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ABSTRACT

A Galerkin-Weighted Residuals formulation is employed to establish

an implicit finite element solution algorithm for generally non-linear
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initial-boundary vaiue problems. Solution accuracy, and convergence rate
with discretization refinement, are quantized in several error norms, by

a systematic study of numerical solutions to several non-1inear parabolic

\

and a hyperbolic partial differential equation characteristic of the

equations governing fluid flows. Solutions are genarated using selective
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Tinear, quadratic and cubic basis functions. Richardson extrapolation is
employed to generate a higher-order accurate solution to facilitate j;
isolation of truncation error in ail norms, Extension of the mathematical

theory underlying accuracy and convergence concepts for linear elliptic
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equations is predicted for equations characteristic of Taminar and turbulent

fluid flows at non-modest Reynolds number. The non-disgonal initial-value

matrix structure introduced by the finite element theory is determined
intrinsic to improved solution accuracy and cenvergence. As an alternative
to the conventional multi-dimensional finite element algorithm, a factored

Jacobian iteration algorithm s derived and evaluated to yield a conse-

quential reduction in both computer storage and execution CPU requirements
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while retaining solution accuracy. The developed hypermatrix statement of

the solution algorithm reduces storage requirements and facilitates direct

inclusion of parameter variations. The resuits of the research conducted
under the Grant and reported herein document an accurate and versatiie f
algorithm potentially applicable to solution of a wide range of practical

problem classes in aerodynamics and fluid mechanics.
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INTRODUCTION AND SUMMARY

The primary objective of this research project is to assess predic-
tion of extension of the mathematical theory governing accuracy and
convergence character of finite element solution of Tinear 21liptic partial
differential equations, to the progressively more complex hyperbolic and
non-linear parabolic partial differential equations characteristic of fluid
mechanics. The results for the non-linear laminar and turbulent fTow
cases, considered and reported nzrein, predict that extension of the linear
eguation theory is valid for the finite element solution algorithm using
Tinear, quadratic and cubic elements. Compariéon tests between the finite
element and a Ffinite difference (Crank-Nicholson) algorithm have quantized
for the first time the differences in numerical accuracy attainable. These
comparison results generally confirm that the Tinear finite element solution
algorithm is consistentiy superior to the equal order accurate Crank-
Nicholson aTlgorithm in terms of accuracy and convergence, while maintaining
comparable solution economy, for the non-linear parabolic equations
considered. The reported results of the tightly controlled numerical
experiments confirm viability of the energy norm as the intrinsic measure
for accuracy and convergénce determination in Taminar and turbuient
parabolic~type flowfield prediction. This is in significant distinction to
the variability in convergence measured in the various common engineering
norms. '

A range of practically useful finite element discretizations for
parabolic flow prediction has been observed. Solutions employing coarse
grid 1inear finite element discretizations generally display accuracy
superior to those predicted by strict adherence to the convergence curve.

Conversely, those solutions obtained with quadratic finite elements typically
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display coarse grid inaccuracy. On the other hand, on progressively refined
discretizations, sources of error other than that associated with finite
element discretization serve to obliterate the refined solution accuracy
theoretically ebtainable. The absolute error associated with solutions
obtained employving quadratic elements is, however, uniformly smaller than
that associated with Tinear element solutions on sufficiently refined grids.
The accuracy obtainable using a non-uniform grid within the finite element
algorithm was found to be superior to use of uniform grids for the parabolic
problems studied. This is not uniformly true, however, for the finite
difference algorithm evaluated. Furthermore, while non-uniform discretiza-
tions display better absolute error for both the Tinear and quadratic finite
element algorithms, the presence of an optimum-accuracy grid was detected
far linear element solutions, but was absent for quadratic element solutions.
The use of non-zero pressure gradients for the Taminar parabolic
flows did not measurably alter the level of accuracy or convergence character,
measured in the energy norm, of the 1inear finite element algorithm. This
was not the case, however, for the quadratic finite element algorithm, where
the fourth order accuracy of the aldorithm for zero pressure gradient was
degraded to second order for the cases involving non-zero pressure gradient.
This may be due in part to the alteration in the convergence character, from
oscillatory for zero pressure gradient, to monotonic for the non-zero
pressure gradient cases. Computation of the transverse velocity distribution,
using generally second order finite difference formulae, yields a significant
source of error in actual computations on fine grids, which adversaly affects
the accuracy attainable using higher order accurate finite element intefpo1a-
tions. The Tevel of error, capabTé of quantization, increased from 10”5 to
about 106, when the non-Tinearly induced error,'stemming from the transverse

velocity solution methodology, was removed. Hence, while transversa velocity
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constitutes data within the theoretical framework of the algorithm, a uni-
formly fourth-order accurate algorithm would be required to increase seiution
accuracy beyond about 1075, The results of the turbulent boundary layer
solutions indicate that a strictly-accurate evaluation of the Jacobian, within
the Newton iteration algorithm, is not necessary to achieve an adequately-
accurate engineering solution. Significant solution economics can result,
therefore, in terms of computer core and CPU, by taking advantage of the
versatility embedded within the developed modified Newton iteration algorithm
for multiple dependent variable systems.

The transient continuity equation solutions confirmed that, on all
comparison bases, the performance of the implicit finite element algorithmic
sotution form for a dominantly hyperbolic equation, is superior to the
equivaient-compTeXity finite difference form with no additional computational
effort. The primary objective with the conducted numerical experimeﬁts Was
to evaluate economy measures applicable to the basic finite element formula-
tion, and to assess their influence on determined accuracy and convergence.
The developed Tactored Jacobian integration algorithm displayed considerable
econonmy in terms of computer storage and CPU, in comparison te the conven-
tional multi-dimensional finite element algorithm, with no measurable Toss
in accuracy. Accuracy and convergence properties of the factored algorithm
have been quantized, and the several numérical solutions obtained for a
variety of velocity fields. document accuracy and computational aspects and

illustrate its versatility.

THEORETICAL ANALYSIS

- Accuracy and Convergarice

Iﬁnfinite eTémént analysis, ervor estimates and conveérgence properties

are typically ékpressea'in an energy norm, cf. Stfang and Fix (1973).
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Alternatively, for finite differences, a stability analysis is employed to

ascertain that the method is convergent, and a local truncation error amalysis

determines order-of-accuracy by means of a Taylor series expansion. Error
and convergence may also be measured in other norms in¢1uding the familiar
engingering parameters. For the case of boundary layer solutions, for
example, these could include the integral parameters of boundary layer
displacement and momentum thickness, shape factor, and skin friction coeffi-
cient.

The primary focus of this reported analysis is numerical determination
of the accuracy and convergence character of a finite element numerical
solution algorithm for representative initial-value problems associated with
high Reynolds number laminar, turbulent, and inviscid flows. A companion
focus 1s evaluation of error measurement norms that facilitate estimation of
contributing factors to solution inaccuracy, hence solution economy. The
question of accuracy of a finite element (or any other numerical) solution
requires quantization with reference to acceptable (usable and efficient)
interpoiation functions and mesh size distributions. The mathematical theory
of finite elements, which examines these details in thoroughness, is
generally limited to linear partial differential equations. The present
requirement is to recall the fundamental theoretical concepts as applied to
elliptic equations, and to present the extension to accuracy and convergence
measure for the hyperbolic and non-iinear parabolic equations of interest.

The point of departure, cf. Strang and Fix (1973), is the linear

differential equation on one dimensional space Rl
- 2m '
lq) =vii + g=0 (1)
. gxm

where v is a general (constant) diffusion coefficient, and g is a source
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-term. The boundary conditions are typically assumed homogeneous as
g{X,t) =0 (2)

To -establish the error measure for the finite element solution of equation

(1) for m=1, which éorréquhdS'to alTiptic, the-fUndamenta1 requirement is

_detenmination.of3how;c103g,theqfinfte glemént;s¢IQtion q*

. M L . N : T N . | . -
*2 1A% X{Nk(x)} , o (3)
~e= ) : h . :
is to the true solution q(x). The fundamentaT_theorem states that the finite
element solution lies as close as possible to the exact solution, in the

sense that the energy in the error,

E=q-q* | - (4)
is minimized. The minimum energy fﬁn;t?ohhi that is'fhé_eqdivélent-to

minimization of.ﬁﬁe'variaﬁ%cna1 statement for esquations (1)=(2) is

I(q,q} = H%-v [ax] . g_q]'d'x' | (5)
Rl

The energy imner product for equation (1) is defined as

E(as) = B-\; {g-g)*ax | - (6)
I o T

The- proof of the Fundamental theorem, cf; Strang and F1x (1973)

'pp 39 41, assurns that the energy'1n the error 1s m1n1m1zed uy-the fﬁn1te

'element solution of equat1on (1) obtained USTHG“eqUatTOH (3) Hence, the

error in the energy 1nner product equat1on (6), fbr the f1n1te e1ement R

solution, equat1on (3), satmsfies the 1nequa11ty

B z(e, ) = nq qe,q-qell < CA‘?"‘”‘“’Ilqnz S m
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where C1 is a constant independent of Bgs the measure of the largest finite
element on R, the exponent of A, is a function of the largest complete
polynomial degree k in equation (3), 2m=2 is the order of the elliptic
operator, equation (1), and a=k+1 is related to the required smoothness of
the solution.

Equation (7) states that the error in the energy inner product of the
finite element algorithm, using a linear interpolation po1yﬁomial for example,
goes to zero as the order Ag {or more conventionally in'finite difference
terminology, h%, i.e., the method is second-order accurate). The error bound

in equation (7) can be refined, for m=1 and k=1 for example, as

Ee,e) < CaZlla™ (|2
= C3A§"F”2 (8)

where C2 and C; are constants, A, is the measure of the largest finite

e
element, and |[F[| is the L, norm of the data of the problem specification,

i.e.,
IFl = [fo2ax]* (9)

Equation (9) states that the error in the energy of the Tinear finite element
approximation to the true solution q decreases in proportion to the square

of the measure of the largest finite element, and that the error depends
continuously on the data of the problem specification. Hence, as a conseguence
of the fundamental theorem, the finite element solution converges in the

energy norm as

E{e,e) =0 as A, —+ 0 (10)
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'; approx1mate solutmon scheme are defzned as: q{x,t), the

'Aequat1on (11) Q(x, t), the soTut1on to the sem1d1scretefA :'"f' i

' For any cho1ce of norm

 j1nequaT1ty R

lor the class of t1me-dependent and/or 1n1t1a1-Va1ue prob]ems of '

1nterest extens1on of equat1on (1) to a,11near, e]lipt1c, 1n1t1a1—va1ue

_Lequat1on statement y1e1ds na

Co ‘ g '
e «L(q) q(x t) +‘v——§ﬁ-q(x,t) + Q(X t) L 1y
o B EURIREE T

~ with boundary conmtmns CRERIEEt

. q(SE,t) =0 S | e (12) ',

- and an initfal condition

B N €

Oden and Reddy (1976} develop error estnmates for fu11y d1screte Galerk1n

,’appr0x1mat1on of an equat1on of the form (11) The componenﬁs of the

L actrsqlutman‘OFﬁ
dependence on time, t is st111 assumed) Ga?erkun approx7mat1on and q*(x),
the salution ta the f1n1te-d1fference Ga?erk1n approx1mat1on at t1me t nAt;

The fol1owxng def1n1t1ons for error are then 1ntroduced

e(x,nAt) & q(x nAt) - q*(x) approxzmataon error
a(x~nﬁ¢9'=iq(anAt)-- Q(x~nAt)

T(x,nAt)-- Q(x nAt) - q*(x)

sem1d1screte approxnmat1on error. .

. "',u__ '.

temporal appronxmat1on error ,(1¢}”_ 

. n-a‘;;u < uau . n-ru (15)

- fproVe that 1f the.componewts ofz' ferrcr are glven by equ”

fora 11near, e111pt1c, 1n1t‘a1-va]ue equatTOn theﬂerror satnsfﬁes the
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letaat) | < c2%H ™ flgtnat) || + coatfie®)l, (165)

Here, the first term on the right hand side of equation (16) is the right
hand side in the inequality (7). Furthermore, Cy is a constant, At is the
time step, and [[Q%]| is the norm of the initial data.

For the second case of interest, consider a first order hyperbolic

problem statement of the form

3 3q _ '
L{g) = §F + vi§k=0 (17)
with initial condition
q(0) = q, (18)

Here again, for use of a forward difference integration algorithm, Oden and
Reddy (1976) prove that if the components of the error are given by equation
(14}, then for a Tinear hyperbolic equation, the error satisfies the
inequality

' nat
llelnat) || 5.Clﬁ§+1HQHk*1 + ﬁsﬁt"Q0".+ C6A6£ "an+1dt (19)

where CB is another constant. Unfortunately, no similar analyses for an
initial-value, non-Tlinear problem exists, which prompts the numerical
experiment approach taken hgrein to study the convergence character of
finite element solution of non-linear initial-value problems.

Error Analysis .

The main emphasis in ‘this analysis i1s assessment of the discretization

error associated with use of the finite element solution procedure for non-
Tinear problems. For such problems, the approach taken is evaluation of

absolute accuracy as determined by computed solution comparisons, for
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progressively refined discretizations, in the energy norm, to establish the
convergence rate exponent on A,. Since the fluid mechanics equations to be
solved correspond to statements of conservation, correspondingly defined

norms are alsoe useful, in particular

Lqedr (20)
Re

Po=31 [ aer | (21)
e
Re

The familiar engineering parameters useful for quantizing flow phenomena can
typicaliy be coﬁstructed from the energy and p-norms. For example, in

boundary Tayer flow, shape factor and skin friction are parameters of great

engineering significance in assessing solution acceptability, i.e., accuracy.

Shape factor H is defined as

H = §%~2 {22)
where 8* is the boundary Tayer disp]acément thickness and ¢ is the momentum
thickness defined as

* = J[l - ﬁuflldxz (23)
6 .

8 = J 71 - Uy ]dx2 (24)
)
where uy is the local inviscid freestream velocity, and U is the (time-
averaged) boundary layer velocity distribution. Assuming # non-dimensional-
ized by up, and for 8 spanning URL = R*, using equations (20)-(21] in the

discrete approximation to equations (23)-(24) yields
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i 6* = G - pl (25)
8 =py - 2py (26)
P

E Skin friction is an engineering measure of drag, hence the viscosity induced

shear stress, and is defined as

I Y
?é | Cr = Tw[z °1 "I} (27)

S

Equation (27) is also evaluable using the defined Ps-

R

DISCUSSION AND RESULTS

Presented herein are the results of the numerical evaluation of
solutions of the selected non~linear parabolic and hyperbolic partial differ-
ential equations. Primary emphasis is on quantization of solution accuracy
and convergence.with discretization refinement. Test cases used are the
steady two-dimensional incompressible Taminar and turbulent boundary layer
flow and Taminar and turbulent parabolic flow in a duct. For turbulent flows,
a comparison between the mixing Tength closure and the turbulent kinetic
energy model has been established. Additional results are presented of the
numerical solution of the transient continuity equation, with primary

emphasis on solution economy, accuracy and convergence of the developed split-

Jacobian finite element algérithm.

Parabolic Equation Solutions

Problem Statement

It is required to establish the two-dimensional velocity and pressure

distributions, @(x,y)} and p{x,y), where

e

e
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W%y} = ulx, )T + vix,¥)3 (28)

Using the boundary Tlayer order of magn{tude analysis for large Reynolds
number, cf. Schlichting (1968), the parent time-averaged steady flow Navier-

Stokes equations in non-dimensional form are

_ B, 3V .
ey - wol L o8l _ 8 f 80 _ e L 14D .
L{G -u—--m\,‘-l*vay ay[vay U’y +pdx 0 (30)

At the edge of the boundary layer, the viscous terms are zero, and the

x~momentum equation (30) with the continuity equation (29) reduces to
3u
I_ 1390
i (1)

where UI is the inviscid flow velocity at the edge of the boundary layer.

The x-axis is assumed aligned with the direction of predominant fiow, and

y is the coordinate traversing the thickness of the boundary Tayer, see

Figure 1. Under the large Reynolds number assumption, the transverse

momentum equation is identically satisfied by a pressure distribution

impressed uniformly across the houndary layer thickness, i.e., p{X,y) = pI(x).
Closure of equations (2)-(4) requires a relationship be established

for laminar viscosity v and the dominant Reynolds stress shear component

u'v”. Kinematic viscosity v is a property of the fluid constituting the

boundary Tayer, and a constant for iscenergetic subsonic flows. Closure for

the Reynolds stress u”v”™ is accomplished in the elementary form by assumption

of an "effective" viscosity coefficient v® defined as

a

" t

]

v
'ﬁE+ v (32)

t

where v* is the “turbulent kinematic viscosity" correlation coefficient
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theory (MLT) establishes an algebraic relation for vt (cf. Séh]ichting, E}
1968; Cebeci and émith, 1974). -Using a dimensional analysis, vt involves ;j
the product of a scale velocity and a scale length. Using the mean velocity ?5
gradient for the former, and Prandtl's mixing Tength & for the Tatter, ?;
i yields 3\
o = w2 @
; .
% The mixing length £ is defined as é?
y '
‘ . {Ky 0 <y < A8/k (%)
{ AS ¥y > A8/x :
E The Van Driest function w accounts for the damping infiuence of a wall on ;
g the velocity fluctuations U". Following a rigorous analysis (cf. Cebeci ;
g and Smith, 1974), the damping function form is %
w=1- exp(-y/A) (37) j
é In equation (36), y is the cocrdinate normal to the surface, § is the 1;
E boundary layer thickness, and A and k are constants (typically 0.09 and fg
? 0.435 respectively). In equation (37), A is a complicated function of many gé
é factors influencing flow phenomena near the surface including axial pressure :
E; gradient and normal mass flow. The form of Cebeci and Smith (1974) serves
%é to unify the many formulations as

12
——-_ L3l 3
TR (33)

Hence, the parabolic equation (30) of primary interest in this investigation

‘takes the form

~y _ =80, -80 _ 9 [ edl] ., 1dp_
L{@) = u__.f.;.. v_y- 3,‘{[\’ By] + pa% 0 (34)

Two closure models are used in this analysis. Prandt]l mixing Tength
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A = Atun-1M) Pled (38)
Py Py
where
2 = R pI ZEi Vw'.;. vw + g
NZ = 5;3.; - 1 - exp[ll.&—u—-v ) + exp|11.8 2~y (39)

A1l varjables are time-aver- zd steady components, subscripts I and w refer
to inviscid freestream and wall values respectively, AT is a constant (25.3},
pt and vt are functions accounting for axial pressure gradient and mass
addition respectively, cf. Cebeci and Smith (1974). 1In equation (38), Ty is

the wall shear stress defined as
-y 2u]
Tw = Puwidyl, (40)
In this analysis the wall shear stress is evaluated from the Ludwieg-Tillman

equation for skin friction

Tw

2
Pe Ug

c = 0.246 x 10"0'578”Re5°'258 (41)

f

DN bt

In equation {31), H is the shape factor and Reg is the Reynold's number based
on the momentum thickness 8. Since the freestream outside the boundary layer

is assumed free of turbulence, the intermittency factor v in equation (35) is

Y= [1 + (.Wﬁ]g]‘ﬂ y>8 (42)

which serves to provide a rapid decrease of v* at the freestream edge of &(x).
An alternative formulation to Prandtl's mixing length model that yields
a differential equation statement is the turbulent kinetic energy (TKE)

two-equation model. For this, the scale velocity is selected as the kinetic

ISR . e ————
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energy k of the velocity fluctuations

k .a .‘Ea (43)

Ill

ET
The length scale is defined as %4> the scale length of isotropic dissipation

of a fluctuating velocity eddy, cf. Tennekes and Lumley (1974). Hence, for

the TKE closure equation (35) is replaced as
t . Y
v =k zzd (44)

The dissipation length scale may be expressed in terms of the isotropic
dissipaifon rate of turbulence e, cf. Hanjalic” and Launder (1972}, defined

as
, = cvk?’iké (45)
where C, is the correlation constant. Combining equations (44)-{45)'yie1ds
ot = C‘;szs (46)

which corresponds *o the two-equation TKE model definition for turbulent
effective viscosity.

A partial differential equation system for the determination of the
turbulent kinetic energy k and the dissipation rate of turbulence e is
requived. For turbulent incompressible boundary layer flow, the appropriate

system is (Cebeci and Smith, 1974)

k‘ax'avak e(3i) 2 n
L{k} = a +vay ay[t‘;ay \:-[a—y] +eg=0 (47)

I} = g3& ~a_e_'.a-iv.‘-*.a_e 1.,-1.,8|5U 2. 21,1 =
L{e) = G5+ V55 WE:;W} Ciek v[ay] +CZ2e?k™ =0  (48)
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The various Ci are correlation constants of the model. Table 1 1ists values
used in this analysis. 25 recommended by Hanjalic” and Launder (1972) for

two-dimensional shear flows.

TABLE 1
CORRELATION COEFFICIENTS IN TKE CLOSURE MODEL

Variable Equation
vt (36) =0.09
o= 0
k (47) G =1.0
€ (48} Cc=1.3, Ci=1.44, C2=1.92

Closure of equations (29)-(30) also requires estabiishment of
appropriate boundary and initial conditions. The boundary conditions for
solution of equations (29)-(30) are determined by inspection. At the surface

y=0, no-s1ip and no injection is assumed yielding
u(x,0) = v(x,0) = 0 {49)

At the freestream, y>3&(x), from equations (30) and (31)

aﬁ('x,ayps)_ -0 (50)

The boundary conditions for k and € are vanishing at both the inviscid
freestream edge and at the solid surface. For the latter Tocation, it is
also necessary to enforce the wall damping influence on the velocity
fluctuations, in the manner of the Van Driest damping function w for the MLT
closure.

Since equations (34), (47} and (48) also display initial-value

character, an appropriate specification is required to initiate a solution.

P A T Y TR T T, ~ ¥ Sy Sy P S A of . ™ 2 4 ks
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Any arbitrary profile for i is admissable that also satisfies equations (49)-
(50). For k and £ in boundary Tayer type flows, cf. Launder and Spalding

(1972}, the length scale 2d is proportional to y in the immediate vicinity of

a wall. From an exact analysis, hence

2= 'cgﬁacy',- . 0<y< cna (51)

R S —

where CD=#0.09 and & is von Karman's constant-(0.435).- Bway from the ha11,
%4 eventually becomes independent of y and Tevels off at a value about equal
to CDG, where § is the Tocal boundary Tayer thickness. Assuming a continuous
distribution of %, between these extrema, and using the MLT model to compute
vt, an ihitial diétriﬁﬁtiqn.bf.ﬁoth'k'and g Qﬁﬁ.héldétErmined using equations
(35), (46), and (51). |
An adﬂédHCGMﬂidaiidn.bf.the‘prbﬁiém Spebificatioh'iS'fhaf 8, the
boundary value solution domain to be spanned by the finite e?ement discreti-
zation, is variable with x, see F1gure 2. A transverse coordlnate stretching

transfbrmat1on can efficiently compensate for boundary Tayepr th1ckness growth.

Refarring to Figure 3, a useful transformation is

y - f].(x) |
ICE fl(x))/f |

n = (52)
where n is the normalized coordinate Tyiﬁg bEtﬁééﬁ'tWOIP{éCEWiSEICOHfiﬂUOUS
surfaces, fl(x) and fz(x):»fl, that bound the so1ut1on domain R, and where
fis a norma‘111ng factor. Fbr the boundary 1ayer fiow, fl typwra]ly
__correspnnds to a surface and 1s a constant wh11e—fé Ts apprOpr1ate1y

specified. The chain ru1e fbr d1fferentnat1on y1e1ds )

L SES :
gﬂu.mi,‘._ﬂh e i, A i, i " & _. R _ L . N X : y y

- v !
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.E...:: .--a--dE + ._a--d".l
85X B dx = dndx

fs -7
8 _ |1 .2 1}-?- (53)

SR AT AR

where superscript prime denotes the ordinary derivative. The resultant form
of the three initial-valued equations (34), (47), and (48), and the continujty
equation (29), is

o _ T2 37~ , 37 f‘
Lw) = [& -ty enngp 2 + = 0 (58)
dp 1
. ~ . ol 3] e 3| . 1°"T _ i
L{w) “[as (hp *nhg)y ]“ TV T ’an[" " 3n] frE st ) 1
i 72k i
L(k) u[ (h2+nh3)—]k + 7
v-h
19k _efsi _
- = [_f—" Bn] -V [ar}) +e=0 (56) h
v 7 — -r?i 5 3e ”
tie] = bfgp - (hy +1ihy)z ]s *Vg
v*h 2
3 13g] _ ol -1,2(30 202k =1 =
-t - e [l =0 (@)
| L
The functions hs, 1_1i_3, are related to the metric of the coordinate J
transformation and defined as
- 700 |
2" "1
- - i
hs = 4f1h1 » (58) A
SRR W N B b4 ek oy " . o ;;“i
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The superscript prime denotes ordinary differentiation with respect to X, and

the hi are at most a function of x or &.

Finite Element Solution Algorithm

The finite element solution is estéb?ished‘eSSumfng all-dependent
variables and parameters are interpoiated on disjoint interior subdomains
G, = R XX, where ¥ i5 a generalized initia?-va?ue coordinate. Défining the
numerically determined finite element approximation to the true solution as
q*, then

q*(y,x) = Z qe(y,x) oo (B9)

el . S - :
where M is the total number of finite element domains Rl spanning'Rl. On each
domain Q,, then

B1X) = a{x1x) = W)Y,  (60)

where the union of @ forms the solution domain Q = Rlxy € yxX. Fﬁffhermdfe,

the elements of {Nk} are 1nteerIat1on poTynomna1s compTeLe to -degree k, wh11e

the elements of {Q} are th- o-be-determ1ned eXpans1on coeff1C1ents.v U51ng o
the familiar Ga]erk1n-we1ghted Res1dua15 formulat1on, cf. Baker and So11man 2

(1977) ‘and for the dependent var1able q 1dent1f1ed W1th u(x,y), tne eTementany;_»» -

form of the finite eiement solutlan a]gor1thm fbr equatnon (34) becomes, cf. |

Baker (1978)

3\, J{Nk}{Nk}{Nk}del{U}’ ¥ {XNUEFF}T Rf {Nk} C {Nk'} {Nk}de]_LU}
| Rl | | o s
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whera g is the finite element assembly operator. In hypermatrix form, cf.
Raker and Soliﬁgn (1978), equation (61) for the case of no grid stretching

becomes

T .

§[AegU}em3mo]{U}e

+ 8, [TXNUEFF} ] [A3011] ¥ {V}T{ABOGH]{U}
<] . (=] = e ; (23

+ 8 p7AL0Y] = 003 (62)
In equation (62), the matrix elements of {XNUEFF}e are the nodal values of the

effective viscosity v®, equation (32), on Ry. Completion of the solution
specification is achieved as
{U(x )} == lilx,.y) (63)

which corresponds to a mapping of the initial condit{on for {i onto the nodal
coordinates of EL%. The rank of the global matrix system equation (62) is
one less than its order, to account for the no-s1ip boundary condition
#(x,0) = 0. Hence, application of the finite element algorithm to equation
(34) has yielded a system of ordinary differential equations (62) with
initial conditions equation (63) for solution of the node point distribution
of the discretized velocity, , i.e. {U} = Z{U}e.

Solution of equation (62) requires d:termination of the discretized
equivalent transverse velocity distribution {V}, hence {V}e. The x dependence
in ¥{x,y) is parameterized, resulting in an ordinary differenﬁial equation

specification in the form

B

y) o dH vy =
Bv'j‘; > —g%l L V() = flx.y) (64)
Flx,y) = - {U()Y” (65)




90
Hence, the y-dependence in f(x,y) is discretely determined at node points of the
finite element d1scret1zat1on cf Rl, and equat1ons (54) (65) express soTutnon f
for transverse ve10c1ty 1n the standard form of an ord1nary d1fferent1a1 '
equation with X as a parameter.- The trapezo1da1 rule: numer1ra1 1ntegrat1on ‘
a1g0r1thm was emp1qyed for the present soTutJons y1e1d1ng | ‘_'

V(x) v (x)-!-%[f(x] +f(x)] (s

n-l-

In equatin (66), Ay = (yn+1 --yn) is the integration step-size for equation (66), -

which 11es in the domain R! spanned by the f1n1te e]ement d15cret1zat1on of
equation (62). A sacond order accurate backwards d1fference fbrmula for f(x)

was emp]oyed to evaTuate the vector {U}” as-

{u(xp)}. p MR 1) h, 1(2hp+_hpz_l),{U}ij o

- (h +h 1)2{11}

RCRI A (67)
In equatxon (67), hy and. hp i are the current and 1mmed1a,e past Ax 1ntegrat10n ;;. tg“
step-sizes used for the sc1ution uf equat1ov (62) | | A i :
| Restatement of the f1n1te e]ement a]gur1thm, now us1ng uhe coord1nate-“ j%
.

transformatIOn equau1on (52), is abtained by simply 1ett1ng qe represent each

- of Ty, ke, and Ee in equatlon \00), y1e]d1ng

R T : e i

B S[g _{U}Tmaod‘oj{Q}i’}"_ " ;"“. -

oA {U}T[hz[ABOGOI + [ 3{E’A} m‘] [A40001} {Q}e |

+ A h {XNUEFF}T[ASGIH{Q} r A {soncq}:{ =
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The elements of the column matfix {ETA} are the (stationary) nodal coordinates

ST I T =

of the finite elenent discretization of RL. In equation (68), {SORCQ}, is the

source/s1nk term, distnnct1ve for each 1dent1f1cat1on of q ‘From equation (61),

gf for g =1
> {SORCU}, = p{A10} (69) S
?ff which is indEpendentiof'e since p7 is element indeﬁendeht. For =k, referring
- to equation (56)
a4 ;J [3“} dn = {XWEFF} Jink}{U}T{nk} 83713, EN, Jen :
d s R_GE - L _;:
S .;;Ae[{xNUEFF}TLg4g611]{U}é};ﬂ}e | o (70)

'In equat1on (70) [A40011] is a hypermatr1x of order k+2; where k is the
complete degree of uhe f1n1te eTement 1nterpo1at1on po?yn0m1a1 Equat1on (60),'
and each matrix e1ement of . [A40011] is s1m1iar1y a square matr1x of the same

order. Hence, the source term fbr k can be expressed as

{SDRCK} [{XNUEFF} [A40011]{u} ]{U} * [AZUO]{EPS} -,'(YT)

»-_where the braces have been added to. emphas1ze tha+ the 1nner matrix product
’must be perfbrmed f1rst “~_f ~?‘.:; ,g1~"f.-_ r -!;_;.; t,u;;:wd,,,,’ig

- The sourse teym fbr g in equatnon (57) 1nv01ves the 1rrat1ona1 fUnct1ond

' s/ﬁ. Since both & and k are.1nterpo1ated over R1 us1ng equat10n (60), and as

- an alternative to an exact handTing e/k, an element average 1s empToyed as

e ot i o

{A10}Tisps}‘ ,
ke {AIG}T{K}

e .

Tb W1th1n aﬁsca]ar factor, {SORCEP} then becomes 1dent1ca1 to {SORCK} as
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{SDRCEP}e = -Cé e:/ke [{XMUEFF};-[MODH] {U}e] {U}E + CEETE' DL\ZODI{EPS}E ‘ (73)
The energy inner product, equation (6), for the boundary layer equation

system is required established to evaluate convergence in the energy norm. The

discrete solution energy norm is

Eéﬁ)(u*,u*)—

|
t~1
N
——
CIN
=
*
<
L
a
o

M .
%.ngezlge'[[u}g[{xuusﬁ}l[Aso.m]{U}e] (74)

Convergence properties of solely the finite element discrete solution are

determinable as, see equations (34), (8), and (9)

lE;EM') (e(x),e(x)) < czag(k"'l""“) lull?,, (75)
where )
. ;ﬂ 3k+1: 2
llullgy; = J .ayk*-ﬂ dy < = (76)
Rl |

For the boundary layer problem, 2m is the order of equation (34), hence m=1,
and k is the degree of the highest complete polynomial in the approximation to
u(x,y).

Error and convergence are also measured in terms of the boundary Tayer
integral parameters. As discussed, boundary layer displacement (8*) and
momentum (@) thickness are variables of primary interest in engineering evalua-

tion and evaluable in terms of the p-norms. For the discrete solutions,
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These norms. are herein used primarily to assess solution accuracy in terms of

the shape factor H,
H = 8*/8 (79)

and the skin friction ceeffﬁcient Cf

Pty 3y » | (80)

| 'Spec?fiea??y, equation (80) is evaluated using the Ludwieg-Tillman. formula,

- equation. (41).

A Leminér Parabolic Flow
The' fUndamenta1 requirement is to assess the convergence character of
the f1n1te e!enent so]ution aIgor1thm appl1ed to the non-11near parab011c

'equation (30) The eTementary case accrues fbr Iamlnar flow, hence. u %

ﬂ::A fLrther s1mp11f1cat1on is to assume that the transverse ve?oc1ty component

A“i“-v 15 everywhere constant specifﬁca]1y zero Th1s assumpt1on v101ates the
- phy51cs of’the fiow,_‘x“ept in the case u(x,y) u(y), wherein the cont1nu1ty '

' ‘equat1on (54) is a]sc sat1sf1ed waever, s1nce the 1n1t1aT VaTue soTut1on is

of pr1me 1nterest for the f1rs; case the. continuity equation was discarded
and v set;to zero For non- vanqshinq pressure grad1eﬂt equation (55) then

reduceS'to-

23
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T -"‘_BE..._&. _B.:l.j. .l.d-z
L(u)-uax aybaﬂ *SER 0 (81)

1 which is the most elementary model form for the developed equation system that
displays the essential required non-linearity. The boundary conditions for
solution of equation (81) remain expressed by equations (49)-(50), where § is
now assumed a symmetry plane, and the initial condition is the stug profile

i1lustrated in Figure 4. Following an extensive numerical test program

| (Soliman, 1978}, this initialization for @i was found mandatory to eliminate ' fg

the initial data as the primary error source in the energy error norm, equation

: ' (74). Selecting the distribution illustrated provided a uniform initial energy
| for all k, 1<k<3, on both uniform and non-uniform discretizations of A, the

é span of Rl. The particular data set sélected was U_=300 ft/sec, Re=0.7 x 108/
i Tt and Ap=1.458x 1076, Following experimentation, quantization of convergence

was determined facilitated after marching the solution downstream for an axial-

distance of approximately 0.5 ft; therefore, ail data presented were measured
at Ax=0.8 ft.
Figure 5 presents computed sclution error in the energy norm as a

function of uniform discretization refinement for Tinear, quadratic, and cubic

finite element interpolations. The numerical results confirm the prediction of

the Tinear theory, equation (74), for k=1 and 2. Specifically., convergence
is exactly quadratic for the Tinear finite element solution, and essentially
fourth-order for the quadratic elements. In contrast to theory, convergence
is also fourth-order for the solutions obtained with cubic finite elements.

Note that the level of error capable of quantization is of the order of 1078, ﬁ@

i which has been confirmed as the upper bound on accuracy for the equation

solved, which is non-linear. As will be documented throughout this test

program, the coarse grid linear finite element solutions display accuracy

PRSP PR v (7Y

superior to that predicted by sirict adherence to the convergence curve.
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Converselyg those solutions obtained with quadratic finite elements display fé

Véoéréé grid inaccuracy. The finest grid case reported for a quadratic finite

element soTution {M=40) also displays a somewhat larger error than predicted

by the fbuffh-ofder convergence rate, which is further confirmation of the
accuracy level attainable in actual practice. As noted in the header of

F1gure 5, convergence is monotonic and from above for the 1linear and cubic

eIement soTut1ons, wh11e the quadratic e1ement solution displays oscillatory
‘convergence.

| Figures 6-7 present computed accuracy and convergence in the engineer-
ing norms of shape factor and skin friction, equations (77)-(80), for k=1, 2
and 3. tonvergence is quadratic for the linear finite element solution, and f?
from above in the case of the shape factor and from below for skin friction.
Fourth-order accuracy is displayed by the quadratic finite elements, and in
contrast with the energy norm, the coarse grid solution demonstrates a super- 1@
accuracy. The slope of a straight Tine drawn between the two data points for Vﬂ
the cubic element sotution isA5.8, which is in close agreement to the six that ‘ﬁ
is pfedicted by the Tinear theory, equation (7). or specifically k=3 and m=1

~in equation (75). The next consistent cubic element discretization requires

M=54, the results for which far exceed the quantizable error of 10°€ for this

problem. Hence, the cubic element formulation becomes essentially impractical
“for equétiénsvaf thisftype in fluid mechanics.

Thé;infTuence=of employing a non-uniform finite element discretization
.:‘af;Ri;46nf£ﬁéf¢§mbﬁtedierror<in~thé energy norm, was determined and results
'/'iéféipféééhfed'in Figure 8 for k=1 and 2. The abscissa for this curve is now

‘}:~;tﬁéuTafgest.anfte.eTement.Amax on R, The non-uniform discretization increases

‘by-up to a factor of two the Teve] of absolute error in the energy norm for the

A:i1near element soTutvon, k 1. Aﬂternat1ve1y, for the quadratic, the error

'fleyel is Tess than that associated with the uniform discretization, with an

e gy e =~.._'x::::'"'_...'~—m
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indication that an optimum grid exists for which an essential minimum exists
for energy. Figures 9-10 provide the comparison on the basis of error in H and
Cs. In these norms, a favorable effect is accorded use of non-uniform
discretization. The absolute error is substantially decreased using a non-
uniform discretization for k=1, and there is an optimum grid associated with
an absolute error minimum in both shape factor and skin friction. The Tevels
of absolute error are uniformly decreased for the k=2 solutions, as well,
although no optimum discretization is evident. The non-uniform discretization
results display an essential fourth-order accuracy in shape factor norm, while
a nominal third-order accuracy is evidenced for skin friction. In all cases
then, the use of a non-uniform discretization 1s not contraindicated, and subse-~

quent results for a physically meaningful equation statement will confirm this

indication.

Laminar Boundary Laver Flow

The second and physically meaningful test case corresponds to incompres-
sible Taminar boundary layer flow impinging on a sharp Teading edge with
pressure gradient. The nominal freestream velocity remains U, = 300 ft/sec and
Re = 0.7x 10%/ft. The slug-profile for u, Figure 4, remains initial condition
for the stream-wise velocity, while the transverse velocity v is assumed zero
at solution initiation. The transverse velocity remains zero until sufficient
solution information has been generated to facilitate evaluation of the backwards
difference formula, equation (66). To maintain a uniform evaluation of the
initial data energy norm, equation (74), for all k and all initial-value matrix
assembly operators S,, the node at the knee of the initial slug profile for the
streamwise velocity is kept at the same position (0.2A) for all grid refinements.
To facilitate the required comparison with a popular finite difference solution

algorithm, numerical results are also obtained using the equivalent of the

SRR AN
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familiar Crank-Nicholson algorithm for equation (62). This is achieved by
rendering diagonal the in{tial value matrix [A3000], within the linear finite
element formulation. The specific matrix eguivalent for the initiai-value

matrix [A3000]1; associated with Crank-Nicholson is
- | LT

ERY

T ' - canT 1
et mavon o]« Yol 30
| i

For i1lustration, upon completing the assembly operation, defined as Sy = 3

{U}; (82)

d -

herein, equation (62) can be reexpressed on a uniform grid in the (finite

difference) recursion form

- .

e 1l I B
3% EgE’jﬂ“:?ﬂ' “5“.i+“5-1”j-l]+2Ae["j+1““j-1] +Pp=0  (83)

Upan application of the trapezoidal integration formula for u3 » the resultant

algebraic equation system is identical with the Crank-Nicholson algorithm,
cf. Roache (1972).

| Accuracy and convergence evaluations were again obtained at an axial
displacement of 0.8 ft downstream from the Teading edge of the plate. For
Tinear finite element functions, k=1 aquation (606), convergence with discre-
tization refinement in the energy norm is computad uniformly quadratic, for
initial-value matrix structures S = 0, 2, and 3, see Figure 11, and with
negligible data scatter. Herein, S=0 corresponds o the exact finite element
formulation, while S=2 corresponds to the diagonalized structure previously
employed by -'Ba‘f;er" and Manhardt (1977, 1978). (The operation S=1 is ahother
diagonalizing qpera.,t,or that is consistent only for 1inear element formulations,

and thus religated to history.) The errors are calculated with r*ésp‘é;:t to an
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estimated exact value of the energy norm, based on the assumption that the S=0
fine grid selutions do indeed converge quacdratically. The lowest error in the
energy norm is accorded the finite element solution algorithm, S=0, and the
convergence is from below. Convergence is from above for the alternative
diagonalized formulations S = 2,3. This confirms prediction of extensior of
the theoretical convergence theorem, equation (16), to this practical non-linear
problem, and the finite element solution indeed minimizes the error in the
energy. Note alsd that the error for the coarse grid finite element solution
(M=10) falls below strict adherence to the convergence curve, confirming and
firmly quantizing existence of coarse grid accuracy as previously predicted by
Popinski and Baker (1976). Convergence in the engineering norms of K and Cf
is also firmly quadratic for all S = 0, 2, and 3, see Figures 12-13, with the
finite element sciution over-predicting shape factor and under-predicting skin
friction. This trend is again reversed for S = 2 and 3 solutions. The
difference in level of error is much less pranounced in these norms, although
the S=0 error is uniformly minimum, and coarse grid accuracy remains evident
in the engineering norms. -

Accuracy and convergence evaluation for linear, quadratic and cubic
elements, 1<k<3, for the same test case, and as measured in the energy norm
for the consistent finite element initial-value matrix S=0, are presented in
Figure 14, The solid curves are of nearest integer siope, and the demonstrated
convergence rate for k=1, and the coarser grid sclutions for k=2, predicts
extension of the Tinear theory for both k to this non-Tinear equation. The
cubic finite element results, k=3, and the finer grid solutions for the
quadratic functions, k=2, fail to adhere to the convergence curves for error
in the solution less than about 1073. This further confirms existence of a
practical bound on actual performance of high order accurate numerical solution

algorithms for non-Tinear equations of the boundary layer type. Furthermore,
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the performance of the cubic element formulation is truly dismal. By compari-
son, absolute numerical accuracy for solution of 1inear parabolic equations was
reported bettew than 10712, see Baker and Soliman (1978). Only for linear
elements is convergence monotonic and from below. For the k=2 and k=3 cases,
convergence is oscillatory and starts from below.

As a measure of solution economy, Figure 15 presents the error in the
energy norm as a function of discretization refinement now expressed as the
number of nodes on the solution domain. The abscissa is equivalently the rank
of the Jacobian associated with solution of equation (62), and represents the
amount of computational work required to obtain the solution. For all cases
tested, except perhaps for the coarsest grid, the quadratic element solutions
demonstrate a definitely superior economy and accuracy in the energy norm. The
cubic element formulation is even less favorable on this comparison basis.

Figures 16-17 present computed convergence in the éngineeripg norms for
the finite eiement solutions obtained for k = 1, 2, and 3. Except for the
coarse grid solutions obtained uéing the guadratic elements, convergence is
generally quadratic for all k. The exception is the coarse grid solutions
obtained with quadratic élements, wherein the M= 10 solution is super-accurate,

exceeding even 4th

order convergance as indicated. This is most probably the
direct consequence of the convergence being oscillatory. Note that the

degraded convergence performance for 2<k<3 occurs at error Tevels less than
10°5, As was determined in fhe energy norm comparisons, a practical upper

bound on attainable soclution accuracy definitely exists for this non-linear
parabolic equation, and appears to be of the order 10~5. The overall superi-
ority of the quadratic element formulation remains apparent, with the associated
etror voughly an arder of magnitude less than that of the 1inear element |

solutions for approximately the same amount of computational work (same number

of nodes).
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These laminar flow results were obtained using uniform finite element
discretizations of R!. It is necessary to investigate the important effects of
a non-uniform discretization, which is a key feature required for efficient and
accurate turbulent flow computations. A smooth progression of non-uniformity
of the finite element discretization is desired, and is attainable using a

geometric progression to locate nodal coordinates on R! as

Rl p(e-l)

Yer1 Ve T 1

l<e<M (84)

e -
J=1
In equation (84), Yet1 is the extremum nodal coordinate of Ré, Ya is the
coordinate of the first node of Ré, p is the geometric progression ratio, and M
is the total number of finite elements Ré spanning the domain RL.
The M=80 linear element discretization was chosen as the base case
for comparison of all non-uniform discretization results. The node at the knee
of the streamwise velocity sTug initial profile was maintained at a constant
coordinate (20% of the domain), such that the initial data energy norm
evaluation was uniformly a constant for all non-uniform discretizations. Figure
18 present computed accuracy and convergence in the energy norm for the Tinear
finite element algorithm for a range of pressure gradients that yielded a zero
and a £50% change in solution energy compared to the initial data evaluation.
The non-uniform discretization solutions are represented by partially shaded
symbols, and the sign next to the symbol indicates that the sign of the norm
changed with respect to the estimated correct value in comparison to the uniform
discretization results. The computational advantage of using a non-uniform
discretization is clearly demonstrated; the error in the energy norm is minimum
for any number of elements spanning the solution domain using any non-uniform
discretization. Furthermore, the non-uniform convergence curve, shown as a

dashed 1ine, passes through a minimum {zero) which indicates existence of an

optimum grid (M=27, p~1.2) for this particular problem.

e L e S paan i be e Sk e AT el
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In the engineering norms, the effect of pressure gradient on the error
is more apparent. Referring to Figures 19-20, the increase in level of error in
the shape factor and skin friction is approximately five for the intermediate
pressure gradient and ten for thé extremal pressure gradient piotted. The
beneficial effect of use of a non-uniform discretrization on error in the
engineering norms decreases as the pressure gradient increases, and the discre-
tization which extremizes the energy does not necassarily yield the lowest error
in the enygineering norms. However, in all cases, the accuracy attainable using
a non-uniform grid is universally superior in any norm. A non-uniform grid
containing approximately 25 elements will always yield accuracy comparable or
superior to the 80 element uniform grid case at a factor of 3 reduction in
computer CPU. Since the data collapse to an essential single curve, Figure 18,
the energy norm appears the superior mathematical measure of accuracy for this
non-Tinear parabolic equation system.

The comparison is required established for the alternative initial-value
matrix operators, S = 2 and 3. Figure 21 presents computed convergence in the
energy norm for the selected range of pressure gradients for solutions cbtained
employing the diagonalized initial-value matrix S=2. Contrary to the numerical
experience with the consistent form S=0, see Figure 18, the absolute error in
the energy norm decreases with the increase in pressure gradient level. The
convergence rate remains essentially quadratic for uniform discretization
solutions, but there is select data scatter and some evidenced coarse grid
inaccuracy. Only in the case of zero pressure gradient is the error in the
energy norm consistently reduced using a non-uniform discretizatien. The abso-
Tute level of improvement is drastically reduced in comparison with the consist-
ent assembly results. The use of a non-uniform discretization modestly increases
the error in the energy norm for the intermediate pressure gradient, Ap = 1.525

% 1076, while converging from above. A select modest improvement, coupled with
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convergence from below, is accorded the extreme pressure gradient solution,
Ap = 3.056% 10”8, for non-uniform grid comparisoﬁ.

Convergence with discretization refinement, in the engineering norms
for the diagonal matrix $=2, is presentad in Figures 19-20. Quadratic converg-
ence is confirmed in all cases for the uniform discretization results, with
negligible data scatter, and the absolute error in the norm now increases with
the increase in pressure gradient, in accord with the results obtained for S=0.
In distinction, however, note that use of a non-uniform grid for zero-pressure
gradient exerts no consequential effect on solution accuracy in either engineer-
ing norm or in energy. In contrast with error in the energy norm, Figures 21,
non-uniform discretization can reduce error in both the shape factor and skin
friction for non-zero pressure gradients. The absolute level of error in all
three norms, comparing the S=0 and $S=2 results, is approximately comparable
to the uniform grid results. However, the S=0 results are clearly superior in
all norms for the .ase of zero pressure gradient.

The accuracy and convergence performance of the Crank-Nicholson finite
difference initial-value equivalent, $=3, is not consegquently distinct from
the S=2 results. Figures 24-26 present the corresponding computed error in
the solution norms as a function of the discretization refinement. Convergence
is again essentially quadratic, with only modest data scatter for uniform
discretization, with the absoiute error higher than that associated with the
finite element solution (S=0) for zero pressure gradient and almost the same
for non-zero pressure gradients. Somewhat improved accuracy accrues to use of
non-uniform discretizations, in contrast with the diagonalized matrix {S=2)
results for zero pressure gradient., Non-zero pressure gradient performance is
nominally identical. In terms of error in shape factor and skin friction, the
§=3 and S=2 results do not differ. Interestingly, the use of non-uniform
discretizations for zero pressure gradient again does not improve solution

accuracy in either enginesring riom,

St
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Based upon these results, the consistent finite element initial-value
matrix (S=0) form for the linear (k=1) solution algorithm demonstrates
consistently superior solution behavior in terms of accuracy, coﬁvergence and
economy for this practical non-1inear parabolic equation system. Previous
results (Baker and Soliman, 1978) dindicate this to hold as well for use of higher
degree (k >1) finite element polynomials for a Tinear parabolic equation. Hence,
numerical evaluation of accuracy and convergence obtained using higher-degree
finite element functions is conducted for S=0 only. Shown in Figure 27 is the
computed solution error in the energy norm as a function of discretization
refinement. The fourth order accuracy of the algorithm, which was documented
earlier for zero pressure gradient (Figure 14), is now degraded to second-order
for the cases involiving non-zero pressure gradient. A plausible explanation for
this is that the oscilla’ary convergence in the energy norm, associated with the
Zero pressure gradient solutions, changed to monotonic convergence from below
upon applying a pressure gradient. Furthermore, coarse grid inaccuracy is now
evidencad for non-zero pressure gradients, since the corresponding data points
Tie above the convergence curve. The absotute Tavel of error for the non-zero
pressure gradient case is five times smaller then that associated with the
Tinear finite element solution for the finer grids (see Figure 18). This
improvement over the Tinear element solution degenerates, however, as the grid
progresses to coarse. The error for the M=5 quadratic element solution is
basically identical to that for the M=10 Tinear element grid. Use of a non-
uniform discretization, selecting the M=40 element grid as the base case, ‘
consequentially reduces the absolute error Tevel for all pressure gradient
including zero, in agreement with the k=1 solutions. In clear distinction,
however, an optimum grid that extremizes the energy cannot be detected.

Figures 28-29 present the corresponding data on quadratic element

solution error measured in the engineering norms. Convergence is essentially
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' quadratic for uniform dischetization, with coarse grids displaying Fourth-order
*'3coﬂtergénbe-f0rgéil preséufe:gkédieuté;;3Gsciila£cry-canéﬁgencéfisftheagenerai
7trend for all the Ca9es,'ei¢éPf for skin friction with zero pressure gradient.
.The quadratic fﬁnite‘éfemeﬁt sqution iS relatiﬁely faVorab1e for the cases with

pressure gradient, since the error in the shape factor is two orders of magni-
tude smaller than the solution error obtained with Tinear finite elements. This
compares to on}y one order of magnitude difference for the zero pressure
gfadient case. Non-uniform discretizations display improved absolute error

Tevel for all cases, and there is no indication of an optimum grid. These

ﬁolution convergence-freﬁds are unchanged when measured in thé skin friction
norm, except that the error now decreases with an increase of pressure gradient.

Use of non-uniform discrétizatfon again decreases the absolute level of error

with no indication of an optimum grid.

A Turbuleni Boundary Layer Fiow
Acceptable resolution of near wall damping phenomena is an essential

key feature of turbulent flow computations. Since use of a uniform discreti-~ ..
zation would require an impractically large number of elements to span the
solution domain., a non-uniform finite element discretizgtion is required in
all instances to obtain satisfactory computational efficiency in concert with
acceptable solution accuracy. Baker and Manhardt (1977b) have determined
‘that linear element solution speed and accufacy, using an explicit integration
algorithm and S=2, both accrue using a finite element discretization with
nodal coordinatés deﬁermingd according to the geometric progression equation
(84). Based upon the laminar flow results discussed, and assuming the Tinear
- equation fhéory extEnsib]eIto the more nun-linear turbuiént flow eqdations,
- the Tinear finite element algorithm should yield a quadratica11y-conﬁergent

xprpcedure. Simﬁlariy; by extension, thé use of quadratic elements shouid
' ORIGINAL! PAGE I3

-yield a fourth-order convergent algorithm in energy. OF POOR QUALITY]
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The first requirement in this analysis is to confirm indeed that the
developed finite element algorithm is capable of accurate prediction of
turbulent flow for which comparison results exist. This is provided solely
by experimental data, and a particularly challenging configuration corresponds
to the IDENT 2400 data, reported in the proceedings of the AFOSR-IFP-Stanford
Conference on Computations of Turbulent Boundary Layers (1968). IDENT 2400
is the Bradshaw relaxing flow data set. which corréSponds to evolution of a
non-equilibrium subsonic boundary fayer induced by abrupt removal of a
moderately adverse pressure gradient from an initially equilibrium flow.
Nominal freestream velocity (U,) is 33.5 m/s, wind tunnel background
turbulence level was less than 0.1%, and the reference unit Reynolds number
is 2.38x 107 m~1. The test case is considerably demanding since non-equilibrium

phenomena are involved in the relaxation process. The base case results were

'generated using the linear element (k=1) algorithm and a non-uniform discreti-

zation. Following considerabie numerical experimentation, an adequate
resolution of the wall region damping was determined captured using M= 30
Tinear elements spanning approximately 1.58, and a geometric progression ratio

of p=1.222, see equation (84). Turbulence closure for the base case was

accomplished using mixing length theory (MLT), with the parameters k and A

equated to their standard values of 0.435 and 0.09 respectively. For houndary
conditions, both U and ¥ vanish identically at the plate surface, and 3t/3y
vanishes for y > 8. The first member of IDENT 2400 data set was interpolated
at the nodes of ZRé to generate the initial distribution for U, and ¥ was
assumed zero unt?l sufficient data was generated to initialize the continuity
equation solution, see equations (64)-(67). Shown in Figure 30 are comparisons
between data and the computed solutions, for the important boundary Tayer

parameters, and as obtained using the three initial-value mairix structures,

S=10, 2, and 3. The computed results were matched with the data at the
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B f'sgcﬁhdEekperimenta1;prcfﬁje,,as.hecbmmended;ihgﬁﬁgzProceedings; These solutions

iwére'generated-frOm equations.(54)a(55)-uSing1tﬁe'tfansformed”codrdfnate system
‘With 20% grid growth over ﬁhe‘561dtf6ﬁ'réhgétdf 1.3 m. Agreémenf'ﬁith data is
genéra11y gdod, indicating the basic aTgoriﬁhm capable of accurate resolution
of the physical problem. The correct trends and local extrema in &* are
predicted; however, the overall Tevel of the solution curve is somewhat high.
The level of the curve for the standard finite element structure, S=0, is
closer to the data than that predicted by S=2 and 3. The computed extremum of
ve/v, equation (32), for this case was 900, which indicates a high level of
turbulence.

| Shown in Figure 31 is a comparison of the computed energy norms for S=0,
2, and 3. Note that the energy novm is minimized by the finﬁte alement solution
S=0 tnroughout the solution range, which generally predicts extension of the
~ linear theory, equation (16), to thig highly non-linear problem class. Figure
32 presents comparison between select computed velocity profiles and data at
. three downstream stations, and agreement is generally excellent.

To investigate the influence of discretization refinement on solution
accuracy, the number of linear elements was doubled to M=60 while retaining
the fﬁrét node off the wall at the same physical location, to preserve
satisfactory resolution of near-wall damping. The resulting progression ratio
p for this non-uniform discretization was 1.C89. Shown in Figure 33 are
comparisons between data and computed solutions using the standard M=30 Tinear
element discretization and the M=60 alement discretization for the two
different ratios of grid nodai prograssion. There is essential overall agree-
ment between the two solutions obtained using 20% grid growth. The M==6b
element discretization with 50% grid growth is in slightly better agreement with
data at the further downstream stations except for a tendency to over-predict

g and §*. The computed energy norms for these three solutions are prasented in




e i e i e S e S bk -

37

Figure 34. Note that the energy is minimized by the M=60 element discretiza-
tion in the near field part of the curve. Thereafter, the knee in the curve
is associated primarily with the inclusion of an extra element in the solution
domain due to the boundary layer growth. Using 50% grid growth to keep the
boundary layer edge within the same element throughout the solution range
resulted in the higher overall Tevel for the energy norm associated with
correspondingly larger element spans.

Figure 35 presents comparison between computed solutions obtained using
the M=60 linear element discretization and a M= 30 quadratic element
discretization. The first node off the wall was maintained at the same
physical Tocation for both cases, which results in a progression ratio of
1.188 for the M=30 quadratic element discretization. Note that using a non-

uniform discretization for the quadratic element case results in placing the

element vertex nodes in the geometric progression while the interior nodes
remain located at the mid-span of an element. The grid growth was 20% for the

linear and 30% for the quadratic element solutions. In compariscn with the

TR

experimental data, the solution using quadratic finite elements yields

generally more accurate estimates for the boundary layer parameters than that

obtained with linear finite elements. This cannot be directly confirmed,
however, from noting the results presented in Figure 36. The energy norm
calculated using quadratic finite elements has a higher level than that calcu-
Tated using Tinear finite elements throughout the solution range except for a
small portion at the beginning. This is in part a direct result of a higher
estimate of the boundary layer thickness &, for the quadratic element solution,
which yields correspondingly higher values of the effective viscosity v&/v.

The computed extremum of v/v for quadratic element solution was 937 compared

to 891 for the Tinear finite element solution.




A11 resu}ts d1scussed were obtanned at a f1xed 1ntegratnon step size

| *fx -'0 05 ft w1th reeva!uat1on of the Jacob1an everv twelve 1ntegrat:an Steps.<  -
“‘*iThe solitlons ‘Were: assumed converged when the change in the dependent-varla- R
ieb1e*(streamW1se ve1oc y u/Uw) was: un1fbrm1y 1ess than the convergence criteria

'”&"g'jld’s, Add1t1ona1 tasts US1ng €as sma11 as 10‘9 d1d not alter the

';;s1gn1f1catnon d1g1t in the. squt1on norms. Tab]e 2 summar1zes the resu1ts of

“'numer1ca1 exper1ments carr1ed out to" as:ess the effTCTency of the a1g0r1thm for

| 'the Bradshaw relax1ng fTow test‘case as obta1ned with the M= 30 11near e1ement
noneuniform:d15cretlzat1nn”W1th‘progrESSTbn”rat10'p"1 222. The tabulated
results correspond to the fﬁnaT so1ut1ons at Ax 1.3 m. The results. tabu1ated
'?for the energy norm, shape factor and skin fr1ct1on show the s1gn1f1cant place
of the integration truncat1on error, as confirmed by a thher-order accurate
solut1on obtained us1ng R1chardson extrapo1at1on. The s1ash 1so]ates the
s1gn1fﬁcant d1g1t 1n_each norm, with the upper resu]t ccrrespondnng_to the
more accurate one obtained using haif the regular integration step size (the
Richardson step).

The reference solution in this comparison (case 1) was obtained using a
fixed un1form 1ntegrat1on step size Ax=0.05 ft with reevaluatnon of the
dacobian every twelve integration steps wh1ch required evaluat1on of the
Jacob:an 66 times throughout the s6Tution range. “Us1ng thce the 1ntegrat1on
step size and reevaluating the Jacobian every 12 steps, cese-Z, yfered
identical values for the norms while reducing the ﬁumber'of passes. and
ascordingly the CPU by 33%. The effect of utilizing the coordinate transforma-
tion equation is documented_by'case 3, wherein the selution domain was allowed
to grow Tinearly in the streamwise direction in such a fashion that the span
of the so]utwon dema1n at the final integration stataon Was 20% larger than at
so1ut1un 1n1t1at10u. Th1s soTut1on m1n1m1zed the eneray norm while the

computed d1f?erence 1n the shape factor 15 g. 6% and in sknn fr1ct1on is 2.5%.
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TABLE 2

EFFICTENCY OF THE LINEAR FINITE ELEMENT ALGORITHM - BRADSHAW RELAXING FLOW {MLT)

Integration Number of Percent
Grid Step Size Convergence dJacobian Increase Co |
Case Growth Ax Criteria Numbey of Reevalua- in E f
No. % ft € CPU* Passes tions Step Size (10°3) H (10-3)
. 1
1 0 005 1076 1.00 2341 66 0 572735  1.389/39 .1784/91
: Ay - 40 80
2 0 . .010 1076 .67 1704 33 0 572705 1,3896/49 .17836/48
_ 13 58 26
3 20 .005 1076 -1.42 2418 66 0 .529/52  1,3805/04 .18293/30
: 60 156 51
i 4 0 .005 10~6 1.03 2473 0 0 .572/36  1.3894/02 ,17848/87
3 a7 11 b6
5 0 0058 10 .53 905 66 0 572/31  1.3893/54 ,17850/20
40 66 00
6 20 .005 1076 92 1438 27 10 517737  1,3721/86  .18421/68
: 40 90 70

*Normalized on case number 1,

6E




Case 4 is 1dent1ca1 to case- 1 except that the,1n1t?al Jacobian was

ey

reta1ned throughout the so]ut1on range. The d1fference in the energy norm
and both engineering norms between thase two. cases is: beyand the s1gn1f1cant

digit based on'Rnghardsan extrapolat1on. Retaining ‘the fritial Jacobzan

resulted, however, in a 3% increase in the number of passes and CPU. .

The influence of a relaxed convergence critefia e {s documented in -

;; case 5. Reducing € by two orders of magni tude to 10~% resulted in reducnng

the number of passes by 60% and a 47% saving in CPU, With this favorable

economy feature, the change in the energy norm and the-engineering norms . §

from the reference case is again beyond the accéptabie:significant digit.

In test case 6, the integration time step Ax was increased by 10% every

time the Jacobian was reevaluated. This procedure reduced the numbeyr of
passes by 38% and the number of Jacobian reevaluations by 60%. The energy
norm was minimized while the change in the shape factor was 1% and that in

i the skin friction was 3%.

The results of an assessment of accuracy and convergence trends for
Tinear element solutions are presented in Table 3. These results were

obtained employing the finite element matrix S=0 with a convergence criteria

e of 1075, The span of the first element Ay was 0.27x1073 ft, for the M=30

e, bt = 8t e ree te At —

element and the First M=60 element discretization, while for the second

M=60 element and the M=120 element discretizations, A, was 0.21x 1073 ft.
The 1afger negative value for the change in the energy. norm, narmalized by
the initial energy (AE/E), indicates a greater miniimization of the energy,
since the energy norm decreaseé as the solution is marched downstream. On éf
this basis, solution accuracy increases with discretization aefinemgﬁt,Agﬂqﬁg‘_ |

also that the normalized change in the shapé factor (AH/H) is not—affectéd»

by d1scret1zat1on refinement, and thus could not be used ta assess convelgencetfvfegggﬁ
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ACCURACY AND CONVERGENCE OF THE LINEAR FINITE ELEMENT ALGORITHM -~ BRADSHAW RELAXING FLOW (MLT)

‘Number p i
of rogression max max
Elements Ratio AIMe Ae /8

CPU*

Number
of
Passes AE/E AH/H

30 1.222 .0054
60 1.089 .013
60 1.095 .084
120 1,039 .039

.20

.085

.094
-.039

1.00
1,98
2.02
4.74

.167 ~.036
201 -.036
§55 -.204
B47 -.219

635
638

.038
.038

*Normalized on 30 linear element grid,

Ry
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Summarized in Table 4 is the corresponding assessment of accuracy and
convergence trends for the quadratic element solutions for the-same test
case. The span of the first element Al was chosen to be twice that of the
corresponding linear element discretization, with twice the toal number of
elements in the solution domain. This procedure resulted in placing the
first node off the wall in the same physical Tocation for the Tinear and
quadratic element cases, in an attempt to maintain consistent resolution of
the near-wall damping. The CPU time is approximately the same for the
corresponding Tinear and quadratic discretizations. The solutions employing
quadratic elements display convergence in the energy norm with discretization
refinement, as evidenced by a superior minimization of the energy norm. As
for the 1inear element solutions, the normalized change in the shape factor
was not affected by discretization. Comparing results in.Tables 3-4 shows
that the M=15 and M= 60 gquadratic element discretizations yield a superior
energy minimization than the corresponding M=30 and 120 Tinear element
discretizations. This is not valid, however, when comparing the M= 30
quadratic element discretization to the M==60 Tinear element discretization
results. The influence of the progression ratio used to define the ndn—
uniform discretization, on finite element solution accuracy, is shown in
Table 5. The progression ratios which yield the largest negative value of
AE/E, i.e., extremum minimization of the energy norm, are also those which
required the Teast number of passes. [fhe computed effective viscosity at
the first node off the wall (v¥/v) increases as the span of the first
element Aq increases, and the best results were obtained when v&/v was
approximately equal to 2. The normalized change in the shape factor
decreases monotonically as the progression ratic decreases; hence, it could

not be used to indicate the preference of any progression ratic over the

others.
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TABLE 4
ACCURACY AND CONVERGENCE OF THE QUADRATIC FINITE ELEMENT ALGORITHM - BRADSHAW RELAXING FLOW (MLT)

Number Number

Elements W CPu* Pasaes AEfE A/
15 1.506 .0049 A5 1.00 608 -.178  -.038
30 1.188 .014 16 1.96 614  -.198 .08
30 1.200 0087 .20 2.01 638 -.193 -.037

60 1.079 .023 .076 4.85 649 -.229 -.038

*Normalized on 30 Vinear element grid (Table 3).
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TABLE 5

INFLUENCE OF PROGRESSION RATIO ON LINEAR FINITE ELEMENT SOLUTION ACCURACY -
BRADSHAW RELAXING FLOW (MLT)

Pragression
Ratio

max
AlMe

max
A, /8

Number
of
Passes

e,
vllv

AE/E

AH/H

1.222
1.211
1.200

1;189 o

1.178
1.167
1.155

.0054
.0069
.0088
.013
017
.021
027

.20
.20
.20
.16
.16
.15
.16

635
617
605
606
610
. 623
646

1.151
1,313
.1629
2,205
3.181

" 4,799

7.387

-.167
-.183
-.220
-.220
-,163
~.163
-,187

-.036
-.034
-.034
~-.033
-.027
-.020
-.014

14
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Accuracy and Convergence for Turbulent Boundary Layer Flow

| The presented results document viability of the finite element algorithm
and the discretization philosophy for acceptably accurate turbulent boundary
layer fiow prediction. A tightly controlled numerical test case, analogous to
that employed for the Taminar flow analysis, is required to quantize accuracy
level and convergence with discretization refinement. The case corresponds
essentially to transition to turbulent flow of the Taminar sTug start in zero
pressure gradient. The test conditions were selected identical to the Wieghardt
data set (IDENT 1400, Proceedings of the Stanford Conference (1968)) with
constant freestream velocity (U = up = 33 m/s) yielding a unit Reynalds number
of 2.19x 108 per meter. Five different non-uniform discretizations were used to
study accuracy and convergence with discretization refinement. The total number
of elements M spanning the solution domain R! and the corresponding node
progression ratios p are listed in Table 6 for the Tinear and quadratic finite
element solutions. A1l computed solutions were initialized essentially
identical to the experiment, wherein a turbulence-free uniform flow impinged

upon the plate leading edge, using the slug start profile shown in Figure 4.

TABLE 6
DISCRETIZATION DATA - TURBULENT FLAT PLATE FLOW

(=1 M 12 24 36 48 60
p 1.627 1.222 1.125 1.083 1.061
M 6 12 18 24 30

e 2.814  1.510 1.271 1.176 1.110
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As before, the first node off the plate was held at the same physical position
for all discretizations. The number of eiements between the plate and the
knee of the velocity profile was always one-sixth the total number of elements
spanning the solution domain. No turbulence transition model was employed;
instead computational transition from laminar to turbulent flow was specified
to occur when shape factor H achieved 90% of the fully developed Taminar flow
value.

Figure 37 summarizes computed solution ervor obtained with the Tinear
element algorithm as a function of discretization refinement. Convergence in
the energy norm is essentially quadratic for the three initial-value matrix
structures, S=0, 2, and 3, with the finite element algorithm S=0 again
yielding the smallest level of error for any M. Note in all cases that
convergence is from above. As in the laminar flow results, the finite element
algorithm displays accuracy for the coarse grid that is superior to strict
adherence to the convergence curve. Convergence in shape factor, Figure 38,
is essentially quadratic and from below for the diagonalized (S=2) and Crank-
Nicholson algorithm (S==3): The finite element results do not display a
convergence trend in shape factor. Specifically, the error is uniformly
constant and smaller than that for either the S=2 or 3 results. Since shape
factor is the ratio of &* and 6, see equations (77)-(79), their convergence
properties were measured. As shown in Figure 39, convergence in both &* and
9 is quadratic on coarse grids and nearly fourth order for finer discretiza-
tions. Since the curves are parailel, the error in the shape factor remains
essentially constant as determined. Figure 40 shows that convergence measured
in skin friction is essentially quadratic for all three forms S = 0, 2, and 3,
with the finite element solutioi yielding the smallest error level for any M.

Based upon the experience with Taminar flows, a fourth order accurate

algorithm is anticipated to result from use of quadratic finite elements

BPRryrrapprT

freyVerp— e

koo gz

R R P BTSN U LRI P U P B W e B e T noe T

N e e B e . “e NI .. ‘e B T L A . ¥ = iy A B S T e g B Fk T T N I s = . L : " (L ST e T & [ I S X . . o TR




47

'assum1ng the Tinear theony hons° It is of particular 1mportance to ascerta1n o

- this, since the energy norm is now comp1ex1y related to ievel of turbulence
within the flow (evolution) through the eddy v1scos1ty. Reca111ng the energy
definition, equation (6), and that eddy viscgsiiy involves {i shear, the

specific form of the energy norm is

1ty | (85)

'From the Bradshaw- test,resuits, recall that ve/v ranged to 103 Since the

1-e’effect1ve dIffusion coeffﬁc1ent 1tse1f is strlctTy dependent upon the computed

| evolution of i, the non-11near1ty of the subject equation system w111 exert a
profbund 1mpact en the convergence evaTuat1ons. |

Figure 41 presents the error computed in the energy norm as a function
of discretization refinement for the Tinear and quadratic element algorithms.
Convergence is from below and of'genera11y fourth degree for the quadratic
element solution, which predicts extension of the linear theory. However,
the fesu]ts for the finest discretizafion shbw-a significentiy 1erger absolute
| ekror than predicted by the'convE?gence curve. This is intefpreted again as
an indication of the Timit of practically useful discretizations. The accuracy
of the quadretic element solutions can be a factor of up to 50 improvement
over the correspand{ng linear element results. - Figures 42-43 present error in
the engineering norms as a function of discretization refinement. Convergence
is oscillatory in both norms for quadratic elements, as experienced in the
case of laminar flow, and of essentially fourth degree to the attainable Timit
of accuracy. The absolute srror in the engineering norms for the finer
-discretizations is considerably larger than predicted by the convergence curve,

confirming the experience in the energy novm.
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Accuracy Evaluation Using the TKE Closure

As a summary computational study, the turbulent kinetic energy two-
equation closure model was evaluated using the finite element algorithm, with
primary emphasis on solution economy. The test case corresponds to the
Bradshaw data set discussed previously. Details on solution initiation are
given by Soliman (1978), and consistent accuracy and convergence trends were
computed using the TKE closure model for both the linear and quadratic element
a1gorithms;

The efficiency of the solution algorithm emplioying the TKE closure
model can be appreciably improved by using one Jacobian for the three depend-
ent variables, resulting in a considerable reduct¢ion in required memory
storage. Table 7 summarizes comparisons between different methods of handling
the Jacobian. The reference solution {case 1} was obtained using the correct
dacobian for each of the three dependent variables i, k, and €. Employing the
i Jacobian for each dependent variable solution resulted in deterioration of
accuracy, as evidenced by the larger value of AE/E, and an overall 8% increase
in CPU. The third solution was obtained using the kAJacobian for each of the
three dependent variables. This shows an improvement in accuracy over the
three Jacobian reference case, as evidenced by a minimum AE/E and a 9% saving
in computer CPU. No specific trends were indicated in AH/H. To investigate
influence on solution accuracy, of the accuracy of the turbulent viscosity
evaluations within the Jacobian, vt was deliberately under-evaluated and
convergence of the matrix iteration evaluated. Case 4 corresponds to using
one-half the vaiue of the turbulent viscosity vt calculated from the TKE model
in the k Jacobian, which was used for all three dependent variables. The
matrix iteration was convergent, but the Jacobian distortion vesulted in a 13%
increase in CPU over reference case 1 and 24% increase in CPU over case 4.

However, solution accuracy was not consequentially affected, as evidenced by




T)\BL;E 7
INFLUENCE OF THE JACOBIAN ON LINEAR FINITE ELEMENT SOLUTION - BRADSHAW RELAXING FLOW (TKE]

A Number of
' Number Iterations _

Case . ~ Type of of - , for

No. - ‘dacobian CPU* Passes First Pass AE/E AH/H
1 3 Jacobians 1.00 1291 14 137 - 059
2 i Jacobian 1.08 1456 14 .151 ~,060
3 k Jacobijan .91 1236 ' 8 J11 ~.068
4 0.5y 1.13 1531 12 116 -.059
5 0.1v* - - 530 - -

*Normalized on case number 1..

&
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comparing the normalized change in the energy norm for cases 3 and 4. Test
case 5 corresponds to using only one-tenth the calculated turbulent viscosity
within the Jacobian. This proved to be too inaccurate an evaluation, and
convergence could not be achieved after iterating 30 times at the first
integration step. Hence, a completely accurate evaluation of the Jacobian is
not necessary to achieve an adequately-accurate engineering solution, and
significant solution economies can result from taking advantage of the

versatility embedded within the Newton iteration algorithm.

HyperboTlic Equation Solution

Equations Solved

In Cartesian coordinates, the partial differential equation system

governing transport of a scalar field, for example the transient continuity

equation, is

ta) = +Tvg=0" (d6)

with boundary conditions
2(q) =alq+vqgeA +ad3=0 (87a)

and an initial condition
q(%,0) = q4(%) (87b)

The goal of this analysis is a study of accuracy and solution economy of a
factored Jacobian form of the developed Newton iteration-finite element
solution algorithm, Select divergence-free rotational and irrotational

velocity fields selected for this purpose include

Constant:

ﬁi = U {af + 83) (88)

oy
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Solid Body Rotation:
't’fz = rof . (g2}
Irrotational Flow About a Cylinder:
'l)fé = UV x y[l - Qg—]k‘ (90)
i

Irrotationai Cylinder Flow with Circulation:

- - - 2 I' rlis
Uy = Uy x Hl- %é] + '2‘7?1“[5']}‘ (91)

In equations (88)-(91), U, is a reference freestream velocity, 1is the
constant angular velocity, the two-dimensjonal solution spans 0 < x < a,
0 <y=<b, 1is the circulation, and T' is the cylinder radius. The initial
distribution of q(x,y,0) is established as a "cosine-hi1l1" rotated about its

centroidal node as

qo(x,y,o) = 100|:sin2 %—E‘ (92)

where 0 < r < A is the Tocal radial coordinate with origin (x .y ). and A

is spanned by M finite elements. Figure 44a i1lustrates the initial condition

given by equation (92) for M=8 and (xo,yc) = (7,7) on a 32x%32 uniform
square mesh of span ¢ < a,b < 80,000 m.
The statement of the finite element solution algorithm for

equations (86)-(87), on Q=R2xt is, cf. Baker (1978),

R S
$[meo0ncer; + (el maoons + onlmaoz)aar] < @ (o)

The Jacobian of the matrix iterative soTution of equation (93) is

J
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[l = §[[8200'] " he[{ﬂ}gtBSUOII ¥ {V}lmaonz:{]] (94)
and the iteration vector {8Q} is solved as
[d1{sQ} = -{F} (95)

For the factored Newton iteration algorithm, the Jacobian [d] and
elements of {F} are reexpressed on two-dimensional space in terms of the

tensor matrix product (®). The two-dimensional factored Newton iteration

algorithm is then written in the form

[azm)H] ® [I(Q)J J“Q}m | "{_tlfq)g?;_} o {F(@f}  o9)

where § represents an intermediate solution. In hypermatrix form, for a

general one-step integration algorithm, equation (96} is written as

: v L

13 T
S ‘Aé,z{.QZOO] 5 hBAez{V}e_[AZSDOH. )
'gr. T ! 51
® 3 ,A'el.mzooz * neAel{U}e [A3001] {aq};l+1

| ‘ L
- §[A 12001 w2, - ] + h[e%l{“}e“‘3°°1'-‘-fq}j+1

+-(1..e)Ael{U}ztASOGI}{Q}jI]

S

® §l}ez 200t (103, < W) + n{ong OTONIGE,,

+(1 e)A {V} [ASOOIJ{G}J ﬂﬂ - (97)
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The comparisons between the factored Jacobian iteration algorithm,
equation {96), and the conventional multi-dimensional algorithm, equations
(93}-(94), are obtained for the velocity fields given in equations (88)-(89).
Figure 44a shows the initial distribution of the wave packet on a 32x32
uniform grid for velocity field Uy - Figure 44 b presents the conventional

multi-dimensional bilinear finite element algorithm solution after 150 time

steps with At=125 s. Figure 44c illustrates the final solution obtained by

1 - .
et oy e e T
s erma e e o o S SRS T T T RIS TR SR e

A

the multi-dimensional algorithm, but with the initial-value matrix diagonal-

ized. Figure 44d shows the final solution-obtained with the factored Newton

iteration algorithm, eguation (96). It is virtually identical to the B
BN

conventional results, and was cbtained at approximately one-fourth expendi- if

ture of computer CPU and one-fifth the computer core requirement. These

L ot BT A

differences are essentially direct reflections of matrix bandwidth of [J],

hence become progressively more favorable as the mesh is refined. Table 8

summarizes a comparison between the factored algorithm 'A', and the

conventional multi-dimensional algorithm 'B' for different values of the

o

Courant rumber, uAt/Ae, and two initial-value matrix structures. The CPU

,E times for 'B' are five to seven times Targer than for *A'. The finite

ORISR b N T I

é element algorithm (S=0) ratains the peak better and has smalier trailing
:i wakes than the diagonalized algorithm (S=2). Numerical diffusion and o
! dispersion error is also less for 'A' than for 'B' for Targest value of

. Courant number.

Carresponding accuracy, CPU and storage trends were obtained for

 ,§ velocity field Uss hence, only the factored algorithm results are presented.
The solid-body rotation flowfield ﬁz is considerably more demanding, and
provides a quantization of dispersion error. The solution parameters (qq, a.
b, U s At, M} remain identical, the diagonalized algorithm is relegated to

history, and Figure 45 illustrates the solution obtained at the quarter,

[N Y
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TABLE 8
COMPARISON BETWEEN. THE FACTORED NEWTON ITERATION ALGORITHM AND THE
MULTI-DIMENSIONAL BILINEAR ALGORYTHM
Peak Value (% of Original) Maximum Wake (% of Original Peak)
. cpUx - A
Courant : ' :
Number . A B $S=0 §=2 §=0 '§=2 § = S=2 S = S =2
0.1 4.26 19,52 102, 66 . 102, ' 62, 3. =20, 3. -19,
(88.)%* (86.) :
0.5 1.00 4,58 102, 63. 99, . 60. -5, -21. -5, -23
(87.) . {84.)
1.0 0.52 3.67 90, &6, 78, 53. -10. ~21, ~19, -30. |
(92.) (82.) ' (94,) (82.) x
*Normalized on FE factored solution for C=0.5.
1 **Maximum observed value.
22 .
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three-quarter and full 360° rotation of the concentration packet. The
initial-distribution would appear identical to Figure 44a, moved to the

9 o'ciock position, and the exact solution would be Lagrangian advection of
the initial distribution without distortion. The factored algorithm is
again essentially free of numerical diffusion (the peak Tevel remains
intact). The ripple structure in the ground plane is dispersion error, and
while modest in comparison to other solution algoriths, cf. Long and Pepper
(1976}, is borderline on acceptability. Filters can be constructed to
annihilate short period waves, e.g. Raymond anlearder (1976}, and Figure
44d illustrates the substantial imporvement accrued at the three-quarter
turn of the filtered factored algorithm. Filtering can induce numerical
diffusion, and the peak value has been reduced by 2%; a somewhat modified
immediate trailing wake remains identifiable. For the muiti-dimensional
bilinear algorithm on a 32 x 32 uniform grid, the storage required for the
Jacobian was 67 x 1089 Tocations compared to 2x 3x 1083 locations for the
factored algorithm. CPU for the bilinear algorithm was ten times larger
than for the factored algovrithm, and there was essentially no difference
between the two solution accuracies.

The assessment of numerical preservation of symmetries and skew-
synmetries by the factored algorithm was obtained using the irrotationatl
velocity fields ﬁé and ﬁﬁ. Both correspond to flow about a cylinder of
diameter BAE and centered at the grid centroid. Two concentrations were
symnetrically palced about the stagnation streamline, and all other solution
parameters remain identical (qo, a, b, Uy, At, M). The computed filtered
factored solution using ﬁs is shown in Figure 46 for select time steps. The
far-downstream peak values are within 2% of the initial Tevel, and dispersion
error extrema are approximately %4%. Exact symmetry of the two concentration

cases throughout the advection was retained by the factored algorithm.

-
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Figure 47 ilTlustrates select results obtained by the factored algorithm, for
the irrotational velocity field ﬁ4 with circulation. Very large gradients
are illustrated supported with acceptable dispersion error and negligible

loss of peak value.
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