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THE USE OF LANDSAT IMAGERY IN RELATION TO AIR SURVEY IMAGERY i.

^. FOR TERRAIN ANALYSIS IN NORTHWEST QUEENSLAND AUSTRALIA

1.	 INTRODUCTION i

The investigations coverthe Gregory River - Mount Isa - Cloncurry 11

- Dobbyn area of northwest Queensland, Australia, (Figures 1, 2
I

3).	 were
w

J'and	 They	 undertaken with a grant from the United Kingdom

+ Department of Industry, under a contract with NASA and in

r collaboration with the Bureau of Mineral Resources and the CSIRO

{1
of Australia.

f
The main objective of the investigation was an evaluation of

i the imagery taken by the multi-spectral scanners on ERTS/LANDSAT L- r3

and 2 at different seasons of the year,, namely March" July, Ii t

September and December, for analyses of the features of the natural

f terrain with particular reference to geoloqical mapping and mineral it

3	
i< exploration.	 The imagery has been evaluated with reference to ?;

3 multi-spectral photography and thermal line scan imagery of

,i selected areas flown in 1971 and 1975 (Figures 4, 5, 6, and 7) 	 as

4	 { art of a research project sponsored initially b 	 the Minis	 ofP	 P	 j	 P	 Y	 y	 Ministry
3

i

( Technology, subsequently Procurement Executive, Ministry of Defence.

l^
Interpretation has been verified by ground truth investigations.

PAGEi { j„d f'S,^kx.. ^..1
2.	 TECHNIQUES QUALMpo()R

The multi-spectral imagery from the LANDSAT satellites and the i

multi-spectral and thermal imagery from aircraft have been

{ r
{
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interpreted both visually using additive viewers built at	 {

Bedford College and by semi-automated techniques using a Joyce

I 	 Loebl 36S microdensitometer and computer processing of the data.

Following initial studies of black and white prints of individual

MSS bands of LANDSAT imagery at the 1:1 million scale, positive

t

photographic plates were made of each MSS band from the NASA

negatives. Using an additive viewer these bands were projected

through appropriate filters, and studied both individually and
	

k

in combination to produce colour composites on a screen at the

1:250,000 scale. 	 Overlays of the spectral signatures displayed
i

at this scale werere ared and the signaturesp	 p	 'gnatureswere interpreted..

with reference to structural features, superficial and bedrock±

vegetation,geology,	 soils and other relevant ground truth

information. r-

Following studies at the 1:250,000 scale grids were established

over the-LANDSAT frames and, from the NASA negatives of each MSS-.'`{
fi

band, positive photographic plates were made for each grid} ,
a

section.	 These were displayed through appropriate filters,

both individually and in combination to produce colour composites„

at scales of 1:50,000 or greater. 	 Overlays of the spectral

signatures have been prepared and interpreted with reference to

the same environmental parameters as for the whole frame.

Additionally, overlay maps showing (a) spectral tone and (b) spectral #

colour have been prepared using respectively systems of shading u k

and symbols which permit production of black and white prints ^{ 1

showing tone and colour individually and also in combination .	 t

to portray spectral signatures. 	 Separate maps showing vegetation,

i

}J

^Y

r

r
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l	 bedrock and superficial geology, faults and lineaments interpreted

from the imagery have been prepared for selected areas.

Both for the whole LANDSAT frames and for individual grid

sections of these, colour transparencies have been made of the

individual MSS bands projected through appropriate filters and of 	 ^.
V.

a

the colour composites produced by combinations of them. 	 These

f transparencies have been scanned and digitized with a Joyce

Loebl 3CS microdensitometer and the data processed. 	 t

,k a

The data onthe computer compatible tapes of_LANDSAT imagery

has been extracted using the programmes given in the Appendix

and from the microfilm output positive photographic plates have

been made and used to interpret the imagery in the same way as
..

those produced from the negatives. 	 Additionally, it has been

- possible to 'stretch' the information within given density ranges

and thereby obtain superior colour composites and higher quality
e	 a

rj transparencies for subsequent scanning and data processing. 	 The

imagery from the CCT's has been displayed at scales of up to 	 -..	 i
1:10,000.

The interpretations of the LANDSAT_'imagery have been compared with

those from multi-spectral photography at 'scales of 1:15,000 and

' 1:5,000.	 The aerial photography has been studied usin g conventional

9 x 9 inch black and white prints and a Hilger and Watts

stereoscope, and it has also been studied using a system built at 	 S

Bedford College which permits simultaneously the stereoscopic

viewing of plates of the panchromatic film displayed at the same

scale as the output from the microdensitometer . and the display of

`f^
{	

a

the infra red colour or the true colour film on a projection screen.
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3.	 ACCOMPLISHMENTS

The investigation covered by this report forms part of a long^

term research programme initiated in 1970, when, following

promising results from studies of the early space photogra phs of

central Africa and from experimental multi-spectral photography
i

from a low flying aircraft over a sequence of Proterozoic

sedimentary ocks in South West Africa and Botswana in which 1

mineralized zones were distinguished by anomalous plant communities,

northwest Queensland was chosen for evaluation studies of multi- a

spectral photography and thermal line scan imagery in the recognition }

of plant communities, physiographic and geological features,

assisting mineral exploration with the ultimate objectives of 7

interpreting aircraft and satellite imagery using automated data
^

{{
	 c

handling techniques (Cole, Owen-Jones and Custance 1973). 4
c

i
x
!	

d

Northwest Queensland was chosen for several reasons. 	 The

vegetation, soils, physiography/geomorphology and geology of

the area was already documented on a regional scale and detailed

-information was available for small areas (Blake 1938;. 	 Twidale

1956 a and b; Whitehouse 1940; de Keyser 1958; and Denmead 1960;

Carter Brooks and Walker 1961). 	 The area is characterized by

the juxtaposition of broad plains and dissected hilly terrain

developed over Proterozoic and later geological formations which

general north-south orientation and contain a varietyhave a	 of

ore deposits, many of which could be sensed in a relatively

small east-west flying block. 	 Within the area the Dugald River

Lode, northwest of Cloncurry, offered unique opportunities for

sensing`a larger ^zr,d little disturbed lead-zinc deposit outlined
;

by an anomalous plant community (Nicholls, Provan, Cole and Tooms
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, 	 1965) while the Lady Annie area, northwest of Mount Isa, where

L^
exploration was in progress offered a challenge to the use of

remote sensing techniques in locating other, then unknown,-
'

deposits.	 Within this area the vegetation cover was known to

reflect closely the nature of both the bedrock geology and the

f	 i.	 superficial cover (Nicholls,' Provan, Cole and Tooms 1965) while

a	
(;^	 the semi-arid climate promised clear atmospheric conditions for 	 jf 

E	 {^	 the acquisition of high quality aerial photography and LANDSAT 	 f;

f	 imagery.	 ?

a

Under the initial research grant from the United Kingdom Ministry

of Technology, multi-spectral and thermal imagery was accruired
s

for the Mary Kathleen - Cloncurry and Dugald.River areas

(Figure 4) .	 Similar imagery for the Lady Annie area (Figure 5)`

was flown for a mining company for whom the investigators

undertook the interpretation on a consulting basis. 	 The areas	 j

flown • during the April-May.period in 1971 when it was anticipated

jthat, following the summer.-rains whichpromote active plant growth,

the conditions would be most suitable for evaluating the
.9

s 1	 relationships between spectral signatures, vegetation and geology.
1	

3 

All areas were imaged at a scale of 1:15,000 while the Dugald

rE	 River area was imaged at the 1:5,000 scale.	 The flying programme

4

f

was undertaken in anticipation of receiving ERTS 1 ima gery of,'the

area.	 The latter however was not obtained until November 1972.

In both 1971 and 1972 exceptional rains were received in western

Oueensland.	 The plant cover was in optimal condition during the
t

air survey flying programme and in good condition during the first 	
t.

' t 	 passes of ERTS I/LANDSAT I. r

kw
Field investigations were undertaken during and subse quent to the

flying programme in 1971 and to the satellite passes in 1972.

r
t
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^	 {	 ; Calibration marker boards were placed in position under each

flight line for calibration of the multi -spectral photography.

(Plate 1)	 Ground photography was undertaken to determine the f:

contribution of plant cover, soils and bedrock to the spectral 11.

signatures.	 Temperature measurements were made over each type

!
i

of surface (e.g. open water, moist soil, dry bedrock etc.) for

calibration of the thermal imagery. 	 The imagery was subsequently

checked with reference to environmental components in the field,

' and soil and plant samples were collected across known mineralized

t zones and across spectral anomalies for geochemical and

biogeochemical analyses.	 These investigations provided the

background information for initial assessment of LANDSAT imagery.
x

i

' Further investigations have been undertaken under grant from

1
the United Kingdom Department of Industry and under contract

Y

with NASA for the evaluation of both archived and requested

LANDSAT'I and 2-•imagery.	 The archived LANDSAT I imagery which has _ }

been received is given in Table 1 and the requested LANDSAT 2

imagery which has been received is given in Table 2. 	 The latter

was acquired in 1975 when again good rains fell in western

Queensland.	 The areas covered by the imagery and studied in this

} report are shown in Figures i and 2. 	 The availability of the

requested imagery has permitted comparative studies of the 4 ,
z

information yielded by imagery at.different seasons of the year. i

The results

i

obtained from initial interpretations of colour

j composites generated from the negatives of the MSS bands were so

F j encouraging as to warrant requests for the CCT's of the frames

E covering part of the study areas.. 	 The CCT's received are listed ^-	 z

x
}

jj

%:.^	 yr,e
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Table 1	 DANDSAT 1 imagery of northwest Queensland received from

NASA
r

Name of Area Date ofNo of Frame
NASA ID Ref.No.	 Imagery

t,

z
Cloncurry-Dobbvn 1116-00073 16.11.1972

Cloncurry-Dobbyn 1152-00073 22.12.1972

^i Mount Isa-Urandangi 1027-00123 19.8.1972

Mount Isa area 1021-00121 19.8.1972

Mount Isa 1117-00132 17.11.1972

Mount Isa-Georgina 1189-00133 28.1.1973

i
River t

Cloncurry-Duchess 1206-00081 14.2.1973

Y

i Mount Isa-Gregory 1207-00133 15.2.1973 1	 :
I

River; S

t

1
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Table 2.	 LANDSAT 2 imagery of northwest Queensland
requested and received from NASA

Name of Area No of Frame Date of Date of Receipt
NASA 1D Imagery' of Imagery
Ref. No

Cloncurry - Dobbyn 2039 - 23555 2. 3.1975 18. 8. 1975

Cloncurry - Duchess 2039 - 23562 2. 3.1975 18. 8. 1975

Gregory River - 2041 - 00013 4. 3.1975 18. 8. 1975
Mount Isa

Georgina River 2041 - 00020 4. 3.1975 18. 8. 1975

Julia Creek - 2083 - 23503 1. 3.1975 18. B. 1975
McKinlay

• Lady Annie - 2059 - 00012 22. 3.197.5 3. 11. 1975
Mammoth

Georgina River 2059 - 00015 22. 3.1975 3.

3,

11.

11.

1975

1975Julia Creek - 2128 - 23503 30.	 5.1975
McKinlay

Cloncurry - 2183 - 23552 24,. 7.1975 11. 1,2. 1975
Williams River

Julia Creek - 2183 - 23554 24. 7.1975 11. 12. 1975
McKinlay

Mt Gordon - Lady 2239-- 00001 .18. 9.1975 2. 2. 1976
Annie

Georgina-.River 2239 - 00003 18. 9.1975 2. 2. 1976

Julia Creek - 2236 - 23491 1. 9.1975 2. 2. 1976
McKinlay

Lady Annie - 2292`- 23594 10. 11.1975 13. 2. 1976
Mount Isa

Cloncurry - 2291 - 23542 ',2. 11.1975 13. 2. 1976
Duchess

Georgina River 2293 - 00000 11. 11.1975 13. ,2. 1976
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Table 3	 UANDSAT 2 Computer Compatible Tapes rf northwest Queensland

fti received from NASA

rk

Name of Area No of Frame Date of Date of Receipt

Ef NASA ID Ref.No. Imagery of Imagery

Cloncurry-Dobbyn 2039-23555 2.3.1975 10.8.1976

Lady Annie-Mammoth 2059-00012 22.3.1975 16.12.1976

j Cloncurry-Williams 2183-23552 24.7.1975 16.12.1976
1 River

js Mount Gordon-Lady Annie 2239-00001 18.9.1975 16.12.1976

Lady Annie-Mount Isa 2292-23594 10.11.1975- 16.12.1976
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in Table 3:	 Fnrt^h^er field studies were made in 1974, 1975

} and X976 when rock 5a:mples were collected for measurements of

il thermal properties in connection with both the interpretation

' at the thermal imagery obtained in the 1971 aircraft flying

't #i progrzaNTes and. for the forthcoming Heat Capacity Mapping

Mission.	 On the basis of initial interpretation of LANDSAT I

j imagery, for selected areas additional airborne multi-spectral

photography was acquired for narrow strips of country across

if areas of particular spectral interest in 1975.	 These areas are

I
listed in Table 4 and two of them are outlined in Figures 6 and 7.

The cost of this flying programme was met from the initial grant``

from the Ministry of Technology/Procurement Executive, Ministry
i

^I
of Defence. t j

I In pursuit of the research programme's objective of interpreting

satellite and aircraft imagery using automated data handling

techniques the investigation covered by , this 'report-.had five

primary objectives or groups of objectives. The first was the

i	 identification and interpretation of the spectral signatures 	 r

produced by a_combination of plant cover, soils and bedrock

outcrop; the interpretation included the identification of 	 # '

6

	

	 geological structures and lithological units,the recognition of

faults and lineaments important for the loci of ore bodies and

the identification of iron rich zones related to potentially

mineralized horizons. It included the discrimination of plant

communities indicative of particular bedrock units, and of

differing types of superficial cover and their use in detecting 	 I,

the presence of near-surface bedrock. It involved the identification
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t	 of areas of black soils plains and the recognition of drainage

systalus, changes of stroam channel, subsurface drainage patterns

j	 and evidence of changes in the level of the water table. xt

IA
	 also included an appreciation of changers of spectral signature

r

	

	 dun to differences in grazing activities, fire's, reads and railways

which area not related to physical characteristics of tie terrain.

The second objective of tlia investigation was an assessment of

r l the iu orneation contained in the LANDSAT ;lantigary at different

f seasons of the year for then identification of they terrain features	 i

f cited in the above paragraph. 	 1;'his involved the information	 }

contained in each of the MSS bands and in combinations of them,

including particularly the colour composites crenerat end by a 

combin,ation of bands 4 0 5 and 7 pro j ectod. through appropriate

filters.

The third objective involved ,a, comp arntave assessment of the

#

^ information obtainable from the negative and ,positive filxus of	 ;.

the LANDS 1T MSS bands and teat obtainable from 'the comouter	 IA

coiupatible tapes, when each MSS band is e alninesd individually 	 1

and in combination with others to produce colaur colnposites.
t

^

They fourth objective was a comparative evaluation of the	 s

information obtainable from J" ANDSIVII imagary and from air sarvey
# image ry for'the recognition and interpretation of geological ,

e

S;
fe&tures at importance  for the disposition of are bodies.	 This	 t.

e o1b jectives .included an. as: ossme:n't of the roles of both types of r

IF
t	 •{

inmagery in to integrated programme of geological reconnaissance

and mineral exploration.

1?

^11^^^T^iv^`^'^ 
r^^^?^•1^rr r^^7
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The final objective was a comparative assessment of visual

interpretation and classification and of computer generated

outputs from both LANDSAT imagery and air survey imagery.	 This}

,, 4 involved appraisal of differing types of classification,

, { enhancement and display relevant to the ultimate objectives ofp	 ^ 3
s

t interpreting satellite and aircraft imagery using automated

data handling techniques.

The accomplishments will be considered under the headings of

the objectives outlined above.	 In order to assess them prior
4

consideration of the outstanding features of the geology,
i

relief and drainage, soils and vegetation which together make

up the physical background of the area is necessary.

f

J

t

J	
'

.	 , 3 .1	 LANDSAT STUDIES OF NORTHWEST QUEENSLAND
Rr^i

THE PHYSICAL ENVIRONMENT

3.1.1	 Geology

The greater part of the study area is underlain by rocks of the

Precambrian shield.	 These are exposed in the belt of hilly,

country between Mount Isa and Cloncurry which extends northwestwards

k

towards Lawn Hill and southwards towards Dajarra'and Boulia.	 In

(
the east Mesozoic and later sediments, mostly residuum and alluvium,

f cover level plains, drained by the Cloncurry river and its

s
i

tributaries, which form part of the Great Artesian Basin. 	 Beneath

f

f	
;
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	 this however the Precambrian rocks of the Cloncurry area are

believed to be continuous with those of the Georgetown area

A U further east, 	 The nature of the contact between the Precambrian

shield of the Cloncurry area and the later rocks beneath the

soil and alluvium of the Great Artesian Basin is not known.

^4

3.1.1.1 Precambrian succession

The Cloncurry area is believed to have been the site of a

narrow, mainly Lower Proterozoic, geosyncline lying between a

hypothetical stable foreland (or high craton) now covered by

^,^ the late Proterozoic and Cambrian sediments of the Camooweal

rX
and Urandangi area and a still more hypothetical submarine

stable block (or low craton) to the east of longitude 1410E

(Hill and Denmead 1960).	 Early in its history the geosyncline

was divided into an eastern and western portion by a narrow

meridional'axial zone of uplift which 'today forms the welt in

which the older rocks of the area, the Archaean Leichardt

Metamorphics and the Kalkadoon dranitoip^ are exposed. This

zone is believed to have shed sediments into the eastern and

western geosynclinal areas which were subsequently folded and

faulted by east-west compression during at least two major

orogenic phases in the Lower Proterozoic. The sedimentation

3 t^ 	 and the oroqenic events differed in the western and the eastern

geosynclinal belts so that today both the sequences of geological

formations ex posed at the surface and the geological structures

are distinctive in each zone.

_10-
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In the eastern geosynclinal belt a sequence of acid lavas,

predominantly rhyolite, were poured out on the land surface.east

of the Leichardt Metamorphics to form the basal member of the

Lower Proterozoic succession, known as the Argylla Formation. The

basal lavas are interbedded with meta-sediments in the Duck Creek

-- Malbon and Limestone Creek areas southwest of Cloncurry while

the upper parts of the succession comprise inter-bedded lavas

and metasediments throughout the area of its occurrence. This

sequence was followed by the deposition of quartz sandstone now

altered to the Ballara Quartzite, the quartzite 	 at the base of `"F

the Marraba Volcanics.	 This is restricted to a narrow belt

northwest, west and southwest of Ballara. 	 During the ensuing

basicperiod of	 vulcanicity, associated with subsidence on either
I

i

side of the welt of Leichardt Metamorphics, the Marraba Volcanics l

and the Soldiers Cap Formation which comprise basalts and
4 i

metasediments were laid down.	 The Marraba Volcanics crop out

in a regional anticlinal structure southwest of Cloncurry while - y

the Soldiers Cap Formation forms the margin of the Precambrian ►

with covered ground east and southeast of Cloncurry. 	 This volcanic
t

episode -as followed by the deposition of arenaceous sediments

which are now represented by the Mitakoodi Quartzite flanking....

the northern and eastern margins of the Marraba Volcanics. ^'^

As v-ulcanicity diminished vertical movements in the crust became

more complex.	 This produced a variety of depositional conditions

now reflected in the diversity of lithologies in the subsequent C

{	 sedimentary formations withinthe Lower Proterozoic sequence.

jThus, the Marimo Slate which comprises slate, quartzite, greywacke
F

and-calc silicate rocks was laid down to the south of Cloncurry..

13	
f
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k In the southern part of the eastern depositional basin the ^	 .

CC Answer Slate, which is probably contemporaneous with the lower

part of the Marimo Slate, was laid down unconformably over the

Mitakoodi Quartzite and in turn was overlain by the Staveley

Formation which consists of dolomites, calc silicates, quartzite,

b̀ siltstone and shale and by the Kuridala Formation comprising

` black slates, quartzite and mica schist; the black slates at the S

base and the top of the Kuridala Formation contain important

copper deposits. t

The Corella Formation, which is the most widely distributed

formation in the eastern geosynclnal area, was deposited more

or less contemporaneously with the Marimo Slate, Stavely and
k

Kuridala Formations.	 Today it consists mainlyof calc silicates

and a variety of other metamorphic and metasomatic rocks.	 In

V
the Dugald River area carbonaceous slates in the sequence carry r'^

j

lead-zinc mineralization. In the west of the outcrop area the

Corella Formation overlies the Argylla Formation, the Ballara {^

? Quartzite and the Leichardt Metamorphics. 	 Further east it

unconformably overlies the Soldiers Cap Formation.

I
. Considerable thicknesses of sandstones, which now form the

s
R

till

Roxmere and Knapdale Quartzites were laid down before orogenic
=x

^j movement with an east-west compression caused the folding and

extensive shear faulting of all the strata in the _eastern geosyncl;,ne.

Following this the Deighton Quartzite was laid down in a narrow `	 4
Ij

j central zone in -this eastern aeosynclinal belt.

4

In the western geosyncline`the Argylla Formation is absent and-
t

the Lower Proterozoic'succession-probably began with the deposition fy

t t

Y



of sandstones now represented b	 the Leander Quartzite and thea	 p	 y	 Q

Mount Guide Quartzite which are probably contemporaneous with the
I IN

Ballaza Quartzite.	 These quartzites are characterized by meridional =

jointing producing patterns which facilitates their recognition on l

air photos.	 The deposition of the quartzites was followed by a
1

^k

major period of basic'vulcanicity which produced the Eastern Crook

Volcanics which are equivalent to the Marraba Volcanics and to the

middle and upper part of the Soldiers Cap Formation in the eastern

geosyncline.• 	The Eastern Creek Volcanics consist mainly of 3

basalts and inter-bedded metasediments which accumulated to

depths exceeding 20,000 feet and spread over a wide area.

Subsidence during their deposition was accompanied by tensional

faulting.	 At the close of the major period of basic vulcanicity {{

crustal movements caused local unconformity and the deposition of i

J

conclomerates along the western flank of the tectonic welt but

further west sedimentation continued without interruption. 	 Durinq ^.

this period the Myally Beds and Judenan Beds were laity down

contemporaneously in different areas. 'These consist predominantly
3

f! of quartziti,c sandstones with acid volcanics near the top of the 14

succession.

c

The first Lower Proterozoic orogeni.c movements produced only manor

•'`'
j • 4

effects in the western geosyncli,ne, the most important being

i strong but local, unconformites between the Myal.ly Beds and the

overlying Ploughed Mountain ,Beds, and again at the base of the

Mount Isa Shale. 	 West and southwest of Mount Isa the basement
jk

ti apparently did not yield and the sediments laid town were thicker

than to the north whereas movement along a series of near meridional

E tension faults, caused subsidence in the most deeply subsiding

s ;: t
pp 
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part of the trough. Sedimentation became less rapid than

previously and mainly dolomites, siltstones, shales and fine,

brained sandstones were laid down. These form the Ploughed

Mountain Beds, tho Surprise Creek Beds, the Gunpowder Creek

Formation and thie Paradise Creek Formation with each of the first

two being penecontemporaneous with the latter two. Algal colonies

are a feature of the Ploughed Mountain Beds and of the Paradise

Creek Formation within the study area near Lady Annie.

The Mount Isa Shale overlies both the Eastern Creek Volcanics

and the Myally Beds and is in fault contact with the 7udenan_Beds.

Although there is no break between the Myally Beds and the Mount

Isa Shale a conglomerate marks the boundary in many places.

It is believed that the Mount Isa Shale is contemporaneous witht
,

t'I	 the Surprise Creek Beds and that it accumulated in a deeply

f-sinking trough between the foreland on the west and the 'tectonic 	 }.
r	 '^	 j

welt on the east.:.
r	 ,

x

Sedimentation ended with a'renewal of orogenic movements which

caused strong meridional folding in the eastern part of the	 t

western geosyncline and irregular open folding west of the Mount

Gordon fault zone. Granite intrusion, which is expressed in the

1XI	 Wonga and Naraku granites', occurred durin g the orogenic`

LS
deformations. These were followed by regional uplift and

prolonged erosion.

1ff	 4 ^ tS 3.1.1.2 	 Precambrian structure

The whole area has been folded and extensively faulted. The

fold axes are near-meridional in the eastern geosyncline and in



x

f

the eastern part of the western geosyncline. 	 Further west
s ,:

}X, irregular basin and dome structures predominate.

,`	 ! In the eastern geosyncline although overturned folds are

j1 common larger structures are relatively simple. 	 The main
,

t

' anticlinoria and synclinoria developed during sedimentation.

r

Folds generally strike north-south.	 Southwest of Cloncurry,

however, a major northeast pitching anticlinorium - referred

to later as the Mitakoodi anticlinorium - comprising the

, Bulonqa and Duck Creek anticlines and the Wakeful syncline, and

involving the Argylla Formation, the Marraba Volcanics and the

Mitakoodi Quartzite, extends over a meridional distance of
^z s

sixty miles.	 On the eastern limits of this fold the Mitakoodi

Quartzite displays an intricate secondary fold pattern. 	 It is ;tj

believed that these folds were produced by shear folding parallel `` l

to the northeast striking component of the conjugate shear fold `t1

system produced by the,compression, with the tuff; shale and

limestone underlying and overlying the Mitakoodi Quartzite
E^

yielding readily to permit complex folding ofthe quartzite.`

j Elsewhere folding of the more competent strata is generally
x9

simple but the Corella Formation displays a complexity of minor

structures.	 -
r

The rocks in the eastern geosyncline have been extensively faulted.

Some of the faults are younger than Middle Cambrian and some may

have been re-opened many times.	 Nearly all dip at high angles,
t

generally more than 70 0 .	 Most of the faults belong to ai

system with northwest and northeast strikes, the latter
t

conjugate

t 3
i	 g

Ll

i
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j

t
particularly in the Mary Kathleen area where the Mount Remarkable,

t '	 + Wonga and Cameron faults may be cited. 	 The faults are believed a

to have resulted from east-west compression. 	 rlany of the

i
northeast striking faults are infilled with massive quartz veins.

Some have a large horizontal displacement, that of the Mount

Remarkable fault being about sixteen miles.

' In the western geosyncline broad north-pitching meridional or
l

near-mer.dional anticlines separated by narrow synclines

characterize the area along and east of the Mount Gordon Fault4	 j

:one.	 Here dips average 550 - G50 in the synclines and 400 - 500

over the intervening anticlines. 	 Shales, siltstones, dolomitest	 °3
^Ft

,- and sandstones are exposed in the synclines whereas sandstones

it and basalt form the anticlines.	 West of the Mount Gordon Fault

zone the major folds are more open as in the vicinity of Lady
i J

Annie or form complex domes, r	 !

{	 ti Most faults in the western geosyncline belong to the northwest,

northeast conjugate system. 	 Horizontal displacement is small

but vertical movement in some faults is considerable. 	 The complex

^t s Mount Gordon Fault strikes north-northeast at an angle to the

^t conjugate shear system while the thrust movement of the complex

Mount Isa fault, which is a high angle reverse fault with

considerable lateral movement, is :believed to be related to the

-	 f shear fault system,. 	 The Reichardt fault which is parallel to t
,f and east of the Mount Isa fault is less complex but also has a

F	 ^	 s

x

` longer displacement.	 Additional to these maj,-)r faults there is a

E
system of east-west faults which Have played a major role in

determining the distribution of the geological units in the western
_if

s geosyncline.



3,1.1.3	 Ores and Mineralization

Within the study area the rich Cloncurry - Mount Isa mineral

t	 tf

}

E	 ^

F

E	
9

v

.1

province extends for some 200 miles from north of Mount Oxide
	 a

to south of Mount Cobalt and for about 120 miles from west of

Mount Isa to the Soldiers Cap area east of Cloncurry. 	 The most {

important producing mines include the Mount Isa copper, silver-

lead-zinc mine, now the largest single producing mine in the

world, the Mammoth copper mine and the Mary Kathleen uranium

mine. _In the past Mount Oxide, Kuridala and Mount Elliott

(Selwyn), and the Great Australia (Cloncurry) have been large

producers of copper and Mount Cobalt of cobalt. 	 There is a

very large number of small copper mines and prospects throughout

the area, while the Dugald River lead-zinc Lode north of

Cloncurry, the Lady Loretta lead-zinc deposit near Lady Annie

and the recently discovered lead-zinc belt extending from

Squirrel Hills, south of Mount Cobalt through Marramunge to

Fairmile,west of McKinlay as well as newly discovered copper

deposits near Mount Kelly south-east of Lady Annie, indicate ' )

the presence of a mineral potential as yet unworked or even

unknown.

3.1.2	 Relief and drainage

)

The area with outcropping and near surface Precambrian rocks '	 }

comprises a highly dissected peneplain with fairly mature

Y	

ti
t

characteristics along many of the major rivers (Hill and-Denmead

1960).. It forms the divide between the drainage to the Gulf of }

i
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k' Carpentaria and that to the inland basin of Lake Eyre. Its

elevation varies from 800 to 2000 feet above sea level. Flat

topped ranges with accordant summit levels near Mount Isa a

'h

and Cloncurry are testimony of the former extent of the Tertiary
a

(Miocens) peneplain or pediplain while flat topped mesas capped

by lateritized flat-lying Mesozoic rocks, north of Cloncurry,

northwest of the Dugald River and northeast of Lady Annie

indicate the former greater extent of Mesozoic rocks

(Plates 2 and 3), The present drainage patterns bear little

relationship either to the dominant relief features or to the

underlying geology. They appear to have been initiated on the

mid-Tertiary peneplain or pediplain and to have become superimposed

on the present surface. The acute features of the present relief

and the extensive alluvial terraces along the major rivers are

t'
related to landscape dissection and drainage rejuvenation

{	
t

following warping and uplift in Tertiary and Recent times and to 	 }

excessive erosion and mass movement of weathered material during`

i
and following heavy rains such as those which occurred in 1971,

1972 and 1975. In 1971 following exceptionally heavy rains the

normally dry beds of the Leichardt, Dugald, Corella and Cloncurry

rivers,for example, filled and overflowed; the last mentioned

river rose more than eight feet above the causeway at the periphery

of the town and all became raging, torrents carrying large

quantities of sediment as well as shrubs and trees which were

eventually deposited as the waters sibsided. (Plate 4) This

occurred immediately before the air survey was flown over the

Mary Kathleen Cloncurry, Dugald River and Lady Annie areas and

I
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before the acquisition of the first LANDSAT imagery.

The relief features of the area underlain by outcropping and
	

D
near surface Precambrian rocks are closely related, to the bedrock

	 j,

lithology and to geological structure. Rough bouldery terrain

j'	 with prominent ridges characterizes the quartzites and acid }

volcanic rocks whereas open valleys of low relief occur over

j	 shales, siltstones, slates and schists. 	 (Plate 5)	 Rugged terrain

of subdued relief is characteristic of areas underlain by calc-
a

silicate rocks and rough country with minor ridges and valleys

is usual over dolomite and bedded limestones. 	 Open sandy plains

studded by tors or whaleback hills distinguish areas underlain
t

by granite.	 (Plate 6)	 The most prominent relief features occur

where steeply dipping interbedded hard and soft rocks outcrop to

produce strike ridges and valleys and where, east of the Leichardt

river,, the major northeast trending quartz filled faults form y

prominent ridges, notably that with Mount Remarkable. 	 (Plate 7)

Over the plains floored withMesozoic and later deposits the

relief is remarkably level, only isolated hills capped by laterite

or outcrops of Proterozoic rocks breaking the surface. 	 The most

important variations of relief are associated with the major rivers

which are characteristically braided. 	 They change course during

floods following heavy rains and this has left a legacy of
I

islands,levees	 and abandoned channels encumbered with deposited E	 R

sediments.
J t

t	 '
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3..1.3	 Vegetation	
i

In response to the semi ,-arid climate and the skeletal nature of

most of the soils,the typical vegetation comprises a low tree and

shrub savanna characterized by small Eucalyptus trees, Acacia

shrubs and the narrow leaved resinous Triodia pungens grass which

foams widely spaced hummocks. (Plates 8 and 9) This covers the

rugged hilly terrain where the Precambrian rocks outcrop or are

relatively near surface. It gives way to a grassland dominated

t by Astrebla and Iseilemia species where dark brown loams and black

^. cracking dry soils mantle the p lains formed of Mesozoic and, later9	 Y	 P °

rocks.	 (Plates 3 and 10)	 Where relict lateritic soils occur over

flat topped residuals capped by Mesozoic rocks a woodland of
4

1

Acacia cambaaEi and Triodia pungens predominates in the area east

t of Mount Isa but northwest of Mount Isa such areas carry a S
t	 +

I^
woodland of Acacia shirleyii with a sparse grass cover composed

r' mainly of Enneapogon brachystachys. 	 (Plate 11)	 Within the plains,

stands of Acacia camber ei and A. shirleyii respectively, occupy

,E areas with redistributed lateritic gravel. 	 (Plate 12)r' *,.

Within the low tree and shrub savannas of the hilly terrain

different species of Eucalyptus occur over different types of

`	 t bedrock, E. brevifol:ia beincr cliarac eristic of siliceous rocks and

E. argillacea being more common over calcareous rocks. 	 The shrub

layer is most strongly developed along the dissected margins of

4
creeks where A. chisholmii is most common. 	 The major cracks are t

followed by galleries of woodland composed mainly of E. camuldulensis'
'E

Tristania g,randiflora and Melaleuca_spp. 	 (Plate 13)	 On the

level interfluves with sandy soils derived from residuum a sparse

Y S

3
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cover of Enneapogon polyphyllus, Eriachne dominii and Sporobolus

f+ i australasicus grasses occurs after rains. 	 On the deeper more

6	 ^;
loamy soils formed from river levee material a close cover of

:. Cenchrus pennisetiformis is usual.

fi
Within the grasslands of the plains, lozenge shape patterns

i
" formed by concentric communities of different grass and herb

species occurs where drainage is poor and water lies at or near a !

surface for variableperiods after rains. 	 (Plates 14, 15 and 16)

On better drained areas a variable cover of Eucalyptus pruinosa t

k	 ; and Triodia pungens, or of Acacia cambagei and the broader leaved
E s

u

grasses occurs in response to differences in the nature of the i 3

soils which are	 differing types ofassociated with	 superficial 1

4

deposits.	 (Plates 17 and 18)

.	 ^ 3.2 REGIONAL STUDIES OF THE LANDSAT AND AIR SURVEY IMAGERY
z

3

3.2.1 THE CONTRIBUTION OF THE COMPONENTS OF THE PLANT COVER, SOILS,

E	 i BEDROCK AND SUPERFICIAL GEOLOGY TO THE PRODUCTION OF DISTINCTIVE

' SPECTRAL SIGNATURES ON LANDSAT AND AIR SURVEY IMAGERY

l w

In natural terrain the complex spectral signatures displayed
r

on both LANDSAT and air survey imagery are made up of the spectral

responses of the individual components of the vegetation, soils,

" relief and arainage, and superficial and bedrock geology. 	 The

relative contribution of each component depends on the nature and

abundance of the plant cover, which influences the amount of bare a

F soil, and on the nature and thickness of the superficial cover
^f

1

E' which influences the extent of bedrock outcrop. 	 Additionally
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physiographic features and the moisture status of the soil produce	
J}

111

variations in reflectances of the components.IN
The spectral signatures which may be recognised are . characterized
by the dominance of particular colour hues and density tones, and

by particular textures and patterns; in natural terrain they

frequently exhibit continuous variation in spatial extent.	 For

visual interpretation of air survey imagery the spectral signatures

have been coded by reference to the colour key of the Royalr 
a

Horticultural Society (which is related to the Munsell system).	 On

the LANDSAT imagery the variation in tonal density in the

individual MSS bands is considerable while those in both tonal'
i

'	
rf

density and hue in the spectral signatures in the colour composites

generated by combinations of individual MSS bands projected
I	 _	 a

through appropriate filters is so great as to defy literary 	 E
t	

`j

description.	 For the visual interpretation of this imagery the

spectral signatures have been coded by a system of numbers for

tonal density and of letters for colours.	 For the visual

'	 interpretation of the thermal imagery a simple range of emissivity
1	 levels has been used.

x

t	 Comparative studies of LANDSAT imagery at different seasons of

"p	 the year with multi-spectral air survey imagery and with ground

truth information shows that the contribution oftheplant cover 	 ry
a

to the spectral signatures varies with the season largely as a

{ i	 result of variations in the _state of the grass and herb layer, 	 fli t
 i
	

T	 variations	
r,

These v	 iations are particula_ y marked in plains areas
characterized by savanna grassland with very few trees. 	 Such

'	 is _true north of Cloncurry, and southwest of Mount Isa.	 In
I
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these areas, red hues predominate on the colour composites of

MSS bands 4, 5 and 7 of LANDSAT imagery, obtained after the

summer rains when there is a good cover of broad leaved grasses,

which reflect strongly in the near infra red part of the spectrum,

whereas blue and green hues predominate in the dry season when

the grasses have dried off and died down and the reflectivity

from the soils and bedrock largely determine the spectral 4

^ y signature.	 In the hilly terrain characterized by scattered trees

a

^

R and widely spaced tussocks of narrow leaved Triodia spp of grass
i	 rt

there is less seasonal difference in the contribution of the plant

j	 cover to the spectral signatures; at all seasons the reflectances

r
from the vegetation are weak and the soils and bedrock make

correspondingly	 contributions to the spectral signatures.greater

t	 i
,
j, Where the vegetation consists of closely spaced trees as for

- _example 'where Acacia shirleyii 	 stands cover lateritized

' residuals of Mesozoic racks northwest of Mount Isa or where
F

woodlands. of Acacia cambagei or Eucalyptus pruinosa follow the
t

tributaries of the Cloncurry and Williams rioters the vegetation

x` is the major contributor to the spectral signatures which again
9

z`

show little seasonal variation, in this case because the trees{

retain their foliage throughout the year._

#{ Within the areas of grasslands, woodlands and low tree and shrub
r t	 ^ ^

savanna,. differences of spectral signature are caused by n

i differences in the species composition of the plant cover which 	 :fit

in turn are related to differences of soil and bedrock. 	 These
p J4

.1- differences have been examined with reference to the true colour

and false colour air photos and to field investigations and the	 k ss

s	 ,

}



specific relationships have been established (Cole, Owen-Jones,

Custance and Beaumont 1974)

The establishment of the relationships between the contributions

of vegetation, soils and bedrock to the spectral signatures

displayed by IANDS;W and air survey imagery at different seasons

of the year provide, the basis for the interpretation of the

imagery for terrain analysis and particularly for geological

k ^,
mapping and the recognition of features relevant to the location

of mineralization.

TI 3.2.2 THE RB'COGNITION OF LARGE SCALE GEOLOGICAL' STRUCTURES ON THE

LANDSAT IMAGERY

initial studies of combinations of the individual MSS bands of

the LANDSAT I imagery of the Mount Isa - Cloncurry - Dobbyn area
t 

B for 22 December 1972 (ID 1152-00073) projected through appropriate ^.

filters to produce colour composites at a scale of 1:250,000

showed that these displayed some of the major structural fpatures,

,^ distinguished between some of the contrasting lithological/

stratigrapliical units within the major geological formations and

discriminated iron rich zones which in some cases are associated

with base metal deposits (Colo- 1976?.

On this imagery the contact between the Precambrian shield of

northwest Queensland and the Great Seaimentary 	 which occupies

the central part 
of 

the state is outlined.	 Within the Preccambrian

shield east of Mount Isa the welt comprising rocks of the
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Kalkadoon - Leichardt basement is distinguished from the

eastern and western sedimentary successions on either side, with

the bounding faults, the Mount Remarkable fault particularly,

being clearly displayed. Southeast of Mary Kathleen the

anticlinorium which comprises the northeast plunging Duck Creek

and Bulonga anticlines and the Wakeful syncline involving rocks

of Proterozoic age is delineated. Within the Great Sedimentary

Basin, complex patterns of spectral signatures suggest the presence

of near surface bedrock in some areas and of variable superficial

deposits in others. Throughout the area distinctive spectral

signatures discriminate individual lithological units within the

geological formations while discordant spectral patterns reveal

t	 f h' h	 1 1 6ineamen s, many o	 w is	 were not known hitherto Cco e	 97 1.

The results of these initial studies were basically similar to

those obtained by the Australian Bureau of Mineral Resources
e

using imagery for the same area but in the form of black and

white prints of individual MSS bands and colour composite prints

r
r

of bands 4, 5 and 7 produced by NASA at the 11 million scale.

Using the additive viewing system initial studies of colour

composites of individual grid sections of the LANDSAT imagery at

the 1:50,000 scale showed that individual lithological/

stratigraphical units, lineaments and, in certain instances, ore

q .' horizons, which were not apparent at the smaller scale, could

be identified.	 Subsequent studies of LANDSAT I and 2 imagery

r	 1 for the Gregory River - Lady Annie - Mount Gordon fault zone

area and for the Mount Isa - Cloncurry - Dobbyn - Williams River

area taken at different seasons of the year and examined at both I	 ,

l ,1`7 &+ PAGE_ IS
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F the 1:250,000 scale and the 1:50,000 scale confirmed the a
t

w. identification of major structures recognised in the initial 4

s^ studies and revealed the presence of others, some of which were
C

unknown hitherto.

i

Among the additional major structures distinguished in the later

studies of the LANDSAT I and 2 imagery may be cited most of the

major faults in the Teary Kathleen, Cloncurry and Dugald River }

areas, the major synclinal structures and major faults and

regional lineaments in the Lady Annie - Mount Kelly - Mammoth

Mount Gordon fault zone and regional, lineaments in the Dugald

` River and Squirrel Hills areas.	 Some of these will be considered
i

in the detailed studies covering the recognition of structural

features, l th.alogical units and ore horizons on LANDSAT imagery

'f..'
taken at different seasons of the year over selected areas.

4	 'i The most interesting and probibl.y the most significant of 'the r
t

new structures disclosed by studies of the LANDSAT imagery at the

1:50,000 scale are a aeries of northeast--southwest trending

^ M lineaments which may be discerned in both the Lady Annie - Mammoth

Mount Kelly area and in the Dug ald River - Naraku area where
t
3 they are evident both in yeas of outcropping or near--surface

i

. bedrock and in areas of covered ground. 	 The known lead-zinc

j deposits of Lady Loretta and the Dugald River Lade and the known
a

copper deposits at mammoth, Laxly Annie ^ui.d.Mount Kelly appear to
1

be related to these lineaments which transgress .both the outcrops #

of differing geological formations and -the strike of individual

formations. r'

e
, 4	

a
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3,2.3	 THE RECOGNITION OF LITHOLOGICAL/STRATIGRAPHICAL UNITS, IRON

RICH ZONES AND MINERALIZED HORIZONS FROM SATELLITE; AND AIRCRAFT

IMAGERY

0
U

Studies of the LANDSAT I and 2 imagery at the 1:50,000 scale

f̂ have disclosed that distinctive spectral signatures are associated
il

! with particular lithological units and that the juxtaposition of

` contrasting signatures reveals sedimentary sequences and outlines

structures.	 Thus on colour composites generated from the March

I'
1975 imagery obtained after the summer rainy period over the

Cloncurry - Dobbyn - Williams River area and the Lady Annie -r

' Mount Kelly - Mammoth - Mount Gordon fault zone area, green/blue

of light tone characterize areas of outcropping
E

signatures

quartzitic rocks which carry a	 sparse vegetation, dominated by
f

small Eucalyptus brevifolia trees and narrow leaved Triodia pungens

grass.	 Most areas of outcropping and near-surface dolomitic

limestones and calc-silicate rocks which have a vegetation cover

'soft'of broader leaved 	 grasses with scattered Eucalyptus

{
j

argillacea and associated small trees, display a spectral signature

of red and blue hue and medium tone whereas those of outcropping

!p1	 - bedded limestones which carry a sparse cover of Triodia pungens

grass with scattered Eucalyptus trees have dark blue spectral

^	 I
signatures.	 By contrast outcropping and near surface granite

t

r

{j,

k..
produces light toned signatures of yellow and red hue. 	 Laterite

and other iron rich rocks including gossans associated with

mineralization have very dark blue to black signatures. 	 Plains

-{
I-

areas of dark brown loams and black cracking clay soils which-

have a sward of broad leavederennial and annual grasses, including
F'	 g	 9

1
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r

Astrebla pectinata, lseilima spp and Cenchrus spp dominantly have

bright red spectral signatures but those with red sandy residuum

and a sparse cover of Aristida contort:a, Eriachne dominii and 	 I

Sporobolus australascus grasses which die off quickly after the 	 A

rains, leaving most of the ground exposed, have light yellow

spectral signatures.

Throughout the study areas on the imagery acquired during and a

after the summer rainy period, contrasting spectral signatuxes
3

distinguish hilly terrain with outcx;oppinq and near. surface bedrock {.
I

t from the plains areas with Mesozoic and later cover. 	 within each

., type of terrain differing spectral signatures and differing-'

spectral patterns distinguish individual litho logical/ stratigraphical
};	 t

units, outline fold structures and disclose the presence of major

faults and lineaments, iron rich zones and, in some cases, ore

horizons.
3

During the clay winter period when the broad leaved grasses have

died down or disappeared completely but TrioliaLindens remains,

the contrasts of spectral signature, as exhibited on colour

composites of Tuly, September and November imagery, are less maxl:ed.

Nevertheless distinctive spectral signatures distinguish the

y `

individual lithological units and structural features are again

1clearly displayed.

C
^ ^

^	

t

`tL[
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3.3.	 DETAILED STUDIES OF LANDSAT IMAGERY OF SELECTED AREAS

A THE RECOGNITION OF STRUCTURAL FEATURES, LITHOLOGICAL UNITS AND

ORE HORIZONS ON LANDSAT IMAGERY FOR DIFFERENT SEASONS OF THE YEAR
h

3.3.1.1	 THE MOUNT ISA - CLONCURRY - DOBBYN AREA x

tThe most important mining area in northwest Queensland is that

of Mount Isa which has the largest copper producing mine in the

world and the new Hilton mine nearby.	 Studies of the LANDSAT I
9

and LANDSAT 2 imagery of this area show that at the 1:50,000
3

scale the major geological structures and the individual

lithological/stratigraphical units are readily recognised while

the mine dumps and slimes dams as well as the residential areas
r.

of the town are discriminated. 	 The two dams which supply Mounts

yj {	 }
t Isa with water, namely Lake Moondarra north of the' town and Rifle

Creek dam to the	 clearly	 differences-	 south are	 outlined, and

( of areal extent and of water depth at different seasons may be 4	 :^

I measured.	 Studies of the colour composite of bands 4, 5 and 7

prepared from the CCT for 2' March 1975-(ID 2.039-23555) and

displayed at a scale of 1:10,000 reveal details of the deposition of

sediment from streams entering the lake after rains.

Because the Mount Isa	 is disturbed and 	 by miningarea	 contaminated
i

and smelting activities it was not included in the air survey

y programme. Instead the Mary Kathleen - Cloncurry and Dugald River { 1

t areas were chosen for the acquisition of such imagery. 	 The more

detailed studies of the LANDSAT imagery have been undertaken for i

Ju :.areas for which multi-spectral aerial photography is available. ^ ,
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3.3.1.2	 THE MARY KATHLEEN AREA

{ L

1

On the colour composites of MSS bands 4, 5 and 7 of the LANDSAT I }{

^ f imagery covering the Mary Kathleen area obtained on 22 December

1972 (grid: section 24 of frame ID 1152-00073) the Wonga, Cameron }

'•- and Fountain Range faults are clearly distinguished by abrupt
i
i

and discordant changes of spectral signature along their lengths. {{
I

(Figures 8, 9, 10 and 11)	 Most of the other major faults may
r	 Y

also be distinguished while major lineaments with which they

appear to be associated may be recognised. One such lineament

r

for example continues the trend of the Wonga fault in a south-

westerly direction.
t

A

Some of the major geological formations within the Archaean and
•

'Lower Proterozoic sequences may be _readily differentiated from
ILI

i

l^ one another by virtue of their distinctive and contrasting
.	 i

3

spectral signatures but in some areas complex patterns of

spectral signatures occur within areas mapped as of one formation

and in others the same or similar signatures straddle two or }

more formations.	 This is because the individual geological

formations comprise varied lithological units which produce

s ' I	
• a

distinctive relief features and carry specific punt communities;

T^	 and because similar lithological units occur within different ti

geological formations, sometimes giving rise to comparable

relief features with similar soils and vegetation in each case.

{

^	 q

FConsequently whereas, for example, areas_ underlain by the Wonga

granite have light yellow/red spectral signatures (2 cad, 3 cad) i

which contrast with the darker signatures of areas underlain

ORIGINAL PAGE Ia
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by rocks of the Argylla and Corella formations, the quartzite

	

r +

	 units within both these formations usually produce green/blue
.t

signatures (5 dea) and the calc-silicate units generate

green/red (5 dae) or blue/red (5 ead, 5 ea) components.

Everywhere areas underlain by dolerite and amphibolite have

dark green/blue signatures (5 pea, 6 epa) which contrast with

those of the units they intrude. 	 1

The sharpest spectral boundaries occur between rocks of

contrasting type and age.	 Southeast of Mount Devine the boundary

between areas underlain respectively by the Leichardt metamorphics

which give rise to relatively light spectral signatures of

variable hue (3 dcae) and the Marimo Slate which has relatively
i

x dark green/blue signature (6 pea) is clearly defined; southwest j

of Mount Devine that between the Leichardt metamorphics much

intruded by dolerite which produces darker signatures C6 epa)
x r'	

^

..

F and the Kalkadoon granite which gives rise to lighter green/red E

signatures (4 dac) is less'obvious.	 West of Lake Corella r

contrasts of tone and colour distinguish areas of Wonga granite

(2 cad, 3 cad) from those of Argylla and Corella rocks C5 ead,

5-aed, 5 eda) and the latter in turn from thoseunderlain by

r

Ballara quartzite (4 ae, 2 acd). 	 South of Lake Mary Kathleen

similarly strong spectral contrasts delineate the Marimo Slate WW

(6 eda) from the Leichardt Metamorphic€, (4 dae) and from the 2;,

} Argylla formation (4 dea, 5 dea).	 East and southeast of this

d

t
lake the sharpness of the boundary between the Argylla formation

t
and the Ballara quartzite is enhanced by changes in the

directional orientation of the spectral signature which are related
a

4	 }fi
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to differing lithologies and relief features between and within

the two formations and to the occurrence of faulting in the

Ballara quartzite and the overlying Corella formation._

The striking contrasts of spectral signature which outline the

geological formations and the structural features in the area

east and southeast of Lake Corella are considered in the section

of the report covering the Mitakoodi fold feature.

Within the Mary Kathleen area the colour composite of bands 4,

5 and 7 of LANDSAT I imagery for 22 December 1972 thus displays

the major structural features including faults and lineaments,

differentiates the geological formactions-where the contrasts

between them are characterized by marked changes of rock type

and distinguishes lithological/stratigraphical horizons within

these formations where individual bedrock units are associated

with particular terrain features and plant communities. overall-

the spectral signatures owe their characteristics to particular

associations of vegetation, soil, relief and lithology and

consequently it is contrasts in these which permit the recognition

rr

`	 of structural features 	 delineation of geological boundaries.
ai

of particular interest is the fact that a spectral signature

(6 ae) which is darker than those of terrain underlain by the

Corella rocks ( 3 pcb, 5 dae) which are host to the Mary Kathleen

uranium ore body ,outlines the open-cut; over the tailings dam

a light.green/blue signature (3 de)	 contrasts with the light

signature terrainyellow/red	 (2 cad) byproduced	 the surrounding

}
underlain by Wonga granite. Dark signatures (6 ea, 6 ead) occur
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over the area containing the Wee McGregor and nearby copper

mines but distinctive signatures cannot be identified over any

of the other--small mines and prospects in the area.

Contrary to the widely anticipated view, based on the assumption

that the geology is best displayed when the ground vegetation is

minimal at the end of the dry season,on the colour composite of LI

bands 4, 5 and 7 of the LANDSAT 2 imagery for 2 March 1975
z	 ^

(ID 2039 -23555) covering the Mary Kathleen area,the major faults

and lineaments and the boundaries between the geological formations

E	

are more clearly delineated than on the LANDSAT I imagery for
i

22 December 1972 (Plate 19 	 Figure 12).	 This underlines the

importance of the contribution made to the spectral signatures

by the vegetation which in fact reflects the bedrock geology.

In addition to the Wonga, Cameron and Fountain 	 Range faults;

among the major structural features which are more clearly `	 a

distinguished on the March imagery may be cited the faults in the
f

of Mount Devine, east	 of Lake Mary Kathleenarea south	 and south
1

(

and east and northeast of Mary Kathleen. 	 Many of these were not

apparent at all on the LANDSAT I December imagery. 	 Their

revelation on the LANDSAT 2 March imagery is due to both the ;s

sharp contrasts of spectral signature produced by the differing

# reflectances of different plant species at optimum growth after

rains and to the discordant patterns of spectral signature on

t

c either side of them (Figure 12).
r

r

11

1

y
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The geological formations, lithologicaVstratigraphical units

and bedrock types and the boundaries between them cited in

respect of the LANDSAT I imagery for December 1972 were as clearly

or more clearly differentiated on the LANDSAT 2 imagery for

Larch 1975. In most cases the spectral signatures differed

although the relative contrasts of tone between the geological

formatipns generally remained the same. Because the vegetation

was reflecting more strongly in the infra red bands in March than

in December, red and violet hues were present in some signatures

jbutin many cases the dominant and/or subsidiary colours of the

E^ signatures of individual lithological units remained the same or

A($ were little changed.	 Thus southeast of Mount Devine the spectral

` signatures for March 1975 for the areas underlain by Lefchardt

[[(-' Metamorphic rocks C3 dcael and Marimo Slate C5 deal were similar

to those for December 1972 and the boundary was again clearly

defined.	 Nearby the area underlain by the Marimo Slate was

clearly distinguished from that of the Argylla formation which

was characterized by a green /red spectral signature of medium
.i^

tone (5 dae).	 The latter was not identified on the December 1972

imagery.	 Southwest of Mount Devine the spectral signatures of

the Leichardt Metamorphics and associated dolerite intrusions

(.6 dea) and of the Kalkadoon granite C5 adel showed minor changes

of colour dominance.	 West of Lake Corella, in March 1975 red

hues were more important in the spectral signatures of the areas

underlain by the Wonga granite C3 ade, 4 dae) and by the Argylla

and Corella rocks which again produce varied signatures

(respectively 4 dae and 4 ad; and 3 acd and 4 agd) ;'here thek•
.•	

p	
Y

Ballara Quartzite was again differentiated by -a reddish signature

ORIGINAL PAGE 1
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' but by one of darker tone (5_agd) and with a violet component.

Southeast of Lake Mary Kathleen the boundary between Marimo

" Slate and the Leichardt Metamorphics and Argylla formations was

r

i
again sharp with each formation having similar spectral

signatures in both December 1972 and March 1975.	 East of Mary

F Kathleen the area underlain by the Burstall Granite which was4

a , not clearly defined on the December 1972 imagery is delineated

I
'on that for March 1975. 	 Farther east areas underlain by the r'

C'orella formation are outlined and within the formation a variety,
i

I

of spectral signatures reflecting differing lithological/ 1

stratigraphical units of characteristic relief, soils and

vegetation, are apparent.

Compared with the colour composites generated from the positive

and negative films of bands 4, 5 and 7 of the LANDSAT I and 2
;I

imagery, those produced from the same combinations of bands
i

F from the Computer Compatible tapes for 2 March 1975 provide_

clearer resolution, better definition of boundaries and more

information regarding both structure and bedrock lithology/

:j stratigra.phy of the area east and north,of Mary Kathleen studied ^?	 +

si
^	 a

at scales of 1:30 0000 and 1:28,000.	 (Figure 13)	 At these scales

individual pixels could be discriminated.

F ^
tk On the CCT composite of the area east of Mar 	 Kathleenpa	 y	 interpreted ^^

at the 1:28,000 scale the Cameron fault and several other major

faults may be clearly distinguished and the areas underlain by
f

t the different geological formations readily discriminated.
r

(Figure 14)	 Due to the clearer resolution of the pixels and to
a

the e.ffects of level slicing on densities, colours and tones, f
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^I
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x
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`

tderx?-,%in, P2&Wres (^. %gums l S , 16 #  l	 and 18) , ' Thus drainage

w	 f liras are most el.early, dis,pl, %yea on MSS bans 4 and S whereas,
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only the courses of the main rivers are discernible on MSS

band 7 and less clearly so on MSS band 6. 	 This is because

+ ^!4 differences in moisture conditions and in surface texture are
s

best discriminated on MSS bands 4 and 5, so that most creeks

within the resolution limits of the imagery, can be identified.,
I,

On MSS bands 7.and to a lesser extent on MSS band 6 differences
it

in moisture conditions and surface texture are less readily

distinguished but strongly reflecting vegetation is readily
1

discriminated._ Hence on these , bands the strongly reflecting

communities of trees following the main rivers permit the

distinction of these drainage lines; the absence of such i

communities along the minor creeks precludes the 	 discrimination

of the latter.	 on MSS bands 4 and 5 differences between relatively

high ground with outcropping bedrock and level plains covered by
fi Yf #

.coil	 residuum and transported cover is r^	
p	 revealed by sharp:	 •' .^ ^.

pp

{changes of density.	 These are less obvious on MSS bands 6 and "

7.	 The area north of the Corella river which, from studies of 1'
t

the colour_ composite, was believed to have experienced burning

followed by strong regeneration of grasses following rains prior

to the .LANDSAT pass, is not distinguished on band 4 and'is only
j	 ..
t

weakly recognisable on MSS band 5. 	 By contrast it is strongly

}

discriminated on' MSS bands 6 and 7 which reinforces the suggestion

that its spectral signatures were the result of strong

I!I ,{ reflectances from vigorous grass growth following rains after t

burning.
f

f

',

1
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The density slices of MSS bands 6 and 7 indicate that these MSS .f=:

bands clearly reveal geological trends and discriminate changes

of vegetation and of bedrock lithologlr.	 Thus the trends in the

f'J Corella sequence are clearly displayed and major faults are

easily recognized.	 The Cameron Fault is delineated accurately

while additional structural features which may be of considerable

significance"are indicated, 	 These include a major north-northeast-

south-southwest trending structure between the Cameron Fault and

the Corella river which may represent a hitherto unmapped
E

continuation of the Fountain 	 Range Fault (Figure 19).	 Major

northwest-southeast trending lineaments, one of which passes `^	 }

through the site of the Mary Kathleen Uranium ore body, may be

recognized on MSS band 7 and less readily so on MSS band 6. 	 By

contrast a light density linear feature crossing the Corella river

which is very clear on MSS bands 4 and 5 but less distinct on

i' 4

" MSS bands 6 and 7 appears to represent a section of the Mount' j

Isa - Cloncurry road,
x

Studies of the colour composites and of the individual MSS bands

f of the LANDSAT imagery for the area east of Mary Kathleen thus
{

indicate that each output provides complementary information

which should be integrated to provide a correct interpretation of

the geology and of other relevant features of the terrain.

On the CCT colour composites of the area north and west of Mary }

Kathleen interpreted at the 1:30,000 scale, the major faults
A

and the individual geological formations are clearly distinguished;

(Plate 19; Figures 20, 21 and 22) additionally within the 5

geological formations discrete spectral signatures reveal the - {
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presence of distinctive lithological units which are associated

with particular relief features and vegetation associations

while displacements of spectral signatures disclose the presence-

of lineaments in the earth's crust which in some cases are

f associated with faults and with ore deposits. 	 Immediately north

E of Mary Kathleen spectral signatures of light tone and

E dominantly yellow and pink hue (2 ca) are produced over the level
^ ^ a

terrain covered by yellowish red soil and colluvium which supports

6
j a sparse cover of Chrysopogon fallax grass with scattered
I

Eucalyptus brevifolia and E. terminalis trees and Acacia
s

chisholmii shrubs.	 North of the Cameron river similar
^`I

} signatures characterize the area underlain by the Wonga granite

where the vegetation, which is of similar composition, has not

been burnt recently.	 South of the river, however, areas underlain

' by the same geological unit, which were swept by fire before the

i, satellite pass, have dark green and red/purple signatures

M (6 de, 6 agd)'produced by reflectances from extensive bare areas ^ ` ► 	 ^a
f

of dark yellowish brown soils and a sparse cover of Triodia pungens

j grass between scattered Acacia chisholmii shrubs and Eucalyptus

brevifolia trees. 	 North and east of Mary Kathleen light

signatures of dominantly yellow and pink hue (i cad, 2 acd)

~s ! outlie sandy plains underlain by Argylla rocks whereas signatures

of variable colour and tone occur over areas underlain by the

Corella_formation.	 Fairly light signatures are characteristic

i of level terrain which is veneered with sand and quartz rubble t

' j pwhereas darker ones are usual over dissected country; dark blue S	 u

signatures dominate over calcareous bedrock', light green ones
{

J
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i

over quartzite and dark green onos over met b4salt; those over

dolerite are of variable medium to dark ton g and green and

purple hue (5 dg, 5 de, 7 dae, 5 d, 6 (1) . The actual signatures

depend on the vegetation, soils and dogroe of dissection of Use

terrain as well as on the bedrock lithology but overall contrasts

between the spectral signatures effectively outline the

geological units

Chest of the Wonga fault the main structural features and the

individual geological units are again clearly outlined on they

colour composite generated from the computer compatible tapes

and displayed and interpreted at the 1: 330,000 scale.. (Plate 20;

Figures 23 24 and 25) As well as the major regional northeast-

southwest trending faults the smaller faults affecting the

' Ball^ra quartzite are	 ar;ti,cularl	 cl^arl	 dl.s la e.d.	 ;^1q	 particularly 	 y displayed. "

"I number of major lineaments may also be discerned. 	 In some cases ?
r

known faults occur along parts of these ,structures but ,%

additionally there is a series with ,a northwest to southeast =,
ky

orientation with which fnttltinq is not associatod. 	 Some of t1i e

known mineral deposits occur along or near the intersections of

faults and lineaments.
a

On this CCr colour composite faults and lineaments are particularly }=

clearly displayed.	 They may be distinguished in five different

ways.	 Firstly, they may be rocognised by sharp changes of

' E
i

t spectral signature on either side of the structure, :t:ea :a.

r

This is particularly clearly seen along the Wonga fault. 	 Secondly,
n

! they may be revealed by the displacament of spectral signatures

z.,
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along the structural feature, as is the case of the faults

within the Ballara quartzite west of Mount Calcite. 	 Thirdly

they may be delineated by a series of different spectral signatures

which terminate on either side of a structural feature at

different locations along its length. 	 The Mount Remarkable

fault cited on p 16 is displayed in this way.	 Fourthly the

presence of faults may be detected from a discordance in the trends

of tones and hues within a mottled spectral signature such'as is

evident in the area underlain by Leichardt Metamorphic rocks.

'Lastly their presence may be disclosed by a narrow linear spectral*

signature of darker tone than the surrounding one.

In the area west of the Wonga fault the individual geological

formations are aaain clearly distinguished by distinctive spectral

signatures whose boundaries, in many cases, coincide with'the

geological boundaries of the 1:50,000 map produced by the Bureau

of Mineral Resources (Figure 26).	 In the southern part of the

CCT colour composite extensive areas underlain by the Leichardt

metamorphic rocks exhibit distinctive pale pink spectral

signatures (I h, 1 he) which are lighter than those characteristic

of areas underlain by this formation east of the Wonga fault.

Ground truth information suggests that this may be due to the

greater extent of quartz gravel and of reddish or yellowish

brown soil cover and to the prominence of the tall feathery

Chasopogon fallax grass in the ground cover in the area west of

the Wonga fault.	 Similar signatures also delineate the areas

underlain by Leichardt metamorphic rocks in the northern part of

the CCT colour composite and within the Marimo Slate belt.

(All	
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A

j
Generally speaking the areas underlain by the.Argylla formation

f

to the west of the Wonga fault have medium to dark green spectral

signatures (4 d, 5 dg, 5 dgb, 6 da) which are similar to those

over the same formation east of the Wonga fault (:4 dea, 5 dae,

rrt{	
5 ea, 5 eda).	 In both areas the range of lithologies, which

includes volcanics, quartzites and schists, which, in turn, is

associated with a variety of terrain features, accounts for the

variety of spectral signatures characteristic of the formation.
x

West of the Wonga fault the areas underlain by the Ballara

t	
_r}

Quartzite and by the Corella formation similarly display a

variety of spectral signatures which in each case are comparable

with those east of the fault. 	 Light to medium tones of pink,

violet, red or green characterize the Ballara Quartzite C2 hd,

4 age, 5 dac west of the fault, _2 acd, 4 ae, 5 agd east of the s	 ,

fault); these signatures being produced by the combination of
4 4	

t	 ^,

reflectances from outcropping quartzite and the sparse vegetation'	 P	 g ^	 P	 etat.ong

of scattered Eucalyptus brevifolia trees and Triodia'pungens grass-.
f

Within the Corella formation, the quartzites which have a similar

vegetation are readily distinguished by their light spectral

signatures (1 hc, 2 hc) whereas the'calc-silicates, granofels and

^ 	 marls have medium to dark signatures of green, blue-violet or

red hue (4 edge, 5 dg, 5 dge, 5 eg, 5 dah west of the Wonga fault,
i

3 acd, 3 pcb, 4 cgd, 5 dae east of the fault)..	 ¢	 `

As elsewhere the geological boundaries on the 	 colour composite
c

of the area west of the Wonga fault are most clearly dffexentiated

where there are sharp contrasts of spectral signature between the	 c
a

L1
.,.	 ,	 .:.
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G

geological units The large area of dole-rite within which Mount

Calcite is located is very clearly distinguished because its dark

green spectral signatures contrast with the ,medium tone green/

violet/blue ones of the Corella granofels, limestones and marls

to the east and with the light yellow/pink signatures produced

by the Corella quartzites to the west. Further west the latter

are again clearly distinguished from the Lower units of the

formation which have dark green/blue signatures C6 de, 6 dl.

The boundaries between the Ballara Quartzite which. has a light

pink spectral signature and the Corella granofels, limestone and

marls with Clark green/blue signatures C6 ge, 7 edL to the west

and the Argylla formation with.medium tone green/red signatures

to the east C4 da, 5 dc) are also well defined. Evea.-ywhere the.

Marimo Slate, with its characteristically dark green spectral
7

j' signatures frequently mottled with red or violet C6 d, 6 dc, 6 dg,
1

6 da	 6 dgc, 6 dge, 7 d, 7 da, 7 dace, 7 de etc), is sharply
{

differentiated notably, where the unit is in contact with, the.
{r

_Leichardt Metar►iox 2ucs which have, an exce tionall 	 li htp	 exceptionally	 g
,t

signature (1 he) .

Several spectral signatures evoke particular comment. 	 :jai the south

the characteristically light spectral signatures produced by

' areas	 by the Deighton	 to darkunderlain	 Quartzite give way	 green r
t

t; ones	 (6d, 8 de, 7 d,_4 dhl.	 The latter occur over an area, i

!	 { carrying a vegetation of Enneapogon polyphyllus grass with scattered

Eucalyptus brevifola and E. argillacea trees 'which. was severely

burnt in 1474 before the LANDSAT pass. 	 The effects of the burn {
{	

R
are responsible for the dark green signatures. 	 Two areas along

the Wonga fault are of particular interest, 	 one to the west of the

i
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fault and ,south of the Cameron river has particularly dark

` spectral signatures (9 az, 8 abd). 	 This area has an anomalous

plant community of Polycarpaea glabra which is associated with

•	 i t ^^
iron rich gossan containing relatively large . amounts of copper.

The second, west of the Wonga fault and south of Breakfast Creek
i

has a relatively dark red/violet spectral signature which contrasts

sharply with those of adjacent areas but has not been checked

in the field.

c
Differences in the composition of the ground vegetation and in the

1

i extent of bare ,soil and bedrock outcrop are important in the

;If

production of contrasting spectral signatures. 	 Relief and the

presence of iron rich bedrock or ferruginous cappings are also

important.	 Generally speaking Triodia pungens grass which
?.

characterizes sandy soils and siliceous bedrock contribute blue
a

qJ hues to the spectral signatures whereas, in the March period,-

the soft grasses which reflect strongly after the summer rains,

contribute red and pink hues.	 Since siliceous rocks and sandy

C
soils tend to have a ground cover of Triodia pungens whereas

argillaceous and calcareous rocks and more loamy soils tend to

the	 blue 'isupport	 soft grasses, generally speaking green and 	 spectral

# signatures characterise quartzites whereas pink and red ones are
M IL,

more common over slates and calc-silicate rocks. 	 The amount of
I

I

; T
bedrock outcrop and of sandy soil cover respectively influence

z

I

R

j the extent of dark green or dark blue and of light yellow

components to the signatures.
t

h

overall the'LAN'DSAT imagery displays the structure and grain of the

country and outlines the major geological formations. 	 The

^ is	 ;
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resolution is better on colour composites generated from the

computer compatible tape than from negatives. More detailed

information may be obtained from interpretation at the larger

scales where the individual pixels are differentiated. Geobotanical

anomalies may be recognised and Mary Kathleen uranium pit open

cut and tailings dam identified.

3.3.1.3 THE MITAKOODI ANTICLINORIUM

Southeast of Mary Kathleen the Mitakoodi anticlinorium is clearly

distinguished on the LANDSAT I and LANDSAT 2 imagery for

22 December 1972 (ID 1152-00073) and 2 March 1975 (ID 2039-

n
23555) respectively.	 on the colour composite generated from MSS

bands 4, 5 and 7 of the December imagery distinctive spectral

signatures outline the geological units comprising the feature

and the map showing these spectral signatures accords remarkably

closely with the geological map of the-area prepared from maps

produced by the Australian Bureau of Mineral Resources (Figures 27,

28 and 29).	 On this dark spectral signatures of predominantly

blue colour, (7 epa, 6 eap, etc.) outline the hills capped by
ri

1

'aroundoverhang	 jasperlite	 the northern periphery of the: U

anticlinorium (Plate 21).	 They contrast sharply with the lighter

dominantly blue green spectral signatures (3 pa, 4 epa, 4 aed,

3 ade ; 2 dac, 2 dea etc.) produced by the terrain underlain by

the Mitakoodi quartzite (Plate 2)	 The contrast is particularly

sharp along the north-south trending fault in the vicinity of

longitude 140020 1 in the north.	 The relatively light red and C-1

t	
ii
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green spectral signatures (3 ade, 4 acd) produced by the hills

of Mitakoodi quartzite in the centre of the Wakeful syncline

(Plate 22) again contrast sharply with those produced by the

surrounding level terrain developed over the Marraba Volcanics

which are characteristically of blue green colour and medium

tone (5 edc, 6 eda) (Plate 23). A great complexity of spectral

signatures, mainly of medium tone and blue green colour occur

over areas underlain by dolerite where they reflect the

ramifications of the intrusions In the south dominantly red

3

,a
spectral signatures (5 aed, 3 adce) delineate the broad plains

along the Malbon river.	 in this area field investigations

^i indicate that in December the sparse ground vegetation cover and
s

skeletal soils over the hills results in retlectances from bedrock

i1
very largely determining the spectral signatures and thereby

accounting for the sharp contrasts between areas underlain r

respectively by Overhang jasperlite and by Mitakoodi quartzite.- t

Over the plains, however, retlectances from the grass cover are

Largely responsible for the spectral signatures.	 East of the

 4

Mitakoodi anticlinorium sharp contrasts of spectral signatures

distinguish between the hills of the Marimo Slate formation and

r

i the intervening plains.	 overall in this area the spectral

signatures displayed on the colour composite correlate with the

bedrock geology so closely as to suggest that they could be used

for detailed mapping in the southern half of the frame where only

the outline geology is known.

j

El The colour composite generated from the LANDSAT 2 imagery obtained
^

1#

in March 1975 also clearly reflects the geology of the Mitakoodi

f

t
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anticlinorium while studies of the outputs obtained by density

slicing each of the four MSS bands into twenty groups assists an

understanding of the relationships between the spectral signatures

displayed on the colour composite and the terrain features
3

(Figures 29, 30, 31, 32 and 33).	 As in the Mary Kathleen area

the drainage lines are most clearly displayed on MSS bands 4

and 5 whereas some of them are difficult to detect on MSS bands

f 6 and 7.	 The major structural features are apparent on all four

bands but distinctions between the lithological units are most

1 readily recognised on MSS bands 6 and 7. 	 Overall, however, it is

the colour composite generated from the MSS bands 4, 5 and 7

rather than the individual bands	 displays the majorwhich ^a

features of geology of the area.

3,3.1.4	 THE DUGALD RIVER	 NARAKU AREA

E The Physical Environment ^r }d

The Dugald River - Naraku area is underlain by Lower Proterozoic

rocks of the Knapdale quartzite and Corella formations which
t

have been intruded by granites of probable Upper Proterozoic

r

age.	 In the east these rocks are overlain by Mesozoic sediments

j and Cainozoic alluvium (Nicholls, Provan, Cole and Tooms 1964-65).

t

The Corella formation is composed dominantly of calc-silicate `;!

rocks including conglomerates, agglomerates and lenticular beds

of shales, sandstones and dolomites. 	 The Knapdale quartzite may

=F represent a l,ithological unit within the Corella formation.	 The i

r



Lower Proterozoic rocks have been folded along north northwest-

south southeast axes. The structural interpretation is complicated

by the occurrence of numerous faults but the Knapdale quartzite

and the adjacent units of the Corella for'ma'tion appear to be

dipping very steeply westwards. West of the Cabbage Tree creek

outliers of flat-lying red Mesozoic sandstones, conglomerates

and shales rest unconformably on the Lower Proterozoic rocks.

Within the Corella formation a black graphitic and chloritic

shale is host rock for the teal- inc mineralization of the Dugald

River Lode and associated West Lode. The mineralization consists

predominantly of sphalerite, galeia, pyrite and pyrrhotite. The

lode is characterized by a well defined but discontinous gossan.

The major topographic features are closely related to the geology,

n	 r In the immediate vicinity of the Dugald River Lode the resistant

o s
t

Knapdale quartzites form a conspicuous ridge.. 	 (plate 5)	 Other

ridges within the general area are related to silicification along

E fracture zones, the most conspicuous being that of Mount Rosebee.

The limestone-shale sequence enclosing the Dugald River Lode is

{ somewhat silicified and forms a minor ridge parallel to that formed

by the Knapdale quartzites.	 The graphitic host rock of the lead..-
r

s
zinc mineraliZation forms a topographic low within this ridge.

(Plates 24, and 25) 	 Occurrences of copper mineralization in the

calc silicate rocks to the north, east and northeast of the

Dugald River Lode are in relatively level terrain where, in some

cases, they are associated with slight rises above the general

surface.

5
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The ground between the Knapdale quartzite range, the Dugald

River Lode and Mount Rosebee is generally flat and featureless.
F

West of the Cabbage Tree Creek outliers of very gently dipping

Mesozoic rocks capped by laterite form plateau relics and

isolated mesas. (Plate 3) Near Quamby and Naraku granite for

stud the otherwise level terrain. (Plate 6).
it#

The major seasonal drainage is along rivers which are bordered

by levees and often by more or lass extensive series of alluvial

^r terraces_. 	Minor streams and '̂ -ibutaries appear to have been ?
3{

P - rejuvenated recently and are incised into coarse alluvium or, in
9

1

some cases, residuum.	 This feature is particularly noticeable

in the vale between the Knapdale quartzite and Dugald River Lode

ridges; the streams draining this area flow in entrenched channels

in their own alluvium and break through the Dugald River Lode in

g shallow gorges.	 Related to these features are those of the patterns f`J

of lozenge shape features, which are displayed on the air survey
^

} photography of the plains to the north and south of Little Eva I f

j mine.	 (pp 84-86	 also Cole, Owen-Jones, Custance and

` Beaumont 1974).	 They are suggestive of drainage systems which
E

! have become subsurface following a lowering of the water table.` t

i
(Plates 14 and 15)

Within the Dugald River area bedrock outcrops are rare and are

mostly confined to ridges and scarp slopes where the residual or

Q colluvial cover is only a few, inches thick. 	 In the low-lying t
r

ground between the ridges the depth of overburden above the less

k
resistant rocks may exceed several feet. 	 Great thicknesses of

alluvial material, occur near the foot of the higher topographical

ORIGINAL PAGE IS
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features, notably that of the Knapdale quartzite range. 	 The

levees flanking the major rivers often comprise more than twenty •^

.feet of alluvium.
{

Skeletal stony soils occur over the Knapdale quartzite range and
E

over Mount Rosebee.	 Similar but somewhat finer textured

reddish-brown soils occur over the siliceous shales of the ridge

associated with the Dugald River Lode. 	 Arid red earths of sandy a	 ^

to sandy clay loam texture are characteristic over both residual

material and sheet wash deposits of the level terrain but givet

way to grey and brown soils of heavy texture on the plains

bordering Cabbage Tree Creek to the north and south of Little

Eva mine.	 Lateritic soils overlie the Mesozoic mesas west of

Cabbage Treek Creek. n

a

Within the low tree and savanna: vegetation characteristic of the

area an association dominated by Eucalyptus brevifolia and w	 F

Triodia pungens is widely distributed over skeletal sandy soils

t derived from siliceous bedrock over the higher ground whereas

one of E. argillacea and T. pungens covers the lower ground.

E. dichromophloia occurs with E. brevifolia over part of the

Knapdale quartzite range and E. papuana, and E. terminalis may be

associated with E. argil.lacea over the low ground. 	 The last

l mentioned species favours iron rich soils and is conspicuous at

the periphery of the Dugald River lead-zinc lode. 	 It forms a

larger tree with a heavier canopy than the other species of the

urea.	 The turpentine bush Acacia chisholmii forms a nearly

continuous shrub layer with well developed foliage over the

. dissected terrain bear the stream courses. 	 Well defined galleries

A

L at
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a
of trees follow the major stream courses, with T.ristana

grandiflora--and Eucalyptus camuldulensis characteristic of the
1

'. stream bed and Bauhinia carronii, E. ^ Da_puana, Terminalis 1

^ r aridicola and other species along the blanks. 	 (Plates 13 and 26)

These trees are larger and have heavier foliage than those over

the rest of the area.	 The gidgea tree Acacia cambagei, with small

J trees and shrubs of Myoporum and Eremophila spp form a scrub

woodland over the flat topped mesas capped by lateritized

Mesozoic sandstone west and northwest of Cabbage Tree Creek and

over lateritized shale west of the Knapdale quartzite range.

Isolated stands of Acacia cambagei occupy patches of lateritic

gravel along the banks of some streams emanating from the range.
i

y

The characteristic vegetation associations cut out over mineralized

' bedrock where they are replaced, by treeless communities comprised

of the small shrub Polycarpaea glabra the short grass Eriachne 1144

mucronata, the small sedges Bulbostylis bar_bata and Fimbristylis sp

and the tall shrub Tephrosia sp nov. 	 Over the Dugald River lead-

zinc lode all these species are present	 they constitute a

geobotanical anomaly which is over one mile long and up to 300 feet

wide.	 (Plates 24 and 25)	 A number of small geobotanicai anomalies,

most of ,which are comprised of Polycarpaea glabra and Eriachne P,r

r: mucronata, occur over copper bearing calc-silicate rocks.

. (Plate 27)

t Concentric distributions of distinctive communities of grasses

6

a

and herbs form lozenge shaped patterns on the plains with grey

brown soils of heavy texture to the north and south of Little

Eva mine.	 (Plates 3, 14 and 15)
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Studies of the LANDSAT imagery

{ AN The LANDSAT I imagery for 22 December 1972 (ID 1152-00073) was

'

,,. used for initial comparative studies of the information available

from satellite imagery of the Dugald River - Naraku area.

(Cole, Owem-Jones, Custance and Beaumont 1974).	 Studies of the

individual MSS bands indicated that band 4 most effectively

rr^t j discriminated the area of black soil plains northwest of Cabbage

- Tree Creek, that band S displayed the drainage features better

' than the other bands and that band 7 revealed most information on

the geology of the area.	 Studies of different combinations of 

-individual bands each projected through the appropriate filter,

r^
disclosed that most detailed information was accorded by the

y^ combination of bands 4, 5 and 7; this therefore was selected for

if subsequent work.	 Studies of the LANDSAT I imagery for 22 December
r,

1972 disclosed a general accordance with the boundaries of.the

geological formations given on the published 1:253,440 geological a

map of the Cloncurry district prepared by the Bureau of Mineral

Resources but additionally individual lithological units within,

the Corella formation could be discerned and in the vicinity of

fi the Dugald River Lode their boundaries were similar to those

-ti

a

given by the mapping of the Conzinc-Riotinto Company of Australia

• Limited.	 (Figures 34 and 35)

Since it was known from investigations undertaken in 1962
;î
:{ C

jt (Nicholls, Provan, Cole and Tooms 1964-65) that distinctive
`' (

vegetation g associations occur over individual litholo ical units y

j LANDSAT 2 imagery for dates at the end of the summer rainy period

and in the middle of the winter dry period was sought in order to

;1
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compare spectral signatures at the times ofp	 p	 'g	 greatest contrast in

•{{ti'
! plant growth and hence of spectral reflectances.	 For the	 l

comparative studies of satellite imagery taken at different

t' seasons over the Dugald River - Naraku area the LANDSAT 2 imageryC

I	 j'	 x
I for 2 March 1975 (ID 2039-23555) and the 24 July 1975

(ID 2183-23552) was used.	 Colour composites were generated from

MSS bands 4, 5 and 7 and displayed at the 1:50,000 scale.

P

Initial comparison of these composites discloses the display at

;. both seasons of the major structural features, of the individual

ii	 i	 E j

geological formations and of the more important lithological/

stratigraphical units within them (Figures 36, 37, 38, 39 and
d

I

40).	 On both sets of imagery distinctive spectral signatures

1
discriminate areas underlain by the Corella formation, by granite

1
and by superficial deposits respectively. 	 Lithological units

I	
;. and trends within the Corella formation may be delineated and

extensions of these features may be discerned in areas of

r 	 ^
i	

} superficial cover:. Faults and lineaments, only some of which have.

j

been mapped hitherto, may be detected.	 At both seasons the

LANDSAT imagery provides more detailed information than is given

$ on the existing 1:253,440 geological map covering the Cloncurry

area and particularly in areas of superficial cover the March

1975 imagery obtained after the summer rains when there was a

good ground vegetation cover provides more detail than either

( the July 1975 or the December 1972 imagery obtained respectively

I^ during and after the dry winter season when the 	 cover was

•^ very sparse.

On the March imagery, dark blue and red purple spectral signatures

(5 eda, 6 eda, 6 ae, 6 ade etc) distinguish areas ` underlain by

A



h j ^ I

ri

-54-

the Corella formation; those of lighter tone outline the Naraku

granite, (4 eda, 5 ed, 5 dea, 3 ac, 3 deae etc.) and yellow

^'	 ;•i "` signatures delineate areas where residual soil covers bedrock
A

yl k (2 ca, 3 ca, 3 cae etc.)	 All these areas have a vegetation of

scattered small Eucalyptus trees and a sparse ground cover of

^^- perennial Triodia pungens grass with variable amounts of the F
s

rT annual grasses Enneapogon polyphyllus, Aristida contorts and

Sporobolus australasicus whose distributions are dependent largely
I^ 3

on the depth and texture of the soil and on the type of bedrock.

I Because of the sparse vegetation,reflectances from soils and

^(( bedrock contribute to the spectral signatures. 	 Bright red

i

signatures (4 adce, 5 a 	 5 ae, 5 ade etc.) characterize areas of

r

black soils and of alluvium supporting closed grassland of

Astrebla, Iseilima, Cenchrus and other strongly reflecting species.

Here the reflectances from the vegetation dominates the spectralE ( rl
r

r Mfr signatures on the March imagery. 	 On the July imagery when the

grass cover had dried off the contrasts of spectral signatures

{ are less marked, the distinction between areas of outcropping

and rear surface bedrock and areas of covered ground is less

Iii obvious and that between individual geological units less clear.

i

< The pattern of dark blue and red purple spectral signatures

' displayed by areas of Corella formation on both the March and

3uly imagery suggests the presence of synclinal troughs, in

places bounded by faults. 	 These synclines are separated by

' narrow anticlines which inp laces have been intruded by the

Naraku granite which is delineated by spectral signatures of

lighter tone and more irregular texture and outline than those

t

I` i

ILL
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of the Corella rocks. The northeast--southwest trending lineamentsf

characteristic of the Corella rocks, are evident, however, in

the spectral pattern of the areas of granite outcrop. They

extend also across the soil and alluvium covered Cloncurry plains,

which are distinguished by dominantly red si gnatures in1March

and by dominantly yellow hues in July. 	
Within 

these plains the

occurrence ofgreen and blue spectral signatures- on the imagery,

for both seasons suggests the presence of near surface CQre-lla

or ,, granite bedrock, with differences of spectral pattern and

texture differentiating between them. 	 (Figures 36, 39. and 40)-

Here the March imagery provides more information than that for

July.	 The presence of these distinctive blue and green spectral

signatures within this plains area suggests that it may be-

possible to delineate the geology of the Euroka ridge, the

structural high which separates the structural depressions of

the Carpentaria and Eromango basins in the sub-Cretaceous floor

beneath the plains and possibly links the Precambrian highlands

of the Mount Isa - Cloncurry area with those of the Einasleigh

area.	 (Twidale 1966)-

Within the Corella formation distinctive spectral signatures

distinguish individual lithological units. 	 This is most apparent

in the	 the	 lead	 lode.	 both thearea of	 Dugald River	 zinc	 Here on

March and the July imagery the Knapdale Quartzite which forms a

prominent ridge characterized by outcropping bedrock and by

skeletal soils supporting a sparse cover of small poorly

reflecting Eucalyptus brevifolia and E.dichromophloia trees and

Triodia pungens grass, is outlined by a light green spectral

signature (M, 3 dae).	 By contrast the areas of calc-silicate

()OP Q
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rocks whichform subdued rugged terrain supporting a mixed ground ).

cover of Triodia pungens and of moderately strongly reflecting

soft grasses, notably Enneapogon polyphyllus and Aristida contorta

p^ with scattered small E. argillacea trees have a darker signature

of varying hue, dominantly green and blue in March (5 de, 5 dea etc.)

.. and red and blue in July. 	 Characteristically the well-bedded

limestones which outcrop over an extensive area, west, southwest,

and south of the Knapdale Quartzite range have dark blue/green

^ Vj spectral signatures in both March and July. 	 (6 eda, 6 ead etc.)

These areas have a sparse cover of the poorly reflecting Triodia

pungens grass and scattered small E.brevifolia and E. argillacea
.^	 rt	

1

trees and the amount of outcropping bedrock is largely responsible

` for the dark blue/green spectral signatures, which are t

characteristic also of the 1:15,000 infra red false colour air

photography fiown_in April/May 1971. 	 Similar signatures are

' produced again by well-bedded limestones which outcrop over a +$

' narrow belt immediately east of the Dugald River lead zinc lode. f
1	 1

The graphitic shale host rock of the Dugald River lode has a

tone	 within which a darkermedium	 red and green signature ^-

s.
signature, most evident on the March imagery, appears to

i indicate the position of the lead-zinc deposit. 	 (7 ed)	 On the
Y

1:15,000 infra red false colour air photos the Dugald River lode

has a light blue/green spectral signature which contrasts with

the dark blue/green one of the bedded limestones and with those

of reddish hues over soil covered ground. 	 The question arises

1
as to whether the ore horizon 	 produces a,discernible spectral-

signature on the LANDSAT imagery which incorporates longer spectral

bands i.e. bands farther into the infra red, than false colour
f

i
,9

t	 i,
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aerial photography.	 The lode has a strike length of over 1.6 km ,.
R

(over 1 mile) and an average width of 8 metres (25 feet) . 	 It is

delineated b	 an anomalous plant communi ty dominated b	 EriachneY	 Y	 Y

mucronata, a grass which from March to May may have a stronger

reflectance than Triodia pungens, and by Polycarpaea glabra which

is characterized by masses of white flowers and is most abundant

later in the year.	 The lode is characterized by a prominent ;	 }

gossan.	 The evidence suggests that detection of the lode on the k

LANASAT imagery is possible, since it has sufficient length for 3

discrimination, its plant cover produces reflectances which contrast

with those of the vegetation or adjacent areas at both seasons

and its gossan could be expected to produce a dark spectral

response.	 This is supported by the fact that similar signatures 1-

characterize the site of the Lady Clayre copper deposit which is

'	 I
located in bedded limestone host rock to the south of the Knapdale;

-	 quartzite range and by the association of dark spectral signatures'

with iron rich rocks elsewhere in the Mount Isa -,Cloncurry region.,

' Linears have been recognised where there is an offsetting or
i 

i
displacement of spectral signatures along a clearly definedP

f
line, where there are adjacent and parallel dark and light toned

signatures transgressing other signatures and in some cases where

signature	 ofthere	 is an abrupt change of	 on either side	 a

clearly defined line.	 In the last mentioned case, care is needed

to eliminate linear features caused by changes of spectral

F. signature connected with fence lines, railways and roads on either y

E side of which differing grazing practices cause differing spectral 1f	 `
f ^	 S

responses.
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I	
^

All the major faults shown on the published 1:253,4.40 geological

map are clearly displayed on both the March and the July imagery

(Figures 35, 41 and 42).	 Additionally the Mount Rosebee .fault

appears to extend further northwards through Kajabbi and

further southwards through the old Moonlight and Native Companion

mines.	 A series of linears with an east northeast-west southwest

4k	 ^^I
orientation is also apparent.	 Major sections of stream courses

follow some of these while known areas of copper mineralization

occur along two of them, namely the Lady Clayre and Volga

` deposits and that southwest of Mount Magnet. 	 More linears are
1

4r evident on the March than on the July imagery with those suggesting
1

. the presence of intersecting faults at the Dugald River lead

zinc lode, the Little Eva copper, mine and at Mount Rosebee near

! . r which there are several copper occurrences, being of particular
F

interest.	 Closer examination of the linears particularly where

` the spectral signatures suggest the presence of near surface s

Corella rocks might well lead to the discovery of hitherto unknown

base metal deposits. 	 There is also a set of north northwest —
Y

south southeast trending linears which intersect the Mount

Rosebee fault zone, are evident north of the Knapdale Quartzite

range and again intersecting the Mount Quamby faults. These also
{

may merit investigation.Y ^

x The information yielded by the colour composites generated from

films of the NASA imagery and displayed at the 1:50,000 scale 1

encouraged the use of the computer compatible tapes for the

a	 u^'
generation of a colour composite of the Dugald River Lode area for

display at the 1:10,000 scale.	 For this purpose MSS bands 4, 5

^^

r

and 7 of the March 1975 imagery were used (Figure 43). 	 At this
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scale the individual picture units or pixels which give a

ground resolution of 80 metres, are displayed. The areas of

covered ground, which in March carry a sparse cover of strongly

reflecting grasses are sharply distinguished from those of

outcropping bedrock by red and orange spectral hues (- Sa, 6 a,

4 bh, 3 bh, 4 bhk etc.)	 (Figures 44 and 451. 	 The steep western I'

and eastern slopes of the Kanpdale quartzite range are delineated
i

by dark green hues ( 5d, 6 d, 7-d) whereas the. top of the range

displays a range of light green colours (1 deh, 1 dec)'. 	 Here
r

the outcropping bedrock is mainly responsible for the spectral

hues.	 The	 host	 the Dugald River Lode is

y

shale	 rock of
f

discriminated by a range of green, brown and grey hues of varying

tone (.6 dwkj, 5 dkw etc.) whereas the lode zone is shown by

dark -green/blue colours ( 6 d, 8 d, 6 de, 8 k). and the bedded
,a

limestone footwall rocks by very dark blue, grey to black and
1

purple pixels (4 ek, 4 gew, 8 g, 8 k, 9 jk, 9 gjk, 6 awk etc.)

The steep eastern slope of the minor ridge formed by the
S

footwall rocks is partly responsible for the very dark hues.
lI

The discrimination of the drainage lines, notably Silvermine iii
p

4 ,

Creek, assists the location of the geological features.

Whileile the colour composite at the 1:10,000 scale displays the #

individual pixels, and provides considerable detail, it has

shortcomings; for to some extent the detail clouds the
Y:

discrimination of the individual lithological units while at
C

the same time not giving the resolution available in air photos g

at a comparable scaler s,

AGE
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3.3.1.5	 THE LADY ANNIE - MOUNT GORDON FAULT ZONE AREA

f

' d

f

The Physical Environment

k

I The Lady Annie - Mount Gordon fault zone area is underlain by

Low er Proterozoic rocks of the Myally, Gunpowder Creek and

Paradise Creek formatioilp. 	 These have been folded into a series

of anticlines and synclines and have been highly faulted

(Figure 46).	 East of the major fault to the east of the old
{

- Lady Annie copper mine, the Lower Proterozoic rocks are overlain

('	 "r unconformably by flat lying Middle Cambrian, rocks and by

Cainozoic soil and alluvium. 	 Soil and alluvium also cover
s

Lower Proterozoic and Middle Cambrian rocks along the valley of

the West Thornton river.	 Tertiary laterite caps considerable

areas to the northeast, south and southwest of Lady Annie while

1 numerous small relicts of this material occur in the Lady Annie

and Mount Kelly areas. 	 Additionally ironstones some of whichi

are gossanous occur in these areas.

Copper mineralization occurs at a number of localities. 	 At the

Mammoth mine there are four lenticular ore bodies which occur in

sandstones with minor lenses of siltstone in the Myally Beds.

' ? At the old Lady Annie mine copper mineralization occurs in t'	 ?

dolomitic shale of the Paradise Creek formation and is believed
f.

to be comparable in age with that in the carbonaceous shale at

the old Mount Oxide workings. 	 It occurs also in dolomitic shale

w»f at Mount Kelly.	 The Lady Loretta lead-zinc horizon occurs in a

1
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I

pyritic and carbonaceous shale in the Paradise Creek formation 	
1

within the .structure known as the Small Syncline. The Gunpowder

Creek and Paradise Creek formations are considered to be time

equivalents of the Mount Isa group which hosts the Mount Isa

copper and silver-lead-zinc and the Hilton silver-lead-zinc

ore bodies. In the Mount Isa group all the known economic

mineralization occurs in the Urquhart Shale. The dolomitic

and carbonaceous shales which host the known mineralization

in the Lady Annie area may be of comparable age but no precise

correlation between any units has been established. Within the

Lady Annie area one object ive of the remote sensing investigation	 a

was the recognition of spectral responses which might be identified

with dolomitic and carbonaceous shales and with mineralization.	 i

E
Within the study area the Cambrian Beetle Creek formation

;i

i	 contains the important phosphate deposits at Lady Annie, east

of Lady Loretta, and at Lady Jane„

The major topographic features are closely related to the geology

and to the legacy of Tertiary plantation processes which produced

peneplains which were subjected to deep weathering and

_lateritization. Regardless of the geology there is a general

accordance of summit levels within the area but individual

topographic features are related to resistance of lithological	 i

units to post-Tertiary erosion. The fault bounded blocks of
r

Myally quartzite form upstanding flat topped plateaux. Rugged 	 ^?

terrain characterizes the areas underlain by the Gunpowder Creek

formation around the periphery of these plateaux (Plate 28)

whereas subdued terrain occurs.over the major syncline in which

OF POOR QUALrM
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the Paradise Creek beds sub-outcrop south of .Lady Annie copper

	 l

mine (Plate 29). The pyritic and carbonaceous shale which hosts

the Lady Loretta lead-zinc deposit forms a lateritized plateau

some 60 metres above the surrounding plains. 	 (Plate 28	 )

lu The surface expression of the primary ore grade mineralization

crops out within 10 metres of the plateau surface on the western

limb of the Small Syncline while the pyrite-chert facies of the

I

e

horizon	 the eastern limb	 both the Small	 Big Synclinesore	 on	 of	 and

coincides with the plateau surface (Alcock and Lee 1974). 	 The

Middle Cambrian rocks containing the Lady Annie phosphate

IJ
deposits also form a level plateau.

a

' Within the low tree and shrub savanna characteristic of the ;lady

t+ 4
a

Annie area distinctive vegetation associations dominated by

• Eucalyptus brevifola F. Mue11 and by different grass species.

x distinguish the different lithological units (Plates 30, 31, 32
a

i
and 33).	 The plateaux underlain by Myally quartzites are readily

' distinguished by their sparse cover (Plate 29) which contrasts

1 sharply with the scrub woodland dominated by Acacia shirlevii

trees which characterize the iron rich horizons of the Gunpowder

' Creek and Paradise Creek formations and alsolaterite capped

rocks.	 (Plate 11)	 Northeast and southwest of Lady Annie plant

t	 ' communities composed of a greater variety of species occupy the

extensive Mesozoic lateritic plateaux.

S	 3_

w:^
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Studies of the LANDSAT imagery

The LANDSAT 1 imagery for 15 February 1973 (ID 1207-00133) and

the LANDSAT 2 imagery for 22 March 1975 (ID 2059-00012)

18 September 1975 (ID 2239-0001) and 10 November 1975 (ID 2292-

23594) was used for comparative studies of the information

available at different seasons of the year in the Lady Annie/

Lady Loretta and Mount Gordon fault zone area northwest of
•

Mount Isa.	 Colour composites generated from the positive plates

produced from negative films of MSS bands 4, 5 and 7 displayed

at the 1:48,000 scale were used for the initial studies. 	 This

scale was chosen to accord with that of de Keyser's map of the

Paradise Creek area (de Keyser 1968)

There are marked differences of tone and hue between the imagery

from the two satellites and between the seasonal imagery from

LANDSAT 2..	 (Figures 47 and 48)	 Distinctive spectral

reflectances discriminate the geological formations and the

individual lithological units within them at all seasons but the

boundaries are most clearly displayed by the sharp contrasts of

hue which characterize the March imagery and to a lesser extent

that from November whereas they are delineated mainly by tonal

contrasts in the red dominated imagery for September. 	 (Figures 48,

49, 5G and 51)	 Lineaments believed to be related to faults and

fractures in the Precambrian rocks even where overlain by Cambrian

and later deposits are apparent at all seasons but are most

clearlv displayed on the March and November imagery whereas major

and minor faults, including evidence for such features beneath

cover of alluvium west of Lady Annie and east of the West Thornton

ORIGINAL PAGE U5
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river are most obvious on the September and November imagery.
1

n , (Figures 50, 51 and 52) . ?	 i

I:
R

The LANDSAT imagery confirms most of the major geological

1 features of the Lady Annie - Mount Gordon fault zone area depicted

!k on de Keyser's map, displaying some of them more accurately and

in greater detail. 	 on the broad scale sharp contrasts of tone,
r	 {

{ hue and textural pattern delineate the eastern complex highly

a faulted area of the Mount Gordon fault zone, which is underlain

by rocks ranging in age from the Eastern Creek Volcanics to the

Paradise Creek Formation, from the broad central area underlaini

for the most part by rocks of the Gunpowder Creek and Paradise

j Creek Formations disposed in a series of anticlinal and synclinal

i structures which, however, cannot be discerned on the imagery. a

` ( In turn this area	 covered in the west by Cambrian and later

{I strata is clearly distinguished from the more closely folded and.

complexly .faulted belt which characterizes the Laay Annie area. a

j

R

Here a major syncline is clearly outlined on the imagery and

the fault which marks its eastern Limit is revealed as a major

structure extending. northeastwards well beyond the l.ini;ts of

the area in which it has been snapped hitherto. 	 Westwards of the

L4dy Annie fold, belt the broad alluvium covered. valley of the

West Thornton river is outlined, but tonal and colour contrasts

{
I

f 

K

on the imagery, notably for September and November, suggest the

1 presence of folded. Proterozoic rocks beneath the alluvial k

r
.-,over in the east and distinctive spectral patterns and spectral f	

t

I signatures on the March and November imagery indicate the presence
k

i'

`

i

of sub-outcropping Cambrian rocks near the river in the West.

s Northeast and southwest of Lady Annie particularly dark, signatures
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h

'	 of irregular outline distinguish areas with lateritic cover.

In the southwest sector of the frame, west of McLeod Hill, ,{
f

a sharply defined circular feature with a green spectral hue,
t:

which contrasts with the red hues of the surrounding area on the

March imagery, coincides with the outline of Pilpah sandstone

k i	 shown on the four miles to the inch geological map. 	 (Figures 49,

50 and 51, Plate 34)	 The feature is equally strongly delineated

on the LANDSAT 2 imagery for November and September 1975 and

on the LANDSAT 1 imagery for February 1973, although in each case

r	 the tone and hue of-the spectr-.il reflectances produced by both j

k	 - the feature and the surrounding plains are different.

Within the areas outlined above the LANDSAT imagery delineates

' certain individual lithological units remarkably clearly. 	 In

the Mount Gordon fault zone area more lithological units are
j

discriminated on the imagery than are indicated on de Keyser's

}i	 map.	 The quartzites at the.top of the Judenan formation are

distinguished in March by their light green colours while the r

stratigraphically lower conglomerates, dolomites, argillaceous i 3

members and basal volcanics are revealed by a sequence of

signatures which, according to the nature of the bedrock, are r

jof light to medium tone and of dominantly green blue hue in March

and of somewhat darker tone with ;a reddish orange component to

the blue green hue in September.	 Where they outcrop within the

fault zone the siltstone horizons of the Gunpowder Creek formation .

!
i produce reflectances of medium tone and dominantly blue hue in

t

March whereas to the west of the zone they are characterized by j

dominantly green ones c these spectral differences suggest that

the rocks in the east are more calcareous and those in the west more
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dolomitic	 both thesiliceous.	 In both areas the	 horizons within

Gunpowder sequence and the overlying Paradise Creek formation

are outlined by brownish red or blueish red colours.in March,

In September red hues dominate the spectral signatures of both

the Gunpowder Creek and Paradise Creek formations but blue and

green components respectively again discriminate between the

calcareouo and silicous siltstones of the former formation whereas

reddish orange hues character^ze the dolomitic horizons of both.

The individual lithological units within the geological formations

are clearly distinguishable also on the November imagery on which

purple brown and grey hues predominate.	 The distinct ive spectral

signatures which discriminate the lithological units within the
A

geological formations in the mount Gordon fault zone at each

season of the year result partly from the extent and reflectivity

of the outcropping bedrock and partly from the nature of the

vegetation cover, with the dominance of green spectral hues over

the quartzite horizons being attributable to the poor reflectivity

of the Triodia pungens grass cover and the persistence of red

hues over the dolomites,to the prevalence of soft grasses notably

Enneapogon polyphyllus.,

In the area between the Mount Gordon fault zone and the Lady

Annie area distinctive spectral signatures distinguish between the

Myally beds, the Gunpowder formation and the Paradise Creek

formation on the LANDSAT 2 imagery for March, Septembzar;and

November (Figures 49, 50 and 51, Plate 11 and 33) with the most

pronounced contrasts occurring on the March imagery.	 On this, as

terizeelsewhere, light green spectral hues C2 dc, 2 daeL charac^
I A
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the Myally quartzites, whereas dominantly blue and red ones
+

respectively characterize the siltstones of the Gunpowder formation

(5 eap, 4 ead, etc.) and the dolomites of the Paradise Creek

formation (4 adce, 3 ade, 3 aed etc.l. In the west distinctive

spectral signatures and spectral patterns differentiate the area

j	 underlain by Cambrian rocks, with red signatures characterizing

the Thorntonian limestones and one of subtle purplish hue (4 gaed)

outlining the Beetle Creek siltstones which in this area carry -

'	 important phosphate deposits.	 This latter hue clearly r

differentiates the Beetle Creek formation from the overlying Inca

f
4

siltstones.	 With a lighter tone it occurs again on the November

imagery on which the older Cambrian horizons have yellowish

`-I signatures, while it is discernible on the November imagery.	 The

phosphate deposits carry a clearly defined and anomalous plant

. community covering a large area and the very distinctive spectral j.
' ht `	 !	 t

signature over the Beetle Creek formation is in part due to the

reflectance of this vegetation and in part due to the reflectance t

of the bedrock and soil cover. 	 (Plates 35 and 361
^	 r

j

Sharp contrasts of spectral signatures on the LANDSAT imagery for

Marchr September and November delineate the individual lithological

units particularly clearly in the Lady Annie/Lady Loretta area,

1 where studies of multi-spectral air photography and field checking

of ground truth information has also been undertaken. (Figures 53,

(# 54 and 55, Plates 37, 38, 39, 40, 41 and 42) 	 Very light green
1 4,

signatures clearly outline the flat topped plateau blocks of Myally

" quartzites which carry a very open vegetation cover characterized

by sparse Triodia pungens grass with scattered Eucalyptus trees

both of which reflect poorly. 	 The northern block is surrounded

dRIGMAL PAGE i5
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and the southern blocks are adjoined on one side by broken country
y	 ,

i' with numerous mesas where the Gunpowder Creek formation has a
E`1

laterite capping carrying a fairly dense growth of Acacia

shirleyii woodland. (Plate 28)	 These rocks are clearly delineated
i

{* by spectral signatures of exceptionally dark tone on the imagery

E ^° for each season. 	 The boundaries of both the Myally blocks and

the Gunpowder formation are more clearly defined than on

de Keyser's map and the sharp contrasts of spectral signature
r^ t

j between the two and between the latter and adjacent outcropping'

Paradise Creek beds suggest a series of fault blocks not hitherto

distinguished.	 In this area the clear delineation of the

G
^	 4	 ^

lithological units is due largely to the highly ferruginous nature

of the Gunpowder rocks and to the hea	 growth of Acacia shire xi. heavy 9	
y.`

On the northern _side of the most easterly of the Myally blocks a

very dark blue/red spectral signature occurs both over broken
r^
!'

country where the basal unit of the Gunpowder Creek formation has

a well developed laterite cap which in places displays gossanous

ii features and extends _northwards along the line of the major. fault {

which separates the lower Proterozoic rocks from the overlying w^

Cambrian rocks to the east. 	 Here the possibilities of mineralization

l f , merit attention.

j Structural features are also exceptionally well displayed on the-
rii

LANDSAT imagery of the Lady Annie area. 	 Here a major syncline
i

k
s

' involving rocks of the Paradise Creek formation is clearly
i	 4

' 4 delineated.	 (Figures 53 and 55) 	 This is largely because highly

ferruginous lateritic cappings producing very dark spectral

signatures occur over the unit comprising algal cherts, chert

breccias and dolomitic siltstones near the periphery of the
r

t

Owe,	 emvc^v._,s._

^	

F

_ S
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structure.	 (Plates 42 and 431 	 At the eastern margin of the

syncline sharp contrasts of spectral signature occur on either

and	 to delineate the	 fault	 theside of	 serve	 major	 along which

Cambrian rocks on the east abut against the Precambrian rocks

on the west.	 Dark spectral signatures caused by iron rich rocks

mark the line of this lineament which continued northeastwards

beyond the area in which it has been mapped hitherto.	 The fault

is clearly discernible through the area of laterite cover where

striking differences of tone occur on either side of it on the

imagery for each season.

Within the overall synclinal structure dark blue spectral

signatures C7 ea) indicate theposition of the pyritic and

carbonaceous shale horizon which occurs within the Paradise Creek

formation in the features known as the Big syncline and Small

syncline east of Lady Annie CCole 1977)_._ 	 In the latter structure
;A

it contains the Lady Loretta lead.-zinc deposit which has A.gossan

at surface.	 The horizon shows most clearly in the LANDSAT I
I

imagery for 2 March 1973 but is also distinguishable on the

LANDSAT 2 imagery for March, September and November 1975. -It

produces narrow steep sided flat topped ridges with considerable

laterite cappings.	 Open Triodia pungens grassland with scattered

Eucalyptus brevifolia trees occur over the 	 tops andplateaux

dense Acacia shirleyii woodland occupies the steep slopes and the 44

laterite caps.	 (Plates 39 and 401	 The iron rich rocks, the

dense Acacia shirleyii woodland and probably also the steep sided IJI
ridges contribute to the dark signatures. 	 A strong lineament

which appears to coincide with the position of the Carlton fault
43

{

,
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may be recognised in the area. It appears to extend east-

northeastwards beneath the cover of Cambrian rocks and poses
s

the likelihood of structures in the underlying Precambrian

rocks with the possibility of concealed ore deposits.

Most of the major faults depicted on de Keyser's map are apparent

on the LANDSAT imagery for March, September and November 1975.
E.

y	 area in which they have been.h	 ,
Some of these extend beyond the

mapped hitherto.	 Other lineaments not previously known, may be

recognised on the imagery (Figure 42). 	 These include major

structures respectively passing through the areas in which the

+ Mammoth mine and the Mount Clark and Mount Kelly zones of copper

mineralization are located. 	 These have	 eastnortheast- west
a

southwest and	 northnorthwest-south southeast orientations'

ILI respectively.	 Additional lineaments with the same orientations, rr

which are similar to those identified in the Dugald River area,

may be detected particularly on the March and November imagery.

Further major lineaments may also be recognised.	 Where very dark
* j	 J

spectral signatures, suggesting iron rich rocks, occur along

these as for example north of Lady Agnes mine, west and southwest
a

,
of Lady Annie, northwest and southeast of Mount Kelly and within

the Mount Gordon fault zone, exploration for base metals may be

"	 t^+
worthwhile.

The geological information yielded by the colour composite

generated from the positive films of MSS bands 4, 5 and 7 of LANDSAT

' ^
f

r{ 2 imagery for 22 March 1975 {ID 2059-00012) merited studies of
^

t	 t
1	

'a

similar composites from the computer compatible tapes. 	 For this

purpose composites providing resolutions of individual pixels were

A
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generated for the Lady Annie - Lady Loretta and the Mount Kelly T
^

:'
{	 k

areas.	 (Figures 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 and 66) ,.
^ a

k Studies of the Lady Annie - Lady Loretta composite at a scale
Nil \	 a

of approximately 1:35,000 disclosed additional spectral signatures,

I

discriminatedreater litholo ical detail and 	 distinguished9	
g.	

, 

E between different categories of laterite cover and of iron rich

bedrock and revealed the presence of faults and lineaments not

readily detected on the composites generated from the positive

films..
` e

I

As on the composites generated from the NASA films, the upstanding
NA

{'

77
1

' C	 anticlinal blocks of Myally quartzites are distinguished by

very light green and yellow spectral signatures C1 cdg, 1 cd, 1 xd).

On the CCT composites more detail is available arising notably

from differences of spectral signatures related to jointing

and to bedding which suggest trends within the fold structures.

The spectral signatures of the areas underlain by the younger
a

Gunpowder Creek and Paradise Creek formations vary with lithology,

with thepresence of stromatolitic horizons and with the development

G'	 of iron rich horizons.	 Again more detailed information is

displayed,	 darkwith the	 purple red (8 gad, 8 dga, 8 gd)

signatures of the stromatolitic horizons providing useful markers.

In striking contrast the siltstones and shales tend to have green

spectral signatures and the dolomites to have deep pink or red,

ones.	 The individual lithological/stratigraphical units are

t" particularly well displayed in the fold structures west of

Lady An:: ie.

l
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The details displayed within the Cambrian formation are of

particular interest. The area of the Lady Annie phosphate 	 j
1

t' deposits contained in the Beetle Creek siltstones is very

clearly defined by a subtle light purple or mauve spectral

signature. (5 ghe, 6 egh) 	 To the south southeast this ends

i abruptly where red spectral signatures delineate Paradise Creek

limestones and chert and vivid green ones C4 dl outline the

area underlain by Gunpowder Creek siltstones. To the northwest

k bright magenta	 ink and yellow spectral signatures occur overg	 g	 P	 Y	 P	 g S

the Inca siltstones with the light yellow signatures C5 hb, 3 hc).

i
being associated particularly with spreads of red sand and

1 quartz.. gravel. 	 The airstrip made to sustain exploration

in this area is delineated by a pale yellowyactivities
p	 ,

signature,	 ( c)

The unique spectral signature over the phosphate deposits is

undoubtedly related to.the distinctive vegetation which characterizes }

Ai r	 ,:area.	 This is composed of fairly closely spaceds anemth	 i	 this

1^•*^! small Atalaya hemiglauca trees with a ground layer dominated by
i

Chrysopogon fallax and Enneapogon polyphyllus grasses.

(Plates 35 and 36)	 Virtually no other trees or shrubs are

present.	 The Atalaya hemiglauca trees have canopies of narrow'

dark green drooping leaves whose reflectances in the infra red

bands in March, like those of- Chrysopogon fallax and'Inneapogon

polyphyllus which forms an incomplete ground cover over the dark .

brown soils, is weaker than that of the strongly reflecting t

perennial and annual grasses on areas of covered ground and a^

r
t ` limestone bedrock but is stronger than that of Triodia pungens,

e

t

jj



I

X^

y

-73-.'

grass which is characteristic of siliceous soils and bedrock. 	 zo€ .^

The unique character of the spectral signatures over the phosphate-

bearing rocks is confirmed by the fact that it occurs over the

Lady Jane phosphate area north of the Lady Agnes copper show in i

the northern part of the area covered by the LANDSAT composite. 	 s

The relationships between the spectral signatures and the vegetation

cover is readily confirmed from field data obtained in the
7

vicinity of-the airstrip.	 Here the vegetation is composed of an

admixture of Eucalyptus pruinosa and Ayp	 talaya hemglauca trees

with Chrysopogon fallax grass, which are largely responsbile for

the pink and yellow spectral signatures C5 hb, 5 h, 3 hc).

Further north this gives way to areas of Eucalyptus brevifolia q

and' Triodia pungens which produces the green spectral signatures.

(2 d)	 At the western end of the airstrip areas of red sandy
a

soil contribute to the yellow signatures characteristic of
•

=	 that area. t

.a

Between the Lady Annie phosphate area and Paradise Creek dark red

spectral signatures (6 ab, 9 a, 9 ab) distinguish the area

underlain by dolomites of the Paradise Creek formation from that

underlain by Cambrian limestones, which have a magenta pink

spectral signature C5 hbc), to the west. 	 The latter in turn is

sharply distinguished from the area with green and yellow spectral

signatures- (1 cd) where Cambrian rubble veneers the surface, the

change taking place along the line of a small creek. 	 East of

Paradise Creek and of its east bank tributary, a change to_ 1'

predominantly green spectral signatures C4 dg etc), marks the
f

r

contact with the Gunpowder Creek siltstones. 	 Within the bright.,
111,
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red spectral signatures which characterize the dolomites of the

Paradise Creek formation to the west of this tributary the pattern

of the signatures of individual pixels reveals the.bedding trends

in the bedrock. North of Paradise Creek dark signatures

disclose the presence of stromatolitic horizons which form marked

relief features. Within this area the position of major faults

is revealed by sharp changes of spectral signatures.

Within the area underlain by the Cambrian formation dark green

spectral signatures (7 dg, 8 dg,z) outline areas capped by laterite

which carry a woodland of Acacia shiileyii.

On the CCT colour composite distinctive spectral signatures

discriminate between areas of laterite and of iron rich bedrock
 ^^	 1	

1•

and between different categories of laterite. Thus in the

northeastern part of composite predominantly dark green spectral

signatures (7 dze, 7 dz, 93 d) outline the lateritic plateau

which extends from the headwaters of Slatey Creek eastwards
it ^

towards the Mount Oxide Mammoth area beyond the margin of the

Ji frame. The exceptionally dark signatures at the periphery of

this plateau are associated with outcropping laterite at the

breakaway scarp feature which is characterized by stands of

Acacia shirleyi! trees. A sharp spectral boundary marks theU
northeastern extension of the major fault along the eastern

boundary of the major Lady Annie synclinorium. To the west

predominantly green signatures (7 dze, 7 z etc.) occur over red

lateritic sandy soils which support mosaic distributions of

savanna woodland associations. In places these are dominated by

large Eucalyptus terminalis trees and Triodia pungens grass

ORIGINAL PAGE Ib
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sometimes associated with small Petalostigma,quadriloculare

trees and Acacia spp shrubs. Elsewhere communities of low

growing shrubs most commonly Acacia, Grevillea and Hakea spp

associated with Triodia oungens grass occurs. The variations in 	

t?
the form and composition of these communities is responsible for

the minor variations of spectral signature within the overall

dark green one outlining the lateritic plateau. The very dark,

almost black signatures areproduced by dense stands of Acacia

shirleyii. East of the fault green and red spectral signatures

occur where broad leaved grasses accompany or alternate with

Triodia pungens grass in the open savanna woodland of Eucalyptus

brevifolia, E. pruinosa and other tree species.;

x

r	 ,,.
Y	 ^?

i
In the central part of the composite dark purplish red and green

spectral signatures (8 gad, 8 dga, 8 gd, 7 dge etc.) distinguish

areas of ferruginous Gunpowder Creek siltstones and shale and
1
?

Paradise Creek stromatolitic chert.	 The former are clearly

delineated around the western and northern sides of the southern

anticlinal blocks of Myally sandstone and around most of the
zf

s;	 a

northern block; in the latter area their south western boundary

again suggests the block- faulting cited on p.68 	 further`r

north individual laterite caps may be recognized. 	 Within the dark

spectral signatures produced over the Gunpowder Creek siltstones s

and shale unit at the northern end of the eastern Myally block !

1,,
there are two of exceptionally dark signatures. 	 Both occur along

a major southwest-northeast 'trending lineament, one of them where

this intersects the major fault along which the lower Proterozoic

rocks abut ;against Cambrian rocks to the east.	 This may be a
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favourable site for mineralization.

The stromatolitic cherts of the Paradise Creek formation are

outlined by dark reddish purple spectral signatures in the southern

part of the syncline lying between the northern Myally block and

the lateritic plateau and again in the area to the west of the

southwestern Myally block.	 In both these areas lateritic s
is

cappings contribute to the dark spectral signatures. 	 in both

the trends in the spectral signatures effectively disclose the !	 '

fold structures.';

Both limbs of the Small syncline and the eastern limb of the Big
i

syncline in the Lady Loretta area are distinguished by very dark

spectral signatures ( z	 ) which contrast with the vivid green

t"spectral signatures C 5 d) of those adjacent to the Lady Annie

airstrip (delineated by its yellow signaturel to the south. 	 This

information together with the presence of a lighter green !`

signature C8 dz) in the centre of the Small syncline and of

pixels of orange and yellow hue C5 b) on the plateau surfaces

a associated with the eastern limb of both synclines prompted study

' of this area at a scale of 1 10, 000 	 (Figures 59, 60 and 61) . }

-	 The colour composite of the Lady Loretta area generated from the

computer compatible tapes at the 1:10,000 scale CFigure 591 was

interpreted with reference to the geological map of Alcock and

Lee published in 1974 (Figures 61 and 62). 	 The Small syncline and

via` the Big ,syncline may be distinguished.	 Within both features

particularly dark spectral signatures (9 j, 9 k, 9 jk, 9 gz, 9 w,

f 10 w etc.)- within the _areas of generally reddish brown spectral

thereflectances which mark 	 pyritic and carbonaceous shale host
l

r
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rock of the lead-zinc mineralization, occur. 	 In the Small syncline {
4

these appear to occur over the Ore Horizon. 	 Similar reflectances,

f,
a,.. however, occur over stromatolitic horizons to the northwest of

the synclines.	 East of Lady Loretta quite distinctive very dark

green and grey spectral reflectances V d, 9 d, 9 w, 10 w, 7 dkl

.	
a

outline the areas of lateritic cover. 	 The bright red C6 al area ^

-within the Big syncline marks the line of a valley.	 North of

Lady Loretta the southern sections of the two plateau blocks of

Myally quartzite have light spectral reflectances as has also

much of the area of covered ground to the southeast and southwest.

While the resolution on the colour composite generated from the

` computer compatible tapes at the 1:10,000 scale is limited to

that of the LANDSAT imagery i.e. 80 metres, nevertheless when the

E
composite is compal_ •ed with the detailed geological maps based on p

the work of'Alcock and Lee (Figure 621 it is clear that it presents

a remarkable amount of information. 	 This suggests that LANDSAT

imagery handled I n this way has a considerable potential in VA
mineral exploration.	 The information is most valuable when it can}

compared with air survey photography at the same scale. 	 Here a
n

be
is

comparison of the colour composite of the most northerly of the r,
i

y
Myally blocks, with the print lay-down of the air photos of the

same area is useful. 	 (Figures 63 and 641	 Like the Lady Loretta A

µE111

F

area the colour composite of this Myally block was displayed at the
^ }	 -t

1:10,000 scale. 	 The comparison with the print lay-down of the

air photos indicates that the broken relief of the area underlain .

by the basal unit of the Gunpowder Creek formation plays some.part 1	 f

in determining the very dark spectral reflectances which characterize

the unit.	 At the same time the information yielded by the LANDSAT_ j

ORIGUSTAL PAGE I
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imagery suggests the need for some revision of the geological map

of de Keyser, as modified by A;lcock, Graylin, Dowling and Cox,

r^	 including the recognition of additional faults, (Figure 55)
f	 ,

!	 " The colour composite generated from the computer compatible

"t tapes for the Mount. Kelly area southeast of Lady Annie was.displayed t'
j

at a scale of 1:44,000 for study with the geological map of i
S1,^ S ectralde Keyser (de Keyser 1968) . 	 Interpretation of the spectral ^

signatures disclosed relationships with terrain features which are
t

?broadly similar to those identified in the Lady Annie area.
t

(Figures 65 and 66)	 Sharp contrasts of spectral signature
i

distinguish areas of outcropping and near surface bedrock, which

i.^'. according to lithology display a range of tones and hues, from

areas covered by alluvium and clothed with strongly reflecting
rt

grasses which have bright crimson pink or red ones. 	 Light spectral

signatures again delineate upstanding blocks of Myally quartzites y

§ with a sparse vegetation of Euca lyptus brevifolia trees and a

Triodia pungens grass but near Mount 'Kelly _their hue is dominantly "	 a

yellow (1 cd, 2 ch).	 Areas underlain by Paradise Creek dolomites

have a reddish spectral signature (4 hg, 4 hd etc.) whereas those

underlain by Gunpowder Creek siltstones have darker ones of

purplish hue (6 g, 7 g).-	 Within the areas underlain by these

z:ia geological units however, there are considerable variations of
i

spectral signature due to varied relief features, the presence of

t lateritic relicts and changes in the composition of the vegetation

rover relatively short distances.	 In the Mount Kelly area the

most significant features disclosed by the satellite imagery are

l 'the faults and lineaments which in most cases are revealed by

sharp discordances in the distributional patterns of spectral
,

Y
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I . 1

signatures.	 (Fig*.fires 66 and 67)	 In the vicinity of the old

Mount Kelly mine (Plates 44 and 45) the two dominant sets of

lineaments which respectively trend northwest-southeast and
I

a

'fi northeast-southwest, intersect and are cut by additional faults i

4 and lineaments which do not conform to these trends. 	 Anomalous

1i

plant communities occur along some of these and in some cases t J
Ij 9

j are associated with copper mineralization. 	 (Plates 46 and 47).
t

fI,

li
At the scales at which the satellite imagery of the Lady Annie -

Mount Gordon fault zone vas studied, both major structural

t
t ^ j features and distinctive lithologies'within the major geological

i i
'r

I formations are very clearly displayed on the colour composites

generated from the computer compatible tapes.	 In most cases

01 the outputs confirm more precisely the information interpreted

from the colour composites generated from the NASA films. 	 In^

addition to the major faults and lineaments, including those t

along which the Lady Loretta lead-zinc deposit and the Mammoth, '!

Lad	 Annie and Mount Kell	 copper deY	 Y	 PP	 posits are located, many k ,

smaller faults may be detected, some of them not mapped hitherto

t and possibly of considerable geological significance.
7	 .`

M1

x

3.3. 2 THE RECOGNITION OF THE 'NATURE AND DISTRIBUTION OF SUPERFICIAL Y^
j

f

j DEPOSITS IN LANDSAT IMAGERY AT DIFFERENT SEASONS OF THE YEAR

€	 ^- Initial studies of the colour composites generated at the

1:50,000 scale from the MSS bands 4, 5 and 7 of the LANDSAT I i

and 2 imagery covering the extensive level plains north of r

' Cloncurry, the smaller plains drained by Cabbage Tree creek

z	 it

^-
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northwest of the Dugald River Lode, and the extensive plains

southwest of Mount Isa revealed unexpected complex patterns

of spectral signatures which it was thought might be produced

by the combined reflectance of plant communities and soils

whose distributions were closely related to the nature of the

superficial deposits and possibly to that of near surface bedrock

geology.	 The most intricate patterns were displayed in the area

between the Cloncurry and Williams rivers on the plains to the

northeast of Cloncurry. 	 This area therefore was chosen as one

for detailed study and in 1975 multi-spectral aerial photography

was flown over a strip of country which included each of the

spectral signatures displayed on the LANDSAT imagery.

3.3.2.1	 THE CLONCURRY PLAINS

The colour composites generated at the 1:50,000 scale from the

negatives of the MSS bands 4, 5 and 7 of the LANDSAT imagery for

22 December 1972 (ID 1152-00073), the 2 March 1975 CID 2039-23555)

and the 24 July 1975 CID 2183-23552) 'show large areas of relatively

light toned signatures over the central part of the plains

between the Cloncurry and Williams rivers, finger like areas of

darker tone producing more complex patterns following the creeks

tributary to the Williams river and a mosaic of smaller areas of

variable tone and colour between the two. 	 (Figures 68, 69, 70, 71,

y K 72, 73 and 74)	 This pattern suggested possible contrasts between

an open grassland over the central part of the plains, belts with
A,

tree growth along the creeks and grasslands with variable numbers

of trees between the two. 	 Much of the country is inaccessible

41 but an examination of the true colour and false colour aerial
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photography over the strip of country flown in 1975 coupled with

field investigations along carefully selected traverses undertaken

in 1974, 1975 and 1976 have indicated that this interpretation is

^, f correct.	 (Plates 10,	 12,	 17, 18 and 48)

!4

Comparison of the overlay of spectralsignatures interpreted from

(
colour composite generated

4

' C the	 from LANDSAT 1 imagery for

22 December 1972 with a map showing the superficial deposits and

bedrock geology prepared in 1970 by the Australian Bureau of

Mineral Resources for the Cloncurry 1:250,000 sheet area and

jcovering part of the plains west of the Williams river shows a
y

remarkable coincidence of boundaries (Figures 68, 69, 70 and i

75).	 This relationship is evident also from the LANDSAT 2

imagery for 24 July 1975.	 (Figures 73 and 74)	 There is less

coincidence of boundaries between the spectral signatures

recognised on the imagery for 2 March 1975 and the superficial

deposits, doubtless because of the greater grass cover following

` rains at this period (Figures 71, 72 and 75) . 	 Certain'"1
i,
rr

boundaries however are common. 	 A major spectral boundary running

approximately north.-south from Gipsy Plains to Mount Margaret
P.{,.

is apparent on both the LANDSAT 1 December 1972 imagery and the

LANDSAT 2 imagery for both March and July 1975. 	 (Figures 70, 72,

and 74)	 This coincides with the boundary separating areas .

uncle„Main by grey clay and silt of the Older Alluvium to the west

from that covered by colluvial sand and gravel with minor areas ¢

of Older Alluvium, and Allaru mudstone to the east.	 Field,

investigations :carried out between June and September 1974

showed that the plant cover over the Older Alluvium on the western

part of the plain comprised a savanna grassland composed mainly

t

s
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of perennial Astrebla and annual Iseilima species whereas that

over the colluvial sand and gravel to the east comprised a sparse

grass cover of annual grasses, mainly Aristida contorta and

Sporobolus australasicus with some Triodia pungens, scattered

Carissa lanceclata bushes and small Eucalyptus pruinosa trees.

.i
The soils were respectively yellowish brown (10 YR 5/4) clays

drying to a grey colour at surface and reddish brown (5 YR 4/8)

sandy clays.	 The well defined major spectral boundary at both

i seasons results from the contrasts of plant cover, which in turn

are related to soils and superficial deposits. 	 The differing

spectral	 different	 from differencessignatures at	 seasons arise

in the state of the plant cover.	 At the end of the dry season

i in December the Astrebla and 	 Iseilima spp grasses on the Older

Alluvium were brown, very dry and reflecting weakly to give light

f
i green and yellow signatures { 2 daec, 2 dea, etc.) on the imagery

whereas the trees, shrubs and Triodia pungens grass over the 	 k

colluvial sand and gravel were sufficiently green to give a light

1i pink component to the spectral signature. 	 (5 adeb, 4 aced, etc.)

In March 1975 after the rains, however, the Astrebla and Iseilima

ft spp grasses formed an almost .complete , green cover which was f

reflecting strongly to give crimson spectral signatures (6 a,

1 6 ag, 5 ae, 4 ae, etc.)	 By contrast the sparse cover of Triodia

pungens, annual grasses, scattered shrubs and trees over the areas

of colluvial sand and	 was reflecting weakly so that bluegravel

and green hues dominated the spectral signatures (5 ead, 4 dea,

5 de, 3 dea etc).	 By July 1975, however, the Astrebla and Iseilima'

spp grasses were again relatively dry and reflecting more weakly

to produce pink, green and yellow spectral signatures of Tight
t }

k

f

UK-....
9
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to medium tone (3 ade, 3 dea, 3 adc, 2 adc etc).

•„ 141
	 t

Within the area of Older Alluvium west of the line from Gipsy

,f

	 Plains to Mount Margaret the individual spectral signatures cover

relatively large areas on both the LANDSAT 1 December 1972 and

i
	 theLANDSAT 2 March and July 1975 imagery. East of this line,

.	

i
	

however, a mosaic of spectral signatures contrasting in both tone

and hue is evident at all seasons. Here the distributional
r

pattern of the signatures on 	 the LANDSAT 1 imagery for

December 1972 suggests a close relationship with both superficial

deposits and bedrock geology, influenced in part by the nature of

Lhe soils and the composition of the vegetation. 	 Dark violet and

{	 red spectral signatures (6 adec) occur over areas underlain by

the Lower Cretaceous Allaru mudstone and adjacent areas of Modern

`

4

Alluvium along the creeks. 	 These areas are inaccessible but

j studies of the aircraft imagery indicate that they carry open
^

woodland characterized by Acacia cambagei or by other Acacia

and Eucalyptus species.	 On the March 1975 LANDSAT 2 imagery is	 #d

relatively dark spectral signatures of blue, green and violet or i:•

1 crimson hue (6 eda) occur over the same areas but extend also over J

'	 adjacent areas of Older and Modern Alluvium, where new green grass ;-	 #

growth may be contributing the crimson colour to the signature.
}

At this season in this area the-mosaic of spectral signatures; bears Af 3

littlerelationship to geology,..	 Certain spectral boundaries:.

coincide with fence lines on either side of which differing

grazing practices have caused differences in the composition of the 1 •

f	 plant cover and hence in the spectral signatures. 	 On the July

^- 1975 imagery;, the spectral signatures bear a closer, relationship

to the distribution of the superficial deposits but the
_.

j

I

1^=vIGINAL PAGE IS
r
I

POOR QUALI'T'Y ^	 ^



^	 !I

k	 ;

-84-

differences in the composition of the plant cover on either side

+ of fence lines is still apparent. 	 Dark signatures of blue green

and violet hue however again distinguish areas with stands of

Acacia cambagei along the creek lines, particularly where the

Allaru mudstone outcrops or suboutcrops.

' Studies of the air survey imagery acquired in 1975, coupled with

field investigations revealed the 	 of areas with lozengepresence
I ^

1!
shaped features produced by concentric distributions of plant

i
E }' communities comparable with those found earlier on the 1971 air

photo coverage of the Little Eva Forth Plains (Figures 80 and 81).

(Cole, Owen-Jones, Custance and Beaumont 1974).	 This disclosure

T together with the evidence, cited above, of the close 
_

r 1

If between spectral signatures on the LANDSAT colour

I composites, vegetation, :;oils and superficial deposits prompted
ti

the generation of colour composites from the LANDSAT_computer

compatible tapes for 2 March 1975 for display at the same scale

as the air survey photography ie 1:32,000. 	 The objectives were

w

i twofold, firstly to investigate more closely the boundary zone

between areas covered by Older Alluvium and Colluvium; and

featuressecondly to ascertain whether areas with lozenge shape

produce distinctive spectral signatures which can	 be identified
5

y on LANDSAT imagery.r.

The colour composite generated from the computer compatible tapes

^t
which covers the Gipsy Plains area (Figures 6 and 76) clearly

differentiate between the areas covered by grassland dominated

jbystrongly reflecting Astrebla pectinate and Iseilima macrathera

F
S

and I. fragile species which produce bright crimson red spectral'

I
a
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r;e
signatures (7 h, 7 ha, 6 had) and those characterized by open low

* tree savanna and by stands of Acacia cambagei trees which have

'. dominantly green spectral signatures. 	 The major boundary

coincides with that between areas underlain by the Older Alluvium

t and those covered with colluvia 1 sand and gravel; within the former
Mt

green spectral signatures probably reveal a veneer of sand and
•I

gravel whereas within the latter bright red spectral signatures

outline areas with alluvial cover characterized by vegetation

Patterns producing lozenge shape features. 	 The boundaries between

r
the individual types of superficial deposit appear to be more

precisely delineated than on the published map (Figures 76, 77,

78 and 75).	 In the north the line of the fence.running from

Gipsy Plains homestead to the Gipsy Creek is clearly distinguished.
F

On its northern side alternating stands of Acacia cambaaei and

Eucalyptus	 trees	 Acacia chisholmiipruinosa	 associated with

shrubs and Triodia pungens grass occurring over colluvium give

rise to the dark green spectral signatures (5 d, 6 d, and 7 d)

whereas on its southern side Astrebla - Iseilima grassland with

stands of Acacia cambagei produce a mosaic of predominantly red

J

spectral signatures with a scatter of green ones.

f
Comparison of the spectral signatures recognised on the LANDSAT'?

imagery with the interpretation of the air survey imagery reveals x

a remarkable degree of coincidence (Figures 78, 79, 80 and 81) r`

The resolution of the LANDSAT imagery at this scale is good and'

Y

sue.`

the clear display of major fence lines northwest of Antion Downs
4	

,

permits easy correlation with the air survey imagery. 	 The

boundaries of the areas characterized by bright crimson red

1

1 spectral signatures C6 hg, -6 hgb, 7 ha, 6 ha) accord_ very, closely

with those characterized by the lozenge shaped features outlined ;$
i
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on the air photos, thereby indicating that such areas can be

delineated from LANDSAT imagery acquired after rains when, as

verified by field investigations,, the plant cover is dominated

by the strongly reflecting perennial grass Astrebla pectinata
3

^'. and the annual grasses Iseilima macrathera and I.,fragile.
1	 ^

y Individual lozenge shaped features like those characteristic of the
i;

areas with bright crimson red spectral signatures (6 hg, 6 ha)

G north of Antion Downs 	 (Figure 76) however, cannot be delineated

on the LPNDSAT imagery. 	 Comparison of the air survey imagery

and the colour composite covering the area between Antion Downs

and Gipsy Plains shows that relatively light green, violet and

red spectral signatures (4=dgh, 4 adg, 3 hdb) delineate open low

tree savanna characteri,,ed by Eucalyptus pruinosa trees, Acacia

1	 chisholmi shrubs and Triodia purrgens grass whereas dark green 	 ;.

and violet spectral signatures (7 gda, 6 deg, 6 de, 7 gad)

distinguish areas with dense stands of Acacia cambagei trees.

.	 Examination of the individual outputs produced by density slicing

e	 3
the data in each;of the four MSS bands into twenty groups,

undertaken for the generation of the Gipsy Plains colour composite,

reveals marked differences in the information between the four

bands. Close study or these differences assists interpretation of

^

TM

	

	 r^

.	 the spectral'signatuze,s on the colour composite relative to

ground truth information. Thus the output from MSS band 4

IU,
(Figure 82) shows sharp differences between areas of relatively

i	 1

f Ulight and relatively dark density ranges which respectively show

a close relationship but not complete accordance with areas of

I,
contrasting red and green spectral hues, which in turn are related

4
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to areas of-grassland over Older Alluvium and of open low tree

savanna over Colluvium. Northwest of Gipsy Plains homestead

relatively light density ranges occur ocer an area of low

tree savanna characterized by Eucalyptus pruinosa trees which

produce a green spectral signature ( 5 d) north of a clearly

defined fence line. By contrast darker density ranges occur

1	 over adjacent areas of Acacia cambagei trees and producing a
i

darker green spectral signature ( 6 d). 	 Both these communities i

occur over Colluvium. 	 South of Gipsy Plains homestead the
s

boundary between areas of distinctive density range differs from q

that between areas with red and green spectral hues respectively

± in several places.	 Broadly speaking the boundary follows that

between areas underlain by grey clay and silt of the Older Alluvium ^^
1

6'

t in the west and by reddish Colluvial sand, gravel and clay in the

s
east.	 It departs from it where thin spreads of the latter material k

form an incomplete veneer over the former. 	 Here light density
i'	

r

ranges occur over areas with green blue spectral signatures ^±
r

produced by a cover of Triodia pungens, Sporobolus australasicus

and Aristida contorta grasses and scattered Acacia chisholmii and

Carissa lanceolata shrubs. The broad relationships between density

range and the nature of the superficial deposits indicate that
-

differences of colour, texture and especially of moisture content

of the soil are discriminated by MSS band 4 whereas the

discrepancies between density range and spectral hue suggest that

differences in the plant cover are less readily distinguished. p;

p

On the output produced by slicing the data on MSS band 5 (Figure 83)

with one or two exceptions, the relatively darker density ranges

occur in the areas of red spectral signatures and the lighter

ORIGINAL	 EpAG Ib
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4

Y

ones in the areas with green and green blue spectral signatures,

a distribution which contrasts with that in the other MSS bands.

The boundaries between areas of contrastin g density ranges do

not generally accord with those between areas of red and green

spectral signature. Northwest of Gipsy Plains homestead an area

of light densities virtually coincides with a large. outlying

patch of Colluvium and straddles areas of red and green spectral

signatures over grassland and low tree savanna. South of Gipsy

Plains homestead the boundaries between areas of contrasting

density ranges accord most nearly with those of contrasting spectral
3

hue along the contact between the Older Alluvium and the Colluvium.

In places along this contact, however, more diffuse differences of
F

density range occur where thin spreads of colluvial sand partially

cover the Older Alluvium, and cause minor changes in the vegetation

}
i

a

which in turn produce variations of spectral hue,

The outputs produced by density slicing the data in MSS bands 6

^ r

	

	and 7 contrast sharply with those of MSS bands 4 and 5. Here the

densities are darker in the areas underlain by Colluvium and there
s

are greater spatial variations and greater contrasts of density

range over the whole area, notably in MSS band 7. This is due
}

partly to contrast stretching in the slicing process. The darker
T

densities generally coincide with the areas characterized by

green and green blue spectral signatures on the colour composite

`	 whereas the lighter ones coincide with red spectral signatures.

The density ranges in MSS! bands 6 and 7 (Figures 84 and 85) are

1^ tmore closely related to the spectral signatures on the colour 	 i

composite than is he east `w:itti IMSS bands, d and 5 This i s e

because MSS bands 6 and 7 are reflecting variations in the plant

I#

;f

3

r
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communities which are of the greatest importance in the production

of the spectral signatures. This is particularly apparent in the

north of the frame where there are sharp charges of vegetation

on the other side of the clearly defined fence line which cuts

across the outlier of Coluuvium delineated on MSS band 5. It is

j

R
j

s	
i

f	 also apparent within the area of Astrebla - Iseilima grassland t

over the Older Alluvium in the west where changes of density and

of spectral hue are caused by minor changes in the composition of

the grassland.

Thus studies of the LANDSAT imagery acquired at different seasons

of the year over the Cloncurry Plains and interpreted with

reference to air survey imagery and field investigations have ,#

confirmed the presence of complex patterns of plant communties
a

whose distributions are related to superficial and bedrock

geology.	 They have demonstrated the value of LANDSAT imagery
s

a

for mapping vegetation and geology in such areas and have

indicated that the most effective discrimination of plant -
it j

communities is obtained from MSS bands 6 and 7, that of superficial

geology from band _5 and that of soils and soil moisture from

band 4.

f 	 }^

k
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3.3.3 THE RECOGNITION OF SPECTRAL SIGNATURES REFLECTING CHANGES IN

PLANT COMMUNITIES OCCASIONED BY OVERGRAZING AND BY FIRE
r*

i

THE CLONCURRY AND URANDANGI PLAINS

Sharp changes of spectral signatures on either side of fences

which were noted on the true colour and infra red colour photography

of the Mary Kathleen - Cloncurry area suggested differences in

the plant cover occasioned by differing grazing practices.

Comparable differences were subsequently detected on the colour

composite generated from MSS bands 4, 5 and 7 of enlarged grid

sections of the LANDSAT imagery covering the Astrebla - Iseilima -

Dichanthium grasslands which occupy the black soil plains in the

Urandangi area which was imaged on 18 September 1975 (ID 2239-0003)

Field investigations confirmed that, in each case the differences

were due to differences in grazing intensities, with, in the

UUrandang-i area, the frequency of Acacia georginae trees which occur

I	 ',
sporadically through the grasslands playing some part. (Plates 49

'10
and 50)	

i

On the colour composite generated from MSS bands 4, 5 and 7 for

}	 the enlarged grid section of the LANDSAT 1 imagery covering the
r:

Cloncurry Plains imaged on 22 December 1972 two areas with sharply

defined dark green spectral signatures (8 de, 8 dea, 7 dae) of

irregular outline which transgressed all other spectral signatures

were identified to the southeast of the Cloncurry river

(Figures 68 and 86). Their nature and form suggested that they
l	 c

_	 t

{	 might indicate areas which had been burnt._ Accordingly they were
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C
G' i compared with those on the colour composites of the same areas

N ^! generated from earlier and later LANDSAT passes.

F `uL^ •e- the colour composite generated from an earlier LANDSAT 1

'i pass on If) November 1972 (ID 1116-0073)	 showed that at that date

the areas had dominantly red spectral signatures of medium tone

(4 ade, 5 ade) which were characteristic of a much larger area

covered by colluvium, sand and gravel southeast of Gipsy Creek

CFigure 87).	 These spectral signatures .indicated that the

vegetation which comprised a sparse grass cover of Triodia Uungens,

' Chrysopogon fallax and.Aristida contorta with Eucalyptus pruinosa

' trees and Carissa lanceolata shrubs was sufficiently green to give

relatively strong reflectances. 	 This reinforced the suggestion
a

that the dark green signatures within the region apparent on the

December imagery were the result of fire between the two LANDSAT
r 	 3

passes.	 Subsequent field investigations provided evidence of

regeneration of tree, shrub and grass species after fire and studies

of the colour composites generated from the LANDSAT 2 imagery for

j 2 March 1975	 (ID 2039-23555)	 and 24 July 1975	 (ID 2183-23552)

permitted some assessment of the subsequent 	 y,p	 quent recover	 of the

vegetation.	 By March 1975 the outlines of the burnt areas were

still discernible but the areas were now characterized by lighter
t

green spectral signatures with red components (3 dae, 3•dea)

' indicative of reflectances from green vegetation; these signatures

} extended over a wider area. 	 (Figure 88)	 By July 1975 the areas

were characterized by darker dominantly red spectral signatures

C4 ade) _suggesting that their_ vegetation had almost recovered

to its state in November 1972 before burning. 	 (Figure 89)

P
6 ^` t
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Subsequently very dark green spectral signatures similar to those

identified on the December 1972, LANDSAT 1 imagery covering the t	 ,

Cloncurry Plains were recognised in other areas, notably over the

plains between Mount Isa and Urandangi where field investigations

confirmed the identification and established the occurrence of fire.

i

Recognition of spectral responses which are attributable to the

effects of fire and of grazing intensities on the vegetationj .,

rather than the influences of edaphic factors related to superficial
r

'i and bedrock geology is important in the interpretation of the 3

LANDSAT imagery	 for geological mapping and mineral exploration

as well as for other purposes.
,

3.4 THE CLASSIFICATION OF LANDSAT AND AIR SURVEYj^

Usni

IMAGERY OF NORTHWEST QUEENSLAND

ri : 1

Investigations of methods whereby the vast amount of information

}	
I^

contained in LANDSAT and air survey imagery can be classified
r

'i by semi-automated data handling techniques formed an important t

part of the remote sensing studies in northwest Queensland. 	 For 3
 i

these investigations the LANDSAT imagery covering the Mary Kathleen

urea; the Cloncurry Plains, the Dugald River - Naraku area and f{

!,
`	 < the Lady Annie area and air survey imagery of the Dugald River

area were used for comparative studies of the visual and semi-

automated approaches to the recognition of spectral signatures
d	 k

and to their interpretation relative to environmental parameters.

•., Both unsupervised and supervised approaches were used for the semi- i
i

automated classification of the spectral data. 	 These were used

" S first on the air survey imagery.
,M1
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3.4.1	 VISOAL AND SEMI AUTOMATED CLASSIFICATIONS OF THE AIR SURVEY

IMAGERY OF THE DUGALD RIVER AREA

1 ^

The air survey imagery of the Dugald River Lode area north of

Cloncurry was chosen for comparison of the visual and semi-automated

^ m thod	 f cla	 `f'c t'o	 becau a deta'l d round truth	 formation ^^ ^^ ^e	 s o	 ssi l a i n	 s	 i e g	 a.n

was available for the area which is characterized by a large

well defined anomalous plant community related to a known lead-

zinc deposit. The 1:15,000 infra red colour frame covering

the central part of the lode was selected as themost suitable

for subsequent comparison of colour composites generated from

LANDSAT imagery.

For the visual interpretation of the imagery spectral signatures

characterized by the dominance of particular colours and tones,

by particular textures and patterns and by clearly defined

boundaries were identified. (Cole, Owen-Jones et al 1975) These

were coded b reference to the colour ke o-F the Ro al Ho t'cultural

^r

y	 y	 __	 y	 r i	 ,

Society (which is related to the Munsell system) and were mapped

at the same scale on the microdensitometer output. 	 The resultant

map showed twenty one distinct spectral signatures and additionally 	 {: a

:...	 '^	 a number of combined spectral signatures which could not be

j	 shown- individually.	 (Figure 90)
I	 )	 ,

€	 For the semi-automated classification of the imagery the infra red,
1^ 

I
colour frame was scanned three times by a microdensitometer	 i

incorporating successively red, green and blue primary filters	 I

and the data were outputted on paper tape.	 The area scanned in

the frame was 50 mm square with a spot size o 	 0.5 mm square;'

{
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I	
hd

these figures corresponded to ground dimensions of 0.75Km square

and 7.5m square respectively.
r

A simple form of preprocessing was applied to the data in that j

the red, green and blue intensities for each pixel were each

divided by the sum of the three intensities, thereby normalizing

the data.	 Any one of the three spectral channels then became a

linear combination of the other two and consequently in the

subsequent processing only the red and green channels were used.
3

i

This proportioning of the data assisted in reducing the effect df R
a

undulations in the terrain whereby the intensity of the reflected

radiation is subject to variations produced entirely by the

geometry of the situation rather than by any change in the nature

of the reflecting medium itself.	 For the same reason it also

reduced the effect of variations in the intensity across the film
i

produced by optical defects of the lens system. \^

The image was then classified using an unsupervised approach_,in
E

^;v

this case the polythetic divisive clustering algorithm POLYDIV'

G	 developed by Lance (private communication 1972). 	 For the infra k

red colour photography of the Dugald River Lode area this provided

a satisfactory output.	 In this the degree of coincidence between

j	 the spectral signatures recognised by visual interpretation and
I 2

x

those identified by the semi-automated approach depended on the

I	 degree of sophistication regarding the number of signatures !'

recognised in each case.	 (F	 res 90 to 97)	 Thus the crudeg	 (Figures :: a

distinction between areas characterized by the poorly reflecting'

i'	 spinifex'grass Triodia pungens which produces a blue green r

signature (Signatures 8 to 19) and those covered by soft grasses

of various species and varying density producing spectral
JIM

I

I

,
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signatures in the red purple range (Signatures 1 to 7, 20 and 21)

was achieved by a two fold division of the POLYDIV classification

which provided a rema:rkahle degree of coincidence with the visual

interpretation. (Figures 90 and 91) The anomalous plant

community over the Dugald River Lode (Plate 24 ) was included

in the POLYDIV category of soft grasses although it produced a

pale blue green signature. A three fold classification by

POLYDIV (Figure 92) distinguished areas characterized by the

11

annual grass Eriachne dominii which produces a strong red purple

(63 c)	 spectral signature (Signature 3) and by a combination of
AN*

Ennea2ogon polyphyllus and Sporobolus australasicus with a greyed

186	 6)	 frompurple	 d) signature (Signature 	 those characterized

by Enneapogon polyphyllus with a paler red purple (65 c) signature

(Signature 5); these all occur over the red sandy clay loams

derived from mixed colluvial and residual material on the level

interfluves west of the Dugald River Lode where there is a

remarkable degree of coincidence with the visual interpretation.

East of the Lode, however, the coincidence was less good, the

classification failing to distinguish the above name	 signatures

from those produced by Sporobolus australasicus (Signature 2)

and by a co-dominance of Triodia _ungens and Enneapogon polyphyllus

(Signature 11) which, with spectral signatures of violet (87 d)

and blue green (123 c) occupy similar soils over similar terrain.

L At this level of classification, while there was some discrimination

between the darker and lighter signatures it appeared that within

the area covered by soft grasses the signature element produced

by the soils was of greater significance than that produced by

individual grass species. Vin'

L
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The four fold classification (Figure 93) was notable for the

discrimination introduced within arc, ,is characteri^ed by a ground

i cover of Triodia aungons.	 In particular areas with scattered

E	 Lucalyptus t;xc,es (Signature 12) wore distinguished from those which

were virtually treeless (Signatures S to 10) . 	 In the southern

f	 {	 part. of the frame and in the area west of the main section of
i 	 3

C (	 the lode the coincidence with the visual. interpretation was

( '^	 very good but elsewhere there wore disc oponcics. 	 Significantly

1	

at the ;four unit classification the areas where Triodia pungens	 ^

i	 occurred over bedded limestones east of the lode were distinguished
K	

from those areas where it occurr« d over residual. and col.l.uvial 	 }

material masking dale-silicate ,rocks.
,M	 F

}

Chest of the lode the five fold classification (Figure 94) provided

! a more accurate dcl.inr alien of areas characteri4,od. by the

distinctive red. purple (63 c)	 signature of taririchne dominii
f

} (Signature 3) from those of areas covered by other soft grasses,

but cast of the lode some areas characterized by EnnetapoQon

ag lyphyl,lus	 (Signature 5) were included.	 At t:hc si p group

l-
classification (Figure 95) for the first time the blu.c- groen (123 d,

123 c) spectral s.tg4atures of the anomalous ,plant community over

f	 .` the Dugal d River Lode (Signature 1) was isolated froth ad j ae ent
I{

areas characterized by a cover of Enneapo on 2o! a^1a^ . i.us or

Tri.adia pungens.	 The semi-automated output:, however, did not

coincide	 the	 interpretation	 'thiswith	 visual	 of	 feature.	 ^joreovor,
i .' west of the lode, areas with much bare ground between a sparso

cover of F,nneapocion; Dol y1,phyllus for which a read purple gj.cjnature

1
1

was recognised by visual intorpretatio.n, were classified with

the lode by the .semi-automated approach.

If #
_
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Classification by seven grou ps (Figure 96) did not provide closer
coincidence with the visual interpretation 'than that with six

groups but an eight fold grouping discriminated the creek lines

from other areas with Triodia pungens (Figure 97).

Overall the semi-automated output using classification by POLYDIV

provided a close relationship to the visual interpretation.

In some areas coincidence was good, notably with the red purple

spectral signatures produced by Eria.chne dominii and the dark

blue green one produced by Triodia pungens over bedded limestones.

At the two fold classification the distinction between areas with

a ground cover of Triodia pungens and those covered by soft

grasses is also good. 	 The comparison of the visual and semi-

that the	 of	 be
r7l,

automated methods showed 	 number	 groupings should

chosen according to the amount and nature of the information
D.Y

required, with a six or eight fold grouping providing virtually

as much information as the visual method.

Us.,ng the programme known as SOUP (Chandler 1977) the first attempts(

at a supervised classification of the information contained in

the infra red colour photography of the Dugald River Lode area 4A
t;j

were less successful than those using the unsupervised approach. 41

Recently however new training sets have been used and a greatly
L1

improved output showing nine groups has been achieved. 	 (Figures 98

and 99)	 The output is similar to that obtained from the

unsupervised approach but there is greater fragmentation of units

J over the soil covered terrain west of the lead-zinc lode, and the

lode is less well defined.

Z	 i ORIGIN AL PAGE IS
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The results obtained from the unsupervised and supervised

approaches in the semi-automated classification of the air

survey imagery of the Dugald River Lode area emphasize two

outstanding problems in the classification of features of

natural terrain. The first is the fact that within a given area

of natural terrain the individual components of the vegetation,

soils, relief, drainage and geology produce individual spectral

responses exhibiting continuous variation in spatial extent.

These components make up the spectral signatures which

consequently are composite, complex and variable. Hence

particularly on large scale air photos it is exceedingly difficult

to define discrete training sets for supervised classification

which are uniform over a sufficiently large area. These

difficulties explain why the unsupervised classification using

the polythetic divisive clustering algorithm POLYDIV which

successively divides the data set in measurement space, according

i

t

t

G

to certain decision making processes until the requisite number

Y of subsets has been generated, appears to be more successful than -	 "•'	 ^
i

the supervised approach using training sets.' j

The second problem relates to the dimensions of the Dugald River

Lode, the feature whose identification by semi-automated methods

of classification was particularly required. 	 The feature is t

_about 1.6 Kilometres long but is not more than 10 metres wide.

which is too narrow for defining a satisfactory training set for
- _

y

, ansupervised classification.	 The feature is clearly delineated

on the air survey photography.	 (Figure 100) -It was identified

but not unirnee1,y> f1iscr_iruinated by the unsupervised classification

using the POLYDIV algorithm at the sevengroup level. 	 It was

•	 _

6
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less successfully identified by the supervised classification	 a

3.4.2 VISUAL AND SEMI —AUTOMATED CLASSIFICATIONS OF THE LANDSAT

IMAGERY OF NORTHWEST QUEENSLAND

t

The scanning digitization and classification procedures used

for the LANDSAT imagery were the same as those used for the air

survey photography of the Dugald River Lode area. The image

area scanned, however, was different, being some 18mm square

with a pixel size of 0.2mm, the corresponding ground dimensions

t being 36 km and 400 metres. 	 According to nature of the terrain

{ unsupervised or supervised approaches were used for individual

areas. s	
m	 .

3..4.2.1	 THE DUGALD RIVER - NARAKU AREA

3

The colour composites generated from LANDSAT imagery of the

Du ald River - Naraku area, ,which encompasses the Du ald River9	 P	 g
'E

k

Lode, taken on 2 March 1975 (ID 2039-23555) and 24 July 1975 }`

(ID 2183-23552) were used for semi-automated classifications

using the supervised approach. 	 The imagery for March 1975 was

analysed first.	 This contains a wide range of spectral classes
[ 4

1 which vary in both 'tone and hue (Figure 36)., 	 On the basis of
A.
}

3	 t'

visual assessment of the number of different classes present,

seven classes were regarded as the optimum for classification

purposes and training sets were chosen for use with the programme S

{ known as SOUP 'Figure 101).	 These classes were selected on thek ,

' basis of colour (tone and hue) only without references to ground

j
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truth data, and their essential details are given in Table 6.

4	 Table 6 The essential details for the seven classes into
s

which the Dugald River frame 30A (Figure 36) was

classified.I.

t	 Colour	 Shading	 Ground Truth	 EquivalenceGroup

1	 BG	 Blue green	 quartzite	 poor

2	 P	 Red/purple	 soil and alluvium	 good
with soft grass
cover

t

x 

3	 CR	 Cream	 xx
X 

x
X 

x
K
x
X 

x
X X

xx
X f	 Calc-silicate	 good

s

X.x x X x X xx 
xXXXxxxk	 rocks masked byXxxk XX XXx

residuum

j	 4	 ILR	 Light Red	 ^oonn0000c	 Soil and alluvium	 good9 lca CIO 0000
00000000t	 with soft grassg^oaoaaaaocs	 10000Q000c	 cover

i

",5	 DR	 Dark Red	 !i'	 Soil and alluvium 	 good
,mi ' 	with soft grass

3	 cover
#y -

I

6	 BR	 Brownish/purple	 i u uuiX UODU ^	 Soil and alluvium	 fair
iuuuuniiiini with soft grass i
nnnunnnnaXlo	 cover

E	 t

°"°"°"°"O"°`°" "°"`	 Calc—silicate	 good` t .	 7	 DP	 Blue Purple	 o o°°° °°° 7 00 0 ,	 9
i	 noo 00 oao ° oo i

rocks

;

The resulting supervised classification map with the seven classes

is given in Figure 102 with no threshold being employed.

Comparison of the supervised classification map with the colour

composite and with the geologicall maps of the area (Figures 36	 35

and 38) shows that the groups 2,. 4. 5 and 6 occur over areas s

mantled with soil and alluvium which after the considerable summer

rains carried a grassland of strongly reflecting relatively

t ^
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t"}

broad bladed species. The state and nature of the vegetation

were largely responsible for the strong red colour on the colour

composite (Figure 36). Over the other parts of the image

classified as 1, 3 and 7 bedrock is at or near to surface and

the vegetation comprises a low tree and shrub savanna of

scattered trees mainly Eucalyptus brevifolia and E. argillacea,

and a sparse ground cover of Triodia pungens grass whose narrow rolled

leaves have a weak infra red reflectance. Consequently soils,which are

skeletal and bedrock make the major contribution to the spectral

characteristics, that of vegetation being less important.

The recognition of four distinct classes within the area

f

covered by soiland alluvium,for which ground truth information -

was not available at the time the classification was undertaken,

indicates a requirement for a posterioi field investigations to

establish the reasons for their apparent existance. The size of a
I
4	 the area, the problems of access to many parts of it and the {

inevitability of seasonal changes in the vegetation which in a n
sd x

semi-arid climate are not necessarily repeated from one year to

the next, makes the fulfilment of the requirement difficult if

not impossible. 	 Since, however, cultural effects in the vegetation

}}}^ 	 area minimal, being those occasioned: by low intensity cattle 	 - l'

grazing and sporadic fire, it should be possible to establish

the reasons for' the classes displayed on the colour composite

and distinguished by the semi-automated classification, by

limited field investigations in critical key areas. }
ti

e

The range formed of Knapdale quartzite is revealed as a

particularly prominent feature on the colour composite generated

{	 ORIGINAL PAGE Is
OF POOR QUALITY
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from the march 1975 LANDSAT imagery (Figure 36). The Dugald

River lead--zinc lode occurs in shale host rock with a footwall

of bedded limestone which are lower in the Prol,;erozoic Corella

sequence. They outcrop in low country to the east of the

Knapdale quartzite range from which they are separated by a

belt of dissected terrain over calo-silicate rocks. The 	 r

quartzite range has been correctly classified on the semi- a

automated output but areas at Least equal in total area to the

outcrop of this quartzite have been incorrectly placed in the

same category.

A strip to the west and a large area to the south and southeast

of the quartzite range have been classified as 7. This agrees wig',„

the 1:253, 440 geological map of the Bureau, of Mineral Resources

(Figure 35) which shows this portion of the image as underlain

by undifferentiated calc-cilicate rocks. The classification

does not differentiate the lithological/stratigraphical units	
t

or the structures indicated on the later interpretation of 	 e ti

Cole (Cole et al 1976); (Figure 38). This is because it was not

r

	 possible to define additional.training sets representative of

the well bedded argillaceous limestones within the Corella

sequence.

It is evident from figure 102 that even with the relatively

small number of seven classes the resulting classification map
a

has an exceedingly complex pattern. Viewed in conjunction with

3the gradation of tones between classes in any natural vegetation

distribution it is thus not feasible, given this complexity, to
a

try and construct a classification accuracy table between the

4,	 x
colour composite and the classified map (Figures 36 and 102).
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The comments in the last column of table 6 consequently

represent a visual assessment of the equivalence between each

class in figure 102 and the areas in figure 36 considered to

i

have the same colour as the appropriate training set. They

are purely qualitative and, in themselves, highlight the

problems of determining the classification accuracies of
	 a

images of natural terrain. With an empirically calculated 	
I a

threshold for each class the accuracy could undoubtedly be

increased with a considerable amount of computing but this

procedure, in turn, raises the question of the amount of effort

that should be devoted to this experiment and, of course, to

its measurement.

4

The position of the Dugald River lead-zinc lode is indicated on

I	 figure 38.	 Its width of not more than 10 metres is less than E

the minimum theoretically detectable on LANDSAT imagery and
{

although it is of sufficient length - 1.6 km - to be marginally ' y

detectable under conditions of high contrast from digital tape k_

data, it is uncertain whether it can be uniquely discriminated ^" t

on the colour composite. 	 Recent colour composites generated
j

directly from the computer compatible tapes where the 80 metre

resolution can be maintained show distinctive spectal j

characteristics for the areas underlain by the shale host rock r`w
7

and by the bedded limestone ` footwall rocks of the lode and some

evidence of very dark spectral signatures over the lode zone.

The information, however, is too imprecise for there to be any
r-7.

possibility, of extracting a training set for classification

purposes.

x
t

i
^

r.

1

}
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The arpt4s os: Tr;^dia pungens grassland covering the shale host

rock, and well bedded limestones within which the Dugald River

lode 3.s Located are clearly displayed on the colour composite

wy. tipir dark spectral signature (7 ed, Figure 37). The

extra#,.tio:n of a training set for this class and the subsequent

examination of the histograms with the present system would be

just possible but extremely laborious. These Limitations

would not apply to those real time systems with visual display

units in which a light pencil or analogue method can be used

to delineate training areas of any shape and the histograms

examined aLnost instantaneously, with a saving of many days'

time.

° The colour composite for July 1975 was generated from imagery
3

i
acquired some five months later during the dry winter period.

The softer broad bladed grasses had dried off and hence were
x'

contributing little radiation in the infrared band. 	 As a:

result there are virtually no red spectral signatures on the
t

r	 .I colour composite which contains a restricted range of classes

^:

(Figure _103).	 After allowance is made for minor variations in
t

the photographic processing there are still major differences

in the imagery for July compared with that for March, due largely
I

to the seasonal vegetation changes.

.A

In terms of classifying the image the numerical data relating z

to the mean vectors and covariance matrices from the colour

composite for March 1975 (Figure 36) could not be used for the

F July 1975 colour composite because there was no convenient way'

of cross-calibrating the scans for the two images.	 However it n

a

^iP,IGIN^ P AGE 
US

XM^R QUALKPOt .
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was possible to use the same geogx phic,tl training areas for

each class on both images and for the July image to calculate

new values for the mean vectors and covariance matrices in the

March image. The resulting classification map is shown in

figure 104, with the same shading for corresponding classes as

for figure 102 and again with no threshold.

There are certain similarities between the classification maps

from the March and July imagery, notably for 	 3	 in theclass

centre of the image, class 5	 in the top right hand corner,

class 6	 across the top and class 	 7	 in the bottom left hand

corner.

Having regard to the quite different colours in the original
f^

images such a degree of correspondence is encouraging, since

with seasonal changes in the vegetation and in soil moisture
3{

conditions complete agreement would not be expected. 	 The

classification map of the March 1975 colour composite shows

considerable fragmentation into small units over the areas of soil

and alluvial cover in the eastern half of the frame; that for

the July colour composite shows larger classification units.

These differences arose from wide variations in the moisture
t

content of the soil over residuum and alluvium in March giving

correspondingly wide variations in the composition and vigour
.,	 I

and hence in the infra red reflectance of the grassland vegetation.

By July much of the moisture would have disappeared and the

sparser cover of dry grass would give a more uniform low infra-

red reflectance over most of the area.
i

:

,rn
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The Knapdale quartzite range has again been correctly classified

but whereas on the colour composite for March it had a very

distinctive bright blue/green appearance (Figure 36) on that

for July it had a dull green appearance similar to much of

the terrain in the lower central part of the image. A large

part of this latter area has been placed in the same class

although from ground truth information this is known to be

P	 incorrect.
^

	

	 I

b

In summary the classification of the July image using training
rr

Ir '	 areas determined not b the classes in that image, but b those

	

^	 Y	 g ► 	 Y

^1
in the preceding March image, is reasonably successful in so

A

far as the broad features of the terrain, including its geology,

are concerned. This indicates that semi-automated classifications

'fi All	 applied to successive LANDSAT images over a given area of

d'	 t outstanding	 u
R

,	 terrain promise to d isplay its o tstan Ong feat res.

i}

{	 3.4.2.2	 THE CLONCURRY PLAINS

fr

	

	 The unsupervised approach only has been used to provide a semi

automated classification of the area of the Cloncurry Plains

covered by the LANDSAT-1 imagery for 22 December 1972

(ID 1152-00073) This was because, from the results over the

Dugald River Lode area, this technique appeared to be successful

.	 in areas of level terrain characterized by distinctive grass

communities producing a range of spectral signatures.
3
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As with. the air survey photography of the Dugald River Lode area,

the degree of coincidence between the spectral signatures recognised

by visual interpretation of the colour composite of the LANDSAT 1

imagery of the Cloncurry Plans and those produced by the semi-

automated approach depends on the number of groupings attempted

in the latter. A seven fold division appears to provide the

most satisfactory output, discriminating major units and avoiding

excessive fragmentation. (Figures 68, 70, 75, 105 to 111) This

division delineates the channels of the Williams and Cloncurry

rivers (shading 1) which have medium tone dominantly red

spectral signatures; it outlines the area with medium tone red

blue or violet signatures which are produced,by stands of Acacia

cambagei trees with a, sparse cover of Sporobolus australasicus

grass over the level terrain characterized by yellowish brown

(10YR 5/4) to brown or dark brown -(1 .0YR 4/3 dry, ` lOYR 4/4 wet)

soils derived from alluvium along the t=eeks (shading 33) and

separately distinguished those areas where the Acacia cambagei

trees are associated with Eucalyptus pruinosa trees which have

a lighter dominantly red spectral signature (shading 721. The

semi-automated output clearly displays the area of m'4fjium tone

pink or red and yellow spectral signatures produced by the
4

grassland characterized by Aristida contorta and Sporobolus f

australasicus with some Triodia pungens and scattered Carissa

lanceolata bushes and small Eucalyptus pruinosa trees occupying

the red brown sandy clays developed over colluvial sand and

gravel east of a line from Gipsy Plains to Mount Margaret

(shading 128) and within it it differentiates areas with greater

tree cover (shading 331	 It clearly discriminates the western

boundary of this area and -utlines those areas to the west of it
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where in December the Astrebla - Iseilima and Spoxobol.us

augtx*,,lasi.cus grasslands occupying the yellowish brown clays

which dry to a grey colour at surface and are derived from the

older Alluvium, were producing light green spectral signatures

(shading 72) It failed however to distinguish the areas with

very dark green/blue spectral signatures due to burnil-.zj southeast

of the Cloncurxy river.

-i
f For the Cloncurry Plains area where differences in the plant
j

cover are largely responsible for differences of spectral signature

on the colour composite generated from MSS bands, 4, 5 and 7 of

I	 LANDSAT the unsupervised approach using the POLYDIV algorithm

C'
gives a sat<is#actoxy classification of the spectral. data. This

i

I technique appears suitable for this type of terrain but more

recent work suggests that a better classification and output

could be obtained by a supervised approach using carefully
f 1

selected training sets.

3.4. 2 .	 THE W\RY XZV1113LEEN ARBA	 09ICTINAL PACTS IS

.y
OF JPWR QU`AT ITY

Both the unsupervised and -upervised approaches were used for

classifications of the spectral data contained in the four MSS

bands of the L."DSAT 2 imagery for 2 March 1975 CID 2039 -23555)

covering the area northwest of Mary Kathleen. In each cast~ units

of 4 x 4 pixels were used. The outputs were compared with the

visual interpretations of the colour composite generated from

MSS bands 4r 5 and 7 displayed at the 1:30 r 000 scale and
}

subsequently reduced to a scale compatible with that of the

.1
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classified outputs. (Figures 23,	 24, 25,	 112,	 113 and 114)
f

With the unsupervised approach using the POLYDIV classification

," 1

t	 (Cole et al 1975) 	 a two fold division of data (Figure 112) gives

rR
}

1

y

a crude distinction between areas underlain by rocks belonging

to the Leichardt Metamorphic and Argylla formations and by

dolerite which respectively have spectral signatures of light

tone and pink colour and of dark blue and green colour (Group 1) ap

E
from those underlain by the Wonga granite and Corella formations

f

which have spectral signatures of dark tone and purple and red t

colours (Group 2). 	 The position of the Wonga fault is evident.

' The grouping of both light and dark tone signatures in one

category and in particular the failure to discriminate the light
1

tone spectral signatures of the area underlain by Leichardt {
t	 3

Metamorphic rocks is puzzling. 	 The threefold division

(Figure 113) also fails to identify this unit. 	 The fourfold
F

division	 114) distinguishes	 Leichardt(Figure	 the areas of

Metamorphic rocks (Group 4) but overall this and further divisions ;,
^	 a

t

produce extremely fragmented classifications which are of value
^	 JY

only in discriminating areas of dolerite bedrock, 	 The

unsupervised approach using the POLYDIV classification appears

unsatisfactory for the area northwest of Mary Kathleen. 	 The a

reasons for this are not clear but appear to be related to

changes of spectralsignature over relatively short distances

#
occasioned by variations in vegetation and relief.

i

For the supervised approach ten training sets each representative
t-

' of a characteristic spectral signature within the major geological

formations were selected. 	 (Figure 115)	 The classified output

rI

fi

(Figure 116) shows a remarkably close correlation with the
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geological units. The area underlain by the Leichardt

Metamorphic rocks which have dominantly light pink spectral

signatures (1 he, 2 hg) were very clearly discriminated (group 4)

and the dolerite dykes which intrude them are distinguished as a

consequence of their darker spectral signatures (3 heg, 4 ehg,

4 dac, etc.).	 The extensive areas of outcropping and sub-

`
outcropping dolerite northwest of the Wonga fault Cgroup 3) are

rXi
well defined doubtless because their dark green spectral signatures

d,	 d	 contrast	 the much lighter', ( 6	 6 da, 5	 etc)	 sharply with

gi signatures of the adjacent areas underlain by Corella rocks.

Southeast of the Wonga fault those areas of Wonga granite whose

ri
dark green/blue/purple spectral. signatures C6 dge, 6 de, 6 gd, etc.I

,
suggest that they have been burnt are clearly displayed. on the

rt supervised classification (group 1) but the unburnt areas which

are characterized by lighter spectral signatures are less readily

1 } distinguished from adjacent areas underlain by rocks of the Argylla

formation (group 2) . 	 The Ballara quartzite (group 5) is clearly

outlined around the eastern side of the main dolerite mass and

the Corella units Cgroups 7 and 81 are satisfactorily displayed

near the areas used for the training sets at the northern end

i
of this dolerite outcrop. 	 On the western side of the dolerite,

!M

K.I

-

however, the Corella units are not clearly differentiated by

k	 Jr
the automated output, probably because variations of reflief and

'..

+,I lithology give rise to varied spectral signatures in this area.

:+t They are clearly displayed again however, near the training set

in the northwest corner of the frame (group 9). 	 Areas underlain

I{ by Marimo slate (group 101 which have dark green/purple spectral
{	 t

signatures are quite well displayed on the automated output. ^I

 D i LL
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The major faults, notably, the Wonga fault may be distinguished

but not the smaller ones.

overall the automated output obtained by the supervised approach

displays most of the major geological units in the area northwest
,i

s
of Mary Kathleen quite well. 	 The degree of success in

► ^ discriminating these units is related to the strength of their

spectral oignature and to the size and homogeneity of the

training set.	 Very dark and very light spectral signatures are {

the most clearly distinguished and large uniform training sets

assist precise classification. 	 The relatively large extent of

the areas underlain by the Leichardt Metamorphic rocks and by 1

dolerite west and northwest of the Wonga fault and by the Wonga

to the	 together with the	 homogeneitygranite	 southeast	 strength and

f of the spectral signatures produced by the combination of i

' reflectances from uniform low tree and shrub savanna, residual x	 a

soils, subdued relief and unobtrusive outcrop, are largely
^f

responsible for the clear display of these units on the automated

output,	 On the other hand similarit y of spectral signatures

' associated with the similarity of vegetation, relief and lithology

is responsible for the failure to discriminate between the Corella

and Ballara quartzites and the Argylla formation in some areas.

In others the small training sets occasioned by the narrowness

of the zones underlain by some units of the Corella formation
1	 i

I	 ` together with variations of vegetation and relief which cause-

heterogeneous spectral signatures have resulted in furtherk

failures.	 Overall it is apparent that the supervised approach

leads to a successful classification of the major geological units_

in the Mary Kathleen area where the 'unit characterizes a large
E

area with distinctive vegetation, soils and relief producing a

i
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homogeneous spectral signature and permitting the delineation of a

relatively large training set for the classification process.

3.4.2.4	 THE LADY ANNIE	 MOUNT GORDON FAULT ZONE AREA

Ell" The availability of LANDSAT imagery of the Lady Annie	 Mount

Gordon fault zone area for dates in three seasons, namely

22 March 1975 (ID 2039-00012) 	 18 September 1975 CID 2239-0001)

and 10 November 1975 CID 2292-23594) from LANDSAT 2 provided

opportunities for comparing the outputs from semi-automated

J
i classifications on a temporal basis. 	 Since the area contains

the Lady Loretta lead zinc deposit the problems involved in

identifying a mineralized horizon using semi-automated

techniques may be compared with those in the Dugald River area.

As the geology and terrain features of the area differ in several

important respects from those in the Mary Kathleen - Cloncurry

and Dugald River areas the effectiveness of the semi-automated

classifications 	 can	 be assessed further.

After allowances for minor variations in the photographic

processing the colour composites generated from the LANDSAT I

and 2 imagery acquired at different seasons of the year exhibit

remarkable variations in tone and hue. 	 Notwithstanding the

semi-arid nature of the terrain these changes are due primarily

Co seasonal changes in the vegetation, notably differences jj

in the state of the grass layer occasioned by the incidence

of rainfall.	 Changes in the soil moisture conditions and the

increasing dust in the 	 the dryeffects of	 atmosphere as	 season

I
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progresses contribute to the changes. The objectives of the

attempts at semi-automated classifications of the spectral data

on the colour composites were twofold.

The first objective was to achieve a satisfactory classification

of the spectral data on the colour composite for 22 March 1975

which exhibited the greatest contrasts in tone and hue and which

as indicated on pp 63 to 79 provided remarkably detailed

information on the terrain features. The second objective was

to ascertain whether the classification of successive LANDSAT

images using the same training areas would yield similar

;I

f

F

i

r

I	 ^

i

t
•	 A

a
i.

4	 i

v	 ^	 j

information on terrain features.	 To achieve these objectives

both the unsupervised and the supervised approaches were used and

in the case of the latter the number of training areas was varied

in attempts to achieve the most satisfactory output.
1	

,

The attempts to classify the spectral data on the colour composite rr

generated from MSS bands 4, 5 and 7 for 22 March 1975 (ID 2059- w

1 00012)	 (Figure 48) using the unsupervised approach with the
f f	 r

POLYDIV algorithm proved relatively unsuccessful. 	 With three
y

.	 j

groupings the areas covered respectively by soil and alluvium

and by 	distinguished-laterite were distin 	 ished from areas of outcropping}

^_and sub-outcropping bedrock largely because their spectral
i

} signatures of medium tone and dominantly red hue associated with

a continuous grass cover contrasted with the dominantly lighter

tones and green, blue and purple hues of the areas of surfaceY	 ^	
r

C

and near surface bedrock where woodland characterized by

'
scattered trees and a,sparser-grass cover prevails. 	 Greater

Y`

division of the data caused fragmentation without providing
yq

4

,V

better discrimination of the spectral signatures or of the geology.

( U^' 
P	 Q -

-	 _
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A supervised approach using six training sets selected by the

recognised	 ontone and colour of spectral signatures	 visually i

^

the colour composite generated from the MSS bands 4, 5 and 7,

however, produced an output in which the major geological units
1

were clearly distinguished.	 (Figures 48, 117 and 118) 	 on this

I the areas of Proterozoic Myally quartzite which have a pale green

j. blue signature on the colour composite of the LANDSAT imagery

are clearly delineated north of the Lady Annie mine and in the
t

€ areas to the west of the Mount Gordon fault zone. (Group 5,

S
i

Table	 7	 ).	 In the last mentioned zone, however, and again south

of the Lady Annie mine the areas underlain by the lower Judenan^

beds, which have a darker blue signature on the colour composite r

of the LANDSAT imagery, are placed in the same class as the Myally

quartzite on the automated output. 	 Those areas underlain by the
7

dolomites of the Paradise Creek formation are distinguished on

the automated output which discriminates between those horizons
F

producing respectively red/purple and brownish/purple spectral

signatures (Groups 2 and 4 respectively, Table 7 	 J on the colour i

composites of the LANDSAT imagery.	 East of the Lady Annie fold y

zone the areas of Cambrian limestones which on the LANDSAT imagery f

E,s
have _similar red/purple signatures are placed in the same class as

the Paradise Creek dolomites 	 on the automated output.- The area

of the Beetle Creek phosphatic siltstones which has 'a brownish

r` purple signature ' on the LADIDSAT imagery is not distinguished on

thethis automated output:.	 Within both	 Paradise Creek formation
I.

of the Lower Proterozoic and the Cambrian the automated output 1t

discriminated between, the predominantly dolomitic and predominantly
t

i5 siltstone horizons which respectively have distinctive signatures

F	
a

on the LANDSAT imagery. 

r
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f	 Those areas of the Gunpowder Creek formation which have a very

_v ^^

f
P

F

dark, almost black spectral signature on the colour composite

of the LANDSAT imagery are clearly distinguished on the automated

output (Group 6, Table 7 ) but those with a blue signature have

been placed in the same class as the Myally quartzite. Areas

covered by laterite have been placed in the same class, (Group 6,

Table 7 ) as the areas underlain by the Gunpowder Creek formation.

Areas covered by alluvium which have bright red spectral signatures

on the colour composite of the LANDSAT imagery are clearly

delineated. (Group 1, Table 7)

Table 7 The essential details for the six class into which the

Lad Annie frame 11A (Fi re 11$) was classified

{

MIX

I:

0
y	 gu

F	 Group Colour	 Shading_ Ground-truth	 Equivalence

1	 Feed	 Soils and alluviumoodWMEN	 g e

2	 R d	 1	 t:;::;:::::_	 ^	 P	 d•	 C	 ^	 d b t	 ^
: ise	 ree goo	 u

formation many small
dolomites, scattered

i
}

siltstones etc. areas

3 Blue/Green ° °, a o°	 p °°°°, Eastern Creek good
o°p°a°°°°°a	 a Volcanics - basalts #,

4 Brownish Paradise Creek good but
purple a== 	 = formation many scattered

dolomites, areas
siltstones etc. }

nnn^iuunn^r ;5 Light blue U u a	 it ,t U It „	 u Myally' quartzite good
uiiuuiinunu
It	 n	 :P a:	 n	 a	 It 	 n	 u

6 Dark green/ ^oonooaoac   Creek.Gunpowder
black a000a0000c siltstones, and good

shale

fa

Overall the automated output based on six groupings of spectral #j

signatures recognised visually on the colour composite of the 	 -

LANDSAT imagery succeeded in discriminating the major geological

ORXGIN AL PAGE X6 ,

POOR QUAUTY0F
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L

units. Like the colour composite it provides a basis for an

initial interpretation of the imagery for subsequent field

investigations. The complexity of the colour composite and of the

classification map, however, prevented any quantitative

classification accuracy being quoted..

	

F l	 The six classes and the same training sets were used for classifications

	

F it	 of the LANDSAT 2 imagery for 18 September 1975 and 10 November

	

f ^
G	 1975.
k

	

`	 t

The colour composite for November 1975 (Figure 47) acquired towards

the end of the dry season when most of the grasses had dried off

	

I	 ; is remarkable for the pale colour of the spectral signatures over

	

f	 most of the area. Red spectral signatures are absent from the

image. Two of the training set areas,namely those over the light

blue and blue green spectral signatures over the Myally quartzite

and Eastern Creek Volcanic rocks on the colour composite for

22 March 1975,were outside the area of colour composite for

10 November 1975 which was scanned to generate the classified

map shown in figure 119. The classes for which training sets

	

j	 were established on this colour composite and on that for '18

September 1975 are shown in Table 8.

	

^{	

l

R	 i	 '

k

-I
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l

Table 8	 Classes for which training sets were generated in the x

Lady Annie frames 7A and 29A

i

Group	 Colour	 7A	 29A {

. 1	 Red	 X	 X r

2	 Red/Purple	 X	 X

s

3	 Blue/Green	 -	 -
^M j

4	 Brownish Purple	 X	 X

5	 Pale blue	 -	 -

6	 Dark green/Black	 X	 X
,r

i

i The classified map, of the colour composite for 10 November 1975

displays the	 areas in	 6 as was the case for thesame	 group

{ classified map of the 22 March 1975 colour composite but r^;

additionally includes other areas in the sane group. 	 (Figure 119)

The areas which are correctly classified on both maps are those t ,
t

capped by laterite which produces very dark spectral signatures i	 z

at all seasons of the year.	 They include small elongated areas

located around the margins of . the flat topped plateaux of Myally
t

^^

A

quartzite north of Lady Annie and larger areas north of Mount
f

tt Kelly.	 These areas are underlain by Gunpowder Creek siltstones

which in places are lateritized and they carry Acacia shirleyii

woodland.	 They are clearly displayed on the colour composite 1-J

for 10 November 1975. 	 On the classified map of this colour f

1 composite more areas are classed in group 1 than might have been r

anticipated. Whereas in March the training areas of this group

i
' had red spectral signatures produced by strongly reflecting

-,

' grasses, by November they had pale grey pink spectral signatures

i	 ,i



produced by reflectances from both the dry grasses and the

soils.	 areas onintervening bare	 Those	 the November colour

'f composite which had this spectral signature and were classified

in group 1 included some which on the March colour composite

, had brownish purple spectral signatures and were placed in 3

group 4.	 Relative to both vegetation and geology the
r	 __.;

classification for November was less good than for March. 	 Given	 k

the extremely dark and very light spectral signatures of groups ^$

6 and 1 it is not surprising that much of the colour compositek j

for 10 November 1975 has been classified in the two remaining

groups which on 22 March 1975 had brownish purple and red purple
i

,. reflectances.	 If this colour composite were classified'
i

independently of other images at least one additional class would

be introduced and a better classification achieved.

a

The colour composite for 18, September is dominated by brownish

red, blue purple and deep purple hues- these colours being %y

related to the weaker reflectances from the vegetation and to

the greater contributions of soil and bedrock to the spectral

signatures than was the case in March. 	 On the classified map-
i

the lateritic areas and the areas underlain by the Gunpowder

Creek siltstones which have dark spectral signatures have again.

been correctly placed in group 6. (Figure 120)	 The areas which in
•

A

March had purplish red and brownish red spectral signatures have

been reasonably successfully discriminated but larger areas have

.' been classed in each group. 	 In the western part of the frame

^ large a reas have been 	 in	 l which in March had redplaced	 group1

;r spectral signatures.	 This is because, on the colour composite
J

for 18 September 1975 the spectral si natures over much of thisP	 p	 g 3+j

}
'

area were closer to the red than to the purplish . red and brownish

I, AGE
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r

red hues of groups 2 and 4-and were classified accordingly. -1

This indicates that for this colour composite the use of training
in

t

V. areas based on another image carries a requirement for an

additional class if a satisfactory classified map is to be

achieved.	 Furthermore this additional class is a different one

from that required for a satisfactory classification of the

i 10 November 1975 image.

The principal conclusion arising from this study of three images i

of the same area taken at different times is that, starting

the	 classes;with an image which contained	 greatest-range of

+ and therefore advantageous to the study, it would have been

necessary in each of the two other images to introduce at least

one new class in order to obtain a satisfactory classification.

The new classes would be different for each image. 	 Using the

same training areas for each image there is, nevertheless, some

I
common content between the four maps, particularly with the

,'
?:

G
very dark spectral signatures of group 6. 	 For precise measurement

I of change it would be necessary to have fiducial marks on the

images , and possibly scale transformations in order that a

computer comparison can be made. 	 Thisprocedure also implies

j that all the classes which may be encountered in any of the images

being compared have training-set data available. 	 This is a

3

difficulty in itself since it means that an accurate comparison
r

i

could only be made after all the imagery has been examined.

i I

Furthermore, as will be apparent from the preceding sections,

it is not sufficient merely to classify the whole of the image
a, r 4

with a predetermined number of classes and no other constraints,c -,

since no consideration has been given to the use of a threshold.

u

Clearly a threshold would be used as 'a matter of principle in j
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f•
order that pixels should not be allocated to a class on the

basis of having the highest relativerobabilit of belongingp	 y	 9 4

to that class, but according to some absolute level of

probability. This leads now to the consideration in appendix

1 of having a separate threshold. To these questions there is

no simple answer and they most certainly merit detailed study

{	 in any future investigation.

In an attempt to refine the output and to discriminate a larger

lu
as number of geological units a supervised approach using training_

sets for nine spectral signatures recognised visually on the

colour composites of the LANDSAT imagery for 22 March 1975 was

' also used.	 This succeeded in differentiating the Beetle Creek

`- formation which contains the important Lady Annie phosphate

deposits and in identifying areas near the west Thornton Creek s

west of Lady Annie where Cambrian rocks underlie variable

thicknesses ofalluvium.	 It did not succeed in 'separating the

area underlain by the Myally and Judenan formations,_ however,.]

and it produced such a -fragmented pattern of individual symbols

i as to make the recognition of major geological units or indeed

i other environmental units virtually impossible_.,x,y,i =7

A further attempt using ten different training sets, however

provided a more satisfactory and less fragmented classification.

(Figures 121 and 122)	 In this the relationship between the

units displayed on the semi-automated output and the spectral

signatures produced by the combination of vegetation, soils and tt

geology on the colour composite is remarkably good except, in the

Mount Gordon fault zone in the east. 	 Here, over relatively f
s

short distances, frequent changes in the spectral signatures

' i
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associated with the narrow outcrops of the individual geological

units and with sharp differences of relief, make the selection

of training areas extremely difficult. The same ten training

sets, used for the colour composite of the 22 March 1975 imagery

I	 are now being used to classify the spectral signatures on the

i

colour composites for 18 September and 10 November 1975.

The choice of symbol and the method of displaying each class

influences the success of the automated output for visual

interpretation.	 The most successful output's are those in which

the density of the symbols is related to the tone of the spectral

signatures and where contrasting symbols are used for adjacent' j
,,

classes.	 Over a large area with a complex pattern of spectral
a

signatures the latter may not be possible over the whole frame.

The outputs using the supervised approach and six, nine and ten
t

' groupings respectively for classifying the 22 March 1975 colour

r
composite of the Lady Annie area show that six groupings with the

q symbols used in figure 118 produces the most satisfactory result.

At nine groupings only the iron rich areas with dark spectral

' signatures are ,easily recognised. 	 Elsewhere fragmentation and

y

lack of contrast between the symbols for adjacent areas renders }

interpretation difficult. 	 With ten groupings improved selection' t

of training sets and a better choice of symbols the output provides

!relatively easy discrimination between	 (Figure 122).classes
i

Where the pattern of classes is complex it may be desirable to

display each one individually as in figures 123 to 132 when d

the success or failure of the classification relative to the
t

t
'

r

spectral signatures recognised visually on the colour composite

j

becomes apparent and may suggest the need for changes in the

selection of training areas. 1

ORIGINAL PAGL
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Appendix 1

The Requirements for a. Threshold in Classification Procedures.,

Before discussing the results some comments should be made on the

purpose of a threshold. The absence of a threshold means that every pixel,

d

i
}	 will be served by allocating it to one of the original groups when it is

	

^i	 in :tact quite separate and unrelated vegetatively or geologically to i

i

Tany of these original classes.
F	 i.

It is thus desirable to have a threshold probability such that, if

	

F	 the probability of the pixel belonging to any of the prescribed classes is

	

`	 Less than a particular value, the pixel will be unallocated and placed in

r
an unclassified category. There is no objective value for a threshold and

it can only be stated in terms of the 	 y belonging	 'y	 probability of belon in to a_	
,t

particular class.

In the three-dimensional measurement Space dealt with here the

 elements of the covariance matrix for a given training set are different
w

and hence surfaces of equal probability are ellipsoidal,, For anotherl
training set the axes of the ellipsoid with the same surface probability

will be different. In theory, therefore, if the probability of an

unidentified pixel belonging to any designated class is set at a fixed value,

then the threshold for each class will be different. Classification of

an image with a constant probability threshold thus requires the

j

determination of a threshold distance for each class, In practical
a

problems in remote sensing there: is no precise way of calculating this

distance and values can only be 'obtained by exceedingly tedious trial- 	 i

however unlilee the 'training set for each designated class, is nevertheless

allocated to that class for which it has the highest probability, although

that probability may still be low. This may well lead to a meaningless

it

	

	 classification since it is inevitable that as one moves some distance away'.,

from the reference frame a new terrain type will appear. Little purpose
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-and-error methods involving many practical assumptions.

.^ In practice, since SOUP effectively calculates the distance of a

+I
pixel from a training set it is very much easier to adopt a fixed

threshold distance and assume it to be valid for all classes. 	 Since

the	 for	 training	 in	 imagecovariance matrix elements	 the	 sets	 any one

4i
I

are fairly similar, such an assumption is not likely to lead to a major

error in the classification, particularly when the random variations

which occur in nature are considered. a

The empirical way in which an appropriate threshold distance for

each class may be determined and the relatively minor effect upon the

answer may well explain why, in the open literature, there is only one

reference to classification maps with a threshold related to the

calculation of different threshold distances (LARS,1968)
ffV

1
If too low a threshold is used pixels will be wrongly allocated

while, with too high a threshold, pixels which should have been placed

in a particular class will be placed j,n the unclassified category.
rl

The actual value for the threshold distance in a specific image is

thus dependent upon subjective considerations and the nature of the area

which has been imaged, , whether it be agricultural, afforested or
j

{

{ natural terrain, etc., when particular factors will be relevant. ^.

^
Y

t

i }

j
{

f 1	 t '

i
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Appendix 2

i'	 A Priori Class Probability

Having examined the results of classifying a, number of different

k	 ! images, according to a decision rule which allocates each pixel to that

class to which it has the greatest probability of belonging, it is

c appropriate at this stage to consider an aspect which has not so far beeni
j

discussed. This concerns the basis of the decision process represented

by the equation.
j

{	 j C1 + log I Qi I+ (x-Ui) t	 Qi 	(x	 - Ul) <	 C^ + log I Q j I +	 (x - }P j ) tQt-1 (x - U j ) 1	 1

in which C, and C. are constants related to the priori probabilities of
i

classes C, and C^.	 It is computationally convenient to mare all these1 

a, priori probabilities equal and this is usually done either explicitly,

e.g. Henze and DeZur (1975) or, more frequently, implicitly, with no

j specific reference being made to this simplification.

With agricultural crop-type classification it is usually 	 possible,

e` if required, to estimate these probabilities reasonably accurately from

the ground truth data.	 With natural terrain this information is difficult

s` if not impossible to obtain from the ground truth data and the probabilities

are made equal on the basis of expediency alone.

15 1 In the present project the probability is not calculated directly

h
{ but is simplified by	 calculating the function 

log lQ,l i+ (x - 'Pi) t Qi- 	(x - ui)
2.

and then determining for which class this function has a minimum value.

If the a priori probability of P(C i ) is now included then equation
{C

2 becomes d

st to	 +	 (x -	 ) t
	

-1 (x -	 )	 - 2 to	 C.9 IQ 	 ui	 Ql	 ^i	 g P ( i) 3.

1The question now arises as to what extent the inclusion of the



`. appropriate values for log P (C i ) would have had on the final

i
classification.	 Table 9	 shows an example of the function given by •;

equation	 2	 in the column headed "distance" for a number of pixels with

`j
4

a four category classification, i.e. four distances. 	 Each pixel is

g allocated to the class for which the distance is a minimum and the right-

hand column gives this class (FITS).	 It will be noticed that the distances

for any one pixel vary widely and that the minimum distance is usually

much less than the next smallest distance.	 In general, it was found that

'	 4
the greater the number of classes the closer do the two smallest distances

become.

+ Suppose now that a map with two classes only (C., C ) was being
4

B

generated and that the a priori probabilitities are P(Ci )	 0.1 and

P(C^)	 0.9.	 Then the additional term in equation 	 3, - 2 log P (C) is, r

with these two classes

for P (C .) - 0.1, - 2 log P(C) =	 + 2.00 s

for P(Cj )	 0.9, -2 log P(C,) _ + 0.09.
r

These values of 0.1 and 2 represent approximately the extreme values

for P(Ci) and indicate the magnitude of the term which would have to be

added to the appropriate column in table A. 	 It is evident that, for the

above range of values of P(C.), it is highly improbable that adding terms
w

.

of	 between	 0.1 and 2 will alter the column in which the minimums distance

Occurs.

i
Thus, from a purely empirical, standpoint, the	 incorporation of the r

a priori probabilities is unlikely to have anysignificant effect on the

l resultant classification.

Finally, in classifying natural terrain there does not appear to be any
`^	 t

c
t

E

i really feasible way of assessing these a priori probabilities. 	 For these

I reasons this factor was not incorporated in the distance calculations and
i

all such	 probabilities were assumed to be equal. 	 ORYGXNAr, PAGE IS
OF POOR QUAIATY
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Table 9. An example of the function 5.2

-- - - - - - - - - -	 - - - - F -----------------	 1- DISTANCES 	FITS

1898.2814	 464.6379	 276.2858	 233.3484	 4

E`	 1373.9155	 468.3938	 3678.4728	 394.1232	 4

`	 1698.8023	 453.8495	 4442.1456	 626.2319	 2

	

1	
1243.,1947	 552.4873	 1883.4261	 51.2337	 4

1351.7884	 443.4629	 4193.9496	 491.8420	 2
E	 ^	 ^

	

821.2816	 385.8027	 4484.6147	 595.7370	 2

f^ (	 863.4936	 378.9224	 3874.9694	 435.8687	 2
f	 I	 :	

F	 a

k	 978.6976	 459.6834	 697.2563	 78.4401	 4

	

722.5652	 188.623455

	

19 .1421.	 163.2796	 4

1239.9609	 281.3118	 2264.312.9	 97.3814	 4

C iu	 1312.7408	 358.5139	 2894.3851	 162.6567	 4

	

^..{	 1291.2319	 363.7282	 1821.6368	 72.8631	 4	 a

	

499.8735	 143.1292	 455.1425	 898.7724	 2	 !

1119.1441	 251.4659	 549.1361	 488.2567	 2

s	¢^{	 1318'.2619	 321.9287	 2460.4989	 99.6979	 4

1287.9317 	 339.5824	 3718.832'2	 863.9196	 4

1489.9528	 563.4916	 4768.9890	 858.4674	 2

	

792.6516	 443.8852	 223.6797	 248.2137	 3	
iF

1231.6419	 378.5864	 1868.5484	 76.8242	 4

1133.4134	 265.8766	 2318.1846	 95.5999	 4

	

938.4934	 234.8471	 2254.3579	 94.8683	 4

1885.7576	 439.2386	 1116.4118	 52.2812	 4

	

433.1114	 259.4967	 461.3898	 378.4477	 2

675.9734	 186..8679	 595.1942	 442.3723	 2

	

rr	 591.1184	 22.15619	 351.9966	 559.4261	 2

786 4683	 398.5674	 284.3193	 247.6862	 4

514.8517	 529.5556	 :312.4743_	 164.6778	 4

611.2794	 543.5240	 236.8719	 164.2711	 4	 1

638.4.261	 536.4877	 278.3778	 122.8936	 4

	

i	
720.1046	 829.4657	 576.1233	 37.5178	 4F

	

.';	 801_7655	 767.8399	 378.2975	 29.6575	 4

'F	 822.6463	 862.3119	 264.4578	 38.5661	 4	 1	 t
E

486.2689	 574.2298	 155.4113	 177.8516	 3

r	 359.1896	 624.3388	 148.8378	 154.2676	 3

E ;	 tom'	 598.9388	 918.5142	 -	 374.4363	 28.5678	 4

E	 `'
962.6385	 988.5658	 549.6714	 55.5329	 4

fi
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1P
3.4.3	 FEATURE EXTRACTION USING DIGITAL IMAGE PROCESSING TECHNIQUES

,

The LANDSAT 2 imagery of the Lady Annie - Mount Gordon fault

zone area for 22 March 1975 (ID 2039-00012) was used to explore

the potential of information extraction using the density

slicing, colour rotation and contrast stretching facilities

available on the Plessey Radar Digital Image Processor.

As a preliminary step the MSS band 7 was sliced to give seven

density levels to each of which a discrete colour was assigned.

This produced a display in which two types of terrain and/or

bedrock	 discriminated.	 These	 thegeology were clearly 	 were
3

alluvial plains covered with strongly reflecting grasses along

the Thorntonia river and on Koolamarra property and the areas

with ferruginous bedrock, notably Gunpowder Creek siltstones,

and with laterite cover.	 Some areas of limestone bedrock could

be distinguished but generally speaking the density slice failed -`

rto discriminate lithology or geological unit or to distinguish

` structural features. 	 It classified the information in the one r'

. band and enhanced the types of terrain cited,
q

In attempts to discriminate between different lithologies and

r	 to distinguish individual geological units MSS bands 4, 5 and 7 j

were used together and subjected to colour rotation and contrast !
i

`	 stretching.	 Three displays produced by differing combinations of P

scolour and degrees of contrast stretching were generated. 	 On +.

t	 j	 the first the areas underlain by Cambrian limestones and i

!'{	 siltstones were clearly displayed 	 Both areas covered by

laterite and those underlain by ferruginous Gunpowder Creek siltstones

', ORIGINAL, PAGE IS
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were discriminated as were areas of non-ferruginous Gunpowder

Creek beds and also some areas underlain by Paradise Creek

beds. The dolomitic horizons of the latter formation, were

differentiated with those to the west of the Gunpowder and

Paradise Creeks being distinguished from those northeast of

.
f

Mount Kelly.	 Elsewhere discrimination of lithology and ,

geological unit was poor.	 Alluvial plains with a strongly

reflecting grass cover were distinguished from those with thin

superficial cover and sparser vegetation.	 The structural

features which are clearly displayed on the unaltered colour

F

composite of MSS bands 4, 5 and 7 were lost on this colour,

{

f ^;

i"

rotated and contrast stretched display.

t

The second display showed some discrimination within the areas l

covered by alluvium particularly along the Thorntonia river.
j

Here areas where, Cambrian rocks are relatively near to surface
a	

d`

beneath thin cover of soil and alluvium were clearly delineated.

^

Distinctive colours distinguished the dolomites of the Paradise

Creek formation west of the confluence of the Paradise and

Gunpowder Creeks from those in other areas. 	 Apart from extracting

the above features the display failed to discriminate between

areas of differing bedrock lithologies or different geological

units.	 It did however,	 indication of foldprovide some

structures in the area west of Lady Annie.

I! ^

The third display extracted ,different but rather more information

R than the other two.	 The areas underlain by Cambrian rocks r

were again clearly distinguished as were areas covered by laterite
^	 t

or characterized by ferruginous bedrock.	 The Paradise Creek
i

` dolomites west of the confluence of the Paradise and Gunpowder
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Creeks were again discriminated. The fact that this

discrimination occurred on all three displays suggests that the

Paradise Creek rocks in this area differ in important respects

from those in other areas. Areas underlain by the quartzite

of the Myally beds which are so clearly discriminated on the

original colour composite of MSS bands 4, 5 and 7 were not

distinguished on any of the displays generated by colour rotation

and contrast stretching. On this third display structural

features had again been lost. The results of the preliminary

investigations using the Plessey Digital Image Processor

indicated that additional specific information could be

extracted by colour rotation and contrast stretching of individual

MSS bands but that this information was complementary to

that available in the original colour composite generated from 	 r

the bands whose interpretation should precede the use of

f
enhancement procedures.

hi

3.5	 CONCLUSIONS

3.5.1 LANDSAT INFORMATION ON TERRAIN FEATURES IN A SEMI-ARID ENVIRONMENT

i

The studies undertaken in northwest Queensland have shown that

in such a semi -arid environment LANDSAT imagery yields a wealth
i

of information on vegetation, on soils and drainage conditions

and on geological structures and lithologies. Different 	 }
_	 s

information is contained in each of the four MSS bands with

band 4 yielding valuable _information - on_moisture conditions,
r

band 5 on drainage and bands 6 and 7 on vegetation and geology.

,^	 r
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Most information is obtainable from colour composites generated

from MSS bands 4, 5 and 7 and more can be extracted from

displays at scales of 1:10,000 to 1:50,000 than is possible from

those at smaller scales. Contrary to general belief imagery

obtained after the rainy period yields more information on

geological structures and lithologies than that obtained

J during the dry season.	 This is because differences of vegetation, s	 ,
r

which reflects most strongly on the infra red after rains,
;

f
j reveals the geological. features better than the soils and the 'r

;
E weathered bedrock itself.	 For correct interpretation of the

imagery, knowledge of the vegetation is essential. 	 With such

knowledge the influence of seasonal changes in the plant cover

on the spectral signatures on the imagery can be understood

44
and the latter can be interpreted from, successive LANDSAT Ì

passes at different seasons of the year to provide complementary

information on the geology and other terrain features.	 In this .s

way, as the investigations have shown, major faults and x

lineaments can be discerned; in areas of near surface bedrock;

3

fold structures can-be outlined, especially where marker beds,

such as the stromatolitic horizons in the Paradise Creek

formation near Lady Annie, are present; distinctive lithologies

can be discriminated; mineral deposits such as the Lady Annie
s

E phosphate deposits,can be delineated and orebodies such as the

Dugald River and Lady Loretta lead-zinc deposits can be detected.

In areas of superficial cover, such as the Cloncurry Plains,
4

r

{	 lw
,

C

the distribution of the different types and ages of alluvium-

C= and colluvium can be ascertained; here also the presence and

nature of near surface bedrock beneath the superficial cover can

detected	 the	 faults and lineaments discerned.be	 and	 existence ofC

r }



Studies of the multi-spectral air survey imagery concentrated on
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i

In areas of outcroppinq and suboutcroppinq bedrock and in those

with superficial cover distinctive spectral signatures on the

imagery reveal the effects of burning and of grazin g, activities,
E

cognisance of which is essential for correct interpretation of

terrain features. In all yeas the roles of LANDSAT and air

survey imagery, of colour composites generated from NASA films 	
r

or from computer compatible tapes, and of visual and semi-

automated classifications and interpretation requires assessment. 	
a

3.5.2	 COMPARATIVE EVALUATION OF THE INFORMATION AVAILABLE FROM LANDSAT

AND AIR SURVEY IMAGERY FOR THE RECOGNITION OF PLANT COMMUNITIES

TERRAIN FEATURES AND GEOLOGICAL STRUCTURES AND LITHOLOGIES

ASSISTING MINERAL EXPLORATION

1,

t

establishing the precise relationships between discrete spectral

signatures and the environmental components contributingto them,'

in order to recognise and map plant communities (which may reflect

superficial and bedrock geology), soil types (which may reflect

either the nature and depth of over-burden or the bedrock type),`

relief and drainage features (which may provide guides to k

i
bedrock geology and to subsurface water) and bedrock geology.

j Initially the true colour, infra red colour and black and white-^

panchromatic imagery were studied individually and in combination
C

i ` using enhancement techniques but subsequently attention a

concentrated on the infra red false colour imagery which was

found to	 the most information. and which is also mostyield

nearly comparable with the colour composites of MSS bands 4, 5
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and 7 of the LANDSAT imagery.

Air survey imagery has the advantages over LANDSAT imagery of

larger scale, greater resolution and stereoscopic viewing.

Its particular attributes depend on the scale and resolution and

the most suitable level for these may vary for particular

geological features and for particular types of terrain. Both

the 1:15,000 and 1:5,000 scales used in the research programme

in Australia provides such detailed information that individual

j	 trees can be recognised, the minutae of relief and drainage

ascertained, the bedding and jointing of bedrock discerned.

The large scale and wealth of detail detract from an overview

of major structures.. Depending on the scale and the nature of

the terrain, lithological/stratigraphical units, dykes and sills

can be discriminated, the precise position of faults determined,

l	 the dip and strike of outcropping bedrock ascertained

stereoscopically, geobotanical anomalies associated with ore

deposits identified and mine workings located. Here a summary

of only a few features will be made.

Between Mary Kathleen and Cloncurry several large dolerite

dykes which do not give rise to marked changes of relief or

vegetation and which are not readily apparent on the ground are

I
clearly delineated on the infra red false colour photography

}	 at the 1:15,000 scale. These features are apparent but cannot

be accurately located on LANDSAT imagery.

}

Within the Mitakoodi anticlinorium the structural features and

lithological boundaries are more difficult to appreciate on the

aerial photography than_ on the LANDSAT imagery but with

ORIGINAL PAGE IS
OF _POOR QUALITY



I ^

^e

1

—133—
.r

4

stereoscopic	 viewing and field checking their precise positions

can be accurately determined.
i

In the Dugald River area the recognition of lithological/

_stratigraphie units on the air photos depends partly on the
a

thickness of residual and transported cover.	 Characteristic
e

spectral tones, hues and textural patterns delineate outcropping

Knapdale quartzite and bedded limestones within the Corella

succession while vegetational banding within these units reveals

trends, lineations and bedding patterns.	 The other lithological/

stratigraphical units within the Corella formation are less

readily identified, but quartz reefs may be recognised and the

Dugald River lead-zinc lode is clearly distinguished lazgely

because	 the	 treeless	 community which outlinesof	 anomalous	 plant

it (Plates 24 and 25, Figures 36, 39, 43 and 100). 	 The lode

zone has a very distinctive spectral signature on both the

false colour infra red and the true colour imagery while it is

clearly distinguished by its uniform light tone on the
t

panchromatic photography. 	 Similar signatures of much smaller

size have been identified in a number of other Localities where

similar plant communities have been found to be associated with
y

high levels of copper and/or cobalt in soils emanating from

mineralized bedrock.	 Features of this size and nature cannot be

detected on LANDSAT imagery.`

Jim

North of the Dugald River lode remarkable lozenge-shaped features

occur on the air photos: they are caused by zonal patterns of j

i
plant communities whose distribution reflects the subsurface p

`

drainage systems and indicates that a lowering of the water table

may have occurred since the drainage, wa s initiated in Tertiary
Y

3	 times.- These features occur over black soil plains where bedrock is
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concealed beneath deep cover. They cannot be detected on

LANDSAT imagery, on which, however, distinctive spectral

signatures characterize the areas in which they occur, thereby

permitting the mapping of black soils plains. (Figures 71,76

78, 79, 80 and 81)

On the air photos of the Lady Annie area the blocks of

outcropping Myally quartzite are clearly distinguished from

adjacent areas underlain by the Gunpowder Creek Formation by

virtue of the spectral contrasts between the flat topped plateaux

of the former geological unit and the dissectedterrain of the

latter. In the area south of Lady Agnes mine the lines of the

1

4 r

y

k

Y

Y

J	

{

s

i

i

(	 3

major block faults disclosed by the i,ANDSAT imagery are apparent {
r

3 and are followed by drainage liners across the Myally block

(Figures 63 and 64).	 In the Lady Loretta area the air photos

display very clearly the sharp relief features which outline
i l

the position of the Small syncline and the Big syncline. 	 Here =t_

distinctive spectral signatures of very light tone occur over

the anomalous treeless plant communities which characterizes
r- r

the narrow flat topped 'plateau above the Lady Loretta lead-zinc a

ore, body whereas very dark signatures occur where dense stands

• y'i cover the steep slopes below, which areof Acacia ,shirle i

strewn with lateritic and gossanous gravel, and 'likewise the

It areas where laterite caps the bedrock.	 The dark signatures may

^ s! be equated with the dark signatures on the LANDSAT 'imagery. 	 They
t

-

contrast sharply with signatures of medium tone produced b g	 p	 y ^
u;

F _	 the infra red false colour imagery where Eucalyptus brevifolia

trees stud a grassland of either Triodia pungens or the soft

"grasses mainly Enneapogon polyphyllus of the plains.

ORIGINAL PAGE IS
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+ In summary ,investigations in both the Duaald River area and the

' r`Lady Annie area	 have shown that the LANDSAT imagery provides

remarkable details of the geology on a regional basis and
r

by the revelation of lineaments and iron-rich horizons can be
i

used to target areas of possible ore deposits but that multi-

spectral and thermal air survey imagery is required for detailed
1.

i geological information of small areas and for the precise

location of ore deposits. 	 The LANDSAT and air survey imagery

( ? are essentially complementary, t

4 3.5.3.	 ASSESSMENT OF THE VEGETATIONAL AND GEOLOGICAL INFORMATION

I AVAILABLE IN COLOUR COMPOSITES GENERATED RESPECTIVELY FROM

LANDSAT FILM AND LANDSAT COMPUTER COMPATIBLE TAPES
t

Studies of the information available from colour composites

generated from the LANDSAT computer compatible tapes have been

i, confined to selected areas within the Cloncurry- Dobbyn and tt

Lady Ann is - Mount Gordon fault zone frames imaged respectively #
r

on 2 March 1975 (ID 2039-23555) 	 and 22 March 1975 CID 2059-00012).

` The selected areas were the Dugald River Lode area, the Lady

Annie - Lady Loretta area and the Cloncurry Plains. 	 For these

the colour composites were displayed at scales of up to

1:10,000. -Individual pixels were discriminated.

i'
Comparative studies showed that it is possible to obtain more

information from the computer compatible tapes.	 This arises'
C	 ^i

from the possibilities for stretching the density scales on

f

^	 ry individual MSS bands until a suitably balanced colour c ompositey	 p
#

is produced and from the detail discernible at the 1 x 1 pixel
t

I

4 ,
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f} display:	 In the Lady Annie- Lady Loretta area for example the

t
clear discrimination of the air strip within the Lady Annie

phosphate area facilitates location of the vegetation

I associations, revealed by distinctive spectral signatures,

t
which	 outline the Beetle Creek phosphatic siltstones. 	 This is

not possible on the colour composite generated from the NASA

films.	 In the Lady Loretta area the structural features of

the Big Syncline and of the Small Syncline with which the

Lady Loretta lead-zinc deposit is associated are revealed on the

colour composite generated from the computer compatible tapes

and displayed at the 1:10,000 scale.	 It has not been possible

to achieve a display of adequate resolution for this area from
i_

the NASA films.	 This is true also of the Dugald River Lode area

where the distinctive spectral signatures on the colour composite

generated from the NASA computer compatible tapes, outline

each geological unit, including that of the lead-zinc lode.

On the colour composites of the Cloncurry Plains generated from

the computer compatible tapes it has been possible to

differentiate areas characterized by lozenge shape features

produced by the concentric distributions of plant communities

' reflecting specific drainage features from neighbouring areas

characterized by different plant communities over more freely

drained	 This is not	 those	 fromground.	 possible on	 generated

the film.

! I It may be anticipated that studies of vegetational changes such

E ! as those following burning may be monitored relatively easily, from

comparison of colour composites generated from the magnetic

tapes whereas itwould be more difficult to do so for those

j
generated from films.

r



-137

The facilities for stretching the individual MSS bands and the

possibilities for discriminating relatively small areas of

distinctive vegetation together with the better resolution

permit the more precise location of structural features and

amore accurate differentiation of lithological units on colour

composites generated from the computer compatible tapes than is

possible on those generated from the NASA .films.

iff

E

:a

j

k

f	 7

r
{ The studies carried out in northwest Queensland show that the

colour composites generated from the NASA films of LANDSAT

r imagery provide a wealth of information on vegetation associations,
s

drainage conditions, geological structures and lithologies

provided that suitable scales are employed for the displays, but {

that those produced from the computer compatible tapes, due

to better resolution and to the opportunities for stretching

individual MSS bands, give additional information and finer A	 -r

details at larger scales.	 Whereas a display scale of 1:50,000 ^!

appears to the the effective limit for colour composites s

generated from the films, one of up to 1:10,000 is possible from '

the computer compatible tapes.'

E	 ,?

3.5.4	 VISUAL AND SEMI-AUTOMATED CLASSIFICATIONS OF IMAGERY

-"' The investigations in northwest Queensland have shown that both 1

LANDSAT and air survey imagery can be satisfactorily classified
 E

usb	 visual techni	 es but that becausey	 technique s 	e of the complex patterns
++

r

'
f

€ _ i this is	 slowof spectral signatures	 a	 process. Hence automated

i methods are essential if the enormous amount of LANDSAT imagery
'

is to be fully utilized for terrain analysis and evaluation.
4 t ;

1
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For obvious economic reasons most computer classification work
t	 p.

d	 has been directed towards agricultural crop-type and relatively	 `+

j	 little attention has been given to the classification of natural

,l I	 terrain. Most attempts to classify bedrock type have been

based on conventional photo-geological interpretation while

classificatory work on natural vegetation has concentrated on
M

heavily vegetated areas such as the Florida Everglades National.

Park where, using a 12-channel scanners dependable spectral

signatures could be obtained for each vegetation class without

contaminating contributions from soil or bedrock. (Kolipinski
;I

et al 1969).

1

1	 The classification of natural terrain is intrinsically more
I.

difficult than that of agricultural areas because the individual
i

components of vegetation, soils, relief, drainage and bedrock

exhibit continuous spatial variation. It is particularly

Gt	 difficult in highly dissected areas,not because the analytical	 'qq
r^	 I

or statistical aspects are insufficiently developed but

I	 because it is exceedingly difficult to define representative

training areas.

(I	 There is very little literature on the classification of natural
f
I

	

	
^

terrain and those authors who have attempted the exercise have

(y{	 commented on the difficulties. For example Blodget et al (1975)
1

l
r	 considered that multi-spectral classification techniques were

severly limited in the digital mapping of lithologies in Saudi

Arabia using LANDSAT imagery. Those authors could not recognise 	 I

any colour anomalies associated with mineralized areas. In

using SKYLAB imagery of the semi-arid areas of central Colorado 	 'ii.JJ

Y'{	 in the U.S.A.`Sawatsky et al (1975) found that vegetation

s



-139-.,

distributions were influenced by moisture conditions, slope

aspect and altitude rather than by bedrock geology. A vegetation

Yr ^•	 anomaly in California which was detected.by Bechtold et al (1975)

using SKYLAB and LANDSAT imagery was also considered to be 	 }

influenced by moisture conditions rather than mineralization. 	 I

In western Pakistan, however, Schmidt et al (1975) have detected

colour anomalies associated with mineralization. Using LANDSAT 1

imagery they established a training set over a known sulphide

F	 f copper deposit and produced a computer generated classification

map , obtained by a five cycle adaptive learning method. This

map indicated twenty three spectrally similar areas of which

five were found to contain some pyrite. These five were in areas

i
considered by geologists to be unfavourable for mineralization.

f.	 (.	 Attempts to classify air survey multi-spectral imagery of natural

terrain in Georgia (Weber et al 1972) and in Colorada

(Driscoll and Spencer 1972) have produced results regarded as

acceptable by the investigators In each case a 12 channel

{

	

	 scanner was used, the selection of training areas was relatively

easy and only the data from the four best channels was used.

1	 The results achieved by Smedes et al (1971) who applied a

cluster analysis to a simple false colour image and generated	 ^" 9
t

a classified map displaying nine classes with a' mean accuracy
3	 ^^

i
i	

of 85% i are of closer relevance to the present study. 	 g

f
^ G	 There is virtually no literature on the machine detection of	 t

temporal changes in natural terrain. This absence is almost'

.	 certainly related to the difficulty of classifying a simple
,
{	 LANDSAT image, let alone a temporal sequence from successive

}
f	 LANDSAT passes over a given area.
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In the above context the attempts to classify both the air survey

imagery and the LANDSAT imagery of northwest Queensland 	 yk
4

using both unsupervised and supervised approaches achieved a

f	 ^^

large measure of success.

For selected areas in the Mount Isa r Cloncurry region covered

by LANDSAT imagery and by multi-spectral photography, the

1

semi-automated outputs produced by the unsupervised approach

€ using the POLYDIV algorithm and by the supervised approach 	 1

using	 training sets based on the spectral signatures recognised

visually on the colour composites indicate that successful	 x

classification depends on the range, strength and homogeneity

,r? of the spectral signatures.	 These in turn are dependent on the

nature of the terrain, on the choice of a suitable number of
'

i

3

data groupings, on the selection of suitable training areas and
j

on the choice and method of display of each class for the output.
t

Whereas the unsupervised approach using the POLYDIV classification .'

provided satisfactory outputs for the infra red air survey ;f

photography of the Dugald River Lode area and for the colour

' composite of the LANDSAT imagery of the Cloncurry Plains, it
r

{ proved unsuccessful for classifying the spectral data contained

in colour composites of the LANDSAT imagery for the .Lady Annie

and Mary Kathleen areas.	 The success in the first two areas is

,^

believed to be due to the distinct and homogeneous spectral
f

signatures produced by discrete plant communities over level
t

.;f terrain whereas the failure in the latter two areas is thought i

to be due to the heterogeneous spectral signatures associated with

plant communities of varying composition over rugged terrain. 	 The
k

i• supervised approach however, `using carefully selected training

f sets proved successful in these areas and is considered to be
y

r	 i
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superior for all areas-.

The most suitable number of groupings varies from one area to

another, being dependent on the number of distinctive spectral
i1{

f
}1

signatures on the imagery.	 For this reason for any one area #

the number may vary from one season to another, but appears

to! be between six and ten, above which the output is too i

fragmented.	 The most promising results for geological

interpretation may be expected from imagery taken when conditions •t

i
favour contrasting spectral signatures which in the Mount Isa - f

Cloncurry area appears to be the summer months when the vegetation

is in a state of optimum growth and maximim reflectance.

Beginning with the classification of imagery acquired during
f

this season and using carefully selected training areas it is

s	 r

believed that successful classification for subsequent seasons

'
t

can be achieved.'

t
It, may be concluded that considerable success has been achieved

r
in the machine classification of a'single colour air photo frame

^i
!

and of a single LANDSAT colour composite. 	 Some success has

been obtained in classifying successive LANDSAT images of a

given area based on training sets defined for the first image.

The machine detection of temporal changes in natural terrain, f

however, is a difficult task.	 It presents many problems and will

require much development work of a practical nature, 	 (the

theory being already in existence) before acceptable successful

results can be obtained.

9

l
,	 a

qty
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3.5.5	 CONCLUSIONS
j	 6

The investigation s carried out in northwest Queensland have

demonstrated the value of LANDSAT imagery for the identification

j	 of features of the natural terrain with particular reference

r}}
	 to geological mapping and mineral exploration in a semi-arid

environment. They have revealed contrasts in the type of 	 r	
;,

information available respectively in rugged country and over 	 1

level plains. In the former the differences of spectral

signatures are determined, more by bedrock lithology and relief

than by vegetation_ whereas in areas of level terrain veneered by

alluvial and colluvial deposits the differences of spectral

signature are due mainly to variations in the composition of

the vegetation which in turn reflects differences in the nature 	 t

of the superficial material and in the drainage conditions. 	 aP	 g

Recognition of these important differences is important for

geological mapping, notably for the recognition of structural 	 !'

Zia	 features and the detection of near surface bedrock. Here the	 `•
C

identification of burnt areas, which is possible on the colour

composites, is also important.-

The investigations indicate that the satellite imagery is

^{?	 particularly valuable in discriminating major structures,
•_

differentiating stratigraphical units of contrasting lithology

i	 and revealing zones of iron rich rocks which may be associated

4

	

	 with base metal mineralization. When examined at the 1:50,000

-scale lineaments which are not evident on air photos may be r
^	

t	
,

i	 discovered, including those present in Precambrian rocks beneath

cover of younger materials. In the Dugald River and Lady Annie

areas lineaments which appear to be associated with known base

metal deposits may be recognised. ORIGINAL PAGE I
OF POOR QUALITY. _
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The three great advantages of the LANDSAT imagery are firstly

the overview of large areas with minimum distortion; secondly

the availability of information in different spectral bands

with the attendant opportunities for display of these bands,

individually and in combination to produce colour composites;

and thirdly the availability of repetitive cover so that imagery

at different seasons, when different information may be yielded,

can be studied.

For the precise location of lithological/stratigraphical

boundaries, of dykes and sills, of faults and shears, for the

stereoscopic measurement of dip and strike in bedrock and the

interpretation of folded and faulted structures, for the

identification of geobotanical anomalies associated with ore

deposits and for the locating of present and former mine workings

large scale air survey photography is needed.	 The multi-spectral

air	 and especially t1t,4 infra red false colourphotography

photography facilitates a more accurate mapping of lithological

units and of folds and faults than isp ossible with conventional

black and white photography while anomalous plant communities

which delineate ore deposits can be more readily identified.

The studies in northwest Queensland have demonstrated the

contribution which IANDSAT imagery and multi-spectral photography

from aircraft makes to the understanding of the geology and the

detection of ore deposits in semi-arid terrain. 	 In conclusion it

should be emphasized that satellite and aircraft imagery is

complementary and that both should be used on an interactive

basis for	 Finally,geological mapping and mineral exploration.

automated methods of display and data handling offer opportunities
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for more rapid and more accurate interpretation of imagery

than is possible by visual methods and increasingly should

aid investigation in inaccessible terrain.
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4	 SIGNIFICANT RESULTS

'	 The following significantnificant results have been obtained:-

1. on the colour composites generated from LANDSAT 1 and

a LANDSAT 2 imagery displayed at scales of up to 1:10,000

1. Distinctive spectral signatures discrimi.xate areas underlain Ef

by distinctive lithological/stratigraphical"units where

bedrock either outcrops or is relatively near to surface

in the Lady Annie-Mount Gordon Fault Zone area, the Mary

1 Kathleen and the Dugald River-Naraku areas within the

Mount Isa-Cloncurry region of northwest Queensland, j

Australia.

i	 2. Distinctive spectral signatures associated with discrete

communities distinguish different types of Superficialplant

Deposits over the Cloncurry Plains.

3.
j

Distinctive spectral signatures reveal the presence and

j nature of concealed bedrock beneath cover of residuumr;'

and Superficial Deposits where this is relatively thin

over the Cloncurry Plains.
,

S

4. Major faults are clearly displayed in areas of outcropping

A

and near surface bedrock: 	 in some cases their continuations

are indicated in areas of covered ground where they have not

been mapped hitherto.

5. Sets of lineaments with preferred orientations have been
a.

identified in the Lady Annie and Dugald River areas.'

Known base metal deposits, notably those at Mammoth Mine,

Lady Loretta, Mount Kelly and the Dugald River occur along

these features.

6. Ironstones and ferruginous outcrops are readily identified
a:

k
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at all seasons of the year. These include gossans associated

with mineralization and laterite..

	

{?	

7. Certain types of mineral deposits which are characterized by

well-defined geobotanical anomalies may be identified at scales

	

i^	 of 1:30,000 o 1:10,000. These include the Lady Annie phosphate

t	^i	 deposits.	 The presence of base metal deposits such as the

Dugald River and Lady Loretta lead-zinc deposits may be detected

if they are of sufficient size and if they are distinguished

blr well-defined geobotanical anomalies producing distinctive

spectral signatures.

8. Areas of black soil plains characterized by vegetation

communities whose distributions outline lozenge shaped features

whose pattern of distribution appears to disclose subsurface

drainage conditions, may be identified by unique spectral

signatures on imagery acquired after the rainy season when the

grassland vegetation is reflecting strongly in the infra red.

2. More information regarding vegetation and geology may be obtained

from colour composites of ..LANDSAT imagery displayed at scales of

1:50,000 and greater than at smaller scales.

3. More.detailed information on vegetation and geology may be obtained
i

i
t	 from colour composites generated from the computer compatible tapes

	

E(	 than is possible from those generated from the NASA films.

4. Colour compositesgenerated from LANDSAT imagery' acquired in March,j
after the rainy period provide more information on vegetation and

geology than those generated from imagery acquired at other seasons

of the year.	 However, imagery acquired at different seasons

provides complementary information and assists geological mapping

and interpretation of terrain features.

5. Areas which have been burnt may be identified and the subsequent

-	 regeneration of the vegetation may be monitored from successive
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i;+G. For geological mapping and mineral exploration LANDSAT and h

air survey imagery are complementary.	 Whereas LANDSAT

imagery provides remarkable details of the geology on a regional

lineaments	 iron	 outcrops

±	 y

basis and by the revelation of 	 and	 rich

can be used to target areas of possible mineralization,

multispectral and thermal air survey imagery is required

for detailed geological mapping and for the precise location of
c

ore deposits.
t

7. Successful semi-automated classifications of both LANDSAT

and air survey imagery have been achieved notwithstanding

the difficulties involved in classifying features of the

natural-terrain whose components of vegetation, soils,

relief and geology exhibit continuous variation in spatial

extent.	 The success achieved is promising for the handling of

large quantities of LANDSAT and air survey imagery of remote
x

areas.
^ 7
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6. PROBLEMS

7. DATA QUALITY AND ACQUISITION'

Most of the LANDSAT imagery for northwest Queensland has been

of very high quality.

8. RECOMMENDATIONS

The results achieved under the project indicate that imagery from

a thermal channel and imagery of higher resolution such as that

planned from LANDSAT C would provide valuable additional information

on the type of semi-arid terrain characteristic of northwest

Queensland.- Both LANDSAT and air survey imagery displayed at

appropriate scales and suitable enhanced should be used as

complementary sources for the mapping and interpretation of

terrain features, including vegetation and geology.
f

9.	 CONCLUSIONS

i
m

The high quality LANDSAT imagery available for northwest Queensland

provides valuable information on the terrain features, particularly

on vegetation, geology and drainage.	 It has revealed plant

} community distributions, indicated subsurface drainage featuresf

and disclosed geological structures hitherto unknown. 	 The studies

? undertaken have demonstrated that for geological mapping and
f

mineral exploration LANDSAT and air survey imagery are complementary.R

i

j
The LANDSAT imagery effectively displays the regional geology and

xx, reveals lineaments which may be important for mineralization.

It assists the selection of target areas for which multispectral

•E and thermal air survey imagery are required for detailed geological

mapping and for the precise location of ore deposits. 	 The

successful	 at the	 -automatedattempts	 semiclassification of
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both LANDSAT and air survey imagery are promising for the handling

of large quantities of imagry of remote areas of natural terrain.
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