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ABSTRACT

A Galerkin-Weighted Residuals formulation is employed to establish

an implicit finite element solution algorithm for generally non-linear

initial-boundary value problems. Solution accuracy, and convergence rate

with discretization refinement, are quantized in several error norms, by

a systematic study of numerical solutions to several non- linear parabolic

and a hyperbolic partial differential equation characteristic of the

equations governing fluid flows. Solutions are generated using selective

linear, quadratic and cubic basis functions: Richardson extrapolation is

employed to generate a higher-order accurate solution to facilitate

isolation of truncation error in all norms. Extension of the mathematical

theory underlying accuracy and convergence concepts for linear elliptic

equations is predicted for equations characteristic of laminar and turbulent

fluid flows at non-modest Reynolds number. The non- diagonal initial -value

matrix structure introduced by the finite element theory is determined

intrinsic to improved solution accuracy and convergence. As an alternative

to the conventional multi-dimensional finite element algorithm, a factored

Jacobi an iteration algorithm is derived and evaluated to yield a conse-

quential reduction in both cimputer storage and execution CPU requirements

while retaining solution accuracy. The developed hypermatrix statement of

the solution algorithm reduces storage requirements and facilitates direct

inclusion of parameter variations. The results of the research conducted

under the Grant and reported herein document an accurate and versatile

algorithm potentially applicable to solution of a wide range of practical

problem classes in aerodynamics and fluid mechanics.



INTRODUCTION AND SUMMARY

The primary objective of this research project is to assess predic-

tion of extension of the mathematical theory governing accuracy and

convergence character of finite element solution of linear elliptic partial

differential equations, to the progressively more complex hyperbolic and

non-linear parabolic partial differential equations characteristic of fluid

mechanics. The results for the non-linear laminar and turbulent flow

cases, considered and reported herein, predict that extension of the linear

equation theory is valid for the finite element solution algorithm using

linear, quadratic and cubic elements. Comparison tests between the finite

element and a finite difference (Crank-Nicholson) algorithm have quantized

for the first time the differences in numerical accuracy attainable. These

comparison results generally confirm that the linear finite element solution

algorithm is consistently superior to the equal order accurate Crank-

Nicholson algorithm in terms of accuracy and convergence, while maintaining

comparable solution economy, for the non-linear parabolic equations

considered. The reported results of the tightly controlled numerical

experiments confirm viability of the energy norm as the intrinsic measure

for accuracy and convergence determination in laminar and turbulent

parabolic-type flowfield prediction. This is in significant distinction to

the variability in convergence measured in the various common engineering

norms.

A range of practically useful finite element discretizations for

parabolic flow prediction has been observed. Solutions employing coarse

grid linear finite element discretizations generally display accuracy

superior to those predicted by strict adherence to the convergence curve.

Conversely, those solutions obtained with quadratic finite elements typically

i	 -
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display coarse grid inaccuracy. On the other hand, on progressively refined

di screti zati ons, sources of error other than that associated wi th. th fii..:^ to	
^I

element d i screti zati on serve to obliterate the refined solution accuracy

theoretically obtainable. The absolute error associated with solutions

obtained emp ► c;ing quadratic elements is, however, uniformly smaller than

that associated with linear element solutions on sufficiently refined grids.

The accuracy obtainable using a non-uniform grid within the finite element

algorithm was found to be superior to use of uniform grids for the parabolic

problems studied. This is not uniformly true, however, for the finite

difference algorithm evaluated. Furthermore, while non-uniform discretiza-

tions display better absolute error for both the linear and quadratic finite

element algorithms, the presence of an optimum-accuracy grid was detected

for linear element solutions, but was absent for quadratic element solutions.

The use of non-zero pressure gradients for the laminar parabolic

flows did not measurably alter the level of accuracy or convergence character,

measured in the energy norm, of the linear finite element algorithm. This

was not the case, however, for the quadratic finite element algorithm, where

the fourth order accuracy of the algorithm for zero pressure gradient was

degraded to second order for the cases involving non-zero pressure gradient.

This may be due in part to the alteration in the convergence character, from

oscillatory for zero pressure gradient, to monotonic for the „on-zero

pressure gradient cases. Computation of the transverse velocity distribution,

using generally second order finite difference formulae, yields a significant

source of error in actual computations on fine grids, which adversely affects

the accuracy attainable using higher order accurate finite element interpola -

tions. The level of error, capable of quantization, increased from 10- 5 to

about 10- 6 , when the non--linearly induced error, stemming from the transverse

velocity solution methodology, was removed. Hence, while transverse velocity
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	 constitutes data within the theoretical framework of the algorithm, a uni-

formly fourth-order accurate algorithm would be required to increase solution

accuracy beyond about 10-5 . The results of the turbulent boundary layer

solutions indicate that a strictly-accurate evaluation of the dacobian, within

the Newton iteration algorithm, is not necessary to achieve an adequately-

accurate engineering solution. Significant solution economics can result,

therefore, in terms of computer core and CPU, by taking advantage of the

versatility embedded within the developed modified Newton iteration algorithm

for multiple dependent variable systems.

The transient continuity equation solutions confirmed that, on all

comparison bases, the performance of the implicit finite element algorithmic

solution form for a dominantly hyperbolic equation, is superior to the

equivalent-complexity finite difference forth with no additional computational

effort. The primary objective with the conducted numerical experiments was

to evaluate economy treasures applicable to the basic finite element formula-

'

	

	 tion, and to assess their influence on determined accuracy and convergence.

The developed factored dacobian integration algorithm displayed considerable

economy in terms of computer storage and CPU, in comparison to the conven-

tional multi-dimensional finite element algorithm, with no measurable loss

in accuracy. Accuracy and convergence properties of the factored algorithm

have been quantized, and the several numerical solutions obtained for a

variety of velocity fi:el ds-. document- accuracy and computational aspects and

illustrate its versatility.

THEORETICAL ANALYSIS

Accuracy. and.Convergetice

In finite element analysis, error estimates and convergence properties

are typically expressed in an energy norm ., cf. Strang and Fix (1973).
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Alternatively, for finite differences, a stability analysis is employed to

ascertain that the method is convergent, and a local truncation error analysis

determines order-of-accuracy by means of a Taylor series expansion. Error

and convergence may also be measured in other norms including the familiar

engineering parameters. For the case of boundary Iayer solutions, for

example, these could include the integral parameters of boundary Iayer

displacement and momentum thickness, shape factor, and skin friction coeffi-

cient.

The primary focus of this reported analysis is numerical determination

of the accuracy and convergence character of a finite element numerical

solution algorithm for representative initial-value problems associated with

high Reynolds number Iaminar, turbulent, and inviscid flours. A companion

focus is evaluation of error measurement norms that facilitate estimation of

contributing fac*nrs to solution inaccuracy, hence solution economy. The

question of accuracy of a finite element (or any other numerical) solution

requires quantization with reference to acceptable (usable and efficient)

interpolation functions and mesh size distributions. The mathematical theory

of finite elements, which examines these details in thoroughness, is

generally limited to linear partial differential equations. The present

requirement is to recall the fundamental theoretical concepts as applied to

elliptic equations, and to present the extension to accuracy and convergence

measure for the hyperbolic and non-linear parabolic equations of interest.

The point of departure, cf. Strang and Fix (1973), is the linear

differential equation on one dimensional space RI

L(q) = v 2!i + g = 0	 (1 }
3x

where v is a general (constant) diffusion coefficient, and g is a source
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The boundary conditions are typically assumed homogeneous as

	

q (X:t)	 0
	

(R)

To.establish the error measure for the finite element solution of equation

(I) for m 1, which dorresponds to elliptic, the fundamental requirement is

de. terminati.on.of how close . the finite element solution q*

	

M	 M
T.

	

e=	 a=1.

is to the true solution q(x). The fundamental theorem states that the finite

element solution hies as close as possible to the exact solution, in the

sense that the energy in the error, e

	

E= 4- q*
	

(4).

is minimized: The minimum energy functional that is ihe.equivalent to

minimization of .the variational statement for equations ( 1)-(2) is

2

	

^V	 - 99 dx'	 (}Z	 ax.

R'

The energy inner product for equation (1) is defined as

E(q^ q) = LV- 2 d	 (5)

R1`



E(e,e) --r 0	 as be --j 0 (1C)

i

1
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where C 1 is a constant independent of Ae , the measure of the largest finite

element on R 1 , the exponent of A. is a function of the largest complete
polynomial degree k in equation (3) , 2m= 2 is the order of the elliptic

operator, equation (1), and a= k +1 is related to the required smoothness of

the solution.

Equation (7) states that the error in the energy inner product of the

finite element algorithm, using a linear interpolation polynomial for example,

goes to zero as the order d2 (or more' conventionally in finite difference

terminology, hz , i.e., the method is second-order accurate). The error bound
in equation (7) can be refined, for m =1 and k= 1 for example, as

E(s,e) < C2d2II9Mll2

	

< C d22, II F11 2
	

(8)

where C2 and C3 are constants, A. is the measure of the largest finite

element, and IIFII is the L2 norm of the data of the problem specification,

i.e.,

	

JI F 11 = If 9 
2dX1 k

	

(9)

Equation (9) states that the error in the energy of the linear finite element

approximation to the true solution q decreases in proportion to the square

of the measure of the largest finite element, and that the error depends

continuously on the data of the problem specification. Hence, as a consequence

of the fundamental theorem, the finite element solution converges in the

energy norm as

Z
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I^E(nat)11 < C1e2 (k+1-m) 11q(nAt) II + C6dt ll4° Ilm 	 (16)

Here, the first term on the right hand side of equation (16) is the right

hand side in the inequality (7). Furthermore, C6 is a constant, At is the

time step, and 11Q0 11 m is the norm of the initial data.

For the second case of interest, consider a first order hyperbolic

problem statement of the form

L(q ) = s + V x = Q	 (17)

t
with initial condition

q(0) = q 	 (18)

Here again, for use of a forward difference integration algorithm, Qden and

Reddy (1976) prove that if the components of the error are given by equation

(14), then for a linear hyperbolic equation, the error satisfies the

inequality

nbt

II e( ndt)II < CIXk^ II g 11 k+1
 + CSAt 11 Qo 11' + C6ae II g11 k+1dt	 ( 19)

where C6 Is another constant. Unfortunately, no similar analyses for an

initial-value,  non-1inear problem exists, which prompts the numerical

experiment approach taken herein to study the convergence character of

finite element solution of non-linear initial-value problems.

Error Analysis	
e

The main emphasis i n 'this analysis is assessment of the di screti zati on

error associated with use of the finite element solution procedure for non-
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progressively refined discreti zations, in the energy norm, to establish the

convergence rate exponent on A e . Since the fluid mechanics equations to be

solved correspond to statements of conservation, correspondingly defined
a

norms are also useful, in parMcul ar

P,	 q dr	 (20)
e Re

.'a

,i

P2 =
	 g2dr	 (21)

e 
Rh

The familiar engi neeri ng parameters useful for quantizing flow phenomena can

typically be constructed from the energy and p-norms. For example, in

boundary layer flow, shape factor and skin friction are parameters of great

engineering significance in assessing solution acceptability, i.e.,  accuracy.

Shape factor H is defined as

8*6-	 (22)

where S*' is the boundary layer displacement thickness and 0 is the momentum

thickness defined as

uul 1]d ^2	 (23)

s

8 
= ^ u^ [1

51u-'3dx2 	(24)
8

where u l is the local inviscid freestream velocity, and u is the (time-

averaged) boundary layer velocity distribution. Assuming u non-dimensional-

ized by u l , and for d spanning U R I = Rz , using equations (20)-(21)} in the

discrete approximation to equations (23)-(24) yields



i;

lO

^* -- S - p I 	(26)

8	 pI - 2p2	(26)
E

i

Skin friction is an engineering measure of drag, hence the viscosity induced

shear stress, and is defined as

C
f
 - Tw 

2 
pI u _
	

(27)2
Equation (27) is also eval cable using the defined pi.

DISCUSSION AND RESULTS

Presented herein are the results of the numerical evaluation of

solutions of the selected non-linear parabolic and hyperbolic partial differ-

ential equations. Primary emphasis is on quantization of solution accuracy

and convergence.with discretization refinement. Test cases used are the

steady two-dimensional incompressible laminar and turbulent boundary layer

flow and laminar and turbulent parabolic flow in a duct. For turbulent flows,

a comparison between the mixing length closure and the turbulent Kinetic

energy model has been established. Additional results are presented of the

numerical solution of the transient continuity equation, with primary

emphasis on solution economy, accuracy and convergence of the developed split-

Jacobian finite element algorithm.

Parabolic Equation Solutions

Problem Statement

It is required to establish the two-dimensional velocity and pressure
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{X^Y} = u(x.Y)i + V(X,Y) J 	(2$}

Using the boundary layer order of magnitude analysis for Marge Reynolds

number, cf. Schl i chti ng (1968), the parent time-averaged steady fl ow Navi er-

Stokes equations in non-dimensional form are

L( p) = ula+	 = o	 (29)

^() u au + v a _ a v as - u'y' f	 = U	 { 3U}
ax	 ay ay 3y	 R dx

At the edge of the boundary layer, the viscous terms are zero, and the

x-momentum equation (30) with the continuity equation (29) reduces to

U 

au 
	 1 k	 (3x)ax	 p ax

where U  is the inviscid flow velocity at the edge of the boundary layer.

The x-axis is assumed aligned with the direction of predominant flow, and

y is the coordinate traversing the thickness of the boundary layer, see

Figure 1. under the large Reynolds number assumption, the transverse

momentum equation is identically satisfied by a pressure distribution

impressed uniformly across the boundary layer thickness, i.e., p(x,y) = pI(x).

Closure of equations (2)-(4) requires a relationship be established

for laminar viscosity v and the dominant Reynolds stress shear component

u'v°. Kinematic viscosity v is a property of the fluid constituting the

t	 boundary layer, and a constant for isoenergetic subsonic flows. Closure for

'the Reynolds stress u-v- is accomplished in the elementary form by assumption

of an "effective" viscosity coefficient v e defined as

#	 ve w Re +vt	(32)

where v  is the "turbulent kinematic viscosity" correlation coefficient



t

♦ 3.Z

t 9D

.	 l ay

{
Hence, the parabolic equation (30) of primary interest in this investigation

takes the form

' ^°(U)
	

u	 72	
v^	 +	

d	
= 0	 (34)

ax
	

ay	

ay	
ay]	 p

s:

Two closure models are used in this analysis. 	 Arandtl mixing length

.- theory (MLT) establishes an algebraic relation for v t (cf. Schlichting,

S'.

s

1968; Cebeci and Smith, 1974), 	 Using a dimensional analysis, v t involves
4

the product of a scale velocity and a scale length. 	 using the mean velocity

4=
gradient for the-former, and Frandtl's mixing length Q. for the latter,

yields

v
t a^

2y^Y (35)

The mixing length z is defined as

Ky	 Qty [&,IK
c _ (36)

r' 7lS	 y > AC3I1C

The Van Driest function w accounts for the damping influence of a wall on

the velocity fluctuations a'. 	 Following a rigorous analysis	 cf. Cebeci

is and Smith, 1974), the damping function form is

_	 - exP( ylA)	 (37)

In equation (36), y is the coordinate normal to the surface, 6 is the

boundary layer thickness, and X and K are constants (typically 0.09 and

'!f 0.435 respectively).	 In equation (37), A is a complicated function of many

factors influencing flow phenomena near the surface including axial pressure

gradient and normal mass flow. 	 The form of Cebeci and Smith (1974) serves

s to unify the many formulations as
F
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T -1/2 	lit
A =_A vN-1 

W	 €W	 (38)
13Wpw

where

v l	
.1 - exp 11.8 

^ 
v+ 

)__
 

+ exp 11.8 v v+	 (39)
1 IPWI v

All variables are time-aver :d steady components, subscripts I and w refer

to inviscid freestream and wall values respectively, A + is a constant (25.3),

P+ and v+ are functions accounting for axial pressure gradient and mass

addition respectively, cf. Gebeci and Smith (1974). In equation (38), Tw is

the wall shear stress defined as

a^
Tw = Pwvw ay w

In this analysis the wall shear stress is evaluated from the Ludwieg-Tillman

equation for skin friction

Cf = 1 Tw
	

= 0.245 x 1E^-0.678iiRe-0.268	 (41)

2 Fe Ue

In equation (31), H is the shape factor and Res is the ReYnold's number based

on the momentum thickness 9. Since the freestream outside the boundary layer
is assumed free of turbulence, the intermittency factor y in equation (35) is

Y = ^1 + (YIS) ĝ rl 	 y>S	 (42)

which serves to provide a rapid decrease of vt at the freestream edge of S(x).

An alternative formulation to Prandtl's mixing length model that yields

a differential equation statement is the turbulent kinetic energy (TKE)

two-equation model. For this, the scale velocity is selected as the kinetic

(40)

,i
f

M
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energy k of the velocity fluctuations

k= ^ ^^	 (43)

The length scale is defined as Yd, the scale length of isotropic dissipation

of a fluctuating velocity eddy, cf. Tennekes and Lumley (1974). Hence, for

the TKE closure equation (35) is replaced as

vt = k21
d	 (44)

The dissipation length scale may be expressed in terms of the isotropic

dissipation rate of turbulence s, cf. Hanjalic " and Launder (1972), defined

as

3
kd 	Cvk. f7-/E	 (45)

where Cv is the correlation constant. Combining equations (44)-(45) yields

vt = Cvk2/r
	

(45)

which corresponds to the two-equation TKE model definition for turbulent

effective viscosity.

A partial differential equation system for the determination of the

turbulent Kinetic energy k and the dissipati on rate of turbulence s is

required. For turbulent incompressible boundary layer flow, the appropriate

system is (Cebeci and Smith, 1974)

L (k) = u	 +	
-.e

I-ve  	 +s = C	 (47)3x	 ^y aY ^ 	 FBYJ
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The various G5 are correlation constants of the model. Table 1 lists values

used in this analysis, as recommended by Hanjalic' and Launder (1972) for

two-dimensional shear flows.

TABLE 1

CORRELATION COEFFICIENTS IN TKE CLOSURE MODEL

Vari abl a	 Equation

V 	 (46)	 Cv= 0.09

k	 (47)	 Ck= 1.0

s	 (48)	 CE = 1.3, CE = 1.44, C?-  1.92

Closure of equations (29)-(30) also requires establishment of

appropriate boundary and initial conditions. The boundary conditions for

solution of equations (29)-(30) are determined by inspection. At the surface

y = 0, no-slip and no injection is assumed yielding

u(x,0) = v(x,0) = 0	 (49)

At the freestream, y > S(x), from equations (30) and (31)

au(x, Y>6) = 0	 (50)
By

The boundary conditions for k'an d e are vanishing at both the inviscid

freestream edge and at the solid surface. For the latter location, it is

also necessary to enforce the wall damping influence on the velocity

fluctuations, in the manner of the Van Driest damping function m for the MLT

closure.

Since equations (34) , (47) and (48) also display initial-value

character, an appropriate specification is required to initiate a solution.
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Any arbitrary profile for "u is admissible that also satisfies equations (49)-

(50). For k and s in boundary layer type flows, cf. Launder and Spalding

(1972), the length scale 
Xd 

is proportional to y in the immediate  vicinity of

a wall. From an exact analysis, hence

d = CD Ky,	 0 y [ CAS	 (51. )

Where Cp - 0. 09 and K is von Karman `s constant (0.435) Away from the wall,

Zd eventually becomes independent of y and 'levels off at a value about equal

to CDS, where a is the local boundary layer thickness. Assuming a continuous

distribution of Zd between these extrema, and usi ng the MLT model to compute

vt, an initial distr=ibution of both k and c can be determined using equations

(45), (46), and: (51).

An added complication of the problem specification is that 6, the

boundary value solution domain to be spanned by the-,finite el ement di screti -

zation, is variable with x, see Figure 2. A transverse coordinate stretching

transformation can efficiently compensate for boundary layer thickness growth.

Referring to Figure 3, a useful transformation is

X

Y 
F f i(x)^ _ 	 (52)ff6(4 - f,wl^ f
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a - add+adn
ax - 5Z ax an Tx

^	 l	 1

-	
fl	

+ n 
f2 - ^1 a	 (53)

	

(f2 fl)/f 	f2-f1 n

where superscript prime denotes the ordinary derivative. The resultant fora

of the three initial-valued equations (34), (47), and (48), and the continuity

equation (29), is

	

L( -v) -^ - (h2 +nh3 )a71]u + an - p
	

(54)

	

,.0	
dp

L(u) ^[a . - (h2 +nh3 ) 	 + v an  ̂T. [v6  an] } p d^ = 0 (55)

L(k) = 
D
IC - (h2 +nh3 ) n k + van

e8 . v .	 8k	 au ?-an `^" an - v ^8n	 = a
k

r-
L(e) - 

9b
a - (h2 + nh3) an e + v 8n

e
8	 hl a^	 Cock-; ve 3u}} 2 C££2k-1

J

The functi ons hi , 1 _ i _ 3, are related to the metric of the coordinate

transformation and defined as

f(f2 - f1r,
hi = If IhI

f 1(f2 - fl)hl

(5&)

(57)

(58)

{

3
': 9

.'a
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where 
a 
is the finite element assembly operator. In hypermatrix form, cf.

Baker and Soliman (1978), equation (61) for the case of no grid stretching

becomes

S [A",(UIT (A30001 f U,

+ 6e ({XNUEFF eIA301TI +' {V)e(A300I3) fUle

+ A e p fA1011 =—'  f0}	 (fit)

In equation (fit), the matrix elements of fXNUE FF} e are the nodal values of the

effective viscosity ve , equation (32), on Re. Completion of the solution

specification is achieved as

^U(X 1 l 4_01 U(XO,y)	 (68)

which corresponds to a mapping of the initial condition for ii onto the modal

coordinates of J ue . The rank of the global matrix system equation (62) is

one less than its order, to account for the no-slip boundary condition

U(x,0) = 0. Hence, application of the finite element algorithm to equation

(34) has yielded a system of ordinary differential equations (62) with
i

Initial conditions equation (63) for solution of the node point distribution

of the discretized velocity, u, i.e. {U} 	 J{U}e.
e

Solution of equation (62) requires determination of the discretized

equivalent transverse velocity distribution W, hence We . The x dependence

in v(x,y) is parameterized, resulting in an ordinary differential equation
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The elements of the column. matrix ZETA} e are the (stationary ) nodal coordinates

of the finite el enient d`'f screti zati on of R1. In equation (68), 1SORCQ1e is the

source/sink term; disti nctive for each identification of q. From equation (sx);

for q=u

f SORC[i}e P-MOI	 (69).

which is independent of a since p' is el ement i ndependent. For q= k, referring

to equation (56)

'

veaTI 2 dn =. ;XNUEFF}e {Nk^i ^l eIN Y( Nk1"tU l' 0 1&1
n

el	 Re

=Lie (XNUEFF)T(A40D1nm 01	 70

In. equation (76), EA406111 is a hype' m: atrix of order k+Z,. where k is the.	 y

complete degree of the fi ni to element interpolation polynomi al, equation (60):,

and each matrix element of [A40011] is similarly a square matrix of the safe*

order. Hence, the source term for k can be 'expressed as
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{SQRCEP}e = -CI sjke ({ YNUEFF}T EA4 00111 fUle
) 

(U}e + C2 ejk EA2001 {EPSIe 1 (73)

The energy inner product, equation (6) • , for the boundary layer equation

system is required established to evaluate convergence in the energy norm. The

discrete solution energy norm is

M

E(M)(u*, u*) =	 z V u y)2dy
e-Z RI

Re

e

M

Z Re M de fUIT,[{XHUEFF}eCA30Z Z1 ful.

	

	 (74)
e-1 a]

h

Convergence properties of solely the finite element discrete solution are

determinable as, see equations (34), (S), and (9)

EM3E('^),(x^^ < C'-^^(k--m^ 11 u I['+ 	 (75)

where

k+l 2
I u (^ +1 _ ^y^ dy < co	 (76)

R1

`

	

	 For the boundary layer problem, 2m is the order of equation (34), hence m = 1,

and k is the degree of the highest complete polynomial in the approximation to

u (x,y)

Error and convergence are also measured in terms of the boundary layer

integral parameters. As discussed, boundary layer displacement ( 6*) and
L

k	 momentum (0) thickness are variables of primary interest in engineering evalua-

tion and evaluable in terms of the p-norms. For the discrete solutions,
r

:.l t

^z

§§
i,

t.:
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0 ,	 x. , dy e ^Ujt r}e 20Q1 {I - UjU Id	 (fig )
fl

These norms.are . herein used primarily to. assess solution accuracy in terms of

the shape factor H,

H 8*	 (79)

and the skin friction coefficient Cf

Y^	 _^	 2 ^I	III	
k

Cf - -	 2 pI u	 p 8v	 (80 )

s%,



24

L(u) = 1	 - ay ^v By l + P dx - O	 (1)
^	 l	 1

E

which is the most elementary model form for the developed equation system that

displays the essential required non-linearity. The boundary conditions for

8solution of equation 	 remain expressed b equations (49)-(50),
-	 ^	 q	 (1)	 p	 Y q 	 where 3 is

i
now assumed a symmetry plane, and the initial condition is the slug profile

i

illustrated in Figure 4. Following an extensive numerical test program

(Soliman, 1978), this initialization for a was found mandatory to eliminate

the initial data as the primary error source in the energy error norm, equation

(74). Selecting the distribution illustrated provided a uniform initial energy

for all k, 1 < k <3, on both uniform and non-uniform discretizations of A, the

span of R I . The particular data set selected was I = 300 ft/sec, Re = 0.7 x 106/

ft and Ap = 1.45€3 x 10-6 . Following experimentation, quantization of convergence

was determined facilitated after marching the solution downstream for an axial•

distance of approximately 0.5 ft; therefore, all data presented were measured

at .Ax = 0.8 ft.

Figure 5 presents computed solution error in the energy norm as a

function of uniform discretization refinement for linear, quadratic, and cubic

finite element interpolations. The numerical results confirm the prediction of

the linear theory, equation (74), for k = 1 and 2. Specifically, convergence

is exactly quadratic for the linear finite element solution, and essentially

fourth-order for the quadratic elements. In contrast to theory, convergence

is also fourth-order for the solutions obtained with cubic finite elements.

Note that the level of error capable of quantization is of the order of 10-6,

which has been confirmed as the upper bound on accuracy for the equation

solved, which is non-linear. As will be documented throughout this test

i

	

	 program, the coarse grid linear finite element solutions display accuracy

superior to that predicted by strict adherence to the convergence curve.

!i	
1

F	 `^

ft
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Conversely, those solutions obtained with quadratic finite elements display

coarse grid inaccuracy.. The finest grid case reported for a quadratic finite

el ement. sol' uti on (M = 40) al so displ ays a somewhat 1 arger error than predi cted

by the fourth -order convergence rate, which is further confirmation of the

accuracy Level attainable in actual practice. As noted in the header of

Figure 5, convergence is monotonic and from above for the linear  and cubic

element solutions, while the quadratic element solution displays oscillatory

convergence.

Figures 6-7 present computed accuracy and convergence in the engineer-

ing norms of shape factor and skin friction, equations (71)-(80), for k =1, 2

and 3. Convergence is quadratic for the linear finite element solution, and

from above in the case of the shape factor and from below for skin friction.

Fourth-order accuracy is displayed by the quadratic finite elements, and in

contrast with the energy norm, the coarse grid solution demonstrates a super-

accuracy. The slope of a straight line drawn between the two data points for

tote cubic element solution is 5.8, which is in close agreement to the six that

is predicted by the l inear theory, equati on (7) , or specifically k = 3 and m =1

in equation (x5). The next consistent cubic element discretization requires

M:-54, the results for which far exceed the quantizable error of 10 -6 for this

problem. Hence,, the cubic el ement formulation becomes essentially impractical

for equations of this type in fluid mechanics.

The influence of employing a non-uniform finite element discretization

of R3, ,, .on, the computed error in the energy norm was determined and results

are: presented in Figure S for k = 1  and 2. The abscissa for this curve is now

the largest finite. element ,^meax on Rl . The non-uniform discretization increases

by up'to a factor of twa the level of absolute error in the energy norm for the

linear  element solution, k = T. Alternatively, for the quadratic, the error

level: is less than that associated with the uniform discretization, with an
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indication that an optimum grid exists for which an essential minimum exists

for energy. Figures 9-10 provide the comparison on the basis of error in H and

Cf. In these norms, a favorable effect is accorded use of non-uniform

discretization. The absolute error is substantially decreased using a non-

uniform discretization for k= 1, and there is an optimum grid associated with

an absolute error minimum in both shape factor and skin friction. The levels

of absolute error are uniformly decreased for the k = 2 solutions, as well,

although no optimum discretization is evident. The non-uniform discretization

results display an essential fourth-order accuracy in shape factor norm, while

a nominal third-order accuracy is evidenced for skin friction. In all cases

then, the use of a non-uniform discretization is not contraindicated, and subse-

quent results for a physically meaningful equation statement will confirm this

indication.

Laminar Boundary Layer Flow

Pie second and physically meaningful test case corresponds to incompres-

sible laminar boundary layer flow impinging on a sharp leading edge with

pressure gradient. The nominal freestream velocity remains U", = 300 ft/sec and

Re = 0.7 x 106/ft. The slug-profile for u, Figure 4, remains initial condition

for the stream-wise velocity, while the transverse velocity v is assumed zero

at solution initiation. The transverse velocity remains zero until sufficient

solution information has been generated to facilitate evaluation of the backwards

difference formula, equation (66). To maintain a uniform evaluation of the

initial data energy norm, equation (74), for all k and all initial-value matrix

assembly operators S., the node at the knee of the initial slug profile for the

streamwise velocity is kept at the same position (0.2.4) for all grid refinements.

To facilitate the required comparison with a popular finite difference solution

algorithm, numerical results are also obtained using the equivalent of the

G	 pAGB I^0 FOR 
QUALITY

D
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Familiar Crank-Nicholson algorithm for equation (62). This is achieved by

rendering diagonal the initial value matrix [A3000.], within the linear finite

element formulation. The specific matrix equivalent for the i n : ti a-r -value

matrix [A3000]s associated with Crank- cholsen is

^r1

7 0^0 10
S [Ae{U a LA300013f 

U e^ ' e Aef l e	 (Ule	 (82)

X01 X11
L

For illustration, upon completing the assembly operation, defined as Sa = 3

herein, equation (62) can be reeXpressed on a uniform grid in the (finite

difference) recursion form

V.
u^uJ +	 v- u- -2v u--^v. u.	 +=--[

u
j+I _ u.'	 + P = 0	 (83)

e2 j+1, j+	 .l -1 3 	 ,^_^
_.	 yq

Upon application of the trapezoidal integration formula for u^, the resultant

algebraic equation system is identical with the Crank-Nicholson algorithm,

cf. Roache (1972).

Accuracy and convergence evaluations were again obtained at an axial

displacement of 0.8 ft downstream from the leading edge of the plate. For

linear finite element functions, k =1 equation (60), convergence with discre-

tization refinement in the energy norm is computed uniformly quadratic, for

initial-value matrix structures S = 0, 2, and 3, see Figure 11, and with

negligible data scatter. Herein, S =0 corresponds to the exact finite element

formulation, while S=2  corresponds to the d piagonalized structure previously

employed by 'Baker and Manhardt (1977, 1978). (The operation S= 1 is another

diagonalizing operator that is consistent only for linear element formulations,

and thus reli.gated to history.) The errors are calculated with respect to an
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estimated exact value of the energy norm, based on the assumption that the S = 0

fine grid solutions do indeed converge quadratically. The lowest error in the

energy norm is accorded the finite element solution algorithm, S= 0, and the

convergence is from below. Convergence is from above for the alternative

diagonalized formulations S = 2,3. This confirms prediction of extension= of

the theoretical convergence theorem, equation (16), to this practical non-linear

problem, and the finite element solution indeed minimizes the error in the

energy. Dote also that the error for the coarse grid finite element solution

(M = 10) falls below strict adherence to the convergence curve, confirming and

firmly quantizing existence of coarse grid accuracy as previously predicted by

Popinski and Baker (1976). Convergence in the engineering norms of H and Cf

is also firmly quadratic for all S = 0, 2, and 3, see Figures 12-13, with the

finite element solution over-predicting shape factor and under-predicting skin

friction. This trend is again reversed for S = 2 and 3 solutions. The

difference in level of error is much less pronounced in these norms, although

the S=O  error is uniformly minimum, and coarse grid accuracy remains evident

in the engineering norins.

Accuracy and convergence evaluation for linear, quadratic and cubic

elements, 1< k < 3, for the same test case, and as measured in the energy norm

for the consistent finite element initial-value matrix S= 0, are presented in

Figure 14. The solid curves are of nearest integer slope, and the demonstrated

convergence rate for k= 1, and the coarser grid solutions for k =2, predicts

extension of the linear theory for both k to this non-linear equation. The

cubic finite element results, k= 3, and the finer grid solutionsons for the

quadratic functions, k= 2, fail to adhere to the convergence curves for error

in the solution less than about 10 -5 . This further confirms existence of a

practical bound on actual performance of high order accurate numerical solution

algorithms for non-linear equations of the boundary layer type. Furthermore,
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the performance of the cubic element formulation is truly dismal. By compari-

son, absolute numerical accuracy for solution of linear parabolic equations was

reported better than 10- 12 , see Baker and 5oliman (1978). Only for linear

elements is convergence monotonic and from below. For the k=2  and k=3  cases,

convergence is oscillatory and starts from below.

As a measure of solution economy, Figure 15 presents the error in the

k	
energy norm as a function of discretization refinement now expressed as the

number of nodes on the solution domain. The abscissa is equivalently the rank

of the dacobian associated with solution of equation (fit), and represents the

amount of computational work required to obtain the solution. For all cases

tested, except perhaps for the coarsest grid, the quadratic element solutions

demonstrate a definitely superior economy and accuracy in the energy norm. The

cubic element formulation is even less favorable on this comparison basis, 	 a

Figures 16-17 present computed convergence in the engineering norms for

the finite element solutions obtained for k = 1, 2, and 3. Except for the

coarse grid solutions obtained using the quadratic elements, convergence is

generally quadratic for all k. The exception is the coarse grid solutions

obtained with quadratic elements, wherein the M =10 solution is super-accurate,

exceeding even 4th order convergence as indicated. This is most probably the

direct consequence of the convergence being oscillatory. [dote that the
i

F

degraded convergence performance for 2< k< 3 occurs at error levels less than 	 `I

10-5 . As was determined in the energy norm comparisons, a practical upper

bound on attainable solution accuracy definitely exists for this nonlinear

parabolic equation, and appears to be of the order 10- 5 . The overall super!-

ority of the quadratic element formulation remains apparent, with the associated

_	 error roughly an order of magnitude less than that of the linear element

solutions for approximately the same amount of computational work (same number
.a

of nodes).
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These laminar flow results were obtained using uniform finite element

discretizations of R 1 . It is necessary to investigate the important effects of

a non-uniform discretization, which is a key feature required for efficient and

accurate turbulent flow computations. A smooth progression of non-uniformity

of the finite element discretization is desired, and is attainable using a

geometric progression to locate nodal coordinates on R I as

I
ye+1 '_ ye + ' l- a-1)
	

1 < e < M.	 (84)

011 Pa

In equation (84), ye+1 is the extremum nodal coordinate of R1, ye is the

coordinate of the first node of R1, p is the geometric progression ratio, and M

is the total number of finite elements R1 spanning the domain R1.

The M=80  linear element discretization was chosen as the base case

for comparison of all non-uniform discretization results. The node at the knee

of the streamwise velocity slug initial profile was maintained at a constant

coordinate. (20% of the domain), such that the initial data energy norm

evaluation was uniformly a constant for all non-uniform discretizations. Figure

18 present computed accuracy and convergence in the energy norm for the linear

finite element algorithm for a range of pressure gradients that yielded a zero

and a x-50% change in solution energy compared to the initial data evaluation.

The non-uniform discretization solutions are represented by partially shaded

symbols, and the sign next to the symbol indicates that the sign of the norm

changed with respect to the estimated correct value in comparison to the uniform

discretization results. The computational advantage of using a non-uniform

discretization is clearly demonstrated; the error in the energy norm is minimum

for any number of elements spanning the solution domain using any non-uniform

discretization. Furthermore, the non-uniform convergence curve, shown as a

dashed line, passes through a minimum (zero) which indicates existence of an

optimum grid (M-,27, p w 1.2) for this particular problem.
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In the engineering norms, the effect of pressure gradient on the error

is more apparent. Referring to Figures 19-20, the increase in level of error in

the shape factor and skin friction is approximately five for the intermediate

pressure gradient and ten for the extremal pressure gradient plotted. The

beneficial effect of use of a non-uniform discretrization on error in the

engineering norms decreases as the pressure gradient increases, and the discre-

tization which extremizes the energy does not necessarily yield the lowest error

in the engineering norms. However, in all , cases, the accuracy attainable using

a non-un i form grid is universally superior in any norm. A non-uniform grid

containing approximately 25 elements will always yield accuracy comparable or

superior to the 80 element uniform grid case at a factor of 3 reduction in

computer CPU. Since the data collapse to an essential single curve, Figure 18,

the energy norm appears the superior mathematical measure of accuracy for this

non-linear parabolic equation system.

The comparison is required established for the alternative initial-value

matrix operators, S = 2 and 3. Figure 21 presents computed convergence in the

energy norm for the selected range of pressure gradients for solutions obtained

employing the diagonalized initial-value matrix S = 2. Contrary to the numerical

experience with the consistent form S= 0, see Figure 18, the absolute error in

the energy norm 	 with the increase in pressure gradient level. The

convergence rate remains essentially quadratic for uniform discretization

solutions, but there is select data scatter and some evidenced coarse grid
_a

inaccuracy. Only in the case of zero pressure gradient is the error in the

energy norm consistently reduced using a non-uniform discretization. The abso-

lute level of improvement is drastically reduced in comparison with the consist-

ent assembly results. The use of a non-uniform discretization modestly increases

the error in the energy norm for the intermediate pressure gradient, `1p = 1.525

x 10- 6 , while converging from above. A select modest improvement, coupled with

s,
t
s"

1	 __
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convergence from below, is accorded the extreme pressure gradient solution,

AP = 3.056 x 10-6 , for non-uniform grid comparison.

Convergence with discretization refinement, in the engineering norms

for the di agonal matri x S = 2, i s presented i n Fi gures 19-20. Quadrati c converg-

ence is confirmed in all cases for the uniform discretization results, with

negligible data scatter, and the absolute error in the norm now increases with

the increase in pressure gradient, in accord with the results obtained for S= 0.

In distinction, however, note that use of a non -uniform grid for zero-pressure

gradient exerts no consequential effect on solution accuracy in either engineer-

ing norm or in energy. 	 In contrast with error in the energy norm, Figures 21,

non-uniform discretization can reduce error in both the shape factor and skin

friction for non-zero pressure gradients. 	 The absolute level of error in all

three norms, comparing the S= 0 and S= 2 results, is approximately comparable

to the uni form gri d resul ts. 	 However, the S = 0 resul is are cl early superi or in

all norms for the .;ase of zero pressure gradient.

The accuracy and convergence performance of the Crank-Nicholson finite

difference initial-value equivalent, S =3, is not consequently distinct from 	 w"^

the S =2 results.	 Figures 24-26 present the corresponding computed error in
1

!
I the solution norms as a function of the discretization refinement,	 Convergence

t̂ is again essentially quadratic, with only modest data scatter for uniform

discretization, with the absolute error higher than that associated with the

finite element solution ( S= 0) for zero pressure gradient and almost the same

for non-zero pressure gradients.	 Somewhat improved accuracy accrues to use of

non-uniform discretixations, in contrast with the diagonalized matrix (S =2)

results for zero pressure gradient,	 Nonzero pressure gradient performance is

nominally identical. 	 Tn terms of error in shape factor and skin friction, the

S=3  and S = 2  results do not differ.	 Interestingly, the use of non -uniform

dis^retizations for zero pressure gradient again does not improve solution

accuracy in either engineering norm,

w
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Based upon these results, the consistent finite element initial-value

matrix (S = 0) form for the linear (k = 1) solution algorithm demonstrates

consistently superior solution behavior in terms of accuracy, convergence and

economy for this practical non-linear parabolic equation system. Previous

results (Baker and Soliman, 1978) indicate this to hold as well for use of higher

degree (k >1) finite element polynomials for a linear parabolic equation. hence,

numerical evaluation of accuracy and convergence obtained using higher-degree

finite element functions is conducted for S=O  only. Shown in Figure 27 is the

computed solution error in the energy norm as a function of discretization

refinement. The fourth order accuracy of the algorithm, which was documented

earlier for zero pressure gradient (Figure 14), is now degraded to second-order

for the cases involving non-zero pressure gradient. A plausible explanation for

this is that the oscilla'.ory convergence in the energy norm, associated with the

zero pressure gradient solutions, changed to monotonic convergence from below

upon applying a pressure gradient. Furthermore, coarse grid inaccuracy is now

evidenced for non-zero pressure gradients, since the corresponding data points

lie above the convergence curve. The absolute level of error for the non-zero

pressure gradient case is five times smaller then that associated with the

linear finite element solution for the finer grids (see Figure 18). This

improvement over the linear element solution degenerates, however, as the grid

progresses to coarse. The error for the M= 5 quadratic element solution is

basically identical  to that for the M = 10  1inear element grid. Use of a non-

uniform discretization, selecting the M = 40 element grid as the base case,

consequentially reduces the absolute error level for all pressure gradient

including zero, in agreement with the k =1 solutions. In clear distinction,

however, an optimum grid that extremizes the energy cannot be detected.

Figures 28-29 present the corresponding data on quadratic element

t	
solution error measured in the engineering norms. Convergence is essentially
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quadratic for uniform discretTza:t̂ion, W i th coarse grids displaying. fourth"drder

cot^ver.gence fora1 ^ press	 gr" .adi ents . Oscillatory convergence:vergence is the' general

trend for all the canes, except for skin friction with zero" pressure gradient.

Thequadratic finite element solution is relatively favorable for the cases with

pressure gradient, since the error in the shape factor is two orders of magni-

tude smaller than the solution error obtained with linear finite elements. This

<.,	 compares to only one order of magnitude difference for the zero pressure

.:	 gradient case. Non-uniform di s creti zati ons display improved absolute error

level for all cases, and there is no - indication of an optimum grid. These

solution convergence trends are unchanged when measured in the skin friction

norm, except that the error now decreases with an increase of pressure gradient.

Use of non-uniform discretization again decreases the absolute level of error

with no indication of an optimum grid.

A Turbulent Boundary Layer Flow

Acceptable resolution of near wall damping phenomena is an essential

key feature of turbulent flow computations. Since use of a uniform discreti-:.

nation would requite an impractically large number of elements to span the

solution domain s a non-uniform finite element discretization is required in

all instances to obtain satisfactory computational efficiency in concert with

acceptable solution accuracy. Baker and Manhardt (19776) have determined

that linear element solution speed and accuracy, using an explicit integration

algorithm and S = 2,  both accrue using a finite element discretization with
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The first requirement in this analysis is to confirm indeed that the

developed finite element algorithm is capable of accurate prediction of

turbulent flow for which comparison results exist. This is provided solely

by experimental data, and a particularly challenging configuration corresponds
i

to the IDENT 2400 data, reported in the proceedings of the AFOSR-IFP-Stanford

Conference on Computations of Turbulent Boundary Layers (1968). IDENT 2400

f	
is the Bradshaw relaxing flow data set, which corresponds to evolution of a

non-equilibrium subsonic boundary layer induced by abrupt removal of a

moderately adverse pressure gradient from an initially equilibrium flow.

Nominal freestream velocity (-U,,) is 33.5 m/s, wind tunnel background

turbulence level was less than 0.19, and the reference unit Reynolds number

is 2.38x 107 m-1 . The test case is considerably demanding since non-equilibrium

phenomena are involved in the relaxation process. The base case results were

generated using the linear element (k = 1) algorithm and a non-uniform discreti-

nation. Following considerable numerical experimentation, an adequate

i resolution of the wall region damping was determined captured using M=30

linear elements spanning approximately 1.56, and a geometric progression ratio

of p=1.222,  see equation (84). Turbulence closure for the base case was

accomplished using mixing length theory (MLT), with the parameters is and X

equated to their standard values of 0.435 and 0.09 respectively. For Boundary

conditions, both u and v vanish -identically at the plate surface, and au/^y

vanishes for y > 6. The first member of IDENT 2400 data set was interpolated

at the nodes of IRI to generate the initial distribution for u, and v was
e

assumed zero until sufficient data was generated to initialize the continuity

f	
equation solution, see equations (64)-(67) . Shown in Figure 30 are comparisons

f between data and the computed solutions, for the important boundary layer

parameters, and as obtained using the three initial-value matrix structures,
Y

S = 0, 2} and 3. The computed results were matched with the data at the
is

sa

r^

-3
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predicted; however, the overall level of the solution curve is somewhat nigh.

The level of the curve for the standard finite element structure, S= 0, is

closer to the data than that predicted by S= 2 and 3. The computed extremum of

ve/v, equation . (32), for this case was 900, which indicates a high level of

turbulence.

Shown in Figure 31 is a comparison of the computed energy norms for S = 0,

2, and 3. Note that the energy norm is minimized by the finite element solution

S =0 tnroughout the solution range, which generally predicts extension of the

linear theory, equation (16), to this highly non-linear problem class. Figure

32 presents comparison between select computed velocity profiles and data at

three downstream stations, and agreement is generally excellent.

To investigate the influence of discretization refinement on solution

accuracy, the number of linear elements was doubled to M =60 while retaining

the first node off the wall at the same physical location, to preserve

satisfactory resolution of near-wall damping. The resulting progression ratio

p for this non-uniform discretization was 1.089. Shown in Figure 33 are

comparisons between data and computed solutions using the standard M= 30 linear

element discretization and the M= 60 element discretization for the two

different ratios of grid nodal progression. There is essential overall agree-

ment between the two soluti ons obtained using 20% grid growth. The M =60

I	
element discretization with 50% grid growth is in slightly better agreement with
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Figure 34. Note that the energy is minimized by the M=60  element discretiza-

tion in the near field part of the curve. Thereafter, the knee in the curve

is associated primarily with the inclusion of an extra element in the solution

domain due to the boundary layer growth. Using 50% grid growth to keep the

}	 boundary layer edge within the same element throughout the solution range

resulted in the higher overall level for the energy norm associated with

correspondingly larger element spans.

Figure 35 presents comparison between computed solutions obtained using

the M = 60 linear element discretization and a M = 30 quadratic element

discretization. The first node off the wall was maintained at the same

physical location for both cases, which results in a progression ratio of

1.188 for the M=30  quadratic element discretization. Note that using a non-

uniform discretization for the quadratic element case results in placing the

element vertex nodes in the geometric progression while the interior nodes

remain located at the mid-span of an element. The grid growth was 20% for the

linear and 30% for the quadratic element solutions. In comparison with the

experimental data, the solution using quadratic finite elements yields

generally more accurate estimates for the boundary layer parameters than that

obtained with linear finite elements. This cannot be directly confirmed,

however, from noting the results presented in Figure 36. The energy norm

calculated using quadratic finite elements has a higher level than that calcu-

lated using linear finite elements throughout the solution range except for a
.F

small portion at the beginning. This is in part a direct result of a higher

estimate of the boundary layer thickness 6, for the quadratic element solution,

which yields correspondingly higher values of the effective viscosity ve/v.

t	 The computed extremum of ve/v for quadratic element solution was 937 compared

to 891 for the linear finite element solution,

^	 J



10-6 Additional tests using`e, as small as 10 g did. not alter the

signification : d 'gi t 1 n . the .solution norms.. Table 2 summarizes the-.results of

numerical experiments'carried ou ` to assess the efficiency of the 'aigori thin for

the Bradshaw , relaxing flow test case as obtained with the M= 30 linear element

	

I	 non-urn form di screti zati on . wi th progression ratio p 1.222. The tabulated

results correspond to the final solutions at Ax = 1.3 m.. The results tabulated

	

i	 for the energy norm,. shape factor and skin friction show the significant place

	

;` {	 of the integration truncation error, as confirmed by a higher-order accurate

solution obtained using Richardson extrapolation. The slash isolates the

significant digit in each norm, with the upper result corresponding to the

more accurate one obtained using half the regular integration step size (the

Richardson step).

The reference solution in this comparison (case 1) was obtained using a

fixed uniform . integration step size AX = 0.05 ft with reevaluation of the

Jacobian every twelve integration steps, which required evaluation of the

Jacobian 66 times throughout the solution range. Using twice the integration

step size and reevaluating the Jacobian every , 12. steps, case 2, yielded

identical .values. for the norms while reducing. the number of passes.: and

accordingly the CPU by 33%. The effect of utilizing the coordinate transforma-

tion equation is documented by case 3, wherein the solution domain was allowed

to grow linearly in the streamwise direction in such a fashion that the span

of the solution domain at the final integration station was 20% larger than at



TABLE 2

EFFICIENCY OF THE LINEAR FINITE ELEMENT ALGORITHM - BRADSHAW RELAXING FLAW (MLT)

Case
No.

Grid
Growth

%

Integration
Step Size

Ax
ft

Convergence
Criteria

a CPI *
Number of

Passes

Number of
Jacobian
Reeval ua-

tions

Percent
Increase

in
Step Size

E
( 10- 3 ) H

Cf
( 10- 3)

1 0 .005 10"6 L. 2341 66 0 .572/35 1.389/39 .1704/91
44 40 80

2 0 .010 10"6 .67 1704 33 0 .572j05 1.3896/49 .17836/48
13 58 26

3 20 .005 10"6	 . 1.42 2418 66 0 .529/52 1.3805/04 .18293/30
60 15 51

4 0 .005 10
-6

1.03 2473 0 0 .572/36 1.3894/02 .17848/87
47 11 56

5 0 .005 10` .53 905 66 0 .572/31 1.3893/54 .17850/20
40 66 00

6 20 .005 10-6 .92 1438 27 10 .517/37 1.3721/86 .18421/68
40 90 70

*Normalized on case number 1.
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Case A is identical to case 1 except..that the i ni ti al .Jacobi an was

retained throughout the solution  range.	 The difference 
In 

the energy norm

and both engineering norms 'between these two:,casesis:bey on. d the significant

digit based on Richardson extrapol a ti on.	 Retaining the i M ti Al Jacobi an

resulted, however, in a 3% increase in 'the number of passes and CPU..

The influence of a relaxed convergence criteria a is documented in

case b.	 Reducing s by two orders of magnitude to 10'4 resulted in reducing

the number of passes by 60% and a 47% savin g in CPU.	 With this favorable

economy feature, the change in the energy norm and the engineering norms

from the reference case is again beyond the acceptable significant digit..

In test case 6, the integration time step Ax was increased by 10% every

time the Jacobian was reevaluated.	 This procedure reduced the number of

passes by 38% and the number of Jacobian reevaluations by 60%. 	 The energy

norm was minimized while the change in the shape factor was 1% and that in

the skin friction was 3%.

The results of an assessment of accuracy and convergence trends for

linear element solutions are presented in Table 3. 	 These results were

obtained employing the finite -element matrix S= 0 with a convergence criteria

e of 10'5 .	 The span of the first element q1 was 0.27 x10 -3  ft, for the M =39

el ement and the first M = 60 element di screti zati.on , whi l e for the second

^
P

-	 x	 -3M = 60  element and the M -120 element d^ screti zati ons , d1 was 0.21	 10	 ft.

g The larger negative value for the change in the energy. norm, normalized by

the initial energy (AE/E), indicates a greater mi ninizati.on.of the energy,

I° since the energy norm decreases as the solution is marched downstream. 	 On a

this basis, solution accuracy increases with discretization refinement.	 Not

a also that the normal i zed   change i n the shape factor (AH/H) i s not affected-

by d.i screti zati.on refinement, and -thus could.not be used to assess convergence

X,)MQINAD PAGF, IS.

_Y.	
5"W	 011 j



,J

F^rr ,

TABLE 3

ACCURACY AND CONVERGENCE OF THE LINEAR FINITE ELEMENT ALGORITHM - BRADSHAW RELAXING FLOW (MLT)

	

Number	 Number

of	 Progression	 A Amax	 Amax/d of

	

Elements	 Ratio	 1 e	 e	 CPU*	 Passes	 AE/E	 AH/H

30 1.222 .0054 ,20 1.00 635 -.167 -.036

60 1.089 .013 .085 1,98 638 -.201 -.036

60 1.095 .094 ,094 2.02 655 -.204 -.038

120 1,439 .039 .039 4.74 847 -.219 -.038

*Normalized on 30 linear element grid
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Summarized in Table 4 is the corresponding assessment of accuracy and

r	 convergence trends for the quadratic element solutions for the same test

case. The span of the first element 41 was chosen to be twice that of the

corresponding .linear element discretization, with twice the toal number of

s	 elements in the solution domain. This procedure resulted in placing the

first node off the wall in the same physical location for the linear and

quadratic element cases, in an attempt to maintain consistent resolution of

the near-wall damping. The CPU time is approximately the same for the

corresponding linear and quadratic discretizations. The solutions employing

i
quadratic elements display convergence in the energy norm with discretization

refinement, as evidenced by a superior minimization of the energy norm. As

for the linear element solutions, the normalized change in the shape factor

was not affected by discretization. Comparing results in-Tables 3-4 shows

that the M =15 and M= 60 quadratic element discretizations yield a superior

energy minimization than the corresponding M = 30 and 120 linear element

discretizations. This is not valid, however, when comparing the M= 30

quadratic element discretization to the M= 60 linear element discretization

results. The influence of the progression ratio used to define the non-

uniform discretization, on finite element solution accuracy, is shown in

Table 5. The progression ratios which yield the largest negative value of

AE/E, i.e., extremum minimization of Vhe energy norm;, are also those which

required the least number of passes. the computed effective viscosity at

the first node off the wall (ve/v) increases as the span of the first

element of increases, and the best results were obtained when ve/v was

approximately equal to 2. The normalized change in the shape factor

decreases monotonically as the progression ratio decreases; hence, it could

not be used to indicate the preference of any progression ratio over the

others.



TABLE 4

ACCURACY AND CONVERGENCE OF THE (QUADRATIC FINITE ELEMENT ALGORITHM - BRADSHAW RELAXING FLOW (M€.T)

Dumber Number

of Progression ©	 max/a Amax/& of
Elements. Ratio 1e e CPU* Passes AE/E AH/H

155 1.506 .0040 .45 1.00 608 -.178 -.038

30 1.188 .014 .16 1.96 614 -.198 -.038 .

30 1.200 .6087 .20 2.01 636 -.193 -.037

60 1.079 .023 .076 4.85 649 -.229 -.038

*Normalized on 30 linear element grid (Table 3).
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TABLE 5

INFLUENCE OF PROGRESSION RATIO ON LINEAR FINITE ELEMENT SOLUTION ACCURACY -

BRADSHAW RELAXING FLOW (MLT)

Number
Progression	

A 
/Amax	 Amax

/ 
d	 of	 ve/v .

Ratio	 1 e	 e	 Passes	 1	 AE/E	 Ali/N

1.222 .8054 .20 635 1.151 -.167 -.036

1.211 .8869 .20 617 1.313 -.183 -.034

1.200 .8088 .20 605 .1529 -.228 -.034

1.189 .013 .16 606 2.205 -.220 -.033

1.178 .017 .16 610 3.181 -.163 -.027

1.167 .021 .15 623 4.799 -.163 -.020

1.155 .027 .15 646 7.387 -.187 -.014



45

Accuracy and Convergence for Turbulent Boundary Layer Flow

The presented results document viability of the finite element algorithm

and the discretization philosophy for acceptably accurate turbulent boundary

layer flow prediction. A tightly controlled numerical test case, analogous to

that employed for the laminar flow analysis, is required to quantize accuracy

level and convergence with discretization refinement. The case corresponds

essentially to transition to turbulent flow of the laminar slug start in zero

pressure gradient. The test conditions were selected identical to the Wieghardt

data set (IDENT 1400, Proceedings of the Stanford Conference (1968)) with

constant freestream velocity (U. = u I = 33 m/s) yielding a unit Reynolds number

of 2.19x 106 per meter. Five different non-uniform discretizations were used to

study accuracy and convergence with discretization refinement. The total number

of elements M spanning the solution domain R 1 and the corresponding node

progression ratios p are listed in Table 6 for the linear and quadratic finite

element solutions. All computed solutions were initialized essentially

identical to the experiment, wherein a turbulence -free uniform flow impinged

upon the plate leading edge, using the slug start profile shown in Figure 4.

TABLE 6

OISCRETI7.ATION DATA -TURBULENT FLAT PLATE FLOW

M 12 24 36 48 60
K=1

P 1.627 1.222 1.125 1.083 1.061

M 6 12 18 24 30
k,'2

p 2.814 .1.510 1.271 1.176 1.110
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As before, the first node off the plate was held at the same physical position

for all discretizations. The number of elements between the plate and the

knee of the velocity profile was always one-sixth the total number of elements
4
i

spanning the solution domain. No turbulence transition model was employed;

instead computational transition from laminar to turbulent flow was specified

to occur when shape factor H achieved 90% of the fully developed laminar flow

value.

Figure 37 summarizes computed solution error obtained with the linear

element algorithm as a function of discretization refinement_ Convergence in

the energy norm is essentially quadratic for the three initial-value matrix

structures, S= 0, 2, and 3, with the finite element algorithm S= 0 again

yielding the smallest level of error for any M. Note in all cases that

convergence is from above. As in the laminar flow results, the finite element

algorithm displays accuracy for the coarse grid that is superior to strict

adherence to the convergence curve. Convergence in shape factor, Figure 38,

is essentially quadratic and from below for the diagonalized (S= 2) and Crank-

Nicholson algorithm (S= 3). The finite element results do not display a

convergence trend in shape factor. Specifically, the error is uniformly

constant and smaller than that for either the S = 2 or 3 results. Since shape

factor is the ratio of S* and e, see equations (77)-(79), their convergence

properties were measured. As shown in Figure 39, convergence in both S* and

9 is quadratic on coarse grids and nearly fourth order for finer discretiza-

tions. Since the curves are parallel, the error in the shape factor remains

essentially constant as determined. Figure 40 shows that convergence measured

in skin friction is essentially quadratic for all three forms S = 0, 2, and 3,

with the finite element solution yielding the smallest error level for any M.

Based upon the experience with laminar flows, a fourth order accurate

algorithm is anticipated to result from use of quadratic finite elements



definition, equation (6), and that eddy viscosity involves a shear, the

specific form of the energy norm is
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evolution of u, the non-linearity of the subject equation system will exert a

profound impact on the convergence evaluations.

Figure 41 presents the error computed in the energy norm as a function

of discreti zati on. refinement for the linear  and. quadrati c. element algorithms.

Convergence is from below and of generally fourth degree for the quadratic

element solution, which predicts extension of the linear theory. However,

the results for the finest discretization show a significantly larger absolute

error than predicted by the convergence curve. This is interpreted again as

an indication of the limit of practically useful di screti zati ons. The accuracy

of the quadratic element solutions can be a.factor of tip to 50 improvement

over the corresponding linear element results.. Figures 42-43 present error in

the engineering noms as a function of discretization refinement. Convergence

is osculatory in both norms for quadratic elements, as experienced in the

case of laminar flow, and of essentially fourth: degree to the attainable limit

Of accuracy. The absolute error in the engineering norms for the finer

discretizations is cohsideraely larger than predicted by the convergence curlre,

confirming the experience in the energy norm.



Accuracy Evaluation Using the TKE Closureif

4	 As a summary computational study, the turbulent kinetic energy two-.

equation closure model was evaluated using the finite element algorithm, with

primary emphasis on solution economy. The test case corresponds to the

Bradshaw data set discussed previously. Details on solution initiation are

given by Soliman (1978), and consistent accuracy and convergence trends were
i

k computed using the TKE closure model for both the linear and quadratic element

y	 algorithms.
i
k

	

	 The efficiency of the solution algorithm employing the TKE closure

model can be appreciably improved by using one Jacobian for the three depend-

ent variables, resulting in a considerable reduc zion in required memory

storage. Table 7 summarizes comparisons between different methods of handling

the Jacobian. The reference solution (case 1) was obtained using the correct

Jacobian for each of the three dependent variables u, k, and e. Employing the

u Jacobian for each dependent variable solution resulted in deterioration of

accuracy, as evidenced by the larger value of AE/E, and an overall 8% increase

in CPU. The third solution was obtained using the k Jacobian for each of the

three dependent variables. This shows an improvement in accuracy over the

three Jacobian reference case, as evidenced by a minimum AEJE and a 9% saving

in computer CPU. No specific trends were indicated in AHJH. To investigate

influence on solution accuracy, of the accuracy of the turbulent viscosity

evaluations within the Jacobian, v t was deliberately under-evaluated and

convergence of the matrix iteration evaluated. Case 4 corresponds to using

one--half the value of the turbulent viscosity vt calculated from the TKE model

in the k Jacobian, which was used for all three dependent variables. The
4

matrix iteration was convergent, but the Jacobian distortion resulted in a 13%

increase in CPU over reference case 1 and 24% increase in CPU over case 4.

However, solution accuracy was not consequentially affected, as evidenced by

48

3
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TABLE 7

INFLOENCE OF THE JACOBIAN ON LINEAR FINITE ELEMENT SOLUTION -- BRADSHAW RELAXING FLOW (TKE)

Dumber of
Number Iterations

Case Type of of • for
No. Jacobian	 CPU* Passes First Pass	 AE/E	 AH/H

1 3 Jacobians	 1.00 1291 14	 .137	 -.059

2 u Jacobian	 1.08 1456 14	 .151	 -.060

3	 k Jacobian.	 .91	 1236	 8	 .111	 -.058

4	 0.5vt	 1.13	 1531	 12	 .116	 -.059

5	 0.1vt	 -_	 _-	 }30

*Normalized on case slumber 1..

t
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comparing the normalized change in the energy norm for cases 3 and 4. Test

case 6 corresponds to using only one-tenth the calculated turbulent viscosity

within the Jacobian. This proved to be too inaccurate an evaluation, and

convergence could not be achieved after iterating 30 times at the first

integration step. Hence, a completely accurate evaluation of the Jacobian is

not necessary to achieve an adequately-accurate engineering solution, and

significant solution economies can result from taking advantage of the

versatility embedded within the Newton iteration algorithm.

Hyperbolic Equation Solution

Equations Solved

In Cartesian coordinates, the partial differential equation system

governing transport of a scalar field, for example the transient continuity

equation, is

L(Q) =	 +	 9q = 0	 (86)

with boundary conditions

I(q) = a lq f Vq • n + a 3 = 0	 (87a)

and an initial condition

	

q(X,O)- = gO (X)	 (87b)

The goal of this analysis ?s a study of accuracy and solution economy of a

factored Jacobian form of the developed Newton iteration-finite element

solution algorithm. Select divergence-free rotational and irrotational

velocity fields selected for this purpose include

Constant:

A	 A	
(88)



Solid Body Rotation:

4.
U2 = rS2a

Irrotational Flow About a Cylinder:

U
3 =U.VX Y 1 -	 (90)

_	 r

Irrotational Cylinder Flow with Circulation:

U4 = UV X y 1 _	 + ^ Tn	 k	 (91}

In equations (88)-(91), U„ is a reference freestream velocity, 	 is the

constant angular velocity, the two-dimensional solution spans 0 < x < a,

0 < y < b,	 is the circulation, and P is the cylinder radius. The initial

distribution of q(x,y,0) is establ i-ohed as a "cosine-hill" rotated about its

centroidal node as

go(x,y,0) =_ 100 ISing	 (92)

where 0 < r < h is the local radial coordinate wi th ori gin (xo ,yo ), and A

is spanned by M finite elements. Figure 44.a illustrates the initial condition

given by equation (92) for M =8 and ( xo ,yo ) = (7,7) on a 32x 32 uniform

square mesh of span 0 < a,b < 80,000 m.

The statement of the finite element solution algorithm for 	 j

equations (86)-(87), on U E 122 x t is, cf. Baker (1978),
P

[B200] jQje + (tUITe [630011 + tVI [830021) fQ}e1 = {0}	 (93)

The Jacobi an of the matrix -iterative solution of equation (93) is

_	 1
t	 ,

51
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a 

[B200] + he {UIT[ 83001.1 +' (VT T EB300211	 (94)

and the iteration vector {aQT is solved as

	

P3{ 60 - -M	 (95)

For the factored Newton iteration algorithm, the uacohian [d] and

elements of M are reexpressed on two-dimensional space in terms of the

tensor matrix product (G ). The two-dimensional factored Newton iteration

algorithm is then written in the form

Cd2(Q) _!^] 9 ^dI(Q) _!L^ dQ ^}^	
-fF^(^)P	

0 fF2(Q)P	 (96)

where Q represents an intermediate solution. In hypermatrix form, for a

general one-step integration algorithm, equation (96) is written as

S° A . €A200] + Mae M [A3001I	 4
2	 2.

S[Ae [A200] + hMe ' M [A3001:3 faQ }P+1

1, 
e

-	
Sa

e CA2 .001 [[&IJ+ '" 1Q1	 + h [ebe f UlT[A300I] ^[Q}a^.1.

+ (I a),&e lUl [A30013 iQ}j)

0	 h TA2401 CQI +, -- (QlJ+1, + h. f OA ^^}^e [A304II CQ +
l2	 2
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The comparisons between the factored Jacobian iteration algorithm,

equation (96), and the conventional multi-dimensional algorithm, equations

(93)-(94), are obtained for the vel ocity fields given in equations (88)-(89).

Figure 44a shows the ini tial distribution of the wave packet on a 32x 32

uniform grid for velocity field u1 . Figure 44 b presents the conventional

multi-dimensional bilinear finite element algorithm solution after 150 time

steps with At= 125 s. Figure 44c illustrates the final solution obtained by

the multi-dimensional algorithm, but with the initial-value matrix diagonal

ized. Figure 44d shows the final solution-obtained with the factored Newton

iteration algorithm, equation (96). It is virtually identical to the

conventional results, and was obtained at approximately one-fourth expendi-

ture of computer CPU and one-fifth the computer core requirement. These

differences are essentially direct refl ecti ons of matrix bandwidth of [J] ,

hence become progressively more favorable as the mesh is refined. Table 8

summarizes a comparison between the factored algorithm ' A', and the

conventional multi-dimensional algorithm 'B' for different values of the

Courant number, udtloe , and two initial-value matrix structures. The CPU

times for 'B' are five to seven times larger than for W. The finite

element algorithm (S= 0) retains the peak better and has smaller trailing

wakes than the diagonalized algorithm (S= 2). Numerical diffusion and

dispersion error is also less for 'A' than for 'B' for largest value of

Courant number.

Corresponding accuracy, CPU and storage trends were obtained for

velocity field u2 ; hence, only the factored algorithm results are presented.

The solid-body rotation flowfield !Y2 is considerably more demanding, and

i	 providev a quantization of dispersion error. The solution parameters (qo, a,
k

b, U, Qt, M) remain identical, the diagonalized algorithm is relegated to-

2 history, and Figure 45 illustrates the solution obtained at the quarter,	 j
	̂

j
E.
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TABLE 8

COMPARISON BETWEEN. THE FACTORED NEWTON ITERATION ALGORITHM AND THE

MULTI-DIMENSIONAL BILINEAR ALGORITHM

Peak Value (% of Original) 	 Maximum Wake ( % of Origi nal Peak)

CPU*	 A	 B	 A	 B
.Courant-----
Number	 A	 O	 S 0	 S w 2	 S 0 'S 2	 S -0	 S 2	 SAO	 S=2

01	 4.26 19.52 102. 66. 102. 62.	 3.	 -20.	 3.	 -19.
(86.)

0.5	 1.00 4.5b 102. 63. 99, .60.	 -5,	 -21.	 -5.	 -23.
(87.) (84.)

1.0	 0152 3.67 90. 56. 78. 53.	 -10.	 -21..	 -19.	 -30.
(92 .) ( 82.•) '	 (94,)' (82.)

*Normalized on EE factored solution for C= 0.5.

**Maximum observed value.
N

J0

•g}.^.^
9-L-A

ti•I
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three-quarter and full 3630 rotation of the concentration packet. The

initial -distribution would appear identical to Figure 44a, moved to the

9 o'clock position, and the exact solution would be Lagrangian advection of

the initial distribution without distortion. The factored algorithm is

again essentially free of numerical diffusion (the peak level remains

intact). The ripple structure in the ground plane is dispersion error, and

while modest in comparison to other solution algoriths, cf. Long and Pepper
3

(1976), is borderline on acceptability. Filters can be constructed to

annihilate short period waves, e.g. Raymond and Garder (1976), and Figure

44d illustrates the substantial imporvement accrued at the three-quarter

turn of the filtered factored algorithm. Filtering can induce numerical

diffusion, and the peak value has been reduced by 2%; a somewhat modified

immediate trailing wake remains identifiable. For the multi-dimensional

bilinear algorithm on a 32 x 32 uniform grid, the storage required for the

Jacobi an was 67 x 1389 locations compared to 2 x 3 x 1389 locations for the

factored algorithm. CPU for the bilinear algorithm was ten times larger

i
than for the factored algorithm, and there was essentially no difference

between the two solution accuracies.

The assessment of numerical preservation of symmetries and skew-

symmetries by the factored algorithm was obtained using the i rrotati oval

'	 velocity fields iii and U	 Both correspond to flow about a cylinder of

diameter 8A and centered at the grid centroid. Two concentrations were

symmetrically palced about the stagnation streamline, and all other solution

parameters remain identical (q o , a, b, U,,,, At, M). The computed filtered

factored solution using U3 is shown in Figure 46 for select time steps. The

far-downstream peak values are within 2% of the initial level, and dispersion
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Figure 47 illustrates select results obtained by the factored algorithm, for

the irrotational velocity field U4 with circulation. Very large gradients

are illustrated supported with acceptable dispersion error and negligible

loss of peak value.

ii
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