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1.0 SCOPE

This plan has been generated by the SeaSat-p. Satellite Scatterometer (SASS)

Experiment Team to define the pre and post-launch activities necessary to conduct

sensor validation and geophysical evaluation. Details included are an instru-

ment and experiment description/performance requirements, success criteria, con-

straints, mission requirements, data processing requirement and data analysis

responsibilities.

It is intended that this plan be updated as required to reflect the evolving

nature of the Experiment. Proposed changes to the plan shall be submitted to

the SASS Experiment Team in care of Dr. W. Linwood Jones (LaRC) for team dis-

cussion end -oncensus, and shall be implemented as addendums only after formal
i

approval/concurrence by the signatories to the document.

2.0 APPLICABLE DOCUMENTS

REFERENCE

1. Scatterometer (SASS)/Satellite System
Interface Control Document SeaSat-A
LMSC-D 940728 Rev. A, August 1976.

2. Grantham, et al, "An Operational
Satellite Scatterometer for Wind
Vector Measurements Over the Oceans,"
NASA TMX 72672, March 1975•

3. Grantham, et al, "The SeaSat-A
Satellite Scatterometer,: IEEE
J. ,Oceanic Eng. , April 1977.

4. Jones, Schroeder, and
Mitchell, "Aircraft Measurements

•	 of the :Microwave Scattering Signature
of the Ocean", IEEE Trans. Antennas
Propagat./IELF, J. Oceanic Eng. (Special
Issue on Radio Oceanography) , Jan. 1977.

5. Wilkerson, "NOAA-SeaSat-A, Catalog of
Potential Platforms for In situ Data
Collection", March 1978

EXP. PLAN SECTION

4.2

5.0

5.8, 6.o, 7.2.2.4,
9.4.1.3

5.8

7.1
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REFERENCE EXP. PLAN SECTION

6.	 Ernst, "NOAA-SeaSat-A Progr6m for 7.1
Oceanic Surface Winds," NOAA Tech.
Memo NESS xxx (TBD).

7.	 SASS Engineering Assessment Plan, 7.2
NASA-LaRC -

8.	 Project Plan for SeaSat-A 1978 Mission 7.2
JPL 622-3, April 1977.

9.	 Cook, et al, "Measurement of Microwave 7.2.2.4
Antenna Patterns from an Orbiting
Spacecraft," Proc 1974 Int. IEEE/
AP-S Symp Digest, Atlanta, GA, June 1974,
IEEE Publ. 74 CHO-857-3 AP, pp. 51-53.

10.	 SeaSat-A - SDR Detail Functional 10.0
Specifications.

11.	 SASS Sensor Implementation Plan, 11.1
NASA LaRC, October 1976.

SYMBOLS & DEFINITIONS

]
Team	 SASS Experiment Team

Project	 Sea.Sat-A Project Management (JPL) j

u*	Friction velocity vector [cm/s, deg]

NRCS, v°	 Normalized radar cross section

SASS	 SeaSat A Satellite Scatterometer

I	 SAR	 Synthetic Aperture Radar

I
SMMR	 Scanning Multifrequency Microwave Radiometer

ALT	 Altimeter

VIRR	 Visible and Infrered Radiometer

FNWC	 U.S. Navy Fleet Numerical Weather Central

JPL	 The Jet Propulsion Laboratory

TBD	 To Be Determined
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LaRC NASA Langley Research Center

SDR Sensor Data Record

ADF Algorithm Development Facility

IGDR Interim Geophysical Data Record

GISS Goddard Institute for Space Sciences

U19.5'U10
Neutral stability vector winds at 19.5 and 10 meter Height [m/s, deg]

NOAA National Oceanic and Atmospheric Administration

SUS SeaSat Underflight Scatterometer

NMC National Meterological Center

NESS National Environmental Satelli:,- Service

NEPRF Naval Environment Prediction and Research Facility

NWS National Weather Service

CUNY City University of New York

U of K, KU University of Kansas

GPCF General Purpose Computer Facility (JPL)

Z Roughness length as used in planetary boundary layer models
0

over the ocean [cm]

1

j

3.0 EXPERIMENT OBJECTIVES

3.1 General

The general objective of the SASS experiment is to demonstrate the

utility of microwave scatterometry for the remote sensing of certain physical

characteristics of ocean and land surfaces. The specific objectives are

listed below under primary and secondary categories. These objectives have

been so arranged because of NASA/SeaSat-A Project priorities only and there-

fore are subject to modification by SeaSat-A users depending upon their

particular interest.
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3.2 Primary Objectives

3.2.1 To deduce the synoptic scale wind vectors  and u. (friction

velocity vector) over the world's ocean. The neutral stability ocean surface-	
i 3

wind measurement shall achieve the following specifications (reference 1):

(1) Range and Accuracy (1 a value)

(a) Wind speed - 4m/s to > 24 m/s, ± 2m/s

or ± 10% whichever greater

(b) Wind direction - 0° to 3600 , +200

(2) Ocean Coverage

(a) Width - > 1000 km (total swath - both sides)

(b) Cell resolution - 150 km

(c) Measurement sampling - 100 km x 100 km

( along track x cross track, measurement centers)

3.2.2 To obtain normalized radar scattering coefficient (NRCS, o°)

measurements in the ocean over a wide variety of wave and weather conditions

to compare with actual friction velocity and wind vectors measured in the

atmosphere boundary layer, and to study factors that may affect these men-

surements such as

(1) Large scale gravity ocean wave characteristics

(2) Air and sea temperatures (atmospheric stability)

(3) Tides and ocean currents

(4) Rain and humidity

(5) Clouds

(6) Sea ice

(7) Floating vegetation

110.0 m and 19.5 m neutral stability wind vector - see Section 7.1 for discussion.

r

t
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3.2.3 To demonstrate the capability to use data from other sensors and

sources to make atmospheric and cloud liquid water attenuation corrections to

scatterometer measurements.

3.3 Secondary Objectives

3.3.1 To demonstrate the potential for nearly all-weather, day-

night capability for wind determination over the oceans in an operational mode

for use in numerical weather and wave forecast models.

3.3.2 To obtain radar scattering coefficient rcasurements over

land for:

(1) Continental ice/snow coverage

(2) Ice type identificatl-i

(3) Water resources survey

(4) Vegetation

(5) To prepare a catalog of NRCS for various surfaces for design

of future radar systems (such as a Space Shuttle SAR).

3.4 Experiment Rationale

3.4.1 Ocean Applications

The SASS experiment is to make measurements of radar back-

scatter over the oceans on as nearly a continuous- basis as possible and to

use these and other data to obtain estimates of the winds in the surface

layer of the planetary boundary layer. The SMMR and the VIRR data will be

merged with data from the SASS to correct the backscatter values for atmospheric

and cloud liquid water attenuation. These corrected backscatter measurements

will be processed to yield estimates of friction velocity and the 10 m and the

19.5 m neutral stability vector winds over approximately a 500 km swath along

each/both side(s) of the satellite subtrack. One of the possible relationships

5
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between u. and 
019.5 

or U10 implied by the choice of a relationship

between Z  and ua will be selected. Enough information will be provided

so that other theories can be used to calculate different values of u*.

I,	 The low-rate sensor (SASS, SrM, and VIRR) raw data can be processed at

several facilities. First, to utilize these SeaSat-A sensors in a real-

time demonstration, data that is less than 6 hours old when received will be

processed by the U.S. navy Fleet Numerical Weather Central (FNWC). The Project

will also process a limited subset of these low-rate sensor data for the

Experiment Teams to evaluate the sensor performance, the theoretical models,

and the geophysical measurement.. Later after the sensor and geophysical

algorithms have been validated the Prolec̀t will archive satellite data for

scientific investigation.

3.4.2 Land Applications

The SASS experiment is to make simultaneous measurements with

the SMMR and/or the SAR while over land and ice on a near continuous basis

as possible. Simultaneous measurements with SAR and S?4T, will aid in the

inference of geophysical parameters for the surface scene. The analysis

of combined SASS/SMRR data will yield improved results over each data set

taken separately. The SASS geophysical data processing for overland usage

will be to scattering coefficient only and will be provided by the Project.

4.0 CONSTRAINTS

4.1 General

It is recognized that the main purpose of the SASS Experiment on the

SeaSat-A satellite is to prove the concept of the scatterometer as a viable

remote sensor of ocean surface winds. It is important to emphasize that the
	 ,t

6	
a

i



quality of the data is not to be compromised, and that any hardware and

facility tradeoffs be made so as to maximize the capability to explore all the

potential applications of the system.

4.2 Instrument (Ref. 1)

The Team assumes that the instrument is operated as specified in

other Project documentation, or the data shall be so identified. The

following is a list of key constraints imposed to insure good data quality.

Additional constraints are listed in the Interface Control Document (Reference 1).

4.2.1 Orbit Constraints

Semimajor axis	 714o - 7213 km

Eccentricity	 0 - .002

Argument of Perigee	 700 - 1100

Inclination	 10V - l0bS
i

Longitude of Ascending node	 00 - 3600

4.2.2 Attitude Constraints (3 std. dev.)

Control Boundary	 Determination

Roll	 + 0.35 0	+ 0.200

Pitch	 + 0.35 0	+ 0.200

Yaw	 + 0.80 0 	+ .80

Additionally, a special azimuth rotation maneuver is required

for sensor validation as described in Section 7.2.2.1.

4.2.3 Jnstrument Turn-on Time Delay and Temperature Range.

SASS standby to operate	 3 minutes

SASS off to operate	 10 minutes

(Ass ,ames spacecraft regulated bus is ON). 	 1

The SASS shall not be turned on unless the baseplate temperature is in the

range -10 to 55 C.

7
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4.2.4 Maximum Length of Time in Stand-by

This period should not exceed 4 hours.

4.3 Constraints due to Sensor Validation and Geophysical Evaluation

4.3.1 Definition of when instrument is to be ON.

In general, the SASS sensor is required to be on over all

ocean passes, and over land where possible, and whenever SASS is on, certain

simultaneous VIRR, ALT, and SMMR data are required. (See Section 4.3.4.)

If during certain periods of the mission, the spacecraft

will be power limited and will require that the SASS be operated at a duty

cycle less than 100 percent, the decision of when to turn-on/turn-off the

SASS shall be based on the earliest/latest time that any Doppler cell totally

views the ocean. In addition., the instrument turn-on time delay given in

Section 4.2.3 must be taken into account. If the "regulated bus on" assumption

is not satisfied, 30 additional minutes must be added for SASS stabilization.

Furthermore, certain operations involved in sensor validation

(Section 7.2.2 through 7.2.2.5) and geophysical evaluation (Section 7.2.3 to

7.2.3.5) require the Project to provide for aircraft underflights, gathering

and storing surface truth data, obtaining simultaneous data from other

SeaSat-A sensors, and processing data in certain ways. Section 9.2 defines

the coordination scheme for conducting post-launch operations. The following

elaborates on these constraints.

4.3.2 Aircraft, Underflight Requirement Constraints

t]

	

	
The project shall provide for underflights of SeaSat-A using

a suitably instrumented aircraft. The justification of these underflights are

given in Section 7.1, section 7.2.2.1 gives specifics on sensor validation

tasks using aircraft scattering coefficient data, while 7.2.3.4 describes

8
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evaluation tasks using aircraft data. Methods of working out details of con-

ducting these operations are discussed in Section 9.2.

4.3.3 Surface Truth Requirement Constraints

The project shall coordinate the gathering of "surface truth"

data necessary for conducting sensor validation and geophysical evaluation

tasks. Sections defining the need and type of surface truth are: Primary

10.2.4.2; Secondary 7.1, 7.2.2.2, 7.2.2.4, 7.2.3.1, 7.2.3.2, 7.3.

4.3.4 Simultaneous Data From Other Sensors

The project shall coordinate the gathering of data from

other on-board sensors which are necessary to conduct sensor validation and

geophysical evaluation tasks. Sections defining the needs and type of

data from other sensors are: Primary source 10.2.4.1; othero, 7.1, 7.2.2.3,

9.4.1.2, 9.4.1.3, 10.2.1.

4.4 Data Processing Constraints

The project shall coordinate all data processing of the SASS and

other required data. The general processing requirements are defined in

Section 9.4.1, and the SDR, ADF, and IGDR requirements are specified in

Sections 9.4.1.1, 9.4.1.2, and 9.4.1.3, respectively. Data to be provided

to FNWC and to GISS are identified in Sections 9.4.1.4 and 7.2.3.3 Digital,

false color and auxiliary data are defined in Sections 10.2.2 through 10.2.4.

5.0 INSTRUMENT PERFORMANCE REQUIREMENTS (Ref. 2)

5.1 General

In order to achieve the experiment objectives, the following key

instrument performance parameters have been established: frequency, polari-

zation, resolution cell size, distance between measurements, swath width,

A

r
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dynamic range, accuracy, and spatial resolution. The definitions of these

parameters and the respective requirements placed on them are addressed in

this section.

5.2 Scatterometer Frequency

The scatterometer will transmit at a frequency of 14.599270 GHz and

receive at frequencies nominally shifted by as much as 400 kHz for the 15

Doppler resolution cells.

5.3 Polarization

The instrument is capable of maxing both vertically and horizontally

polarized measurements of scattering coefficient v° over the full swath

width with the exception that only vertical polarization data will be valid

for the near nadir secondary swath 140 km wide. Horizontal polarization data

will be taken for the near nadir swath but reduced antenna gain will mean less

accurate data. The antenna polarization purity will be sufficient to avoid

interference that would be present otherwise.

5.4 Resolution Cell Size

Each measurement over the primary swath (defined in section 5.6)

shall be contained within a resolution cell nominally 50 km by 50 km.

Secondary swath width (see section 5.6) cell size shall be allowed to exceed

a 50 km square.

5 . 5 Distance Between Measurements

The instrument shall repeat Q° measurements periodically such that 	 -

the separation on the earth's surface between measurements will be 100 km or

less.

10
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5.6 Swath Width - (tree figure 1)

(1) Primary - As a primary requirement, a° measurements shall be

made over two swaths, each 500 km wide, extending from approximately 200 km

to 700 km on either side of the subtrack.

(2) Secondary - There are three secondary swath regions. The first

is 140 wide km swath measurement zone centered along the subtrack to obtain

data near nadir for a better understanding of surface roughness on o°. In

addition, the other two provide o° measurements on both sides of the satellite

subtrack at angles greater than 55 0 to provide high wind speed data only.

5.7 Dynamic Range

17he required wind speed measurement range is 4 m/s to 24 m/s

over the primary swath. The inner and outer edges of the primary swath

correspond to earth incidence angles of approximately 250 and 55 0 respec-

tively. At incidence angles less than 25 0 the dependence of v° on wind

speed diminishes, and the accuracy requirements placed on the Q° measurement

to achieve wind speed measurements with small enough errors are beyond the

state-of-the-art. The outer angle of the primary swath is limited to about

55° since low level return signals at larger angles do not allow wind speed

measurements below about 12 m/s. The instrument dynamic range required to

satisfy the primary performance requirement is approximately 45 dB.

5.8 Accuracy

User generated wind speed accuracy requirements have been trans-

for,ned to Q° measurement accuracy using empirically derived relationships

between d° and wind speed for Sear3at-A incidence angles (Details of this

transformation are given in reference 3). The scatterometer is designed to

11
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measure primary swath wind speeds to an accuracy of + 2m /8 or + 10 percent,

whichever is greater. The wind direction measurement accuracy goal is + 20°.

An error budget was initially developed for the scatterometer (fig. 2,

Table I) that must be satisfied in order to meet wind speed error requirements

on the primary swath. To maintain these requirements within acceptable boun-

daries, constraints are imposed on the spacecraft attitude system, antenna squint

prediction model, aircraft underflight instrument accuracy, and SASS elec-

tronics accuracy. Periodic reviews of these error sources are held to update

SASS performance predictions. A copy of the performance predictions presented

at the June 6-7, 1977 LaRC Comprehensive Review is given for o° and wind speed

on Tables II and III.

6.0 INSTRUW2Vr DESCRIPTION (Ref. 3)

A summary description of the SASS is given below. Further information is

available in reference 3. A block diagram of the SASS is shown in figure 3. A

frequency synthesizer generates the RF signals for the transmitter, mixers,

and scatterometer processor, thus assuring coherency throughout the sensor. The

low-level microwave output of the synthesizer is amplitude gated to insure high

isolation (typically > 60 dB) between the "ON" and 'OFF" states. The pulsed

rf is then amplified in the final output stage by a traveling wave tube amplifier.

The 100W peak power output pulse is directed to the antennas through a series

of waveguide components, circulators, and a 1X8 waveguide switching matrix.

Each antenna has two ports, one for each polarization, which is switched in a

preset fashion by the timing and control electronics.

Received RF energy from the proper antenna is directed through the

eight-way switch, the T/R circulator, and receiver protection circulator

13



SASS ERROR SOURCES

Q o TOTAL ERRORt= 
(UA2+ 

7 2 + K 2 1 12 + 
Q s	 p	 B
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J A - ANGULAR ERROR
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SPACECRAFT  ATTITUDE UNCERTAINTY
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r y
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0
Q B - BIAS ERRORS

INSTRUMENT 1 f 0.5 dB)
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S

K 
	 - RECEIVER COMMUNICATION NOISE ERROR

r,
Tables I, II and III were developed assuming 

a
  to be a

random error rather than a bias error.
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Table I.- ao Accuracy Requirement

Upper Limit
IA

o.

*48 m/ yec Values are determined from extrapolation of AAF'E RAD' CAT cocrrves beyond the 34 m/sec to 24 m/sec data range (Reference 4). Windspeeds listed are approximate.
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Table II 00 Errors	 I

Orbit Cell ei
0A' %

, % 0° Std. Dev., %
No. (Nominal)

4 m/sec 24 m/sec 4 m/sec 24 m/sec

2 25 7 37 5 41 15
3 30 6 28 3 32 14

Descending 6 40 2 20 2 25 13
10 50 2 59 5 61 14
12 55 4 127 9 129 16

1 25 8 30 4 32 16
2 30 7 23 2 25 15

Ascending 4 40 4 14 2 15 13
7 50 3 29 3 30 13
8 55 5 72 5 73 15

0B = ± 0.5 dB (12%)

0g = ± 0.1 dB (2x)

_ . a
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IncidenceIncidence 'Wind Speed Error, m/Bec
Angle

77ind	

gle

25° 30 0 400 500 55°
Wind
SpeedSpeed

83 .53 42 1.08
DEESC,

^q090 0. 60 .4545 1.11.1 42.2.
4 m/sec

.6 .45 .27 .4o 1.25

I
P SC.

^-53.8 .46 .28 1.40

1.7 1.6 1.28 1.47 1.8
DESC.

2.9 1.6 1.44 1.62 2.3
24 m/sec

1.9 1.5 1.28 1.32 1.65

>1.7 <1.453.1 1.44 2.15
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to the low noise preamplifier, band pass filter, and first conversion mixer
.	 d

(figure 3).	 A local oscillator signal is added to the return signal in the

mixer to produce a coherent IF signal which is then fed to the scatterometer

processor.	 The scatterometer processor contains an IF amplifier, a second

IF conversion mixer, and 15 processing channels. 	 Each processing channel

consists of a range gate, band pass Doppler filter, square-law detector,

and gated signal integrator. 	 Fifteen Doppler filters and range gates are

used to electronically, subdivide the fan beans into separate resolution cells

' and to exclude interfering signals from the side lobes. 	 The timing and

control for the processor are provided by a digital controller (not shown).

The function of the digital controller is to accept spacecraft commands

f

and power, to generate the precise timing and control logic needed by the

scatterometer to form RF pulses, and to operate the processor_ 	 In addition, it

accepts the output scatterometer data and instrument housekeeping parameters

` and formats them so they are compatible with the spacecraft data system.

} The scatterometer design incorporates four dual-polarized antennas

which produces a cross-like pattern of illumination on the earth's surface
1

I
( figure 1).	 The peak of the antenna beam is centered at 47° incidence angle

to favor the outer swath section where the received signals are weaker due

to increased range and lower radar scattering coefficient, cr°. 	 Three Doppler

' cells provide measurements at earth incidence angles of 0°, 40 , and 80 to

form the 140, km measurement swath centered about- the satellite sub-track.t
`

f Twelve additional Doppler cells will provide Q° values from about 25° to 650

earth incidence on each side of the sub-track. 	 The effect of earth rotation

does cause incidence angles to change typically 4° during each orbit for

r the outer cells, but the primary swath width is affected to a somewhat lesser

fdegree.
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The doppler cells along the fan beam are adjacent so that the cross

track grid spacing (center-to-center) can be kept to 50 km and the along

track grid spacing is set at 50 km by the scatterometer digital controller.

This design essentially guarantees satisfaction of the 100 km grid spacing

requirement. In modes 5 thru 8, the doppler cells give near contiguous

coverage for either side of the sub-track to improve coverage in areas where

strong wind gradients are expected.

The resolution cell size is larger than the doppler cell size due to the

smearing of the cell caused by satellite motion during the measurement period

(tp). The _doppler cell size is determined by the antenna bemwidth (1/20)

and doppler bandwidth of the filters (figure 4).

Resolution cell size is also controlled by the orientation of the

doppler lines within the beam illumination which varies along the beam

(figure l). For the inner cells (low incidence angles) the doppler line is

oriented approximately 45° to the central beam axis. For the outer cells
i

(high incidence angles) , the orientation is about 130 with respect to the
i

beam central axis. The doppler bandwidths are designed so that the 50 km x^

50 km resolution cell size requirement is satisfied over the primary measure
f

ment zone (_25° to -55°) . At angles beyond 55°, doppler bandwidths axe 	 a
f 

held constant so the resolution cell, size does increase slightly beyond the

50 km limit. Figure 4(b), gives the nominal range of variation of resolution

cell sizes and incidence angles

The 14.6 GHz'signal is switched sequentially through four antenna

polarization combinations taking 1.89 seconds each for a total 7.56 f

seconds to complete one switching sequence. A switching local oscillator

i
I	 ,.i
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Beam 1 (forward)
	

Beam 2 (aft)

Case Cell 8 Area Width Length 6 Area Width Length

# p2& KM2 KM EM Deg KM2 KM KIWI

Lat. = 0, 1 24.8 lo68 16.6 64.3 21.6 872 16.5 53.0
ascending* 4 39.6 12o4 17.8 67.8 34.0 859 17.2 119.9
(most 7 51.7 1353 19.4 69.7 43.5 785 18.2 43.1
dynamic 12 67.5 2143 23.5 91.3 511.3 722 19.9 36.3
case)

Lat. = 720 l 23.2 lOCB 16.8 60.2 23.2 1008 16.8 60.2
(Most 4 36.8 1056 17.7 59.5 36.8 1056 17.7	 - 59.5
uniform 7 117.5 1054 19.0 55.3 47.5 3054 19. 0 55.3
case 12 60.3 1180 21.6 54.5 6o.3 1180 21.6 54.5

4

F

*Note:	 On a descending track, the cell characteristics of beam 1 and beam 2 reverse.

(b) Resolution cell size and incidence angle as a function of Earth latitude, i
beam number, and doppler cell number. }

Figure 4.- Concluded.

l
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is used to allow both positive and negative returning frequencies from the

j	 forward and aft footprints to be received by the same bank of 15 Doppler

filters. The ten operating modes for the instrument are 'listed in table IV.

f	 The antenna numbering convention is defined in figure 1. Modes 1

and 2	 single polarization measurements over the full swath, modes 3
r

and 4 are dual polarization measurements over one-half swath, and modes

5 through 8 are ,single polarization measurements over one-half swath which

r	 allows doubled integration time (thru ground computer processing) for improved

accuracy without significantly increasing the resolution cell size. The
a^

i!	 fundamental cycle is through the antenna positions such that for example in
A

modes 3 and 4, both vertical and horizontal polarizationmeasurements are made

+	 before switching antenna positions. 	 A summary of instrument characteristics

is given in figure 1, and details concerning the swath width for each mode

is described in a supplement to this report,`
r^

7.0	 EXPERIMENT DESCRIPTION

7.1	 General (See Ref. 5 and 6).
9

The SASS Experiment is a developmental program aimed at determining

high	 p	 geophysicalthe urjefulness of hi 	 resolution scatterometers i n 	 ace for

application with emphasis on the acquisition of oceanographic data. 	 The -

more specific purpose of the scatterometer is to obtain scattering coefficient

!
E

measurements over the sea and from these deduce the magnitude and direction

of the synoptic scale 19.5 m and 10 m neutral stability vector wind and the

_sea surface wind frictional velocity.	 The availability of wind information f 4
C

on the required 100 x 100 km grid sample scale will provide oceanographers x

23 7
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TABLE TV

SASS OPERATING MODES

MODE ANTENNA SEQUENCE 
l

SWATH PURPOSE

1 4v, 111, 3v, 2V GOTH SIDES OF SPACECRAFT PRIMARY MODE VERTICLE POLARIZATION

2 4q, 111, 311 , 211 BOTH SIDES OF SPACECRAFT PRIMARY MODE HORIlONTAt POLARIZATION

3
.TV,'

4 11 , 3V , 311 LEFT SIDE ONLY COMPARISON OF o f 	at NEARLY THE SAME GEOGRAPHIC
SI"FS foR ROTA POLARIZATIONS

4 IV, I ll , 2v„ 211 RIGHT SIDE ONLY COMPARISON OF a'	 AT NEARLY THE SAME GEOGRAPHIC
SITES FOR ROTA POLARIr'.ATIONS

6 4V, 4V , 3V , 3V LEFT SIDE ONLY IMPROVED a°	 ACCURACY (40%) OR WIND GRADIENT INDICATORS

6 IV, IV , CV , 2V RIGHT SIDE ONLY IMPROVED v"	 ACCURACYACCURACY (40x) OR WIND GRADIENT INDICATORS

7 411, 4 H . 311,
3 11 LEFT SIDE ONLY IMPROVED aR	 ACCURACY (40t) OR WIND GRADIENT INDICATORS

R 1H' 1 11' 'H' :11 RIGHT SIDI. ONLY IMPROVED ao	 ACCURACY (40t) OR WIND GRADIENT INDICATORS

42 NOT APPLICABLE NOT APPLICABLE CONTINUOUS CALIBRATE (TWTA ON BUT INHIBITED FROM
TRANSMISSION)

l02 NOT APPLICABLE NOT APPLICABLE STANDBY (TWT HIGH VOLTAGE IS OFF BUT HEARTIR IS ON)

I NUMBER INDICATE FOOTPRINT AND SUBSCRIPT INDICATE POLARIZATION (V FOR VERTIE,I= AND It FOR HORIZONTAL)

SEE ANTENNA FOOTPRINT NUMBERING CONVENTION MOW:

SATELLITE-
SUBTRACR	 4	 ff I TOP VIEW OF SPACECRAFT LOOKING TOWARD EAR111

3	 O 2 ANTENNA FDOTPRIN'. R

2 SINCE THE TWT HEATER IS ON IN TIILS`MODE, THE TWT LIFL 1411L BE REOUCCO AS THOUGH IT WERE TRANSMITTING AS

IN MODES I_THROUGH 8.

COMMAND SEQUENCE DIAGRAM :a

SELECT MODE
N0, L THROUGH @

SASS ENABLE	 OR CONTINUOUS CAL,	 t	 !

UNREG, BUS ENABLE5ElECT
BEG, BUS ENABLE HVPE'	 STANDBY

UNPOWERED	 OFF	 DIAGNOSTIC pERATIONAPERATIONAI 	 STANDBY

r
)

EG, BUS DISABLE	 %.<..,..--	 AIODES SELECTT MODENREG, BUS DISABLE	 S EC
MODE ;	 C"	 NO, I THROUGH t!

l CAL	 OR CONTINUOUS CAL.

'	 SASS OFF

KEY,
5TATf

O-MMAND

)

I

NOT"	 1.	 IN DIAGNOSTIC STATE LOG IC 1$ SWI t CHI NG IN DIODES EXCEPT AS WDICATED BY THE DASHED LINE,
4 AFTER SASS ENABLE BUT BEFORE HVPS ENABLE ANY ONE OF MODES 11

MAY BE SELECTED FOR A RADIOMf1RIC TYPE MEASUREMENT

3. THE PREOPERATIONAL STATE INCLUDES AN AUTOMATIC 3 AHNUTI; TIME OUT

4, THE SASS MWST BE IN FTANDBY PRIOR 10 SASS OFF

S. IN STANDBY, 1001C IS SNITCHING IN MODE 5 AND RADIOMETRIC TYPE DATA ARE TANFN

6, MODE MUST BE SELECTED AFTER 3 MINUTE TIMEOUT TO PREVENT INPUT CURRENT 1R1 H

OTHERWISE MODE CMD M07' BE REPEATED TO CLEAR TRIP. (MODE Chit) MUz1 BE
REPEATED IN ANY CASE TO CLEAR ILM STATUS BIT FOR INPUT CURRENT 1RIRI



Offf 	 ttr';T	 a .y^ i4	 '$	
x°-!'i>^	 _r.	 1a •	 s :	

lf!. y	
T*•4	

.., r	 ., `"sirla.-.,w,^.^^	 t	 1 a+f^t'.. i+ -.:

and meteorologists with significantly improved input parameters for models

from which wave and weather forecasts are developed. Deduction of wind

;information will utilize correlations of the NRCSI with neutral. S -Ibi.lity

`	 surface wind or wind frictional velocity ove.. the ocean, obtained in a

coordinated NASA/NOAA sea-surface truth program involving measurements from
i

aircraft, oceanographic research vessels, and bouy Ys i

The frequency of the scattexometer was chosen in the hti-'hand rwige

where the radar btackscatter, for incidence angles tens of degreos off nadir,

is proportional to the vector wavenumber spoctrwn of waves .a few centimeters

{	 in length. Since these cepillary waves are generated by the wind near tb

^	 sea surface, the radar measurementmeasurementof their aru
p
 litudc can inintuturn be ua^.

se
d to

f;	 infer this local. wind. To be consistent with previous in-vosti gatiens ,

f'	 the surface wind shall be referred to 10.0 m mud 19.$ m a.1titude iising, a

t
loga.ritlunic profile for a zero air-sea temperature difference (neutral stability

conditions) . An agreed upon relationship between u^ and Z0 , -the routhlies" 	 ^

long th, will be used to generate the magnitude of u ?('tho magnitudo of u..k 	 z

can vary by as much as 10 to 020;, depending upon the relationship shown).. Tbi

procedure produces a windspeed that would li av'e been mon-s used at thoso al.titudos
,

in a neutrally stratified atmosphere with an adiabatic lapse xtaLe. Un1.eG,

oti a --wise specified, any reference, to wind vectors in tbo. remainder of this

plan will be for these neutral stability wind vectors.

To the first order, the scattering doefPieient for a ĝi.vcn inol klence

F angle, look az .muth , and polarization depends oa l,y upon tbo wind speed nad

direction. Two measurements of the ,son- ttering coefficient at ' a g,.iven earth

. `	 cell axe madet different azimut;hs (one front the forvard antenna ni(l once
r	 a

from the rear) . `ihe g e measurements provide the nooessary input data for Lbe

E
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algorithms described in section 7.2.3 to infer the wind vector and a number

j	 of aliases (typically three or less). The presence of noise (instrument
I^

and geophysical) in the scatterometer measurements causes an uncertainty

in the inferred wind vector, which can be defined in terms of a closed curve

with an assigned a priori probability of enclosing the true wind. Multiply
i

solutions will be eliminated in post fli ght data processing by the application
1

of meteorological principles. Also, the possibility of using the data it-
i

self to eliminate some aliases is under investigation.

SASS data will be used to conduct experiments for the Experiment

Team, on-going oceanographic programs, and marine industrial programs

Tasks, which have been identified are listed in Table V. The efforts
ii

involving the Experiment Team include:
i

(1) Evaluation of sensor performance. After initiation of

Engineering .Assessment (section 7.2.1), SDR`s will be available for use in

sensor validation. Details of these validation activities are given in

section 7.2.2 and are summarized below,
E

Data sources used for sensor validation are listed in figure 5

and would be used to accomplish the various validation methods. The

schedule for these activities is given in figure 6 showing an intensive

sensor validation period the first 14 months after launch with periodic

review of sensor performance monthly. Thereafter, targets-of-opportunity1	 y

activities will be scheduled as required.
I

(2) Evaluation of the sensor's capability to infer valid winds

from NRCS and supplemental data. This task includes:
i

26



-Supported {J'y. SF.SS.4a
. ebIPr v .	

a	 S3iS	 -J	 ?

F

5^ X98 FER^FMANCE 	^OI^ {^;L ^) ; 1^AOFE (	 rF	 );rr+OimsHnnc

i.	 •	 `1 EO- 	1 AJr	 .1.^'1T}/	 ..	 r ^	 Tr"*^	 [	 ::.y-.	 •..-'^"' 	 Y =zz (^'Yyi^ 1,3300—: •y{.w
^t	 77 cc

T	

,^
i	

13 ?	 U^,E.11TU	 fJ Li.1^a.	 k

,GG
_ 	 5	 BAER & BZEON I BUS (OAA0

r	 •	 $ ^.?,.!_W AND BOUT DATP G4 -.. b E7G y 	 'y

f+^ /	 ccT7	 - C,
-,- ^ 

T ^.1 `r	 ih^o::	 S1 ^1	 Tf r p1 j

•	
^.*

.i^JS7=3 ^3^ lr . . +art` J ^.7111DDES,	 ^$N^E}_,,SOI	 yfic•f	 , 'Yi^Yi ^i^i fN (j

• yY,-XFFr'-	 s na z».,
;?7s ^7	 _	 EL (TjoAj	 SCFf^.^S (S^ GGES°^B)

OCEATIT

§	 SLR IC;	 fiFF	 O MaGPIE (U OF K)

ra
_ I	 jr4	 ^s^	 "' O IC	 r S	 TIVE SO 	 v

k	 •-	 it i	 .CU-xY ^^i'S1_-	 ]:,	 c^L	 .f..:f	 Y	 .,^^7 ^s^: tn^	
r	 ^^	 f	 r	

.,.	 ^	
....

Ck	 T'	 SPoRT	 f	 ^	
s	 i s	 Y t	 Y	 1	 ,,

PP	 _	

•	 _^.fii'.	

3 
^^I

	 f	 ^.--^"iiu^^T^ B .J. 	
_...i^	 :. z̀'...a^ ..	 ^^^	 ac^r^j 	 I` :' ^^^ .°3^r	 ^^^+^'.}^

^ u=	
.. r•' ,7`•G...i^yS 	'NEP^'. )

.
'$^

CV
(

.
?

'1r^^YTY ,,F77f3
J^̂' ++TT ((XX 	p ^

^
ys^{ys.^q{

:
^	

fY	 ^t	

..-.Y7 
{r``^^^

^ 	 c..^	
.., 1123V i:^11J1.1/^.J t^.pTLT Ll A5_o f	

iu i	 "y +t Yl,i —G%ìJ' <3
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PRIWM DATA SOURCE METHOD

I

ABSOLUTE a C014PARISON

TIME VARIANCE OF a°

AIRCRAFT • SHORT TER14
• LANG TERN

AND

SPACECRAFT DIFFERENTIAL a° COMPARISON r

• VV/HH
• FORE ATT

SASS SELF :DETEWINATION STABILITY

C%TARISOTIS OF ALT/SASS a° VALUESSPACECRAFT

A? D AZIMUTH ROTASION EXPERII4ENTS

SURFACE TRUTH
• TROPICAL STORM HIGH RESOLUTION'
• ANTENNA PATTERN EVALUATION

• Bouys • ao `VS INCIDENCE ANGLE

• Aircraft RA.DIOISTRIC ANTENNA_ EVALUATION

Figure 5.	 Data sources used for sensor validation,.
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(a)	 Development and an assessment of the validity and limitations

I
of algorithms to make atmospheric attenuation corrections of the NRCS

data when the SASS measurement cell is filled by clouds or rain cells.

These algorithms will utilize VIRR and SMMR data to detect and quantify the

required correction,

(b)	 Comparison with SUS underflight data, insitu data, and pre and

post-flight conventional forecasts to evaluate and upgrade the wind algorithms.

Algorithms are under development at CUNY (W. J. Pierson), U. of Kansas (R.K. Moore)

and Wentz (F. J. Wentz) , which will combine fore- and aft-SASS NRCS measurements G	 _

and infer the vector winds and friction velocity. 	 The algorithms need to be

L validated to determine if they are producing realistic wind speeds and directions,

and compared to surface truth data from planned test sites. 	 The removal of
,, a

multiple solutions for direction has not presently been resolved, and add-

tional inputs such as from conventional meteorological analyses will be required

for this purpose.	 The generation of the wind algorithms is considered to be #

in the evolutionary state and the effects of parameters now considered +

to be second order (such as the directional wave spectrum and atmospheric
I^

-1 stability) can be added as they are understood. 	 In addition, the sensitivity

I of the sensor under a wide range of conditions needs to be studied; for

example, for neutral stability, a threshold below which capilary waves are

not generated occurs at	 Uof about 3.5 m/sec - this effect and the
19.5

y

possible upper limit needs to be explored and quantified.
I } 3

(c)	 Systematic deduction of friction and wind velocities from the

SASS NRCS data to improve both the data base and the algorithm.	 The

jalgorithms for conversion of NRCS to winds will be based initially on the

t
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limited data obtained during aircraft- and Skylab-sca terometer missions.

After exwidnation and validation (as discussed in (2b)) the SASS data

coupled with icnsi'tu mid other independent observations are expected to
I	

provide an ;Improved data base with a. much wider scope which will be added to
I

(and eventually" replace) the initial data base.	 The use of this expanded

data base will allow the generation or a ref:i.ned error analysis of the radRr-
1

inferre	 wind vector.j

(j) The gathering of in situ and bout' data.	 The 5-193 progrm for

j	 Sl,,ylab encountere d. a -reat deal of difficulty in ob'tainin,- i"I.Qcurata winds

from conventional, irneteorology data against which to compaxe the Hinds

computed from baekscatter.	 Bven. for ships with anemometers, the shorti
averaging time introduced substatiti:al error, which was compealmded by the needI
'to interpolate ovor large distances wed between synoptic measurement times.

For SceaSat A, the expanding, global i.n"termationll array,	 or tioteorQ.i.Cgical. data

buoys a'l8meiit ed by weather skips (ooemi station vessels) will be

j to obtain iiiiproved hourly wind values.	 Moro over, SA9,, S dam asiir411 e nt ee.'lls aro a
}

located close together (see i'i.guze 7) such tba;t within a swzath passing o-o,-'•
i
a	 a surXace -truth site, there is better than a 50% probability that *the site

will be within taco cell if the SA SS is taking data ota both sides of the sub-..
track wxd. about 75	 probability Ri.:f the SASS is operated i.t'a 'tbo one side only

increased resolution made.	 Thus, two major sources of Scatter (or error)

f	 enominte:red, by Slgylab w:i,1,l be auini.mi:;ed.	 ;plots of radar wind vera i	 the
4

meteorological wind will tb refore show redcxcod sea."tter, and -these ^^^s^^1ta

ccm, bo used -to Look for error offects 'wha:clu dopond on the 91,gorit:hm.	 ThQ

f gatheri..rg of SeaSat-A sur t'ace trllih datca will bebe toordi,na;tod by NOAA fi

i
(Ernst mid Wilkerson - NESS', ref,	 mid	 1-4 is plan red that FNkM1

x
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I SCATTEROMETER RESOLUTION CELL LOCATIONS	 f	 °
I
ROLL ERROR -1.2*  (161

1 PITCH ERROR -3.12' (16)	 `p	 UN

I YAW ERROR -t.2T° ( 16 1
I CONTROL ERROR PERIOD _ 200 SEC.	 SUB-SAT	 BE D,

TRACK	 1

8	 _6	 4	 2	 0	 2	 4	 6	 a	 10	 1:
WEST LONGITUDE	 -	 EAST LONGITUDE

Figure 7-- SASS resolution cell locations.	
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will provide most of these data to the project on a regular basis.

(4) Operational use of the SASS for weather forecasting. A

substantial effort is underway to prepare the computer software needed to

utilize the SeaSat-A data on a real time operational basis at FNWC so as to

obtain improved meteorological forecasts in the one to four day time frame.

In addition, non-real time weather forecasting experiments will also be con-

ducted with the Goddard Space Flight Center (GSFC) to assess the utility of

SASS measurements. Halberstram of JPL, Goroch of NRPRF and Cane of GSFC

are the scientists responsible for these efforts. Also, NOAA NWS/NMC will

test the impact of SASS-deduced winds on operational atmospheric and wave

forecast models. Flittner is the responsible person.

(5) Special Ocean case studies. A number of ocean case studies have

been identified by various team members. A partial listing of the studies being

planned follows, and r:-, abstract of each is given in an attached appendix.

(a) Hurricanes - NOAA (P. Black) in consultation with U. of K.

(Moore).

i

(b) Extratropical storms - CUNY (Pierson)

(c) Winds around islands and continents - CUNY (Pierson)

(d) Circulation in the subtropic regions - CUNY (Pierson)

(e) Sea breeze - CUNY (Pierson)

(f) Arctic winds and ice floes - U. of K. (Moore)

(g) Ocean upwelling - NOAA (Apel) & Scrips

(h) Mapping of sea ice - LaRC (Jones) and U of K (Moore)

(i) Ekman transport in the boundary layer - LaRC (Jones)

(J) Gulfstream currents - LaRC (Jones)

(k) SASS-Geosynchronous satellite - Wind analysis of tropical

rms - NASA GSFC & JPL (Woiceshyn).
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In addition, there are many important details of the winds

over the ocean and of the distribution of sea ice that can be studied in

terms of the SASS data. These details can be studied by means of the

classical case study method in which appropriate subsets of the SeaSat data

stream are analyzed on a non-real time basis to learn about various circulation

features.

(6) Special case studies for overland geophysical use. For this

case simultaneous SMhiR and SASS data will be collected overland and analyzed

to identify potential geophysical applications. Whenever possible, SASS

measurements will be coordinated with ongoing research programs. This task

will be the responsibility of Krishen at JSC and Moore of U. of K.

7.2 Functional Implementation (see Ref. 3, 7, 8, 9)

The purpose of this paragraph is to provide a general description

of the SASS Experiment Team activities durin3 the conduct of the SeaSat-A

mission. The activities fall into three major areas, namely; engineering

assessment (ref. 7), sensor validation, and geophysical evaluations (ref. 8).

7.2.1 Engineering Assessment

This activity is the sole responsibility of the Sensor

Implementation Manager and is limited to an evaluation of SASS electronic

elements. A summary of this activity is given below. For details see

reference 7. The purpose of the instrument engineering assessment is the

determination of the operating condition of SASS as determined from the SDR.

The engineering assessment will include:

(1) A functional verification that the SASS instrument

responds to commands and operates in the required experimental and calibration

modes.

(2) An engineering verification that the instrument

outputs are within design limits and are stable.

34



(3) An evaluation/determination of the instrument

performance in certain critical areas.

Engineering assessment reports will be written by the Sensor

Implementation Manager for both the initial, and extended phases.

7.2.2 Sensor Validation

The SASS Sensor Implementation Manager in cooperation with the

Experiment Team will conduct such pre-- and post-launch testing and analysis as

is required to assess the performance of the sensor relative to its design

characteristics. Proposals to accomplish the task and their resultant

requirements for mission operations, surface truth data, and data processing

are provided herein. It is anticipated that this sensor validation will be

completed within 3 months following availability of the SDR with periodic

revalidation thereafter as required.

Described in this section are the specific ways ava:labl.e to

demonstrate sensor performance during the 1 year post launch mission. Sore of

the validation activities described below require substantial budgetary support

and prelaunch preparation.

7.2.2.1 Comparison of Satellite and Aircraft a° Measurements

There are certain minimum requirements that must
F

be met to certify the SeaSat Scatterometer after it is placed in orbit. The

sensor validation pert Ad will begin immediately after launch with intensive

activity for 3 to 4 months; after tha, periodic checks are needed to verify

long term stability. During the validation period (1 yr.), underflights are

required with an aircraft qualified scatterometer, SeaSat Underflight

Scatterometer (SUS), so that direct comparisons can be made between the
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aircraft and satellite Co measurements. Specifically the flights can be

categorized as shown on Table VI. This table lists 5 categories of flights,

3 for sensor validation and 2 for geophysical validation, which were requested

in the official NASA aircraft support document. A suma:ary of the

characteristics of the SUS instrument is given in figure 8. The details of

the footprint of the SUS are compared to those typical of the satellite for

the sensor validation absolute calibration tests and for the geophysical

verification 3600 azimuth data tests (see section T.2.3.4) in figures 9(a), (b),

(c), and (d).	 The data obtained from underflights will be utilized to

validate a particular feature of the sensor as described in the following.

(1) Absolute co Accuracy Comparison

From a direct a  comparison between aircraft and

satellite data (for the same resolution cell, incidence and antenna look

angles, polarization, etc.), the level and time stability of biases between the

two co values can be established. Using the aircraft SUS instrument which

will be accurate to + .5 dB in a', fixed biases  could be removed (if  present )

so that the satellite a  measurements can be related directly to wind vector

(through the geophysical algorithm). If underflights were not provided, then 	 L

the SASS would have to use extensive surface truth collected over a period of

several months as a means of calibration. This has the obvious undesirable

effect of delaying the availability of accurate SASS data, and it removes

the option of definitive sensor diagnostics. Therefore, it would be extremely

difficult to separate potential sensor uncertainties and algorithm related

wind vector inaccuracies.
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Table VI. Aircraft Underflights Planned.

Flight Type Objective Description

Prelaunch Certification & Patterns Similar
Evaluation of SUS to A and D Below

Sensor Absolute Qo Aircraft Flt. Across
Validation Transfer the Swath to Measure v°

+112 dB cal. of Corresponding to
SUS to SASS Each Resolution

Cell (Figure 9)

Sensor Long Term Same as Above
Validation Stability

Sensor Shcrt Term Aircraft Flt.
Validation Stability Parallel to Sub-

track to MeasureW
__4 Short Term Varia-

ticns of Cell Qo &
Compare with Swath

Geophysical Wind Field 3600 Azimuth Scans
Validation Improvement Will Be Made for

and Alias Each SASS Resolu-
Resolution tion Cell (Both

Pols) Across the
Satellite Sweh

Geophysical Insitu Data Fly Low Altitude w.
Validation. For Targets Speed and Laser

of Opportunity Insitu Sensing
Lines in H. or
Othric Targets of
(No Scattero^:eter
Required)

Schedule (Estimates)
1978	 1	 1979

Jan.	 Apr.	 July Oct.	 Jan.	 Apr.	 July

c

J

0

c o 0

No. of Flts.

1

3

6

2
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TOP VIEW

SUS Instrument Characteristics

Frequency - 14.6 Ghz

Power - 0.1 VJ or 20 VV
^-« 140 km

jNI/m750 km,— 	 •750 km

a

3	
Antenna

5f10km	 500km	 o Beamwidth - 3.51
o Polarization - VV, HH

- 400km	 o Footprint range @ 7.6 km
0. 46 km x 0. 46 km

I 1. 86 km x 0. 93 kmi

Azimuth range - 0 1 to 3601

Incidence angle range - 0 0 to 60°

Footprint no.	 N	 I	 NR C S range - -20 to -35 dB
4

NR C S accuracy - ±0.5 dB

NRC S resolution - ±0.25 dB

Figure 8. - Aircraft underflights for SASS calibration.
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Cell Ibat. to
824bt ack,

dl, 1, u. A.
3

km km km kin

1 2221 34.3 65.9 16.3 1065

2 277.5 29.4 66.8 16.5 1110

3 233.6 34.2 671 16.8 1136
4 286.3 38.7 70.1 17.3 1208
5 445.3 42.9 611.0 17 7 1202
6 503.3 46.7 67.2 18.2 1126

7 $63.0 50.3 65.7 16.6 1332

8 634.2 52.6 66.7 19.2 1290

9 6873 36.8 65.11 20.0 1316

Coll Dist. to el, C. W. A.

00. suMrack, 3
_ km dej knl km km

2 245.3 26.5 56.4 16.1 916.8

3 391.0 101 55.4 16.6 916.9

4 335.6 34.6 55.6 169 937.8

5 279.7 38.1 51.9 17.3 892.1

7 464.6 44.3 46.0 17.9 821.6

8 505.7 47.0 44.3 18 7 007.4
9 545.3 49.4 41.4 186 769.5

It 621.4 53.7 39.2 19.3 7586

12 657,5 $5.5 39.7 19.7 772.3

s	 d

50 k ill

	

Aircraft lime	 30.6 min	 8.1 min
..maun,ed

0

G ' 2 r till	 .8	
Outer swath *title

G4.

-I2

11.1 111111	 20 N nun	 N 1 nun	 20.8 min	 6.1 mm	 8.1 nun	 20.8 nun

Trial A/C time . 2 hr. 2.7 nun

Typical SASS gain at SASS underflight latitudes
for heAili 1 (aacenduq;l

Distance &cruse SASS swath

(a) Plan %irw of SUS underfl,t;ht contImird to SASS euttiivaa gam Iwttern.

SUS roll

	

Coil	 that. to	 el,
subtrarIt,

km	 deb

1	 235-375	 34.3

	

11	 275-325	 39.4

	

G	 325-375	 34.3

	

F	 375-425	 38.7

	

F	 625-275	 47 9

	

D	 475-525	 46.7

	

C	 525-575	 50.3

	

n	 575-635	 53 6

	

A	 635-675	 SCII

Heat comparison
Foam 1

with SASS calla
1!04111 3

(b) Typical SASS roll Iwlramolers in cells aiampled b y SUS.

Is .t

SUS cell also, SUS cell sine.
Sensor validation f	 s Geophysical valkda ton lemma

Min. etas, C - (a Man. stag,	 . 000

Cell No. ^ 1, km w, km km1 1, km ykm km1 f1 km w. km km1

1 14.3 1.93 0.195 1.133 1.56 0.509 0.794 1.51 0.559 0,844

H 19.4 3.97 .432 1.361 1.61 .531 .659 1.51 .613 .936

C. 34.2 3.01 .460 1.533 1.68 .561 .941 1.56 .679 1.(W

F 18.7 3.08 .519 1.947 1.76 .595 1.046 1.60 .761 1.115

F 41.9 1.15 .611 1.017 1.66 .634 1.183 1.63 .665 1.413

D 46.7 3.13 .698 1.141 1,99 .677 1.145 1.66 .987 11655
C 50.1 3.11 .605 2.759 1.14 .717 11554 1.71 1.118 1.965

n 51.6 3 45 .932 1 267 212 .782 1.611 1.78 1.318 2.149
A 56 a 3.60 1.095 1.941 1.55 .849 9.161 1.85 1.540 2.661

(e) Typical cell parameters (or IMam 1 (as, endlm; l at SASE underflight Latitude+.

Fhnire 9.- 81 18 ai rcraft undernlght characteristics nnd plans comlurod to SASS
swath characteristics. (Assunipllons: undortlight perl,endarular to
SASS swat 11, au•crafl mmml speed ^ 100 m/s, ty pical SASS Loam 1
churucterialirs, asrrndury; track.)



50 1

i

o

i

(d) SUS underflicht characteristics for cell " A " compared to SASS cell.

Figure 9.- Concluded.
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(2) Differential Measurements and Time Variance of oo

Additional benefits in establishing validity in the

satellite instrument are derived by comparing differential measurements of

both instruments such as the increment between polarizations for adjacent

doppler cell (modes 3 and 4). Also, in the differential a 0 comparison, long

term drifts in either the aircraft or satellite instrument are not important

and a more reliable relative antenna gain can be established for both

polarizations. Furthermore, differential polarization measurements, are more

accurate and may provide important geophysical information.

Another test using the differential method is to

compare the satellite differential a0 values (for example between footprints

1 & 2 on figure 1) to aircraft differential values for the same azimuth angles

and resolution cell. This again removes long term errors that might otherwise

confuse the short term test results. Relative antenna gain between the fore

and aft antenna is a definite factor that can be evaluated since the aircraft

instrument will be using the same antenna for both azimuth measurements and

the satellite instrument will not.

Long term instrument stability characteristics will

be determined from periodic (monthly) comparison of C o measurements from the

aircraft and satellite scatterometers. Long term stability checks are also

possible thru examination of the o 0 satellite data at 80 earth incidence angle

(aircraft data is not required) as will be discussed in section 7.2.2.2.

Another differential test that would isolate antenna

pattern effects would be to take advantage of earth rotation effects which

t.ause incidence angle to vary up to 4 0 , for any given Doppler filter. Since

Lhe antenna pattern is a function of incidence angle, one Doppler filter

can be evaluated for two or more antenna gain values (as much as 4 dB apart)
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with all other factors the same. Surface conditions would have to be the same

for both measurements also as determined from surface truth data. The slope

of the antenna pattern could be determined for satellite orbit configuration

but a ground based receiver experiment may be more accurate if properly

implemented (see 7.2.2.4).

(3) Co vs. Incidence Angle Comparison

A beneficial sensor quality check of short and

long term stability can be realized by comparing satellite derived curves of

o° vs. incidence angle 9 i with (1) aircraft Q° data and (2) theoretical

scattering cross section values. This type of comparison evaluates both

relative and absolute accuracies of the 15 Doppler cells, including a check

of relative antenna pattern gain values that can be peculiar to each Doppler

cell and relative differences between electronic gain levels for each Doppler

filter channel. This Q° vs. 01 curve-comparison-method has an advantage over

point-by-point comparison since it would show whether error trends are common

for all Doppler channels and would suggest thru the composite use of the

data the amount of bias error and the sign. When comparing satellite data

with theoretically derived values, this method is mutually beneficial, since

all aspects of the theoretical model are not yet confirmed. Two satellite

orientations are desired: One with the scatterometer antenna azimuth angle

oriented at 45°, 135°, 225°, 315°, which is the normal orientation for data

taking; the other orientation is with the satellite rotated <_ 45 0 in azimut.h so

that antenna azimuth angles are changed to 0°, 90°, 180°, and 270 0 . In the

second orientation, two scatterometer footprints would be alined with the

satellite subtrack during the test and co data at different incidence angles

could be obtained for the same ocean target. This reduces data scatter caused

by geophysical variables that would not otherwise be duplicated if separate

sites were used and is therefore the preferred orientation for this type of

4^
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test. If the satellite azimuth rotation is not possible, then a0 data taken

at different incidence angles must have more extensive ground truth measure-

ments to avoid excessive data scatter.

7.2.2.2 Time Stability Self Determination Using Near Nadir

Data

Aircraft co measurements (in the 80 to 120

incident angle range) have been showr to be relatively insensitive to ocean

surface winds and waves. For this reason wind speed cannot be determined

from the scatterometer in that angular region and was not proposed for

SeaSat-A. NRCS measurements at 8 0 can be used, however, as an overall indicator

of relative sensor stability independent of the ocean surface winds. It

is envisioned that once validity of this technique has been demonstrated, 00

at 80 would be monitored as a matter of routine.

It is required that surface truth data at a number

of instrumented sites provide information describing surface roughness

conditions and that overflights be made with the :SASS to develop a library of

data needed to demonstrate this insensitivity. The widest possible range of

surface roughness conditions are required which suggest a number of test

sites. SeaSat Altimeter wave height data is also required in this and in the

Azimuth Rotation experiment (7.2.2.1) to supplement the ground truth data.

7.2.2.3 Correlation and Data Use From Other SeaSat Sensors

The quality of the SASS co data can be further

checked and improved using data from other sensors on the SeaSat-A satellitc.

Comparison can be made, for example, between o 0 values measured at nadir by

the altimeter and scatterometer. Relative biases may be determined and their 	 i,

variance with time which can be used as an indicator of the long ,,Lm drift
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in either instrument. Since O° values at nadir may change as much as 25 dB,

depending on the sea state, the Go comparison gives a good check for the two

Instruments over significant portions of their dynamic ranges. It is expected

that this dynamic range test could be made several times during a single orbit.

As mentioned in section 7.2.2.2, the sea state

values derived from the altinx.-ter will be extremely useful for providing

surface truth data for the scatterometer. Correlation of scatterometer and

SMMR data relates primarily to wind vector and is covered in another section.

7.2.2.4	 SASS Subsystem Validation

Extensive in-flight housekeeping data are being

provided routinely by the scatterometer in addition to planned subsystem level

performance validation and diagnostic activities described below.

In one of the case studies described in the Appendix,

an array of three land-based receivers is proposed to verify transmitter per-

formance as well as the antenna gain and pattern shape. This technique was

used on the Skylab S193 (RADSCAT) experiment (ref. 9) and it offers the only

means of evaluating the transmitter and antenna on a subsystem basis. Enhance-

ment of this technique is realized if performed during the Azimuth Rotation

described in 7.2.2.1.

For diagnostic purposes, the SeaSat A scatterometer

can be operated as a 14.6 GHz radiometer (transmitter inhibited). This radio-

metric capability is achieved by placing SASS in the "SASS Enable" state and in

any mode (Mode 1 thru Mode 8, ref. 3). Receiver losses and noise temperature

stability can be monitored throughout the mission, independent of the intenia.1

calibration source, by using this radiometric capability with the sea surface

as a target.

7.2.2.5 Improved Future Scatterometer Designs

Several sensor features ar • being used for SenS at-A

that would help better define scatterometer sensitivity to geophysical parameters.
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Included are dual polarization, near nadir measurements, and the azimuth

rotation concept. Listed below are some specific uses of SASS data.

(1) Establish More Definitive Design Boundaries for

Future Scatterometers

By cataloguing and evaluating 60 data at all

SASS angles of incidence, over ocer3n sites where surface truth are obtained, 	 ?

it will be possible to better define co sensitivity to wind vector, air/sea

temperature, sea state, etc. SeaSat-A will provide o° data for a wider range

of geophysical conditions and angles of incidence than is presently available

from either Skylab or aircraft scatterometers. In future applications the

optimum scatterometer swath could therefore be used for minimum sensor

electronics and antenna requirements.

(2) Evaluation of Scatterometer High Resolution

Measurement Capability

	

During the early phases of user requirements
	 rI

definition for SeaSat-A, interest was shown in high resolution wind vector

measurements. These would be used mainly where strong meteorological gradients

exist (storm fronts, hurricanes, etc.). The scatterometer can provide a

demonstration of its high resolution wind speed capability (12 x 20 km) in the

azimuth rotation mode. (See Experiment I in the appendix for a summary of an

experiment to evaluate the use of high resolution winds in hurricannes.)

(3) Improvement of Theoretical Model For Study of

Scatterometer Sensitivity

The present plan for SASS error source identifi-

cation is thru cataloging of data over a wide variety of surface conditions so

that second order geophysical effects may be identified. Another approach

will include the use of SASS data in conjunction with present theoretical
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modeling techniques to sort out validity of limiting assumptions in the model.

Once confidence is established in the model, parametric error analyses and

even correction techniques may be developed concerning the higher order

geophysical effects.

T.2.3 Geophysical Evaluation

In this section the Experiment Team responsibility and plan of

action concerning geophysical evaluation is described. (The ADF/GPCF algorithms

and activities will be discussed in Section 9.3.) The responsibility of

the Experiment Team is to analyze project-provided sensor and supplementary

data to evaluate Algorithm performance relative to the geophysical par:uwters

sought. The team will make an objective value assessment of the sensor data to

scientific- and user-interest, and will communicate this assessment to their

peers in the oceanographic and remote sensing c, unity in the form of

coordinated team papers and reports.

It is anticipated that this activity will be a coordinated

team effort. The evaluation process will include an intensive initial period,

estimated at 6 months duration, followed by an extended period of periodic

checks until approximately 18 months post-launch. All mission operations and

data processing requirements to accomplish this task are defined in this plan

and must be provided by JPL within limits set by available resources and

system capabilities.

T•2.3.1 Wind Vector Algorithm-Comparison With Surface Truth

The objective of this task is to demonstrate the

'	 ability of the SASS geophysical algorithm to deliver to users valid geo-

physical data over a range of meteorological uid surface conditions. This

will be accomplished by establishing a set of baseline o° data, to

demonstrate quality of scatterometer wind vector measurements whenever
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corresponding high quality surface truth ( wind speed and direction, air/sea

temperature, sea state, etc. ) can be obtained for that same resolution cell.

The set of baseline data will be composed of till

data obtained (both satellite and supporting) when the satellite swath area

passes over a quality data site identified by the experimc.nt team, (see 7.10))

or underflight line. At present, Pierson of CUNY predicts 20 such crossings per

day, and the Project indicates these activities will be limited to 3 to 5% of the

total SASS data potential. Procedures for merging and comparing insitu with

SASS inferred data are still under development, but are shown in the conceptual

form in figure 11 (which will be discussed in section 9.3)•

The 00 data will be processed to produce wind vectors

as shown in figure 10 (data processing is discussed in section 9.3). Steps

indicated in these processes include atmospheric correction to the scattering

coefficient, associating fore and aft scattering measurements from a given earth

t

	

location, conversion of scattering measurements obtained to wind vector, 	 j
identification of alias solutions, and finally the output of the wind vector

and its associated errors. Several algorithms for conversion to wind vector

are planned to be developed; therefore, it is of paramount importance that

these wind vector algorithms (including those implemented at FNWC) be a sub-

process within the general algorithm, so that valid comparisons and

evaluations can be made. (NOAA NWS has indicated that they want to have all

aliased wind solutions available for their models.) These competitive

methods will be evaluated through the use of SASS ocean measurements on the JPL

Algorithm Development Facility (ADF). This computer facility will be linked to

the Experiment Team via low-speed interactive terminals and will allow for

multiple passes in processing of data from specific sites (DE.ta processing
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requirements are defined in section 9.4). At the end of the intensive

evaluation period the team will select one algorithm for the Project to

implement in the Project Data Processing System (PDPS).

7.2.3.2 Ocean Case Studies

There are many important details of the winds over

the ocean that can be studied for the first time because of the availability

of high resolution, global SASS ocean scattering measurements. Most of these

case studies involve phenomena which have been studied to the extent that

they also provide good opportunities to test the validity of the wind data

generated by SASS. A brief summary of some case studies presently planned

is given in the appendix. These studies will be investigated on a non-real

time basis using appropriate subsets of SASS data.

In addition, there are believed to be several

second order geophysical parameters that contribute to the ocean v° such as

gravity wave height and direction, air-sea temperature difference, ocean

currents, fetch, etc. The accuracy of wind vector measurements is therefore

inherently limited to whatever the sum of these :secondary effects are,

unless the effects can be accounted for. One task of the Experiment Team is

to model these effects to minimize related errors. To accomplish this, the

most important requirement is that of establishing a set of baseline data with

corresponding high quality surface truth.

Another task is to investigate the use of the SASS for-

remote sensing of lake and sea ice. The scatterometer provides Food spatial tuid

temporal coverage of both the Arctic and Antarctic and will permit ice studies

expanded beyond what is presently possible using Nimbus microwave radiometric.

It is the Team responsibility to study (within funding limitations) simultcu;eou::
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SAR and SMMR ice images and to develop algorithms for identifying geophysical

parameters such as ice type (age), ridge heights, etc. Special emphasis to

obtain satellite measurements simultaneously with on-going aircraft and surface

observations is noted.

7.2.3.3 Numerical Weather and Wave Forecasting

The objective of this task is to evaluate the usefulness

of SASS wind vector measurements to improve numerical weather and wave forecast.

The Experiment Team recognizes that the nature of this task requires FNWC, NOAA

NWS/NMC and GSFC cooperation to properly conduct this investigation. The team

will provide wind vector algorithms, consultation for use of SASS data with the

respective models, and analysis of ground truth. This cooperation is thought

to be particularly beneficial for the non-real-time GSFC operations where wind

fields may be generated with and without the use of SASS measurements. These

Icalculated winds may then be compared to surface truth observations to provide

a large-area evaluation of the SASS measurements. This compari-on is felt to

be equally important to the single cell comparisons at surface truth sites

(section 7.2.3.1).

FNWC and NWS/NMC will conduct a comprehensive off-line

test to evaluate the impact of SASS winds on global operational forecast models.

If the evaluation shows that the addition of these data to the model data base

improves forecast accuracy, every effort will be made to get the SASS winds into

the operational models in near real-time.

7.2.3.4	 Aircraft Underflights

In order to obtain independent measurements of earth-

local conditions near-simultaneously with satellite measurements, a series of

aircraft underflight experiments will be flown. Two types of geophysical

validation underflights have been identified (see Table VI):

Se
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- Wind vector measurement flights, with data obtained using an aircraft
scatterometer (SUS) at the same frequency. Conversion of aircraft scattering

measurements to wind stress and wind vector would be accomplished using similar

inversion procedures as used for SASS. Three flights would be conducted in

low, moderate and high wind conditions.
t

- Low altitude (in-situ) flights to determine local wind vector only

(using inertial navigation system). These measurements can be obtained

without an aircraft scatterometer and will be required to provide surface

truth for targets-of-opportunity such as severe storms.

7.2.3.5 Land Case Studies

The objective of this task is to collect SASS oo

data over land and perform limited analysis to identify potential geophysical

applications. Potential applications include absolute cross section calibration

for SAR, snow coverage identification, water resources survey, soil moisture

measurement, and the generation of a Q catalog of various surfaces for design

of future radar systems. Again special emphasis will be placed on obtaining

satellite measurements simultaneously with on-going aircraft and surface

observation programs.

7.3.3 Target Area Characterization

The primary target area is the world's oceans. SASS caliber-

ation sites shall consist of NOAA data buoys, U.S. Coast Guard weather ships,

and other high quality sources (Ref-5) of in-situ meteorological and oceanographic

measurements. A comprehensive list of the locations and capabilities of such sites is

given in .ref. 5. A listing of available U.S. bouy sites and their locations is given in

table VII. The project should make every effort to obtain foreign data sources

for use as calibration sites in other part of the world. A large number of

calibration sites is essential to this experiment because of the comprehensive

data base required for geophysical evaluation. Also the TOIL (Target-Ocean, Ice,

or Land) identification is required for each SASS resolution cell to aid in the

data interpretation :	54



CAPABILITY

BUOY TYPE
LOCATION

(N. LAT./W. LONG)
WAVE

MEASUREMENT
TYPE

DEPLOYMENT DATE
AND/OR STATUS

EB-01 PEB 35.0	 / 72.0 2 Operational

EB-03 PEB 56.0	 /148.0 2 Operational

EB-o4 NOMAD 26.0	 / 90.0 3 Operational

EB-15 PEB 32.3	 / 75.3 2 Operational

EB-16 PEB 42.5	 /130.0 2 Redeployed June 1977

EB-17 PEB 52.0	 /156 .0 2 Operational

EB-19 PEB 51.0	 /136.0 i	 2 Operational

EB-20 PEB 41.0	 /138.0 2 Operational

EB-21 PEB 46.0	 /131.0 2 Redeployed August 1977

EB-34 NOMAD 4o.1	 / 73.0 - Operational

*EB-35 NOMAD 55.3	 /157.0 2 Redeployment data to
be assigned

EB-41 CSB 38.7	 / 73.6 2 Redeployment to
be assigned

**EB-43 NOMAD 59.8	 /142.0 2 Operational

EB-44 NOMAD 26.0	 / 86.0 - Redeployed July 1977

EB-63 NOMAD 40.8	 / 68.5 - Operational

EB-70 MVX 2 59.5	 /142.2 3 Operat ional

EB-71 MNX 2 26.0	 / 93.5 2 Operational

Deployed Oct. 1977
REPLACE
OSV HOTS

'NT FOR 38 .0	 / 71.0 2

XERB 7 30	 / 8o 4 EXPERIMENTAL

..

^I	 .

Table VII. Status of NOAA Environmental Data Buoy Including Wave Spectrum

0

*To be redeployed (same site) and designated EB-39.
**To be redeployed. at a new site and designated EB-45.

Note: Chart will be updated by Ref. 5 and Ref. 6

WAVE MEASUREMENT SYSTEM TYPES: (Wave spectral frequencies available)

TYPE 1 -	 TYPE 2	 TYPE 3	 TYPE 4

.03 to .5 Hz	 .05001 Hz	 .03 to .5 Hz	 Directional Spectra
Bandwidth of .01 	 ,0603 Hz	 of .005 Hz	 (Experimental)

• .07017 Hz
.07948 Hz
.08986 Hz
•09951 Hz
.12270 Hz
.16059 Hz
.19820 Hz
.24195 Hz
.27860 Hz
.33180 Hz



8.0 EXPERIMENT SUCCESS CRITERIA

The minimum success criterion for this experiment is to demonstrate the

V1	 all-weather, day/night capability of SASS to meet its oceanographic objectives

(section 3.0). Furthermore, the success criteria shall include:

(1) Proof that the ocean scattering coefficient can be measured over the

dynamic range and to the accuracy specified in section 5.0.

(2) Proof that geophysical algorithms can be developed which produce the

mean, synoptic scale, neutral stability 19.5 m wind vector as specified in

section 3.0.

(3) Demonstration that these (geophysical) algorithms can be implemented

in a near real-tin..,e mode for use in operational ninnerical weather and wave

forecasting models.

(4) Determination of SASS wind measurements that, when combined with

conventional meteorological data bases, result in improved weather and wave

forecasts.

(5) Proof that the SASS can measure mesoscale strong gradient (magnitude

and direction) wind fields such as fronts. tropical cyclones, and hurricanes.

9.0 MISSION REQUIREMENTS

9.1 Orbit Parameters and Spacecraft Characteristics

See sections 4.2.1 and 4.2.2 for Orbit parameters and reference 7
. .

for Spacecraft Characteristics.

9.2 Operations

Post-launch operations will be coordinated by an Experiment Team

member assigned to the JPL Mission Planning Team. His responsibility will

include assessing the ongoing mission profile, and determining the SASS
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experiment data gathering operations. In general, the activities will be

carried out as described in the SeaSat A Mission specification document.

Pre-launch and post-launch operations shall also include aircraft

operations. Flights will be conducted in the SASS measurement swath in the

Atlantic and Pacific Oceans, and in the Gulf of Mexico. Prime data collection

is for the period 1 hour prior to and 1 hour after the satellite pass. As a

secondary period, data will be collected on the return trip. When possible,

fli, s will be coordinated so that the aircraft overflies a NOAA buoy or

USCG weather ship.

9.2.1 Typical plan of SASS Operation

The Experiment Team has defined typical SASS operating

sequences as an aid to the Project's mission planning effort. This typical

operating plan is intended to provide the baseline or default mode of SASS

operation from which changes and updates will be made by the SASS mission

planner. The following gives SASS modes and the corresponding earth coverage

for six orbits. The rational for generating these sequences are:

1. Mode 1 or 2 (V or H polarization, left and right side

measurement swaths) to be used over open ocean.

2. Mode 3 or 4 (V and H polarization, left or right side) to

be used over calibration sites or over ocean where other side swath is over land.

3. Mode 6 or 8 (V or H polarization, right side) to be used over

Arctic region.

4. Mode 5 or 7 (V or II polarization, left side) to be used over

Antarctic region.

Figures 12 through 17 give the results of this analysis in

plan view. The preliminary Sattrk calculator was used to locate these orbits,

and these results can be extended to additional orbits easily.
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9.2.2 Final plans for SASS operation.

The SASS Mission Planner will incorporate requests of

I1
	 Experiment Team members, ASVT users, the Sensor Implementation Manager, and

the Project into the final SASS operating plan, according to the Evaluation

Task Group plan priorities and goals. These plans will be made for a one
i

month period and updated weekly. Generally, therefore, the last opportunity

w
for changing the SASS operating plan is one week before the event. It will be

s

t
	 possible, however, to effect a change in the SASS operation as late as 1 day

i	 before the event, but only for matters of extreme importance such as rare

n 	 occurrence of a priority target of opportunity or spacecraft trouble diagnostics.

V 	 9.3 Algorithm Development

It is the purpose of this paragraph to describe the technical plans

and procedures required to transform the measurements made by the SASS instru-

ment into the data form necessary for analysis by the various experiments.

The data flow for these plans are shown in figure 10 for production of the

IGDR (items (1) through (5)) and in figure 11 for ADF activities (Item (6)).

These tasks can be categorized generally in the following manner:
i

(1) Conversion .')f satellite measurement SDR's into earth-located
i

and coordinated normalized scattering cross sections (NRCS's or o"s).

(2) Toil flagging, merging with Altimeter data and separating ocean

t
G ol s from land and ice Goss.

(3) Atmospheric t.ttenuation correction of ocean COss.

(4) Conversion of corrected ocean a o1 s into surface wind stress and

neutral stability wind vectors.
i

(5) Generation bf the Geophysical Data Records.

(6) Algorithms required for geophysical evaluation, such as merging

of SASS data with surface truth and auxiliary data (aircraft underflight

(j O1 s, FNWC data, etc.).
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9.3.1 SDR to c o . The algorithms required to complete this test

(as currently understood) are identified by the blocks in this "module" of

figure 10. Each of these blocks have been investigated extensively by LaRC,

and coding for most cases exist in some form.

9.3.2 Toil flagging, Altimeter data merge, and U 0 data separation

by ocean or ice & land. Experiment Team requirements include:

(1) Toil

(2) Alt Data - 00 merge

(3) Separate out ocean ao data

(4) Generate land and ice a° file

The Toil flagging algorithm is a JPL responsibility. It is

understood that only the algorithm software shown in figure 10(b) will be

generated by the Project.

9.3.3 Atmospheric correction of the ocean 0 O1 s . This algorithm

for atmospheric correction using the SN2 R, along with the science to support

it, is being developed by the University of Kansas, with assistance from Jones

and Kline 1 of LaRC, and Woiceshyn of JPL. The atmospheric attenuation is

computed using the brightness temperatures obtained from prepared S14IR grids 

overlapping the SASS resolution cell. Only, vertical polarization measurements

at 6.63, 10.69, 18.00, and 37.00 GHz are used in the technique.

SMMR measurements are made at a nominal incidence angle of 490

from normal. At this incidence angle, vertical polarization measurements are

nearly independent of surface roughness effects. This allows the bright-

ness temperature of the surface to be approximated by the product of the

surface temperature and the emissivity of a smooth sea surface. The

1Larry Kline is now with Honeywell.

2Produced by JPL.
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difference between the measured and this "true" brightness temperature is

defined as the excess brightness temperature. This quantity is completely

dependent upon atmospheric parameters.

Vertically polarized excess brightness temperatures et 10.69, MOO

and 37.0 GHz and the atmospheric attenuation at 14.6 GHz have been calcu-

lated using radiative transfer and various atmospheric attenuation, cloud

and rain models. The results appear to be model independent end a power

series through the third order appears to relate these quantities.

The SASS attenuation is estimated by the computed average of all

SMMR cells centered within the resolution cell. Weighting is done by

both distance and frequency (sensitivity).

During the Geophysical Evaluation, SMMR team outputs of rain rate, non-

precipitable liquid water, and water vapor will be obtained on a periodic

test basis. Using these data, an independent prediction of atmospheric

attenuation can be obtained for comparison.

Since the SMMR scans only 600 km right of the satellite subtrack, it

cannot be used directly to provide attenuation estimates for the outer SASS

cells en the right side and the entire left side of the spacecraft. Originally

VIRR outputs were to be used for this purpose, but the sci.Pnce and resources

needed for this task were not available. It is assumed that the resources to

develop the techniques to use the VIRR will be available during the evaluation

period.

One of the most promising employs a correlate matrix created when both

VIRR and SMRR are on the same track. Here, attenuation calculated from SMMR-

derived rain rate, liquid water, and water vapor parameters is compared with

VIRR IR brightness temperature and normalized radiance. Different correlate

a.
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i

matrices will exist for approximately each 100 km of ground track

(latitude dependent matrices). The VIRR temperature and radiance measured

when VIRR is on the opposite track from SMMR would then be input parameters

to the matrix, while attenuation is the output parameter.

However, estimating the attenuation using the VIRR is not the only

problem with its use. A computer-efficient algorithm must also be developed

to handle the monstrous quantities of data it outputs. The algorithm must

combine the VIRR measurements to reduce the necessary range, while maintaining

a fine enough resolution to distinguish areas of rain.

9. 3. k Ocean C1° to winds. This task accepts the ocean Q° file

corrected for atmospheric effects as input and converts it into frictional wind

velocity and neutral stability wind. Three separate models are used to con-

vert to winds. Preliminary ADTG algorithm specification sheets have been pro-
I

vided to the Project by the algorithm sponsors for each case and the following

algorithms have been identified for the CUNY algorithm:

(1) SASS cell Co-location (SCC) - For each (on each side)

SASS cell in the beam with the widest swath, finds the cell for the beam w-th

the narrowest swath that is clos..st to it ( and if needed, the next closest) .

(2) Wind Vector probability contours - constructs a curve in

wind ve^Ctor space that has a FIDUCIAL probability of p (= 0.5, 0.9, or as

desired+) of enclosing the true vector wind.

(3) Vector wind plus aliases - determine best estimate for

zero to four vector winds for any close pair of SASS co-located cells from

(1) above.

(4) Alias Elimination-Vector wind field recovery - eliminates

aliases from set of vector winds and prints out true vector wind field.
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The following U of Kansas algorithms have been identified:

(1) SASS Cell Colocation - This algorithm matches fore- and

aft beam cells which have footprints within a given geographical area (similar

to (1) above. It can be operated so only the closest cells are found for fine

resolution, or multiple cells within a pre-assigned distance for coarse resolu-

tion.

(2) WINDVEC. Provides estimates of wind speed and direction

at the midpoint of matched SASS measurements.

(3) UPGRADE. Provides for calculating and inserting new

values of U. of Kansas model coefficients based on SASS results over surface

truth sites. (A similar subroutine is expected for Wentz and CUNY models).

(4) MLIKLY. When both the HH and VV measurements are

available, an ordering of the wind vector solutions is made by likelihood

techniques.

(5) PROBAB. Assigns a probability to the wind vector

solutions

The following Wentz algorithms have been identified:

(1) GROUP. Sets up an Earth-fixed grid bins and locates,

stores and outputs all SASS cells within these bins on passage of the aft

antenna beams.

(2) WINVEC. Does a coarse search in the probability

space ( computes U* with aliases) by interpolation of a table of NRCS vs

geophy:-ical parameters. Then in the locality of the maxima, does a bivariate

Gaussian fit ( calculates relative probabilities and error structure) .

(3) WINTRU - Finds the true wind vector from the list of

aliases.
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The final algorithm is:

Compute U*, ^10 and _19.5 m and associated errors. 'Mis

algorithm takes the output of the three wind vector algorithms and does the

indicated calculations. This algorithm is presently not assigned and no ADWG

specification sheet has been written.

9.3.5 Generation of the Geophy=sical Data Records. Mis task is the

responsibility of the project. However, the necessary files are shown being

generated on figure 10 or can be obtained by special processing. The files,

which have been requested consist of:

(1) O° file

(2) ao ocean corrected file

(3) a° land & ice file

(4) SASS near-nadir a° and ALT a° file

(5) Wind vector (high spatial resolution)

(6) Wind vector (low :spatial resolution)

The desired contents of these files us requested by the

Experiment Team are given in Section 9.4.1.3.

9.3 . 6	 Algorithms required for Geophysical Evaluation. This task

consists o2' sorting through the SASS GDR's for data which coincide with data

obtained from insitu and aircraft underflights and comparing and merging the

0 01 s and winds from all sources. Me comparisons will provide a systematic

check of the accuracy of the SASS and its algorithms; and help to assemble ri much

more comprehensive data bank for the SASS. The data flow chart with all
1	 J

functions required for this t&,-,k that have been identified to date is shown in
1

fi gure 11.

w
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9.4 Analysis of Mission Results

9.4.1 Experiment Data Processing

The SASS data will be formatted (block telemetry),

transmitted to the STDN ground receiving stations, and relayed to NASA

Goddard Space Flight Center (GSFC) TELOPS Facility for development of the

Telemetry Master Data File (TMDF). The TMDF is a complete record of the SeaSat

A low rate telemetry stream (25 kbps), but does not include the high rate analog

SAR data stream. It is delivered to the Project Data Processing System (PDPS)

approximately 3-5 days after receipt at GSFC. Subsequent processing will be

accomplished in the following ways.

9.4.1.1 PDPS Processing

Data processing at JPL begins in the PDPS with WDE

as an input and the Sensor Data Record (SDR) as the first processed data

output. After a suitable engineering evaluation period (using the SDR), the

SDR will be available for use in subsequent geophysical processing. It is the

Experiment Team's desire that the SDR contain the following information:

(1) Time

(2) TM data converted to engineering units (volts,
!O

temperatures, and status bits and a flag indicating SASS data quality) .

(3) Cell location parameters for the center of

each cell

(a) Latitude (geocentric)

(b) Longitude (geocentric)

N!
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( geodet;

m subtrai

(g) Base length of Doppler

(h) Angle between Doppler d:

maximum antenna gain direction

(i) Azimuth angle from true

(J) Antenna identification i

(4) Satellite Location informat:

(a) Latitude

(b) Longitude

(c) Satellite ground velocity along track

(d) Direction of satellite in orbit

(e) Spacecraft attitude control uncertainty

(f) Orbit number

9.4.1.2 ADF Processing

The purpose of the JPL Algorithm Development Facility

(ADF) is to provide algorithm and software development support for sensor

validation and geophysical evaluation. This facility shall consist of the

Univac 1108 computer at JPL and shall be linked to the Sensor Implementation

Manager and Experiment Team by low-speed interactive remote terminals (located

at NASA Langley Research Center, City University of New York, and University of

Kansas). The use of the ADF by the Sensor Implementation Mzuiager and

the Experiment 'ream for the post-launch activities is illustrated in

figure 11. The ADF will consist of, but not be limited to, the computer
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algorithms identified in section 7.3 and the ADTG specification sheets to

be published as a supplement. A summary of the general categories is given

in the following: (organization responsible for and development status are

given in parenthesis)

(1) Received power (Bracalente - LaRC, near complete)

converts the SASS integrator output voltage to received power. This program is

also a subroutine in the Scattering Coefficient Algorithm.

(2) Scattering Coefficient (Q°) (Bracalente - LaRC;

near complete) - uses spacecraft and orbit data to calculate the scattering

coefficient for each SASS cell (Q° uncorrected for atmospheric effects).

(3) Atmospheric Correction (Moore - U of K;

definition only) - uses S144R and other data to calculate the atmospheric

attenuation and to locate probable rain cells. Attenuation calculations using

the VIRR data have been scoped, but have not been undertaken by anyone due to a

lack of resources.

(4) Wind Vector - (Three algorithms; (1) Wentz - LaRC;

partially complete; (2) Pierson - CUNY partially complete; (3) Poore - U of K,

partially complete) uses atmospheric corrected scattering coefficients from

SASS forward and aft antennas to calculate the ocean surface vector wind and

wind stress.

(5) SASS Cell Prediction (LaRC, Bracalente definition

complete; JPL responsibility to develop)

(a) Given latitude and longitude, uses the predict

orbit to calculate orbit number, time, and SASS incidence/azimuth angles for

this location.

(b) Given time, uses the predict orbit to

calculate latitude and longitude for each SASS cell.

(6) SeaSat A Catalog - (JPL responsibility - defined)

a catalog file for all SDRs (tape number and pertinent identification).
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(7) Catalog Search (JPL responsibility - defined)

(a) Time Search - searches catalog for given

time segment for specified sensor data.

(b) Geographical Search - searches catalog to

locate specified sensor data for a given geographical location.

(8) Tape Search - searches given SDR and extracts

specified sensor data (JPL responsibility - status unknown).

(9) Toil Identification - uses earth located sensor

footprints to classify surface as ocean, ice, or land. (JPL - defined).

(10) Surface Truth/IGDR Data Bank - a permanent file

for storing "surface truth" and associated IGDRs for SASS, SMMR, and V & IR

(LaRC defined, JPL responsibility - status unknown).

The SIM/ET shall have direct access to all computer

programs (permanent files) and shall be permitted to create modified versions

on temporary files, as required for the sensor validation and/or geophysical

evaluation. All permanent files shall be under strict change control by JPL.

9.4.1.3 Interim Geophysical DRta Record (IGDR)

Final definition of the IGDR is not presently

possible; in general, however, it is recommended that they consist of the

following files of data records each preceded by a header. The project has

indicated that they do not expect to fund the files as indicated. Rather,

they have agreed to provide routinely only all SASS measurements converted to

a  values, uncorrected for atmospheric effects. Approximately 3-5% of all

data will be processed to validation and geophysical evaluation products; ie,

atmospheric-corrected Qo and winds. Also, the project intends to fund

processing beyond the routine a  only if the products evaluate the SASS
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capabilities to achieve objectives. For this reason, some of the data files

(3 and 4) cited and some of the case study data will not be produced unless

funding sources outside the Project are obtained. In addition, it is understood

that the Project may not be able to supply routinely the files in the formats

listed; however, the Experiment Team does expect all elements of these files to

be stored and merging routines supplied by the Project so that these files

can be generated routinely on the ADF. In general, all of these requirements

are expected to be provided by JPL (see JPL Interoffice Memorandum 315.6-164,

dated Dec. 16, 1977 and SASS parts revised in March 1978), except for

Altimeter Go . These files contain the following:

(1) cT ° File

• :leader:

(a) Mode

(b) Orbit number

(c) Current calibration values

(d) Instrument transfer function constants

(e) Gain quality flag

(f) Noise figure

• Data Record Elements

(a) Observation time

(b) Cell location (latitude and longitude of
t

center of SASS cell* and standard deviation (km) of cell location error and

azimuth orientation of the error direction)

(c) Doppler cell number

(d) Beam number

(e) Polarization

*Unless otherwise noted, SASS cell refers to the resolution cell. See

reference 3, figure S.
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(f) mean incidence angle and standard

deviation (degrees)

' (g) Antenna look angle (azimuth relative

to true North) and standard deviation (degrees)

(h) Slant range (to center of cell)

(i) Cell size (area and rectangular dimensions)

(J) Doppler cell length (parameter L used in

Q° calculation)

(k) Antenna gain (G)

(1) Transmitted power

(m) Received power (estimate and standard deviation)

(n) Signal-to-noise ratio

(o) Scat channel number

r
(p) Scat channel gain with and without noise

(q) a' (uncorrected for atmosphere) and

normalized standard deviation (0) (separated into elements)

(r) TOIL flag (percent ocean, land, and ice)

(s) Data quality flag (multi. flag)

(t) Switching matrix loss

(2)	 Ocean co

• Header:

(a) Mode

i (b) Orbit number

(c) Current calibration values

(d) Instrument transfer function constants

• Data Record Elements

(a) Observation time

I
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(b) Cell location (latitude and longitude of

center of SASS cell and standard deviation (km) of cell location error and

azimuth orientation of the error direction)

(c) Doppler cell number

(d) Beam number

(e) Polarization

(f) Mean incidence angle and standard

deviation (degrees)

(g) Antenna look angle (azimuth relative to

true North) and standard deviation (degrees)

(h) Slant range (to center of cell)

(i) Cell size (area and rectangular dimensions)

Q) Doppler cell length (parameter L used in

Go calculation)

(k) Antenna gain (C)

(1) Transmitted power

(m) Received power (estimate and standard

de vi at i on )

(n) Signal-to-noise rrtio

(o) Scat channel number

(p) Scat channel gain with and without noise

(q) Ocean o° (uncorrected for atmosphere) and

normalized standard deviation (dB) (separated into elements)

(r) TOIL flag (percent ocean, land, and ice)

(s) Data quality flag (multidimensional)

(t) Switching matrix loss
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(u) VIRR brightness temperatures (co-located

vith SASS cell)

(v) SMMR brightness temperatures (co-located

vith SASS cell)

(v) Altimeter normalized scattering coefficient

((Y°)(co-located with SASS cells)

(x) Atmospheric attenuation at 14.6 GHz

(y) Atmospheric attenuation source (relative

weight of SMMR, VIRR, and other data)

(z) Atmospheric corrected scattering

coefficient and normalized standard deviation (dB)

(3) SASS near-nadir 0° and Alt. Q° file

• Header:

(a) Mode

(b) Orbit number
	

r.'

• Data Record Elements
	 ,

(a) Observation time	
a

(b) Cell location (latitude and longitude of

center of SASS cell and standard deviation (km) of cell location error and

azimuth orientation of the error direction)

(c) Doppler cell number

(d) Antenna number

(e) Polarization

(f) Mean incidence angle and standard
	 I%

deviation (degrees)

 (g) Antenna look angle (azimuth relative to

true North) and standard deviation (degrees)
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(h) Scattering coefficient for cells 13. 14.

15 only (uncorrected for atmosphere) and normalised standard deviation (dB)

(separated into elements)

(i) TOIL flag (percent ocean, isnd, and ice)

(J) Altimeter normalized scattering coefficient

(00 )(co-located with SASS cells)

(k) Altimeter height (h 1/3) (colocated with

SASS cells)

(1) SASS polarization angle relative to North

(m) Altimeter polarization angle relative to North

(h) Land and Ice o° File

• Header:

(a) Mode

(b) Orbit number

• Data Record Elements

(a) Observation time

(b) ( ell location . ( latitude and longitude of

center of SASS cell and standard deviation (km) of cell location error and

azimuth orientation of the error direction)

(c) Doppler cell number

(d) Antenna number

(e) Polarization

(f) Mean incidence angle and standard

deviation (degrees)

(g) Antenna look angle (azimuth relative to

true North) and standard deviation degrees)

l	 (h) Cell size ( area and rectangular dimensions)

I 

78



17

(i) Scattering coefficient (uncorrected for

atmosphere) and normalized standard deviation (dB) (separated into elements)

(J) data quality flab;

(k) TOIL flag (percent ocean, lend, and ice)

(1) VIRR brightness temperatures (co-located

with SASS cell)

(m) SMMR brightness temperatures co-located

with SASS cell

(n) Altimeter nomalized scattering coefficient

(ao )(co-located with SASS cells)

(o) SASS polarization angle relative to North

(p) Altimeter polarization angle relative to North

(5) High and Low Spatial Coverage Wind Vector File

• deader

(a) Orbit number

(b) Observation start time

(c) Limited identification (date this record

produced, SDR identification, f-eophysical algorithm identification, etc.)

• Data Record Elements

(a) Mean resolution cell location (]_atitude

and longitude)

(b) Number of cells used

(c) Cells identification (antenna number.,

polarization, Doppler cell number, etc.)

(d) Mean scattering coefficient and

normalized standard deviation for above (individual cells)

(e) Mi.ltiple solution - mean wind vector (K4V)

and vector error contour (VEC) 	 79
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(f) TOIL flag (percent ocean, land, and ice)

(g) Data quality flag

9.4.1.4 Near Real-Time Processing

A selected portion of the data is planned to be

transferred directly from STDN stations to the Navy's FNWC facility for near

real-time use in their weather forecasting models. This use of scatterometer

data is expected to provide a demonstration of the impact of availability of

extensive weather inputs over the sea. It is imperative that the algorithms used

at this facility be identical technically with those to be available and used

at the ADF so that data analysis can be done in a consistent manner.

10.3 DATA REQUIREMENTS

Because of the advanced date of this report, a document is already under

preparation which discusses in detail JPL's proposal for providing SDR data

(reference 10). This document will be reviewed by the Experiment Team, and

concurrence will indicate that it satisfies Experiment Te^un requirements.

Additional requirements resulting from this review will be forwarded to JPL.

10.1 Sensor (TBD)

10.2 Experiment

10.2.1 Imagery Data

Limited SAR and VIRR imagery is required for the non-real

time geophysical data analysis. It is understood that the SAR data will be

obtained via the SAR Experiment Team and will be restricted to those data

otherwise required by the SAR team.
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10.2.2 Digital Data

All data should be in digital form and formatted in the most

expeditious way for co-locating the data from all the instruments at each

cell scanned by SASS. (See section 9.4).

10.2.3 False Color Displays *

Daily global and some regional false color displays of SASS Q

and winds are required for both the sensor validation and the geophysical

evaluation activities. Formats and detailed specifications are TBD.

10.2.4 Auxiliary Data

Spacecraft and orbit data requirements are defined for the

SDR (section 9.4.1.1). Other auxiliary data requirements are nz follows.

10.2.4.1 Other SeaSat A Sensors

Auxiliary data are required from the VTRR, SMMR,

ALT, and SAR. These data (except SAR) shall be co-located with the corresponding

SASS resolution cell. For MR, SMMR, and ALT, these data shall be included

in the IGDR (section 9.4.1.3).

(1) VIRR - Brightness temperature in absolute

units at both wavelengths

(2) SMMR - Brightness temperature in absolute

r

polar:

SMMR

SMMR

ALT

ALT

SAP

units at all wavelengths and

(3)

(4)

(5)

(6)

(7)

Laations

- Atmospheric attenuation at 14.6 GHz

- Rain rate

- Nadir Q

- Significant wave height

- Radar Images of selected targets

(primarily over ice and land).

*(Not in present Project plans; perhaps in FY '79.)
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10.2.4.2 Surface Truth

Auxiliary data are required from conventional

meteorological and oceanographic sources as well as special SeaSat A Surface

Truth Measurement sources. The preferred data sampling period is + 1 hour

to the satellite passage. Hourly measurements are desired (or more often, if

routinely provided). Parameters of interest are:

(1) Mean wind speed and direction (20 min averages)

and normalized standard deviation
4

(2) Air temperature

(3) Sea temperature (skin, bucket, and intake)
t

(4) Specific humidity

(5) Atmospheric pressure

(6) Wave spectra

(7) Significant wave height

(8) Rain rate

(9) Cloud type, percent coverage, tuid est i mate ci he i r,11t

It is anticipated that these data will be collected

by FNWC and provided to the Project for distribution to the SASS experiment

team in a timely manner for validation and evaluation purposes.

10.2.4,3 Numerical Weather and Wave Calculations

I.
	 Limited weather and wave forecasts and/or hind casts

are required from NOAA-NWS, FNWC, and GISS for geophysical evaluation. These

will be standard output products for the above facilities.

10.2.5 Pad SASS Data

Bad data for any reason such as dropped bits or posr reception

at the ground telemetry station shall be identified and promptly discarded for

each 1.89 second data period affected.
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10.2.6 Data Availability and Distribution

All SeaSat A low-rate sensor data and auxiliary data shall

be cataloged in the ADF. A limited amount of these data (3 - 5 percent) will

also be processed by the ADF for use in the sensor validation and geophysical

evaluation activities. Computer resources (hardware and software) shall be

supp.Lied by JPL to support the Sensor Implementation Manager and the Experiment

Team in these tasks (see section 9.4.1.2). Low volume data distribution will

be accomplished by either the low-speed remote terminals, or by mail. High

volume data distribution will be accomplished through the use of computer

compatible tapes or listings delivered by mail.

11.0 ORGANIZATION AND RESPONSIBILITIES

11.1 Sensor

The reader is referred to the Sensor Implementation Plan (SIP,

reference 11) for detailed description of organization and responsibilities

related to the sensor development.

11.2 Experiment

Ttie organization of the Experiment Team and its responsibilities,

including the definition of the experiment, the analysis of the data and

reporting obligations, are outlined in a Memorandum of Understanding between

the SeaSat A Project and the SASS Experiment Team (TBD). A list of the Experiment

Team members is given in Table VIII, and a swnmaiy provided by Lame (JPL) of

responsibilities between the Project, Sensor Implementation Manager, and the

Experiment Team is given in Table IX.

11.3 Inter-Team
1r

	

	
A listing of the responsibilities between the SASS Experiment Team

and the other SeaSat A Sensor Teams is given in Table X. Excluded from

this table are the data exchanges which are described in sections 9.0 and 10.0.
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Phone

(212) 690-8315

(804) 827-3631
FTS 928-3631
(804) 827-3631

(305)  666-4614
FTS 350-4270

FTS 763-8087

( 301) 4143-8734

(4o8) 646-2837

(613) 998-9060

(416) 667-4815

(213) 354-2394
FTS 792-2394

DTs 525-2666

(301) 443-8734

1

Table VIII. Experiment. Team Members

As of the Feb. 22-23, 1978 meeting, the following are or have been

nominated to be members of the SASS Experiment Team:

Member

W. J. Pierson, Chairman

W. Linwood Jones, Scientist

William L. Grantham,
Sensor Manager

Peter G. Black

Jack Ernst

Glen Flittne r

Andy Goroch. designee*

Lawrence Gray

or Steve Peteherych

I. Halberstom

Kumar Krishen

Le doph Baer
or Pat DeLeonibus

Cmdr. Bill Maxwell

R. K. Moore

Frank J. Wentz

Peter M. Worceshyn

Ron McPhe rsun 	 NWS/NMC
or Tsann W. Yu
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*CMDR. Jess Tupaz is official member.

Organization

CUNY-Inst. of Marine Science

NASA - LaRC

NASA - LaRC

NOAA-NHEML

NOAA-NESS

NOAA-NWS

USN-NEPRF

Canada - Remote Sensing Center

AES - Canada

JPL

NASA-JSC

NOAA-Hq

(4o8) 646-2817

(913) 864-4836

(415) 957-1266

(213) 354-5416
FTS 792-5416

FTS 763-8301

USN FNWC

U. of Kansas, CRES

Wentz Associates

JPL



TABLE VI I

RESP014SIBILITIES

SENSOR IMPLEMENTATIO	 EXPERIMENT
ADI^IG/PDPS/ADF

MANAGERS	 TEAMS

* PROVIDE PRE-LAUNCFI

CALIBRATIOIN DATA

* DEFINE DATA RtQUIRE-

11ENTS FOR EAGI"LEERING

ASSESSMENT

DOCUMENT AND DISTRIBUTE

CALIBRATION DATA

DES I GI AND BUILDLD DATA

SYSTEM FOR ENGINEERI`IG

ASSESSMENT

REVIEW CALIBRATION DATA

REVIEW DATA

SYSTEM SPECIFICATIONS

CD

* PERFORM EN GIAEERING

ASSESS !T

PROVIDE INPUTS TO

AAD REVIEW HANDBOOK

REV I EV SPECIFICATIONS

^o

b^

x9

c^
r^rY

1f

* DESIGN, BUILD, AND OPERATE

DATA SYSTEM FOR SDR

PRODUCTIO!I - DISTRIBUTE 0"l

REIMBURSABLE BASIS

PROVIDE DATA PRODUCTS FOR

E";GI'IEERI"lG ASSESSMENT

* .TRITE SDR USERS HANDBOOK

* DESIGN, BUILD, AND OPERATL_

DATA SY TEMS FOR ADR

PRODUCT I OPl

REVIEW DATA SYSTEM

SPECIFICATIONS

REVIEW EIGI}LEERING

ASSESSMENT REPORTS

REVIEW IIAIIDBOOK

* PROVIDE SPECIFICATIOIS

FOR ADR

Q-. .



SENSOR IMPLEMEATATION

MANAGERS

REVIEW SPECIFICATIOd

* DEVELOP SENSOR

ALGORITHMS

PROVIDE INPUTS TO

AOALYS I S/EVALUAT I Oil

PROCESSING

SPECIFICATIONS

TABLE V 1 1 1 (C ONT' D)

RESPONSIBILITIES (CONT'D)

ADWG/PDPS/ADF

DESIGN, BUILD, AND OPERATE

DATA SYSTEM FOR TDR

PRODUCTION

DESIGN AND BUILD DEVELOPMENTAL

AND PRODUCTION DATA SYSTEM

WHICH INCORPORATES SENSOR

ALGORITHMS

DESIGN AND BUILD DEVELOPMENTAL

AND PRODUCTION DATA SYSTEMS.

WHICH INCORPORATES GEOPHYSICAL

ALGORITHMS

DESIGN AND BUILD DEVELOPMENTAL

DATA SYSTEM FOR AIALYS I S/

EVALUATION PROCESSING

EXPERIMENT

TEAMS

PROVIDE SPECIFICATIONS

FOR TDR

REVIEW AND APPROVE

SENSOR	 ALGORITHMS

* DEVELOP GEOPHYSICAL

ALGORITHMS

* DEVELOP ALGORITHMS AND

SPECIFICATIONS FOR ANALYSIS/

EVALUATION PROCESSING AND

DISPLAY, SPECIFY FORMAT

AID SPECIFY FORMAT AND

CONTENT OF INPUTS AND OUTPUTS
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TABLE VI II (CONCLUDED)

RESPONSIBILITIES (CONCLUDED)

ADWG/PDPS/ADF

PROVIDE DATA SYSTEM MITI!

REMOTE TERMINAL ACCESS TO

PROGRAMS A71D DATA PROCESS

2-3b (19-12 DAYS) OF MISSION!

DATA SET TO EXPERIME"!T TEAM

REQUIREMENTS, PERFORM

ANALYSIS/EVALUATION PROCESSING

AS REQUIRED,

* WRITE A GDR USERS HANDBOOK

* PRODUCE A COMPLETE MISSIOq

SET OF GDR'S AND PROVIDE ONE

COPY TO NOAA-EDS FOR FURTHER

DISTRIBUTION

SENSOR IMPLEMENTATION

MANAGERS

SUPPORT THE GEOPHYSICAL

EVALUATION !KITH EMPHASIS

ON THE SENSOR

ALGORITHMS

PROVIDE INPUTS TO AND

cr REVIEW HANDBOOK

C

EXPERIMENT

TEAMS

* PERFORM GEOPHYSICAL

EVALUATiON OF SENSORS AND

ALGORITHMS, SUGGEST

MODIFICATIONS

PROVIDE INPUTS TO AND REVIEW

HANDBOOK

r_ _ _

F
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TABLE IX

INTER—TEAM RESPONSIBILITIES

• SMMR TEAM PROVIDES PATH LOSS CORRECTION A'-ID RAIN RATE TO SASS TEAM

• V I RR TEAP" FURNISHES CLEARANOT CLEAR AND POTEW I AL RAIN CELL DETERM I IAT I ON

TO SASS TEAM

• SMMR A:JD SASS TEAMS PROVIDE EACH OTHER WITH WIND MAGNITUDE ESTIMATES

• ALTIMETER TEAM PROVIDES ALTIMETER 6° VALUES.

m
co
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APPENDIX

1. Black, Peter G. (NOAA-ERL) and Woiceshyn, Peter M. (JPL): "SASS /Geo-

stationary Satellite/Aircraft Wind Analysis Comparisons and Evaluation

of SASS Capabilities for Measuring Hurricane Wind Fields.

2. Halberstam, I. (JPL) M. Halem & Cane, Mark A. (sISS) Investigation of

Possible Applications of SeaSat Data to Weather and Ocean Forecasting.

3. Krishen, K. & Others (NASA-JSC) "Vegetation Identification/Characteristics."

4. Krishen, K. & Others (NASA-JSC) "Snow Mapping Experiment."

5. Pierson, W. J. (CUNY) Extratropical Cyclones.

6. Pierson, W. J. (CUNY) Intertropical Convergence Zone.

7. Pierson, W. J. (CUNY) Sea Breeze and Monsoon Effects.

8. Pierson, W. J. (CUNY) Tropical Cyclones.

9. Pierson, W. J. (CUNY) Convergence, Divergence, and Wind Stress Gradients.

10. Moore, R. K. (U. of K CRES) Rain Effects on Wind Vector Determination

11. Moore, R. K. (U of K CRES) Atmospheric Attenuation Experiment.

12. Moore, R.K. (U of K CRES) Sea-Ice Measurement.

13. Moore, R. K. (U of K CRES) Antenna Pattern Measurement.

14. Moore, R. K. (U of K CRES) Regional Effects on the Radar Backscatter.

15. Moore, R. K. (U of K CRES) Effects of Small Ice Floes on Wind-Vector

Determination.

16. Moore, R. L. (U of K CRES) General Radar Design Uses of SASS Return.

t r
	

17. Moore, R. K. (U of K CRES) Monitoring Snow Overland.

18. Moore, R. K. (U of K CRES) SASS Soil Moisture Experiment.

19. Moore, R. K. (U of K CRES) Vegetation Monitoring.
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APPENDIX

EXPERIMENT SUMMARIES

1. SASS/Geostationary Satellite/Aircraft Wind Analyses Comparisons and

Evaluation of SASS Capabilities for Measuring Hurricane Wind Fields, by Peter

G. Black (NOAH-ERL) and Peter M. Woi,-,.shyn (JPL).

This experiment proposes use of hurricane ground truth and other data

from aircraft support flights to validate SeaSat A surface wind measurements

in a hurricane. Since 50 km resolution of SASS data is lower than desired

in a hurricane, the high resolution modes (single pol. one side) and rotation

of the satellite in azimuth by S 45° is requested over 3 to 6 selected hurricane

passes is proposed as part of the SASS operations in support of this expe.:.'ment.

The SASS data obtained would be converted to surface winds which would be

compared to data obtained from (1) Wind data which NOAA expects to be obtained

from the SeaSat A altimeter data (2) Winds obtained using SUS scatterometer

data (3) Insitu data obtained by surface truth and NOAA aircraft (4) Forecast

data. These comparisons would be used to

(1) Evaluate and update the SeaSat SASS and altimeter algorithms to

produce winds in hurricanes

(2) Determine feasibility of incorporating wind fields into synoptic

and or dynamic hurricane prediction models, and developing such algorithms

for data obtained from SeaSat.

(3) Determine difference in forecast errors with and without SeaSat

winds to measure their utility.

(4) Implement and test real time acquisition of SeaSat data at NHC,

Miami and orient users to its availability and usefulness.

d
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During the 1978 tropical cyclone season winds will be derived by the

.:AFC Severe Storm Group from cloud motions determined from a series of geo-

synchronous satellite images and compared with simultaneously derived surface

winds from the SeaSat-A scatterometer (SASS). Geosynchronous satellite images

at 7.5 min intervals or less will be requested from the National Environmental

Satellite Service (NESS) since it has been found that images at th pt frequency

considerably improve the wind analysis over those made with images taken at

longer intervals. Either the eastern or western SMS/GOES satellites will be

used in order to cover cyclone possibilities in the Atlantic and/or Eastern

Pacific.

The GSFC Severe Storms Group will produce selected wind field analysis

from the geosynchronous satellite data for times that are concurrent with

SeaSat passes over a cyclone. These would be compared with the winds that

are provided to the group from the SASS. The wind fields from the separate

and combined sources would then be tested in dynamical. models to assess their

impact on tropical cyclone predictability.

2. Investigation of possible applications of SeaSat. data to weather and

ocean forecasting, by I. Halberstram of NASA-JPL, M. Halem and Mark A. Cane of

NASA-GISS.

As a part of the overall GISS program to investigate the possible

applications of SeaSat data to weather and ocean forecasting, GISS intends

to run the finished scatterometer algorithms with their own modelF as auxiliary

input data. The major objective concerns processing all the data for the two

FGGE special observation periods Jan. and June 1979). These p	 p	 (	 processed data

will be used to (1) supply data for the GARF level II data set and (2) to

conduct real forecast impact test;;. Additional data will be processed during a

M1
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meteorologically interesting two week period during September/Oct. 1978 to

check out GISS programs. During these periods all data needed as input to the

SASS algorithms will be required at GISS. The data will not be required real-

time, and minimum SASS resolution should exceed minimum GISS grid resolution

of 250 km.

3. Vegetation Identification Characteristics, by K. Krishen and co-investigators-

NASA JSO.

All of the SeaSat A sensors will be studied for their usefulness in

studying crops, range, and forest areas. Primary interest will center on

SAR because of its 25 km resolution. The SASS co data supported with VIRR,

SMM and ALT data, will be examined for correlating with vegetation type and

density. These data will be compared to surface truth and aircraft 13.36 GHz

scat and photography data will also be registered to Landsat data and the

feint multisensor possibilities for classification improvement evaluated.

The following objectives are listed:

(1) Evaluate of the applicability of SASS data for vegetation

identification and estimation of vegetation characteristics.

(2) Provide inputs to the SAR soil moisture program to account for

affect of soil masking.

(3) Study directional effects on classification of crops (row and wind)

ff.	 since SASS provides directional data.

A total of 12 summer passes over 3 selected sites are requested.

4. Snow mapping experiment, by K. Krishen & Co. investigators of NASA JSC.

SeaSat-A SASS data will be studied for potential in monitoring and

measuring the extent and depth of snow cover in watersheds where such
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information is invaluable in predicting floods that results from spring

snow melts. The test sites consist of mountainous areas including the

Central Sierras, Steamboat Springs Colo., and the Wind River Mountains,

and plains areas including Luverne, Minnesota, and the upper Missouri River

basin. SeaSat SASS and L-Band SAR, SMMR and ALT data will be coordinated

with ground truth and A/C 6 GHz and 13.3 Scatterometer and photography to

assess the capability of the satellite for monitoring snow cover, snowpack

moisture content, and liquid water content. 10 passes in late winter/early

spring are required at these sites 2 times per site per year.

5• Extratropical Cyclones, by W. J. Pierson of CUNY.

Extratropical cyclones in the winter hemisphere will be the prime

subject of study since they are an ever present feature of middle latitude

weather poleward of the subtropical highs. The determination of the wind fields

around them should be an aid in finding the centers of the lows associated with

them and what their central pressures are.

6. Intertropical Convergence Zone, by W. J. Pierson of CUNY.

The Intertropical convergence zone separates the NE Trades of the Northern

Hemisphere from the SE Trades of the Southern Hemisphere. This zone is

characterized by heavy cumulus activity, and it shifts north and south

seasonally. Its location and movement can be studied with the SASS.

7, Sea Breeze and Monsoon Effects, by W. J. Pierson of CUNY.

Space Photographs of the Indian Subcontinent have shown a sea breeze

(or perhaps a monsoon effect) that extends hundreds of kilometers over the

ocean from the land. The change in winds in this area can be studied.

n
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8. Tropical Cyclones, by W. J. Pierson of CUNY.

Several of the scanning modes are ideal for the study of the strong

horizontal gradients in the wind fields around these tropical systems.

9. Convergence, Divergence, and Wind Stress Gradients, by W. J. Pierson

of CUNY.

For the first time sufficient highly accurate wind fields can be	 r

obtained that suggest that fields of horizon', - livergence and convergence

along with associated vertical mctions can be computed for the planetary

boundary layer. The stress of the sea surface can also be used to calculate
i

local areas of strong upwelling.

10. Rain Effects on Wind Vector Determination, by R. K. Moore, U of Kansas.

Rain may effect up to 10% of the SASS observations in some areas. In

particular, for winter storms in the North Atlantic, tropics& storms,

tna hurricanes, the consideration of rain effects is important. The

University of Kansas proposes to use SASS and SMMR measurements within

range of shore-based meteorological radar and near a data bouy to deter-

mine the effect of rain drops striking the water on radar backscatter

from a wind-driven sea. This will help to establish rain rates at which

the correction must be made to the wind-vector algorithms, the size of

the correction, and rain rates for which the SASS observations are no

longer useful for wind-vector determination. This program will also

include theoretical development of the radar backscatter from the inter-

action of wind- and rain-generated waves. The additional support of

three SASS underflights in and adjacent to rain cells flown at multiple

altitudes and for different rain rates would be useful in creating a
E

well defined data bank for comparisons with satellite results.
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11. Atmospheric Atten • iation Exi:eriment, by R. K. Moore, U. of Kansas.

An experiment shoult'. be performed using two upward looking radio-

meters, preferably at W.69 and 14.6 GHz, to verify the SMMR observations

and estimated atmospheric attenuation at the SASS frequencies. The

present models for the atmospheric attenuation are based upon radiative

transfer theory extended to the case of a downward looking radiometers.

The validity of this theory for the downward looking radiometer has never

been experimentally verified. However, good agreement between theory

and experiment have been obtained for the upward looking radiometers. 	 1

This experiment should be performed during the Geophysical Evaluation

period of the Seasat experiment so the results can be entered as soon

as possible into the SASS algorithm. The location should be near sources

of both sea truth and weather information. For example, the radiometers

could be mounted on the Chesapeake Bay light tower, though the optimum

location would be well-off-shore oil production platform in the North

Sea wkere cloudy and rainy conditions persist year round.

12. Sea-Ice Measurement, by R. K. Moore, U of Kansas.

Approximately ten percent of the sea surface is covered by ice at

least part of the year. The University of Kansas proposes a special

case stud using both SASS and SMMR to evaluate the merits of the coarse-

resolution active and passive sensors for ice monitoring. Data at 13.3

GHz from the NASA Earth Resources Aircraft Program demonstrated that Ku-

band scatterometers can discriminate ice from open water, and also, at

large incidence angles, different classes of first-year ice and first-

year ice from multi-year ice. To evaluate the performance of the SeaSat

instruments for ice monitoring, Landsat images will be used to provide
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ground truth when lighting conditions permit. During dark periods,

Nimbus or NOAA-5 IR images will be necessary to provide the ground

truth.

13. Antenna Pattern Measurement, by R. K. Moore, U of Kansas.

Knowledge of the performance of the SASS antenna is essential for

proper iinalysis and use of the data obtained by the instrument. The

shape of the pattern is necessary in the algorithm to generate values

of the scattering coefficient from the received signal. The pointing

direction of the antenna is the main factor in determining the position

of the cells on the earth's surface. This is important both for location

purposes and to verify that overlap occurs between forward and aft

antenna beams as planned. The value of such inflight meal urerent of the

pattern was demonstrated on SKYLAB when the scanning mechanism failed

and the antenna was damaged while repairing the mechanism. The first

indications of problems with the antenna came from the ground experiment, 	 j
i

i
which also provided useful infcrmation that aided in determining what

sort of failure had occurred. With the SASS this problem may be even

more important because the antennas must be deployed with the consequential

danger of both damage to the antenna and errors in the planned pointing

direction.

This experiment proposes to measure the antenna patterns of the SASS

by setting upon array of calibrated ground-based antennas over an area

large enough to determine the shape and peak of the pattern. The method of

obtaining the data assumes setting the array of antennas in a line perpendicular

to the flight path and observing the fan pattern at each location. The

complete pattern could be developed in this manner after a large number of

satellite passes, or by using several columns of receivers. Since the fan
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beam is oriented 450 with respect to the flight path, the measurements and

calibrations have to be correlated to remove time differences for the method.

A second and better method is to rotate the spacecraft 450 and set up a denser

array of antennas across the ground track so that the shape can be moni .:Pr,-d

as a function of elevation angle with one set of antennas.

lb. Regional Effects on the Radar Backscatter, by R. K. Moore, U of Kansas

The radar return from the sea could vary due to regional effects. In

warm waters there is no reason to suspect that the return will vary regionally.

On the other hand, in polar regions the viscosity of the

water increases as the temperature approaches freezing, forseeably affecting

the capillary region of the sea spectrum, and thus the radar

return. Less important geographically, but also worth investigating,

are areas such as the Sargasso Sea, where large amounts of floating

vegetation are expected to modi fy the radar backscatter. Both SASS

and underflight observations should be made in such areas to establish

these potential effects on the wind estimates.

15. Effect of Small Ice Floes on Wind-Vector Determination, by R.K. Moore, U of K

Ice floes cover much of the sea in areas like that south of Greenland

during certain times of the year. This is likely to seriously hinder the

wind-vector measurement. The University of Kansas proposes to use SASS,

SMMR, and SAR data in a region near Greenland to the southern extent of

the ice floe field during the summer of 1978 and spring of 1979 to develop

a method to compensate for the ice floes or determine a method to detect

•	 these conditions so that they can be excluded from wind-vector algorithms.

During the early stages at least, Landsat data will be needed until the

value of the SAR as a source of surface truth is determined. Also, the
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additional support of a photographic underflight across tr.e boundary of

the floating ice up to the boundary of the pack would serve as a check

an the surface truth evaluation.

16. General Radar Design Uses of SASS Returns, by R. K. Moore, U of K

SASS experiments over land should generate a large data base of

scattering coefficients for angles of incidence between 25 0 and 650.

These returns can be combined to generate a curve of the medirui scattering;

coefficient over this range of incidence angles. Also, the range of

values exceeded various percentages of the time could be generated. '1'liese

results provide data useful in the design of radars, especially as they

apply to clutter modes to the preprocessing dynamic range of spaceborne

SARs, and to specialized radars (such a:: Doppler velocimeters).

17. Monitoring Snow Overltuid, by R. K. Moore, U of K

Special case studies proposed by the University of Kansas for

overland geophysical use will include tuaalysis to identify the potential

of coarse resolution sensors to map snow conditions in mountain nivas

and in the plains. Data t.nken by the University of Kansas with a variety

of active and passive microwave sensors near Steamboat Springs, Colorado,

during the 1976-1977 winter, showed snow wetness was the most influential

snow pararm,ter oil :active and passive microwave measummvnts for snow 50 cm

thick. When no changes in snow wetness occurred, the sensors displayed

an almost linear response to the snow water equivalent. For deeper snow,

other factors may also be important. A coarse-resolution ::en.:or such a:3

SASS may be particularly useful for run-off and early-sea: oai agricultural

soil-moisture forecasts.
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18. SASS Soil-Moisture Experiment, by R. K. Moore, U of K

Overland geophysical use of SASS will include an experiment to

determine the potential of coarse-resolution microwave sensors to

monitor soil moisture. While the optimum frequencies to monitor soil

moisture appear to be 4-5 GHz, earlier experiments with the 13.3 GHz

scatterometer indicate that Ku-band sensors could be effective during

late fall to early spring. The SKYLAB active and passive experiments

at 13.9 GHz, however, did show poor correlation with soil moisture.

This performance was attributed to poor ground truth. The size of the

SKYLAB resolution cell, 20 km, was such that it was necessary to

interpolate sparsely measured APIs with many cells containing no measure-

ments at all. For the SeaSat , with its much larger resolution cell,

this problem should be greatly reduced, and its greater coverage should

permit concentration on cells where adequate ground truth is available.

19. Vegetation Monitoring, by R. K. Moore, U of Kansas CRES.

The frequency of the SASS has been demonstrated as almost the

optimum fc,r time-sequential determination of the type of crop growing

in a farmer's field (1). Unfortunately, however, the resolution of

SASS is too coarse to permit testing of the ability of the spacecraft

radar to determine the type of crops planted. Resolution may be

adequate, however, to allow development of a time-sequential discrimi-

nation capability for the type and health of rangeland, forests, and

other natural vegetation that grows in large homogeneous patches, and

(perhaps) in large single-crop agricultural areas like the wheat land

in North Dakota. The Skylab S-193 scatterometer was able to distinguish

among types of vegetation in Brazil where the land units are large, even

without having the opportunity for time-sequential measurement. This
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capability should be retested in Brazil, using timr sequences, but the

time sequences are probably much more valid in the temperate region

where growth starts from essentially zero in the spring rather than in

the tropics where growth variation is less extreme and is tied more to

the rainfall cycle and flooding cycle than to the drying up of plants

in the winter.

Test sites must be established where adequate ground comparison

can be made between the i.rogress of vegetation, the type of vegetation,

and its distribution. Because of the large resolution of the SASS,

the vegetation-type distributiol for large areas can be determined frcm

existing vegetation maps and areas where suitable maps are available

will be selected for testing the hypothesis that one can distinguish

the vegetation types with sucb a broad resolution sensor. The progress

of the vegetation must be monitored with some actual measurements made	 ri
on the ground. A few areas will be selected where the vegetation is

sufficiently homogeneous within a resolution cell so that the measured 	 1

scattering will be representative of that class of vegetation. The

cells selected will have different types of vegetation so that the	 \

effects of the different growth cycles can be factored in. This experi-

ment will allow deciding whether it is possible to keep track of the

different classes of vegetation and their progress in remote parts of

the world. The resolution is too poor to be of value in the U.S.

Ref.: Bush, T.F., and F. T. Ulaby, "Crop Classification with Radar:
Preliminary Results," RSL Technical Report 330-1, October,
1976. Supported by NASA Contract NAS 9-15003.
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