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LINEAR METHOD FOR THE CALCULATION OF THREE-DIMENSIONAL,
LAMINAR AND TURBULENT BOUNDARY LAYERS

H. W. Stock
Dornier, Inc.

1. Introduction

Methods of calculation for three-dimensional, laﬁinar and
turbulent boundary layers and their application for three-
dimensional aircraft wings and bodies will be described in this
study. The methods of calculation are based on integral
methods which, when compared to difference methods, suffer a
loss of accuracy and are less flexible with regard to the use
of various turbulence models. On the other hand, they require
much shorter calculatilion times and storage facilities.

The integral method for the calculation of turbulent flows
is an improved version of an existing method, the method for

laminar flows is a new development.

2. General Fundamentals

2.1 Choice of Coordinates

There are two directions marked for three-dimensional
boundary layer currents, as shown in Fig. 1. One direction re-
sults from the projection of the flow line at the outer edge
of the boundary layer onto the body surface and indicates the
direction of the main flow t; the other one runs vertical to
the main flow direction t and represents the crossflow direc-
tion n. The distribution of the three-dimensional velocity

*Numbers in the margin indicate pagination in the foreign text.
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profile into main flow and crossflow directions is shown in
Fig. 1.

Three-dimensional boundary layers in the flow line coor-
-dinates t and n were often calculated; where t and n are‘cugvi-
linear, orthogonal coordinates. Significant drawbacks result
from the use of flow line coordinates. 1. The course of the
flow lines at the outer edge of the boundaxry layer must be
calculated. 2. The flow Line coordinates must be newly deter-
mined for the same body geometry when the flow situation
changes- (change of angle of attack for instance). The intro-
duction of arbitrary, curvilinear nonorthogonal coofdinates X
and y removes these drawbacks. 1In Fig. 1 the distribution:of
the three-dimensional velocity profile into the x- and y-direc-
~tions is‘éhown. There are simple Telations between the ..
velocity profiles in the t-, resp. n- and x- resp. y-direction,
*in Fig. 2, through the angles o and A:

U = Usin (0 -«) = Vcos (h-o) ’

|

Sin A ;
T
: , |
w = UC Slﬂ?k—o{) i
l Sin A
(1)
v = UYsing + Vcos« ;
Sin A L
v, = (J Sin o
! ¢ Sin A ) B '

=
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U, is 1n this case the resultant velocity at the outer
"edge of the boundary layer, u; and v, are its components in
the x- and y- directions. U and V are the velocity compone

in the t- and n- directions, see Fig. 1.

A 1s the angle between the x- and y- direction; o is t
angle between the flow line projection at the outer edge of

the boundary layer onto the body surface and.the x-directio;

and a+8 is the angle between the wallflow line and the x-

direction.

2.2 The Metric qufficients of the Coordinate System

When the body surface, for which the boundary layer is

be calculated, is given in Cartesian coordinates X,Y;Z,iheﬁ{:f;

a curvilinear coordinate system X,ysCan be so chosen on the
surface that each point x,y defines a single point X,Y,Z.
transformation of the Cartesian coordinate system into the
curvilinear one can be written as

X = X(x,y)
Y = ¥Y(x,y)
Z = Z(x,Y)

and the metric coéfficients h;,h, and g of the curvilinear

system are given by

FY

o

h;" =§%—§<)l +{b$?%‘)2 i(gg_&)z
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T

P4/ R

nts

he

n

7‘t0

The

Voo e -



_ QXDX , OYOoY . D20z
g @x’aﬂ+®x€)3 +®x®§¢

e — e - S — [P VU

(3)

From eq. (2) one gets, after differentiation over x and y,

L Qb DXOX , vy |, 927
" Ox _Ox Ox*  ©x Ox* _ Ox Ox*-

(4)

and

oh L DX X . OY oy | or o
7 6‘:] O x @xﬁﬁ Ox  9x Oy Ox. OxOgy

with similar expressions for:fahzj th‘) g and{iéji
O % (blj VX *fa‘j

2.3 Basic Equations

It is sufficient for the derivation of integral equations
to start with the equations of the laminar boundary layers,

since the integral equations for laminar and turbulent'boﬁndary
layers are identical.



In nonorthogonal cuvilinear coordinates the continuity
equation and the x- and y- pulse equations are

continuity equation

BlEsw) 1 £(Ee) r2gen o ©

X- pulse equation

u Ou v Dw Du o, S
(i O b 0y P e F et ra vt bauv) -
'ap Y = ' (6)
Wy 22 4 a. 2E 5

* f-'BH i 0z

y-pulse equation

'g(&_a‘.{ S

(7)

Ty and Ty are the shearstresses in the x- agd y- directions,
u,v, and w are the velocity components in the x,y and z direc-
tion, ? is the density and p the static pressure. The func-
tions a; and bi are functions of the metric coefficients, as
per appendix A. After integrating equations (6) and (7) from
z=0 to z=6 (where ¢ is the boundary layer thickness) and using
equation (5) one gets for the

xX- pulse 1ntegra1 equatlon

4 OO, r O {(z MZ) 4 Qs +ig (_%)+ a4} . 2 28
'hd 0 % " l‘\d e Ox Qﬁx h, g"\z ’alj

’;;-‘;_#_’;H,,‘:,f oY

T N

"
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Y-pulse integral equation

4 DO, [{z-mé)igg_e 4D/ b} . 420,
B Pl A T T G T Ao
cAL T e M e e
T T2eMd) 4 Qe , A0 4479 "
i el 1o DY {’ A4 CVe i h e
!'i‘@z_z_[ !'12 Ue (btj a ,a ( b j+A h Ue ,ax- 'I“D-:‘Ue--
Cf
Va +A [ A ’DV" 4 _\L/f_f - —3
* 0 @i hUerO':j rbzue G b, Z
M, is the Mach number of the outer edge of the bounﬁary /7

layer in this case and Cex and Cgy are the components of the
wallfrlctlon ceeff1c1ent Cfiin_the X~ andfy-'diregtinns:

The equations employed here, which are known as "moment ~
of momentum! equations in the English language literature and
have so far been used only for the calculation of two-dimensional
currents, are derived in the following manner. The x-pulse \
equation, which is multiplied by the velocity component u,
is integrated from z=0 to z=§ and by using the continuity
equation multiplied by G%/2 one gets the

x- "moment of momentum” equation

ﬁ ’D@m (3 Me)f: e >
444[ 4 Ug R +§6—)-<(2) z"Zaqj ;‘j:!‘

mmammnrangig; ) G
OF POOR QUALITY.
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JJ‘N' et "\-\_ o N 1
" (3-M)4 e , 49 /9 X 0 A Ve Ow
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N g

B-MY A Qe . AD /L) 70 [ o s/ax 4 Dy
+@ [ o O 6&! +$Dg ﬁ¢}+ia3]‘ FZ(a; -4 ) l“'\,
= ~

(103

In the same way one gets the y- "moment of momentum' equa-

. tion by integrating the y-pulse equation multiplied by .the

velocity component v from z=0 to z=8 and using the continuity

equation multiplied by v2/2.

y- 'moment of momentum" equatlon /8

. . — —

"'-./\_w-\_/\

T~ L-—i .

:+b““z r b, X j+z(@,2£-@z,)[i—”—'a"' vby 2 |

Ue 2 Ut hy U Ox 3 ue
l'l' Zb{ ®44z o =ZSIZ|
s el . (11)




in addition the "entrainment" equation is used for calculation
- of turbulent flows since it describes the change of mass flow
in the boundary layer.

"Entrainment equation”

& (12)
a [O{_i_?(u_c? UA)+ { (v U,aﬂ'j—;F'
Se Ve ¢ . Tyt h L
The dlsplacement thickness s¥ of the three-dimensional /9

boundary layer, which is often required as result of a boundary
layer calculation, can be calculated from

’Si (Sé g uﬂ‘f ) q;;((ﬁeﬁij d\) ?;i gﬁj ‘o ’D 5E5¥Lé432g

2.
- (13)

Equation (13) has been derived by Myring [1] according to
the concept of the equivalent sources by Lighthill [2]. Equa-
tion (13) can be solved as soon as the functions A¥ and A¥ are
known. It should be mentioned that equation (13) is not re-
quired for determination of the boundary layer development;
it is solved independently of the boundary layer equations and

serves only for the determination of the displacement thick-
X
ness ¢



The integral functions of the boundary layer in the x,y,z
coordinate system, Fig. 1, which appear in equations (8)}-(13),
“are listed in appendix B. The integral functions of the X,¥Y,2
coordinate system can be expressed by the appropriate integral
functions of the t,h,z coordinate system, with the help of
equation (1), as per appendix C.

Three-dimensional laminar and turbulent boundary layers 4in
curvilinear nomnorthogonal coordinates can now be calculated
~with the.above listed basic equations, Velocity profiles for
the main flow and crossflow directions (t,n,z coordinate system)
and temperature profiles are required for that. If those are
available, the integral functions in the x,y,z.coordinate
system can be calculated .in a simple manner, as shown in appen-
dices B and-C.

3. An .Integral Method for the Calculation of Three- dlmen51onal /10
Turbulent, Incompressible Boundary Layers

Cooke and Hall [3] have shown in their study that for three-
dimensional boundary layers the flow in the direction of the
main flow corxresponds to a twb-dimensibnal boundary layer flow.
Myring [1] has accepted this assumption in his method for the
calculation .of three-dimensional, turbulent,.incompressible
boundary layers through nonorthogonal, curvilinear coordinates.
He used the pulse equations (8) and (10) and the entrainment .
equation (13) for dgterminatioﬁ of the boundary layer develop-
ment. The description of the entrainment coefficient F, equa-
tion (13), is based on the concepts by Head [4]. The differ-
ences between the present method and that of Myring are as
follows: '

1. Power profiles of a single parameter for description
of the velocity distribution in the direction of the main flow

I

ORIGINAYL] PAGE IS
OF POOR QUALITY]


http:calculation.of

have been replaced.by Coles' profiies of two parameters [5].
The wallfriction parameter describes the velocity distribution
close to the wall and the pressure gradient parameter deter-
mines velocity distribution in the outexr part of the boundary
layer. ‘

2, The additional empirical information required about
the wallfriction coefficient, when power profiles are used,
drops out imn this case. ] ’

3. Instead of the entrainment method used by Myring, in
which the entraimment coefficient is determined directly, a
"lag-entrainment" method has been employed in the present
methed which considers the nonequilibrium effects of the
boundary layer.

3.1 Empirical Statements

When calculating incompressible, adiabatic boundary layers
the need to provide . temperature profiles for the determination
" of integral functions is eliminated. The étatic_temperatﬁre
doées not change in the boundary layer along coordinate z.

3.1.1 Velocity Profiles

3.1.1.1 Direction of Main Flow

The velocity profiles with two parameters by
Coles [5] are used, as described by the wall principle and the

wake principle,

YU Ty exle , F o\ (2) oom
0 T e w(s) +TB (14)

10
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where .k is the von Kdrman constant, ¢ is the boundary layer
thickness, thé'pressure gradient parameter, W the universal
wake function which-can be approximated (6) through

wig) < 1-esfrg)

and § the wallfriction parameter which stands in the following

relation to the wallfriction coefficient Cep

-~ - ° 4 _'..
: Cry) 2t (16)
A I |

et o

The velocity distribution can also be written in
a form such as is used here for determination of the integral
functions, with the values for z=8, as determined from equa-

tion (14), entered into equation (14) with U=U,

Ul [T wd]

3.1.1.2 Direction of Crossflow

. As in Myring's [1] study, the statement by Mager
[7] -and Johnstom [8] describing the crossflow profiles as funcs

tions of those in the main flow direction are applied here.

Mager [7] suggested the following relation

- — —ar—ar - - ~ P

1) ’ 2 .
56 = @A (4-5%—)__? - as)

/12

11



whexre A has the following relation to the wall flow line angle

B, as seen 1n Figs. 1 and 2, which is equal to the angle between

the projection of the flow line at the outer edge of the boun-
dary layer of the body surface and the wall flow line,

A = tan B . ) (19)

—— e ——

{glow next to the wall the correlatlon

'%L =-éL tan 8 ; X - (z0)
e e

and for the remaining part of the boundary layer -

UV“ - A (i"ull (21)
2 " e .

. Johnston has shown that it:is sufficient to
use equatlon (213 for the calculatlon of integral functlons
of the crossflow.

The relation between A and 8 is given by .

-

Johnston as
- -1/2
tan B = A (0.1 [cg, cos B] - 1) (22)
with the aid of the profiles in the directions of main flow

and crossflow the integral functions in the t,n,z coordinate
system can be stated as functions of §,m,0 and A, in appendix

D, which, in that way,become variable functions in the proposed

method-of calculation.

. ORIGINAL PAGE IS
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Iﬁtegral functions of the x,y,z coordinate sys-

tem are listed &s functions of a,A,8,7m,0 and A in appendix E.

The necessary derivations of the integral func-
tions from «,A,5,m,9 and A can easily be determined.

3.1.2 Wallfriction Bquation ’ /14
So far omnly .three equafi&ns ate available for thé
calculation oﬁ four dependent variables §,7m,%¥ .and A; two pulse
equations and one entrainment equation. A differentidl equa-
tion whith can be derived from the expression for the wallfric-
tion parametér v, will be used as the fourth. Inserting z=0

with U=Ue in equation (14) results in an implicit equation .for

+

) %— f‘e”— E”(JU‘?) « 2l sl @y

———

Equation (23), differentiated for‘x, represents the
fourth differential equation that must be solved simultaneously
with the pulse equations and the entrainment equation

4 94 M (A4 ’M‘z_f”wer
s ox ' % ox *( Bx Gk oUW

'3.1.3 Entrainment Coefficiéﬁt F

Myring [1] used in his study the relation between F
and the form parameter H; as suggested by Head [4] for two-
dimensional flows. This empirical relation is based on mea-
surements in boundary layers at equilibrium. Andther sugges-
tion was made by Horton {9], which tqkes into consideration

13



the so-called "upstream history effects' on the coefficient F
in bbundary layers of nonequilibrium.

The entrainment coefficient F is not given as the /15

function of the form parameter H:, as by Head, but is calculated
through a differential equation, which is solved simultaneously
with the. abovementioned four differential equatioms,

;l@f kR -F. (25)
{'Dx C. &

and where Fgq is the entrainment coefficient under conditions of
equilibrium, §- is a characteristic boundary layer thickness -and .
C is a constant.

Horton [9] assumes that .entrainment is closely bound
up with the average shearstress in the outer part of the
boundary layer and showed that measurements in the boundary
layers at equlllbrlum can be correlated with

i :
f 0122 : .
e (H, —23)“9 '

where Ti.s represents the shearstress for z/§=0.5. A mixing

method relatlon of the Prandtl type is used for conversion of

equation (26) into a relation between FG and (BU/Bz)o's,

. u
{ _L...°_~‘='_i =<&.Jp_) (._) 27
N 8e Us 'E);%

where 1/% = 0.083.
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*

With the aid of Coles’ profiles it can be shown that /16

| ’U_H T T s T' ) .
\( @DZ;) . 4.37
NCH JCCNL B B e

The equations (26)-(28) résult in.,

b yees(Tas ) s
= I~ . )
Fo 1585 ( 3, u;) =

N ' (30)

R

_ In Horton's study [9] the characteristic béundary
layer thickness 8. in equation (25) was equal to the pulse loss
thickness 611 and.the corresponding value for C was C=0.012.
Tt turned out, however, that boundary layer thickness § repre-
sents a more sulitable measure of the characteristic thickness
since it fits better into the order of magnitude of the big
"eddies" that produce entrainment. . The corresponding value
for C is C=0.1. This C walue corresponds to a typical relax-
ation 1eﬁgth of 10 and agrees with the value by Bradshaw [10]
in thé equation for scaling of the dissipatien length, which
takes -on..a.form similar to equation” (25).

Since entraimment occurs in the outer part of the
‘bqundary layer, where velocities of the crossflow are small,
the two-dimensional view can be extended to three-dimensional
flows when entraimment is coupled to the velocity profiles in
the main flow direction.

15



3.2 Final Form of the Differential Equations

Equations (8),

X-pulse equation

entrainment equation

g53 ’ax

Wallfriction equation

1Q)5‘ oA
5% tolw

(93,

Gé G)V_ .

(12},

@ o L sp R2A

c?czﬁ

&DT+

w2/ dx

(13) and (25) can be written
with the aid of the empirical statements

mn ’ax 4"A X

<25

"ax, 24, ‘Bx
:_3_71 cag 2
Dx
‘537,: o
) o

entrainment coefficient equation

Q7
]
)
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e
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displacement area equation /18

36%

X =]e (36)

The expressions I; are listed in appendix F and the func-
tions ¢ij are listed in appendix E. -

5.3 Numerical Integration

Equations (31)-(35) are solved simultaneously. If desired,
the displacement area of the three-dimensional boundary layer
can be calculated with equation (36).

Myring [1] has pointed out that the differential equations
.{31)-(33) are of hyperbolic nature. Of the resultant three
characteristic directions the two outer ones describe the areas
of influence and dependence .in a calculated point. These areas
are limited by tiwo straight.lines that pass through the calcu-
lated point and form the angles ¢ and o+R with the Xx-axis.

When determining the y-derivations contained in the functions.
1., this situation is taken into account. -
When both angles o and o+f are positive backwards directed
différences are used
i‘ (OQ) = Hzo = Ompey NET)
YOy mn Ay ﬁ
when o and a+B are negative forward directed differences are /19
used - o — - S
?g(@&- . Q AR Qm,n
DG I, T ew T
i ‘§ %’L‘,j mln l. o B -.AS . N (38) -
i“;-"'-‘d"‘ Tt - - — '_-L RN, S - _ _ ¢
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and when o and a+f have different signs centered differences
are used

‘_ D@ | é:n 3 e —" Qm | A —:
\Qw = ' o 39
{((Dtﬂ N (39)

2oy

Q is a dependent variable, m is the counter for integra-
tion in the x- direction and n the counter for.integration in
the y-direction.

When the y-derivations of the dependent variables along
line x=constant are knewn integration imn the x-direction can be
accomplished through an explicit intermediary step method

. g |
| qu.z}in - Qm‘n + AX (rax et (40)
i ’ 3

3 1 -

(§%Jm+l/2,n is found by extrapolation of the value (Q) m+1/2,n

at a distance of Ax/2 from (Q)m n'wit-h (%%Jm 0

(%%)m+1/2 o Can then be calculated with (Q)m+l/2 n-
A s 2

Boundary conditions are required where characteristic di-
rections run into the calculated area from the outside. For
the three-dimensional boundary layer this corresponds to a
situation in which the boundary layer flow enters the calcula-
tion area from outside. It also follows that boundary condi-
tions are not required in places where the boundary layer flow /20

leaves the calculation area.

For the initial conditions of the calculated results shown
in 3.4 the measured values of ©;;, H and B are used and.
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- converted into the dependent variables 6,7, and A, as per
appendix G. The initial value for coefficient F was determined
from the measured value of form parameter H; and the relation
valid for flows in equilibrium, by Head [4].

3.4 Comparison with Experiments

3.4.1. van den Berg and E%senaaf [11]

Berg and Elsenaat™s experiment is of special signifi-
cance since it best simulates the flow conditions at sweptback
wings of all known measurements of three-dimensional boundary ~
layers. DBerg and Elsenaar have measured the turbulent boundary
layer on a yawed plate (angle of sweepback 35°) in the low
velocity area. The wall of the wind channel above the panel
was so constructed that the generated pressure increase was
large enough to cause separation of the boundary layer. Beyond
that .1t has been attempted to approach conditions for an infin-
itely long sweptback wing through shaping of the end plates of
the panel measured.

A nonorthogoﬂal, straight line coordinate system was
"used for the calculation in which the x-direction is identical
with the approach flow direction and the y- direetion is paral-
iel with the leading edge of the panel.

In'Fig: 3 the results for thé momént"loss‘thickness /21
Ou1> the form pafameter H of ‘the velocity profile in the main
flow direction and the wall flow line angle B were.compared
with the measurements. In addition the results of calcula-
tions, according to the methods of Cousteix [12] and Smith
[12], are shown. Cousteix used the pulse equations and the
entrainment equatioﬁ; He determined the velocity profiles

from the similar sdlutions‘of the turbulent boundary layer.
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Smith expanded Myring's [1l] method to compressible
flows and carried out the verifications shown here of experi-
ments in the incompressible area. The results COrréspond,
therefore, to Myring's method. The curves by Smith, shown in
Fig. 3, correspond to the Tesults shown at the Euromech 60.
The:letters Mand J in Fig. 3, and in all subsequent figures,
next to the present methed and that of Myring, correspond to
the results for crossflow profiles by Mager or Johnston: For
‘the calculatipﬂs in Fig. 3 the measured wall pressure distri--
bution and the condition of infinitedy long yawed wings was
used as input. Up to a panel depth of xx0.9 the present pro-
cedure- shows better agreement with the measurement than that of
Myring.

*Small digressions in the distribution of the resul-
tant velocity U, and of angle o resulted from different inter—‘
pretations of the data measured . in Fig. 4. JIn Fig. 5 the
results of calculations for crossflow profiles according to
Mager are shown for input of different velocity data at the
edge of the boundary Iayer. The curves /1l/ correspond to the
measured values of Ue and of a, the curves /é/ were determined
from Ué and the condition of infinitely long yawed wings and
curves /3/ from -the wall pressure distribution measured and
the condition of infintely 1ong yvawed wings. From the results
it becomes clear that small disturbances in ‘the velocity data
of the friction-free flow for boundary layer flows close to
detachment, can provide widely varying results. Fig. 6 shows
the corresponding results, as in Fig. 5, for Johnston cross- /22
flow profiles. In Fig. 6a a comparison with difference
methods (Schneider [12], Krause [12]) is demonstrated. Curves
/1/ and /3/ correspond to the conditions mentioned before.

No advantage can be seen in the more complicated difference
method. The detachment of the boundary layer is not -
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calculated by any difference method. For crossflow profiles,
according-to Mager and Johmston, the present method deter-
mines the point of separation in the .area of the experimen-
tally determined separation, after input of measured values

for Ue and a.

3.4.2 Johnston [14]

Johnston [14] examined the developmeﬁt of the boun-
dary layer in the area of low velocity, as shown in Fig. 7.
Air comes out of a rectangular channel and flows between two
test plates, the height of the channel .corresponding to the-
distance between them. The rear end of the measured distance
is formed by a wall that is placed at right angle to the test
panels and to the channel axis. The velocity distribution in
the plane that is.imagined stretched in the middle betweeh the
test panels, corresponds to the distribution for a two-
dimensional ray incident on a wall at right angle. ‘Since too
few values are given for the outer velocities to calculate
the boundary layer at the lower test panel, such velocities
are used as would result for such a configuration according
to potential theory [15]. The calculation is carried out with
orthogonal, linear coordinates, the results are shown in Figs.
8. The calculated results by Smith [13] are shown for compar-
ison. (A continuous curve of Smith's results. cannot be repro-
duced since his results were shown only for discrete point§.)
The differences between the results of the present method and
thaé of Myring are only small.

3.4.3 Vermeulen f16] /23

Vermeulen [16] measured the development of the boun-

dary layer at the bottom panel of a rectangular channel that
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had a 60° curvature. Fig. 9 shows a sketch of the measured
distance together with the flow lines at the edge of the boun-
dary layer and the wall flow lines. A curvilinear‘coofdiﬂate
system was used in which the x-direction followed the test
stations in the flow direction, with the y~directién at right
éngle 4o it. The values measured on lines A and E were used
for limit conditions. Figs.‘IO show a comparison with measure-
‘ments and- results by Smith [13]. The digressions of the
present method from the meésurements.aré-tleafly sinaller than
those of Myring's method. In Figs. 11l and 12 the velocity
profiles in main flow and crossflow directions, that were mea-
sured and calculated for Mager crossflow profiles, are shown
along line C. For the test-case of Vermeulen and for the tests
(11}, (14), Figs. 13-17, the calculated results from both
methods show the expected differences. In the area close to
the wall and in the outer part of the boundary layer, Coles'
profiles show better agreement with the measurements for the
main flow direction than the power profiles of Myring. Agree-
ment wiéh,the crossflow prdfilestis bad In both cases, though
measurements are reproduced slightly better by the present
method.

- 3.5 Discussion

The two ﬁarameter profile family by Coles,for description
of the velocity profile in the direction of the main flow,
showed better results for three-dimensiocnal boundary layers
than the use of one parameter power profiles, sométhing al-
ready known for the two-dimensional case. An attempt has been
made to~include conditions of nonequilibrium, that should be
considered for the calculation of turbulent boundary lavyers,
by means of the "lag-entrainment'™ method. Agreement betiween

measurements and calculations is good considered the effort

22



invested in the method.. The proposed integral method provides

good results‘even when compared with difference methods.

4, An Integral Method for the Calculation of Three-
dimensional, AdiabaticsLaminar, Compressible
Boundary Layers

The pulse equatlons (8) and "(9) and ‘the: ”moment of momen-
tum" equations (10) and {(11) should be employed for- the calcu-~
lation of three-dimensional laminar boundary layers. As in the

case of turbulent boundary layers, chapter 3, temperature and

velocity profiles are required for determination of the Integral

functions appearing in equations (8)-(11}.

4.1 Velocity Profiles

It is assumed that velocity profiies for the main flow and
crossflow directions can bé determined from similar solutions
of two-dimensional laminar boundary layers. Since the flows in
question are compressible but adiabatic, 'a solution of the
Cohen-Reshotko equations (17) can be diSpensed with. The solu-
tion of the Faulkner-Skan eduation (18) for similar incompres-
sible flows provides the foundation for the putting together
of the profile families, together with the Stewartson (19)°
transformation which provides a correlation between the adi-
abatic, compressible and incompressi%le flows. The use of the
Stewartson transformation also alleviates the need to generate
‘a temperature profile.

4,1.1 Similitude Solutions for the Two-dimensional
Incompressible Boundary lLayer

A simple type of solution for the two-dimensional
Prandtl boundary layer is the similitude.soitution. These are

23
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solutions that are so constituted that velocity profiles at
various distances X can be made to- fit them through proper
scaling of the velocity U and the. distance at right angle to
the wall, Z (Z is identical with the independent variable y
used otherwise for two-dimensional problems). For this case
-the boundary layer equations are reduced from partial differ-
ential equations to regular-onés.

Similitude solutions éxi§t for when the'velocify of °
the potential flow Ue is proportional to a power of the rumnning
length measured from the stagnation point

Ue(X) = const X : (41)

< -

The similitude transformation of the independent variable Z,

which then leads to an ordinary differential equation, is

»

L mer -
;’7 .—.EZ ( 2 %1>< : .( )

————— P B —

The known Faulkner-Skan differential equation then becomes
£111 & ££11 4 g(1-£12) = 0 ’ (43)
with 1limit conditions

n=20: f=£'=9¢ and’ n =« £'=1 ‘ (44) /27

where £' = %% = %L and B represents the pressure gradient param-
eter which stands®in the following relation to the expomnent in

equation (44):
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p—. (45)

-7 Fig. 18 demonstrates the results for U/Ue for
2 >8> -0.199. The curve for B=0 corresponds to the Blasius
solution for a flat plate, 6=-0.199 provides the welocity
profiie for retarded flow, which leads straight to Separation,
and B=2 is valid for highly accelerated flows.

4,1.2 Direction of Main Flow

It is assumed that the velocities shown in Fig. 18
can represent the velocities in the directicon of the main flow.

4.1.3 birection of Crossflow

Tt is assumed that the velocity profiles in the direc-
tion of the crossflow can be represented by

[
a
—
0
el

v
I (46)

where ( X describes a certain type of profile and ¢ is an
arbltrary constant. A possibility for generation of the var-
ious types of profiles in the crossflow direction is shown in
Fig. 19 The sectioned line represents the reference profile
(U/U y*, which corresponds to the velocity. dlstrlbutlon U/U

for B 2.0 with a freely chosen value for n*é= 6.75. nd is the
transformed boundary layer thickness and is defined as the
“distance from the- wall in the transformed plane, for U/Ue=0.99.
The curves drawn correspond to velocity distributions U/Ue for
values of 2.0 < § <-0.18. The following relation provides the

curves for (gL X
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http:U./Ue=0.99
http:flX6=6.75

which includes also such profiles of the "cross-over" typé

where {SL-X

changes signé in the boundary layer. To maintain
conditiofns of symmetry after the passage-through "cross-over!''
profiles, curves III and IV corresﬁond to the curves for B=2.0
ﬁnd 1.0 with changed signs. Curves I and.II result from inter-

polation betwéen curve ILI and the curve for 8= - 0.18.

4.2 Determination of Integral.Functions

The example of the energy loss thickness at the main flow
profile

1
! _ | 8sU -
;'@4—14 - anUe (/f

is to show how the integral functiens of the profiles in the"
main flow and crossflow direction, see appendix C, can be de-
termined with the aid of the velocity profiles in Figs. 18 and
19 and the Stewartson transformation [19]. The Stewartson
"transformation )

‘Sb @, ?j . ‘ (49)

permits the recalculation of compressible integral functions

into incompressible ones,. (?O and a_ are the density and sound

0
velocity in a reference state of the gas.,) Equations (48) and

(49) lead to
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[ 111

where &; is the transformed boundaty layer thickness in the in-

compressible plane.

Velocity profiles are shown as function of-the similitude
variable n in Figs 18 and 19. With the aid of equation (42),

equation (50) can be redefined to

(519

with

The moment loss thickness of the velocity profile in

direction of the main flow, 6;;, is chosen as scaling function

for the boundary layer.

As per equation (51)-

. w——ﬂ—)-ngv—b*; (52)
¢ Chaa g Qo df? 1
i
with |
K., U, -n——)d
144 g[‘L% ( .t 1
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Equafions (51j and (52) then show
111 = ell-K—""— (53)

All physical integfal functions (8111, 6%, etc.j can
therefore be expressed by-the physical scaling function £,; and
by the relation of the corresponding transformed integral func-
tions (K1%1, Ki, etc.).

The transformed integral functions, which depend only on
the profiles im the main flow direcfibn;‘shown in Fig. 18, are
demonstrated in Fig. 20 (see appendix H for definition of the
functions); plotted over the parameter )

a = f’l:i', Kia (54)
where
dg-
T — e
f‘W B ((h1)w

/31

a=0 corresponds to the detachment profile B=- 0,199 and a=0,38954 ’

to the profile of the strongly accelerated flow B=2.0.

The transformed integ;al functions, which depend only om
the profiles in the crossflow direction (%LJX, see Fig. 19, are
demonstrated in Fig. 21 (for definition of®the functions see
appendix H) plotted over the parameter

'/b - _K‘; o7 %!(i)" d. (55)

-~ - - - - —
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K, is the transformed displacement thickness of the crossflow
profile (SLJX for a transformed boundary layer thickness né=I.
e ; .

The transformed integral functions Kiiz2, Kzo:i, Kyz and L;,
(see appendix H for definitions), which depend on the profilés
in the directions of main flow and crossflow; are shown in
Figs. 22-25 plottedhover b with a as parameter. For determina- .
tion of these mixed functions the transformed boundary layer
- thickness of the crossflow profile has been set equal-to the

main stream profile.

The following approach is suggested for determination of /32
the constant ¢ in equation (46), which permits calculation of
the desired crossflow velocity profile V/Ue from (V/Uejx. The
physical displacement thickness in the crossflow direction‘is

s* - - [ 3V dzi 56
152 [Qeue } (56)
e L
With equation (49) we get
L G jﬁ“!:{i __ B Jf'ii)x .
j‘ pA . K44 UE, "Z K,m Co (Ue d’?

- o)

or

Py R RIS

{ 0

~ _ =

Consequently constant ¢ 1is
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{W & Ka f’-» (59)

A1l physical integral functions in the t,n coordinate sys-
tém can then bé.determined in the following manner.

Q(t,n) = £(e11)gle)h(asp) - o (60)

where Q is an integral function. All the required physical

integral functions have been listed in appendix H. 01i,a,b

and ¢ thus become the dependent variables in the method of /33
calculation suggested here.

The bhysic&l integral functions in the x,y coordinate sys-
*tem, which appear in the pulse equations x and ¥y used here and
in the "moment of momentum' equations (8)- (11), can be calcu-
1ated from the physical functlons of the t,n coordinate-system
through the relation$s given .in appendlx C.

CQX,y) = Q(Br1,a,b,c,0,k) - ' (61)

The required derivations of functions Q after €11,a,b,C,a
and A can easily be determined.

The following holds -
w—— = +Q A~ +Q, 7= +Q
Q%’Dx + oo + N

BQ for instance.

wherein Q811 = 38,7

| ORIGINAL PAGE IS
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cox F Guwemn =Dy (62)

@M 0%4 ¥ @.M —a% * @zdb@—é * 624 == = :DZ. 3
(64)

x5 =D {66)
The expressions D, are listed in appendix I.

Equations (62)-(65) are sclved simultaneously. If so de-
sired, the displacement area of the three-dimensional boundary
iayer can be determined with equation (66).

4.3 Numerical Integration

Numerical integration is handled in the same way as ex-
plained in section 3.3. The functions 611, H, 83 and the wall-
flow line angle B are required as initial conditions. The
transformed integral functions, which are given as functions of

a or b, or a and b, are made available. through polynomial fits.

For the start of the calculation at the stagnation point
or stagnation line of a body, the sign of the wallflow line
angle B decides the sign of the crossflow velocity (SL-X, Fig.
19, for the first integration step.
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At the start of the calculatlon only such profile types

can be considered for whlch

1 X ]

. ! —C)Z (.V_.) . !

o Ue Sign (/3) = O

i Nt F
B :
hods. - T

Once the crossflow has developed from the stagnation point, /35
or stagnation line,then the profile type: of the grossflow ,
changes through change of the sign of function'%ig, i.e., the
flow line at the outer edge of the boundary layer has a turning
poinf. “Cross-over" profiles appear and after passage through
this type of profile, profile forms as shown in III and IV, Fig.
19, are reacheg. Should a renewed change occur in the sign of
the function %E%" then '"cross-over'" profiles will reappear.
The profiles will in that ‘case pass through in the same direc-

tion as during their first appearance.

4.4 Comparison with the Calculated Results of a
Difference Method

The results of difference methods for laminar flows can be
used for comparison in estimating the quality of approximation
methods such as the integration procedure. The difference
method was developed by Horton [20).. Three test cases were
used for infinitely long yawed wings with 45° sweepback in the
incompressible region. A rectangular coordinate system was
used with the y-direction running parallel to the leading edge.
. The velocity component at the outer edge of the boundary .layer
in y-direction, vi, is for all test cases.

67
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with U, corresponding to the component of undisturbed initial
flew velocity in the x-direction. The velocity component:-at

the outer edge of the boundary layer in the x-directiom, u,,

is
T ’ T . /36
S TS S x £o
Test case 1: U, S(C E?J for = > 0 (68)
Tést case 2: "k =1 " for £ < 1.0 (69)
T Uy X X
- - 1ﬁi.= 1 -0.567(; - 1) for T > 1 (70)
Test case 3: -%l =1 for % <1 (71)
Yy . - X . X
Fr=1-0.1134E - 1) for 2> 1 (72)

8

c is a reference length. Test case 1 corresponds to a boundary
flow that starts at a stagnation line. The test cases 2 and 3
are boundary layer flows which correspond at first to. a plate
boundary layer and are then suddenly exposed to an increase in

pressure. The calculations were made for a Reynolds number

Re = J=C€ = 1ps
Veo

The comparison of results from calculations is shown in
Figs. 26-28. All calculations end with the detachment of the
‘laminar boundary layer. In test case 1 the sign of the wallflow

GE B 33
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line angle changes but the displacement thickness of the cross-
flow direction 62 remains positive, which means that there are
"cross-over" types of crossflow profiles in the range %—for
B>0. The present integral method gives a very satisfactory
description of these complicated flow conditions. Beyond that
the separation point is determined accurately. For test case /37
2 results are equally satisfactory, but small digressions occcur
in the determination of the separation point. During recalcu-
lation of test cases 1 and 2 agreement was looked for in the
wallfriction coefficient c. during establishment of the initial
‘conditions and deviation in the form parameter

was pérmitted.' For test case 3 two different results of calcu-
lation are shown in Fig. 28, with agreement of oF: and H for the

initial conditions. Here, too, the agreement is satisfactory,

4.5 Discussion

The rTesults show that the idea for using the concept of
the "moment of momentum" equations in the three-dimensional

.case ‘as well, leads to good results.

5. 30un&a;y Léyers on Wings - /738

5.1 The.Inflitence of Wing_Tapering‘on"the Developmenf_,l
of a Three-dimensional, Tuirbulent Boundary Layer on
a Transsonic Wing

The development of a three-dimensidnal boundary layer on a
wing was often calculated to an approximation with methods that
were based on the concept of the infinitely long yawed wing.

In comparison to this quasi-two-dimensional way of Ilooking at
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it one aspect of three-dimensionality, the wing tapering, will

be examined closer here.

5.1.17 The Metric Coefficients

To make the calculation simpler the boundary layer- .
develdpment.will be developed here not for the given wing con-
tour but for a flat-plate with'a top view corresponding to that
of the wing on which the potentialztheoretical pressure distri-
bution is superposed. The calculatioﬁ is carried out in a nomn-
orthogonal linear coordinate system. The x-direction runs
parallel to -the direction of initial flow, the y direction 1s

identical with percentage lines on the wing.

Fig. 29 shows the'Eaﬁﬁesf&n coordinates X,Y,Z and
not the nonorthogonal, linéar coordinates x,y for the infintelf
long yawed wing and.the tapered wing with.straight leading and
trailing edges.

The following connection results - - /39
M, o) -
!X=a(g)+x bly) -
bCld’ﬂO)‘
Y =y swxl. ; (73)

|
[___*M_ I

The functions a(y) and b(y) .are shown in.Fig. 29.
From equations (3) and (4) we get the metric coefficients and

their derivations to (also on Fig. 29)

Yy [
h, =1 - = 74
4. (74)
’D-‘k-ﬂ _ . ) ”
5% = O (75)
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tween the lines x=const. and y=const. at the point Xx,y.

Db _ g { |

cof}.shxko(ﬂ-—éL);
37 7.

{ .
g _ _ 4 /4.4

R ?Dx Y+ (1 ST)
98 _ _ cotA sinio
oy . Ys.

The angle A in a point X,y corresponds to the angle be-

(76)

(77)

(78)

+(79)

(80)

(81).

(82)

Ag 1is

the angle between the coordinates x and y at the origin of

the coordinates.

36

The following holds true

3 - te [ (o -

/40

(83)
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i
I
b

Sinl A

%-).‘— = == (84)
X SinAg (dT !
?
DA :
- =0 | (85)

|
J
1

yr is the distance from the origin of the coozrdinates to the
p01nt where the extended 1ead1ng and trailing -edges of the wing
touch. (yT—m for the 1nf1n1te1y long yawed wing.)

5.1.2 Descrlptlon of the Various Types of
Lalculations

Fig.‘SO shows the top view of the wing, the wing sec-
tion examined and the sweepback of the leading and trailing
edges in that wing section.

Fig. 31 shows the distribution of the resulting Flow
velocity for that wing at the outer edge of boundary 1gyer Ue,
dimensionless as the initial flow velocity"URéf, over the wing.
chord at the suction side in the section examineds ¢ is the
wing chord of the wing section examined. In addition, the run
‘of angle «« is given. The leading edge sweepback of the wing in
the section examined is ¢ =32°, the trailing edge sweepback is
¢H= 16° The sectloned llne for function o in Fig..31 presenfs
the run of o for an 1nf1n1te1y long yawed wing with a sweepback
of (¢v+¢H)/2—24° for identical velocity distribution Ue/URef'

"The éame"integral method is used for two boundary layer
calculations (13). Case 1 corresponds to the results for an
infinitely long yawed wing with 24° sweepback. The wing for
case 2 is tabéred with a'conétaﬁtbleading'edge taper of 32° and
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a constant trailing edge taper of 16°, corresponding to the
wing of the wing section examimned. The distribution of U, and
« over the wing chord, by percentage, is identical with that on

the wing of the section examined.

©5.1.3 Discuséion of Results

The results for Mager-crossflow profiles.are shown in
Figs. 32-34. The moment loss thickness 6;; increases slower
in the trailing edge area, i.e., in the area of retarded ex-
ternal flow at the tapered wing, than at the infinitely long
yawed wing. The same holds for the form parameter ‘H. Since
the form parameter H. increases with retarded external flow,
the wing taper acts to weaken the retardation of the effective
external flow. ' )

The wallflow line angle B is an effective measure for
the three-dimensionality of the flow (a+f>0 means that the
boundary layer material flows toward the wingtip).. Fig. 34
shows clearly that tapering weakens the three-dimensionality
of the flow. ' ' '

5.2 The DévelOpmént of the Laminar Boundary Layer on a
Transsonic Wing

The development of a laminated boundary layer on an. infin-
itely long yawéd wing in’ the region of transsonic veldcity is
shown in Pigl 35. - The velocity data at the outer edge of ‘the
boundary layer correspond to those that are also used for the
turbulence calculation in section 5.1.2, Fig. 31. The qalcula;
tion is carried out with a constant value c, equation (46). The
turbulent values of lei@nd B are shown for comparison in Fig.

35. The moment loss thickness is. significantly smaller in the
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laminar case. This result becomes understandable when comparing
the development of the boundary layer on a flat plate in the
laminar and turbulent case. For laminar f£flow

611 ’vxl/z 43

and for the turbulent case

L/

911 ~ X

The velocity decrease of the external flow for xz0.5 is so great
that laminar separation occurs. In the turbulent case no sépar-
ation*occurs here. It is known that turbulent boundary layers
can tolerate greater pressure increases im the external flow
before they separate. Results for the wallflow line angle B
show clearly that the three-dimensionality of the flow is far
more pronounced for laminar boundary layers than for turbulent
ones. A similar result is also described in referénce [22].

6. Turbulent Boundary Layers on Bodies
(Revolution Ellipsoid)

The development of a turbulent boundary layer on a revolu-
tion ellipsoid (ratio-of main axes 4:1) has been calculated for
an attack angle of 0° and 10°.

6:1 The Metric Coefficients /44

The connection between the Cartesian coordinates X,Y,Z
and the coordinates ¢,¥ of the revolution ellipsoid, as per
Fig. 36 is

X = g cos w.

39



e
"

bosin ¥ _ \ - _ (86)

]
Il

b sin ¥ cos ¢

In this case a and b are the main axes of the revolution ellip-
soid.

Using equations (3) and (4) for the metric coefficients
and their derivation we continue

, .
he = (a®sin?¥ + b%cos* ¥) {2"

13
1

J ’L (87)
S Oha = A sin¥cosF (Q,L-bz) l

QW h, |

Ohs -0 | 1

0P : *s.
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6.2 Results

The data for the friction-free flow around the revelution
ellipsoid were determined through the procedure by K. Maruhn
[22]., VFigs. 37 and 38 show the distribution of the resultant
velocity of friction-free flow Ug and of angle o for an attack’
angle of o =10, plotted over ¥ and x/a. The distance x and
the angle a are defined in Fig. 37. The angle & in the tangen-
tidl plane at a surface point P is defined as the angle between
the vector Ue and the straight 1ine that is generated by sec-
tioning the tangential planme with a plane that stretches through
the x-axis and the point P, as in Fig. 36.

The results of a boundary layer calculation for a Reynolds
number

U a
Re = vRef = 5.2 x 10°
+Ref
where the undisturbed initial flow is the reference condition, . /46

are shown in Figs. 39-41. The functions &;:..and:H are shown in
comparison for an attack angle of ux-O?. 6,1 and with it all
boundary layer thicknesses increase for the incident ellipsoid
not only in the x-direction but also in the direction of the
- cifcumference:. The_minimum“valueé lie in the plane of symmetry
on the sidé facing the wind. For values of -x/a>0.5 the wall-
flow line angle on the topside assumes negative values while
being positive on the side' facing the wind. In the plane of
symmetry of top and bottom side there are no crossflows (B=0).
The course of ©;; and pafticularly of H for values of x/a>0.5
is noteworthy. The maximum values of these functions do not
lie in the plane of symmetry on the topside [?5189°), but for
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$+150°. This may be explaiﬁed through the piling up of boun-
ﬁary layer material because of the crossflow, which‘changés its
sign at the circumference. Geissler [23] has observed similar
conditions in his study (development of the laminar boundary
layer for an incident ellipsoid). The maximum increase of the
form parameter H on the side offthe ellipsoid may also indicate
the free separation of the -vorticity layer [24], which was

examined cleser by Wang [25] for an incident ellipsoid.

7. Summary

Methods have been introduced for the calculation of three-
dimensional, turbulent and compressible, Laminar flows. In the
turbulent method the power profiles, which were used in Myring's
work for the description of the velocity profiles in main stream
direction, were replaced by Coles' profiles, Beyond that a
"lag-entrainment” method was introduced instead of the simple
"entrainment" concept. The quality of the results of the cal-
culations, as compared to the experiments, could be improved
even more if more suitable models were available for description
of the.cross-velocity profileé. The proposed intégral‘method .
gives good results in comparison with difference methods.

The laminar method, which uses "moment of momentum" equa-
tions for the first time for three-dimensional flows., gives
good results in comparison with an exact difference method.

Calculations for wings showed that tépering of wings re-
duces the three-dimensionality of the flow. For identical
pressure distributions the .laminar boundary;léyér separates

earlier’ and shows a more pronounced three-dimensionality than
turbulent flows.
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The development of a: turbulent boundary layer was calcu-
lated for an ellipsoid for 0° and 10° incidence. The boundary
layer thicknesses for incident ellipéoids are smaller on.the
bottom side and greater on the topside than for an ellipsoid
with 0° incidence. A noteworthy result is that the,maximum
values of boundary layer thicknesses and of the form parameter
do net occur at the apex of the tépside'but on the side or the
.part of the revolution ellipsoid turned away from the wind.
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Appendix A

Definition of functions as and bi
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Appendix B

The 1ntegral functlons in the X,¥,2 coordlnate system
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For laminar flows the dissipation integrals Sx_ahd'SV can be /54
written as

V)
fi
A
O t—\q,
o
o
Q.
Y

N
o
If

7 SAU f#(%_?iz d%;_ R
| e le |

u isrh@re-the dynamic viscosity of the gas
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Appendix c - /55

Reldtion between the integral functions in the x,y,z and t,n,z
codrdinate.systenm
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The integral functions éppeariné in equation (C-1), which are /58

based on velocity profiles in the main flow and crossflow di-

rections, become

—_— - - - - - —_ - —_— - - e e e o

&
].8'”" ) J%(T%)de 9. - %Ue(7 U)d*
JI g 2 d |
G (R4S e e[ e
&
8, =!§§%(’L—&)dé 6, - (,J,i\ée(lllt%_f f{_:
- ' (C-2)
d g ,
9&4 ="‘!§CUU}‘/Z dz . 9;_2 ="J;:/Taa C{.?.-‘ >‘
. d “
O, - T (1- 2 )de O - [ (-2 )
° :
$ ) i
S @ g
) & U d‘v -"él
“ ,t.fc,“’f‘:)d& Go--lgds

53



T
tn
w0

|

Continuation:
| s U
oy =< ( ___tle_) _ 2 o
E fin Se Ve /u@& 2o Cﬂg R (/’L &e)g__o
I =
(c-2)
) U2 d \
D U~V
S, =2 (_&) 1 0% °
B =l oj** 5./ 4* Sen NCNTAR VP = e
- e )
§ \V, [ .
A AR
K {u(gii& dz
hn Seue / b& #

ORIGINATL PAGH IS
OR POOR QUALITYI

54



Appendix D (Turbulent Boundary Layer)

Calculation of the integral functions of the boundary layer in
the t,n,z coordinate system

The boundary layer integral functions can be éxpressed as func-
tions of the boundary layer thickness 6, of the pressure grad-
ient parameter ®, the wallfriction parameter o and the parameter
A, with the help of the.Coles' profiles for the main flow direc-
tion and the statements of Mager or Johnston for the crossflow
direction. We write f=f(m,0,A).

O, =¢f . 8 =&, 8 -df
(D-1)
% ~Sf & 9L & -k

For the integral functions which depend only on the velocity

profile in the direction of the main flow we write:
/

ARRE TR s

(D-2)
For the remaining integral functions:
--Mager Crossflow profiles--
[ =AV(RB -TP) [ coa(iovp .cip)
42 3 s , "'"'A > "ZTP + TP
7[:.4 (3 3 _5) (D-3)

fo -AEmaegern) foaca(iocr
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Johnston Crossflow profiles-- -/
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For the expression P; we get:
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k=0.41 is here the von Karmon constant and L; and L2
to:
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The derivations needed for the calculation

f
Y S Y Fe and 55('-’6*

-

can be determined from the above equations.

calculate

(D-6)
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Appendix E ~ (Turbulent Boundary Layer) /63

" The integral functions. of the bdﬁndéry layer in the x,y,z coor--
dinate system. '

With the.aid of the relations between the integral functions in
the t,n,z and x,y,z coordinate systems, as determined from appen-
dix C and the f functions determined from appendix D, the

integral functions in the X,y,z coordinate system can be named.
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Continuation;

u

il

-4
Sint X

Sin

Siné

Sin A

sSin A

SinA

Sink

et il i i

|:{M Sind Sin(A-4) + Fﬁ cosL Sin(A~-4)
- 1E24 Cos & Sin O-d) - f,, Coss cos OL—GL)]
[1[44 sind sin(-o) - {,sind cos(A-o)

+f, coswsin(A-«) - f, cos cos()\*vi)]

. 3 2 r . i 2
£, Sin’L + Hﬂ-f ré_’jCOSoLSMIc{ + {, cos o(]

_E, sin (A=) — £, cos CJLﬂaC)]

£ sind + 4 cos < |

-

:{"f‘ ﬁ} Sin (X =) +.£‘ 0S C,\_G()]

:{4—1@‘5 Sind = f, cosca]

— ———

59

T

RN



The f coefficients that appear in the equations (E-2) are

given in appendix D.

The derivations requlred for the calculatlons

25%5,:@& QS”OT ij”

T

.
[
(#a]

can be easily determined.
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Appendix F (Turbulent Boundary Layer) /66
The right-hand sides of equations (31)-(36)

The expressions I on the right-hand sides of the equations (31)-
(36) produce . o
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Appendix G (Turbulent Boundary Layer)

Calculation of the initial condition

When recalculating the experiments the initial values of the de-
. * pendent variables &,w,0 and A, must be determined at the first
test station from the measured values of 6;,, H and B.

For the form parameter H we get
. . :

—- [RRUF U S —— - -

- . :-‘_ -F/[- l

H = ~ 1
| a,, fa- (G-1)
Jand_with equation [(D-2)
1’{-{“2 -T2 s 2 SR e (-2 ) © 6-2)
In addition phe following is.txue
o ;még_ I
15 -¢ 2
! ) f (G'gJ
o . N ‘
14 - o . A on dle + AN + B
v ) & 2 = % &

|

Equations (G-2) and (G-3) are'iterateq with an estimated valué
-of m. A can be calculated for Mager profiles from

A = tan B (G-4)
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and for Johnston profiles with equation (22).

The initial value for the entiainment coefficient F was-the cor-
relation by Head [4]. ’

with z ' | (G-5)
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Appendix H {(Laminar Boundary Layer) /71
The Transformed and Physical Integral Functlons
1. The Transformed Integral Functions

Integral functions which depend on profiles in the direction o6f
the main flow (né is the transformed boundary layer thickness
for which U/Ue=0.99)

e ————T T

|
|

of( -Z)dr

K,

(H-1)
i }
" ‘
K, =Ji(4-(%)d7‘ | (H-2)
id .
K, =JL—%(1-%)C{7* (H-3)

- | |
£ E(BDZ/ . (H-4)
W w _
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http:U/Ue=0.99

| 8 oY 2
Ly = f( Ue d"'}_ (H-=5)
. 5 '()nz

Integral functions, which depend on profiles in the direction of
the crossflow (all functions standardized for né=1)
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(H-10)

Integral functions which depend on profiles in the main flow
and crossflow directions (né in the crossflow direction is set
equal to the né of the main flow direction)}
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The Physical Integral Functions in the t,n, Coordinate /74
System

The definition of these integral functions is given in appendix

C. Integral functions which depend on profiles in the main flow
direction

X "; _-EEL ‘ 2 K4 7 i
d &, [k,,,, *me (;“ *")J k (H-15)

. - . (H-16)
G = Qo [ (aems) w1 2e)]
A1 k-m
611 variable
S ks
Qfmi - 944 (j] + Me . ) (H-17)
Sp, =2 Z@‘; (H-18)
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|
) H-19) .
1‘~ Sﬁ-{; L44 x‘l . ( )
'QCQH .

Integral functions.which depend on profilés in the crossflow
direction

'K, ! . (H-20)
i .
)
. L
d;ximeﬂc[ﬁb-f-m;(ﬁd—'b-&‘—z-], (H-21)
. 14 KM K'M

i@zz = 944 Ca ”Za’ éiz—‘g (H-22)
a4

|

119112 = 8, CB"Z P (H'Zé)
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?
. Cr =L g‘” Kas cc": (H-24)
| ‘6, I8 ;
| |
!
% Shn _ LI_Z K44 CZCX F (H'ZS]
%. Re . !
L 8, U

Integral functions which depend on profiles in the main flow

and crossflow directions

Kiz 18 b) | (H-26)
<t K ’
K.z . 7 (H-27)
Z - d\zé :
. |
Kow _ 16 ) |
Ko Ky /|
(H-28)
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_where v is the ratio o
The Chapman constant c

72

f
X

the specific heat of air.
is defined as

e
~J
I.._._l

|

(H~29)

(H-30)

(H-31)

(H-32)
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| x (_i&,_)/z Te +102.51 (H-33)

Tw and T, are’ the static temperatures of the gas at ihe wall,
resp. the outer edge of the boundary layer.
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Appendix I~

(Laminar Boundary Lavyer)

The rlght hand 51des of the equatlons (62) (66)
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Comparison of the results of calculation
a difference method with the present method
(Laminar boundary layer, test case 1)
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Distribution of the angle o at the incident revolution ellipsoid
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revolution ellipsoid (turbulent boundary layer)
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