(Q \) after \(\theta_{11}, a, b, c, \alpha \) and \(\lambda \) can easily be determined.

The following holds

\[\frac{\partial Q}{\partial x} = Q_{\theta_{11}} \frac{\partial \theta_{11}}{\partial x} + Q_{a} \frac{\partial a}{\partial x} + Q_{b} \frac{\partial b}{\partial x} + Q_{c} \frac{\partial c}{\partial x} + Q_{\alpha} \frac{\partial \alpha}{\partial x} + Q_{\lambda} \frac{\partial \lambda}{\partial x} \]

wherein \(Q_{\theta_{11}} = \frac{\partial Q}{\partial \theta_{11}} \) for instance.

Equations (8)-(11) can then be written.
The expressions D_1 are listed in appendix I.

Equations (62)-(65) are solved simultaneously. If so desired, the displacement area of the three-dimensional boundary layer can be determined with equation (66).

4.3 Numerical Integration

 Numerical integration is handled in the same way as explained in section 3.3. The functions θ_1, H, δ^X and the wall-flow line angle β are required as initial conditions. The transformed integral functions, which are given as functions of a or b, or a and b, are made available through polynomial fits.

For the start of the calculation at the stagnation point or stagnation line of a body, the sign of the wallflow line angle β decides the sign of the crossflow velocity $(\frac{V}{U_e})^X$, Fig. 19, for the first integration step.
At the start of the calculation only such profile types can be considered for which

\[
\left. \frac{\partial^2 \left(\frac{V}{U_e} \right)}{\partial \eta^2} \right|_w \text{ sign } (\beta) \leq 0
\]

holds.

Once the crossflow has developed from the stagnation point, or stagnation line, then the profile type of the crossflow changes through change of the sign of function \(\frac{\partial^2 \alpha}{\partial x^2} \), i.e., the flow line at the outer edge of the boundary layer has a turning point. "Cross-over" profiles appear and after passage through this type of profile, profile forms as shown in III and IV, Fig. 19, are reached. Should a renewed change occur in the sign of the function \(\frac{\partial^2 \alpha}{\partial x^2} \), then "cross-over" profiles will reappear. The profiles will in that case pass through in the same direction as during their first appearance.

4.4 Comparison with the Calculated Results of a Difference Method

The results of difference methods for laminar flows can be used for comparison in estimating the quality of approximation methods such as the integration procedure. The difference method was developed by Horton [20]. Three test cases were used for infinitely long yawed wings with 45° sweepback in the incompressible region. A rectangular coordinate system was used with the y-direction running parallel to the leading edge. The velocity component at the outer edge of the boundary layer in y-direction, \(v_1 \), is for all test cases.

\[
\frac{v_1}{U_\infty} = 1
\]

(67)
with U_∞ corresponding to the component of undisturbed initial flow velocity in the x-direction. The velocity component at the outer edge of the boundary layer in the x-direction, u_1, is

Test case 1: $\frac{u_1}{U_\infty} = 3\left(\frac{x}{c} - \frac{x^3}{c^3}\right)$ \quad for \quad $\frac{x}{c} > 0$ \quad \quad (68)

Test case 2: $\frac{u_1}{U_\infty} = 1$ \quad for \quad $\frac{x}{c} \leq 1.0$ \quad \quad (69)

Test case 3: $\frac{u_1}{U_\infty} = 1 - 0.567\left(\frac{x}{c} - 1\right)$ \quad for \quad $\frac{x}{c} \geq 1$ \quad \quad (70)

Test case 3: $\frac{u_1}{U_\infty} = 1 - 0.1134\left(\frac{x}{c} - 1\right)$ \quad for \quad $\frac{x}{c} \geq 1$ \quad \quad (71)

c is a reference length. Test case 1 corresponds to a boundary flow that starts at a stagnation line. The test cases 2 and 3 are boundary layer flows which correspond at first to a plate boundary layer and are then suddenly exposed to an increase in pressure. The calculations were made for a Reynolds number

$$\text{Re} = \frac{U_\infty c}{\nu_\infty} = 10^6$$

The comparison of results from calculations is shown in Figs. 26-28. All calculations end with the detachment of the laminar boundary layer. In test case 1 the sign of the wallflow...
line angle changes but the displacement thickness of the cross-flow direction δ_2 remains positive, which means that there are "cross-over" types of crossflow profiles in the range $\frac{x}{c}$ for $\beta > 0$. The present integral method gives a very satisfactory description of these complicated flow conditions. Beyond that the separation point is determined accurately. For test case 2 results are equally satisfactory, but small digressions occur in the determination of the separation point. During recalculation of test cases 1 and 2 agreement was looked for in the wallfriction coefficient c_f during establishment of the initial conditions and deviation in the form parameter

$$H = \frac{\delta_1}{\theta_{11}}$$

was permitted. For test case 3 two different results of calculation are shown in Fig. 28, with agreement of c_f and H for the initial conditions. Here, too, the agreement is satisfactory.

4.5 Discussion

The results show that the idea for using the concept of the "moment of momentum" equations in the three-dimensional case as well, leads to good results.

5. Boundary Layers on Wings

5.1 The Influence of Wing Tapering on the Development of a Three-dimensional, Turbulent Boundary Layer on a Transsonic Wing

The development of a three-dimensional boundary layer on a wing was often calculated to an approximation with methods that were based on the concept of the infinitely long yawed wing. In comparison to this quasi-two-dimensional way of looking at
it one aspect of three-dimensionality, the wing tapering, will be examined closer here.

5.1.1 The Metric Coefficients

To make the calculation simpler the boundary layer development will be developed here not for the given wing contour but for a flat plate with a top view corresponding to that of the wing on which the potential-theoretical pressure distribution is superposed. The calculation is carried out in a non-orthogonal linear coordinate system. The x-direction runs parallel to the direction of initial flow, the y-direction is identical with percentage lines on the wing.

Fig. 29 shows the Cartesian coordinates X, Y, Z and not the nonorthogonal, linear coordinates x, y for the infinitely long yawed wing and the tapered wing with straight leading and trailing edges.

The following connection results

\[
\begin{align*}
X &= a(y) + x \frac{b(y)}{b(y=0)} \\
Y &= y \sin \lambda_o \\
Z &= 0
\end{align*}
\]

(73)

The functions $a(y)$ and $b(y)$ are shown in Fig. 29.

From equations (3) and (4) we get the metric coefficients and their derivations to (also on Fig. 29)

\[
\begin{align*}
h_4 &= 1 - \frac{y}{y_r} \\
\frac{\partial h_4}{\partial x} &= 0
\end{align*}
\]

(74) (75)
The angle λ in a point x,y corresponds to the angle between the lines $x=\text{const.}$ and $y=\text{const.}$ at the point x,y. λ_0 is the angle between the coordinates x and y at the origin of the coordinates.

The following holds true

\[
\lambda = \arctan \left(\frac{1}{\sin \lambda_0} \left(\cos \lambda_0 - \frac{x}{y_T} \right) \right)
\]
\[
\frac{\partial \lambda}{\partial \chi} = \frac{\sin^2 \lambda}{\sin \lambda_0} \frac{1}{y_T} \\
\frac{\partial \lambda}{\partial y} = 0
\]

\(y_T\) is the distance from the origin of the coordinates to the point where the extended leading and trailing edges of the wing touch. (\(y_T = \infty\) for the infinitely long yawed wing.)

5.1.2 Description of the Various Types of Calculations

Fig. 30 shows the top view of the wing, the wing section examined and the sweepback of the leading and trailing edges in that wing section.

Fig. 31 shows the distribution of the resulting flow velocity for that wing at the outer edge of boundary layer \(U_e\), dimensionless as the initial flow velocity \(U_{Ref}\), over the wing chord at the suction side in the section examined; \(c\) is the wing chord of the wing section examined. In addition, the run of angle \(\alpha\) is given. The leading edge sweepback of the wing in the section examined is \(\phi_L = 32^\circ\), the trailing edge sweepback is \(\phi_H = 16^\circ\). The sectioned line for function \(\alpha\) in Fig. 31 presents the run of \(\alpha\) for an infinitely long yawed wing with a sweepback of \((\phi_L + \phi_H)/2 = 24^\circ\) for identical velocity distribution \(U_e/U_{Ref}\).

The same integral method is used for two boundary layer calculations (13). Case 1 corresponds to the results for an infinitely long yawed wing with 24° sweepback. The wing for case 2 is tapered with a constant leading edge taper of 32° and
a constant trailing edge taper of 16°, corresponding to the wing of the wing section examined. The distribution of U_e and α over the wing chord, by percentage, is identical with that on the wing of the section examined.

5.1.3 Discussion of Results

The results for Mager-crossflow profiles are shown in Figs. 32-34. The moment-loss thickness θ_{11} increases slower in the trailing edge area, i.e., in the area of retarded external flow at the tapered wing, than at the infinitely long yawed wing. The same holds for the form parameter \tilde{N}. Since the form parameter \tilde{N} increases with retarded external flow, the wing taper acts to weaken the retardation of the effective external flow.

The wallflow line angle β is an effective measure for the three-dimensionality of the flow ($\alpha+\beta>0$ means that the boundary layer material flows toward the wingtip). Fig. 34 shows clearly that tapering weakens the three-dimensionality of the flow.

5.2 The Dévelopement of the Laminar Boundary Layer on a Transsonic Wing

The development of a laminated boundary layer on an infinitely long yawed wing in the region of transsonic velocity is shown in Fig. 35. The velocity data at the outer edge of the boundary layer correspond to those that are also used for the turbulence calculation in section 5.1.2, Fig. 31. The calculation is carried out with a constant value c, equation (46). The turbulent values of θ_{31} and β are shown for comparison in Fig. 35. The moment loss thickness is significantly smaller in the
laminar case. This result becomes understandable when comparing the development of the boundary layer on a flat plate in the laminar and turbulent case. For laminar flow

\[\theta_{11} \sim x^{1/2} \]

and for the turbulent case

\[\theta_{11} \sim x^{4/5} \]

The velocity decrease of the external flow for \(x \approx 0.5 \) is so great that laminar separation occurs. In the turbulent case no separation occurs here. It is known that turbulent boundary layers can tolerate greater pressure increases in the external flow before they separate. Results for the wallflow line angle show clearly that the three-dimensionality of the flow is far more pronounced for laminar boundary layers than for turbulent ones. A similar result is also described in reference [22].

6. Turbulent Boundary Layers on Bodies (Revolution Ellipsoid)

The development of a turbulent boundary layer on a revolution ellipsoid (ratio of main axes 4:1) has been calculated for an attack angle of 0° and 10°.

6.1 The Metric Coefficients

The connection between the Cartesian coordinates \(X, Y, Z \) and the coordinates \(\phi, \psi \) of the revolution ellipsoid, as per Fig. 36 is

\[X = a \cos \psi \]
\[Y = b \sin \psi \]
\[Z = b \sin \psi \cos \phi \]

In this case \(a \) and \(b \) are the main axes of the revolution ellipsoid.

Using equations (3) and (4) for the metric coefficients and their derivation we continue

\[h_1 = (a^2 \sin^2 \psi + b^2 \cos^2 \psi)^{1/2} \]

\[\frac{\partial h_1}{\partial \psi} = \frac{1}{h_1} \sin \phi \cos \psi (a^2 - b^2) \]

\[\frac{\partial h_1}{\partial \phi} = 0 \]

\[h_2 = b \sin \psi \]

\[\frac{\partial h_2}{\partial \psi} = b \cos \psi \]

\[\frac{\partial h_2}{\partial \phi} = 0 \]

\[\frac{\partial \phi}{\partial \psi} = 0 \]

\[\frac{\partial \phi}{\partial \phi} = 0 \]
6.2 Results

The data for the friction-free flow around the revolution ellipsoid were determined through the procedure by K. Maruhn [22]. Figs. 37 and 38 show the distribution of the resultant velocity of friction-free flow U_e and of angle α for an attack angle of $\alpha^X=10^\circ$, plotted over φ and x/a. The distance x and the angle α are defined in Fig. 37. The angle α in the tangential plane at a surface point P is defined as the angle between the vector U_e and the straight line that is generated by sectioning the tangential plane with a plane that stretches through the x-axis and the point P, as in Fig. 36.

The results of a boundary layer calculation for a Reynolds number

$$Re = \frac{U_{Ref}a}{\nu_{Ref}} = 5.2 \times 10^5$$

where the undisturbed initial flow is the reference condition, are shown in Figs. 39-41. The functions θ_{11} and H are shown in comparison for an attack angle of $\alpha^X=0^\circ$. θ_{11} and with it all boundary layer thicknesses increase for the incident ellipsoid not only in the x-direction but also in the direction of the circumference. The minimum values lie in the plane of symmetry on the side facing the wind. For values of $x/a>0.5$ the wall-flow line angle on the topside assumes negative values while being positive on the side facing the wind. In the plane of symmetry of top and bottom side there are no crossflows ($\beta=0$). The course of θ_{11} and particularly of H for values of $x/a>0.5$ is noteworthy. The maximum values of these functions do not lie in the plane of symmetry on the topside ($\varphi=180^\circ$), but for...
This may be explained through the piling up of boundary layer material because of the crossflow, which changes its sign at the circumference. Geissler [23] has observed similar conditions in his study (development of the laminar boundary layer for an incident ellipsoid). The maximum increase of the form parameter H on the side of the ellipsoid may also indicate the free separation of the vorticity layer [24], which was examined closer by Wang [25] for an incident ellipsoid.

7. Summary

Methods have been introduced for the calculation of three-dimensional, turbulent and compressible, laminar flows. In the turbulent method the power profiles, which were used in Myring's work for the description of the velocity profiles in main stream direction, were replaced by Coles' profiles. Beyond that a "lag-entrainment" method was introduced instead of the simple "entrainment" concept. The quality of the results of the calculations, as compared to the experiments, could be improved even more if more suitable models were available for description of the cross-velocity profiles. The proposed integral method gives good results in comparison with difference methods.

The laminar method, which uses "moment of momentum" equations for the first time for three-dimensional flows, gives good results in comparison with an exact difference method.

Calculations for wings showed that tapering of wings reduces the three-dimensionality of the flow. For identical pressure distributions the laminar boundary layer separates earlier and shows a more pronounced three-dimensionality than turbulent flows.
The development of a turbulent boundary layer was calculated for an ellipsoid for 0° and 10° incidence. The boundary layer thicknesses for incident ellipsoids are smaller on the bottom side and greater on the topside than for an ellipsoid with 0° incidence. A noteworthy result is that the maximum values of boundary layer thicknesses and of the form parameter do not occur at the apex of the topside but on the side on the part of the revolution ellipsoid turned away from the wind.
REFERENCES

[1] D. F. MYRING
An Integral Prediction Method for Three-dimensional Turbulent Boundary Layers in Incompressible Flow
RAE TR 70147 (1970)

On Displacement Thickness

Boundary Layers in Three Dimensions

Entrainment in the Turbulent Boundary Layer
ARC, R & M 3152 (1958)

The Law of the Wake in the Turbulent Boundary Layer

Turbulence

[7] A. MAGER
Generalization of Boundary Layer Momentum Integral Equations to Three-dimensional Flows, Including those of Rotating Systems
NACA Rep. 1067 (1952)

[8] J. P. JOHNSTON
On the Three-dimensional Turbulent Boundary Layer Generated by Secondary Flow

[9] H. P. HORTON
Entrainment in Equilibrium and Non-Equilibrium Turbulent Boundary Layers

[10] P. BRADSHAW
Effect of Streamline Curvature on Turbulent Flow
AGARDograph Nr. 169 (1973)
B. VAN DEN BERG, A. ELSENAAR
Measurements in a Three-dimensional Incompressible Turbulent Boundary Layer in an Adverse Pressure Gradient under Infinite Swept Wing Conditions
NLR TR 72092 U (1972)

Computation of Three-dimensional Turbulent Boundary Layers
FFA TN AE-1211
Euromech 60, Trondheim 1975

P. D. SMITH
An Integral Prediction Method for Three-dimensional Compressible Turbulent Boundary Layers
ARC, R. & M. Nr. 3739 (1974)

J. P. JOHNSTON
Three-dimensional Turbulent Boundary Layers

S. PAI
Fluid Dynamics of Jets
D. van Nostrand Co., Inc., New York (1957)

A. J. VERMEULEN
Measurements of Three-dimensional Turbulent Boundary Layers

C. B. COHEN, E. RESHOTKO
Similar Solution for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient
NACA R 1293, 1956

V. M. FAULKNER, S. W. SKAN
Some Approximate Solutions of the Boundary Layer Equations
ARC R & M 1314, 1930

K. STEWARTSON
Correlated Incompressible and Compressible Boundary Layers

H. P. HÖRTON
Numerical Solution of Incompressible Laminar Boundary Layer Problems Using Invariant Imbedding
Wird veröffentlich im AIAA Journal

K. MARUHN
Druckverteilungsrechnungen an elliptischen Rümpfen und in ihrem Aussenraum [Calculations of Pressure Distribution on elliptic bodies and their surrounding space]
Jahrbuch der deutschen Luftfahrtforschung S. I 135 - I 147 (1941)
[22] T. K. FANNELÖP, D. A. HUMPHREYS
The Solution of the Laminar and Turbulent Three-dimensional Boundary Layer Equations with a Simple Finite Difference Technique
FPA R 126, 1975

[23] W. GEISSLER
Berechnung der dreidimensionalen laminaren Grenzschicht an schrägangeströmten Rotationskörpern mit Ablösung
[Calculation of the Three-dimensional Laminar Boundary Layer on Revolution bodies with Separation for Flow Incidence at a Slant]
Ing.-Arch. Vol. 43, Nr. 6 (1973/74), S. 413-425.

Flow Separation in Three-Dimensions
RAE R 2565, 1955

Separation Patterns of Boundary Layer over an Inclined Body of Revolution
AIAA J., Vol. 10, Nr. 8, S. 1044-1050 (1972)
Appendix A

Definition of functions \(a_i \) and \(b_i \)

\[
q_i^2 = h_i^2 h_2^2 - \frac{q_i^2}{q^2}
\]

\[
a_i = \frac{h_i q}{q^2} \left(\frac{1}{h_i} \frac{\partial h_i}{\partial y} + \frac{q_i}{h_i^3} \frac{\partial h_i}{\partial x} - \frac{1}{h_i^2} \frac{\partial q}{\partial x} \right)
\]

\[
a_2 = \frac{h_2^2}{q^2} \left(\frac{\partial q}{\partial y} - h_2 \frac{\partial h_2}{\partial x} - \frac{q}{h_2} \frac{\partial h_2}{\partial y} \right)
\]

\[
a_3 = \frac{A}{q^2} \left(h_4 h_2 \left[1 + \frac{q^2}{h_4^2 h_2^2} \right] \frac{\partial h_2}{\partial y} - 2 q \frac{\partial h_2}{\partial x} \right)
\]

\[
a_4 = -\frac{h_i^2 h_4}{q^2}
\]

\[
a_5 = \frac{q h_4}{q^2}
\]

\[
b_i = \frac{h_i^3}{q^2} \left(\frac{\partial q}{\partial x} - h_i \frac{\partial h_i}{\partial y} - \frac{q_i}{h_i} \frac{\partial h_i}{\partial x} \right)
\]

\[
b_2 = \frac{q h_2}{q^2} \left(\frac{1}{h_2} \frac{\partial h_2}{\partial x} + \frac{q}{h_2^3} \frac{\partial h_2}{\partial y} - \frac{1}{h_2^2} \frac{\partial q}{\partial y} \right)
\]

\[
b_3 = \frac{A}{q^2} \left(h_4 h_2 \left[1 + \frac{q^2}{h_4^2 h_2^2} \right] \frac{\partial h_2}{\partial x} - 2 q \frac{\partial h_2}{\partial y} \right)
\]

\[
b_4 = \frac{q h_2}{q^2}
\]

\[
b_5 = -\frac{h_i^2 h_2}{q^2}
\]
Appendix B

The integral functions in the x,y,z coordinate system

\[\Theta_{m1} = \int_0^\delta \frac{g u}{\xi_e U_e} \left(\frac{u_1^2}{U_e} - \frac{u}{U_e} \right) \, dz \]

\[\Theta_{m2} = \int_0^\delta \frac{g v}{\xi_e U_e} \left(\frac{u_1^2}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[\Theta_{221} = \int_0^\delta \frac{g u}{\xi_e U_e} \left(\frac{v_1^2}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[\Theta_{222} = \int_0^\delta \frac{g v}{\xi_e U_e} \left(\frac{v_1^2}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[\Theta_{21} = \int_0^\delta \frac{g u}{\xi_e U_e} \left(\frac{v_1}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[\Theta_{22} = \int_0^\delta \frac{g v}{\xi_e U_e} \left(\frac{v_1}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[\Theta_{21i} = \int_0^\delta \frac{v}{U_e} \left(\frac{u_1}{U_e} - \frac{3u}{\xi_e U_e} \right) \, dz \]

\[\Theta_{22i} = \int_0^\delta \frac{v}{U_e} \left(\frac{v_1}{U_e} - \frac{3v}{\xi_e U_e} \right) \, dz \]

\[\Delta_x^i = \int_0^\delta \left(\frac{u_1}{U_e} - \frac{3u}{\xi_e U_e} \right) \, dz \]

\[\Delta_x^i = \int_0^\delta \left(\frac{v_1}{U_e} - \frac{3v}{\xi_e U_e} \right) \, dz \]

\[\Delta_{1i} = \int_0^\delta \left(\frac{u_1}{U_e} - \frac{u}{U_e} \right) \, dz \]

\[\Delta_{2i} = \int_0^\delta \left(\frac{v_1}{U_e} - \frac{v}{U_e} \right) \, dz \]

\[C_{f_x} = \frac{2}{\xi_e U_e} \left(\mu \frac{\partial u}{\partial z} \right)_{z=0} \]

\[C_{f_y} = \frac{2}{\xi_e U_e} \left(\mu \frac{\partial v}{\partial z} \right)_{z=0} \]
For laminar flows the dissipation integrals \(S_x \) and \(S_y \) can be written as

\[
S_x = \frac{1}{\varepsilon_x U_e} \int_0^\delta \mu \left(\frac{\partial U_e}{\partial z} \right)^2 \, dz
\]

\[
S_y = \frac{1}{\varepsilon_y U_e} \int_0^\delta \mu \left(\frac{\partial V_e}{\partial z} \right)^2 \, dz
\]

\(\mu \) is here the dynamic viscosity of the gas.
Appendix C

Relation between the integral functions in the x, y, z and t, n, z coordinate system

\[H_{m1} = \frac{A}{\sin^3 \lambda} \left[\theta_{m1} \sin^3 (\lambda - \alpha) - \left\{ 3 \theta_{m2} + 2 \theta_{221} \right\} \sin^2 (\lambda - \alpha) \cos (\lambda - \alpha) \right. \]
\[+ 3 \theta_{222} \sin (\lambda - \alpha) \cos^2 (\lambda - \alpha) - \theta_{222} \cos^3 (\lambda - \alpha) \right] \]

\[H_{m2} = \frac{1}{\sin^3 \lambda} \left[\theta_{m1} \sin \alpha \sin^2 (\lambda - \alpha) - \left\{ \theta_{m2} + \delta_2 \right\} \sin \alpha \sin (\lambda - \alpha) \cos (\lambda - \alpha) \right. \]
\[+ \theta_{221} \sin \alpha \cos^2 (\lambda - \alpha) + \theta_{m2} \cos \alpha \sin^2 (\lambda - \alpha) \]
\[- 2 \theta_{221} \cos \alpha \sin (\lambda - \alpha) \cos (\lambda - \alpha) + \theta_{222} \cos \alpha \cos^2 (\lambda - \alpha) \right] \] \hspace{1cm} (C-1)

\[H_{221} = \frac{1}{\sin^3 \lambda} \left[\theta_{m1} \sin^2 \alpha \sin (\lambda - \alpha) + \left\{ \theta_{m2} + \delta_2 \right\} \sin^2 \alpha \cos \alpha \sin (\lambda - \alpha) \right. \]
\[+ \theta_{221} \cos^2 \alpha \sin (\lambda - \alpha) - \theta_{m2} \sin^2 \alpha \cos (\lambda - \alpha) \]
\[- 2 \theta_{221} \sin \alpha \cos \alpha \cos (\lambda - \alpha) - \theta_{222} \cos^2 \alpha \cos (\lambda - \alpha) \right] \]

\[H_{222} = \frac{1}{\sin^3 \lambda} \left[\theta_{m1} \sin^3 \alpha + \left\{ 3 \theta_{m2} + 2 \theta_{221} \right\} \sin^2 \alpha \cos \alpha + 3 \theta_{222} \sin \alpha \cos^2 \alpha \right. \]
\[+ \theta_{222} \cos^3 \alpha \right] \]
Continuation:

\[\Theta_{21} = \frac{1}{\sin^2 \lambda} \left[\theta_{41} \sin^2 (\lambda - \xi) + \theta_{21} \sin (\lambda - \xi) \cos \xi \right. \]
\[\left. - \theta_{24} \cos (\lambda - \xi) \sin \xi - \theta_{22} \cos \xi \cos (\lambda - \xi) \right] \] \hspace{1cm} (C-1) \]

\[\theta_{22} = \frac{1}{\sin^2 \lambda} \left[\theta_{44} \sin^2 \xi + \left(\theta_{12} + \theta_{54} \right) \cos \xi \sin \xi + \theta_{22} \cos^2 \xi \right] \]

\[\Theta_{42} = \frac{1}{\sin^2 \lambda} \left[\theta_{41} \sin \xi \sin (\lambda - \xi) - \theta_{24} \sin \xi \cos (\lambda - \xi) \right. \]
\[\left. + \theta_{42} \cos \xi \sin (\lambda - \xi) - \theta_{22} \cos \xi \cos (\lambda - \xi) \right] \]

\[\Theta_{24} = \frac{1}{\sin^2 \lambda} \left[\theta_{44} \sin \xi \sin (\lambda - \xi) + \theta_{24} \cos \xi \sin (\lambda - \xi) \right. \]
\[\left. - \theta_{42} \sin \xi \cos (\lambda - \xi) - \theta_{22} \cos \xi \cos (\lambda - \xi) \right] \]

\[\Delta_{4} = \frac{1}{\sin \lambda} \left[d_{1} \sin (\lambda - \xi) - d_{2} \cos (\lambda - \xi) \right] \]
Continuation:

\[
\Delta_{2} = \frac{1}{\sin \lambda} \left[\delta_{1} \sin \alpha + \delta_{2} \cos \alpha \right]
\]

\[
\Delta_{1} = \frac{1}{\sin \lambda} \left[\delta_{1} \sin (\lambda - \alpha) - \delta_{2} \cos (\lambda - \alpha) \right]
\]

\[
\Delta_{2} = \frac{1}{\sin \lambda} \left[\delta_{1} \sin \alpha + \delta_{2} \cos \alpha \right]
\]

\[
C_{f_x} = \frac{1}{\sin \lambda} \left[C_{f_t} \sin (\lambda - \alpha) - C_{f_n} \cos (\lambda - \alpha) \right]
\]

\[
C_{f_y} = \frac{1}{\sin \lambda} \left[C_{f_t} \sin \alpha + C_{f_n} \cos \alpha \right]
\]

\[
S_{x} = \frac{1}{\sin^2 \lambda} \left[S_{tt} \sin^2 (\lambda - \alpha) - 2 S_{tn} \sin (\lambda - \alpha) \cos (\lambda - \alpha) \right.
\]
\[
\quad + S_{nn} \cos^2 (\lambda - \alpha) \right]
\]

\[
S_{y} = \frac{1}{\sin^2 \lambda} \left[S_{tt} \sin^2 \alpha + 2 S_{tn} \sin \alpha \cos \alpha + S_{nn} \cos^2 \alpha \right]
\]
The integral functions appearing in equation (C-1), which are based on velocity profiles in the main flow and crossflow directions, become

\[
\begin{align*}
\Theta_{11} &= \int_0^\delta \frac{3U}{\gamma e U_e} \left(1 - \frac{U^2}{U_e^2}\right) \, d\bar{z} \\
\Theta_{12} &= \int_0^\delta \frac{3V}{\gamma e U_e} \left(1 - \frac{U^2}{U_e^2}\right) \, d\bar{z} \\
\Theta_{21} &= -\int_0^\delta \frac{3UV}{\gamma e U_e^2} \, d\bar{z} \\
\Theta_{22} &= -\int_0^\delta \frac{3V^2}{\gamma e U_e^2} \, d\bar{z}
\end{align*}
\]

\[
\begin{align*}
\Theta_{41} &= \int_0^\delta \frac{U}{U_e} \left(1 - \frac{3U}{\gamma e U_e}\right) \, d\bar{z} \\
\Theta_{42} &= \int_0^\delta \frac{V}{U_e} \left(1 - \frac{3U}{\gamma e U_e}\right) \, d\bar{z}
\end{align*}
\]

\[
\begin{align*}
\Delta_1^x &= \int_0^\delta \left(1 - \frac{3U}{\gamma e U_e}\right) \, d\bar{z} \\
\Delta_2^x &= -\int_0^\delta \frac{3V}{\gamma e U_e} \, d\bar{z}
\end{align*}
\]

\[
\begin{align*}
\Delta_4^x &= \int_0^\delta \left(1 - \frac{U}{U_e}\right) \, d\bar{z} \\
\Delta_2^x &= -\int_0^\delta \frac{V}{U_e} \, d\bar{z}
\end{align*}
\]

\text{(C-2)}
Continuation:

\[C_{f_{in}} = \frac{2}{3eU_e} \left(\mu \frac{\partial V}{\partial z} \right)_{z=0} \]
\[C_{f_{t}} = \frac{2}{3eU_e} \left(\mu \frac{\partial U}{\partial z} \right)_{z=0} \]

\[S_{tt} = \frac{1}{3eU_e} \int_{0}^{\delta} \mu \left(\frac{\partial U}{\partial z} \right)^2 \, dz \]
\[S_{tn} = \frac{1}{3eU_e} \int_{0}^{\delta} \mu \frac{\partial U}{\partial z} \frac{\partial V}{\partial z} \, dz \]
\[S_{nn} = \frac{1}{3eU_e} \int_{0}^{\delta} \mu \left(\frac{\partial V}{\partial z} \right)^2 \, dz \]
Calculation of the integral functions of the boundary layer in the \(t,n,z \) coordinate system

The boundary layer integral functions can be expressed as functions of the boundary layer thickness \(\delta \), of the pressure gradient parameter \(\pi \), the wall friction parameter \(\sigma \) and the parameter \(A \), with the help of the Coles' profiles for the main flow direction and the statements of Mager or Johnston for the crossflow direction. We write \(f=f(\pi,\sigma,A) \).

\[
\begin{align*}
\Theta_{n1} &= \delta f_{n1} \\
\Theta_{n2} &= \delta f_{n2} \\
\Theta_{z1} &= \delta f_{z1} \\
\Theta_{z2} &= \delta f_{z2} \\
\delta_{n}^{*} &= \delta f_{n} \\
\delta_{z}^{*} &= \delta f_{z}
\end{align*}
\]

(D-1)

For the integral functions which depend only on the velocity profile in the direction of the main flow we write:

\[
\begin{align*}
f_{n1} &= \tau (P_1 - \tau P_2) \\
f_{n} &= \tau P_1
\end{align*}
\]

(D-2)

For the remaining integral functions:

\begin{align*}
f_{z2} &= A \tau (P_3 - \tau P_5) \\
f_{21} &= -A \left(\frac{4}{3} - 2 \tau P_3 + \tau^2 P_5 \right) \\
f_{22} &= -A^2 \left(\frac{4}{5} - 2 \tau P_4 + \tau^2 P_6 \right) \\
f_{z} &= -A \left(\frac{4}{3} - \tau P_3 \right)
\end{align*}

(D-3)
Johnston Crossflow profiles

\[f_{12} = A \frac{1}{\tau^2} P_2 \]
\[f_{24} = -A \tau (P_1 - \frac{1}{\tau} P_2) \]
\[f_{22} = -A^2 \frac{1}{\tau^2} P_2 \]
\[f_2 = -A \tau P_1 \]

For the expression \(P_1 \) we get:

\[P_1 = \frac{4}{k} (\frac{3}{2} \Pi^2 + \frac{3}{2} (2 - L_4) \Pi + 2) \]

\[P_2 = \frac{4}{k^2} \left[\frac{3}{2} \Pi^2 + 2 (2 - L_4) \Pi + 2 \right] \]

\[P_3 = \frac{4}{k^2} \left[\Pi \left(\frac{1}{3} + \frac{2}{\gamma^2} \frac{1}{4} \right) + \frac{11}{18} \right] \]

\[P_4 = \frac{4}{k^2} \left[\Pi \left(\frac{4}{5} + \frac{4}{\gamma^2} - \frac{24}{\gamma^4} \right) + \frac{137}{300} \right] \]

\[P_5 = \frac{4}{k^2} \left[\Pi^2 \left(\frac{1}{2} + \frac{17}{24 \gamma^2} \right) + \Pi \left(\frac{29}{9} - \frac{10}{\gamma^2} - 2 L_4 + \frac{4}{\gamma^2} \right) + \frac{85}{54} \right] \]

\[P_6 = \frac{4}{k^2} \left[\Pi^2 \left(\frac{3}{10} + \frac{17}{24 \gamma^2} - \frac{195}{4 \gamma^4} \right) + \Pi \left(\frac{437}{150} - 2 L_4 \right) \left(\frac{1}{\gamma^2} + \frac{24}{\gamma^4} \right) \right. \]

\[+ \frac{9}{\gamma^2} L_2 \left(\frac{1}{\gamma^2} - \frac{34}{\gamma^4} + \frac{172}{\gamma^6} \right) \left(\frac{12049}{9000} \right) \]
k=0.41 is here the von Kármán constant and L_1 and L_2 calculate to:

\[
L_1 = - \sum_{n=1}^{\infty} (-1)^n \frac{\gamma^{2n}}{(2n+1) [(2n+1)!]} \\
L_2 = - \sum_{n=1}^{\infty} (-1)^n \frac{\gamma^{2n}}{2n (2n!)}
\]

(D-6)

The derivations needed for the calculation

\[
\frac{\partial f}{\partial \pi} = f_{\pi}, \quad \frac{\partial f}{\partial \tau} = f_{\tau} \quad \text{und} \quad \frac{\partial f}{\partial A} = f_{A}
\]

can be determined from the above equations.
Appendix E (Turbulent Boundary Layer) /63

The integral functions of the boundary layer in the x,y,z coordinate system.

With the aid of the relations between the integral functions in the t,n,z and x,y,z coordinate systems, as determined from appendix C and the f functions determined from appendix D, the integral functions in the x,y,z coordinate system can be named.

\[
\begin{align*}
\Theta_{11} &= \delta \phi_{11} \\
\Theta_{22} &= \delta \phi_{22} \\
\Theta_{21} &= \delta \phi_{21} \\
\Theta_{42} &= \delta \phi_{42} \\
\Theta_{41} &= \delta \phi_{41} \\
\Delta_{1}^x &= \delta \phi_{11} \\
\Delta_{2}^x &= \delta \phi_{22} \\
\frac{U_{c}}{U_{e}} \delta - \Delta_{1}^x &= \delta \phi_{3} \\
\frac{V_{e}}{U_{e}} \delta - \Delta_{2}^x &= \delta \phi_{4} \\
\end{align*}
\]

(E-1)

where $\phi=\phi(\alpha, \lambda, \eta, \sigma, A)$

The functions ϕ are as follows:

\[
\phi_{11} = \frac{1}{\sin^2 \lambda} \left[f_{11} \sin^2 (\lambda - \alpha) - \left(f_{12} + f_{21} \right) \sin (\lambda - \alpha) \cos (\lambda - \alpha) \\
+ f_{22} \cos^2 (\lambda - \alpha) \right]
\]

(E-2)
Continuation:

\[\phi_{42} = \frac{1}{\sin^2 \lambda} \left[f_{44} \sin \alpha \sin (\lambda - \alpha) + f_{42} \cos \alpha \sin (\lambda - \alpha) \
- f_{24} \cos \alpha \sin (\lambda - \alpha) - f_{22} \cos \alpha \cos (\lambda - \alpha) \right] \]

\[\phi_{24} = \frac{1}{\sin^2 \lambda} \left[f_{44} \sin \alpha \sin (\lambda - \alpha) - f_{42} \sin \alpha \cos (\lambda - \alpha) + f_{42} \cos \alpha \sin (\lambda - \alpha) - f_{22} \cos \alpha \cos (\lambda - \alpha) \right] \]

\[\phi_{22} = \frac{1}{\sin^2 \lambda} \left[f_{44} \sin^2 \lambda + \{ f_{12} + f_{24} \} \cos \alpha \sin \lambda + f_{22} \cos^2 \lambda \right] \]

\[\phi_4 = \frac{1}{\sin \lambda} \left[f_{44} \sin (\lambda - \alpha) - f_{22} \cos (\lambda - \alpha) \right] \]

\[\phi_2 = \frac{1}{\sin \lambda} \left[f_{44} \sin \alpha + f_{22} \cos \alpha \right] \]

\[\phi_3 = \frac{1}{\sin \lambda} \left[\{ 1 - f_{44} \} \sin (\lambda - \alpha) + f_{22} \cos (\lambda - \alpha) \right] \]

\[\phi_4 = \frac{1}{\sin \lambda} \left[\{ 1 - f_{44} \} \sin \alpha - f_{22} \cos \alpha \right] \]
The \(f \) coefficients that appear in the equations (E-2) are given in appendix D.

The derivations required for the calculations:

\[
\frac{\partial \phi}{\partial \lambda} = \phi_{\lambda}, \quad \frac{\partial \phi}{\partial \lambda} = \phi_{\lambda}, \quad \frac{\partial \phi}{\partial \Gamma} = \phi_{\Gamma}, \quad \frac{\partial \phi}{\partial \Pi} = \phi_{\Pi} \quad \text{and} \quad \frac{\partial \phi}{\partial A} = \phi_{A}
\]

can be easily determined.
The right-hand sides of equations (31)-(36)

The expressions I on the right-hand sides of the equations (31)-(36) produce

$$J_1 = \frac{c_{f_x}}{2} h_4 - \delta \left\{ \phi_{4_{x\perp}} \frac{\partial \lambda}{\partial x} + \phi_{4_{y\perp}} \frac{\partial \lambda}{\partial y} + \frac{h_4}{h_2} \left(\phi_{4_{z\perp}} \frac{\partial \alpha}{\partial y} + \phi_{4_{z\perp}} \frac{\partial \alpha}{\partial y} \right)
+ \phi_{4_{x\perp}} \frac{\partial \alpha}{\partial y} + \phi_{4_{y\perp}} \frac{\partial \alpha}{\partial y} + \phi_{4_{z\perp}} \frac{\partial \alpha}{\partial y} + \phi_{4_{z\perp}} \frac{\partial \alpha}{\partial y} \right\}$$

$$+ \phi_{4_{x\perp}} \left(\frac{2}{U_e} \frac{\partial U_e}{\partial x} + \frac{h_4}{q} \frac{\partial \left[\frac{q}{\alpha - h_1} \right]}{\partial x} + \alpha_1 h_1 \right) + \phi_{4_{y\perp}} \left(\frac{\alpha}{U_e} \frac{\partial U_e}{\partial x} + \alpha_1 h_1 \frac{\alpha}{U_e} \right)$$

$$+ \phi_{4_{z\perp}} \left(\frac{h_4}{h_2} \frac{\alpha}{U_e} \frac{\partial U_e}{\partial y} + \alpha_3 h_1 \frac{\alpha}{U_e} + \alpha_3 h_4 \frac{\alpha}{U_e} \right) + \phi_{4_{z\perp}} \alpha_2$$

$$J_2 = \frac{c_{f_y}}{2} h_4 - \delta \left\{ \phi_{2_{x\perp}} \frac{\partial \lambda}{\partial x} + \phi_{2_{y\perp}} \frac{\partial \lambda}{\partial x} + \frac{h_4}{h_2} \left(\phi_{2_{z\perp}} \frac{\partial \alpha}{\partial y} + \phi_{2_{z\perp}} \frac{\partial \alpha}{\partial y} \right)
+ \phi_{2_{x\perp}} \frac{\partial \alpha}{\partial y} + \phi_{2_{y\perp}} \frac{\partial \alpha}{\partial y} + \phi_{2_{z\perp}} \frac{\partial \alpha}{\partial y} + \phi_{2_{z\perp}} \frac{\partial \alpha}{\partial y} \right\}$$

$$+ \phi_{2_{x\perp}} \left(\frac{2}{U_e} \frac{\partial U_e}{\partial x} + \frac{h_4}{q} \frac{\partial \left[\frac{q}{\alpha - h_1} \right]}{\partial x} + b_3 h_1 \right) + \phi_{2_{y\perp}} \left(\frac{\alpha}{U_e} \frac{\partial U_e}{\partial x} + b_4 h_1 \frac{\alpha}{U_e} \right)$$

$$+ \phi_{2_{z\perp}} \left(b_3 h_1 \frac{\alpha}{U_e} \right) + \phi_{2_{z\perp}} \left(\frac{h_4}{h_2} \frac{\alpha}{U_e} \frac{\partial U_e}{\partial y} + b_2 h_1 \frac{\alpha}{U_e} \right) + \phi_{2_{z\perp}} b_4 h_1 \left\}$$
\[J_3 = F h_1 + c \left\{ \frac{\partial \phi}{\partial x} + \frac{\partial \lambda}{\partial x} + \frac{h_1}{h_2} \left(\frac{\partial \phi}{\partial y} + \frac{\partial \lambda}{\partial y} \right) \right\} \]
\[\quad + \phi_4 \frac{\partial \psi}{\partial x} + \phi_4 \frac{\partial \pi}{\partial y} + \phi_4 \frac{\partial A}{\partial y} + \phi_4 \frac{\partial \alpha}{\partial y} \]
\[+ \phi_3 \left(\frac{1}{U_e} \frac{\partial U}{\partial x} + \frac{h_1}{h_1} \frac{\partial \sqrt{h_1}}{\partial x} \right) + \frac{h_1}{h_2} \phi_4 \left(\frac{1}{U_e} \frac{\partial U}{\partial y} + \frac{h_1}{h_1} \frac{\partial \sqrt{h_1}}{\partial y} \right) \]
\[J_4 = - \frac{\delta}{U_e} \frac{\partial U}{\partial x} \]
\[J_5 = h_1 \frac{U_e}{u_4} \left[\frac{0.1}{\delta} (E - F) - \frac{V_4}{U_e} \frac{1}{h_2} \frac{\partial F}{\partial y} \right] \]

\[(F-1) \]
Continuation:

\[J_6 = \frac{U_e}{u_4} \{ \phi_1 \frac{\partial \sigma}{\partial x} + \phi \phi_{\pi} \frac{\partial \sigma}{\partial x} + \phi_2 \phi_{\pi} \frac{\partial \sigma}{\partial x} \} \]

\[- \delta x \left\{ \frac{h_4}{q} \frac{\partial}{\partial x} \left(\frac{q_2}{h_4} \right) + \frac{1}{u_4} \frac{\partial u_4}{\partial x} + \frac{v_4}{u_4} \frac{h_4}{q} \frac{\partial}{\partial y} \left(\frac{q_2}{h_4} \right) + \frac{h_4}{h_2} \frac{1}{u_4} \frac{\partial V}{\partial y} \right\} \]

\[- \frac{h_4}{h_2} \frac{v_4}{u_4} \frac{\partial \sigma}{\partial y} + \frac{U_e}{u_4} \delta \left\{ \phi_2 \frac{\partial \lambda}{\partial x} + \phi_2 \frac{\partial \lambda}{\partial x} + \frac{h_4}{h_2} \left[\phi_2 \frac{\partial \lambda}{\partial y} \right. \right. \]

\[+ \phi_2 \frac{\partial \lambda}{\partial y} + \phi_2 \frac{\partial \lambda}{\partial y} + \frac{\partial \Pi}{\partial y} + \phi_2 \frac{\partial A}{\partial y} + \phi_2 \left. \frac{\partial \sigma}{\partial y} \right\} \]

\[+ \delta \phi \left\{ \frac{U_e}{u_4} \frac{h_4}{q} \frac{\partial}{\partial x} \left(\frac{q_2}{h_4} \right) + \frac{1}{u_4} \frac{\partial U_e}{\partial x} \right\} + \delta \phi \left\{ \frac{U_e}{u_4} \frac{h_4}{q} \frac{\partial}{\partial y} \left(\frac{q_2}{h_2} \right) \right. \]

\[+ \frac{h_4}{h_2} \frac{1}{u_4} \frac{\partial U_e}{\partial y} \right\} \]

\[(F-1) \]
Appendix G (Turbulent Boundary Layer)

Calculation of the initial condition

When recalculating the experiments the initial values of the dependent variables \(\delta, \pi, \sigma \) and \(A \), must be determined at the first test station from the measured values of \(\theta_{11}, H \) and \(\beta \).

For the form parameter \(H \) we get

\[
H = \frac{\delta x}{\Theta_{n}} = \frac{f_1}{f_m} \tag{G-1}
\]

and with equation (G-2)

\[
1.5 \pi^2 - \pi \left\{ 2 \left(L_1 - 2 \right) + \frac{k}{\pi} \frac{H-1}{H} \right\} + \left(2 - \frac{k}{\pi} \frac{H-1}{H} \right) = 0 \tag{G-2}
\]

In addition the following is true

\[
\sigma = -\frac{k}{\pi} \frac{H \Theta_{m}}{\pi + 1} \tag{G-3}
\]

\[
\frac{1}{\sqrt{\pi}} - \frac{\ln \pi}{k} = \frac{1}{k} \ln \frac{\delta U e}{\nu} + \frac{2 \pi^2}{k} + B
\]

Equations (G-2) and (G-3) are iterated with an estimated value of \(\pi \). \(A \) can be calculated for Mager profiles from

\[
A = \tan \beta \tag{G-4}
\]
and for Johnston profiles with equation (22).

The initial value for the entrainment coefficient F was the correlation by Head [4].

\[
F = F(H_x) \quad \text{with} \\
H_x = \frac{\delta - \delta^*}{\Theta_{11}}
\]

\(\text{(G-5)}\)
The Transformed and Physical Integral Functions

1. The Transformed Integral Functions

Integral functions which depend on profiles in the direction of the main flow (η_δ is the transformed boundary layer thickness for which $U/U_e = 0.99$)

\[
K_1 = \frac{\gamma_\delta}{\int_0^\gamma_\delta (1 - \frac{U}{U_e}) \, d\eta}
\]

(H-1)

\[
K_{11} = \frac{\gamma_\delta}{\int_0^\gamma_\delta \frac{U}{U_e} (1 - \frac{U}{U_e}) \, d\eta}
\]

(H-2)

\[
K_{111} = \frac{\gamma_\delta}{\int_0^\gamma_\delta \frac{U}{U_e} (1 - \frac{U}{U_e})^2 \, d\eta}
\]

(H-3)

\[
f_w'' = \left(\frac{\partial U}{\partial \eta} \right)_w
\]

(H-4)
Integral functions, which depend on profiles in the direction of the crossflow (all functions standardized for $\eta = 1$)

\[L_{14} = \int_0^\eta \left(\frac{\partial U}{\partial \eta} \right)^2 d\eta \] \hspace{1cm} (H-5)

\[K_2 = - \int_0^1 (\frac{V}{U_e})^x d\eta \] \hspace{1cm} (H-6)

\[K_{12} = - \int_0^1 (\frac{V}{U_e})^x d\eta \] \hspace{1cm} (H-7)

\[K_{222} = - \int_0^1 (\frac{V}{U_e})^x d\eta \] \hspace{1cm} (H-8)

\[Q_w = \left[\frac{\partial (\frac{V}{U_e})^x}{\partial \eta} \right]_w \] \hspace{1cm} (H-9)
Integral functions which depend on profiles in the main flow and crossflow directions (ηο in the crossflow direction is set equal to the ηο of the main flow direction)

\[L_{12} = \int_{\eta_0}^{\eta_d} \left[\frac{\partial (\frac{V}{U_e})^x}{\partial \eta} \right]^2 \, d\eta \] \hspace{1cm} (H-10)

\[K_{12} = - \int_{\eta_0}^{\eta_d} \frac{U}{U_e} \left(\frac{V}{U_e} \right)^x \, d\eta \] \hspace{1cm} (H-11)

\[K_{122} = - \int_{\eta_0}^{\eta_d} \frac{U}{U_e} \left(\frac{V}{U_e} \right)^{x^2} \, d\eta \] \hspace{1cm} (H-12)

\[K_{221} = - \int_{\eta_0}^{\eta_d} \frac{U}{U_e} \left(\frac{V}{U_e} \right)^{x^2} \, d\eta \] \hspace{1cm} (H-13)

\[L_{12} = \int_{\eta_0}^{\eta_d} \frac{\partial U}{\partial \eta} \frac{\partial (\frac{V}{U_e})^x}{\partial \eta} \, d\eta \] \hspace{1cm} (H-14)
The definition of these integral functions is given in appendix C. Integral functions which depend on profiles in the main flow direction

\[\delta_h^x = \Theta_m \left[\frac{k_1}{k_{mm}} + m_e^2 \left(\frac{k_1}{k_{mm}} + 1 \right) \right] \]

(H-15)

\[\delta_{i1}^x = \Theta_m \left[\frac{k_1}{k_{mm}} (1 + m_e^2) + m_e^2 \left(1 - \frac{k_{mm}}{k_{11}} \right) \right] \]

(H-16)

\[\Theta_{11} \text{ variable} \]

\[\Theta_{m1} = \Theta_m \left(1 + m_e^2 \frac{k_{mm}}{k_{11}} \right) \]

(H-17)

\[c_{f1} = 2 \frac{\alpha \delta^x}{Re \Theta_m} \]

(H-18)
Integral functions which depend on profiles in the crossflow direction

\[
S_{\tau \tau} = \frac{L_{11}}{Re_{\Theta_{11}}} \ c^x
\]

(H-19)

\[
\delta_2^x = \Theta_{11} \ \frac{n_{\delta}}{K_{11}} \ b \ c
\]

(H-20)

\[
\delta_{2 \ i}^x = \Theta_{11} \ c \left[\frac{n_{\delta}}{K_{11}} \ b + m_e^2 \left(\frac{n_{\delta}}{K_{11}} \ b - \frac{K_{14 \ 2}}{K_{11}} \right) \right]
\]

(H-21)

\[
\Theta_{22} = \Theta_{11} \ c^2 \ n_{\delta} \ \frac{K_{22}}{K_{11}}
\]

(H-22)

\[
\Theta_{\tau 2 \ 2} = \Theta_{11} \ c^3 \ n_{\delta} \ \frac{K_{2 \ 2}}{K_{11}}
\]

(H-23)
Integral functions which depend on profiles in the main flow and crossflow directions

\[C_{f_n} = 2 \frac{g_w}{Re_{\Theta_{41}}} \frac{K_{11}}{\gamma_\delta} \frac{C}{C^*} \] \hspace{1cm} (H-24)

\[S_{mn} = \frac{L_{L2}}{Re_{\Theta_{41}}} \frac{K_{11}}{\gamma_\delta} \frac{C}{C^*} \frac{C^*}{C} \] \hspace{1cm} (H-25)

\[\Theta_{12} = \Theta_{41} C \left(\frac{K_{12}}{K_{41}} - \frac{\gamma_\delta}{K_{41}} b \right) \] \hspace{1cm} (H-26)

\[\Theta_{12,i} = \Theta_{41} C \frac{K_{12}}{K_{41}} - \delta_{2i}^x \] \hspace{1cm} (H-27)

\[\Theta_{m2} = \Theta_{41} C \left(\frac{K_{112}}{K_{41}} - \frac{\gamma_\delta}{K_{41}} b \right) \] \hspace{1cm} (H-28)
(H-29)
\[\Theta_{221} = \Theta_{m} \frac{c}{\gamma^2 K_{221}} \]

(H-30)
\[S_{tn} = \frac{L_{12}}{Re_{\Theta_m}} \frac{K_{m} c_{p}^{*}}{\gamma} \]

\[\Theta_{11}, \ a, \ b \ and \ c \ are \ the \ dependent \ variables \ and \]

(H-31)
\[Re_{\Theta_m} = \frac{\Theta_{m} U_{e} S_{e}}{\mu_{e}} \]

(H-32)
\[m_{e}^{2} = \frac{4^{14} - 1}{2} M_{e}^{2} \]

where \(\gamma \) is the ratio of the specific heat of air.
The Chapman constant \(c_{p}^{*} \) is defined as
$C^* = \left(\frac{T_w}{T_e} \right)^{1/2} \frac{T_e + 102.5}{T_w + 102.5}$ \hspace{1cm} \text{(H-33)}$

T_w and T_e are the static temperatures of the gas at the wall, resp. the outer edge of the boundary layer.
Appendix I (Laminar Boundary Layer)

The right-hand sides of the equations (62)-(66)

\[
D_1 = h_x \frac{c_{fx}}{2} - \Theta_{\eta} \left\{ \left(\frac{2-M_x^2}{u_e} \right) \frac{\partial u_e}{\partial x} + \frac{h_x}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_x} \right) + a_4 h_x \right\}
- \frac{h_x}{h_x} \left\{ \Theta_{\alpha_1 \alpha_2} \frac{\partial \alpha_1}{\partial y} + \Theta_{\alpha_1 b} \frac{\partial b}{\partial y} + \Theta_{\alpha_2 c} \frac{\partial c}{\partial y} + \Theta_{\alpha_2 x} \frac{\partial x}{\partial y} \right\}
+ \Theta_{\alpha_2 x} \frac{\partial x}{\partial y} \right\}
- \Delta_x \left\{ \frac{1}{u_e} \frac{\partial u_e}{\partial x} + a_4 h_x \frac{u_x}{u_e} \right\}
- \Delta_x \left\{ \frac{h_x}{h_x} \frac{\partial u_e}{\partial y} + a_2 h_x \frac{v_x}{u_e} + a_3 h_x \frac{u_x}{u_e} \right\}
- h_x \Theta_{\alpha_2} a_2 - \Theta_{\alpha_2 a} \frac{\partial a}{\partial x} - \Theta_{\alpha_2 a} \frac{\partial x}{\partial x}

D_2 = h_x \frac{c_{fy}}{2} - \Theta_{\eta} \left\{ \left(\frac{2-M_x^2}{u_e} \right) \frac{\partial u_e}{\partial x} + \frac{h_x}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_x} \right) + h_x b_3 \right\}
- \frac{h_x}{h_x} \left\{ \Theta_{\alpha_1 \alpha_2} \frac{\partial \alpha_1}{\partial y} + \Theta_{\alpha_1 b} \frac{\partial b}{\partial y} + \Theta_{\alpha_2 c} \frac{\partial c}{\partial y} + \Theta_{\alpha_2 x} \frac{\partial x}{\partial y} + \Theta_{\alpha_2 x} \frac{\partial x}{\partial y} \right\}
- \Theta_{\alpha_2} \left\{ \left(\frac{2-M_x^2}{u_e} \right) \frac{h_x}{h_x} \frac{\partial u_e}{\partial y} + \frac{h_x}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_x} \right) + b_3 h_x \right\}
- \Delta_x \left\{ \frac{1}{u_e} \frac{\partial u_e}{\partial x} + h_x b_3 \frac{u_x}{u_e} \right\}
+ b_3 h_x \frac{v_x}{u_e} \right\}
- \Delta_x \left\{ \frac{h_x}{h_x} \frac{\partial v_x}{\partial y} + h_x b_2 \frac{v_x}{u_e} \right\}
- h_x b_2 \Theta_{\eta}
- \Theta_{\alpha_2 a} \frac{\partial a}{\partial x} - \Theta_{\alpha_2 a} \frac{\partial a}{\partial x}

(I-1)

(I-2)
\[D_3 = 2 h_1 S_x - \Theta_{\alpha\alpha} \left\{ \frac{(3-M_e^2)}{U_e} \frac{\partial U_e}{\partial x} + \frac{h_2}{q} \frac{\partial}{\partial x} \left(\frac{q}{h_2} \right) + 2 h_1 a_3 \right\} - \frac{h_2}{h_2} \left\{ \Theta_{\alpha\alpha} \frac{\partial \lambda}{\partial y} \right\} \\
+ \Theta_{\alpha\alpha} \frac{\partial \alpha}{\partial y} + \Theta_{\alpha\alpha} \frac{\partial b}{\partial y} + \Theta_{\alpha\alpha} \frac{\partial c}{\partial y} + \Theta_{\alpha\alpha} \frac{\partial d}{\partial y} + \Theta_{\alpha\alpha} \frac{\partial \lambda}{\partial y} \right\} \\
- \Theta_{\alpha\alpha} \left\{ \frac{(3-M_e^2)}{U_e} \frac{h_1}{h_2} \frac{\partial U_e}{\partial y} + \frac{h_2}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_2} \right) + 2 h_1 a_3 \right\} - 2 (\Delta_x - \Delta_{x^*}) \left\{ \frac{u_{1}}{U_e} \frac{\partial u_{1}}{\partial x} \right\} \\
+ a_4 h_4 \frac{u_{1}^2}{U_e^2} + a_2 h_4 \frac{v_{1}^2}{U_e^2} \right\} - 2 (\Theta_{221} - \Theta_{221}) \left\{ \frac{h_1}{h_2} \frac{1}{U_e} \frac{\partial u_{1}}{\partial y} + h_4 a_3 \frac{u_{1}}{U_e} \right\} \\
- 2 h_1 a_2 \Theta_{221} - \Theta_{\alpha\alpha} \frac{\partial \lambda}{\partial x} - \Theta_{\alpha\alpha} \frac{\partial \lambda}{\partial x} \right\} \\
(1-3) \\
D_4 = 2 h_4 S_y - \Theta_{221} \left\{ \frac{(3-M_e^2)}{U_e} \frac{\partial U_e}{\partial x} + \frac{h_1}{q} \frac{\partial}{\partial x} \left(\frac{q}{h_1} \right) + 2 h_1 b_3 \right\} \\
- \frac{h_1}{h_2} \left\{ \Theta_{222a} \frac{\partial \lambda_{1a}}{\partial y} + \Theta_{222b} \frac{\partial \lambda_{1b}}{\partial y} + \Theta_{222c} \frac{\partial \lambda_{1c}}{\partial y} + \Theta_{222d} \frac{\partial \lambda_{1d}}{\partial y} \right\} \\
+ \Theta_{222a} \frac{\partial \lambda_{1a}}{\partial y} \right\} - \Theta_{222} \left\{ \frac{(3-M_e^2)}{U_e} \frac{h_1}{h_2} \frac{\partial U_e}{\partial y} + \frac{h_2}{q} \frac{\partial}{\partial y} \left(\frac{q}{h_2} \right) + 2 h_1 b_3 \right\} \\
- 2 (\Delta_x - \Delta_{x^*}) \left\{ \frac{h_1}{h_2} \frac{v_{1}}{U_e} \frac{\partial v_{1}}{\partial y} + b_3 h_1 \frac{u_{1}^2}{U_e^2} + b_2 h_4 \frac{v_{1}^2}{U_e^2} \right\} \\
- 2 (\Theta_{221} - \Theta_{221}) \left\{ \frac{1}{U_e} \frac{\partial v_{1}}{\partial x} + b_3 h_4 \frac{v_{1}}{U_e} \right\} - 2 b_3 h_4 \Theta_{\alpha\alpha} - \Theta_{222a} \frac{\partial \lambda}{\partial x} \right\} \\
(1-4) \\
\text{ORIGINAL PAGE IS OF POOR QUALITY}
\[D_s = \frac{U_e}{u_1} \frac{\partial \Delta_x}{\partial x} + \Delta_x \left\{ \frac{4}{u_4} \frac{\partial U_e}{\partial x} + \frac{U_e}{u_1} \frac{h_1}{q} \frac{\partial}{\partial x} \left(\frac{q}{h} \right) - \frac{M^2}{u_1} \frac{\partial U_e}{\partial x} \right\} \]

\[+ \Delta_x \left\{ \frac{U_e}{u_4} \frac{h_1}{q} \frac{\partial}{\partial y} \left(\frac{q}{h} \right) + \frac{h_1}{u_4} \frac{\partial U_e}{\partial y} \left(1 - M^2 \right) \right\} + \frac{h_1}{h_2} \frac{U_e}{u_1} \frac{\partial \Delta_y}{\partial y} \]

\[- \delta_x \left\{ \frac{4}{u_1} \frac{\partial u_1}{\partial x} + \frac{h_1}{q} \frac{\partial}{\partial x} \left(\frac{q}{h} \right) - \frac{M^2}{U_e} \frac{\partial U_e}{\partial x} + \frac{h_1}{h_2} \frac{U_e}{u_4} \frac{\partial u_4}{\partial y} \right\} + \frac{\gamma_1}{u_1} \frac{h_1}{q} \frac{\partial}{\partial y} \left(\frac{q}{h} \right) \right\} - \frac{h_1}{h_2} \frac{\partial \Delta_x}{\partial y} \]

\[(I-5)\]
Fig. 1. Three-dimensional Boundary Layer Flow
Fig. 2. View of the Plane Tangential to the Body Surface
Fig. 3. Course of the moment loss thickness θ_{11} of the form parameter H and of the wallflow line angle β
Fig. 4. Data of the potential flow from Berg and Elsenaar's tests
Fig. 5. Results for Mager crossflow profiles for input of various data of the potential flow
Fig. 6. Results for Johnston crossflow profiles for input of various data of the potential flow.
Fig. 6a. Comparison with difference methods
Fig. 7. Description of test arrangement
Fig. 8. Course of the moment loss thickness θ_{11}, of the form parameter H and of the wallflow line angle β.

Original page is of poor quality.
Fig. 8. Continuation
Fig. 8. Continuation
Fig. 9. Course of the potential and wallflow lines
Fig. 10. Course of the moment loss thickness θ_{11} of the form parameter H and of the wallflow line angle β.

Messung [16] Linie B
Measurement Line B
P.D. Smith [13]
Fig. 10. Continuation
Fig. 10. Continuation
Fig. 12. Comparison of the measured and calculated velocity profiles in the crossflow direction.
Fig. 13. Comparison of the measured and calculated velocity profiles in the main flow direction
Fig. 14. Comparison of the measured and calculated velocity profiles in the crossflow direction

V/Ue [-]
Fig. 15. Comparison of the measured and calculated velocity profiles in the main flow direction.
Fig. 16. Comparison of the measured and calculated velocity profiles in the main flow direction.
Fig. 17. Comparison of measured and calculated velocity profiles in the crossflow direction
Fig. 18. Velocity profiles (laminar) in the main flow direction.
Fig. 19. Generation of velocity profiles (laminar) in the crossflow direction
Fig. 20. Transformed Integral Functions which depend on the main flow direction.
Fig. 21. Transformed integral functions, which depend on profiles in the cross-flow direction.
Fig. 22: Moment loss thickness K_{12} over displacement thickness K_2 of the cross-flow profile (transformed functions)
Fig. 23. Energy loss thickness k_{112} over the displacement thickness k_2 of the crossflow profiles (transformed functions)
Fig. 24. Energy loss thickness K_{221} over the displacement thickness K_2 of the crossflow profile (transformed functions)
Fig. 25. Dissipation integral L_{12} over the displacement thickness K_2 of the crossflow profile (transformed functions)
Fig. 26. Comparison of the results of calculation according to a difference method with the present method (Laminar boundary layer, test case 1)
Fig. 26. Continuation
Fig. 27. Comparison of the calculation results of a difference method with the present method (Laminar boundary layer, test case 2)
Fig. 27. Continuation
Fig. 28. Comparison of calculation results of a difference method with the present integral method (Laminar boundary layer, test case 3)
Differenzenverfahren
Übereinstimmung in H
Verfahren
Vorliegendes
Agreement
Present
Verfahren
Agreement
am Rechenbeginn
at start of calculation

Fig. 28. Continuation
Fig. 29. Coordinate systems at tapered and untapered wings
Fig. 30. Top view of the wing.

Untersuchter Flügelschnitt
Wing section investigated

θ_H = 16°
θ_V = 32°
Fig. 31. Distribution of velocity $\frac{U_e}{U_{Ref}}$ and of the angle α over the wing chord.
Fig. 32. Trace of the moment loss thickness over the wing chord
Fig. 33. Trace of the form parameter over the wing chord

-\[
M = 0.835 \\
Re = \frac{U_{\text{Ref}} \cdot c}{V_{\text{Ref}}} = 2.1 \times 10^6
-\]

1. Unendlich langer, schiebender Flügel
 (Ininitely long, yawed wing)

2. Zugespitzter Flügel
 (Tapered wing)
Fig. 34. Trace of the wallflow line angle over the wing chord
Fig. 35. Comparison of the laminar and turbulent boundary layer development at an infinitely long, yawed wing.
Fig. 36. Definition of the coordinates ϕ and ψ for the revolution ellipsoid
Fig. 37. Velocity distribution of the potential flow for the incident revolution ellipsoid
Fig. 38. Distribution of the angle α at the incident revolution ellipsoid
Fig. 39. Distribution of the moment loss thickness θ_{11} for the incident and nonincident revolution ellipsoid (turbulent boundary layer).
Fig. 40. Trace of the form parameter H for the incident and nonincident revolution ellipsoid (turbulent boundary layer).

$$\Re = \frac{U_{\infty}a}{V_{\infty}} = 5 \times 10^5$$

- $\alpha^* = 0^\circ$
- $\alpha^* = 10^\circ$
Fig. 41. Trace of the wallflow line angle β for the incident revolution ellipsoid (turbulent boundary layer)