General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
SOME FLOW PHENOMENA IN A CONSTANT
AREA DUCT WITH A BORDA TYPE INLET
INCLUDING THE CRITICAL REGION

by R. C. Hendricks and R. J. Simoneau
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER to be presented at the
Winter Annual Meeting
sponsored by the American Society of Mechanical Engineers
San Francisco, California, December 10-15, 1978
SOME FLOW PHENOMENA IN A CONSTANT AREA DUCT WITH A BORDA TYPE INLET INCLUDING THE CRITICAL REGION

R. C. Hendricks and R. J. Simoneau
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

ABSTRACT

Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet have been assessed over large ranges of temperature and pressure (0.68 ≤ T/Tc ≤ 2.3; P/Pc ≤ 3) using fluid nitrogen (Tc = 126.3 K, Pc = 3.417 MPa). Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables one to estimate flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.

INTRODUCTION

Flow separation represents a divergence of streamlines from a bounding surface and may or may not be accompanied by a free interface. It represents a common event in fluid dynamics. Airfoils are highly susceptible to separation whether an element of a power system such as a compressor or turbine or an aerodynamic surface of a wing or empennage. In such components separation is undesirable. However, in fluid dynamic controls, separation is used advantageously. In fluid circuit logic, separation is used to switch power circuits; in flight, spoilers rapidly decrease lift; and in seals, separation can assist in controlling the loss of the working fluid. In internal flows, one of the most common inlets is sharp edged. However, the inlet most susceptible to separation is the Borda tube. In either case, a vena-contracta is formed and the region of detachment depends on fluid conditions. If the fluid has the potential to vaporize under these circumstances, the problem is substantially more complicated.

While many texts and papers deal with such inlet phenomena, few have addressed the problem of entrance effects on two phase choked flows (1-6) and one addresses the effects at very large L/D (7).

In engineering applications, it is customary to arbitrarily assign a friction factor (L/D) equivalent to account for entrance losses. While this is entirely justified in many problems, it is not for sealing surfaces. In high performance seals, the entrance effects and associated zones of separation cannot be ignored or arbitrarily assigned for they play a major role in seal dynamics; as will be established, entrance conditions can control mass flow and establish pressure distributions for mass limiting flows.

While the material discussed herein is germane to all of the above fields and to separation phenomena, it is primarily applicable to fluid control and dynamics of sealing surfaces. Thus the purpose of this paper is to present flow rate and axial pressure profile data established by mass limiting flows through a 55 L/D straight tube with a Borda type inlet over a large range of stagnation temperatures and pressures including the critical region.

APPARATUS AND INSTRUMENTATION

The basic flow facility was of the blowdown type and is described in detail in Ref. 8. A photograph of the installed test section (fig. 1) illustrates the pressure taps and associated plumbing. The flow was upward, around the U and downward through the test section. The flow rates were metered using a venturi flowmeter located in the bottom of the storage
tank. Inlet stagnation conditions were measured in the mixing chamber shown immediately behind the scale in Fig. 1.

The 55 L/D straight 0.483 cm diameter tube test section consisted of two parts, the Borda type inlet and a straight tube with a 70° diffuser (see Figs. 1 and 2). A photograph of the Borda type inlet is shown in Fig. 3. While not a true Borda inlet, the flow must still experience a reversal prior to entering the test section.

Eighteen local pressure taps, three stagnation pressures, and a backpressure were used to establish the axial pressure profiles. The tap locations are given in Table I.

The parameters were monitored using a mini-computer monitoring system at 1/second update intervals until all conditions appeared satisfactory. At that time the signals were digitized, recorded, and subsequently reduced using the LeRC data acquisition system. While the accuracy of the static transducers was limited to 0.2 percent and the range was large, systematic calibration and subsequent checks with higher sensitivity differential pressure transducers indicated a relative difference of 0.1 percent could be established and reproduced.

FLOW MODEL AND DISCUSSION

The type of separation phenomena encountered herein results from a discontinuity in the shape of the bounding surface. The theoretical inviscid streamlines conform to the bounding surface. No such conformation to the surface exists with the viscous flow and separation is initiated. Growth or decay of this separation, or perturbation, depends on the degree of the discontinuity. The true Borda inlet causes a full reversal of the streamlines at the inlet and represents the strongest degree of discontinuity for simple geometries. As such, the incompressible contraction coefficient of 0.5 (9) represents the most severe separation phenomenon for simple tube inlets.

The geometry of the free streamline in potential flow is found by integrating the real and imaginary components of dz (10) (see Fig. 4).

\[ z = \frac{\pi}{4} 
\]

\[ = B = \frac{\pi}{4} \left( 2\pi - 0 + \sin \theta \right) \]

The free streamline can be defined in terms of the parameter \( \theta \) where \( \theta \) ranges from 0 to \( \pi \):

\[ \rho = \frac{2\pi}{B} \left( \sin \theta \left( \frac{2}{2} \right) + \log \left[ \cos \theta \left( \frac{2}{2} \right) \right] \right) \]

While the above applies to the two-dimensional case (Fig. 4(a)), it can be shown that similar streamlines exist for the axisymmetric case (10), and the contraction area or contraction coefficient is still 0.5; \( A_2/A_1 = 1/2 \) (Fig. 4(b)).

Although the focus of this paper is to provide characteristic flow and pressure profile data for a Borda inlet, a model of the flow phenomena is suggested in an attempt to explain the major experimental findings. A sketch of this model is shown as Fig. 5.

1. The entrance contraction is sufficiently strong to cause separation and vaporization, that is, the radial velocity is significant and forced separation resulting in the free streamline some distance from the wall.

2. The entrance vortex zone, 2 to 4 diameters in length, appears to always exist setting up an initial recompression zone.

3. Under certain conditions (low temperature, high pressure fluid) the entrance vortex is sufficiently weak and initiates partial recompression; usually this recompression is only to the saturation pressure. The fluid jet then traverses the tube length with only a small pressure rise.

4. For the free jet conditions, the vapor and or boundary layer growth is assumed to form a diffuser. This zone may extend through the tube or may not exist at all.

5. Strong recompression in the secondary zone can occur within the tube due to transition or be forced on the flow by adjusting the backpressure. This zone may not exist within the 55 L/D or it may intersect the initial recompression zone.

6. Detachable states and normal states of condensation and vaporization are assumed to occur.

RESULTS AND DISCUSSION

Pressure Profiles

Typical axial pressure profiles for the 55 L/D tube with Borda inlet are illustrated as Figs. 6 and 7. For reference purposes, a typical pressure profile for the gaseous state is given on Fig. 6. Except for the abrupt nearly two to one characteristic drop at the inlet followed by recompression, it appears as a standard friction profile for a tube.

Holding inlet stagnation conditions nearly constant while the backpressure is varied results in the family of profiles displayed on Fig. 6. At a backpressure of 1.69 MPa (245 psia), the pressure profile near the exit appears monotonic increasing. This is a transition point where the trailing secondary recompression is now within the tube. Further increase in backpressure move the secondary recompression zone further into the tube until at sufficiently high backpressures the system finally becomes unchoked. Profiles as run 1150 are very difficult to obtain by varying the backpressure. Secondary recompression within the duct is most easily established by changing stagnation conditions. In Fig. 7, recompression is affected along the 117 K isotherm by decreasing the stagnation pressure from 7.28 MPa (1055 psia) to 5.93 MPa (860 psia). At 7.28 MPa (1055 psia) the initial recompression is to about 1.48 MPa (215 psia) followed by the characteristic monotonic rise in pressure to the exit in the characteristic diffuser zone (Fig. 5).

At 5.79 MPa (865 psia), the secondary recompression zone is within the tube and at 5.97 MPa (865 psia) the zone has moved near the initial recompression zone; note that when the two recompression zones merge, the initial recompression recovery pressure equals that of the secondary recompression zone, that is, more characteristic of the gas profile. One should note that once transition has occurred, all profiles merge into a single profile downstream of the stagnation temperature usually tends to increase over the course of a run due to heating by the pressurizing gas.

Based on inlet stagnation conditions.
of the transition point for a given isotherm. Secondary recompression can be made to take place within the tube by varying the stagnation temperature along an isotherm. Along the 10.48 MPa (1515 psi) isobar at 121.7 K, the zone of secondary recompression is greater than 55 L/D, that is, beyond the tube exit, even though the temperature is close to critical. The initial zone of recompression is to about 1.62 MPa (235 psi), followed by the characteristic monotonic rise in pressure through the characteristic diffuser zone. At 127.6 K, which is greater than the critical temperature \( T_c = 128.3 \) K, the zone of the nonequilibrium model predicts \( C_0 \) values less than the locus of Fig. 10, see isolated points of Fig. 9, which may be two phase. Between \( T_r = 0.9 \) and 1.0, the data appear to reach a plateau followed by an abrupt rise.

So by calculating the isentropic flow rate using the nonequilibrium model and applying the flow coefficient (Fig. 10), the flow rate for this configuration can be determined at any temperature or pressure including the critical region.

While the effect of secondary recompression on the pressure profiles is very significant, little change in the flow rate can be found using Eq. (6) and comparing data with the theoretical curves of Ref. 12. This, of course, implies that the mass limiting effect occurs at the inlet, not at the exit.

Fluid properties for evaluating \( C_t \) were obtained using the computer code established in Ref. 13.

**SUMMARY**

Some flow characteristics in a constant area duct with a Borda type inlet, as may be found in some seals and boilers, have been assessed over a wide range of temperature and pressure (0.68 \( \leq T/T_c \leq 2.3 \), \( P/P_c \leq 3 \)) with fluid nitrogen. \( T_c = 126.3 \) K, \( T_r = 3.417 \) MPa). The 55 L/D test section with Berle.

Inlet with a 70 degree diffuser inlet has a 90 degree diffuser at the exit. Under certain conditions, separation at the inlet was sufficiently strong to permit the fluid to flow through the tube as if it were a free jet; in these cases, the diffuser zone extended to the physical diffuser and secondary recompression did not occur within the tube. Otherwise some combination of the initial recompression - diffuser - secondary recompression zones occurred within the tube. In the critical region the diffuser zone vanishes. An empirical criterion was established to determine when secondary recompression would occur within the tube.

The flow coefficient \( (C_t/g^*) \) varied non-linearly with temperature from 0.54 at \( T/T_c = 0.68 \) to 0.8 at \( T/T_c = 1.5 \) to 0.73 for the gas \( (T/T_c = 2.3) \). The coefficient is weakly dependent on pressure except near saturation where the coefficient tends to unity. Moreover, at a reduced stagnation pressure \( P/P_c = 3.1 \) and reduced temperature of 0.68, the average axial reduced pressure was 0.0585, over a 50:1 change. The ratio of the stagnation pressure to the initial recompression zone pressure was over 125:1.

Flow rates for selected isotherms and pressure profiles are presented for this configuration to document these flow phenomena.

**SYMBOLS**

A area, \( \text{cm}^2 \)

B slot or channel width, \( \text{cm} \)

\( C_t \) constant of Eq. (5)

\( C_0 \) flow coefficient, Eq. (6)

D tube diameter, \( \text{cm} \)

G flow rate, \( g/\text{cm}^2\cdot\text{s} \)

4 Charts of the ideal isentropic flows are available in Ref. 12.
or reduced flow rate

\( Q_c \) reduced flow rate

\( \Phi^* \) flow normalizing parameter, \( \sqrt{P_c / P_c} \), 6010 g/cm²-s, for nitrogen

\( L \) tube length, cm

\( P \) pressure, MPa

\( P_r \) reduced pressure, \( P / P_c \)

\( R \) gas constant, MPa-cm³/g-K

\( T \) temperature, K

\( T_r \) reduced temperature, \( T / T_c \)

\( V \) specific volume, cm³/g

\( V_0 \) velocity parameter

\( w \) complex potential

\( X \) distance, cm

\( X_0 \) dimensionless distance

\( Y \) distance, cm

\( Y_0 \) dimensionless distance

\( Z \) compressibility, \( P / P_c \)

\( z \) complex coordinate, cm

\( \theta \) parameter

\( \rho \) density, g/cm³

\( \xi \) surface roughness ratio

\( \delta \) boundary layer thickness, cm

Subscripts:

\( c \) critical

\( I \) isentropic

\( 0 \) stagnation

REFERENCES


TABLE I - PRESSURE TAP LOCATIONS FOR SS L/D TUBE WITH BORDA TYPE INLET (SEE FIG. 2)

<table>
<thead>
<tr>
<th>Pressure tap</th>
<th>Location</th>
<th>Pressure tap</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>( P_0 )</td>
<td>Mixing chamber</td>
<td>( P_{10} )</td>
<td>-2.5</td>
</tr>
<tr>
<td>( P_{01} )</td>
<td>Line at top of U</td>
<td>( P_{11} )</td>
<td>-1.3</td>
</tr>
<tr>
<td>( P_{02} )</td>
<td>-26.1</td>
<td>-0.3</td>
<td>-0.07</td>
</tr>
<tr>
<td>( P_{03} )</td>
<td>-26.6</td>
<td>-0.10</td>
<td>-0.4</td>
</tr>
<tr>
<td>( P_{04} )</td>
<td>-20.0</td>
<td>-0.10</td>
<td>-0.7</td>
</tr>
<tr>
<td>( P_{05} )</td>
<td>2.45</td>
<td>0.65</td>
<td>( P_{15} )</td>
</tr>
<tr>
<td>( P_{06} )</td>
<td>-17.0</td>
<td>-7</td>
<td>( P_{16} )</td>
</tr>
<tr>
<td>( P_{07} )</td>
<td>-15.2</td>
<td>-6</td>
<td>( P_{17} )</td>
</tr>
<tr>
<td>( P_{08} )</td>
<td>-10.2</td>
<td>-4</td>
<td>( P_{18} )</td>
</tr>
<tr>
<td>( P_{09} )</td>
<td>-7.6</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>( P_{10} )</td>
<td>-5.2</td>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>

At Borda inlet.
Figure 1. - Apparatus.
Figure 2 - Schematic of 55 L/D test section with borda type inlet. See table I for pressure tap locations.
Figure 3. - Borda inlet.
Figure 4. - Schematic for theoretical streamlines for a borda inlet.

Figure 5. - Suggested model for $55 \text{ L/D}$ straight tube with borda type inlet.
Figure 6. - Typical pressure profiles - axial position 55°J straight tube with Borda inlet.
Figure 7. - Typical pressure profiles – axial position 55 I/D straight tube with Borda inlet.
Figure 8. - Flow transition region as a function of reduced pressure and temperature for Borda inlet ÷55 L/D straight tube - $T_R \leq 1$. Fluid nitrogen.

Figure 9. - Reduced flow rate as a function of reduced pressure for selected isotherms. Borda inlet ÷55 L/D straight tube.
Figure 10. Reduced flow rate ratio versus reduced temperature for 55 L/D straight tube with a Borda inlet. Fluid nitrogen. (□ two phase).
Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet have been assessed over large ranges of temperature and pressure (0.68 ≤ T/T_c = 2.3; P/P_c ≤ 3) using fluid nitrogen (T_c = 126.3 K, P_c = 3.417 MPa). Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables one to estimate flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.