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ABSTRACT

This paper is concerned with the development of the theoretical
and mathematical background pertinent to the study of steady, corotating
solar wind structure in all thrée spatial dimensions (3~-D). _The
dynamical evolution of the plasma in interplanetary space (defined as
the region beyond roughly 35 %3 where the flow is supersonic) is approxi-
mately described by the nonlinear, single~fluid, polytropic {(magneto-)
hydrodynamic equations. We outline efficient numerical techniques for
solving this complex system of coupled, hyperbolic partial differemtial
equations. The present formulatjon is inviscid and non-magnetic, but
our metheds allow for the potential inclusion of both features with only
modest modifications. We examine one simple, highly idealized, hydro-
dynamic model stream to illustrate the fundamental processes involved
in the 3-D dynamics of stream evolution. We find that spatial variations
in the rotational stream interaction mechanism produce small nonradial
flows on a global scale that lead to the transport of mass, energy, and
momentum away from regions of relative compression and into regions of
relative rarefaction. The magnitude of this transport is small, but
ingide 1 AU the nonradial flow can significantly retard shock -formation
by allowing f£iuid in the compressions to slip laterally, thereby
partially relieving the stresses built up in the stream interactiom.
Comparison with simpler models demonstrates the essential nonlinear,
multi-dimensional nature of the interplanetary dynamics. A subsequent
paper will be devoted to the investigation of a wide range of more

realisgtic model streams.



INTRODUCTION

The solar corona is frequently dominated by long-lived structures
which are‘organized on a global scale. Since the solar wind has its
origin in i:he coronal f_xpansion, it ‘is natural to expect that the
large-scale flow pattern of the solar wind reflect the three-dimensional
(3-D) structure of the corona (for a recent review covering the relation-
ship between coronal structure and the solar wind, see Hundhausen, 1977).
Indeed, inferences drawn from a variety of spacecraft and interplanetary-
scintillation observations provide compelling evidence that much of this
structure survives to the earth and beyond (e.g., see Dobrowolny and
Moreno, 1976).

One important class of solar wind flow is the stream interaction
(or "colliding streams"), which refers to the dynamical process by which
steady, large—scale inhomogeneities in the coronal expansion speed couple
with solar rotation to produce significant longitudinal rearrangement
of material'in interplanetary space. The basic mechanism is illustrated
in Figure 1, where we view the flow in the ecliptic plane from above the
noxth pole 6f the sun. The fast material emanating radially from the
high~speed source region near the sun is subsequently aligned by solar
rotation with the preceding slower plasma, resulting in a spiral inter-
action structure at large heliocentric distances. Material piles up
at the leading edge of the stream, where the fast flow overtakes the
slow, while material in the trailing portions of the stream is rarefied.
Nonradial motions (aside from those impressed upon the flow at the

source) are driven by the lateral pressure gradients associated with



the compression along the interaction front. But note that the rotation
introdtuces a basic anisotropy into the picture: the azimuthal gradients
are directly drivemn by the stream interaction mechanism, while the
meridional gradients (out of the plane of the paper) arise as a comsequence
of latitudinal wvariations in that mechanism. The latitudinal variation
stems partly from intrinsic latitudinal variations in the corona and
partly from the latitudinal dependence of the rotational -effect, That
is, for structures of the same spatial width, those 1ying nearer the
equator suffer a greater rotational interaction than those lying néarer
the poles. In general, therefore, we expect the meridional gradienmts,
and, hence, meridional motions, to be somewhat different from their '
azimuthal counterparts.

Theoretical interest in the corotating stream interaction has
centered on the description of the mechanism in the neighborhood of the
solar equatorial plane, giving rise to inereasingly complex 2-D models
whose validity depends upon the absence or negligibility of the local
latitudinal gradients, i.e., 3-D structure. Practical computational
difficulties have hindered progress toward 3-D formulations of comparable
sophistication. The 3-D linear model (Siscoe and Finley, 1972) proves
inadequate in the face of the large—amplitude variations in streams,
while the kinematiec description (Barouch and Burlaga, 1976) neglects
the dynamical reaction.of the plasma. A nonlinear 3-D approximation
has been synthesized under the assumption of purely radial flow
(Suess et al., 1975), but the effects of :the nonradial motions are mot
taken into account. Axisymmetric models (e.g., Siscoe and Finley, 1.969;
Suess, 1972; Nerney and Suess, 1975) include the meriodional flow but

ignore the essential azimuthal properties of the stream interaction.



A nonlinear 3-D stream model could provide valuable insights on
both observational and éheoretical fronts. For example, spacecraft
observations of the interplanetary medium are confined to a narrow zone
about the ecliptic plane. Lest our interpretation of these data become
ensnared in the parochial viewpoint imposed by our limited sampling
capabilities, it is imperative that we acquire the requisite expertise
to treat these observations in context, i.e., as nothing other than the
ecliptic manifestation of a phenomenon that is fundamentally global in
nature. Likewise, the analysis of interplanetary scintillation and
radio scattering observations, which contribute useful but less detailed
information on high-latitude and near—sun flows, would benefit from the
availability of a more complete description of the overall solar wind
flow structure. As a matter of theoretical interest, the strer 1s and
weaknesses of established but less elaborate models could be evaluated
and the inferences drawn from them more knowledgeably assessed. Finally,
we could take advantage of the capabilities of a sophisticated 3-D model
to speculate upon the properties of the solar wind flow in regioms

currently inaccessible to empirical study.

In this paper, we develeop a fully nonlinear 3-D model of steady
corotating streams in the solar wind. The treatment is hydrodynamic,
polytropic,and inviscid, and describes the flow-iq the supersonic regime
{(beyond ~ 35 %D}. We outline mathematical and computational techmiques

that form the basis for a family of stream models that will eventually



be extended to a nonlinear, 3-D MHD formulation. We consider heré one
simple example intended to facilitate the conceptualization of 3-D
stream dynamics, contrasting the properties of our global sélutions with
those of simpler models tHat Hdve appeared in the literature. A sub=
seqient paper will be devoted to the examination of a number of more
complex and realistic cases, which are better suited to physical

generalization,



MATHEMAT ICAT, DESCRIPTION OF THE FLOW

Numerous puhblished models dealing with the dynamics of corotating
high-speed streams (e.g., Siscoe and Finley, 1972; Matsuda and Sakurai,
1972; Goldstein, 1971, Hundhausen, 1973:; Nakagawa and Wellck, 1974;
Dryer and Steinolfsson, 1976; and Goldstein and Joﬁipii, 1977) have been
based upon the magnetohydrodynamic (MHD) description of the solar wind
flow first espoused by Parker (1958). It can be showm éhat the kinetic
equations reduce to the MHD formulation on the condition that we restrict
attention to structures that are much larger than the standard plasma
scaie lengths {e.g., gyration radius, Debye length, etec.) and to regions
some distance from the sun (r S 35 33) where the flow is supersonic and
the dynamics dominated by rotation and inertia (Pizzo, 1977). It is
presumed that the solar wind can be treated as a neutral electron-proton
‘gas having infinite electrical conductivity, and that heat conduction,
viscosity, and small-scale wave phenomena may be neglected. Furthermore,
the magnetic field may be dropped from the formulation on the grounds
that the flow is heavily momentum-dominated and magnetic effects therefore
minor. This assextion is justified for the relatively broad structures
we will consider here, but may break down at large radial distances
(r > 1 AU) where the streams approach shock formation or much nearer the
sun in the cage of streams having initially sharp boundaries (Rosenhauer
fgigg:; 1977; Gosling et al.; 1978; Pizzo and Burlaga, 1977).

The 3-D HD equations for the corotating solar wind flow are, in

vector form in the inertial (nonrotating) frame:
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where p ig the (proton) mass density, ﬁ the center-of-mass velocity,

P the total isotropic gas p;:es'sure, G the gravitational constant, M(:) the
solar mass, and Y the polytropic index. The independent variahles are
the usual spherical-polar coordinates (r, 8, ¢); and the pardmeter £ is
the equatorial angular rotation rate of the sun (aifferentiéi rotdtion
is neglected). These three equations express the conservation of mdss;
momentum, and polytropic constant respectively.

We set Y = 5/3, the adiabatic value, to dinimize the number of
free parameters in thée calculation (that is, temperature chdnges in the
plasma are determined entirely by the work performed inm cdmpressions and
rarefa(ctions). This choice doées force the use of soméwhat elevated
temperatures .near the sun if one is to match average solar wind conditionms
near, the earth, leading to an overall radial acceleration between the
inner houndaxy and 1.Q AU, However, thesé effects dc; not seériously affect
our results, and we would rather deal with these complications thanm with
the physical ambiguities introduced by a nonw-adiabatic Y. Finally, the
first term in each of equations (1) arises from the relation betiween
temporal and azimuthal gradients for cdorotating structure in the inertial

frame,
~ 3
b Q 8, -

This relation is exact for flows that are steady in the rotating frame

‘9
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and remairs approximately valid for slowly varying structures (i.e., flow



time to a given heliocentric distance small compared to the scale of
temporal variations at the source).
Equations (1) can be written in component form and manipulated

into the pseudo-linear vector expression:

o _= 8t .= 30,7
3c-F- 95 tH.g+6 (2)

-»
where U is a column vector composed of the dependent wvariables u,
= = -+
n, p, u¢, and Ug F and H are nonlinear matrix coefficients, and- G is a
= = -
nonlinear five-vector driving term (the components of F, H, and G are

listed in Appendix A). The characteristics are readily obtained from

the eigenvzlues of H and F. We find three independent azimuthal

characteristics
2 2
A_:?ﬁ: ng U, V :i:c ‘\/u -eg (3a)
or ux sinf?

(ur - c ) r sinB

and three independent meridional characteristics

u 2 2 2
e =99 _ € , u Uy e ]//;r tuy -eg .
or ru (3b)
¥ 2 2
(e -c¢
T s
where V¢-= ¢ -~ Qv gind
2 P
and Cq =Y E’

The first value in each case is simply the streamline of the flow in the
rotating frame, while the next two define the envelopes of pressure signals
from a given point. We can guarantee that the quantities under the square

root sign remain positive and the equations hyperbolic by situating our



inner boundary, T s cutside the sonic critical point (at o 35 RQ). The
bounaal L2 & Som 1 1 | J 1€
integration of equations (2) then reduces to a relatively tractable

. = T st ¢ . T vt Pt N v

initigl value problem ip five unknowns.

10



11

NUMERT.CAL TECHNIQUES

Many numerical methods have been developed to cope with systems of
coupled, hyperbolic partial differential equations such as (2). The
explicit Eulerian approach described by MacCormack (1971) proves
particularly efficient for multi-dimensional problems. Our implementation
of the techniqug is inviscid, which means we must forgo any but the most
rudimentary studies of shock formation. Thus the basic formulation
cannot be applied to the distant solar wind, where shock structures
dominate the flow (Gosling et al., 1976; Hundhausen and Gosling, 1976;
Smith and Wolfe, 1976), nor to streams having sharp gradients near the
sun and likely to steepen appreciable inside 1 AU. However, with some
modification, it would be possible to add an explicit artificial viscosity
and include the magnetic field in the model to permit comsideration of
these topics.

The tedious details of our numerical method are presented in
Appendix A; here we will discuss only the broad outlines of the technique.
The dependent variables'a = (ur, n, P, u¢, ue) are specified on a fixed
rectangular (6, ¢) mesh lying in the spherical surface, r = T which
constitutes the inner boundary. TFigure 2 shows a schematic of the mesh
superimposed on the heliocentric global coordinate system, with the
azimuthal direction, ¢, and the meridional direction (actually the
colatitude), B, defined as depicted. Note that the mesh covers only a
portion of the surface, to minimize computer demands and to aveid
numerxical difficulties associated with the geometric singularities at

the poles. Periodic boundary conditions are imposed at the azimuthal

edge of the mesh, while'the upper latitudinal boundary is a free surface,
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with the meridional dervatives there being approximated by one-sided
differences. This treatment is permissible provided we choose the
boundary conditions such that the stream blends smoothly into uniform
flow near and above the upper latitudinal edge of the mesh. As long
as this edge lies only along the outermost fringes of the stream where
the perturbations are very small, spurious effects upon the overall
eyolution are virtually nil. The lower latitudinal boundary is handled
the same way, unlesg we are dealing with a stream that is symmetric
about the equator. In that case, the lower half of the mesh may be
dispensed with altogether, and the symmetry conditions simplify ex-
pression of the meridional dervatives.

Given U (ro, 6, ¢) everywhere on the mesh, we may advance the
solution to U (ro + Ar, 0, ) by our finite-difference form of equation
(4). The magnitude of the Ar step is, for fixed A8 and A$, given by
the Courant condition, which requires that the values at any given point
be causally connected to the region demarcated by the upstream
characteristics. The Courant step-size limit for this system is given

by

aAp A6 (&)
Ar, = max (ma:lz 2] max| €]

where A and € are the characteristic eigenvalues of equation (3).

Should this condition be violated, spurious numerical instabilities
arise which can quickly destroy the solution. This occurrence is easily
avoided by updating the condition (4) every few integration steps and
executing the computation at some prudent fraction of the specified

limit, say, 0.8 Arc. In addition, it is necessary to check the accuracy
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EXAMPLE - A VELOCITY-DRTVEN STREAM AT THE EQUATOR

To illustrate the fundamental processes involved in the 3-D stream
interaction, we consider a simple model stream jin which the radial velocity
alone is a function of position at the inner boundary. In the real solar
wi;d, we expéct all flow quantities at the inner boundary to vary, leading
tc a rather complex evolution. These mixed-mode streams will be the
subject of the next paper in this series. For this introductory study,
howeyer, it is imperative to work with basiec, highly idealized structures
to obtain a feel for the parameters most likely to be important in more
realistic cases.

For our example, we have chosen a rather simple distribution of the
radial velocity at the inner boundary, r, Since the source surface:is
a sphere centered on the sun, we represent this configuration by means
of a contour plot projected onto a globe (Figure 3). (The projection
is orthographic, meaning that the globe is viewed from infinity and free
of parallax effects, though foreshortening remains.) North is at top,
west at right-—-thus the contours are mapped onto the source surface
(r0 = 35 ED = .16 AU) just as the sun appears in the sky. For reference,
the usual global coordinates of latitude and longitude are provided with
a 106° spacing,

The contours of radial velocity in Figure 3 depict our highly
idealized stream rising from a uniform surrounding slow flow of 290 km/sec
to a peak velocity of 580 km/sec (marked by the "H") at the equator.

The circulaxr pattern and even spacing (A4 = 30 km/sec) of the contours
indicates that the radial velocity variations are symmetric about the

stream core. The overall width and amplitude of the distribution is



intended to wimic typical stream behavior near earth orbit (Gosling et al.,
1972). (A slice through this distribution at constant 0 is depicted in
Figure 4. The variations in both © and ¢ are of the form [sin(W x)/{T x)1]

1

where le £ 1. All the other variables——ue, u¢, n, and p—-are held
constant on the source surface at the slow flow levels, which are adjusted
to yield average solar wind conditions at 1 AU under the assumption of
uniform radial adiabatic flow (Table I). For numerical convenience, the
boundary conditions are periodic in ¢. That is, another idenpical stream
is located x 120° in azimuth from the one depicted. However, over the
radial span of this calculation, the spacing of the streams suffices to
guarantee that the interaction between them is negligible. )

Qur specification of the nonradial flow components at the inner
boundary merits a brief digression here. These have been defined as
equal to zero since it is our express intent to study the nonradial
motions induced by the stream interaction. In fact, the meglect of
motions which could conceivably be imposed as boundary conditions may be
seen as only a minor handicap, since nonradial flowys which are not driven
by the dynamical interaction must decay as 1/r and thus should be
uniﬁportant relative to the large fluctuations that are generated by
streams and grow with radius.

Figure 5 depicts the resultant contours of constant radial velocity,
density, azimuthal.velocity, and meridional velocity, respectively, at
r = 1.0 AU. (Pressure and temperature are not shown, since the imitial
conditions and the use of the polytrope law requires n, T, and p all to

be exactly in phase at all radii.) The A below each plot specifies the

contour spacings, with highs and lows marked by "H" and "L". The symbol

15
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7| refers to the position of the original centerline of the pattern:

thus, the central meridian of the source surface plot (Figure 3) is
(o]

located 50 to the right of the central meridian of the contours of

Figure 5. This shift is due to solar rotation, as mentioned above.

In the u plot (Figure 5a) we have maintained the initial contour
spacing of 30 km/sec to demonstrate the steepening that has occurred
between L (Figure 2) and 1.0 AU. (The base level, of course, has risen
because of the overall radial acceleration in the flow, as discussed
in the mathematical section.) The high—velocity material at the core of
the stream at fo has overtaken the slower material to its right, resulting
in the compression characterized by the compaction of the contours.
Conversely; the wide spacing of the contours to the left denotes the
rarefaction, where the fast plasma in the stream core has run away from
the slower flow trailing the peak. Both the compression and rarefaction
are clearly visible in the density contours (Figure 5b). (For reference,
observe that the density far from the stream is about 7 cm_3). The com-
pression and the rarefaction are greatest at the equator because the
initial amplitude of the stream maximizes there.

Figure 5(c¢,d) portrays the nonradial flow components at 1.0 AU. In
the u¢ plot, the solid contours show flow to the right (the positive or
corotating direction) While the dashed curves indicate motion to the left
(the negative or anti~corotating direction). Similarly, in the ug plot
solid contours depict positive (north~to-south) flow, while the dashed
lines denote negative (south-to-north) motions. All of the behavior

evident in Figure 5(¢,d) is readily explained in terms of the pressure

gradients generated by the O-dependent stream interaction. Because the

i6
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stream interaction maximizes at the equator, the largest u, deflections

¢

and shears must occur there, also. However, just as the peak u¢ appears
in the region of the largest azimuthal pressure gradients, so also must
Uy maxim%ze along the steepest meridional gradients. Thus the peak ug
motions are found well away from the equator and somewhat out of phase
with u¢. In addition, u95 motions, being more directly driven by the
stream interaction, develop larger amplitudes and sharper longitudinal
variations than the U fiow. The relative amplitudes of and gradients
in these two quantities may be adjudged by comparison of the contour
spacings in Figure 5{c,d). (Bear in mind that the scale, A, differs
by a factor of two in these two plots.)

Obtaining a clear mental picture of the flow patterns implied by
Figure 5(c,d) requires a practiced eye. Therefore, in order to elucidate
the relation of this flow to the overall geometry of the stream, we have
prepared the velocity-vector plot, Figure 6. The relative magnitude and
direction of the nonrgdial flow (corrected for projection effects) at a
number of positions in the stream are indicated by the arrows. To set
the gcale, the small arrow beneath the globe has a value of 25 km/sec,
while the large arrow measures 400 km/sec (the minimum radial velocity
at 1 AU, for comparison purposes). The vectors have been superimposed
on the density contours (equivalent to pressure contours in thig veloeity-
driven case) of Figure 5b to emphasize the nonradial flow of material
away from the compfession and into the rarefaction, defining a weak
global vortex motion. Similar large-scale vortices are also at work in
the (r, ¢) and (r, 6) planes, but their portrayal would be somewhat

obscured by the relatively enormous magnitude of the radial velocity

vector.
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All the structure visible in Figures 5 and 6-~-the marked asymmetry
in the radial velocity, the large—amplitude variations in the particle
density, and the complex tangential vortex motions—-all have been spawned
in the mechanics of the stream interaction. The radial inflow of material
ingo the high~density compression region as slow plasma is overtaken by
East leads to a nonradial outflow on a global scale, and vice versa for
the rarefaction regicn.

The growth of this structure with radius is displayed graphically

in Figure 7. There we view the fractional deviations

n-n Au¢, Aug < um, ug

- 3 —_ =
n n u u
o Q o}

of the density and nonradial flow components about o, and U the local
slow-flow density and radial:veloecity, respectively., The curves in Figure 7
refer to the peak values anywhere in the stream; An and Au¢ maximize at
the equator in this case, whereas the greatest meridional deflection
occurs at 8 = 72° near LI then gradually shifts toward the equator--
lying at B = ?70 at 1 AU~-~as the stream interaction develops. It is
evident that whilée large variations in the density (and pressure) are
generated as the stream steepens, the magnitude of the nonradial motions
remains small, even out to 1.5 AU, where the appearance of numerical
oscillations begins to affect the accuracy of the solution seriously.

The growth in u¢ is tempered by two factors: £first, since the inte?action
region lies approximately along the interplanetary spiral, the orientation
of the associated pressure gradients éystématically shifts to a more

radial alignment as heliocentric distance increases; and, second, geometry-



19

dictates that even if the angular scale, A¢, of the gradients is kept
constant, the spatial scale, (r sin 0) A@, must increase with r. Thus,
in the absence of driving forces, conservation of angular momentum
requires a decrease in the nonradizl motion away from the sun, a fact
we have exploited in setting u¢ and Uy = 0 at L

Becauge the nonradial motions are driven by the pressure gradients
built up in the stream interaction, ug is sensitive to the orientation
of the interaction froant relative to the meridional plane. In our
example, the front is exactly perpendicular to the equator at 8§ = 900;
hence uy = 0 there. The meridional motions that occur at higher
latitudes are primarily edge flows, only marginally driven by the stream
interaction. (In a subsequent paper, we will examine a case where the
front is inclined to the equator, directly forcing material across the
ecliptic plane.)

The lack of meridional flow at the equator does not mean that 3-D
effects are negligible there. On the contrary, the vortex motion in
Figure 6 implies a traunsport of mass, energy, and momentum away from
the equator in the compression region and toward the equator throughout
the rarefaction. These motions do not, in general, balance out. We

compute the percentage mass—flux transport at a given latitude as:

M(x, .8) - M(x s 8

M(Z) = M(ro, ) % 100 (8a)

where

uCr, ) =[5 4 (pu) (8b)

and € depotes summation across the entire stream at fixed 8.



In Figure 8 we plot this parameter as a function of B at 1 AU. The
greatest mass loss has been sustained at the equator and not at the
latitudes where ug is greatest. Material has been systematically
transported to higher latitudes by the equatorial divergence. This
process proceeds monotonically with radius and approaches a value of
4,5% in the equatorial plane, at r = 1.5 AU, where it is gradually
tapering off due to geometric effects.

The mass transport Parameter M (%) primarily describes the action
of meridional flow averaged over a span of longitude and is therefore
gilobal in nature. A more poignant measure of thesé effects on a local
scale is presented in Figure 9. The three curves refer to the maximum
absolute value (in arbitrary units) of the radial, azimuthal, and
meridional divergence terms in the mass conservation equation, evaluated
at the equator as a function of radius. Clearly, beyond ahout .75 AU,
the nonradial terms rapidly diminish in relative importance, as the
geometric decay overpowers the continual growth in u¢ and g that
accompanies the steepening of the stregm., In addition, the meridional
terms are relatively small compared to the azimuthal contributions as
had been expected.

These two measures of nonradial effects-—-the longitudinally-averaged
quantity M (%) and the locally-sensitive comparison of divergence
terms—-together suggest that while the equatorial portion of the stream
continues to lose mass beyond 1 AU, this divergence must be rather
diffuse and have little local effect upon the stream evolution except
near the sun. That is, we conclude that the abservable influence of

the 3-D geometry upon the stream development at any fixed latitude is
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largely confined to the region inside 0.75 AU and, furthermore, that the
evolution is more strongly affected by the azimuthal motions than by the
meridional motions, (The same arguments could have been applied to the
momentum and energy divergence and transport terms; we have conﬁentrated
on the mass parameter because the monradial effects are relatively
largest in this quantity.)

An important implication of the above findings is that this stream
does not gpread very much in latitude in the supersonic flow regime of
interplanetary space. Further support for this claim way be obtained
by following the motion of tracer particles embedded in the flow.

Figure 10a depicts an array of such markers uniformly dispersed across

-)

the source surface, T, (The initial spacing is AD = 2.00, AP = 5.0°

bifferences in u. as a function of position (see Figure 3) coupled with
rotation lead, of course, to the dynamic stream interaction, which moves
the particles about relative to one another. In Figure 10b we have

tracked the markers to 1 AU, using the routine described in Appendix A.

(This diagram has been rotated by the same angle 1} as the previous contour

plots to facilitate comparison. The lines connect the particles in their
original sequence at ro.) We wish to make just two points: (1) the
particles exhibit much greater relative displacement in ¢ that in O, as
predicted. And (2), one may mentally overlay the u and n contours of
Figure 5 to relate pictorially the compression and rarefaction to the
local density of the convected tracers. The displacement of the markers
in 8 is a straightforward process. However the ¢-displacement of the
markers has two components: one due to the actual u, motions seen in

P

Figure 5c¢, and of a magnitude roughly comparable to the OG-displacement,

21
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and a much farger one stemming from’ the rotational translation of the
original ur(¢) digttibution. That is, the particles tied to the faster
fluid elements nedr thé stream core arrive at 1 AU relatively ahead

(to the right) of the markers attached to the slower preceding material.

In thé ﬁretediﬁg paragrdphs, we have investigated the dynamical
processes associated with a fully nonlinear 3-D stream. It is instructive,
therefore; £o comnfrast the predictions of this model with those of
familiar, le&s sopliisticated formulations: To this end, we direct
attention to the évolution of the stredm in the immediaté vicinity of
the solar equator; whete out 3-D solution predicts the maximum meridional
transport effects. Figure 1l compat¥es solutions for identical boundary
conditions along the &duator executed with nonlinear 3-D, 2-D; and 1-D
models and with a 2-D linear model. Using this illustration, we will
explore the effects attiributable to the variation ii gedmetrical prdperties
among the models, and then we will consider the role of nonlinearities
upon the dynamics.

Turning first to the dimensionality question, the 1-D solutioch
(dashed) in Figure:1ll refers to the so-called "(r, t)" model (Hundhausen,
1973), wherein only the radial terms dn the equations (and, of course,
rotation) .are retained. The 2-D solution (light solid) goes one step
further and takes the azimuthal motion into account (e.g., Goldstein,
1971), whereas our 3-D prediction (heavy solid) ineludes the full
geometry. Figure 11 displays the radial velocity, density, and .azimuthal
velocity variations in the ecliptic plane at 1 AU for eaéh of the three
geometries. They are presented in time sequence form, with time in-

creasing to the right in the usual manner of spacecraft data display.
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However, we have chosen to employ the more fundamental heliocentric
angular units ra?her than temporal units., For reference, the synodic
angular velocity rate for an observer at 1 AU corresponds to 13.3° per
day. Note alsc that time and azimuth, as defined in the spherical
cogrdinate system attached to the sun, run in opposite directions. Hence,
this time series is a mirror image of a slice through the equatdr of the
distribution in Figure 5.

It is evident from Figure 11 that the 3-D geometry has had little
influence on the evelution of the stream over that of the 2-D approxi-
mation. The.real change comes in the transition from 2-D to 1-D (xr, t)
solutions. The azimuthal divergences have significantly broadened and
teduced the compression at the leading edge by allowing material to slip
laterally away from the interaction region; the 3-D case sees a further
augmentation of this effect, The simplified geometxy of the 1-D model
leads to a gross overestimate of the dynamical reaction to the kinematic
steepening of the stream and to the prediction of an exaggerated com~
pression that is too steep and narrow. As a consequence, the 1-D radial
velocity profile shows a stepped strxucture that portends shock-pair
formation (actually occurring near 1.25 AU). The nonradial flow in the
multi-dimensional models, on the other hand, relieves the stresses at
the .leading edge and thus delays the appearance of corotating shocks.
(Due to numerical difficulties in this inviscid model, we cannot be more
specific than to say that the multi-dimensional models -do not shock
before 1.5 AU.) We point ou%, however, that once the stream reaches

1 AU, Figure 9 suggests that the nonradial flow effects must wane, and
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therefore the evolution at larger heliocentric distances must proceed
in nearliy 1-D faghion.

The essential nonlinmearity of the stream ipteraction is demonstrated
by comparigon of the 2-D linear and nonlinear solutions found in Figure 11,
The predictions of the linear model (dotted) were obtained by numerical
integration of a 2-D formulation of the linear perturbation equations in
(Siscoe and Finley, 1972), using the computational techniques described
in this paper. The discrepancy between the linear and nonlinear models
are even more striking than those between the 1-D and 2-D nonlinear
solutions. The intrinsic inability of the Iinear model to steepen—-due
to the inadequate treatment of the crucial (3.W) ﬁ term in the radial
momentum equation—-precludes its application to solar wind structures
having large variations in the radial velocity (for more details, see
Pizzo, 1977). On the other hand, a purely kinematie model--which may be
viewed as the logical extreme of the 1-D nonlinear formulation—errs as
disastrously in the opposite direction, through neglect of the dynamical
reaction (i.e., pressure forces) of the system. (Calculations indicate
that the kinematic model shocks near 0.8 AU for this example.)

These comparisons imply that accurate representation of solar wind
dynamics inside 1.0 AU demands the use of models that are both multi-
dimensional and nonlinear. While the nonradial flow may be small
throughout the region of interest (e.g., refer to Figure 7)., their
cumulative effect in broadening the structure at the leading edge of
the stream may be substantial. Apparently a 2-D nbnlinear model may
suffice for the study of many aspects of stream evolution; indeed, for

gsome geometries and applications, the 3-D approach may prove extravagant.



However the 3-D model alone provides estimates of the meridiomal flow
properties and further studies will be required to distinguish when the

effects of meridional motions may be significant.
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SUMMARY AND CONCLUSICNS

We have developed a numerical three-dimensional hydrodynamie model
to study the effects of global, corotating stream evolution in inter-
planetary space. On 4 practical basis, the technique proves computationally
efficient and is possessed of great versatility as well. With a minimum
of effort, the smodel can be expanded to a2 3-D MHD formulation or,
alternatively, reduced in scope to 2-D dnd even 1-D descriptioms. In-
deed, the modél may bé dpplied to any corotdting flow of astrophysical
interest, so long as the governing partial differential equations are
hyperbolic and well-behaved. With medest-additional labor, shocks and
discontinuities cdould be accommodated through the introduction of a
suitdble artificidl viscesity.

The one simple stream model presented in thié paper was -selected
to demonstiate the capdbilities of our numerical techniques while also
illustrating the basic phenomena td be encountered in corotating 3-D
flows. A variety of graphical displays--the contour, velocity wvector,
and tracer particle plots—-were utilized to elucidate the global aspects
of the nonradial flow generated by the 3-D stream interaction. The
primary finding is that thé induced meridional motions afe small, and so,
therefore, are their effects upon the stream evolution. Thus much of
the 3-D solar wind structure engendered in the upper reaches of the
corona apparently persists in 1 AU and beyond, modified in transit by
interplanetary processes that are essentially 2-D in nature.

Despite the hypothetical character of this example's boundary
conditions, it is to be expected that the general sense of the results

obtained should hold wvalid for a broad range of solar wind structures.
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The flow is so heavily momentum~dominated that a significant departure
from the traditional concepts of near-sun strean configurations——upon
which the choice of this model was based—-would Be required before a
substantial change in the dynamics of the situation could occur. Never—
theless, it would he inappropriate to gemeralize too freely upon the
tesults of this one example, and, therefore, we defer such elaborations

to the second paper in this serfes.
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APPENDIX A - DETAILS OF NUMERICAL METEQDS

I. Differencing Scheme and Matrices

We wish to numerically integrate: the 3~D HD equations in matrix

form:

o0 _ o5 o0, 5 2 '
E=F.'a—e---{-H:--‘a—¢-‘*"(-:: (A'l)

where the independent variables are the usual (r, 0, ¢) and the

dependent variables are expressed as the vector

[ v.)

=
1

u, |

\ %)

Taking equations (1) in the order radial momentum, mass, polytrope,

azimuthal momentum, and meridional momentum, the matrices H and ¥ and

-’
the vector G are defined as
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In the supersonigc region, ‘(aqga:;i_.ons (4.1) arxe evex;wﬁere‘ hyperbolic,
and the solution in the region &> ro) reduces to an initial-value
problem, That is, we are given;:_u, over some span o? v a_ngl ® on the
spherical surface z, (see Figure 2) and are looking for a suitable
numerical nepresentation of equations (A.1) that will allow us to step
;

the solutiom frqm t, to ¢ + Ar and so on.

An efficient differencing scheme suggested by MacCormack (15271)g

and applied by Thomas et al. (1972), is a second-order, two-st‘claP,

predictor—corrector of the form:

(step 1)
- n T n n

cndl 0 n . . - U.. T, . = U,

Uij = Uq‘.j+ﬂr Gij + Fij 1,J+i.e ij + Hij .‘{:}"1 ,§¢ :51
(step 2) '

o+l amtl gl | ol
Un+1 _ X B el +Ar Eml*l +ffn+l i i, i-1 +-ﬁn+]: 1y 3=, 1
i] 2 BN N R R 1 COAf ij Ap ~

(A.2)
The superscript n refers to the radial mesh step, while subscript i §pd
j refer to the azimuthal and meridional mesh nodes, respectively. The
tilde denotgs quantities computed from values gepergted in the first
step; the vector and matrix gymbols haj:re Jhean eli;ninategl for clarity,
but it is to be understvod that QA;?) represents a matryix expression.
This differencing scheme offers one particular advantage over dozens
of other variants that could have heen emploved: storage is minimized

il

since only i (and not Gn, H, Fn) need be retained from step 1 in order

to execute step 2.
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Additional savings in computer time can be realized by means of the

coordinate transform found in Goldstein and Jokipii (1976). This

transform is specifically tailored to the corotating stream problem

and secures a larger radial step size by removing most of the azimuthal
"motion" of the stream through the fixed mesh of the calculation. This
apparent motion iIs nothing othex than the spiral geometry of the inter-
action front. The transform effectively shifts the mesh to keep the mean
spiral centered, and is almost equivalent to solving the system in the
rotating frame.

The new independent variable in the azimuthal direction is

£ =¢ + Qr/ﬁ¥ X (A.3)
where { is the solar xotation rate and ﬁr some average radial velocity
at r. When the transform is applied, the radial step-—size criterion (4)
is improved since

A+ h U/Ur.

Note that the exact value of ﬁr is not critical; any rough average over
the stream will serve the purpose, and, for greatest economy, need be
updated only every few steps. One may kéep track of the total absolute
shift between the initial azZimuthal cooxdinate system and the transformed
system as

T Q

r_ T _(r)

o r

I
1

Ag dx
The differencing method (A.2) can, in principle, be used to solve
any system of equations that can be cast in the form (A.1). Thus, using

basically the same techniques, one can tackle a variety of models—~from



32

1-D HD to 3-D MHD and even 2-D time~dependent ﬁHD—mmerer by generating
the appropriate expressions for E;‘ﬁs and~5. The only requirement is
that the -sglutions he hyperbolic evérywhere within the region of in-
tepest and that they be well-behaved; i.e., not contain discontinuities
or gradients that ate too steep. This latter éondition must remain some-
what ill~defired, but; fii geheral, means that shocks are heyond the
scope of the scheme deseribed heére. T Be sure, (A.2) does contain a
small amount of imﬁiiciﬁ artificial viscosity and therefore may tolerate
weak discontinuitics ifl some cases. However for situations of greater
interegt--say, the shock-dominated structires at several AU distahce
frxom the sun-~the intbddiction of explicit artificial viscosity terms

would be required (e.g., see Chi 6 of Roache; 1972).

II. Accuracy Consideikations

One of the simplest ways to test the accuracy of a numerical solution
is to repeat Lhe calculation using different values for the various mesh
parameters. This may prove convergence to a limit, though not necessarily
to the désired pne. Another method 1s to substitute the generated
solutions back into the original differential equations, a ploy that is
useful in ferreting out local errors but insemsitive to systematic
deviations that become large cumulatively. Since equations (1) are mot
in explicit conservative form, we may resort to comservation laws to
check our results. Easiest to implement is an integral summation of
the conserved fluxes. If equations (1) are cast in conservative form

and integrated in r and ¥ at fixed O, then five relations--omne for mass,
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total energy, and each of the momentum fluxes--can be derived in the

form

J 0 o aenstry se (r, 93 + [axfep | TRSn DAY
R @

increment
where the subscripts ¢ and R denote integratjon over the entire
azimuthal extent of the calculation from radius r, to r. The kernel
of the double integral contains a term arising from the exchange of
momentum and energy among kinetic, thermal, and gravitational forms and
a term related to the latitudinal transport comtributed by the meridional
motions. A sensitive measure of conservation on a local scale may be
obtained through manipulation of equatioms (l). Along a streamline in

the rotating frame, we f£ind

G
i 2 2 2 Y P _ "o -lr U, sn0 = const.
5 W 0+ 0+ o3 oS- T 9

The streamlines are specified by the first characteristic in equations
(3) and are traced with the aid of a second-order Taylor expansion about
the mesh nodes. The expressions are tedious and convolved, and their
integration requires an iteration loop (see Pizzo, 1977).

These methods were used to evaluate the example presented in the
text. For mesh resclutions A@ and A¢ of 2.5° and 1.00, respectively,
we find 1-2% overall conservation accuracy, with 5-8% local deviations
in steep gradient regions, rapidly deteriorating near 1.5 AU where
the evolution proceeds vigorously. (Wote that more resolution is

usually necessary in the azimuthal direction, as those gradients are
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more directly driven by the stream interaction. Thus A¢ normally
-dictates the radial step criteriom, Arcl) The computation time for
this examplé, exclusive of graphics and diagnostic routines, was approxi-

mately two minutes on the GSFC IBM 360/91 computer.
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TABLE T

PHYSTCAL PARAﬁETERS:FQR'THE:SLOW FLOW

r =35 R r= 1.0 AU
o o —
- u (km/sec) 290 | 401
-3 ’ .
n (cm ) 370 7.1
T (°K)- 1.12 x 10% 8.0 x 10°
0 0

uy (kn/sec)

u

(km/sec) o 1t



Figure 1

Figure 2

Figure 3

Figure 4
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FLGURE "CAETIONS

Schematic of the stream interaction in the inertial frame.
The view is from above the north pole of the sun, looking
down on the ecliptic plane. Spatial differences in the
nearly radial expansion (indicated by the dark vectors)
couple with solar rotation to produce compressions (shaded)
and rarefactions in the interplanetary medimm. Secondary.
nonradial motions are driven by pressure gradients built
up in the stream interactfon (large open arrows). Magnetic
field lines—which correspond to streamlines of flow in
the rotating frame-—are drawn out into the spiral con-

figuration as shown.

Definition of coordinate system and mesh parameters at fixed
radius. The computational mesh (dark grid pattern) covers

only a portion of the total spherical surface.

Boundary conditions for the example in the text. The
contours of constant radial velocity are spaced at an

interval, A, of 30 km/sec.

Longitudinal slice through the distribution of Figure 3.
The curve is depicted as a time sequence increasing to the
right (the usual observational convention), while azimuth

increases to the left.



Figure 5

Figure &

Figure 7

Figure 8

Figure %
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Contours of constant radial velocit% (a), numbexr density
(B), azimuthal velocity (c), and meridional velocity (d),
for the stream at 1.0 AU. The solid contours in (¢)
refer to westward (positive or corotating) flow, the
dashed contours to eastward (negative or anti-corotating)
flow. The solid contours in (d) refer to squthward
(positive) ﬁlou; the dashed contours to northward
(negative flow. The peak values are denoted by the "H",
the minima by “L", and the contour intervals by A. The
contours have heen shifted in longitude by the angle 7
from the original centerline to account for rotation

(see text).

Nongadial flow vectors at 1.0 AU, superimposed on the
density contours of Figure 6(B). The scale is set by the

vectors at bottom.

Growth of density and nonradial velocity perturbatiomns
with radius. The curyes refer to the peak values anywhere

within the stream.

Net percentage mass—flux transport as a function of
colatitude, 6, at 1.0 AU. Material has been moved away
from the equator toward higher latitudes by the mexidional

flow.

Radial .dependence (at the equator) of the peak values of
radial, azimuthal, and meridional divergence terms in

the mass conservation equation.
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Figuze 11
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Relative displacement of tracer particles imbedded in
flow between z and 1.0 AU. The arrow identifies the
series of particles lying along the central meridian at
L Through interpolation, one may map the interplanetary
distortions of any pattern (e.g., magnetic topology in

weak-field 1imit) frozen to éhe flow.

Comparison of stream models in equatorial plane. FPredictions
of radial velocity, density, and azimuthal velocity at
1.0 AU are presented for 3-D, 2-D, and 1-D nonlinear, and 2-D

linear formulations.
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