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A NUMERICAL METHOD OF DETECTING SINGULARITY OF A MATRIX

M.	 La Porte and J. Vignes I

I.	 Introduction	 /73*

From a theoretical point of view, a matrix is singular if,

and only if,	 the determinant of its coefficient is zero. 	 Clas-

sical numerical	 algorithms permit calculating the value of a

determinant.	 One such calculation carried out on a computer does

not generally give a zero value for the determinant when the

matrix is	 singular.	 In effect, the result obtained is vitiated

due to the limited arithmetic precision of a computer. 	 Then,

there is always disagreement between the analytical result and

the numerical result obtained on the computer. 	 From this fact,

! it	 is apparent:

f

--a matrix,	 analytically non-singular, 	 can appear as singular,

I --a matrix, analytically singular, can appear	 as non-singular.

{	 I ;

It is easy to give examples illustrating this disagreement.

Let us consider the matrices:

The matrix A is regular and its determinant has a value of

I
of 10 -7 .	 The B matrix is singular.

I

Let us treat these two matrices on an imaginary computev

operating to 7 significant points, 	 arithmetically at a normalized

floating comma with truncation.

The matrix A	 is presented	 in the form:

A = [A ,,) `.

*Numbers in the margin indicate pagination in the foreign text.
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all of the Aij being equal to 1. Then one has A # A. The value

A  of determinant A, calculated with any algorithm, is zero. This

matrix appears then as singular when it is not analytically.

The B matrix is presented in the form B = B since its 	 /74

coefficients fall correctly in the machine. Its determinant,

calculated using a r, q ussian algorithm with study of the maximal

center-point by column, has a value of:

Then, this matrix appears as non-singular when it is

obviously singular.

These two examples show the difficulty in detection, by an	 j

exclusively numerical method, of the singularity of one matrix.

These studies bearing on the propagation of numerical errors

during calculation and their incidence in linear algebra have

been made particularly y: Forsythe 1	 Gastinel 2	 Golub^

	

	 p	 y b ^ 	 y	 C ],	 [ ],	 137,

Householder [4, 51, Wilkinson [7-10].

II. Definition of Numerical Singularity

If the calculation of a determinant of an analytical

singular matrix has a value which is not zero, one can confirm

that this value is only the result of a cumulative effect of

errors caused by the arithmetic of the computer. From this fact,

this value is not significant and, consequently, it must be con-

sidered as mathematically zero.

Moreover, if the calculation of the determinant of an

analytically non-singular matrix gives a zero value, one can say

that on this computer this matrix appears as singular whereas it

does not analytically. This necessitates going beyond the

concept of analytical singularity in order to arrive at the

concept of numerical sinj7ularity;for this we propose the following

2



definition:

Definition. A matrix 2s numerzcaZZy szngular when the value

of its determinant, calculated on the computer, is:

--either zero,

--or not significant.

Let us consider a matrix A in which the coefficients a id are

the algebraic values:

.d = [ail].	
(1)

Let us designate as A the image on the machine A and by Aij

the images of a ij . In general, the A ij are not strictly equal to	
i

a ij due to error engendered by the periodic block operator 11, 5,

6].

They may be:

--Det(A) the algebraic value of the determinant of A,

--A l	the value calculated on the computer of determinant A,

--E	 the absolute error committed on Al

s =A, — Det (d).
	

(2)

If the error E is of the same order of magnitude as the

value o l , one can confirm that this latter is not significant.

Consequently, the matrix must be considered as numerically singula—.

If e is smaller than A 1 , then the matrix is not singular
	

/75

It is impossible to calculate E by (2) since the value of

Det(A) is unattainable. Here we will present a method which, by

statistical	 methods, makes it possible to estimate E.

III. Origins of Error

3
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Absolute error e, given by equality (2), has two distinct

origins.

a) error in calculation. This corresponds to the cumulative

effect of errors caused by each of the elementary operations

carried out on the computer during calculation of A l : [1, b, 71.

b) error in the coefficients. The coefficients A	 of matrix
i,j

A are riot in general equal to the coefficient a ij of the algebraic

matrix A since they depend on part of the operator periodic block,

and the other part on the origl • of a,,. Three cases can be pre-

sented:

Case 1. The aij are known exactly and go correctly into the

machine. In this case: A = A.

Case 2. The a ij are known exactly but do not fall correctly

in the machine. A is an approximation of A, the error on the

coefficient A ij proceed only from a single operator periodic

block.

r

Case 3. The 
ai ,j 

are known with a certain error; this is the 	 J

case, for example, when the a i•j result from experimental measurment.

In this case, the periodic block error is negligible and the Ai'j

are affected by the same error as the aij.

We are going to determine, by a statistical method, a mean

estimate of error e, starting with the populations created

differently following the origin of error. The elements of these

populations are the different numerical values of the the same

determinant.

--i° the a ij correspond in the first case, only error in

calculation has to be considered and the corresponding population

Is obtained by a "permutation" method.

i

1.__1_..1	 -- ^ —►- ^	 - —	 -	 ^	 {^



--if the a ij correspond to the second and third cases, the

error in the coefficients and the error in the computation must

be taken into account and the corresponding populations obtained

by a "permutation-perturbation" method.

IV. Permutation Method (Theoretical Aspect)

This method applies to the first case, that is to say, when

the coefficients A ij of A are the exact image of coefficients

a id and A.	 ►

A iji	 a jj .
	

( 3)

During calculation on a computer of the value of A,, the absolute
a

error committed e is uniquely caused by the limited arithmetic	 i

precision of the machine. Due to this, it depends on the order

in which the operations are carried out.

Also, in permuting the columns if A, one changes the order

of operations and if one calculates the determinant, one obtains

different value of A,.

r

By making all of the possible permutations of the column of 	 /76

matrix A in n order, one obtains n! matrices. Machine compu-

tation of n! corresponding determinants produces a population 	 1

D1.

All of the values of D i are also represented by one or

another value of Det(A).

Also, the permutation method makes it possible to theoretically

obtain a population D 1 of the cardinal:

Card D, Is 	 (4)

rj

1.
I'

ri	 5
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V. Permutation-perturbation Method (Theoretical Aspect)

This method is applied to the second and third cases, that

is to say, when the coefficients a ij do not fall correctly in

the machine. Then one has:

A,,= a;j(1 +A.,)•	 (5)

When one is in case No. 23, 	 a ij correspond to periodic

block error and belong to the P(a) population defined in [6]

§ 2.2. Then, one has:

A jf = a jj (1+mj j )	 a, 1 EP(a).	 (6)

When one is in case No. 3, the 
Xi,j 

correspond to those

experimental errors in which one assumes a higher boundary eij

as knoi.n. Then, one has:

A j j E [a (1( 1 — erg), a,,(' + er/))'	 ( 7 )

In the case defined by (6), only two representations on the

computer exist for each of the values of a ij , the one by

efficiency, A id, the other by excess A + and one has:

d4jE [A-. A+].	 (8)

If one works out all of the resulting matrices from a com-

bination of the two possible states of each of the coefficients,

one obtains 2 n matrices. By applying the permutation method to

each of these matrices, one obtains a population D2:

Card D9 e n 12

In the case defined by (7), for each of the a id , there

exist 
pi,) 

representations on the computer.

6
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If one works out all of the matrices resulting from a

combination of p ij possible states from each of the coefficients,

one obtains N matrices:

w w

N=1f Ilp,r.
4-1 (-1

In applying the computation method to each of these matrices,

one obtains a population D3:

(11)

Cara Dg -'" I ff a Pir
4.1 0.1

VI. Evaluation of t (Theoretical Aspect
	

/77

Using the elements A i of one of the populations we find

above:

	

D = (d„ d,_- AN)	
(12)

we will get a mean estimate of e of absolute error E defined by:

	

e = d, — Det (.o)
	

(13)

with A l = the caclulated value on the computer of determinant A

Det (A) = the exact value of the determinant of A.

Here we can make the following hypothesis:

Hypothesis. During calculation of o f on the computer, the

calculation errors of data have behaved indifferently in one
V

direction or the other. Consequently, the value of Det(A) can

be considered as an element of any of the D population.

We will call o and 6 2 , respectively, the mean and the

variants of this population. Under the preceding hypothesis,

the mean of error sq •_iare e is expressed by:

7

I	
I	 I	 I	 1
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By definition, we suppose:

—(d,—P+d^. (14)

20 = I OC—•

Then, three cases can be considered:

(18)

a 2=1
	

(15)

or

I

—V(a^ak
	

(16)

The value of @ compared to that of A l gives us information

on the conditioning of the matrix. In the measurement where of

and € are not zerc, one can always write:

I	 (17)

C represents the exact dumber of significant figures of A,. Of

course, the value of C can never exceed the number Cmax of sig-

nificant decimals in the arithmetic of the computer. If p

designates the number of bits of the mantissa representin€ a

normalized floating binary comma, 
Cmax 

is defined by:

--C is in the neighborhood of 
Cmax' 

the matrix is

numerically well conditioned.

--C is in the neighborhood of zero: the matrix is

numerically singular.

--Beteen the two ext ,eme cases, the matrix without being

singular is not numerically well conditioned.

8
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We w{_11 say that the matrix is numerically singular if

the value of its determinant is known with less than an exact

significant figure, that is to say, if C < 1.

!	 VII. Practical Aspect of the Permutation and Perturbation Methods

In practice, it is impossible to work out the totality of

the population elements previously defined. We propose an

algorithm which, with a number of limitations,makes it possible

nevertheless to determine the number C.

Using any algorithm from calculation of the determinant, 	 /78

one defines the value of 61 from the determinant of matrix A and

the value of A2 of the determinant of the matrix deduced from A 	 j

by central symmetry. The interesting thing about this choice

is the fact that during calculation of A l and A 2 , the errors are

propagated in a very different way.

1 Using these two elements, one calculates by (17) the value
i

of C:

--if C < 1, then the matrix is numerically singular,

--if C > 1, the algorithm must be pursued by creating new

elements of the D population until one obtains a stationary con-

dition for the entire part of C. The successive elements of D

are obtained by random 	 permutation of the columns of matrix A

and, should the occasion anise, by random perturbation of the

Ai,j coefficients. This perturbation consists of:
i 

--in case No. 2, by random adjustment of a zero or a 1 at

the last bit of the mantissa,

1
--in case No. 3, by replacing A ij by:

Ar- 7
9
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i randomly takes the value -1 or +1.

VIII. Arreeement Between Theor y and Practice

The permutation-perturbation method has been applied to a

very large number of matrices of all orders and all conditions.

This method has never been deficient. We will content ourselves

with giving three important examples here.

VIII-1. Application of the Hilbert Matrix

The Hilbert matrix is a symmetrical matrix in which the terms

are the inverse of successive integrals.

1	 .1/2	 113	 ...	 11N
112 1/;	 1/4 ... 1/(M+1)

1/n 1/(n+1)	 ... 1/(2n-1)

	

1 I
	

Using the Gaussian algorithm, one calculated on a CDC 7600

	

I '	 computer for n variants of 2 to 13, the value of A l then the value

of C by the permutation and perturbation method (case No. 2).

Likewise, one knows the algebraic expression of the deter-

minant of A
n

with
4-A

to(n ) = 1101).

(20)

one can deduce from this the exact value of C, or C*, defined by:

(21)

NtTRA
10
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The results presented in Table 1 show that:

--on the one hand, perfect agreement between theory and

practice (with values of C and C* are similar),

--on the other hand, the small number of calculations of

determinants D i necessary for obtaining the results.

Table I

' . Det(Jr.) e, Number of d, Either rirt Se
calculations c`' C*

2 8.3 X f0'' 8.3 x f0'' 4 13 14	 f
3 4.6 x i(H 4.6 x 10'4 3	 I 12 12
4 1.6 x 10-I 1.6 x 10' 7 3 11 10
S 3.7 x tm 10 3.7 x 10 -10 3 9 i	 9
6 5.3 x ur' 9 5.3 x 10- 10 3 8 A	 t

7 4.6x10'" 4.9 x10'• 4 7 7
6 2.7x10-" 2.7x10'" 4 S 6
9 9.7 x 10-" 9.7 x i (r" 3 4 4

10 2.1X10"W 2.1x10-" 3 3 2
11 3.0x10'~ 2.3 X 10­" 3 1 i

1
12 2.6 x 10'* --4.5 X 10'" 2 0 0	 S
13 1.4 x 10"" —7.9 x 10'„ 3 0 0	 S

I	 ^

S:	 numerically singula_, matrix.

VIII-2. Application of Least Squares to a Matrix 	
()I" 

POOR DUALITY

Let us consider the matrix

	

590	 SIP -1 ... S0

^H. ► 	 ^20-1 S4 - $ 	 5► -1	 ,i t h S6 — 2: ill
1-•

	

Ist	S1-1	 ... Se

	which one encounters in	 certain polynomial adjustments by

least squares.

j	 The results obtained for N = 20 and p variations of 1 to 12 	 /80

are presented in Table II. This shows the good agreement between

C and C* and also shows that a matrix can be numerically singular

itself if the order of magnitude of its determinant is very high.

11
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S: numerically singular matrix. "GINAL P..UC ,
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Table II

0 I)e1(.r•6 '	 dl Number of dt Either part . s•
' calculations o	 C.

1
2

4
S
6
7
6

9
10

It
12

1.6x1111	 1.6X10'
3.6 x ( di	 ' i	 3.6 x t0'

3.4 X t o•'	 3.8 X lost
1.7X10••	 '`''	 1.7X1016
1.9 X 1060	 1.9 x to'•
S.2X loll	 5.2X 1001

63.4 x td'	 1.4 x to•6
S.1Xloll	 5.1x10
1.6 x 100 6 	1.5 x 10.1
1.0x 10111	 —3.6X 1011•
1.2 x 10114	 — 1.B X toll '

3	 13	 13	 ^.
4	 '1	 „'	 r^	 1	 12	 't'•	 t2	 1•	 ,

10t	 3	 it 	 1
I

3	
^'	

bt	
7	 7

7	 ,..	 7
4	 S	 ^..	 S	 ...3	 ,

3	 2	 '
3	 1	 I
2	 I
2	 0	 0	 S

i

VIII-3. App lication to Al gebraically Singular Matrices

We have processed more than ten thousand matrices on the

CDC 7600 computer with order of magnitude varying from 2 to 100,

the coefficients a id , drawn at random being; the orders of mag-

nitude between 10- 6 and 10 +6 . One has found these singular matrices

by replacing the last line with the sum of the other lines.

The permutation-perturbation method has always made it

possible to draw a conclusion as to the singularity of these

matrices. Table III shows that this result has been obtained

using a number of A i elements, never exceeding 3. On the other

hand, the higher the order, the more the mean number of necessary

elements tends toward 2.

IX.	 Conclu..ion

The permutation and perturbation method has always given

satisfaction and has never been defective and therefore one can

designate it as certain. On the other hand, from this study

it stands out that:

12
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Table III
i

Order of Number o f e leme nts of	 ;
matrices 1	 2 3 Z4

2 0%	 77% 23% 0%
3 7%	 831/0 5% 0%
4 6%	 990, 5% 0%
5 5%	 91% 4% 0%

10 2%	 95% 3% 0%

` i	 0 1%	 96% 3% 0%0
I	 1 00 0%	 97% 3% 0%

--when the matrix is not numerically singular, a population

of 3 or 4 elements is sufficient to assure and know the numerical

conditioning of the matrix.

--when the matrix is numerically singular, its singularity

is generally found from a population of two elements.

I
One can then say that this method is certain and efficient.

It can be used for numerous problems of linear algebra. Also,

it makes it possible to control the intrinsic value A of matrix

s
M verifying that the M-aI matrix is singular.

Applied here to a problem of linear algebra, this method

can be generalized for cases of nonlinear algebra because its

Iconcept basically is to execute the same algorithm many times

`

	

	 propagating the errors in various ways finally to obtain results

which vitiate the various errors.

ORIGINAL PAGE IS
This generalization consists of: 	 OF POOR QUALITY

--on the one hand, changing the order of conducting 	 / R1	 11

Ielementary operations (permutation),

--on the other hand, taking its value by deficiency or excess
1
j	 (perturbation) as the result of each elementary operation.

13
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It permits introducing a new concept of computers makinr,
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