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ABSTRACT
 

This paper is concerned with the development of the theoretical
 

and mathematical background pertinent to the study of steady, corotating 

solar wind structure in all three spatial dimensions (3-D). The 

dynamical evolution of the plasma in interplanetary space (defined as 

the region beyond roughly 35 R where the flow is supersonic) is approxi­

mately described by the nonlinear, single-fluid, polytropic (magneto-) 

hydrodynamic equations. We outline efficient numerical techniques for 

solving this complex system of coupled, hyperbolic partial differential 

equations. The present formulation is inviscid and non-magnetic, but 

our methods allow for the potential inclusion of both features with only 

modest modifications. We examine one simple, highly idealized, hydro­

dynamic model stream to illustrate the fundamental processes involved 

in the 3-D dynamics of stream evolution. We find that spatial variations 

in the rotational stream interaction mechanism produce small nonradial 

flows on a global scale that lead to the transport of mass, energy, and 

momentum away from regions of relative compression and into regions of 

relative rarefaction. The magnitude of this transport is small, but 

inside 1 AU the nonradial flow can'significantly retard shock ,formation 

by allowing fluid in the compressions to slip laterally, thereby
 

partially relieving the stresses built up in the stream interaction.
 

Comparison with simpler models demonstrates the essential nonlinear,
 

multi-dimensional nature of the interplanetary dynamics. A subsequent
 

paper will be devoted to the investigation of a wide range of more
 

realistic model streams.
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INTRODUCTION
 

The solar corona is frequently dominated by long-lived structures
 

which are organized on a global scale. Since the solar wind has its
 

origin in the coronal expansion, it is natural to expect that the
 

large-scale flow pattern of the solar wind reflect the three-dimensional
 

(3-D) structure of the corona (for a recent review covering the relation­

ship between coronal structure and the solar wind, see Hundhausen, 1977).
 

Indeed, inferences drawn from a variety of spacecraft and interplanetary­

scintillation observations provide compelling evidence that much of this
 

structure survives to the earth and beyond (e.g., see Dobrowolny and
 

Moreno, 1976).
 

One important class of solar wind flow is the stream interaction
 

(or "colliding streams"), which refers to the dynamical process by which
 

steady, large-scale inhomogeneities in the coronal expansion speed couple
 

with solar rotation to produce significant longitudinal rearrangement
 

of material in interplanetary space. The basic mechanism is illustrated
 

in Figure 1, where we view the flow in the ecliptic plane from above the
 

north pole 6f the sun. The fast material emanating radially from the
 

high-speed source region near the sun is subsequently aligned by solar
 

rotation with the preceding slower plasma, resulting in a spiral inter­

action structure at large heliocentric distances. Material piles up
 

at the leading edge of the stream, where the fast floe overtakes the
 

slow, while material in the trailing portions of the stream is rarefied.
 

Nonradial motions (aside from those impressed upon the flow at the
 

source) are driven by the lateral pressure gradients associated with
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the compression along the interaction front. But note that the rotation
 

introduces a basic anisotropy into the picture: the azimuthal gradients
 

are directly driven by the stream interaction mechanism, while the
 

metidional gradients (out of the plane of the paper) arise as a consequence
 

of latitudinal variations in that mechanism. The latitudinal variation
 

stems partly from intrinsic latitudinal variations in the corona and
 

partly from the latitudinal dependence of the rotational effect. That
 

is, for structures of the same spatial width, those lying nearer the
 

equator suffer a greater rotational interaction than those lying nearer
 

the poles. In general, therefore, we expect the meridional gradients,
 

and, hence, meridional motions, to be somewhat different from their
 

azimuthal counterparts.
 

Theoretical interest in the corotating stream interaction has
 

centered on the description of the mechanism in the neighborhood of the
 

solar equatorial plane, giving rise to increasingly complex 2-D models
 

whose validity depends upon the absence or negligibility pf the local
 

latitudinal gradients, i.e., 3-D structure. Practical computational
 

difficulties have hindered progress toward 3-D formulations of comparable
 

sophistication. The 3-D linear model (Siscoe and Finley, 1-972) proves
 

inadequate in the face of the large-amplitude variations in streams,
 

while the kinematic description (Barouch and Burlaga, 1976) neglects
 

the dynamical reaction of the plasma. A nonlinear 3-D approximation
 

has been synthesized under the assumption of purely radial flow
 

(Suess et al., 1975), but the effects of :the nonradial motions are not
 

taken into account. Axisymmetric models (e.g., Siscoe and Finley, 1-969;
 

Suess, 1972; Nerney and Suess, 1975) include the meriodional flow but
 

ignore the essential azimuthal properties of the stream interaction.
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A nonlinear 3-D stream model could provide valuable insights on
 

both observational and theoretical fronts. For example, spacecraft
 

observations of the interplanetary medium are confined to a narrow zone
 

about the ecliptic plane. Lest our interpretation of these data become
 

ensnared in the parochial viewpoint imposed by our limited sampling
 

capabilities, it is imperative that we acquire the requisite expertise
 

to treat these observations in context, i.e., as nothing other than the
 

ecliptic manifestation of a phenomenon that is fundamentally global in
 

nature. Likewise, the analysis of interplanetary scintillation and
 

radio scattering observations, which contribute useful but less detailed
 

information on high-latitude and near-sun flows, would benefit from the
 

availability of a more complete description of the overall solar wind
 

flow structure. As a matter of theoretical interest, the strel isand
 

weaknesses of established but less elaborate models could be evaluated
 

and the inferences drawn from them more knowledgeably assessed. Finally,
 

we could take advantage of the capabilities of a sophisticated 3-D model
 

to speculate upon the properties of the solar wind flow in regions
 

currently inaccessible to empirical study.
 

In this paper, we develop a fully nonlinear 3-D model of steady
 

corotating streams in the solar wind. The treatment is hydrodynamic, 

polytropic,and inviscid, and describes the flow in the supersonic regime 

(beyond - 35 Vj. We outline mathematical and computational techniques 

that form the basis for a family of stream models that will eventually 
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be extended to a nonlinear, 3-D NED formulation, We consider herd one
 

simple example intended to facilitate the conceptualization of 3-D
 

stream dynamics, contrasting the properties of our global soiutiois with
 

those of simpler models that have appeared in the literature. A sub­

sequent paper will be deVoted to the examination of a number of more
 

complex and realistic cases, which are better suited to physical
 

generaliiation.
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MATHEMATICAL DESCRIPTION OF THE FLOW
 

Numerous published models dealing with the dynamics of corotating
 

high-speed streams (e.g., Siscoe and Finley, 1972; Matsuda and Sakurai,
 

1972; Goldstein, 1971, Hundhausen, 1973; Nakagawa and Wellck, 1974;
 

Dryer and Steinolfsson, 1976; and Goldstein and Jokipii, 1977) have been
 

based upon the magnetohydrodynamic (MHD) description of the solar wind
 

flow first espoused by Parker (1958). It can be shown that the kinetic
 

equations reduce to the MHD formulation on the condition that we restrict
 

attention to structures that are much larger than the standard plasma
 

scale lengths (e.g., gyration radius, Debye length, etc.) and to regions
 

some distance from the sun (r > 35 %) where the flow is supersonic and
 

the dynamics dominated by rotation and inertia (Pizzo, 1977). It is
 

presumed that the solar wind can be treated as a neutral electron-proton
 

gas having infinite electrical conductivity, and that heat conduction,
 

viscosity, and small-scale wave phenomena may be neglected. Furthermore,
 

the magnetic field may be dropped from the formulation on the grounds
 

that the flow is heavily momentum-dominated and magnetic effects therefore
 

minor. This assertion is justified for the relatively broad structures
 

we will consider here,'hut may break down at large radial distances
 

(r> I AU) where the streams approach shock formation or much nearer the 

sun in the case of streams having initially sharp boundaries (Rosenbauer
 

et al., 1977; Gosling et al.; 1978; Pizzo and Rurlaga, 1977).
 

The 3-D HD equations for the corotating solar wind flow are, in
 

vector form in the inertial Cnonrotating) frame:
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where p is the (proton) mass density-, U the center-of-mass velocity,
 

P the total isotropic gas pressure, G the gravitational constant, K the
 

solar mass, and y the polytropic index. The independent -ariableg arb
 

the usual spherical-polar coordinates (r, 6, O), and the parizmeter f is
 

the equatorial angular rotation rate of the suit (differentiU rotation
 

is neglected). These three equations express the conservation of tadss; 

momentum, and polytropic constant respectively. 

We set y = 5/3, the adiabatic value, to minimize the number of 

free parameters in the calculation (that is, temperature changes in th 

plasma are determined entirely by the work perfornied in cdipressions and 

rarefactions). This choice does force the use of somewhat elevated
 

temperatures .near the sun if one is to match average sdlar wind cohditions 

near the earth, leading to an overall radial acceleration between tho 

inner boundary and 1,0 AU. However, these effects do not seriously affect 

our results, and we would rather deal Uith theie complications than with 

the physical ambiguities introduced by a non-adiabatic y. Finally' the 

first term in each of equations (1) arises from the relation bet-een 

temporal and azimuthal gradients for corotating structure in the inertial
 

frame,
 

This relation is exact for flows that are steady in the rotating frame
 

and gemairrapp-zoximately falid for slowly varying structures (i.e., flow 



time to a given heliocentric distance small compared to the scale of
 

temporal variations at the source).
 

Equations (1) can be written in component form and manipulated
 

into the pseudo-linear vector expression:
 

(2)
o . +H -+G 

4 
where U is a column vector composed of the dependent variables ur,
 

n, j, u,, and u,, F and H are nonlinear matrix coefficients, and-G is a
 

nonlinear five-vector driving term (the components of F, R, and G are
 

listed in Appendix A). The characteristics are readily obtained from
 

the eigenvalues og H and F. We find three independent azimuthal
 

characteristics
 

2
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and three independent meridional characteristics
 

U u U-1 c /Ur 2+ u 2 9 

eDr Ue rur 2 s2 2 s 
(b) 

rC(ur - c 2) 

=
where V. u - r sine
 

2
c = Y .
and 


The first value in each case is simply the streamline of the flow in the
 

rotating frame, while the next two define the envelopes of pressure signals
 

from a given point. We can guarantee that the quantities under the square
 

root sign remain positive and the equations hyperbolic by situating our
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inner boundary, r, outside the sonic critical point (at -r35 R ). The
 

integration of equations (2) then reduces to a relatively tractable
 

initial value problem in iye unknowns.
 



NUMERICAL TECHNIQUES
 

Many numerical methods have been developed to cope with systems of
 

coupled, hyperbolic partial differential equations such as (2). The
 

explicit Eulerian approach described by MacCormack (1971) proves
 

particularly efficient for multi-dimensional problems. Our implementation
 

of the technique is inviscid, which means we must forgo any but the most
 

rudimentary studies of shock formation. Thus the basic formulation
 

cannot be applied to the distant solar wind, where shock structures
 

dominate the flow (Gosling et al., 1976; Hundhausen and Gosling, 1976;
 

Smith and Wolfe, 1976), nor to streams having sharp gradients near the
 

sun and likely to steepen appreciable inside 1 AU. However, with some
 

modification, it would be possible to add an explicit artificial viscosity
 

and include the magnetic field in the model to permit consideration of
 

these topics.
 

The tedious details of our numerical method are presented in
 

Appendix A; here we will discuss only the broad outlines of the technique.
 

The dependent variables U = (ur, n, P, u0, u are specified on a fixed
 

rectangular (6, 0) mesh lying in the spherical surface, r = r, which
 

constitutes the inner boundary. Figure 2 shows a schematic of the mesh
 

superimposed on the heliocentric global coordinate system, with the
 

azimuthal direction, 0, and the meridional direction (actually the
 

colatitude), 0, defined as depicted. Note that the mesh covers only a
 

portion of the surface, to minimize computer demands and to avoid
 

numerical difficulties associated with the geometric singularities at
 

the poles. Periodic boundary conditions are imposed at the azimuthal
 

edge of the mesh, while the upper latitudinal boundary is a free surface,
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with the meridional dervatives there being approximated by one-sided
 

differences. This treatment is permissible provided we choose the
 

boundary conditions such that the stream blends smoothly into uniform
 

flow near and above the upper latitudinal edge of the mesh. As long
 

as this edge lies only along the outermost fringes of the stream where
 

the perturbations are very small, spurious effects upon the overall
 

evolution are virtually nil. The lower latitudinal boundary is handled
 

the same way, unless we are dealing with a stream that is symmetric
 

about the equator. In that case, the lower half of the mesh may be
 

dispensed with altogether, and the symmetry conditions simplify ex­

pression of the meridional dervatives.
 

Given U (ro, e, ) everywhere on the mesh, we may advance the
 

solution to U (r +Ar, 0, 0) by our finite-difference form of equation
 

(4). The magnitude of the Ar step is, for fixed A@ and LO, given by
 

the Courant condition, which requires that the values at any given point
 

be causally connected to the region demarcated by the upstream
 

characteristics. The Courant step-size limit for this system is given
 

by
 

Ar :5.max ( A , AG(4)c max 2T mxjj 

where I and ; are the characteristic eigenvalues of equation (3). 

Should this condition be violated, spurious numerical instabilities 

arise which can quickly destroy the solution. This occurrence is easily 

avoided by updating the condition (4) every few integration steps and 

executing the computation at some prudent fraction of the specified 

limit, say, 0.:8 Arc . In addition, it is necessary to check the accuracy 
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EXAMPLE - A VELOCITY-DRIVEN STREAM AT THE EQUATOR
 

To illustrate the fundamental processes involved in the 3-D stream
 

interaction, we consider a simple model stream in which the radial velocity
 

alone is a function of position at the inner boundary. In the real solar
 

wind, we expect all flow quantities at the inner boundary to vary, leading
 

to a rather complex evolution. These mixed-mode streams will be the
 

subject of the next paper in this series. For this introductory study,
 

however, it is imperative to work with basic, highly idealized structures
 

to obtain a feel for the parameters most likely to be important in more
 

realistic cases.
 

For our example, we have chosen a rather simple distribution of the
 

radial velocity at the inner boundary, ro . Since the source surface is
 

a sphere centered on the sun, we represent this configuration by means
 

of a contour plot projected onto a globe (Figure 3). (The projection
 

is orthographic, meaning that the globe is viewed from infinity and free
 

of parallax effects, though foreshortening remains.) North is at top,
 

west at right--thus the contours are mapped onto the source surface
 

(r° = 35 R = .16 AU) just as the sun appears in the sky. For reference,
 

the usual global coordinates of latitude and longitude are provided with
 

a 100 spacing. 

The contours of radial velocity in Figure 3 depict our highly
 

idealized stream rising from a uniform surrounding slow flow of 290 km/sec
 

to a peak velocity of 580 km/sec (marked by the "H") at the equator.
 

The circular pattern and even spacing (A = 30 km/sec) of the contours
 

indicates that the radial velocity variations are symmetric about the
 

stream core. The overall width and amplitude of the distribution is
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intended to mimic typical stream behavior near earth orbit (Gosling et al.,
 

1972). (A slice through this distribution it constant 0 is depicted in
 

Figure 4. The variations in both 6 and 0 are of the form [sin(Tr x)/(r x)]
2
 

where Jxj r 1.) All the other variables--u, u0 , n, and V--are held
 

constant on the source surface at the slow flow levels, which are adjusted
 

to yield average solar wind conditions at I AU under the assumption of
 

uniform radial adiabatic flow (Table I). For numerical convenience, the
 

boundary conditions are periodic in 0. That is, another identical stream
 

is located ;1200 in azimuth from the one depicted. However, over the
 

radial span of this calculation, the spacing of the streams suffices to
 

guarantee that the interaction between them is negligible.
 

Our specification of the nonradial flow components at the inner
 

boundary merits a brief digression here. These have been defined as
 

equal to zero since it is our express intent to study the nonradial
 

motions induced by the stream interaction. In fact, the neglect of
 

motions which could conceivably be imposed as boundary conditions may be
 

seen as only a minor handicap, since nonradial flows which are not driven
 

by the dynamical interaction must decay as 1/r and thus should be
 

unimportant relative to the large fluctuations that are generated by
 

streams and grow with radius.
 

Figure 5 depicts the resultant contours of constant radial velocity,
 

density, azimuthal velocity, and meridional velocity, respectively, at
 

r = 1.0 AU. (Pressure and temperature are not shown, since the initial
 

conditions and the use of the polytrope law requires n, T, and p all to
 

be exactly in phase at all radii.) The A below each plot specifies the
 

contour spacings, with highs and lows marked by "H" and "L". The symbol
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Tj refers to the position of the original centerline of the pattern:
 

thus, the central meridian of the source surface plot (Figure 3) is
 

located 500 to the right of the central meridian of the contours of
 

Figure 5. This shift is due to solar rotation, as mentioned above.
 

In the u plot (Figure 5a) we have maintained the initial contour
r 

spacing of 30 kin/sec to demonstrate the steepening that has occurred
 

between r (Figure 2) and 1.0 AU. (The base level, of course, has risen
 

because of the overall radial acceleration in the flow, as discussed
 

in the mathematical section.) The high-velocity material at the core of
 

the stream at to has overtaken the slower material to its right, resulting
 

in the compression characterized by the compaction of the contours.
 

Conversely, the wide spacing of the contours to the left denotes the
 

rarefaction, where the fast plasma in the stream core has run away from
 

the slower flow trailing the peak. Both the compression and rarefaction
 

are clearly visible in the density contours (Figure 5b). (For reference,
 

observe that the density far from the stream is about 7 cm-3). The com­

pression and the rarefaction are greatest at the equator because the
 

initial amplitude of the stream maximizes there.
 

Figure 5(c,d) portrays the nonradial flow components at 1.0 AU. In
 

the u0 plot, the solid contours show flow to the right (the positive or
 

corotating direction) while the dashed curves indicate motion to the left
 

(the negative or anti-corotating direction). Similarly, in the u6 plot
 

solid contours depict positive (north-to-south) flow, while the dashed
 

lines denote negative (south-to-north) motions. All of the behavior
 

evident in Figure 5(c,d) is readily explained in terms of the pressure
 

gradients generated by the 6-dependent stream interaction. Because the
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stream interaction maximizes at the equator, the largest u0 deflections
 

and shears must occur there, also. However, just as the peak u0 appears
 

in the region of the largest azimuthal pressure gradients, so also must
 

ue maximize along the steepest meridional gradients. Thus the peak u
 

motions are found well away from the equator and somewhat out of phase
 

with u.0 In addition, u motions, being more directly driven by the
 

stream interaction, develop larger amplitudes and sharper longitudinal
 

variations than the u6 flow. The relative amplitudes of and gradients
 

in these two quantities may be adjudged by comparison of the contour
 

spacings in Figure 5(c,d). (Bear in mind that the scale, A, differs
 

by a factor of two in these two plots.)
 

Obtaining a clear mental picture of the flow patterns implied by
 

Figure 5(c,d) requires a practiced eye. Therefore, in order to elucidate
 

the relation of this flow to the overall geometry of the stream, we,have
 

prepared the velocity-vector plot, Figure 6. The relative magnitude and
 

direction of the nonradial flow (corrected for projection effects) at a
 

number of positions in the stream are indicated by the arrows. To set
 

the scale, the small arrow beneath the globe has a value of 25 km/sec,
 

while the large arrow measures 400 km/sec (the minimum radial velocity
 

at 1 AU, for comparison purposes). The vectors have been superimposed
 

on the density contours (equivalent to pressure contours in this velocity­

driven case) of Figure 5b to emphasize the nonradial flow of material
 

away from the compression and into the rarefaction, defining a weak
 

global vortex motion. Similar large-scale vortices are also at work in
 

the (r, 0) and (r, 0) planes, but their portrayal would be somewhat
 

obscured by the relatively enormous magnitude of the radial velocity
 

vector.
 



18 

All the structure visible in Figures 5 and 6--the marked asymmetry
 

in the radial velocity, the large-amplitude variations in the particle
 

density, and the complex tangential vortex motions--all have been spawned
 

in the mechanics of the stream interaction. The radial inflow of material
 

into the high-density compression region as slow plasma is overtaken by
 

fast leads to a nonradial outflow on a global scale, and vice versa for
 

the rarefaction region.
 

The growth of this structure with radius is displayed graphically
 

in Figure 7. There we view the fractional deviations
 

An n-n0Au 0, Au0 ______ 

n n 1. U 
10 0 0 

of the density and nonradial flow components about no and u, the local 

slow-flow density And radial:veloaity, respectively. The curves in Figure 7 

refer to the peak values anywhere in the stream; An. and Au maximize at 

the equator in this case, whereas the greatest meridional deflection 

occurs at 0 = 72 near ro then gradually shifts toward the equator-­

lying at 8 = 770 at 1 AU--as, the stream interaction develops. It is 

evident that while large variations in the density (and pressure) are 

generated as the stream steepens, the magnitude of the nonradial motions 

remains small, even out to 1.5 AU, where the appearance of numerical
 

oscillations begins to affect the accuracy of the solution seriously.
 

The growth in u is tempered by two factors: first, since the interaction
 

region lies approximately along the interplanetary spiral, the orientation
 

of the associated pressure gradients systematically shifts to a more
 

radial alignment as heliocentric distance increases; and, second,. geometry,
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dictates that even if the angular scale, A0, of the gradients is kept
 

constant, the spatial scale, (r sin 8) Lo, must increase with r. Thus,
 

in the absence of driving forces, conservation of angular momentum
 

requires a decrease in the nonradial motion away from the sun, a fact
 

we have exploited in setting u and u0 = 0 at r0.
 

Because the nonradial motions are driven by the pressure gradients
 

built up in the stream interaction, u6 is sensitive to the orientation
 

of the interaction front relative to the meridional plane. In our
 

= 
example-, the front is exactly perpendicular to the equator at 0 900;
 

hence ue = 0 there. The meridional motions that occur at higher 

latitudes are primarily edge flows, only marginally driven by the stream 

interaction. (In a subsequent paper, we will examine a case where the 

front is inclined to the equator, directly forcing material across the 

ecliptic plane.) 

The lack of meridional flow at the equator does not mean that 3-D
 

effects are negligible there. On the contrary, the vortex motion in
 

Figure 6 implies a transport of mass, energy, and mbmentum away from
 

the equator in the compression region and toward the equator throughout
 

the rarefaction. These motions do not, in general, balance out. We
 

compute the percentage mass-flux transport at a given latitude as:
 

M(r, .6)- Mc o , 6)
N(%) = x 100 (8a) 

M(r 0 

where
 

M(r, 6) = dg (r pU ) (8b) 

and i denotes summation across the entire stream at fixed 6. 
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In Figure 8 we plot this parameter as a function of 6 at 1 AU. The
 

greatest mass loss has been sustained at the equator and not at the
 

latitudes where u0 is greatest. Material has been systematically
 

transported to higher latitudes by the equatorial divergence. This
 

process proceeds monotonically with radius and approaches a value of
 

4.5% in the equatorial plane, at r = 1.5 AU, where it is gradually
 

tapering off due to geometric effects.
 

The mass transport parameter M (%) primarily describes the action
 

of meridional flow averaged over a span of longitude and is therefore
 

global in nature. A more poignant measure of these effects on a local
 

scale is presented in Figure 9. The three curves refer to the maximum
 

absolute value (in arbitrary units) of the radial, azimuthal, and
 

meridional divergence terms in the mass conservation equation, evaluated
 

at the equator as a function of radius. Clearly, beyond about 0.75 AU,
 

the nonradial terms rapidly diminish in relative importance, as the
 

geometric decay overpowers the continual growth in u0 and u that
 

accompanies the steepening of the stream. In addition, the meridional
 

terms are relatively small compared to the azimuthal contributions as
 

had been expected.
 

These two measures of nonradial effects--the longitudinally 7 averaged
 

quantity M (%) and the locally-sensitive comparison of divergence
 

terms--together suggest that while the equatorial portion of the stream
 

continues to lose mass beyond I AU, this divergence must be rather
 

diffuse and have little local effect upon the stream evolution except
 

near the sun. That is, we conclude that the observable influence of
 

the 3-D geometry upon the stream development at any fixed latitude is
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largely confined to the region inside 0.75 AU and, furthermore, that the
 

evolution is more strongly affected by the azimuthal motions than by the
 

meridional motions. (The same arguments could have been applied to the
 

momentum and energy divergence and transport terms; we have concentrated
 

on the mass parameter because the nonradial effects are relatively
 

largest in this quantity.)
 

An important implication of the above findings is that this stream
 

does not spread very much in latitude in the supersonic flow regime of
 

interplanetary space. Further support for this claim may be obtained
 

by following the motion of tracer particles embedded in the flow.
 

Figure 10a depicts an array of such markers uniformly dispersed across
 

0
=
the source surface, r0 . (The initial spacing is AQ = 2.00, AO 5.00)
 

Differences in u as a function of position (see Figure 3) coupled with
 
r 

rotation lead, of course, to the dynamic stream interaction, which moves 

the particles about relative to one another. In Figure 10b we have 

tracked the markers to 1 AU, using the routine described in Appendix A. 

(This diagram has been rotated by the same angle tjas the previous contour 

plots to facilitate comparison. The lines connect the particles in their 

original sequence at r .) We wish to make just two points: (1) the 

particles exhibit much greater relative displacement in 0 that in 8, as 

predicted. And (2), one may mentally overlay the ur and n contours of 

Figure 5 to relate pictorially the compression and rarefaction to the 

local density of the convected tracers. The displacement of the markers 

in e is a straightforward process. However the 0-displacement of the 

markers has two components: one due to the actual u motions seen in 

Figure 5c, and of a magnitude roughly comparable to the 6-displacement, 
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and'a much larger one7 stemtng fr6m,the rotational translation of the
 

original ur (5) distttiution. That £s., the particles tied to the faster 

fluid elements near l ,& sream core arrive at 1 AU relatively ahead 

(to the right)' of the markers attached to the slower preceding material.
 

In th&preeding pafagliaphs, we have investigated the dynamical 

processes associated with a fully nonlinear 3-D stream. It is instructive, 

th&refore to coiErAbt the predictiofns of this model with those of 

familiar, legs sophistldated formulations; To this end, we direct 

attentibn to the evolution of the streim in the immediate vicinity of 

the sbiA± equatbr; ih td but 34D solution predicts the maximum meridional 

transport effects. Figure ii bomraes solutions for identical boundary 

conditions along the &quator executed with nonlinear 3-D, 2-D and I-D 

models and with a 2-D iinear model. Using this illustration, we will 

explore the effects atttibhtable to the Variation in ge6metrical prdperties 

among the models, and then we 4ill consider the role of nonlinearities 

upon the dynamics. 

Turning first to he dimensionality question, the I-D soluti6n
 

(dashed) in Figurell refers to the so-called "(r, t)" model (Hufidhausen,
 

1973), wherein only the radial terms in the equations (and, of course,
 

rotation) are retained. The 2-1D solution (light solid) goes one step
 

further and takes the azimuthal motion into account (e.g., Goldstein,
 

1971), whereas our 3-D prediction (heavy solid) includes the full
 

geometry. Figure 11 displays the radial'velocity, density, and azimuthal
 

velocity variations in the ecliptic plane at 1 AU for each of the three
 

geometries. They are presented in time sequence form, with time in­

creasing to the right in the usual manner of spacecraft data display.
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However, we have chosen to employ the more fundamental heliocentric 

angular units rather than temporal units. Fpr reference, the synodic 

angular velocity rate for an observer at 1 AU corresponds to 13.30 per 

day. Note also that time and'az muth; as defined in the spherical 

coordinate system attached to the sun, run in opposite directions. Hence, 

this time series is a mirror image of a slice through the equator of the 

distribution in Figure 5. 

It is evident from Figure 11 that the 3-D geometry has had little 

influence on the evolution of the stream over that of the 2-D approxi­

mation. The.real change comes in the transition from 2-D to I-D (r, t)
 

solutions. The azimuthal divergences have significantly broadened and
 

reduced the compression at the leading edge by allowing material to slip
 

laterally away from the interaction region; the 3-D case sees a further
 

augmentation of this effect. The simplified geometry of the I-D model
 

leads to a gross overestimate of the dynamical reaction to the kinematic
 

steepening of the stream and to the prediction of an exaggerated com­

pression that is too steep and narrow. As a consequence, the I-D radial
 

velocity profile shows a stepped structure that portends shock-pair
 

formation Cactually occurring near 1.25 AU). The nonradial flow in the
 

multi-dimensional models, on the other hand, relieves the stresses at
 

the leading edge and thus delays the appearance of corotating shocks.
 

(Due to numerical difficulties in this inviscid model, we cannot be more
 

specific than to say that the multi-dimensional models -do not shock 

f
before 1.5 AU.) We point out, however, that once the stream reaches 

1 AU, Figure 9 suggests that the nonradial flow effects must wane, and 
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therefore the evolution at larger heliocentric distances must proceed
 

in nearly 1-D fashion.
 

The essential nonlinearity of the stream interaction is demonstrated
 

by comparison of the 2-D linear and nonlinear solutions found in Figure 11.
 

The predictions of the linear model (dotted) were obtained by numerical
 

integration of a 2-D formulation of the linear perturbation equations in
 

(Siscoe and Finley, 1972), using the computational techniques described
 

in this paper. The discrepancy between the linear and nonlinear models
 

are even more striking than those between the 1-D and 2-D nonlinear
 

solutions. The intrinsic inability of the linear model to steeps--due
 

to the inadequate treatment of the crucial (U.V)U term in the radial
 

momentum equation--precludes its application to solar wind structures
 

having large variations in the radial velocity (for more details, see
 

Pizzo, 1977). On the other hand, a purely kinematic model--which may be
 

viewed as the logical extreme of the 1-D nonlinear formulation-errs as
 

disastrously in the opposite direction, through neglect of the dynamical
 

reaction (i.e., pressure forces) of the system. (Calculations indicate
 

that the kinematic model shocks near 0.8 AU for this example.)
 

These comparisons imply that accurate representation of solar wind
 

dynamics inside 1.0 AU demands the use of models that are both multi­

dimensional and nonlinear, While the nonradial flow may be small
 

throughout the region of interest (e.g., refer to Figure 7),, their
 

cumulative effect in broadening the structure at the leading edge of
 

the stream may be substantial. Apparently a 2-D nonlinear model may
 

suffice for the study of many aspects of stream evolution; indeed, for
 

some geometries and applications, the 3-D approach may prove extravagant.
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However the 3-D model alone provides estimates of the meridional flow
 

properties and further studies will be required to distinguish when the
 

effects of meridional motions may be significant.
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SUMIARY AND CONCLUSIOtS
 

We have developel a numerical three-dimensional hydrodynamic model
 

to study the effects of global, corotating stream evolution in inter­

planetary space. On a practical basis, the technique proves computationally
 

efficient and is possessed of great versatility as well. With a minimum
 

of effort, the fiodel can be expanded to a 3-D MHD formulation or,
 

alternatively, reduced in scope to 2-D and even 1-D descriptions. In­

deed, the model may be applied to any corotdting flow of astrophysical
 

interest, so long as the governing partial differential equations are
 

hyperbolic and well-behaved. Wit. fnodest-additional labor, shocks and
 

discontinuities dould be accommodated through the introduction of a
 

suitable artificial viscosity.
 

The one simple stream model presented in this paper was selected
 

to demonstrate the capdbilities of our numerical techniques while also
 

illustrating the basic phenomena to be encountered in corotating 3-D
 

flows. A variety of graphical displays--the contour, velocity vector,
 

and tracer particle plots--were utilized to elucidate the global aspects
 

of the nonradial flow generated by the.3-D stream interaction. The
 

primary finding is that the induced meridional motions afe small, and so,
 

therefore, are their effects upon the stream evolution. Thus much of
 

the 3-D solar wind structure engendered in the upper reaches of the
 

corona apparently persists in 1 AU and beyond, modified in transit by
 

interplanetary processes that are essentially 2-D in nature.
 

Despite the hypothetical character of this example's boundary
 

conditions, it is to be expected that the general sense of the results
 

obtained should hold valid for a broad range of solar wind structures.
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The flow is so heavily momentum-dominated that a significant departure
 

from the traditional concepts of nearesun stream configurations--upon
 

which the choice of this model xas based--would be required before a
 

substantial change in the dynamics of the situation could occur. 
Never­

theless, it would be inappropriate to generalize too freely upon the
 

results of this one example, and, thetefore, we defer such elaborations
 

to the second paper in this series.
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APPENDIX A - DETAILS OF NUMERTCA METHQDS 

I. Differ ncing Schemie and Matrices 

We wish to numerically integrate"the 3-D HD equations in matrix 

form: 

+ar - " H + G (A.1) 

where tie independent variables,are the usual (r, 0, ) and the 

dependent variables AFe .pressed as the vector 

U 
r
 

n 

P 

U
 

u 8 

Taking equations (1) in the order radial momentum, mass, polytrope, 

azimuthal momentum, and meridional momentum, the matrices f and F and 

the vector G are defined as 

U8 Ur 0 -U6/P 0 -28 

-pu0 2U6/Ur u0/Ur  0 pur 

2 2
F 2-C s Uu UU 0 cspU 
r 

0 0 0 a2U0/U r 0
 

0 0 C2/Pur 0 a 2U/ r 
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1 2 

VoUr 
-PO 

0 
2VO/ur 

-V/p 
vO/U 

-c s 

Pu 

0 
o0 

2 pU 0 

- 2 s 

ctr sin 6 0 0 a2/pUr c2V9/U r 0 

0 o 0 0 a2V/U r 

and 

C - C 02 /P 

UrC2 - po 1 

G- 2 2 

C5 /U 

w h ere 

u6
2 

2 M 
2 U 2 GM0+ --­

0 U r 

-2pU- PU0 cot a 

-UOU -UOU9 cot O 

u10 cot 0 - uus 

and a Ur s 

2 yp/p 

VO = U- - r sin 0 
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In the supersonic regio, equations (4,1) are everywhere hyperbolic, 

and the solution in the region C> r ) reduces to an initial-value 
0 ­

problem. That is, we are given-U over some sp4an of and 0 on the 

spherical surface r (see Figure-2) and a e looking for a suitable 

numerical representati a of equations 4.1) that will allow us to qtep 

the solution from r t r + Ar and so on. 

An efficient differencng scheme suggested by MacCormack (1971) 

and applied by Thomas et al. (1972), is a second-order, two-step, 

predictor-correctQr of t4e form: 

(step 1) 

S U r C + Fi j ,+ 7 + i+1,j 7 Uijf 


(step 2)
 

U~~~w +Ar Uc:13iLi'U 
.. = + n .-+1 G± +n l. V .7 + +l -3 

(A. 2) 

The superscript n refers to the radial mesh step, while subscript i and
 

i refer to the azimuthal and meridional mesh nodes, respectively. The 

tilde denotes quantities computed from values generated in the first 

step; the vector and matrix symbols have .been eliminated for clarity, 

but it is to be understood that (A.2) represents a matrix expression. 

This differencing scheme offers one particular advantage over dozens
 

of other variants that could haye been employed: storage is minimized
 

since only Un (and not On, H ) need be retained from step 1 in order
 

to execute step 2.
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Additional savings in computer time can be realized by means of the
 

coordinate transform found in Goldstein and Jokipii (1976). This
 

transform is specifically tailored to the corotating stream problem
 

and secures a larger radial step size by removing most of the azimuthal
 

"motion" of the stream through the fixed mes, of the calculation. This
 

apparent motion is nothing other than the spiral geometry of the inter­

action front. The transform effectively shifts the mesh to keep the mean
 

spiral centered, and is almost equivalent to solving the system in the
 

rotating frame.
 

The new independent variahle in the azimuthal direction is
 

S0 + Or/Ur(A.3)
 
where Q is the solar rotation rate and ir some average radial velocity
 

at r. When the transform is applied' the radial step-size criterion (4) 

is improved since 

K-X+ w/ur 

Note that the exact value of Ur is not critical; any rough average over
 

the stream will serve the purpose, and, for greatest economy, need be
 

updated only every few steps. One may keep track of the total absolute
 

shift between the initial aimuthal coordinate system and the transformed
 

system as
 

r 0 dr
 

r Ur(r)
 

The differencing method (A.2) can, in principle, be used to solve
 

any system of equations that can he cast in the form (A.l). Thus, using
 

basically the same techniques, one can tackle a variety of models--from
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1-D RD to 3-D MHb and even 2-D time-dependent A2D-merely by generating 

-the approptiate expressions for t; ji and,G. The only requirement is
 

that the s4lutions be hypebdlic everywhere within the region of in­

tegest and that they be jell-behaved; i.e., not contain discontinuities 

6r grdients that ate too steep. This latter dondition must remain some­

what but; ti gebaral, means that hocks are beyond the 

scope of the schenie deshribid here. T6 be stire, (A.2) does contain a 

small bnount oi imiicit 4rtiftcial viscosity and therefore may tolerate
 

weak discontinuities it! soTe cases. However for situations of greater 

interest--say, the shock-dotinated structires at se-eral AU distahce
 

from the sun--the ,intibddtictonof explicit artificial viscosity terms
 

would be requirxe (e.g., see CI; 6 of oache 1972). 

II. Accuracy Consideatiois
 

One of the simplest ways to test the accuracy, of a humerical solution
 

is to repeat the calculation using different values for the various mesh
 

parameters. This may prove convergence to a limit, though not necessarily
 

to the desired one. Another method is to substi'tute Ehe genera'ted 

solutions back into the original differential equations, a ploy that is 

useful in ferreting out local errors but insensitive to systematic 

deviations that become Iarge cumulatively. Since equations El) are not 

in explicit conservative form, we hiay resort to conservation laws to 

check our results. Easiest to implement is an integral summation of 

the conserved fluxes. It equations (1) are cast in conservative form 

and integrated in r and ' at fixed e,then five relations--one for mass, 
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total energy, and each of the momentum fluxes--can be derived in the 

form 

d [flux density at Cr, 8)] + s dochange in flux densityl 

drSd0 lat e per unit radial (= const
R L increment
 

where the subscripts I and R denote integration over the entire
 

azimuthal extent of the calculation from radius r to r. The kernel
 

of the double integral contains a term arising from the exchange of
 

momentum and energy among kinetic, thermal, and gravitational forms and
 

a term related to the latitudinal transport contributed by the meridional
 

motions. A sensitive measure of conservation on a local scale may be
 

obtained through manipulation of equations (1). Along a streamline in
 

the rotating frame, we find
 

Pp-Y = const
 

1 (U 2 U 2 2) Y P GMsG -r U0 = const.
S+u +U 9 + T-1 T _ -r 

The streamlines are specified by the first characteristic in equations
 

(3) and are traced with the aid of a second-order Taylor expansion about
 

the mesh nodes. The expressions are tedious and convolved, and their
 

integration requires an iteration loop (see Pizzo, 1977).
 

These methods were used to evaluate the example presented in the
 

text. For mesh resolutions AO and AO of 2.50 and 1.00, respectively,
 

we find 1-2% overall conservation accuracy, with 5-8% local deviations
 

in steep gradient regions, rapidly deteriorating near 1.5 AU where
 

the evolution proceeds vigorously. (Note that more resolution is
 

usually necessary in the azimuthal direction, as those gradients are
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more directly driven by the stream interaction. Thus A0 normally
 

-dictates the radial step criterion, A-r The computation time for
 

this example, exclusive of graphics and diagnogtic routines, was approxi­

mately two minutes on the GSFC IBM 360191 computer.
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TABLE I 

PHYSICAL PARAETERS FOR THE: SLOW FLOW 

=35 R r 1.0 AU 
*0 

u (km/set) 290 :401 

t (cam 3) 370 7.1 

T 0K)- 1.12 x 106 " 8.0 x 104 

u6 (k/sec) 0 0 

u0 
(km/sec) 0 0 



39 

FIGURE CABTIONS
 

Figure 1 Schematic of the stream interaction in the inertial frame. 

The view is from above the north pole of the sun, looking 

down on the ecliptic plane. Spatial differences in the 

neatly radial expansion (.indicated by the dark vectors) 

couple with solar rotation to produce compressions (shaded) 

and rarefactions in the interplanetary medium. Secondary. 

nonradial motions are driven by pressure gradients built 

up in the stream interaction Clarge open arrows). Magnetic 

field lines--which correspond to streamlines of flow in 

the rotating frame--are drawn out into the spiral con­

figuration as shown. 

Figure 2 Definition of coordinate system and mesh parameters at fixed 

radius. The computational mesh (dark grid pattern) covers 

only a portion of the total spherical surface. 

Figure 3 -Roundaryconditions for the example in the text. The 

contours of constant radial velocity are spaced at an 

interval, A, of 30 km/sec. 

Figure 4 Longitudinal slice through the distribution of Figure 3. 

The curve is depicted as a time sequence increasing to the 

right (the usual observational convention), while azimuth 

increases to the left. 
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Figure 5 Contours of constant radial velocity Ca), numher density 

(b), azimuthal velocity Cc), and meridional velocity Id), 

for the stream at 1.0 AU. The solid contours In Cc) 

refer to westward Qositiv or corotating) flow, the 

dashed contours to eastward (negative or anti-corotating) 

flow. The solid contours in Cd) refer to southward 

(positive) flow, the dashed dontours to northward 

(negative flow. The peak values are denoted by the "H", 

the minima by "L", and the contour intervals by.A. The 

contours have been shifted in longitude by the angle 71 

from the original centerline to account for rotation 

(see text). 

Figure 6 Nonvadial flow vectors at 1.0 AU, superimposed on the 

density contours of Figure 6(h). The scale is set by the 

vectors at bottom. 

Figure 7 Growth of density and nonradial velocity perturbations 

with radius. The curves refer to the peak values anywhere 

within the stream. 

Figure 8 Net percentage mass-flux transport as a function of 

colatitude, 0, at 1.0 AU. Material has been moved away 

from the equator toward higher latitudes by the meridional 

flow. 

Figure 9 Radial dependence Cat the equator) of the peak values of 

radial, azimuthal, and meridional divergence terms in 

the mass conservation equation. 
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Figure 10 Relative displacement of tracer particles imbedded in 

flow between r and 1.0 AU. The arrow identifies the 

0 

series of particles lying along the central meridian at 

r0 . Through interpolation, one may map the interplanetary 

distortions of any pattern (e.g., magnetic topology in 

weak-field limit) frozen to the flow. 

Figure 11 Comparison of stream models in equatorial plane. Predictions 

of radial velocity, density, and azimuthal velocity at 

1.0 AU are presented for 3-D, 2-D, and 1-D nonlinear, and 2-D 

linear formulations. 
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