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LINEAR METHOD FOR THE CALCULATION OF THREE-DIMENSIONAL,
 
LAMINAR AND TURBULENT BOUNDARY LAYERS
 

H., W. Stock
 
Dornier, Inc.
 

1. Introduction /1l
 

Methods of calculation for three-dimensional, laminar and
 

turbulent boundary layers and their application for three-­

dimensional aircraft wings and -bodies will be described in this
 

study. The methods of calculation are based on integral
 

methods which, when compared to difference methods, suffer a
 

loss of accuracy and are less flexible with regard to the use
 
of various turbulence models. On the other hand, they require
 

much shorter calculation times and storage facilities.
 

The integral method for the calculation of turbulent flows
 

is in improved version of an existing method, the method for
 

laminar flows is a new development.
 

2. General Fundamentals
 

2.1 Choice of Coordinates
 

There are two directions marked for three-dimensional
 
boundary layer currents, as shown in Fig. 1. One direction re­

sults from the projection of the flow line at the outer edge
 

of the boundary layer onto the body surface and indicates the
 

direction of the main.flow t; the other one runs vertical to
 
the main flow direction t and represents the crossflow direc­

tion n. The distribution of the three-dimensional velocity
 

*Numbers in the margin indicate pagination in the foreign text.
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profile into main flow and cros.sflow difections is shown in 

Fig. I. 

Three-dimensional boundary layers in the flow line coor- /2
 

.dinates t and n were often calculated; where t and n arecurvi­

linear, orthogonal coordinates. Significant drawbacks result
 

from the use of flow line coordinates. 1. The course of the
 

flow lines at the outer edge of the boundary layer must be
 

calculated. 2. The fl-ow line coordinates' must be newly deter­

mined for the same body geometry when the .flowsitua-tion
 

changes-(change of angle of attack for instance). The intro­

duction of arbitrary, curvilinear nonorthogonal coordinates x
 

and y removes, these drawbacks. In Fig. 1 the distribut-ion,-o-f
 

the three-dimensional velocity profile into the x- and y-direc­

-tions is shown. There are simple ielations-between the'.
 

velocity profiles in the t-, resp. n- and x- resp. y-direction,
 

in Fig. 2, through the angles a and A:
 

Ct US'n (X- oC) - Vcos CX- ) 

1.4 Sn XL) 

S,'n AX­

i (1) 

V UJsinc + Vcos o-

VI Lie Sto 

SRflWAD YXGn IS 
p.ZOOR QUAUTYf 
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Ue is in this case the resultant velocity at the outer
 

edge of the boundary layer, ul and v1 are its components in
 

the x- and y- directions. U and V are tire velocity components
 

in the t- and n- directions, see Fig. 1.
 

A is the angle between the x- and y- direction; a is the /3.
 

angle between the flow line projection at the outer edge of
 

the boundary-layer onto the body surface and.the x-direction
 

and a+O is the angle between the wallflow line and the x­

direction.
 

2.2 The Metric Coefficients of the Coordinate System
 

When the body surface, for which the boundary layer is to
 
be calculated, is given in Cartesian coordinates X,YZIthe -­

a curvilinear coordinate system x,ycan be so chosen on the
 

surface that each point x,y defines a single point X,Y,Z. The
 

transformation of the Cartesian coordinate system into the
 

curvilinear one can be written as
 

X = X(x,y)
 

Y = Y(x,y) (2)
 

Z = Z(xy) 

and the metric coefficients h1 ,h2 and g of the curvilinear
 

system are given by
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Og9-. + oQ21Z 

(3) 

From eq. (2) one gets, after differentiation over x and y, /4
 

It?) a x Y~ +b-6 Zx 

(4)
 

and
 

z Ox Y-x +6- + D 137 

with similar expressions for :tht 2 ?_ aindiA_ 

2.3 Basic Equations
 

It is sufficient for the derivation of integral equations
 

to start with the equations of the laminar boundary layers,
 

since the integral equations for laminar and turbulent--boundary
 

layers are identical.
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In nonorthogonal cuvilinear coordinates the continuity
 

equation and the x- and y- pulse equations are
 

continuity equation
 

1(#s& ) +t... .tv)± =() 

x-pulse equation
 

+~~~ +cJ 0Z-, LLi fz1av +a 

OL V +0 .VU (6)+ P + 4, _ 

Sv2 r3V ±V DV z V, 4 2 v#bvZ6 

h 4 (7)
+ P 

TX and Ty are the shearstresses in the x- and y- directions, 

u,v, and w are the velocity components in the x,y and z direc­

tion, ' is the density and p the static pressure. The func­

tions ai and bi are functions of the metric coefficients, as 

per appendix A. After integrating equations (6) and (7) from 

z=0 to z=6 (where 6 is the boundary layer thickness) and using
 

equation (5) one gets. for the
 

x-pulse integral equation /6.
 

AD 1 A Z~~v)%/+~m Q-4 + iO 

ORIGINAL PAGE IS 
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L ) ' ub 1< U(i e7 t,,'e.j­

+. Ct .CL ­

y-pulse integral equation
 

Me4 n t, *2 

4 Z4 +-r2M& 7U*i;; rn× + A y"V3J'hz 'D 

(9). 
Z? 0;, . £ 

Th e uoe er a o e Le
N) 

y-­

me is the Mach number of the outer edge of the boundary /7 

layer in this case and c and cfy are the components of the 

walifiction coefficient i; and ihy- d ontiut y 

The equations employed here, which are known as "moment
 

of momentum" equations in the English language literature and
 

have so far been used only for the calculation of two-ctimensional
 

currents, are derived in the following manner. The x-pulse
 

equation, which is multiplied by the velocity component ui, 
is integrated from z=O to z=6 and by using the continuity
 

equation multiplied by 0i/2 one gets the
 

- "m--en of momentum" equation 

h4 + et(3VDii 12(i-2a, A 

I-IINA-IAM -1 

QE LOQR QUALITY 
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S-,{,3o+ . ()aI4Y4>A1U){t 

7.o 

A-Z+ 2 2G4Q 

-

C10) 

In the same way one gets the y- "moment of momentum" equa­

tion by integrating the y-pulse equation multiplied by-the 

velocity component v from z=O to z=6 and using the continuity 

equation multiplied by v2/2. 

y- "moment of momentum" equation 

it 0 - UZx ?Zx ( 4 

/,8 

ti(3-MI 4 3h j 2 £2 , 4 

+ Sz-1. ... 40 
AiZ 3 L 

(S) 
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in addition the "entrainment" equation is used for calculation
 

*	of turbulent flows since it describes the change of mass flow
 

in the boundary layer.
 

"Entrainment equation"
 

(12) 

x-
The displacement thickness & of the three-dimensional /9
 

boundary layer, which is often required as result of a boundary
 

layer calculation, can be calculated from
 

T) 	 5 ) hx( / )h+ 	 . 
'D(~ A 	 2 4. _ 

(13)
 

Equation (13) has been derived by Myring [1] according to
 

the concept of the equivalent sources by Lighthill [2]. Equa­

tion (13) can be solved as soon as the functions Al and A2' are
 

known. It should be mentioned that equation (13) is not re­

quired for determination of the boundary layer development;
 

it is solved independently of the boundary layer equations and
 

serves only for the determination of the displacement thick­

ness .
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The integral functions of the boundary layer in the x,y,z
 

-coordinate-system, Fig. 1, which appear in equations (8)-(13),
 

are listed in appendix B. The integral functions of the x,y,z
 

coordinate system can be expressed by the appropriate integral
 

functions of the t,n,z coordinate system, with the help of
 

equation (1),- as per appendix C.
 

Three-dimensional laminar and turbulent boundary layers i-n,
 

curvilinear nonorthogonal coordinates tan now'be calculated
 

with the.above listed basic equations, Velocity profiles for
 

the main flow and crossflow directions (t,n,z coordinate system)
 

and temperature pro-files are requi-ed for that. If those are
 

available, the integral functions in the x,y,zcoordinate
 

system can be calculated-in a simple manner, as shown in appen­

dices B andC.
 

3. 	 An-Integral Method for the Calculation of Three-dimensi6nal /10
 
Turbulent, Incompressible Boundary Layers
 

Cooke and Hall '[3] have shown in their study that for three­

dimensional bodndary layers the flow in the direction of the
 

main 	flow corresponds to a two-dimensional boundary layer flow.
 

Myring [1] has accepted this assumption in h-is method for the
 

calculation.of three-dimensional, turbulent, incompressible
 

boundary layers through nonorthogonal, curvilinear coordinates.
 

He used the pulse equations, (9) and (10) and the entrainment 
-
equation (13) for determination of the boundary layer develop­

ment. The description of the entrainment coefficient F, equa­

tion 	(13), is based on the concepts by Head [4]. The differ­

ences between the present method and that of Myring are as
 

follows:
 

1. Power profiles of a single parameter for description
 

of the velocity distribution in the direction of the main flow
 

9 
ORIGINAL PAGE IS 
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have-been replaced-by Coles' profiles of two parameters [51.
 
The wallfriction parameter describes the velocity distribution
 
close to the wall and the pressure gradient parameter de-ter­

mines velocity distribution in the outer part of the boundary
 

layer."
 

2. The additional empirical information required about
 
the wallfriction coefficient, when power profiles are used,
 

drops out in this case.
 

3. Instead of the entrainment method used by Myring, in
 
which the entrainment coefficient is determined directly, a
 
"lag-entrainment" method has been emplpyed in the present
 

method which considers the nonequilibrium effects of the
 

boundary layer.
 

3.1 Empirical Statements
 

When calculating incompressible, adiabatic boundary layers /1
 

the need to providetemperature profiles for the determination
 
of.i-nt-egaa functions is eliminated. The static temperature
 

does not change in the boundary layer along coordinate z.
 

3.1.1 Velocity Profiles
 

3.1.1.1 Direct'ion of Main Flow
 

The velocity profiles with two parameters by
 

Coles [5] are used, as described by the wall principle and the
 

wake principle,
 

U w(4Tjz 4i 
&. 1 - (14)prrw j 

d10
 



where..k is the Von Karman constant, 6 is the boundary layer
 

thickness,- r the-pressure gradient parame-ter, W the universal
 

wake function which'can be approximated (6) through
 

andl the wallfri'ction parameter which stands in the following 

relation to the wallfriction coefficient cft 

(16)
T f 

The velocity distribution can also be written in /12
 

a form such as is used here for determination of the integral
 

functions, with the- values for z=6, as determined from equa­

tion (14), entered into equation (14) with U=U
e
 

UeJ(17)
 

3.1.1.2 Direction of Crossflow
 

As in Myring's [1] study, the statement byMager
 

[7] -and Johnston [8] describing the crossflow profiles as func­

tions of those in the main flow direction,are applied here.
 

Mager [7] suggested the following relation
 

(18)
UU6 
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where A has the following relation to, the wall fl-ow line angle
 

, as seen in Figs. 1 and 2, which is equal to the angle between
 
the projection of the flow line at the outer edge of the bdun­

dary layer of the body surface and the wall flop line,
 

A = tan 6 (19) 

Joh8nstonhiiti des f6K-the-oundaryt.Yi-yeril
 
(1 ext to %he Wall-te correlation
 

-V U tan S
Ue -U e (20) /13

Ue 
 Ue
 

and for the remaining part of the boundary layer
 

VU

U- A (1-fl-) (21) 
e e
 

Johnston has shown that ithis sufficient to
 
use equation (21) for the calculation of.integral functions
 

of the crossflow.
 

The relation between A and 5 is given 'by
 

Johnston as
 

tan 5 = A (0.1-[cft cos 1) (22) 

with the aid of the profiles in the directions of main flow
 
and crossflow the integral function- in the t,n,z coordinate
 

system can be stated as functions of 6,i,a and A, in appendix
 
D, which, in that waybecome variable functions in the proposed
 

method of calculation.
 

ORIGINAL, PAGgI.
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Integral functions of the x,y,z coordinate sys­

tem are listed &s functions of cA,,t,, and A in appendix E.
 

The necessary derivations of the integral func­

tions from c,A,6,ir, and A can easily be determined.
 

3..1.2 Wallfriction.Equation 


So fdr oly .three equations aie available for the
 

calculation of four dependent variables ,ir,.and A; two pilse
 

equations and one entrainment equation. A diffegential equa­

tion which can be derived from the expression for theuvallfric­

tion parameter V., will'be used as the fourth. Inserting z=O
 

with U=U in equation (14) results in an implicit equation.for
 
e
 

4~C ez(tUT ~ (23) 

Equation (23), differentiated for x, represents the
 

fourth differential equation that must be solved simultaneously
 

with the pulse equations and the entrainment equation
 

_ - A __ 

JA~~ ~ + 2+ rITT2(24)
 

3.1.3 Entrainment Coefficieht F
 

'Myring [1] used in his study the relation between F
 

and the form parameter H1, as suggested by Head [4] for two­

dimensional flows. This empirical relation is based on mea­

surements in boundary layers at equilibrium. Another sugges­

tion was made by Horton [9], which takes into consideration
 

/14 
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the so-called "upstream history effects" on the coefficient F
 

in boundary layers of nonequilibrium.
 

The entrainment coefficient F is-not given as the /15
 

fun6tion of the form paranieter Hi, as by Head, but is calculated
 
through a differential equation, which is solved simultaneously
 

with the abovementioned four differential equations,
 

" F0_- (25)
 
C _ 

and where F. is the entrainment coefficient under conditions of
 

equilibrium, 6C is a characteristic boundary layer thickness -and.
 

C is a constant.
 

Horton [9] assumes thatentrainment is closely bound
 

up with the average shearstress in the outer part of the
 

boundary layer and showed that measurements in the boundary
 

layers at equilibrinm can be correlated with
 

O2zz
F2_ . (26) " 

where T,., represents the shearstress for z/6- 0.5. A mixing
 

method relation of the Prandtl type is used for conversion of
 

equation (26) into a relation between FG and (aU/.az)'0 5,
 

/ S (27)
 

where 1/A = 0.083. 

P-0-Q-R UAay 



With'the aid of Coles4' profiles it can be shown that /16
 

-- D ,, , 

H4-. 31 (28) 

The equations' (26)-(28)J result in-,
 

Ue) 

with 

AL, (30) 

In Horton's study [9] the characteristic boundary
 

layer thickness 6c in equation (25) was equal to the pulse loss
 

thickness e-, and.the, corresponding value for C was C=0.012.
 

it turned,out, however, that boundary layer thickness 6 repre­

sents a more suitable measure'of the characteristic thickness
 

since it fits better into the order of magnitude of the big
 
"eddies" that produc& entrainment. The corresponding value
 

for C is C=0.1. This C value corresponds to a.typical relax­

ation length of 10and agrees with the value by Bradshaw ['0]
 

in the equation for scaling of the dissipation length, which
 

take-s -onaform similar to equation' (25)
 

Since entrainment occurs in the outer part of the
 

bqundary layer, where velocities of the crossflow are small,
 

the two-dimensional view can be extended to three-dimensional
 

flows when entrainment is coupled to the velocity profiles in
 

the main flow direction.
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3.2 Final Form of the Differential Equations 	 /17
 

Equations (8), (9), (12), (13) and (25) can be written
 

with the aid of the empirical statements
 

x-pulse equation
 

r +8 0I 
- A 2(~ 

y-pulse equati6n
 

Oz 	 +6SO (32)
 
t I*'ZX, -(A 2X
 

entrainment equation
 

Tr YDA 	 (33 

Walifriction equation
 

entrainment coefficient equation
 

--	 (35) 
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displacement area equation /18
 

(x (3 6 )
 
ax
 

The expressions I. are listed in appendix F and the func­

tions ij are listed in appendix B.
 

3.3 Numerical Integration
 

Equations (31)-C35) are solved simultaneously. If desired,
 

the displacement area of the three-dimensional boundary layer
 

can be calculated with equation (36).
 

Myring [1] has pointed out that the differential equations
 

-(31)-(33) are of hyperbolic nature. Of the resultant three
 

characteristic directions the two outer ones describe the areas
 

of influence and dependence,in a calculated point. These areas
 

are limited by tioo, strai4htlines that pass through the calcu­

lated point and form the angles a-and c+ with the x-axis.
 

When determining the y-derivations contained in the functions
 

Ii. this situation is taken into account.
 

Wh-en both angles ov and c+S are positive backwardy directed
 

diff6rences are used
 

. . .. n O .. - 1 (37) 

when a and a+S are negative forward directed differences are /19
 

used 
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and when a and a+ have different signs centered differences
 

are used
 

(39)
 

Q is a dependent variable, m is the'counter for integra­

tion 'in th& x- direction and n the counter for.integration in
 

the y-direction.
 

When the y-derivations of the dependent variables along
 

line x=constant are known integration in the x-direction can be
 

accomplished through an explicit intermediary step method
 

+ laxA(40) G) 

3q
3x)r+l/2,n is found by extrapolation of the value (Q) m+l/2,n
 

at a distance of x/2 from (Q)n.with (-mJ

nI,n-th (9x in,n 

axn-'/2,nI/2,n can then be calculated with (Q)m
D-x 


Boundary conditions are required where characteristic di­

rections run into the calculated area from the outside. For
 

the three-dimensional boundary layer this corresponds to a
 

situation in which the boundary layer flow enters the calcula­

tion area from outside. It also folldws that boundary condi­

tions are not required in places where the boundary layer flow /20
 

leaves the calculation area.
 

For the initial conditions of the calculated results shown
 

in 3.4 the measured values of &11, H and are used and,
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'converted into the dependent variables 6, ,V and A, as per
 

appendix G. The initial value for coefficient F was determined
 

from the measured value of form parameter H, and the relation
 

valid for flows in equilibrium., by Head [4].
 

3.4 Comparison with Expe-riments
 

3.4.1. van den Berg and Blsenaar I1l] 

Berg and Elsenaar' s experiment is of special signifi­

cance since it best simulates the flow conditions at sweptback
 

wings of all known measurements of three-dimensional boundary
 

layers. Rezg and Blsenaar have measured the turbulent boundary
 

layer on a yawed plate (angle of sweepback 35') in the low
 

velocity area. The wall of the wind channel above the panel
 

was so constructed that the generated pressure increase was
 

large enough to cause separation of the boundary layer. Beyond
 

that it has been attempted to approach conditions for an ifin­
itely long sweptback-wing through shaping of the eiid plates of
 

the panel measured.
 

A nonorthogonal, straight line coordinate system-was
 

usedifor the calculation in which the x--direction is identical
 

with the approach flow direction and the y- direction is paral­

lel with the leading edge of the panel.
 

In'Fig. 3 the results for th6 moment loss thickness /21
 

O11 , the form parameter H of-the velocity profile in the main
 

flow direction and the wall flow line angle $ were.compared
 

-with the measurements. In addition the results of calcula­

tions, according to the methods of Cousteix [12] and Smith
 

[12], are shown. Cousteix used the pulse equations and the
 

entrainment equation.- He determined the velocity profiles
 

from the similar solutions of the turbulent boundary layer.
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Sm.ith expanded Myring&'s [1] method to compressible
 

flows and carried out the verifications shown here of experi.­

ments in the incompressible area. The results correspond,
 

therefore, to Myring's method. The curves by !Smith, shown in
 

Fig. 3, correspond to the results shown at the Euromech 60-. 

TheXI,6Zers k and J in Fig. 3,, and in all subsequent figures, 

next to the present method and that o-f Myring, correspond to­

the results for crosasfiow profiles by Mager or Johnston: For
 

-fhe calculations in Fig. 3 the meas-re4 wall pressure disttT­

bution and the condition of infinite-ly long yawed wings was
 

used as input. Up to a panel depth of xz0.9 the present pr6b
 

cedure-shows better agreement with the measurement than that of
 

Myring.
 

-Small digressions in the distribution of the resul­

tant velocity Ue and of angle a resulted from'different inter­

pretations of the data measured, in Fig. 4. In Fig. 5 the
 

results of calculations for crossflow profiles,according to
 

Mager are shown for input of different velocity data at the
 

edge of the boundary layer. The curves/l/ correspond to the
 

measured values of Ue and of a, the curves /2/ were determined
 

from Ue and the condition of in-finitely long yawed wings and
 

curves /'3/ from.the wall pressure distribution measured and
 

the condition of infintely long yawed wings. From the results
 

it becomes clear that smarl disturbances in the velocity data
 

of the friction-free flow for boundary layer flows close to
 

detachment, can provide widely varying results. Fig. 6 shows
 

the cbrresponding results, as in Fig. S, for Johnston cross- '/22
 

flow profiles. In Fig. 6a a comparison with difference
 

methods (Schneider [12], Krause [12]) is demonstrated. Curves
 

/l/ and /3/ correspond to the conditions mentioned before.
 

No advantage can be seen in the more complicated differ6nce
 

method. The detachment of the boundary layer is not-
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calculated by any difference method. For crossflow profiles,
 

according-to Mager and Johnston, the pres.ent method deter­
mines the point of separation in the area of the experimen­

tally determined separation, after input of measured values 

for U and a-. 

3.4.2 Johnston [14]
 

Johnston [14]. examine4 the development of the boun­

dary layer in the area of low velocity,, as shown in Fig. 7.
 

Air comes out of a rectangular channel and flows between two
 

test plates, the height of the channel corresponding to the­

distance between them. The rear end of the measured distance
 

is formed by a wall that is placed at right angle to the test
 

panels and to the channel axis. The velocity distribution in
 

the plane that is.imagined stretched in the middle between the
 

test panels, corresponds to the distribution for a two­

dimensional ray incident on a wall at right angle. Since too
 

few values are given for the outer velocities to calculate
 

the boundary layer at the lower test panel, such velocities
 

are nsed as would result for such a configuration according
 

to potential theory [15]. The calculation is carried out with
 

orthogonal, linear coordinates, the results are shown in Figs.
 

8. The calculated results by Smith [13] are shown for compar­

ison. (A continuous curve of Smith's results. cannot be repro­

duced since his results -were shown only for discrete point.J
 

The differences between the results of the present method and
 

that of Myring are only small.
 

3.4.3 Vermeulen [16] /23
 

Vermeu-len [16] measured the development of the boun­

dary layer at the bottom panel of a rectangular channel that
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had a'600 curvature, Fig. 9 shows a sketch of the measured
 

distance together with the flow lines at the edge of the boun­

dary layer and the wall flow lines. A curvilinear coordinate
 

system was used in which the x-direction followed the test
 

stations in the flow diredtion, with the y-direction at right
 

angle to it. The values measured on lines A and E were used
 

for limit .conditions. Figs. 10 show a comparison with measure­

-ments and-results by Smith [13]. The digressions of the
 

preent method from the measurements ar'e learly smaller than
 

those of Myring-'s method. In Figs. 11 and 12 the velocity
 

profiles in main flow and crossflow directions, that were mea­

sured and calculated for Mager crossflow profiles, are shown
 

a:long line C. For the test-case of Vermeulen and for the tests
 

(11), (14), Figs. 13-17, the calculated results from both
 

methods show the expected differences. In the area close to
 

the wall and in the outer part of the boundary layer, Coles'
 

profiles show hetter agreement with the measurements for the
 

main flow direction than th& power profiles of Myring. Agree­

ment with the crossflow profiles 'is bad in both cases, though
 

measurements are reproduced slightly better by the present
 

method.
 

3.5 Discussion -/-24
 

The two parameter profile family by Coles,for description
 

of the velocity profile in the direction of the main flow,
 

showed better results for three-dimensional boundary layers
 

than,the use of one parameter power profiles, something al­

ready known for the two-dimensional case. An attempt has been
 

made to include conditions of nonequilibrium, that should be
 

considered for the calculation of turbulent boundary layers,
 

by means of the "lag--entrainmentt method. Agreement between
 

measurements and calculations is good considered the effort
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invested in the method.- The proposed integral method provides 

good results even when compared with difference methods. 

4. An Integral Method for the Calculation of Three-
dimensional, Adiabatic4Laminar, Compressible 
Boundary Layers 

/25 

The pulse equations (8) and (9) and the; "moment of momen­

tuml equations (10) and (11) should bo employed for-the calcu­
lation of three-dimensional laminar boundary layers. As in the 

case of turbulent boundary layers, chapter 3, temperature and 

velocity profiles are required for determination of the integral 

functions appearing in equations (8)-(l1). 

4.1 Velocity Profiles 

It is assumed that velocity profiles for the main flow and 

cros'sflow diredtiong can be determined from similar solutions 

of two-dimensional laminar boundary layers. Since the flows in 

question are compressible but adiabatic, -a solution of the 

Cohen-Reshotko equations (17) can be dlipensed with. The solu­

tion of the Faulkner-Skan equation (18) for similar incompres­

sible flows provides the foundation for the putting together 

of the profile families, together with the Stewartson (19) 

transformation which provides a correlation between the adi­

abatic, compressible and incompressible flows. The use of the 

Stewartson transformation also alleviates the need to generate 

a temperature profile. 

4.1.1 Similitude Sblutions for the Two-dimensional 
Incompressible Boundary Layer 

/26 

A simple type of solution for the two-dimensional 

Prandtl boundary layer is the similitude.solutian. These are 
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,solutions that are so constituted that velocity profiles at
 

various distances X.can be made to. fit them through proper
 

scaling of the velocity U and the.distance a-t right angle to
 

the wall,' Z (Z is identical with the independent vaiable y
 

used otherwise for two-dimensional problems). For this case
 

-the boundary iayer equations are reduced from partial differ­

ential equations to regular-ones.
 

Similitude solutions 6xist fo-r when the velocity of
 

the potential flow Ue is proportional to a power of the running
 

length measured from the stagnationhpoint.
 

Ue(X) = const Xm (41) 

The similitude transformation of the independent variable Z,
 

which then leads to an ordinary differential equation, is
 

1(42) 

The known Faulkner-Skandifferential equation then becomes
 

fII + ffl? + s(l-f' 2) = 0 (43) 

with limit conditions
 

= : f f' = 0 and' = W: f, = 1 (44) f27 

df U 
where f' =- - and g represents the pressure gradient param­an Ue
 
eter which stands in the following relation to the exponent in
 

equation (44):
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2m (45)
=m-+l
 

- Fig. 18 demonstrates the results for U/U fore 


2 > 13 - 0.199. The curve for 1=0 corresponds to the Blasius 

solution for a flat plate, O= -0.199 provides the velocity
 

profile for retarded flow, which leads straight to sepaxation,
 

and 6=2 is valid for highly accelerated flows.
 

4.1.2 Direction of Main Flow
 

It is assumed that the'velocities shown in Fig. 18
 

can represent the velocities in the direction of the main flow.
 

4.1.3 Direction of Crossflow 


It is assumed that the velocity profiles in the direc­

tion of the crossflow can be represented by
 

V V.U)x (46) 

e-
VxV
 

xwhere (V- describes a certain type of profile and c is an 

arbitrary constant. A possibility for generatiqn of the var­

ious types of profiles in the crossflow direction is shown in
 

Fig. 19. The sectioned line represents the reference profile
 

(U/Ue)X. which corresponds to the velocity. distributi6n U/Ue
 

for 0=2.0 with a freely chosen value for flX6=6.75. n6 is the
 

transformed boundary layer thickness and is defined as-the
 
distance from the-wall in the transformed plane, for U./Ue=0.99.
 

The curves drawn correspond to velocity distributions U/Ue for
 

values of 2.0 < <- 0.18. The following relation provides the
 

curves for (U-)
 
e 

/28 
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Vx U(4 x 7)
 
-U e e 
 e
 

which includes also such profiles of the "cross-over" type
 

where *(Uf-) changes signs in the boundary layer. T.o maintain
 

conditions of symmetry after the passage through "cross-over"
 

profiles, curves III and IV correspond to the curves for .=2.0
 

and 1.0 with changed signs. Curves I and.II result from inter­

polatioh between curve I'II and the curve for f= - 0.18.
 

4.2 Determination of Integral.Functions /29
 

The example of the energy loss thickness at the main flow
 

profile
 

=f ef b-J(48) 

0 

is to show how the integral functions of the profiles in the'
 

main flow and crossflow direction, see appendix C, canbe de­

termined with the aid.of the velocity profiles in Figs. 18 and
 

19 and the Stewartson transformation [191. The Stewartson
 

transformation
 

142 ~~ec{ ~(49) 

permits the recalculation of compressible integral functions
 

into incompressible ones. (fo and a are the density and sound
 

velocity in a reference state of the gas,) Equations (48) and
 

(49) lead to
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where 6, is the transformed boundaty iayer thickness in the in­
compre,ssible .plane.
 

Velocity profiles are shown as 
function of-the similitude,
 
variable n in Figs. 18 and 19. 
 With the aid of equation (42)',
 
equation (50) can be redefined to
 

with
 

The moment loss thickness of the velocity profile in
 
direction of the main flow, a1 , is chosen as scaling function
 
for the boundary layer.
 

As per equation (51)­

(52)
 

with
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Equations (51) and (52) then show 

01 1 K111 (53) 

All physical integral functions (eli, 6, etc.) can 

therefore be expresspd by-the physical scaling function e11 and 

by the rela-tion-of the corresponding transformed integral func­

tions (Kl 1 , KI, etc.). 

The transformed integral functions, which depend only on
 

the profiles in the main flow direction,, shown in Fig. 18, are
 

demonstrated in Fig. 20 (see appendix H for definition of the /31
 

functions); plotted over the parameter
 

a f' K11  (54)

w 

where
 

Ue,
 

a=O corresponds to the detachment profile = - 0.199 and a=0.38954 

to the profile of the strongly a'celerated flow S=2.0.
 

The transformed integral functions,, which depend 6nily on 

the profiles in the crossflow direction (-) X, see Fig. 19, are 

demonstrated in Fig. 21 (for definition ofe the functions see 

appendix H) plotted over the parameter 

h~& Un (55)' tJ #) 
28 



K2 is the transformed displacement thickness of the crossflow
 

profile (6-)X for a transformed boundary layer thickness q6=1.
 
e
 

The transformed integral functions K112, K22 1 , K1 2 and L1 Z
 

(see appendix H for definitions), which depend on the profilts
 

in the directions of main flow and crossflow, are shown in
 

Figs. 22-25 plotted over b with a as parameter. For determina­

tion of these mixed functions the transformed boundary layer
 

thickness of the crossflow profile has been set equal-to the
 

main stream profile.
 

The following approach is suggested for determination of /32
 

the constant c in equation (46), which permits calculation of
 

the desire& crossflow velocity profile V/Ue from (V/Ue, . The
 

physical displacement thickness in the crossflow direction is
 

&k
 

= V L (56) 
0
 

With equation (49) we get
 

2.<r,4 JQ f\Ue/Ue. 

or
 

[1 ~ ~ Yij~ - 14 ct (58)2 fd3Q c16) 2 
K41 0 

Consequently constant c is
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C- 4 (59) 

All physical integral functions in the t,n coordinate sys­

tem can then bb..&etermined in the following'manner.
 

Q(t,n) f O. ,) gt(c)h-(a;b) (60) 

where Q is an integral function. All the required physical
 

integral functions have been list-ed in appendix H. e1 1 ,a,b
 

and C thus become thedependent variables in the method of 


calculation suggestedhere.
 

The -physical integral functions in the x,y coordinate sys­

'tem, which appear in the pulse equations x and y use.d here-and
 

in the "moment of momentum" equations (8)-(11), can be calcu­

lated from the physical functions of the t,n.coordinate-system
 

through the relation givenin appendix C.
 

Q(x,y) = Q(8 1 .,a,b,c,.) (61) 

The required derivations of functions Q after Oii,a,b,c,.
 

anrd, X can easily be determined.
 

The following holds­

0.0 +x c'Th 4 (62) 

wherein Q01- 'Q for instance. 

can then be,written ORIGINAL. PA9 1 
Equations (8)--(11) 
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+8,4 CO +2, (62) 

©r - G63)__c 

Q~ ~ k., CR(64) 

The expressions D. are listed in appendix I.
 

Equations (62)-(65) are solved simultaneously. If so de­

sired, the displacement area of the three-dimensional boundary
 

layer can be determined with equation (66).
 

4.3 Numerical Integration
 

Numerical integration is handled in the same way as ex­

plained in section 3.3. The functions Oil, H, 6x and the wall­

flow line angle $ are required as initial conditions. The
 

transformed integral functions, which are given as functions of
 

a or b, or a and b, are made availabl.e, through polynomial fits.
 

For the start of the calculation at the stagnation point
 

or stagnation line of a body, the sign of the wallflow line
 

angle B decides the sign of the crossflow velocity (-) x , Fig.
 

19, for the first integration step. e
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At the start of the calculation only such profile types
 

can be considered for which
 

rar
 

holds.
 

Once the crossflbw has developed from the stagnation point, /35
 

or stagnation linethen the profile type-of the cross-flow
 

changes through change of the sign of function x i.e., the
, 


flow line at the outer edge of the boundary layer has a turning
 

point. "Cross-over" profiles appear and after passage through
 

this type of profile, profile forms as shown in III and IV, Fig.
 

19, are reached. Should a renewed changje occur in the sign of
 

the function 32z , then "cross-over" profiles will reappear.
 

The profiles will in that case pass through in the same -direc­

tion as during their first'appearance.
 

4.4 	 Comparison with the Calculated Results of a
 
Difference Method
 

The results of difference methods for laminar flows can be
 

used for comparison in estimating the quality of approximation
 

methods such as the integration procedure. The difference
 

method was developed by Horton [20].. Three test cases were
 

used for infinitely long yawed wings with 450 sweepback in the
 

incompressible region. A rectangular coordinate system was
 

used with the y-diriection running parallel to the leading edge.
 

The velocity component at the outer edge of the boundary-layer
 

in y-direction, v1 , is for all test cases.
 

v .1 1 	 (67)
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with U. corresponding to the component of undisturbed initial
 
flow velocity in the x-direction. Dhe velocity component-at
 

the outeY ,edge of the bouhdary layer in the x-direction, u,
 

is
 

x 3 x/3
Test case 1: = 3( - --) for - > 0 (68)UTs c C 

Tdst case 2: " U l for c <- 1.0 (69) 

- 1 0.567( - 1) for > 1 (70) 

Test case _= 1 for X < 1 (71) 

Ul = - 0.1134(' - 1) for - > 1 (72) 

c is a reference length.. Test case 1 corresponds to a boundary
 

flow that starts at a stagnation line. The test cases 2 and 3
 

are boundary layer flows which correspond at first to.a plate
 

boundary layer and are then suddenly exposed to an increase in
 

pressure. The calculations were made for a Reynolds fumber
 

Re - UMc _10 

The comparison of results from calculations is shown in
 

Figs. 26-28. All calculations end with the detachment of the
 
laminar boundary layer. In test case 1 the sign of the wallfluw
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line angle changes but the displacement thickness of the cross­

flow direction 62 remains positive, which means that there are
 x
 
"cross-over" types o-f crossflow profiles in the range for
 

$>O. The present integral method gives a very satisfactory
 
&'escription of these complicated flow conditions. Beyond that
 

the separation point is determined accurately. For test case /37
 

2 results are equally satisfactory, but small digressions occur
 

in the determination of the separation point. During recalcu­

lation of test cases 1 and 2 agreement was looked for in the
 

wallfriction coefficient cf during establishment of the initial
 

conditions and deviation in the form parameter
 

H - 1xI 

was permitted. For test case 3 two different results of calcu­

lation are shown in Fig. 28, with agreement of cf and H for the
 

initial conditions. Here, too, the agreement is satisfactory.
 

4.5 	 Discussion
 

The results show that the idea for using the concep-t of
 

the "moment of momentum" equations in the three-dimensional
 

.case'as well, leads to good results.
 

S. 	 Boundary Layers on Wings /38
 

5.1 	 The.Infihence of Wing Tapering on the Development
 
of a Three-dimensional, Turbulent Boundary Layer on
 
a Transsonic Wing
 

The development of a three-dimensibnal bbundary layer on a
 

wing 	was often calculated to an approximation with methods that
 

were 	based on the concept of the infinitely long yawed wing.
 

In comparison to this "quasi-two-dimensional way of looking at
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it one aspect of three-dimensionality, the wing tapering, will
 

be examined closer here.
 

5.1.1 The Metric Coefficients
 

To make the calculation s'impler the boundary layorw
 

de-velopment.will be developed here notfor the given wing con­

tout but for a flat-plate with'a top view corresponding to that
 

of the wing on which the potentialstheoretical pressure distri­

bution is-superposed. The calculation is carried out in a non­

orthogonal linear coordinate system. The x-direction runs
 

parallel to-the direction of initial flow, the y-direction is
 

identical with percentage lines on the wing.
 

Fig. 29 shows the CCa.rre:saan -coordinatesXY,Z and
 

not the nonorthQgonal, linear coordinates x,y for -the infintely
 

long yawed wing and.the tapered wing with.straight leading and
 

trailing edges.
 

The-following connection results 


X 0a(9)_+X 
bC9-o)
 

y (73).
 

Z =
 

The functions a(y) and b(y) .are shown in.Fig. 29'. 
From equations-(3) and (4)-we get the metric coefficients -and
 

their derivations to (also on Fig. 29)
 

h4 (74 
04a = - i (7S) 

0 3
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I (76) 

S in 0f 
(77)
S; n
 

--a-- (78) 

k(79) 

-IT c(80) /-40­

.(81).
, cjv 


The angle A in a point x,y co-rresponds to the angle be-.
 

tween the lines x=const. and y=const. at the point x,y. A0 is
 

the 'anglebetween the coordinates x and y at the origin of
 

the coordi-nates.
 

The following holds true
 

[3)cos -,. c=C . - .() 
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(84) 

0 (8) 

YT is the distance from the origin of the coordinates to the
 
point where the extended leading and trailing edges of the wing
 

touch. (YT=- for the infinitely long yawed wing;)
 

5.1.2 	 Description ofthe Various Types of 

a1culatins
 

Fig. 30 	shows the top view of the wing, the wing sec­

tion examined and the sweepback of the-leading and trailing
 

edges in that wing section.
 

Fig. 31 	shows the distribution of the resulting flow
 

velocity for that wing at the outer edge of boundary layer U.
,
 
dimensionless as the initial'flow velocityURef, over the wing,
 

chord at the suction side in the section examined. c is' the
 

wing chord of the wing section exami-ned. In addition, the run
 

of angleatis given. The leading edge sweepback of the wing in
 

the section examined is Ov=320, the trailing edge sweepback is
 

tH=I60 . The sectioned line fo.r function a in Fig..31.presents
 
the run of a for an infinitely long yawed wing with a sweepback
 

4
of (Pv+H)/-2'-2' for identical velocity distribution Ue/URef .
 

'The same"integral method is used for two boundary layer
 

calculations (13) . Case 1 corresponds to the results for an
 

infinitely long yawed wing with 24.0 sweepback. The wing for
 

case 2 is tapered with a constant leading'edge taper of 320 and
 

/41 
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a constant trailing edge taper of 16', corresponding to the
 

wing of the wing section examined. The distribution of U e and
 

a over the wing chord, by percentage, is identical with that on
 

the wing of the section examined.
 

5.1.3 Discussion of Reu'lts 	 '/42
 

The results for 1ager-crossflow profiles are shown in 

Figs. 32-34. The moment-loss thickness e11 increases s-lower 

in the trailing edge area, i.e., in the area of retarded ex­

ternal flow at the tapered wing, than at the infinitely long
 

yawed wing. The same holds for the form parameter-H. Since
 

the form parameter H.increases with retarded external flow,
 

the wing taper acts to weaken the retardation of the effective
 

external flow.
 

The wallflow line angle R is an effective measure for
 

the three-dimensionality of the flow (a+0>0 means that the
 

boundary layer material flows toward the wingtip}. Fig. 34
 

shows clearly that tapering weakens the three-dimensionality
 

of the floW.
 

5.2 	 The D6velop~ient of the Laminar-Boundary Layer on a
 
Transsohic Wing
 

The development of 'alaminated boundary layer on an. infin­

itely long yawed wing in'the region of transsonic vel6ci-ty is
 

shown in Fig. 35.- The velocity data at the outer edge of the
 

boundary layer Correspond to those that are also used for the
 

turbulence calculation in section 5.1.2, Fig. 31. The qalcula­

tion is carried out with a constant value c, equation (46). The
 

turbulent values of -4 1 and are shown for comparison in Fig.
 

35. 	 The moment loss thickness it.significantly smaller in the
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laminar case. This result becomes understandable when comparing
 

the development of the boundary layer on a flat plate in the
 

laminar and turbulent case. For laminar flow
 

ell - x 	 /43 

and for the turbulent case
 

X4

all 


The velocity decrease of the external flow for xZO.5 is so 'great
 

that laminar separation occurs. In the turbulent case no separ­

ation~occurs here. It is known that turbulent boundary layers
 

can tolerate greater pressure increases in the external flow
 

before they separate. Results for the wallflow line angle
 

show clearly that the three-dimensionality of the flow is far
 

more pronounced for laminar boundary layers than for turbulent
 

ones. A similar result is also de'scribed in reference [22].
 

6. 	 Turbulent Boundary Layers on Bodies
 
(Revolution Ellipsoid)
 

The development of a turbulent boundary layer on a revolu­

tion ellipsod,(ratio,of main axes 4:1) has been calculated for
 

an attack angle of 0* and 100.
 

6;1 	 The Metric Coefficients /44
 

The connection between the Cartesian coordinates X,Y,Z
 

and the coordinates p,W of the revolution ellipsoid, as per
 

Fig. 36 is
 

X = a cos
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Y = b sin (86) 

Z = b sin T cos 

In this case a and b are the main axes of the revolution ellip­

soid.
 

Using equations (3) and (4) for the metrid coefficients
 

and their derivation we continue
 

++)os 


(8-7)
 

=, zc I' 

_ = I,s ,n cosr (0,- 6) 

"o¢t
 

)0 h/4-5
 

A0
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6.2 Results
 

The data for the friction-free flow around the revolution
 

ellipsoid were determined through the procedure by K. Maruhn
 

[22]; Figs. 37 and 38 show the distribution of the resultant
 

velocity of friction-free flow U e and of angle a for an attack'
 

angle of ax=.0, plotted overS and x/a. The distance x and
 

the angle a are defined in Fig., 37. The angle (. in the tangen­

tial plane at a surface point P is defined as the angle between
 

the vector Ue and the straight line that is generated by sec­

tioning the tangential plane with a plane that stretches through
 

the x-axis and the point P, as in Fig. 36.
 

The results of a boundary layer calculation for a Reynolds
 

number
 

Re= -5.2 x l05
 
YRef
 

where the undisturbed initial flow is the reference condition, . /46 

are shown in Figs. 39-41. The functions 01 1.andXH are shown in 

comparison for an attack angle of aX-or, O0e and with it all 

boundary layer thicknesses increase for the incident ellipsoid 

not only in the x-direction but also in the direction of the 

citcumferencb . The minimunr-values lie in the plane of symmetry
 

on the side facing the wind. For values of-x/a>O.5 the wall­

flow line angle on the topside assumes negative values while
 

being positive on the side facifig the wind. In the plane of
 

symmetry of top and bottom side there are no crossflows (B=O).
 

The course of ell and particularly ofH for values of x/a>O.5
 
is noteworthy. The maximum values of these functions do not
 

lie in the plane of symmetry on the topside (V=1800), but fot
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VzlSOo. This may be explained through the piling up of boun­
dary layer material because of the cross-flow, which changes its
 
sign at the circumference. G'eissler [23]- has observed- similar
 
conditions in his study (development of the .laminar boundary
 
layer for an incident ellipsoid). The maximum increase of the
 

form parameter H on the side oxthe ellipsoid may also indicate
 
the free separation of the-vorticity layer [24], which was
 
examined closer by Wang [253 for an incident ellipsoid.
 

7. Summary
 

Methods have been introduced for the calculation of three­
dimensional, turbulent and compressible, laminar flows. In the
 
turbulent method the power profiles, which were used in Myring's
 
work for the description of the.velocity profiles in main stream
 

direction, were replaced by Coles' profiles, 'Beyond that a
 

"lag-entrainment" method was introduced instead of the simple
 
"entrainment" concept. The quality of the results of the cal­
culations., as compared to the experiments, could be imp-roved
 
even more if more suitable models were available for description
 

of the.cross-velocity profiles. The proposed integral'method
 
,gives good results in comparison with difference methods.
 

The laminar method, which uses "moment of momen.tum" equa­
tions for the first time for three-dimensional flows-, gives
 

good resu.l.ts in comparison with an exabt difference method.
 

Calculations fox wings showed that tapering of wings re­

duces the three-dimensionality of the flow. For identical
 

pressure distributions the.laminar boundarylaybr separates
 
earlier"and shows a more pronounced three-dimensionality than
 

turbulent flows.
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The deyelopment of a: turbulent boundary layer was calcu­

lated for an ellipsoid for 06 and 100 incidence. The boundary
 

layer thicknesses for incident ellipsoids are smaller on~the
 

bottom side and greater on the topside than fLor an ellipsoid
 

with.0 incidence. A noteworthy result is that the.,maximum
 

values of boundary layer ihicknesses and of the form parameter
 

do not occur at the apex of the -topside but on the side off the
 

part of the revolution ellipsoid turned away from the wind.
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/52 
Appendix A 


Definition of functions 
a- and b.
 

1z \Z ) " Al 

a34 (A&[4± 12A§ " .,-2 5 4,)r (A-1) 
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Appendix B /53,
 

The integral functions in the x,y,z coordinate system
 

=~ § ( Sd, (LtQd
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__ 

/5 For laminar flows the dissipation integrals S and S can be

written as
 

x Cue fA tt 
A 
 (B-2) 

0 

p isizhere-the dynamic viscosity of the gas
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/55 Appendix C 

RelAtion between the integral functions in the x,y,z and t,n,z
 

coordinate s.s tem
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Continuation: 
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- ' 1 sinc sin (X-W) 
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/57 Continuation: 
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The integral functions appearing in equation (C-i), which are /58
 

based on velocity profiles in the-main flow and crossflow &i­

rections, become
 

111 U,( - LUe i 
e.4e 

U" 1zzzfO..GZZ CLz r &aUeV3 du.,~~~~
e, 


Je Ue
 
a 0 

&£ &
 

& ci 
ee Jb ' e) = e ~ue) 

- uese U "e 
0 

53
 



/59 
Continuation: 
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Appendix D (Turbulent Boundary Layer) /60
 

Calculation of the integral functions of the boundary layer in
 

the t,n,z coordinate system
 

The boundary layer integral functions can be axpressed as func­

tions of the boundary layer thickness 6, of the pressure grad­

ient parame-ter 7', the wallfriction parameter a and the parameter
 

A, with the help of the-Coles' prof4-es for the main flow direc­

tion and the statements of Mager or Johnston for the crossflow
 

direction. We write ftf(u,c,A).
 

44fl 6Z 41e~ (D-1) 

For the integral functions which depend only on the velocity
 

profile in the'direction of the main flow we write:
 
C 

f1 (D-2) 

For the remaining integral functions:
 
--Mager Crossflow 1profiles-­

#2=A(I -/) + q­
ff2.fzI 3 q (D-3) 
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/61 Johnston Crossflow profiles--


, 

2 . 

For the -expression Pi we get: 

f2 -ArJP 

2 (D-4) 

P' & 

[iTT 

-

Tr 

+ 2 (2-LIT-i+-Z] I 

(D-5) 

P 

4 

4-

Wz 

7 T . 

19 $) 

z- _L,4-,z. 

-

-

L I#$'LI+LJ4~J 

37 -2L42. 

0 

+ Z4­
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k=0.41 is here the von Kirmon constant and L, and Lz calculate /62.
 

to: 

L- tqr=n (D-6) 
h3=-1 

The derivations needed for the calculation
 

ZAro'Z'r 

can be determined from the above equations.
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Appendix E (Turbulent Boundary Layer) /63
 

The integral functions-of the boundary layer in the x,y,z coo-­
dinate system.
 

With the.aid of the relations between the integral functions in
 
the t,n,z and x,y,z coordinate systems, as determined from appen­

dix C and the f functions determined fr'om appendix D, the
 
integral functions in the x,y,z coordinate system can be named.
 

M =6' = 42 @,2, -- - (B4i-)
 

z =,= =z 


Ue __e_ 

where 4=P(tA,mc,,A)
 

The functions p are as follows: 

(E-Z)VC-
CzCS )] 
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Continuation: /64 
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/65 The f coefficients that appear in the equations (E-2.) are 

given in appendix .D. -. 

The derivations required for the calculations
 

can be easily determined.
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/66 Appendix F (Turbulent Boundary Layer) 


The right-hand sides of equations (31)-(36)
 

The expressions I on the right-hand sides of the equations (31)­

(36) produce _
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Continuation: -/68 
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/69 Appendix G (Turbulent Boundary Layer) 


Calculation of the initial condition
 

When recalculating the experiments the initial values of the de­
pendent variables 6, ,c and A, must be determined at the first
 
test station from the measured values of 011 , H and 13.
 

For the form parameter H we get
 

- ---1(G-1)
 

,and with equation ,J-2.)
 

ITs - 1r- , - ( H - j--2 

In addition the following is true
 

, - ,T (G-3) 

4 e'r :' ._ +_"=!2 

Bquatipns (G-2) and (-G-3) are 
iterated with an estimated value
 
- of 7r. A can be calculated for Mager profiles from
 

A = tan B 
 (6-4) 
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/70 and 'for Johnston profiles with equation (22). 


The initial value for the entrainment coefficient F.was--the cor­

relation by Head [4].
 

F - H, 

with! (G-5)
{ H .=4 
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/71 Appendix H (Laminar Boundary Layer) 


The Transformed and Physical Integral Functions
 

1. The Transformed Integral Functions
 

Integral functions which depend on profiles in the direction 6f
 

the main flow (rp6 is the transformed boundary layer thickness
 

for which U/Ue=0.99)
 

(H2
 

f'6 H(2 

f d7 (H-3) 

U 

(H-4)
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/72 

: Tg U 2 

(H-5) 

Integral functions, which depend on profiles in the direction of
 

the crossflow (all functions standardized for 16=l)
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/73 

L~zz
 
Integral functions which depend on profiles in the main flow
 

and crossflow directions (p6 in the crossflow direction is set
 

equal to the r6 of the main flow direction)
 

'"I 2. = - f5(') ctt (H-Il) 

0 

U4 I 

=il Uf 21 (H-12) 
o e­
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The Physical Integral Functions in the t,n, Coordinate /74
 
System
 

The definition of these integral functions is given in appendix
 

C. Integral functions which depend on profiles in the main flow
 

direction
 

A~ [S + mz<-± +) 
'K Lk (H-is) 

i1 % I (H-16) 

6i i variab-le 

S(H-1S) 

6n 2 4 (H1-17) 

Ree 
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L (m-19) 

. . ....Ree6 

Integral functions.which de-pend on profiles in the cressflow
 

direc-tion
 

Sw 
(H-20) 

1<z (H-22) 

3 k-7i (H-23)
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c:C (H-24) 
Ree
 

LL2 k (-25) 

In-tegral functions .which depend, on profiles in the main flow
 

and crossflow directiohs
 

-Rd
e,-,--(-- p (H-26) 

=Qzc× (1-27) 

(H-28)
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29)0 ~4= C KZI(H-

LIZ 

Re (H-30) 

e1 , a, b and c are the dependent variables and 

te 

MeM
 

(-32)
 

is the ratio of the specific heat of air.
•where y 

The Chapman constant c
x is defined as 
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Ic Tk) '2 T + 102.<E (H-33) 

T and Te are'the static temperatures of the gas at the wall,
 

resp. the outer edge of the boundary layer.
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/79 Appendix I- (Laminar Boundary Layer) 


The right-hand sides of the equations C62)-(66)
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