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PREFACE

During the past several years, rapid orbit generation techniques, based on a

first-order application of the generalized method of averaging, have been inves-
tigated for the National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC). This investigation has culminated in the develop-

ment of a hybrid averaged orbit generator which has been implemented in the

Research and Development (R&D) version of the Goddard Trajectory Determin-

ction System (GTDS).

In order to satisfy the requirements of different audiences and because of the

scope of this investigation, the results of the investiga*'on have been documented

in several parts. The primary documents are as follows:

A Recursively Formulated First-Order Semianalytic Artificial Satellite

Theory Based on the Generalized Method of Averaging., Volume I: The

Generalized Method of Averaging Applied to the Artificial Satellite Prob-

lem. Computer Sciences Corporation Report No. CSC/TR-77/6010,

Wayne D. McClain, Noember 1977,

{This document presents a discussion of the application of the generalized
method of averaging to the artificial satellite problem; the document is

specifically directed to the analyst. ]

A Recursively Formulated First-Order Sefnlanalvtic Artificial Satellite

Theory Based on the Generalized Method of Averaging. Volume II: The

Explicit Development of the First-Order Averaged Equations of Motion

for the Nonspherical Gravitational and Nonresonant Third-Body Pertur-

bations. (The present document.)

[This document presents the explicit development of the first-order aver-
aged equations of motion for the nonspherical gravitational and nonresonant
third-body perturbations. The document is directed to the analyst. ]

System Description and User's Guide for the GTDS R&D Averaged Orbit

Generator., Computer Sciences Corporation Report No. CSC/SD-78/6020,

Leo W. Early, June 1978.

[This document presents an overview of the averaged orbit generator, a
description of the software system, and instructions for program execu-
tion. The document is directed to a general audience consisting of analysts,

programmers, and data technicians. ]
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The Numerical Evaluation of the GTDS R&D Averaged Orbit Generator.
i Computer Sciences Corporation Report No. CSC/TM-78/6138, W. D.
' McClain and L. W. Early, September 1978 (in preparation).

[This document {is directed primarily to the analyst and user.]

o= o =

Status Report on Numerical Averaging Methods, Computer Sciences Cor-
poration Report No. CSC/TM-75/6039, Anne C. Long, September 1975

o

[This document presents a discussion of the numerical averaging capabil-

ity in the GTDS R&D hybrid averaged orbit generator (parts of this docu- (
ment are superseded by the report CSC/SD-78/6020 described above). d
i The document is directed primarily to the analyst.]

] Development and Evaluation of Numerical Quadrature Procedures for Use U
' in Numerically Averaged Variation-of-Parameters Orbit Generators.

i Computer Sciences Corporation Report No. CSC/TM-75/6038, Leo W, )
s Early, July 1975. LJ
i [This document is also directed primarily to the analyst. }

H
it

Earlier documents reporting preliminary results for both analytical and numer-

ical averaging techniques are referenced in the above documents.
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ABSTRACT

This report presents, in two volumes, a recursively formulated, first-order,
semianalytic artificial satellite theory, based on the generalized method of
averaging. Volume I, which has been produced under a separate cover, dis-
cusses the theory of the generalized method of averaging applied to the artificial

satellite problem.

The present volume, Volume II, presents a general first-order theory for the
accurate computation of the long-period and secular motion of a satellite caused
by the nonspherical gravitational field of the centra! body. Also, the develop~
ment of the first-order averaged third-bcdy disturbing function is presented,
and the theory for the accurate computation of the long-period and secular
motion for the special case of low=-altitude nonresonant satellites is completed.
Recursive algorithms are provided for efficient evaluation of the theory. In
addition, several mathematical developments necessary for the construction

of the first-order theory are presented. Also, sufficient information has been
provided to construct the analytical formulation of the first-order short-period

variations.

This theory has been implemented in the Research and Development (R&D) version
of the Goddard Trajectory Determination System (GTDS), a large orbit determi-
nation system primarily devoted to research and development efforts supported

Yy the Goddard Space Flight Center (GSFC).
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SECTION 1 - INTRODUCTION

The prediction and definitive determination of artificial satellite orbits is one

of the more computationally expensive dvnamical problems today. Maintaining
accurate ephemerides for the ever-increasing number of artificial satellites
(which include active scientific, defense, communication, and weather satellites
as well as defunct satellites, launch vehicles, and other debris) requires a con-
siderable expenditure in terms of computing time. Prelaunch mission analysis
requires that several hundred satellite trajectories over periods of up to several

vears be generated for the purposes of lifetime and geometry constraint analysis.

Generally, these applications fall into two categories: those applications which
require high accuracy, e.g., definitive orbit determination, and the low-to-
moderate accuracy applications referred to under the broad category of mission
analysis. The highest accuracy requirements are obtained through the extremely
accurate high-precision orbit generation techniques which rely on the ¢« xpensive
process of numerical integration of Newton's equations of motion or some equiv-
alent set of differential equations., Applications with less stringent accuracy
requirements are often treated with analytical approximations. Mission analysis
applications are often treated with analytical approximations and, in many cases,

even two-body mechanics {8 used.

The analvtical approach to the artifictal satellite problem vields a set of analvti-
cal formulas for the coordinates or orbital elements which are usually obtained

to first or second order in a small parameter. The approach is to separate the
shor<-period, long-period, and secular components of the motion through a series
of canonical transformations (Reference 1). The secular contributions to the
motion are evaluated at a given time, and the canonical transformation used to
remove the long-period component of motion i{s inverted to provide the long-
period motion in terms of the secular elements, Finally, the transformation

to remove the short-period terms {s inverted and evaluated with the secular and

1-1
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long-period contributions to the elements, thus obtaining the short-period con-
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tributions to the mntion.

1

Generally, existing analytical satellite theories™ have severely restricted per-

— _S.
o ——— «

turbation models. In addition, these analytical satellite theories are not very

flexible with respect to the extension of the force model. This is partially ]

.

because an analytical satellite theory has not been formulated for completely Lo

general central-body and third-bodyv perturbation models.2 More importantly, 1

. Ly 4
o e e e

the fundamental problem of developing an accurate and flexible analytical drag -
theory remains unsolved. Consequently, as knowledge of the physical environ- '

ment (e.g., atmospheric density, geopotential coefficients of high order and

degree) and accuracy requirements increase, the current analvtical theories
cannot be expected to keep pace. If the more costly high-precision methods are

to be avoided and the increased accuracy requirements are to be n.et, either

more generally formulated analytical theories must be developed, including a

Y. . SN

much more satisfactory treatment of analvtical drag, or an alternate approach

-

must be found.

The method of averaging offers a very promising alternative approach for the B {

artificial satellite problem. This approach sharcs similarities with both the ,

numerical high-precision and the pure analytical methods and is classified as

a semianalytical method. In essence, this method provides the long-period
and secular motion of the satellite very efficiently through the numerical inte- ..

gration of the averaged equations of motion. In addition, the theory provides

t
b 5
: L
| IY. Hagihara (Reference 2) gives an extensive list of rererences to the work in e
artificial satellite theory. i

9

“Small (Reference 3) has developed a first-order .nalytical theory for an arbi- P
trary number of zonal harmonic terms, and Mueller (Reference 4), using the
Poincare-Von Zeipel technique, has developed a first-order analyvtical theory '
for the secular and long-period motion due to an arbitrary number of zonal
harmonic terms. Recurrence relations are used in the evaluation of both
theories.

-
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ror short-period variations in the osculating elements (Reference 5) which are

required for high-accuracy applications.l

The method of averaging approuch is particularly flexible, especially with re-
spect to the atmospheric drag models. Not only a. e the complex drag models
which are used in high-precision theories easily accommodated, but they are
also easily interchanged without any impact on the theory (Reference G); Gen-
eral models for the central body, nonspherical gravitational, and third-body
perturbations can be developed in . straightforward manner, which is the sub-

ject of this volume.

A combination of numerical evaluation and theoretical considerations indicates
that the method of averaging approach is generally two to three orders of mag-
nitude more efficient than the high-precision tec'hniques.2 Specifically, it has
been shown in .{eferences 6 and 7 that a first-order application of the method
of averagi.g to the artificial satellite problem produces the long=-period and

secular motion very accurately and with the computational efficiency cited above.

Thus, the method of averaging provides a low-cost, long-term orbit prediction

capability useful for the following applications:
) Mission analysis (lifetime and geometric constraints)
® Tracking station acquisition schedules

° Dynamic modeling required for differential correction (DC} pro-
cedures used to solve for dvnamical parameters, e.g., high-order

geopotential coefficients

1This i{s equivalent to inverting the first canoncial transformation in the analyti-
cal satellite theory to obtain first-order short-period variations in the osculat-
ing elements, which are then superimposed on the secular and long-period
elements. See Section 4 of Reference 5 for more details.

f)
“For very strongly drag perturbed satellites, the increase in efficiency may be
reduced to between one and two orders of magnitude,

1-3
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The effectiveness of representing the osbuluting clements by superimposing first-
order short-peviod varintions on the menn elements has been demonstrated by
Lutzky and Upholt (Reference 8).  Also, it can be shown both from the discussion
{n Volume 1 of this report (Reference 3) and in the present volume and from the
discussion in Reference 9 that the first-order short-period vartdtions can be for-
mulated analytically. It appears that the cost of the evaluation of these analytical
formulas s quite feasible and would be roughly equivalent to a single evaluation
of the mean element rates which are numerically integrated to obtain the long-

period and secular motion. However, the cost of evaluating these short-period

| SEa

variations at several points in a single orbital revolution would be considerubly

less than the cost of evaluating the same number of mean element rates.! Con-

P
B et

sequently, it appears that this high-accuracy mode ot the method of averaging

couli prove to be signilicantly more etficient than the usual high-preciston tech-

<
bt

niques and, thus, may otfer an efficient high-precision orbit prediction capability

for definitive orbit detormination procedures, particularly where extended data

==

{ntervals with data gups are encountered,  In addition, the short-period variativas
[ ]
can and should be used to develop an osculating-to-mean element conversion cap-

abtlity.,

LS i fm M &9 L2

1.

Within the same revolution or "pass,” the slowly varving mean elements ave
casentially constant,  Only those tunctions which dopend explicitly on the tast
varfable need to be veevaluated,

| S

1-4

- -
L |




'
¢
'

0= =

i
‘i ’
.~ °
’g-'.'.‘

)

€~r-£-
P

. g‘" % ‘.-
ﬂ;—‘:~

S

e

v
——
C

;| — T T O e T

i
! '

!

e

i
§

1 4
,./'f}
'

q A B Wi K B i S ﬁ*ﬁﬂ%ﬂ,ﬁﬂ %‘T &% N} ﬂ"’"i “"{ i "li”“‘wy l ;1 : »

1.1 OVERVIEW OF THE METHOD OF AVERAGING

The efficiency of the method of averaging procedure arises from the fact that
the maximum step size which can be used {n the numerical integration of a set
of differential equations is constrained by the highest significant frequency (.e.,
shortest period) contained therein. The method of averaging is used to remove
high-frequency components from the equations of motion. The resulting aver-
aged equations of motion are integrated numerically but with a significantly
greater step size than can be used with the high-precision equations. The long-
period and secular components of the satellite motion are thus obtained. The
short-period component of the motion can be computed either numerically (Ref-
erence 8) or from analytical formulas which can be constructed from the results
contained in Reference 5 and Sections 3 and + of the present document, These
formulas are also developed in Reference 9. In most cases, the computational
savings achieved by the larger step size (which results in fewer force evalua-
tions) far outweighs the possible additional cost of the uerivative evaluntion.1

thereby effecting a significant décrease in the overall computational costs.

The technique of removing the high-frequency terms from the equations of motion
was first used by Lagrange in his {nvestigations of the planetary motion. In the
particular formulation of the equations of motion developed by Lagrange, the
high-frequency terms, in the case of conservative perturbing forces, could be
isolated more or less by inspection, However, a rigorous mathematical foun-
dation for this technique was not provided until the relatively recent work by
Krylov and Bogoliubov (Reference 10) on asyvmptotic methods for nonlinear

oscillations,

Two approaches are available for the application of the method of averaging.

The high-frequency components of the equations of motion can be removed

1'I‘he exact cost of a derivative evaluation depends on the specific perturbations
and the characteristics of the satellite orbit, which may permit significant
truncation of the series expansions.
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numerically by application of a quadrature around an appropriate formulation

of the high-precision equations of motion. This procedure is known as the
numerical averaging approach. If the perturbing forces are conservative, the
equations of motion can be expressed using Lagrange's formulation (Reference 5),
and the averaging quadrature can be performed analytically. Under certain
assumptions,l this method produces the same result as that obtained by inspec-
tion, This semianalytical procedure of numerically integrating the analytically

averaged equations of motion is referred to as the analytical averaging approach.

1'I'he assumptions arise when either the Greenwich Hour Angle (l.e., the Earth's
rotation) or the fast variable of the disturbing third body appear in the perturba-
tion models. Specifically, these quantities are assumed to be completely inde-
pendent of the satellite fast variable, both expiicitly and implicitly through the
time,
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1.2 RECENT DEVELOPMENTS IN ANALYTICAL AVERAGING THEORY

Recently, several authors have investigated general, analytically averaged
perturbation models for the third-body and nonspherical gravitational perturba-
tions in terms or nonsingular element sets. Cefola and Broucke (Reference 11)
developed recursively formulated models for the nonresonant third-body and
zonal harmonic perturbations based on the nonsingular equinoctial elements.
The development of the zonal harmonic model {s similar to that of Cook (Ref-
erence 12), with the exception that the inclination function is developed in terms
of associated Legendre polynomials and their derivatives and certain complex
polynomials. Cefola's third-body model is ceveloped in terms of the direction
cosines of the disturbing third-body position vector, which proves computation-
ally efficient but is limited to nonresonant cases. Cefola outlined an extension
of his zonal harmonic model to include the nonresonant tesseral harmonic terms
(Reference 13) and later completed and extended the model to include resonant
phenomena (Reference 14). Glacaglia (Reference 15) reformulated Kaula's
(References 16 and 17) perturbation’ models (using Allan's inclination function)
ina norisingular element set and provided a set of recursive algorithms for
computational purposes. Finally, Nacozy and Dallas (Reference 18) also
reformulated the Kaula geopotential model (using Allan's inclination function)

in terms of a nonsingular element set. No recursive algorithms were provided.
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1.3 SUMMARY

This report is the result of a series of task assignments with the objective of

imp’- menting in the Research and Development (R&D) version of the Goddard

--).:.‘—-l +~W

Trajectory Determination System (GTDS) a set of recursively evaluated, first-
order analytically averaged equations of motion for an artificial satellite per-

o turbed by nonresonant third-body and nonspherical gravitational perturbations.
This analtyical.averaging capability enhances the GTDS numerical averaging
capability (Reference 6) and provides for optimal averaged perturbation models
for each specific type of perturbation (with the exception of third-body resonance

cases, which were not considered). Partial results obtained for some of the

% LT

otpimal averaged perturbation models in GTDS have been presented in Refer-

ence 7.

-

For implementation, Cefola's averaged perturbation models (Reference 11) for

the nonresonant third-body and zonal harmonic perturbations are adopted. The

e

nonresonant tesseral harmonic model was developed as part of this task assign-
ment using the approach outlined by Cefola in Reference 13. The resonant
tesseral harmonics model was also developed as part of the task assignment
from a completely general nonspherical gravitational theory designed to yield
the zonal harmonics, nonresonant tesseral harmonics, and resonant tesseral
harmonics models as special cases. In addition, all models were generalized
to handle retrograde as well as direct equinoctial elements (see Appendix A of

Reference 3).

The brute-force tmplementation of recursive algorithms can contribute to com-
putational inefficiency and can possibly introduce artificial singularities (not in
y . the equations of motion, but in the model evaluation). To {nsure against this
possibility, careful consideration was given to the ordering of the terms in the
models, such that the recurrence formulas proceed in the proper direction to
avoid sinall divisors. Also, the amount of recomputation and storage require-

ments are minimized.
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For implementation in the GTDS R&D syvstem, it was felt that the resonant tes-
seral harmonic model should be very flexible with respect to the specific reso-
nant harmonic terms used. The existence of a resonance dictates which terms
in the potential expansion are significant to the long-period motion. Knowledge
of the common characteristics of these terms and the proper use of the recur-
sive algorithms could have provided a means for further optimization of this
model. However, the procedure would have been automatic, with the program
expecting a certain set of terms. Therefore, for the purposes of flexibility and
at some additional comp. tational costs, the contributions from each spherical

harmonic term are computed entirely independently of all other terms.1

Due to the extensive new software for the analvtical averaging capability, as
well as to the extensive modifications required to the previously implemented
averaging software (particularly the input processor and {nitialization procedures
and the attendant added complexity of executing the GTDS R&D averaging capabil-
ity), it was decided that a system description and user's guide for the GTDS

R&D averaging capability would be i{ssued under a separate cover (Reference 19).
In addition, a document extending the numerical results bevond those presented
in Reference 7 is also in preparation. This document (Reference 20) will

discuss the computational costs tn terms of machine processing time, the ac-
curacy of the analytical averaging methods, and the procedure and algorithms
used to develop an automatic truncation capability to further optimize the per-

turbation models for each particular case.

The present report consists of two volumes. Volume I (Reference 5) presents

a comprehensive discussion of the application of the generalized method of aver-
aging to the artifictal satellite problem aund the resulting formulation of the
averaged equations of motion. Included tn the discussion are the formulation

of the Variation of Parameters (VOD) equations of motion and the application

1'I‘he capabtlity to automatically select the resonant terms was implemented {n the
GTDS R&D version. However, no spectal relatiouship among them ts assumed.

1-9
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of the method of averaging to the VOP equations of motion, Other topics dis-
cussed include the criteria for the selection of short-period terms, the applica-
tion of the method of averaging to the case of two or more perturbing functions,
the application of the method of averaging to cases involving resonance phenom-
ena, and a discussion of the first-order short-period variations in the osculating

elements and their application to osculating-to~mean and mean-to-osculating

element conversions,

Volume II ¢the present document) presents the mathematical formulation, in
nonsingular equinoctial elements, of the nonspherical gravitational and non-
resonant third-body disturbing functions required for the first-order averaged
equations of motion. Section 2 of this document presents some mathematical
developments required for the expansion of the disturbing functions. Specifically,
Section 2.1 discusses the theory of the rotaticn of spherical harmonic functions.
Next, Section 2,2 develops certain Fourier series expansions which are of im-

portance in the development of the disturbing functions.

Section 3 presents the explicit theory for the nonspherical gravitational pertur-
bation. The development of the nonspherical gravitational disturbing function

is discussed in Section 3.1, and the disturbing function is expressed in equinoc=
tial elements in Section 3.2. Also, a discusslon. relating Kaula's inclination
function (References 16 and 17) to the tnclination function developed in this
report i{s presented. The nonspherical gravitational disturbing function is aver-
aged in Section 3.3. The averaging operation and the concepts and implications
of time-dependent and time~independent averaging are discussed. Ia addition,
the averaged disturbing functions for the special cases of the zonal harmonics,
combined zonal and nonresonant tesseral harmonics, and resonant tesseral
harmonics are isolated and presented. In Section 3.4, the partial derivatives
of the nonspherical gravitational disturbing function which are required for the
averaged equations of motion are presented for each case, and the recurrence

relations used for the evaluation of the constituent functions are given.

1-10
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Section 4 of the present volume presents the explicit theory for the disturbing
third-body perturbation. Section 4.1 discusses the development of the third-
body disturbing function, and Section 4.2 gives the general expansion of the
disturbing function, Due to time and other resource counstraints, only an outline

of the general development is presented. However, because of the similarities

with the nonspherical gravitational theory presented {n Section 3, the neglected '
details are straightforward. Section {.3 presents another expansion of the } 1{ _‘
third-body disturbing function which is well suited for cases of nonresonant “ éf
(with the third body) near-Earth satellites, Section 4.4 presents the partial ‘ h
derivatives of the averaged disturbing function developed in Section 4.3 which .
are required for the averaged equations of motion in the special case. The ‘ ' *.

necessary recurrence relations for evaluation of the theory are also provided. R

The equations of motion for all models are given in what is considered to be an
optimal form, taking into account the minimization of the combined computa~
tiona! and storage costs while avoiding computational singularities. [t is this
final form of the models that was implemented in the GTDS R&D system. These o
motdels reflect, to some extent, the computer environment in which they were ‘ -
implemented, {.e., the GSFC IBM 8,360-95 computer. A variable can assume
a moderately wide range of magnitudes in this environment. This, of course,

i{s not true in all computer environments. Thus, for implementation on other

computers, {t may be necessary to tntroduce normaltzation factors and to other- ? ot )
Y
wise redefine certain functions appearing in the models given tn Sections 3 and 5

4 in order to minimize the magnitude differences between quantities.

-
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1.4 CONCLUSIONS

Most satellite theories based on an averaging coucept, e.g., Celola's (Refer-
cuce 14), Glacaglia's (Reference 13), and Kaula's (References 16 and 17), have
been formulated using the classical assumptions of a time-independent pevtur-
hation model1 or of exact resonance, While these classical assumptions guar-
antee "“o vemovuil of the unwanted short-period contributions to the motion,

they may, in some cases, produce a significant exaggeration of certatn medium-
cnd long-period contributions to the motion. This fact should be cousidered in

the implementation of an averaging theory.

The zonal, nonresonant tesseral, and resonant tesseral harmonic models,
which are presented in Section 3 of this volume and which have been tmplemented
{n the GTDS R&D system, comprise a completely general first-order theory tov
the contributions to the long-period and secular motion caused by the central-
body nonspherical gravitatiounal field. However, as discussed {n Section 3,1 of
Reference 3, it is recommended that the effects countributed by the nonresonant
tesseral harmontes be oxcluded from the averaged equations of motion, since
they unnecessartly restrict the integration step stze and since they can be for-
mulated analytically {n the same way as the first-order short-pertod variations
in the osculating elements. In addition, the analytical formulas for the first-
order short-period variations {n the osculating clements can, (o essence, be
developed from the {nformation contained in both volumes of this report. Ia
order to obtain the final formulas, it is only necessary to extract the appropri-
ate formulas from Sections 2,2, 3, and 4 of the present volume and suhstitute

them {nto Equations (4-14) of Section 4 in Volume 1.

Numerical evaluation of the nouspherical gravitational theorties for long=period

and secular motion, performed as part of the investigation and documented tn

1See Section 3.3 for more details,
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References 7 and 20, indicates that the theory is very efficient and accurate for
all cases considered, except resonant effects on large~-eccentricity orbits, The
proper treatment of the eccentricity expansions (Hansen coefficients) in these
cases still remains an open question. For the present, the numerical averaging
method, with a properly reduced force model, proviges an acceptable alternative
for cases of deep resonance. However, the effects of the high ecceatricities are

observed through higher order quadrature algorithms.

Although the geuneral third-body disturbing function is developed in Section 4,2
of the present volume, only the special case discussed tn Section 4.3 was im-
plemented in the GTDS R&D system., This implementation is restricted to those
applications involving low to moderate altitude satellites that are not in reso-
nance with the disturbing third bodv. For Earth satellites, these requirements
trauslate into satellites with periods less than 3 to 4 days and which are not in

resonance with the Moon,

The numerical evaluation of this capability (References 7 and 20) indicates that
it produces the long=-period and secular raotion of nonresonant satellites of low
to moderate altitude very accurately und efficiently. This theory s combletely
inadequate for Earth satellites with pericds longer than 4 days. Also, the
expense of numerically averaging such cases is completely unacceptable since
it is at least as expeunsive, and usually more expensive, than high-precision

techuiques.

The application of averaging methods to satellites with longer periods requires
a double-averaged (nonresonant cases) third-body theory or a single-averaged
third-body resonance theory, depending on the orbital characteristics ot the
satellite. It also seems feasible for such theories that first-ordar short-period
variations in the osculating elemeants can be aaalytically formulated to meet

high-precision requirements.
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SECTION 2 - MATHEMATICAL PRELIMINARIES

The explicit development in equinoctial elements of the nonspherical gravitational
and third-body disturbing functions requires the mathematical formulation for the
rotation of the spherical harmonic functions. In addition, Fourier series repre-
sentations are required for functions of the form

(r " [ eos st |

E) | sin 8L}

where r is the radial distance of the satellite, 4 is the semimajor axis of the
osculating orbit, L is the true longitude of the satellite which describes the sat-
ellite position in the orbit relative to the origin of the longitudes, and s is an

integer.

This section presents a general discussion of the rotation of the spherical har-
monic functions and develops the Fourier expansions, in the true, eccentric, and

mean longitudes, of the functions

) st
o
where
yst : .
¢ =2 exp(jsL) = cossl « jsinsl
The results of this section are applied in Sections 3 and 4 to obtain the disturbing

functions and averaged equations of motion for the nouspherical gravitational and

third-body perturbations, respectively.
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2,1 ROTATION OF THE SPHERICAL HARMONIC FUNCTIONS

A spherlqal harmonic function takes the form

Lol

l .1.4 le(sﬁ'“é)(cgmmswv\ * 5J.m sin m,\) (2-1)
r ' ' »

where (r, A, @) are the spherical coordinates of a given point, i.e., the satellite
position, and P" m &) 18 the associated Legendre polynomial of degree 4 and
order m and {s defined to be (see Section 3. 1 for more details)

W\Ia 1 dlﬂﬂ

alll datwm

L
Py mix) = (1-x3) (x3-1)" (-1sxs51) @2-2)

The quantities C 4Lm and S 3.m € referred to as the spherical harmonic coef-
’

ficients and are usually empirically determined constants,

A complex variable representation of the spherical harmonic function is useful for

the purposes of this discussion and Equation (2-1) is expressed in the form

pt
Re [ { r'L‘} (C‘.m - S“m) P‘.m(s'mﬂ exp (3m.\) ] (2-3)

where Re designates the real part and j is the ‘maginary unit, {.e.,
j= VT

Often, it is necessary to transform the above expression to a different reference

system in order to obtain an expression in terms of the transformed coordinates.
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Most generallv, such a transformation involves a t:ranslation and rotation of the

coordihate reference s‘\'stem.1 If, however, the two coordinate reference systems
possess a common origin, the transformation reduces to only a rotation and the
spherical harmonic function is to be expressed in the trunsformed latitude and
longitude (¢', A"). Since the radial distance, r, is invarfant under a rotaion

and since the spherical harmonic coefficients are independent of the position, it

i{s sufficient to rotate ounly the surface harmonic function

Pl.,m( sind) exp (jmA) @-4)

In this section, a discussioun of the mathematical formulatior ¢ a general rotation

i{s presented. Specifically, the Euler angle and Euler parameter representations

of a rotation are presented. Next, the rotation of a surtace harmonic is discussed.

Particular attention is devoted to the development of the generalized tnclination

function in terms of orthogonal polynomials.

2.1,1 Mathematical Representation of a General Rotation

Since a general rotation of a coordinate reference system icaves the origin invar=
fant, only three {naependent parameters are required to describe the rotatfon.

It follows that these three independeat parameters specify the relative orieutation
ol two coordinate reference §3'stems with a common origin. The three parame-
ters most frequently closen are the Euler angles 0SQ <27, 0SwW< 27, and

0<ism7 shown in Figure 1.
2.1, 1.1 The Euler Angle Representation

The primed coordinate system tn Figure 1 cun be obtained by performing three
simple rotations of the unprimed system. Specifically, the first rotation is per-

formed about the unprimed z axis through the angle 1. The second rotation is

llee (Reference 21) discusses the effects on the spherical harmonic furctions

caused by this more general transformation., Also, see Aardoom (Referoence 22).
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Figure 2-1. Euler Angles

performed about the new x axis through the angle i1, thus rotating the xy plane

into the x'y' plane. Fic~lly, the third rotation is performed about the z' axis
through the angle w. The general rotation is then expressed as a composite of

the three simple rotations, i.e.,

A= R,y(w) R () Ry(Q2) (2-5)
where
R,(6) = | 0 cose sing 2-6)
0 -sin® cos®
and ;

0ws® snd O
Ry(8) = | -sne cos8 O 2-1)
0 0 1
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are the matrix representations of rotations about the x and z axes, respectively.

The product of the three rotation matrices in Equation (£-5) yields the following

general rotation matrix:

A s

where

c'ucn. - C-.San_
~S@ c“ - C‘Qus‘\
S Sa

ey =

CuSa + G Sula
- SuSq + ¢ CCy
-9 cg_

cos K

S, * sinx

SN

Si

cusi
¢

(2-8)

This transformation matrix is used to transform the coordinates of the position

vector in the unprimed reference system to the coordinates in the primed refer-

ence system through the equation

The inverse transformation

is easily obtained since the transformation is orthogonal, i.e.,

oo 0

-m (W

r

)

Z O34

isd

wln - A'l -}

P

Qi = 83k

M DR IR R
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(2-10)
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b
:
| -1 T
a A = A (2-13)
-
L where
! T ]
!
: i is the transpose of the A matrix obtained by interchanging the rows and columas
: ; of the matrix (Reference 23).
]
1 2.1, 1.2 The Euler Parameter Representation

mgpr——

-

;w_ 3';" : -

be expressed as

- a
Si/aCaw* Cisa Cau

& A
A= ) CV-\ Camn* Sia Caww

I S:i Sna

Making the substitutions

PP
>

Other representations of the transformation matrix exist.

For example, by

’ using elementary trigonometric identities, it is easily shown that matrix A can

'\ A 7
S’«ia S.ﬂ.—m * ci/& Sﬂ.w.\ Susi
a .
-Salaw* Galaw &S (2-15)
-5 Cq ¢
-
N-w
= = 2-162)
Qe
2 a (2‘16b)
26
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1.
]
iy
h Q A
i o
Y ! ¢, = Cp- s
o+ b
{
dd Sax= aS&CK

SR
=

[
P

vields the matrix expression

g, ~ S -
T B W T s T e e

w
. B
u -t th  1qu8 ~ 4a94)
' ‘1 A= “‘Ma‘ 2184) “%a;*‘%i-q:v%:
, (s
L 24133+ 4280) Q493 4184)
! ; “J where
E ! U q," S.Cq = sm—;- 08
q, = S-CSG. = s'm-i sin
P
a C S = -i- \
11 il 3™ “v3% = w@s7 sin
' Q4 ® CxCp = cosi—l o9

o
l\l
)
~1

4(q,9,- ‘iﬂq)
a(q,9, “‘h?«)

'fﬁ-%iw?»qu

(2-16¢)

(2-17a)

(2-17b)

(2-18)

{2-192)

(2-19b)

(2-19¢)

(2-19d)
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where the quaternion q is a hypercomplex variable defined to be

Q= Qa* Q. *qai +qsk

~nd where

¥ s xi+3§+zk

= =gt =X
]kx-kk=.|

K= =ik o= )

Equation (2-20) should be taken onlyr as a convenient algorithm and does not tmply

that the quaternion is the rotational operator (Reference 24).
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are the well-known Euler parameters (Reference 24).
The Euler parameters are frequently used in the quaternion representation for
the transformed coordinates, i.e.,
T e q ¥ ab"‘ (2-20)
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2.1.2 Rotation of a Surface Harmonic Function

Essentially, there are two approaches to the rotation of the surface harmonic func-

tion

imA
PL L3N @) el” (2-21)

One approach relies on the brute-force substitution of the transformed coordinates

using the expressions1

Jlw-wa) A ~flw-mla) -jA
e’ 4+ e e

sing = -1& S, [e. ] cos @' ¢, simﬁ' (2~-22)

. , a . . Y a ‘(A RYU
c°$¢ CJ'\ a  (0S d [C\ll Cl(n ‘J) QJA * s”&e‘(n “’) G‘ ]
(2~23)
- ma
+S; e! )sin 9

into Equations (2-21). Equations (2-22) and (2-23) are obtained from Equations
(2-10), (2-13), and.(2-8) or (2-13). This approach can vield complicated expres-

sions which may obscure the real nature of the transformation.

The second approach, based on the work of G. Herglotz and . Magnus (Refer-
ence 25) {s to rotate the entire expression for the surface harmonic instead of
direct substitution of the rotated position components. Since the derivation of
the theory is quite lengthy and since it is provided in Reference 25 and also by

Lee (Reference 21), it will not be presented here.

1In real variables, Equation (2-22) takes on the more familiar form
sind « sini sin(A'vw) cos g’ + cosi sing'

The real and imaginary parts of Equation (2-23) also assume a familiar form,
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The rotation of a surfcoe harmonic function of (A, ) to a reference system with
the corresponding coordinates ()', ¢ takes the form

L . ¢
- jmA (2-8)! ™3 s
P.t,m(s'"¢) e 2 Z m Su (p,0,7T) F"g.s(sm¢)e. 2-24)
S:-4

where the associated Legendre polynomial of negative order is defined in terms

of the corresponding polynomial of positivie order by the relation

-n)!
P.l _n(x) = (-1)" ((::._:;‘ Pi‘n(X) (n20) (2-25)

~

The function b?}" s(p, o, T) is discussed next,
2.1.2,1 Development of the Function S;:' s( p»T,T)

The function Sf}_’ S(P,O', T) is defined to be

m,s

S, (p,oT) = e b ( o'--?-)-(m s) ]2 Um‘s(‘r) (2-26)
aL AT, T “pIJ m")( FY 3P ’ at -

where

N s e
o Emyer e Pt teset,1emes; €3)  (for mes SOV (2-270)
X )
Uy, (2) =

des s 3
(0 (i":) C. S.,m F(s-t, Lesel, Lemes; ci) (for m+s20) (2-27b)

and corresponds, in part, to the inclination function in References 16 and 17,
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The parameters 0, 0, T describe the orientation of the unprimed or original

coordinate reference svstem relative to the primed or transformed reference

svstem. The corresponding transformation from the primed refcrence system

to the unprimed reference system is given by Equation (2-9) if the symbols T
and T' are interchanged. The parameters P T and T are defined in terms
of the Euler angles through Equation (2-16).1 Otherwise, the transformation
given in Equation (2-10) is used and the Euler angles of the inverse transforma-

tion (1, {', W"') are required to determine L 0, and T through Equations (2-16).

The notation F(a, b, ¢, X) in Equations (2-27) designates the well-known hyper-

geometric series defined by (Reference 26)

(), (b), "

(Qn  n! @-28)

Fla,b,e,x) =

nal

where Pochhammer's symbol, @)y is defined by

(a), = alarl)(a+2) (a+n-1) (2-29)

Clearly, if a is a nonnegative integer, then Equation (2-29) can be expressed

using the well-known Gamma Function as

r‘(o.m)
M)

(o), = (2-30)

1'I‘he resulting definition of ¢ differs from that found in Courant and Hilbert
(Reference 25) by m/2, i.e.,

g -

S E

Toqn ®

In addition, Equation (2-26) is a modification of the corresponding equation in
Reference 25 in order to account for the change in the definition of ¢ .

2-11
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For negative integers a, Equation (2-29) can be expressed as

n (-a)!

(0, = -1 PRy

2-31)

Ultimately, a set of recursive algorithms is desired for evaluating the function
S;;" s( P, T). Gauss' contiguous relations for the hypergeometric series
(Reference 26) could be used as a basis for these recurrence relations; however,
they are not well suited for the purposes of this investigation. This is discussed
in Sect'ion 2.2. 1. 4.

Inspection of Equations (2-28) and (2-29) indicates that if either of the first two
arguments is a negative integer, the hypergeometric series terminates in a
polynomial. These polynomials are the orthogonal polynomials named after
Jacobi, and they possess some very useful recurrence relations (as will be

shown in Section 3).
2.1.2.2 Jacobi Polvnomial Representation of the Function Szn;" s( £, T)

Inspection of Equations (2-27) indicates that the hypergeometric series termi-
nates to yield a polynomial of degree £ - [s|. The relationship between the

hypergeometric series and the Jacobi polynomial taken from Reference 26 is

nlal ab
Fl-n, asbanet arl; ) = o P (1-2) (2-32)
where the Jacobi polynomial takes the form
o n
Q, - a b n-m )
P () = 2" Z (“;\ )(Qfm)(x-x) (x+1) (2-33)

ms0
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or, equivalently,

n

n

a,b Tla+n+i) Z ny T{arbeviemey) m

P (x) = (x-1)
g n! T‘(o.«-bmu) m:O(M) lm P(Q.vm*t) X

(2-34)

In principle, the indexes a, b can assume any value with the exception of nega-

tive integers, i.e.,

o¥-n; b#-m

2-35)

However, for this investigation, only nonnegative integer values are considered.

Applyring Equation (2-32) to the hypergeometric series in Equations (2-27) and

noting that
4
L- QC‘r 2 - c;-c
vields
(Les)|mes]! -m-s,ms
F(‘I‘S, 1‘5*-1, L1-m-s; c%) 2 2 | Pbs) (-Cat)

(L4-m)!

for m +s<0 and

(2-5)! (mes)! p s, am (- Car)

F(s-l, Leset, lemes, C%) * (Lem)! d-s

for m +820,
ORIGINAL PAGE IS
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t i
) Care must be taken to insure that the Jacobi polynomial is valid over the entire .

';'“ range of validity for the hypergeometric series. Since only integer values of m [

1> and s are of concern, Equations (2-35) can be expressed as “

" ) a20; b20

j.‘ For Equation (2-36), the constraints on the Jacobi polynomial are [l

o “m-$ 20; m-s20 u

which are simultaneously satisfied only by those values of s where s<-m.

Hence, the Jacobi polynomial and hypergeometric series in Equation (2-36) are

valid over the same range, i.e., m+s 0. The constraints on the Jacobi poly- [

N 21

nomial in Equation (2-37) are

m+s 20; S-m 20 !

£ e

which are simultaneously satisfied only for s2m. Thus, while the hypergeo-

| -

R metric series is valid for m +s20 or s> -m, the Jacobi polynomial is valid

only for s> m.

A valid Jacobi polynomial representation for Equation (2-37) over the range

-m £ s<m is obtained through a linear transformation of the hypergeometric

* series (Reference 26), i.e.,

a .
F(S-l, Arsel, Lemaes; C..c) 2 S:(m s)F(la-m\x‘ am-Ll femes; C:) (2-38)

Both of these hypergeometric series are valid when m +8 20 {is satisfied. It
follows from the definition of the hypergeometric series that the first two argu-

H ments can be interchanged as follows:

. + &
¥ F(lemal, m-2, Lemes; Qr) = F(m-L, Lemed, Lomas; QT) (2-39)

*
2 R = Bl M BN B0 =3
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In view of Equation (2-32),

S (L-m)! (mes)! mes, m-s
F(m-l, Lemel, Lemes; Q‘L’) = TRRY P‘_m ‘t) (2-40)

The constraints on the Jacobi polynomial are m +8 20 and m - s 20, which are
satisfied simultaneously by -m<s<m. In summary, the hypergeometric series

in Equation (2-27) can be expressed as

(2-m)! (mes)! a(m-s) _ . }
e Sar Paln) (mSs<m) @-dla)

a
F(s-2, L+ses, 1emes; 05 ) 2
( +5+l,1leMes t) (].$§‘.(M95’! MO’(-C’.‘)

(Lem)! Pres Mm<s<L)  (2-41b)

Substituting Equations (2-36) and (2-41) into Equations (2-27) and using the rela-

tion

asb n b,a—
P, (-x) = (-1) B ) (2=+2)
vields
( O O S P ACaq) (-1Ss<-m) (2-430)
ms em (Lem)! (1-m)! mes m.s M» mes
U,, (¥ -< (C3Y) ooyt (ot 7 5, P (C;,) (mSs<m) (2-43b)
S, Mo
\c, Sy P (Cag) mSsSL)  (2-430)

"“’\\1 "\(1 IN
L, l“\k(( “\
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]
—
o



S~ BN

oo

~

e . - — s

hd (

Substitution of this expression into Equation (2-26) vields the complete expres-

s
sion for the function S;;' (p+@,T) interms of the Jacobi polynomials, i.e.,

XY

Su = up:j [(m-s)(v-w/a)-(mu)p]{

med ~Me$ m-3 NO‘,.*’

(. t) < sf 48 cag) (~RSs€-m) (2-44a)
som (Lom)! (J-m)!  mes _mes _ms,mes .
O enr ey Ot St Pim  (Qy)  (mSssm) (@-ib)

MmesS 1M _-m, Mmes
Cx S¢ Py (Cap) (mgsgl)  (2-4i0)

2,1.2.3 The Function s,,“;'

Expressing Equations (2-44) explicitly in the Euler angles (A, w, i), which describe

® {n Terms of the Euler Angles

the rotation from the primed reference system to the unprimed reference system,

through Equatioas (2-16) yields

in.s. -im-3)3  .j(s0ema)
at e e

Me$ _“M-$ me9 ~0$’ .y

(1Y Ca Sia Pi. Q) (-2$s<-m) (2-450)

sem (Lem)l (Lem)l  mes s _m.s, mes
‘< 1) (es)t (2-9) Cira Sina Pl-n (¢, ((mSs<m) (2-45b)
Mes g.m M, med
\ c;[a 5;11 Pl-t (Q.) (im<sse) (2=45¢)
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2. 1.204 Svmmetry of the Function S".I.'

In view of the symmetry in Equation (2-43), {* i« possible to formally collapse the
definition of the Sfl’s function. Defining 6 = 1 for s X0 (&= -1for 820) and
using the relation given in Equation (2-42) vields the following expressions for

Equations (2-432) and (2-45¢):

. v . -
sj(m-€3)3  -i(mOedsfl) fem _seam 4-€m s-m,mes
3 ¢ ¢ ija sill P‘.‘ (ecl) (2-46)

for € =<1 and s >m.

Similarly, Equation (2-435b) is symmetric about s = 0 and can be expressed as

Aj(m-6a) T j(mue€sR)  sm fem (fom)t(f.m)! Meks_mees mosms

¢ ¢ €€ o (! Cua Sia Prm  (6C) @-4D)

for € =<1 and 0Ss<m,

The retation of a surtace harmonic fuaction given by Equ.:.ion (2-24) can then be

expressed as

J"'Vl (-es)! s _ jesd’
jm(sm(ﬂ Z 8§ = (1o Sa. PJ‘“(smd’)e. (2~48)

where € takes on the values 31,

[
‘ L 0 et

I Y $50

2-17
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and
s.m,s,e ‘j(m-es)fi -j(mw+€3Q)
a * ¢
2em M (o)t (f-m))  Me€S  M-ES  m-s,med -
e (-0 GraY (1oa)! Cia Sz Pim (¢¢;) (0<s<m) (2-50a)
X
se€M _3-Gm _%-m,Med
e!’m (‘.-,,?L Sia Ppe (eC) (m<s<y) (2-50b)

In view of Equation (2-25)

B (x) = € (L+es)!

hes T 620 @-5Y

Therefore, Equetion (2-48) can be simplified to read

L
‘ jma TESTELEX . jesk
pl,m(sm¢) e = Z 85 e TEY S"'u‘ P‘P‘s(b)(sm(ﬁ le (2-52)
530
for ¢ = ¥1, since
(1ees)! (R-e)l |
(Les)! = (-l (2-53)

Equations (2-50) and (2-52) are the recommended formulation for those cases where
the symmetry is easily taken advantage of. Otherwise, the formulation should be
developed using Equations (2-24) and (2-45).
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2.2 EXPANSIONS OF THE PRODUCT (/a)” ¢/%

Expansions of the form
r n jSL n.s 'tx
— - ! J -
( ~ ) e = E At e | (2-54)

(where r, &, and L are the radial distance, semimajor axis, and true longi-
tude, respectively, and X is the true (L), eccentric (F), or mean (A) longitude)
play a major role in the development in equinoctial elements of the disturbing
functions for the nonspherical gravitational and third-body perturbations. Con-
sequently, they are also important in the development of the analytically averaged
equations of motion and in the analytical development of the short-period varia-

tions in the osculating elements.

For certain cases, each longitude possesses a particular advantage as the expan-
sion variable, X. Specifically, for n<0, the above expansion is finite in terms
of the true longitude, and, for n 20, the expansion is finite in terms of the eccen-
tric longitude. While the expansion in the mean longitude i{s always infinite, it is
of considerable importance because of the simple relationship between the time

and mean longitude.

Similar expansiouns of the form
r " jsF ns  jEn
o/ © 2 L, ¢ (2=55)

(where f designates the true anomaly and x is the true (f), the eccentric (u), or
the mean (2) anomaly) plaved an important role in the development of the classi-
cal disturbing function of planetary theorv. These expansions were investigated

extensively by Hansen (Reference 27) and good, if less exhaustive, discussion

2-19
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can be found in Brown and Shook (Reference 28). A scmewhat more theoretical
discussion, based on Cauchy's first and second theorems, is given by Hagihara

(Reference 29).

2.2.1 Reduction to the Expansion of the Product (r/a,)“ eij

Hansen's results are directly applicable to the expansions in the longitude (Equa-

tion (2-54)). This is easily demonstrated using the relation between the equinoc-

tial longitudes and the corresponding classical anomalies

X= x+w+I0 (2-56)

In view of Equation (2-56), the left~hand side of Equation (2-54) can be expressed

as

noojs(w+I0) jef
) & ¢ (2-5T7)

G e™ -

ela

Substituting the expansion in Equation (2-55) yields

Inverting Equation (2-56) and substituting the result into the expansion in Equa-
tion (2-38) yields

r\" sk js(weQ) ns  jE(X-w-10)
(z) e a ¢ ().t (2

ns o jle-tllweIR) X
= Q’t e e
t

_\"_)n jstL js(w+In) ne  jtx
t

[

0= =y e Lo T T T

t (2=59) )
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A comparison of Equations (2-34) and (2-39) indicates that

A (et WeTA) g

¢ = & o, (2-60)

In view of the definition of the equinoctial elements h, k (Reference 5, Appendix A),

jwe IN)

~4 .
e * ¢ (keih) (2-61a)
and Swel)
e s« e (k-jh) (2=61b)
COINAL PaGe s
‘Therefore, S Poor g ALLIY
n,s t-3 . s-t n,S
Ay = e (keih) ay (2-623)
or ’ t t-3 '
ns s G- ne '
At u g (k-3\\3 Qy (2=-G2b) ﬁ )
‘ ~
and the applicability of Hansen's results ts demonstrated.
The explicit development of the Fourter series expansions of the form given {n
Equation (2-33) {8 preseated next.  Much of the discussion follows the approach
of Hansen but {s of much more limited scope. [ addition, some results obtained
by Hill and Newcomb, for expansions in the mean anomaly, will be presented.
2,2, 1,1 Expansion i{n the True Anomaly
The Fourier oxpansion of the form
(r‘)"e}sg v ns jtf * !
= a2 Q e (2=063) .
Q! lns t '
t :




A

is desired. More correctly, the coefficients in the expansion have only two
indexes since the Fourier expansion of the imaginary exponential function is

not required. If
ry\" jEf |
(I) : Z v, e! (2-64)
then
_r_)" jsf n o jkes)
(a. e = V, ¢ (2-65)

t

and it is sufficient to develop the expansion for (r/ a.)n (Equation (2-64)).

It follows from Fourier's Theorem (Reference 30) that

w

n 1 r\nN -Jk‘F
Vi = v (-&-) e df (2-66)
-7

This expression is obtained by multiplying e-jkf through Equation (2-64) and
integrating both sides appropriately. The resulting series collapses to a single
term, specifically, the term when t = k, in view of the orthogonality conditions
for Fourier series or, equivalently, the 27 periodicity of the imaginary expo-

nentiaf function,

Since r/a is a real function and since Equation (2-64) is also satisfied by the

complex conjugates of each side, it follows that
r\N n -itf
(Z) s V, & (2=67)
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A comparison of Equations (2-64) and (2-67) shows that

s e o e . e ———— ettt

— e o

n n
L V, = Vi (2-68)
|
j; An explicit reprusentation of the coefficient \'lt1 can be obtained by a brute-force
L
expansion of (r/a)" using the well-known relation
.‘l \\
g a
: r 1-e ORIGINAT, pag
| - 3 —— ; ‘YAGE I8 (2-69
] & Lvecwst  UFPook quappy ©7%
}
' Using Hansen's approach, the following definitions are made:
U
sing = e (2=10)
U it
LI (2=71)
U
[ Then,
! ij
v R
§ cos ¢ = i1-e (2=-72)
\ e
\ A = tan (¢/2) = (2-73)
i 1+41-e*
5 and Equation (2-69) can be expressed as
'J r 2 4, Ayt
i (L-4%) cos d (L+8X) (u- 'x_) 2-74)
1 j 2423
I s R S TTTTTTTTTI TR T b R T T A R R
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Therefore,

({)n = (1-8%)" eos"g (1+5x)-n(1+ —f)-n @-75)
(_;j)-n: (1-8 " "¢ (1ex)" (10 &) (2-76)

for n, a nonnegative integer. Hence, the expansions for (r/a,):t‘n reduces to the
expansions of the product

n 3
(1+Ax) (1+— %)m @2-77)

2,2,1, 1,1 Expansions of the product (1 ~!-px)"n (1 -!-(p/x)]-n

Using the Binomial Theorem yields the following result:

o

(-.L) (nek-1)1 Z (-l)m(mm-n‘ m -m
1 oY el g § el
( *’sx) (n-1)! k! e A ntmy S
kel ms0
(2-18)
(-] «©
kem (nak-1)! (nama)t  kem  kem
a -
Z Z 1) (n-L)! k! (n-4)! m! g X
ks) wmsd
If the following definitions are made:
t = K-m (2-79a)
p= kim (2-79b)
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i it follows that ~co<t<om, since 0Sk<m® and 0 Em< . To determine the
l é{ range of p, it {s necessary to invert Equations (2-79) to yield
'R , p-t
LS m= =——— >0 (2-80a)
’ L
h
kR p+t
k = 20 (2-80b)
IR +
T
R O
u Clearly, p2it| and p+t must be even; consequently, p is defined as
} .
Ll P= i+ |t (2-81)
U Then, if {t|<p< o, it follows that 0<1< 00 and
D
U ma= 2+ |t]-¢ (2-82a)
U ko= di+[t]«t (2-82b)
U, It also follows that Equation (2-78) can be expressed as
‘J ) ® o
J -n -n U (neltlsi-1)1 (neieg) 3ieltl
! -] - ZZ . neltlria0)! (neiag)) t 2.83
(1epX) (“ x) GO et Guen A A (2-83)
\ tee@ 00
L
Since
(neltlei-)t (naiat)! . {(neitlag) (Rettlar-1)t (neiat)l 14l
. -1} W) SR (neltl=1)! (neg)t (Hk1a)
(n=1)! (n-1)! (Ltlei) (n-1) (ne (2-84)

(neitl); (n),

. (vn \tl‘l)
¢l (1tle1);
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and
o0 a_
(n+ltl); (n); A a
e — ltl+d: 2=85
Lo Taety Fneltl, n, et £7) (@-59)
then

(Le8xY" 1+ )" Z(- ¥ '“ ""*"‘)F(mltl,n,ltm;p‘)x" 2-86)

ity
ta-®

2,2,1. 1.2 Expansion of the Product (1 +px)n[1 + (Ia/x)]n

A straightforward application of the Binomial Theorem yields

(1 +ﬁx) ZZ “ kmxk'm (2-87)

kRs0 mz0 ,

The quantities t, p, and i are defined as abow}e, with the exception that the
ranges in this case are -n<t<n, |t|<p<2n, and 0Si<(n- (1t1/2)] (where

[ ] denotes the integer part). Equation (2-87) can then be expressed as

n  [n-t1a)

(1+8X) (u——-)" . Z Z(.l:‘m)(?)pa'“m x* (2-88)

tzen 130

n
The definition of the binomial coefficient ( L+t ') is

(n ) n!
ieltl) T (netel-)! Gletel)!
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Also,

n!

(n-1t}-
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0 - (e-2) e (-t (n= el o (neltl- i)
n| i .
a (n_\tn! ('l) (ltl‘n)(‘tl"n&l)n. (‘t"n‘Li‘l)

which can be expressed using Pochhamer's symbol as

and

Therefore,

Similarly,

Finally,

n! n! i
- a - (-1) (itl- );
(n=1tl-i)! (n-1t1)! ) ( "

L L AT 1
(ielt) It (el ltlt (1tle )y
n v (lkl-n);

n .
(mt() T (- RDY LRI (leles);

n T S T B GO G )
(i) EETENE i ) i

<":‘“)(?) i (\:l) “(tl‘t.lt):):.ir:)‘

(2-90)

2-91)

(2-92)

(2-93)

(2-94)

(2-95)

‘.
v ra, e ¢ e

v . e
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Substituting this result into Equation (2-88) yields the result B
n t"\- ‘“‘1] ai
n a\" a\ ot SO Gten) (-n); B Lt
1+8A (1.1-—) = Z( ) : X 2-96
( g ) A it P Z_, (\t\ol’; il ( )
{s-n 120 B
which can be expressed in terms of the hypergeometric series a8 B
n
n n 13} 4
(1+5X) (1+ f) -Z(m) A F(ltl-n,-n, ARSI p’)x (2-97) U
Rs-n
}
U
The expansions for /o )tn in the true anomaly are obtained by substituting U

Equations (2-86) and (2-97) {nto Equations (2-75) and (2=76), respectively, which

vields U
({..) . (1) cos"d Z(. N “":“") E(nett, m ltle1; £XE 2-98) B ,
¢z ' I
]
n n '
N -n . 1t 2y ¢
('f::) = (1-8%) con $ Z(*:‘) g F(len,n, Itiet; B) X (2-99)
& f
Expressing these expansions explicitly in the true anomaly yields ﬂ ; "
o e l
n i
Z V; € (2-100a) q
$2-0 L
.
o
2 .
A
L
2-2%
4
WW""‘""‘“" s = S P ‘-.—_...L J J : !
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where® OOR QUALITY
n n 1kl it .
V= (L-8%) e8¢ (1) ("’:il\ ’“) F(neltl, n, ik1eL; A2)  (2-100b)
and
n n
) en jif
(i) = Z Ve e’ (2-101a)
tsn
where

-n - -
v, * (1-87) ncos"cﬁ (,'t‘k) ,am F(ltl-n,-n, ltle1; %) (2-101b)

2.2.1.2 Expansion in the Eccentric Anomaly

It is apparent that if (v/ a.)*“ and CJSf are expandible in a Fourier series in the

eccentric anomaly, u, {.e.,

r n n jku.
(E.) ‘_ Dk e (2-102)

jSF 'S jl'ﬂu,
e = Qm € (2-103)
m

1Although this expression is not of closed form, it is easily iransformed to a
closed-form expression using the linear transformation (Reference 26)

¢-a-b
F(a,b,¢,x3) = (1-x3) F(e-a, c-b, ¢, ad)

whkich yields the result

n -(n
N, = (189

13
tos"¢ (-8) " F(1-n, ltl-net, ltlat; 8%)
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Then

tn of (hem)w
e T T e -

or, equivaleatly,

(L)“ jsf s jtu
o/ ¢ = W, 2-106)
t
where
t LR " s "
We Z Piim e C-108
m

Hence, the coefficients \Vf n,s can be determined trom the coeffictents of the

simpler expansions in Equatioas (2-102) and (2-103).

Another expression for the coefficients \V:n's i{s provided by multiplving Equa-

tion (2-105) by c-jku and {ntegrating over -TSu<g:r, which vields

1 r m j(S‘F - ku) s 4 . ({.k)
I . S st [,
Ir j(a‘) e duw W, n e du

o : -107)

!, s
* Zwt Sew = Wi
t

In addition, the symmetry condition
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follows, as before, by substituting the complex conjugates in Equation (2-107)

and comparing the results with those given in Equation (2-107).

An explicit representation of the coefficients is developed next. This represen-

tation is obtained directly by expanding the left-hand side of Equation (2-105)

(rather than by using the expansions given by Equations (2-102) and (2-103) and

then constructing the coefficients throug!. Equation (2-106)). The expansions in

Equations (2-102) and (2-103) are also obtained, since they are special cases of

Equation (2-103).

Again, following Hansen's method, the definitions are made

ORIGINAL PAGE IS
').‘ ), A1y .
Siuce O POCR QUALITY

3 { -~ eosu

Pl

it is easily verified that

Z ox (1083 (1483 BlyeyD)] (1**”).1“‘/‘33)(" 5)

aud

‘e g (1-8y)
(L-8y)
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(2-109)

(2-110)

@-111)

(2-112)
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It follows from Equations (2-111) and (2-112) that

——
| =
~—————
3
\_‘—“-
."
[
—
el
p.3
w
n

(1-:-,6“)."35 (i-ﬁy)n.s (1~,53"')ms (2-113)

. N isf ryN nos -n-s IR y
| (—) e = (—) = (106" y° (1-8y) (1-myt) (2-114)
QO o
z 1 :
1 g
o where n is a nonnegative integer. For the purposes of this investigation, the { b
relation n2|s| is always satisfied; hence, n-s 20 and n+s 20, and -n-s<0 J i
, and s-n<0. {7
O z
L b - +. w9
g 2.2.1.2.1 Expansion of the Product (1-py)" > (1-fy~1H"™
i
: Since n2|s|, the Binomial Theorem yields the expansion {.’} t
; |
W
‘ ,
!

e
o e

n+S

(1-8)" " (1-8y")

n-5 n+d

s
e
~—

" [}
[>]e &l |
-3
=
’)Ig ) e
o —
N —— 3
3
—— [
IU S e
1+
Pl & w
g K¢
,‘\ Vx
-+
> 3
b o]
e
"+ v
3
| & vennasty
s [ QY

(2-115)

ga-son psitl

L—-

>
-

e (ptt even)
t §
".' n n-itsl/d J E
3] n-s n+s Baltesl 4o 4
= 0 . , A Y
P+ (1e-alet-a)/2 / \ i+ [it=sl-(t-0]/2 r
. tan 100 S
: B
1t 1
; lt-s|+t-s !
i o &2 —— (2-116a) g
|
i
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and
[t-s]-(t-9)
i

then {t follows from Equation (2-93) that

- i (a-n+s);
(:8) = () e’ S0

(x+4);
and
n+S Nea i (P-n-s);
: = (-1) ————
("p) (P ) ) (e+1);
Therefore,
(n-s )(p+s) i (n-s)(ms) (x-n+s); (0-n-8);
1+ t+0 - « R (ltlf'l)“ i\
since
(“*1); (,01-1); a (\t\+1); (1),
and

(¢) = it

{ s
(2-116b)

(2-117)

(2-118)

(2-119)

(2-120)

(2-121)




Substituting Equation (2-119) into Equation (2-115) and expressing the result in

!
.\ terms of the hypergeometric series yvields

2

I1t-s] n-9% n+S ‘

(t- ﬁi) (-1) (ushts)(giiilgg,e )
tam (2-122) i}
[t-slet-s it-s-(t-s) 1) t-s A
) F(——-a-.t——-nQ-S, -——a—.——-n-s, lt-s]ol;p)t} i}
Ty
td
-n-s s-n =

2.2.1,2.2 Expansion of the Product (1-8y)  ~ (1-By~1)
Since n2|{s|, it follows that l.

L) ) .
-N-5 - 1 . - k e
(1. 69) (l 8(5'1 Z Z (nes+k-1)! (n-sem-1)! ‘s*m%u.m 2-123)

(nse-)ik! (n-a-1)!'wm!
k=0 wms{

it

which can be expressed as

o o
~n=5% 5N (n#S-v'l#G(-l)! (“‘5""?‘!0'-”2 disit) %-5
- - -1 = 2“‘1
(1 /3!5) (4 o« ) ZZ (nas-1) (Gl (n-s-10)! ({ep)! # E

t1e0 a0

where & and P retain the definitions given in Equations (2-116). Also,

£ KR =3 D =

(nessisa-1)! - (nesea-1)! o) (nssvra+i=)}

(n+s-1)} (nes-1)! ! (nes+a-L)!
@-125)

ey
L

U .

(m-eu-ct-i

« )al‘ {(nes+a);
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c= o=

t— =

———
h.a-—-r—-‘

-l eam e =

and, similarly

(n-s-rifp-l)‘. (V\‘Sfp‘l
a2

' (n-s+p); 2-126
27T neses 126

(n-8-1)

Substituting Equations (2-125) and (2-126) into (2-124) yields
[ -]

-n-% SN (msw(-x) (n-s+p-1)
(1-84) “(1-gy") = Z « o
tz2-0
(2-127)
> -]
< Z (nesea)i (n-8+0) ﬁl'n-lt-s\ L-s
(a+1); (PaL); e
in0
Again, it follows from the definitions of & and P that
(x+1), (pe1), = (1t-si Q; il (2-128)
Thus, Equation (2-127) admits the hypergeometric series representation
“W-% <l -
(1-8y)  (L-gg’) =
= \
nes-t-———-——lt"‘*t"’ -4 n-s+ ASLTRGSLN A 1
. : @2-129)
1t-slet -9 -sl-teow)
t2-c0 L ?
. F(msq- sl (on) o eal-lb0) lt_s,.“{aa) gt
Substituting Equations (2-122) and (2-129) into Equations 2-113) and 2-114),
respectively, yvields the desired expansions
n
r\? JeF ns jtu
(Z) e W, e (2-1302)
tien
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where
ns -n lt‘ﬁl nN-5%5 n+%
a -
Wt = (1+8%) (-1) {t-s{+rt-s )| 1£-5]- (t-8) ,e‘”l
a 2
(2-130b)
jt-sl+t-s lt-s]-(t-s)
X F(-—-{——- -n+s, —’—'ai-—s---n-s, lt-slety ,éa)
and
o
PN ef -ns  jtw
(E) e!* = Zwt e (2-131a)
tz-
wherel
w’"’s ( :)n n+s¢-'t'°1‘*t’5-i n-s+lt"‘;“"')~x s ]
= (1
3 "“[3 \t-slek-g [£-s]-(t-s)
a &
(2-131b)

X F(n*SQ--—-—-—-—'t-s’{*‘b, n-s+ ___)lt-sl;.(t-s 5 lt-slet; ﬁl)

IA closed-form expression can be obtained by a linear transformation (see
Equation (2-101b) and the accompanying footnote) which yields the expression

ns =(n-1) ﬂfs#mj-%ti).l n-se Boslo o) 4\
Wt = (1-8%) cos ¢ 2
JL-814s (t-8) -8~ (£-9)
'S &

x F (1-n~s+ -—-—-—-‘t-sli(t.s) . 1.-nr5+-—-\-——‘£'s i(t's) ) Iteslet s ,Ba)
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2.2.1.3 Expansion in the Mean Anomaly

The Fourier expansion in the mean anomaly takes the form
r)" jsf e jtL
@ e = L © (2-132)
t

It is clear from the discussion in Sections 2.2.1.1 and 2.2. 1.2 that the coefficients

th’ S , referred to as Hansen's coefficlents, can be expressed as

Xn,s 1 7 " j(sF-ke) i
2 — —) & 2~
k aw (a,) (2-133)
-
and also that the symmetry relation
ns n,s
Xe = X 2-134)

holds,

The above expansion has played a central role in the development of the classical
planetary theories because of the desire for explicit time-dependent theories and ’
because of the simple relationship betweeun the mean anomaly and the time.
Accordingly, this expansion and similar ones have been studied by a host of

investigators. 1

There are several approaches which can be taken to develop an explicit repre-
sentation for the Hansen coefficients. For example, the Hansen coeffictents can

be expressed in terms of either of the previously derived coefficients, Vtin or

1I.;everrter (Reference 31) and Cayley (Reference 32) developed extensive tables
for the expansions through the seventh power of the eccentricity.
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w *n, The V, representation is obtained from the Fourier expansion (Equa-

t t
( Z V‘l N e (2-135)

tion (2-63))
and a variation of the equation of the center (Reference 1)

©
j%({' l) % jtd

t-t
tz-00 %

(2-136)

Substituting Equation (2-136) into Equation (2-135) and rearranging the summa-

e O n 18
(&) e = V%_s C.E e (2-137)

ts.0 %

tion yields

Comparison of this result with Equations (2-132) vields the relation

tns
X, =Z v;_s e} (2-138)
%

Similarly, the Hansen coefficients can also be expressed in terms of the coeffi-
cient Wt'ﬁn’ . The resulting expression of the Hansen coefficients has sometimes
been referred to as Hill's formulation of the Hansen coefficients (Reference 33).
However, this expression was given by Hansen (Reference 27) some 20 years

before Hill.

In addition to Hill's formulation of the Hansen coefficients, some of the repre-

sentations obtained by Hansen and by Newcomb and Poincare will be presented.
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2.2.1.3.1 Hill's Representation for th’ S

Hill (Reference 33) developed a representation of the form

b SN P!
r’ﬁa‘-
.
.

U ns n‘s
Xy = Tolte) Xep (2-139)
P j
- u §
X where the function th’ps is, to within a factor, a hypergeometric series, and
i ‘ ’ !
Ll where 0 . lie s ﬁ
: 1) (x/2) |
INEY Jo(x) = Z : (2-140a)
. L (s+i)! ! %
) ; 1=l :
i i
) s i
; U J.= (0 LK) (2-140b) L
¢ a
t U is the Bessel function of the first kind (Reference 30).
é‘ . This same form can be easily constructed using Equations (2-130) and (2-131), ‘
K U f.e.,
f '
. yn . . H
ey st tns jru
U (E) e = Z W. e (2-141)
[ r
and the expansion1

1r Wwe ’
el a Z B, &’ (2-142)

——
—~ o

1'I‘his expansion {s of major importance in the expansion of the classical disturb-
ing function (Reference 1). v
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where

1 for r=0

r
Bo = -efa for Irl =1 (2-143)
0 for Ir]>1
and where
r r ( )
B, = T J..lte (t #0) (2-144)

Substituting Equation (2-142) into Equation (2-141) vields
m .
r\" jsf s _r  GtL
HICEDRRLE
t r
and a comparison of Equations (2-132) and (2-145) gives the relation

tns TS
Xt = W, B, (2-146)

The range of r {s -nsr<n for n20, ~-osSrso for n<0 and -1<r<1 for
t=0.

- )
The \\"t S oefficlents were shown in Section 2.2, 1.2 to be proportional to the
hypergeometric series; consequently, it is clear that Equations (2-139) and (2-146)

are of the same general form,
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2,2.1,3,2 Hansen's Representation for ‘\t 'S

Another approach to the explicit development of Hansen's coefficients is to expand
the integrand {n Equatfon (2-133). Clearly, only the constant term {n the expan-

sion will remain after the definite integral is evaluated. Defining

it B,
X =& (-1470)
3w o
y=e (2-147b)
L
2 =8 (2-147¢)
and substituting the relation
ds
= csmem i
di = e (2-148)
{nto Equation (2-133) vields the contour integral
ns L r)" s k-l
2 — -] X dz 2-149
N~ (=) *« (2-149)

)

where the contour ¢ is the unit circle |z} =1.

Expansion of the integrand in Equation (2-149) {n powers of z will yield the results

presented earlier in this section. However, the definite integral formulation is

quite flexible in that the {antegration varfable can be transformed to either x or y

via the relations

&

r 2z

de =
atcos¢p x

dx (2-150)

3

dz = -E_- _‘; dy 2-151)

. ——n e
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which follow from the well-known rclations

2

r=df
al = m (2-152)
ds = -5':- dw (2-153)

Substituting Equation (2-150) into Equation (2-149) vields the contour integral
ns i r ned e-1 -k
X = —— (—) X & dx 2-154
k = amj cos@ f o (2-154
¢

where the contour c¢ is defined by (x| =1.

Making the substitutions

-1
-& . (11 8&) (L+8x) (u-f) (2-155)
~(e/2)(y-y™)
1= ye (2-156)
1
. y = x %’%‘;— (2-157)
1-p*
cos = et (2-158)
yields s
8 L (1-89) " ;-k. anek-d
X, = _ - ~§x) ir,ﬁx)
kTam (Legd)™t (2-159)
¢ { S e ) d
1 AP /u"'s(n-px 1+ﬁx"} X
242

—

1 M *

e~

P . e Py
[N

iy} 1

{

=
; AP XA <y

e B .

=

=

P

¢ -
‘
e -

-~
[

-
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where
M= keos (2-160)

Grouping factors {n the integrand, developing expansions for each group, and then
multiplying all constituent expansions together vields the final expansion for the
integrand in Equation (2-149). The form of the final expansion depends on how
the factors are grouped. Clearly, the product

-neked 8 “n-k-Q
(1+8x) (L*;)

will yvield a hypergeometric series representation as shown in Section 2.2, 1, ©

-e o LT

Hans~n considers the factors

“N-k-Q

-1
. Nk - X
el el ] (2] (228 e

The expansion for the exponential function vield

)

-~ m -t

“p{_ﬁ_/« a } a > JILY (lr,&x)n (2- 162)
1+ 8x m!

ms)

and, therefore,

)
L oonek-d M8 (’AL,S:OM “nekem- e
(1+3x) exn{;jﬁ—x} = Z o (1+8x) (2-183)

msz{
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It follows from the Binomial Theorem that

LS -1 = |
(1*/5,()1 m Z (_1)1(n-km+1.1-1). ( ,Gx)j' 2168

(n-kemei)l L!
120

Substituting Equation (2-164) iato Equatiot (2-163) vields the result

0 0
-nek-2 mel (N-KemMelel)!
(1+8x) exp (-0 Ax) T (2-165)
1.+ﬂx m‘ (n-kems )} L1
ma0 L0

If the following definition is made,

p=ms+l

then the left-hand side of Equation (2-165) becomes

o P
wked [ p m _ (n-kepedt 4™ P ]
(1+8x) exp{h xz a Z(-ﬂ Z(-x) e Dt (o o1 (Bx) (2-166)
p=0 m=0
‘Thus,
~Neked
(hﬁx) expi } Y(n Mp(ﬁx) (2-167a)
e
where
m (n-keped) um ,
- - 2-167b
MP: i( 4 (nekemsd)! (p-m)i m! ( )
med
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The expansion of the product

! PRIRN

| “N-X-3 Y-

U { L+ 3x XO{-/L—LE——.”

\ T' ) el 1'#’3A"J‘

€
| J—

i{s obtained by substituting -k for k, -u for ¢, and x~! for x in Equation (2-166).

——

o

The result is )

[+

-

-n-k-2 (L, 8xt .

(. (1e85t) cxp{%%ﬁ} 2 Z(-Q% N%p%x 1 (2-1682)
L, 4110
i P
.’ where
i

! m

) (nﬁntﬂwi)! (1-m)' m:
U Ma{
U The product of Equations (2-167a) aand (2-167b) vields the result /
U ~vex-1 -n-k-2 X <L

) -t (—__ - __.)
U (lﬂdx, (1+3x ) exp {/u.ls Todx 1o |
(2-169) 1
© ©
FO P. p-
i . ZZ(-n Tigng 873845
E ped q9
B If the {ollowing deflnitioné are made
ta= p°O° \\
i £+ pog
then ~-oSt<o .

u ,'45
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Since
LA
P==2
0= r-t
> A&

it follows that r £t must be even and r21(t| . Hence, r is defined as follows:

r= 2+t

the right-hand side of Equation (2-169) takes the form

o0 ao
it} ai ¢
Z ('/5) Z M'n-(ltlvh)/& Ni+(ltl-t)11 g x (2-170)

t=-c0 =0

-k

Multiplying this result by x° -1 yields the expansion of the integrand in Equa-

tion (2~159). Tquation (2-159) then takes the form

ane3 s
KL (1-8%) [ Z(mltl

K = 2'-”.‘ 2\N+L B

J (1+p%) . =
(2-171)
0
AU tes-k-L
X ZMM&M)IQ. NicQe-tya B % dx

=0

Evaluating this integral reduces to evaluating the integral

‘/'Xt‘-s-k-tdx 2-172)

¢
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Clearly,

) tes-k-i : . akel=-
U f" +9 dx = :lm for t+s~k-1 1 (2-173)

. 0 for t+s-k-1#-1
f\ ¢

from the theory of integration in complex variables or, equivalently, from Cauchy's

i U Residue Theorem (Reference 30).
Vi In view of Equation (2~173), the expression for the Hansen coefficient in Equation
o (2-171) reduces to i
/)
= dn+3
) .
n,s (1- -g7) ) ]n s| ) ai
Vo XK = (1. ﬁl)ml u-(l‘ -slek-3)/d N H[lk-sl-&-b)ﬂlp (2-174)
" 120 .
"l where the ccefficients M and N are defined by Equations (2-167b) and (2-168b), !
! d respectively, “
| .
; -
v

Hansen obtained another expression for the Hansen coefficients by substituting

sy

Equation (2-151) into Equation (2-149) and using the relations

—— -
. —

r -1
T = 18 (189 (1) -175)
L (1-8y™Y)
X =y si0RY / (2~176)

(1-8y)

and Equation (2-156) to obtain the expression

1
£
! ot o pp (1+/5‘)f Spyy (L-S)MM ‘otﬁf W"’} dy e
' .
i

L—-

- i
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Using the decomposition

where
v h"ﬁ& (2-179)

Hansen develops expansions for the factors

n-s+l _y(1-8y)
(L~,@Lﬁ) e A
and

n+3-4 ﬂ(l'ﬂg-x)

(1-8y™) " e

Substituting the expaunsions for tiiese factors into Equation (2-177) and evaluating

the result vields the expression

[+ 4]
ns -n-1 (k-1 2
X, = (1+8%)  (-8) }: G likesivkes)/a Nisfikesi- (ko] ja B 2-180)
10
where
= )
- L n-s‘lu) V-
Gp = Z(-D ( o 0 (2-181a)
£=20
0
nestdal U_"
qu' q X (2-181b)
220
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[t is interesting to note that
G, = e (2-~1822)

Hp = e (2-182b)

Hansen provided other representation for the Hansen coefficients which can be

found i{n Reference 27.
2.2.1.3.3 The Newcomb-Poincare Formulation of th,s

Newcomb (Reference 34) applied an operator approach to the problem of the ex-
pansion of the classical disturbing function. This operator development relies
on certain differential operators to produce an expansion in the eccentricity.

The resulting development is analagous to that obtained by using analytical ex-
pressions for the Hansen coefficients and, consequently, provides another repre-

sentat{ion for the Hansen coefficients.

In essence, the Newcomb operator method produces a power series in the square
of the eccentricity, where the Newcomb operators are the coefficients. Evalua-
tion of the Newcomb operators vields pure rational nambers. In addition, these

coeffictents can be evaluated recursively using the recr  ~uce relations that exist

for the Newcomb operators.

A complete discussion of the Newcomb operators would require an in-depth dis-
cussion .f the operator approach to the expansion of the classical disturbing
function; this discussion i{s beyond the scope of this section. However, in addi-
tion to Newcomb's original work, the method is discussed and simplified by
Poincare (Reference 35). Other treatments of the subject can be found in Refer-

ences 1, 2, 29, and 36.

2-49




For the purpose of describing the Hansen coefficients in terms of the Newcomh

operators, the following result given by Poincare (Reference 35) is considered: 'v

|

|

t ©0 ) [(
A r\" js(f-2) Am+lql am+lql  jql .
) 1 (E) (4 = TT% (nis)e é (2-183)

qs-ao m=0

.—‘-—».
[

m+{q|

where the Newcomb operator Tqu

[

emned

(n|s) is a polynomial in n and s. Compar-

ison of Poincare's result to a variation of the series of Hansen in Equation (2-132),

i 1 if.e., t{
g | (E)  js-0 ZX‘N 4 (2-184) 1
2=-0 .-
i % 3
v ",' vields the relation ki
= ~ )
Z am-r.ql )eanw\%l 2-185) ;ﬂﬁ
ms0

thus relating the Hansen coefficients to the Newcomb operators.

The remainder of this discussion follows closely that of Iszak, et al. (Reference 36).

Inspection of Equation (2-183) indicates that it can be expressed as

Co = s =2 <0

. - -]
‘I x nls +3 -Q
1 ; Z Xpo € 2° (2-186)
1 £=0 oa
- !
e where |
- Igl«-ﬂ “ i |
= m+ 2-187 T
P Y ( ) o
A
! L)
! 2-50
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T = m+ 4i-q (2-188)
R
xn,s Tr:mdql( N
oo 3 nis (2-189)

and x and z are defined by Equations (2-147),

It follows from the definitions of p and ¢ that

ns
Koo = Thg (nls) (2-190)
and
am+lql ns
1T, (nls) = X (2-191)

1

ma(1q1eQ)/2, me (191-9)/2

According to Iszak, the change in the indexes from q,m to p,c simplifies the
development of Von Zeipel's recurrence relations (Reference 37) for the Newcomb
operators. These recurrence relations follow from the partial differential equa-

tion of Von Zeipel which is derived in Appendix A and is given by

Xk e XM
(1-e?)e 2 r (1-e%) & —
de fo}
(2~192)
L d
2 ‘(k [l- (l-ea)all] + (k=-n) % + (2k-n)ex + (k-n) %- * %
where
nKk . r " X k

XK' = (I) (?) (2-193)
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) L
i !
P Eliminating the explicit appearance of x in Equation (2-192) through the substi- !
’ tution H :
W X
\ | <= (3)
% | {
) (b
! and developing the resulting equation into a power series in e yields the partial U ;
¥ differential equation |
o d o ) nk n kel
3 ‘ 1 1
' — e R e = -
i( Fvs 32 )X 2 (2k-n)ezX '
, {
4
2, ke o nk
+ (k-n) er e X T, e? [(4k-n)+ de — + 3z — ]X (2-195)
de oz
é Z(a/a) X 1'( 3 ) nk
T2
y 1
! f Substituting' Equation (2-186) into Equation (2-195) and comparing similar terms
vields the recurrence relation
ak nked n ks ﬂ
4PXy e = 2(ak-n)X oo+ (k)X g o o
| e J
+ (5p-0-4 +4k-n)xp_1,°._1 (2-196) ﬂ
) - 3/ nk E
1(p-a+k) Z(-l) ( - )Xp_z_) ot
T2 8
The subscripts in this relation are restricted to nonnegative integers. ‘ 1
|
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Another recurrence relation can be obtained from Egquation (2-196) by interchang-

ing the subscripts, changing k to -k, and using the symmetry relation

n,-k n,+K
pr ch_”0 (2-197)

which follows from the symmetry relation for the Hansen coefficients (Equation

(2-134)), The result is

nk n, k-3
40X, 5 = -l(lkm)ch_ (kem)Xg .2
- (p- 5'<:'+4+41<+n))(p 10-1 (2-198)

11 nk
+ 2(p- <r+k)Z() ’ szc-c

Finally, a third recurrence relation can be obtained by summing Equations (2-196)

and (2-198) to vield

nk n k-4
4pra) X, o = a(2k- n)Xp p o = A(Aken)X g 5y
n ked n k-2
+ <k-n)xp_a,¢ = (ken)X 5 o0oa (2-199)
nk

+ L(ap+ ;20--4-»1))(9_1,6_1

thus eliminating the summation over T.
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Initialization for the recurrence relation is provided by

nk
X 00 = { (2-200)

and the fact that quantities with negative subscripts are treated as identically zero.

Consequently,
nk K n
X 10 - 3: 2-201)
nk KD
XO’L = k=3 (2-202)

etc., are easily obtained.

Although the Newcomb operators are rational numbers, the problem of generating

them can be reduced to integer arithmetic by using the polynomials (Reference 36)

hk pre n.k
Joo = & piol )(/o'cr (2-203)

and the corresponding recurrence relations

nk nk+l nked
Joo = (ak-n) 3’ o+ (e 1) k-n) yp-Q‘D (2-204)
k k-1 k a
T,:c = - (2k+n) 7T P°" (0'-1)(k+n)
nk
- ,o((o-50-+4+4k+ n) Jp-i,c’-l (2-205)

+ /O(Io c“l‘k)z oo\ T p-'C o-7

T22
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. where
I
U
(p-1)  (o-1)}
: Chgr © el (g-4) Cr (2-206)
. I g P9 (p-z) (T-TH
, j
by and where
v
, T [s/2) _27-1
,l‘ . Cr = (-1) (,C ) 2 (2-207)
’ 4‘
ol
4 ‘ ; i 2.2.1,3.4 The Hansen Coefficient I\’;’s - A Special Case
NNy
s Ly i The Hansen coefficient Xg +S is of major importance in the development of the
[
o ! averaged equations of motion (in the absence of resonance phenomena), which
i"‘f | are presented in Sections 3 and 4 of this document. Because of this importance
1
\ z} and because it possesses a characteristic distinct from all other Hansen coeffi-
il ! Z cients Xf’s (k # 0), it is singled out for a special discussion.
1A
'l» L This particular Hansen coefficient is the constant term in the Fourier expansion,
] in the mean anomaly, of the product
1w r )n isp
3 (o.
. It possesses a finite hypergeometric series representation in either of the argu-
; ‘ ments 82 or e2 , contrary to the general Hansen coefficients which have infinite
L
series representations. These finite representations can be obtained through a
\ { brute-force expansion of the integrand of the expression
n,s i L jst
= — - =208
X a7 (a.) e dl (2-208)

-

the special case of Equation (2-133) where k =0, However, this development

{s unnecessary since almost 11l of the work has already been performed in
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Sections 2.2,1,1 and 2,2.1,2, More specifically, since

r2af

i =
2> cos P

and

r
dﬂ.‘-‘- Edu'

it then follows that changing the integration variable in Equation (2-208) yields

xn‘s 1 7 r ned Jst{:
= —————— L 2, 2'209
0 am c03¢ (O,) ~ ( )
-7
and
T A
ns 1 pyntd jof
T em—— — =210
X, = ( a.) e du (2-210)
-7

which, in view of Equations (2~66) and (2-107), yields the relations

s V.ﬂ'ba
Xo = o 3 (-211)
and
ns nel,s
;(‘> = W, 2-212)

A Finite Hypergeometric Series Representation in g2

&
It has already been shown that the coefficients Vg n . :n,s admit finite repre-

sentations in 52 and, therefore, they yield finite representation of the Hansen
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coefficients X:’S through Equations (2-211) and (2-212), Replacing n by -(n+1)
in Equation (2-211) vields

—.

£

N (het)ys VY
$ i -{nri),s s
\ U X, alivve @2-213)
|
E . Substituting n~1 for n in Equation (2-101b) and dividing by cos ¢ yvields the ex-
U pression
AN -(n¥l),s -n-0) s}
U X, = (1-8%) cos qS(':“I) B Flislnet, 1on, 1sisty 8% @-214)
Y
W

where |s|<n-1,

The expression for the coefficient X(;x '8 is obtained by replacing n by n+1 in

Equation (2~130b) and restricting the value of the subscript t to be identically

= CC

1 zero. The result obtained is
l

—

(mi) lsl n-s+1\ /ntory

d
= (1*15 ) lsl-3 \sles
a R

(2-215)

=

~ =
| .

. F(‘srs” -1 ‘_5_|_§__n_1, ‘5\'13 pl)

Ty

This expression can be simplified in view of the fact that interchanging the first

two arguments in the hypergeometric series has no effect on its value, Since the

only effect of a change in the sign of s on the hypergeometric series in Equa-

tion (2-2135) {s a permutation of the first two arguments, it follows that

F(Ishs -1, | -ned lshl‘,ﬁa) 2 F(|s[.n-1,-n-1,lsl+1;ﬁa) 2-216)
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Similarly, a change in the sign of s also causes a permutation {2 the binomial
coefficients in Equation (2-213;, Clearly,

n-s«y m-su.) n+isi+d

3-8 lsj+s 184 @-217)
x T,

In view of Equations (2-216) and (2-217), Equation (2-215) simplifies to1

neislel

Lel ) F(\sl-n-l,-n—i,lshi; 134) (2-218)

nes - (ne)) 1s}
Xo = (1:8) @) |

A Finite Hvpergeometric Series Representation in e

A hypergeometric series representation in e2 can be obtained through a quad-
ratic transformation of the hypergeometric series in Equations (2-214) and
(2-218). Inspection of the transformed hypergeometric series in > indicates

that they terminate after a finite number of terms.

It is well known that any hyvpergeometric series F(a, b, ¢; x) admits a quadra-

tic transformation if and only if the quantities

2(1-¢), t(a-b), t(asb-¢)

1‘I‘hls expression {s more easily obtained using the relation in Equation (2-211)
and the closed-form expression for the coefficients V3" (see Equation (2-101b)
and the accompanying footnote). However, it is also of value to pursue the
simplifications which arise for the coefficients \Vg“ .
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are such that any two of them are equal or ore of tnem is equal to 1/2 (Refer-

ence 26). Inspection of the hypergeometric series in Equations (2-214) and

(2-218) show that thev satisfv the condition

a-b = %(1-¢)

Consequently, they are >f the form

Fla,b,a-bet; 33)

The quadratic transformation which vields the e? representation isl (Refer-

ence 26)

a-!

: -4 /
Fla,b,a-be1; 5%) = (1009 F(3, =

lThere are two other quadratic transformations which can be applied in this
case. They vield representations in terms of the argumeants

and

, -0+l

43%

(1e3%)"

2-219

(2-220)

§ -

i
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¢
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with the simplification

4p7 oy

— = e (@-222)
(1+,5")a

which is easily verified from the definition of 8 . Applying Equation (2-221) to
Equatiors (2-214) and (2-218) yields the expressions

- 1
X nethe cos’(:mii)‘?s(f)l5 (Mf) F(ls\.m N

0 el BERAR reley ea) (2-223)

ns 1sl e .
Xo - (_%) (n‘?t:ll'bi) F(Islln L, \s;.n , \$‘_+l’, e:l) (2-224)
since
1- *
—é_a = €os B (2-225)
{+8
ata
e
_@_ﬂ a — (2-226)
1+8° <

An Associated Iegendre Polynomial Representation

Any hypergeometric series vhich admits a quadratic transformation can be ex-
pressed as an associated Legendre Polynomial of the first kind (Reference 38).
The hypergeometric series in Equations (2-214) and (2-218), which are of the

form

F(a,b,a-bt1; 2)

5
b e

-
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admit the associated Legewdre polynomial roprusoutuumn1 Heference 26)

‘ ] . b-{l., . -0 b"\.'l )
Flab,acbet; A7) = Mlabe) @ (1-89) Py (1_*5.1) 2-227)

Application of Equation (2-227) to Equations (2-214) and (2-218) the following

velation for the {nteger values of 1 oand m (Reforonce 26)

- . wm
(x) = Cumdl o7y aes)
n (nem)! " {
_\'it‘ld the (‘xp!‘oss{\ms
~(ned)) s ,
(=11 (8]
% = " P () (2-2:0)
\nv\%\-l)!
n a ’
v 8 (nelslel) apey I8
| ) 2-230
'\o : (0 (e L)Y X vnl(x) ( 0
where
a
Le 1
e TS (2-2391)

-3 ecos ¢

4
1 \ . .
' Hobson's definition of the assoctated Legewdre polynomial tor arguments in the
rtange Lax o i (Reference 30)
. ™m Il m/a {"""
P (x) = (x?-1) - (x3

' n 1'\n! ; i J !\nn

' 2-il
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These relations are particularly useful in view of the many recurrence relations

available for the associated Legendre polynomials.

The above expressions were

also obtained by Cook (Reference 12), with the exception that a discrepancy of

(-1)S appears between Equation (2~230) and the corresponding result of Cook.

A review of Cook's work and the results he cites from Whitaker and Watson

(Reference 30) indicate that the missing factor does, in fact, belong in Cook's

expression if Hobson's definition of the associated Legendre polynomials is used.

Evaluation of Equations (2-229) and (2-230) for a few values of n and s yields

the following Hansen coefficients:

-,0 -1/a
x° s (L‘ el)

-3,0 -3/2

-40 1 -sfa 4 -3/3
Xg'r 2(1ee) - 2(1-ed

: (“ sg) (-et)

-4

and

0,0

o * L

?-h%ea X:‘l- -2e~s-:-
X:o‘ %+3&a+%e4 tht -Ee-%é
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s
Xy = 3¢
3l1 15
o T 4

~3/2
Xy = 3 (1- &%)

-5/
Xo = 5 2(t-e?)

X,

L. oD = T T T T

44 4 -S/a -3/a
iy [(L-e‘) - (1-%) ] “
2 -s{d ‘2

< T
§ 4 33 _35. 3
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2.2.1.4 Recurrence Relations for the Fourier Series Coefficients

Recurrence relations prove very useful for the efficient evaluation of the coeffi-
cients of the Fourier series expansions developed in the previous sections,
provided the recurrence relations are sufficiently stable.1 Hansen gives several
recurrence relations for the coefficients of the Fourier series expansions in the
true, eccentric, and mean anomalies. More recently, Vinh (Reference 39) has
discussed recurrence relations for the coefficients th' S and th's . Cook
(Reference 12) and Cefola (Reference 11) have discussed recurrence relations
for functions related to the special case of the Hansen coefficients X(;l '8
Giacaglia (References 15 and 40) also developed recurrence formulas for the

Hansen coefficients, and Cefola (Reference 41) has developed a new recurrence

relation for the coefficients th’ S.

Previously, the coefficients V:n , W:n’s, and XOi~ 1s5 \vere shown to be expressed
simply in terms of the hypergeometric series. It follows that Gauss' contiguous
relations (Reference 26) for the hypergeometric series could serve as the basis

for constructing recurrence relations for these functions, However, recurrence
relations that permit only one varving index are often the most desirable. Since
the parameters of the hypergeometric series (a, b, ¢) (Equation (2-28) are linear

ccmbinations of the indexes n, s, and sometimes t, the form of Gauss' contig-

uous relations is not well suited for developing recurrence relations with a single

varying index.

Orthogonal volynomials are suited for single-varying-parameter recurrence rela-
tions. Furthermore, it was shown in the previous section that the coefficients

X(; 'S are simply related to the associated Legendre polynomials. Consequently,

1Since truncation and rounding errors are introduced into the evaluation of the
recurrence relations, it is important to know how these errors are propagated
through the recurrence process. I the errors do not grow relative to the mag-
nitude of the function being evaluated, the recurrence relation {s said to be
stable; otherwise, the recurrence relation is unstable.
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the recurrence relations for this set of orthog: al polynomials provide the foun-

§

+ -
dation for the recurrence relations for the coefficients X~ ™ ° and for the coeffi- i {

*n *n, s 0 L:
cients \'S' and WO' ', in view of Equations (2-211) and (2-212),

+ +
Recurrence relations for the coefficients Wt' ™S and Xt'n’ ® are obtained through L

a more classical approach used by Hansen,

2,

2.2.1,4.1 Recurrence Relations for the Coefficients XO S, \% =S

S

in
S’W

Recurrence relations for these coefficients are obtained from the following re- (
currence relations for the associated Legendre polynomials obtained from Refer-

ences 26 and 42. The fixed-order recurrence relation is given by . ! j

m

P

nel

1 " "
(x) = Py [(amﬂx P () = (nem) Pn»l.(")} (2-232)

the fixed-degree recurrence relation is

e

Mmel -2Imx m m-4 i
PG = 1 P () + (n-ms ) (nem) By (x) (2-233) 3
x-

-
[ISS)

and the varying-order-and-degree relation is

!,.,...-_J

m m m-1

L/
P i) = B e (Ane)(x¥1) P (2-234)

——

Equations (2-232) and (2-235) can be combined to vield the recurrence relation

m 1 [.m m-1 ‘
R =z [Pn-zm * (n-mel) V2L P m] (2-235)
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It is easily demonstrated from the results in Reference 26 that

n &N
Pn(x) = (&n-1)(x*- ﬂn

(2-236)
and it follows from the principle of induction that
nel n
P (x) = (2ns1) Vxd-t B (2-237)
In addition, it is easily shown from the definition of the associated Legendre
polynomial that
n n
Pm-L(X) = (Anet) x B (x) (2-238)
Combining Equations (2-237) and (2-238) vields
n+l \’ Ka‘ 1L n
———— D)
me(x) = X Pml(") (2-239)
and it follows from Equations (2-238) and (2-239) that
3 n n‘i
Pm(x) = (An+t) V3=t P& 2-240)
Inverting Equation (2-229) and substituting the result {nto Equations (2-232)
through (2-233) vields the following recurrence relations:
snel)s () (L- Ol -n,s <(a-1),s
xo = [(JYPS)XO ’ - (n"a) Xo ‘ ' ] 2‘241)
(nes-1) (n-s-4)
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(nel), s+l L 1s  ~nel)s -(nat),s-4
o = — [- - Xo + (n-3) X, ] (2-242)
-(nxl),s (n-1)(1- e_'"‘)'1 -n,s-4 -(n-1),8

Ko T (nes-1)(nes-2) [(D.ml)e Ko ()X ] (@249

-(ned), s ) L
° T (nes-1)

X [(n-ﬂ X;n's+ (n-s) e X,

- (a+4), s-1

] (2-244)

In the above equations, the superscript s is restricted to nonnegative values,

i, e.; s 20, This restriction is quite satisfactory in view of the symmetry re-

lation (Equation (2-134)) _
ns n-s

X = X

In view of Equations (2-229) and (2-236), it follows that

n-4
'(n?‘) n-4 i/.a.:—
Xo = Vi-ed (L-e.°~
and it follows from Equations (2-229) and (2-239) that
-(nel),n-L 1 e X-(mn,n-l
0 T oper a0

Also, Equations (2-237) and (2-229) can be combined to yield

X-(ml),n-l e -nn-
0 a(1-ed) ¢

(2-245)

(2-246)

(2-247)
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In addition, inspection of the definition given by Equation (2-229) indicates that

-(n+id,n

0 =0 (2-248)
and, more generally,
- 1),
Xgn hesg (2-249)

for all s such that |s|2u.

The recurrence relations for X(;l 'S are obtained by substituting Equations (2-230)

into Equations (2-232), which yields

x:,s= ni- [(Qm-i) X” -is (m-s)(n;\s)(l-e“) x:*% } (2-250)
X:'s“= “-:*L [35 gk(mm)xo 1] (2-251)
X;‘s= ni.L [(n-su)(;\-s)(i-a‘) X“ 1,8 (Am-i)ex ‘sat] 2-252)
Xy = (—"V-‘-’-;—L-)- (1-e) Xg " - eXQ'M' (2-253)

The superscript s is again restrict d to nonnegative values.
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Applying Equations (2-236) and (2-238) to Equation (2-230) yields the result for

the special case

WY (QYHL)“ n
xn \= A LLE DAL 2
0 EYITIRAI @-254)

Also, inverting Equation (2-230) and substituting the result into Equation (2-240)

vields the recurrence relation

ni dnel n-1, n-1
Xo = -5t eX%, (2-255)

and two successive applications of Equation (2-240) with Fquaticn (2-230) yield

nn (lmﬂ(an-i) ~ n-In-A

LY
= -2
0 n (ns1) e o (2-256)
Clearly,
n,ned
s =0 (2-257a)
follows from Equation (2-230) and, generally,
n,s
X, 80 (2-257b)

for s such that [s|2n+l.,

Inspection of the recurrence relations in Equations (2-242) and (2-251) indicate
the appearance of e as a divisor. Consequently, these recurrence relatious

appear to be of little value for cases with small eccentricities. This difficulty

,_._.

| S——

-

[ S—

——t




is easily avoided by using the expressions
ns 5,8
x o‘ = e An

x-o(mx),a - &°B

S
n+d

A Y A

where the definitions of the functions A: and an+1 follow from Equations (2-224)

and (2-223), respectively. The resulting recurrence relations for the functions

] ]
¢ | An and Bn+

[

are free of the eccentricity divisor.

in
s

1

lr___A

in,s
and W0 are easily ob-

tained by substituting Equations (2-211), (2-212), and (2-213) into the recurrence

The recurrence reiations for the coefficients V

{
g | U relations for the special case of the Hansen coefficients X: '3 and X(; (a+1),s .
? i { 2.2.1.4.2 Recurrence Relations for the General Hansen Coefficients
2t
‘ Since the general Hansen coefficients XE '% 4o not apparently admit a simple
!
l g orthogonal polynomial representation, the classical approach of Hansen will be

“

used to develop the recurrence relations for these coefficients.

~
.
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For convenience, the following definitions are made: ’
i pe
bolL o
i¢
| { Xs ¢
.
it
| _J z =2 ¢
|
Then,
U d n_s n-lséﬁ_ nos-i_ dx
l z.,;;/ox -.-nlo x%d1+slox d_z. (2-258)
l Using the relations
: d dx d
: ' % E L g: E (2-259a)




Equation (2-237) can be simplified to yield

d ns_ nsnd ni, gt _sed nd s
S P 2c08¢ (x )+ s cospp

Since1

cos ¢

- - g 0
£ 14-&;:9(’&1-)('1)

ar, equivalently,

sin ® (x+xt) - lcosg‘qb/o" +2=0

then the products of E£quation {2-262) with the factors

n-4 Ks . n-i xi .
* and L2
2c0s¢ 2cos P

lln classical elements, this equation takes on the more tamiliar form

ro_ (1- ed)
O a Lrecost

(2-259b)

(2-259¢)

(2-260)

(2-261)
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are {dentically zero and can therefore be added to the right-hand side of Equa-
tion (2-260) to vield

d o Sng n-l sed n-a s N ndos
_— a -n) —— =263
TP cos¢'° X"+ (s-mdcosdo X+ Sl (2-263)
d n s nsngd n-1 ot 5 n-3 g
2P X =-W/o ...(sm)cosgb,o 28 ¢fa X (2-264)
and

d 5_ (nes)singd pn-i e (n-8) sin@ n-1 St S s

z — O X = : X (2-265)
de / 2cos P 2cos¢ P cos¢ P
' 1
Also, since
sin o (xtex) + =& - 2-266) '
— 2 s s 2.9 I
2cos*¢ cos ™9 iy

the product of Equation (2-266) with the right-hand side of Equation (2-263) yields

d . s . :\
£ = xS s (n+s);m @ 3R (mislsmi o x° v\
de / 4 cos°¢ 2es°¢
i
- sinQd n sl :
L ’s:'" %, xS - (nds)s Qs,o X (2-267) f
208 ¢ i d s> 3
) 3in ‘
{n-sisin g gn sed
" i
4 o8’ )
it
1.
]
1 r i
A less familtar form of the expression 1 + € cosf = ) :
a.(i-e ) ¢
!
§
2-71 8
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Hansen also obtains the result

a
- n_s - i, n-4.s
z d?;p x> + x d;’o = [n(n-&)«-s ]cos dpo &
n-d s n-d s B
- n(An-3)p &« n(n-1)p " (2-268)
-
. n-3 , -4 g8
+ s(n-1)smgp (x> ) -
by differentiating Equations (2~263) and (2-264) with the operator # ;d; ana sub-
stituting those equations back into the result, Equations (2-262) are also helpful -
in obtaining the final form. In addition, multiplying Equation (2=262) by the |
fsetor ;
" s i
s(n-1) pTx :
and alternately adding and subtracting the result from Equation (2-268) vields l j
the expressions ' .
||
a $
ad ns d n s ¢ a 2, nd s
2z X — 0 X = |n(a-D+s*-Asn-t ]cos X n !
Gax 0% TR | Y eesTé 1
n-3 §
- [n(an-s) -ds (n-l)] p % (2=269) g \
n-d s . ned s-{
+ aln-t)o %+ s (n-1) snd o x !
za d& on x>+ n d "X [n’n )+ P+ 2s(n 1)]cosa¢ p"'4 x° n
— -— {\n- + -
de~' da’ H |
-3
- [n(ﬁn-‘s)«- 1s(n-1)]pn x® 2-270) ‘

. . n-3 sl
~on(n-) 0" 8- 2sn-Dsindp k"
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The recurrence relations are obtained by substituting the series representation

for p® x° and the first and second derivatives, i.e.,

N o ing ¢
o X = th z (2-271a)
T
tn,s
z 4 g, Z*:)(t t 2-271b)
de !
%
a .
d® s e g
z E;ip X = Zt(t«ﬂ)(,t 2 (2-271¢)
t

into the above differential equations to vield

b8 n-4, sed

. n'i,i' . 2 .n.l,s no
nsnd X - naind X, » ises X, -at cos@ X, =0 @-ulz,

. ne-1,384 n-a,s n-1,3 ns
A sind Xy ¢~(f.a-n)ccs:‘c}S)(E +nX,  -tesdx, =0 (2-273)
., nelsel n-g, s n-$,s n5
-nsind X, " e (sen) ccsa¢Xt enX, b eos X; x 0 (2-274)

n-d, sel ne

<1, 9% . i, n.s
(nes)eng )\'2 v (ﬂ-s)smtb)(t * ath *Lae s d )(i 2 0 (2-275)

n,5-d

&
-

n,5-2

. Y 3 ns
+ 1(”?:’)5lﬂ¢ Xy * (4 » A8 sn P - 4¢ mqs)xi

(2=270b)

{ns s $.m&¢ X

M,5v .

= ;’.(n-;s){m¢xt - (n_s) S\ﬂ;¢ x;\,;'u - 0
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[n(n-&h sa] casa¢ X: . n(ﬂn-b)X: 3,s+ h(n-i.‘))(1 ®

(2-277)
+ s(n-l)s'mqu:.s' ~ s(n-1) smng"““ axl” = 0
n-4, s 3,8
[n(n- )+ 5= 2s(n- 1)]cos X, [n lrl-?)-as(n-x)]x 2-218)
n(n-1) Xh ® + 3s(n-1) sm(}Xn B iaX:'s = 0
[n(n-1)+s1+ ;ls(n-D] cos’d X“-4's- [n(ln-%)q-as(n-l)]xr‘a" o279
w a0 X0 < 2s(ne) sind X0 XD = 0

Setting Equations (2-260) and (2-263) equal and substituting Equation (2-271a) into

the result yields the recurrence relation

n-y,s-3 n.i, s+l ni,s

1 d n-3,5
sin@ X, #an Xy o+ AX, - 2es X, (2-280)

Also, replacing n with n-2 in Equation (2-272) and setting the result equal to

Equation (2-277) yields the recurrence relation

A, .
n [(n-a)a- sl]cosa¢ XZ °. n(n-:)(:n.a)x?f”

.3, '8 (2-281)
+ (n-1) [n(n-a) + atseosqb]XZ * . ¥ n-2) X: = 0

This recurrence relation is particularly attractive since the svperscript s is

fixed and since the eccentricity e = sin¢g does not appear.
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Several more recurrence relations can be obtained by combining the above recur-

rence relations or, equivalently, the differential equations. All of the above

|

recurrence relations are valid for positive and negative values of n.

2.2.1.4.3 Recurrence Relations for the Coefficients Wn,s

A

t
’ l } The procedure for generating the recurrence relations for this case is identical
N — to the procedure used above. Since
b d
SR £ 24 ( = )
2L 2 gt (L .y (2-282)
dg /6 2 %1
¥
{ L} and
n 2
’ e | i3 2-283
i dy  L-By? (2-289)
J
i where
i Rk
) % L u= €
! } it follows that /
i
]
. } d nxs 1 i n Ks‘l
A g x = nacosa%pn xs(—e:'l + 5(1-/33)‘0—_;‘ (2-284)
dy { 4 (1-8y7)
g

which can be expressed as

L n
[u(1+8Y)- ‘3,531]_4%;15_ . np,a"x"(i -u)» 8 (1-804"%"  (2-285)

L

v !

Substituting the series representations

2-75

I

I

I xS = Zw:'s o 2-286a) .
t
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de’x® NS 4o
B/ thh y (2-286b)
dy T

yields the recurrence relation

(ts1en)B w::- [t-s«-(ns)p’“]w:"+(t-1-n)p w*";j =0  (2-287)

Another recurrence relatibn can be obtained from the expression

nel s.4 a ¢ i a n g
X 2 (05 -i(q- Qlﬂﬂ-ﬁ 5),0 X (2-288)

which is easily verified. Substituting Equation (2-286a) into Equation (2-288)

yields the recurrence relation

nel, s5-4 ad ns n,s 1 NS
& = Cos T [th- &ﬂwk + 8 Wi‘!- ] (2-289)

In addition, Hansen also gives the recurrence relation

nn

sl 30} n,s n5 a1, ,ns
th e cosa—i' {W{_l-.‘lﬁwt +8 Wt,,_] (2-290)

Recently, Cefola (Reference 41), using the technique of Hansen, obtained the re-

currence relation in which the superscript s is fixed, i.e.,

1,8

ns n
(n-0) (13- n YW, "= (an-1) [tscos - n(n-1) W, (2-291)

» n{n-s-1) (n+s=-1) cos* ¢ wt"'a--s
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This recurrence velation {s a generalization of the recurrence formula given by
V'inh in Equaiion (3.8) of Reference 39,
Cefola's recurrence relation is reminiscent of recurrence relations for orthog-

. n,s
onal polrnomials and thus leads to the conjecture that the coefficients Wt 'Y may

have an orthogonal polvnomial representation, This conjecture is shown to be

true in Appendix B of this document.

2.2.2 Fourier Expansions in the Longitudes

The results obtained in Section 2. 2.1 can now be used to construct the Fourier
series expansions in the true, eccentric. and mean longitudes of the product

(Equation (2-34)),

N sl ns kX
(-&) & = ZAt 2 (2-292)
t

whevre N is any of the three longitudes. It was previously shown that the coefti-

n,s
clents A7 of the expansion in a particular longitude are related to the coetfi-

t
n,s .
clents Ay ¥ of the expansion in the corrvesponding anomaly by the expression
nS .\t‘sl . la‘tl n.s BT
Al =~ e (k-3mh) " ay (2-293)

where 7 = sign(t-s). Equation (2-293) is equivalent to Equations (2-62a) and
(2-62b), The form of Equation (2-293) {3 used to avoid reciprocals of the complex

polyvnomial (k- jh)m by replacing it with its conjugate polynomial, {.e.,

. -m . -m
[ e e (2=294)

It appears that the form of Equation (2-293) admits a “computational singularity"
n,s
t

absorbs the eccentricity divisor, as will be demonstrated,

for vanishing eccentricity; however, the coefficients a contain a tactor that
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2,2,2,1 Expansion in the True Longitude

Since only the expansion of the parallax factor, r/a, is required, it is considered

first. In view of Equations (2-100), (2-292), and (2-293), it follows that

ry: 0 R IR I TR TR S
(7;) =Ze (k-j7h) N, e (2-295)

t

wheie —o<t<wo for +n and -n<t<n for -n, and where 7 = signt.

Inspection of the expressions for the coefficients \.t.-.n (Equations (2-100b) and
] 4
(2-101b)) show that they are proportional to ﬁ't' or, equivalently, e“' (Equa-
tion (2-73)). Hence, if the coefficient vtm is defined as
n 1tl =
Vi = e v, (2~296)
then Equations (2-295) take the form
n -4l py giL
r X n o aan
L 4

Multiplying both sides of Equation (2-293) by ejSL vields the final result

™M oael . 1-t] ykesdl
t

where ~0w<t< o for +n and ~ngt<n for -n.
2,2.2.2 Expansion in the Eccentric Longitude

In view of Equations (2-130), (2-131), and (2-293), it follows that

.’-n . L - t‘ \ . \ .t !“,5 ‘tF
(-g:) e = Z i (k-mh)s lWh ¢ (2-299)
x
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where n=sign(t-s), -n<t<n for “n and ~w<t<w for -n. Inspection of

+
Equations (2-130b) and (2-131b) show that the coefficients Wt..n,s are proportional
glt-Sl or elt-sl

» 8

' to ; hence, if wt‘:n is defined by
U tn,s it-s] =ns
’ W, = e Wy (2-300)

[

then Equation (2-299) takes the form

r)m isL M8kl =as GAF
<) ¢ (k-jmh) W e (2-301)
t

et e etbar—
- {.-

where the definition of n and the ranges of t are the same as in Equation (2-299).
2.2.2.3 Expansion in the Mean Longitude

The expansion in the mean longitude follows from Equations (2-132) and (2-293)

== = (S 0T

=

to yield
4 . t L
\ =N sl ~lt-s| ) \s-tl  tn,s i
U (&) P Z ¢ T (x-jnh) X¢ ¢ (2-302)
$3-0

——
| IS

Also, inspection of Equation (2-174), (2-180), or (2-185) shows that the Hansen

\ + - P

. U coefficient .\’:ﬂ’s is proportional to elt s ; hence, if the coefficient Kt 08

g is defined by

,i 1 tns it-s)  tns

;. ) i ° e . (2-303)
, - then Equation (2-242) takes the form

U ol O 15t JEA
: s $- tn,s
N (.E) e a Z (k-jnh) K e’ (2-304)
.I il-a
i
: where n =sign (t-s).
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2,2.2,4 Recurrence Relations

Recurrence relations for the coefficients of the expansions in the longitudes
follow immediately from the recurrence relations for the coefficients of the ex-
pansions in the anomalies presented in Section 2,2,1.4. For example, substi-
tuting Equation (2-303) into the recurrence relations for the general Hansen
coefficients yields the recurrence relations for the functions Kt:n,s. Combin-
ing these recurrence relations with the simple recurrence properties of the

[s-t|

complex polynomial (k - jnh) vields the recurrence relation of the product

\g-t| o n,s
Kt (2-305)

tn,s .
Y, = (k- y1h)
As an example, substituting Equation (2-303) into Equation (2-281) yields the

result

n-4,s -3,
n [(n-au‘- s&]cosaqb Yi= - n(n-n)(ln-B)Y: >
2-306)

+ (n-1) [n(n-lh Astcosc)]Y:':‘s- t:(n-a)Y;"s x 0
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SECTION 3 - EXPLICIT THEORY FOR THE NONSPHERICAL
GRAVITATIONAL PERTURBATION

This section presents the explicit development of the first-order averaged equa-
tions of motion for the nonspherical gravitational perturbation. Section 3.1
presents a general discussion of the development in spherical coordinates of the
nonspherical gravitational disturbing function. In Section 3,2, the disturbing
function is developed explicitly in terms of the equinoctial elements. Specifically,
Section 3.2, 1 presents the rotation of the disturbing to the equinoctial frame and

Section 3.2.2 introduces the necessary Fourier series expansions.

In Section 3. 3, the averaged disturbing function is obtained. The concepts of
time-dependent and time-independent averaging are introduced and compared.

It {s shown that time-dependent averaging does not always remove all short-period
terms in the disturbing functions and that time-independent averaging may exag-
gerate the amplitudes of the remaining medium- and long-period terms in the
averaged disturbing function for the cases of nonresonaat and resonant tesseral
harmonic terms, respectively. In addition, the zonal harmonic, combined zonal
and nonresonant tesseral harmonie, and resonant tesseral harmonic disturbing

functions are isolated.

Section 3.4 develops the partial derivatives necessary for the averaged equations
of motion. The equations of motion are developed separately for the zonal har-
monic, the combined zonal and nonresonant tesseral harmonic, and the resonant

tesseral harmouic models,
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3.1 THE NONSPHERICAL GRAVITATIONAL DISTURBING FUNCTION
It is well known that the gravitational force, -f, can be represented as the gra-
dient of a potential function V', i,e.,
F = -VV(x,y,a) 8-1)
where the gradient operator v is defined in Cartesian coordinates as
AdA DA d A
Ve —ji+—j+—Kk 39
A dy YT 5 ©-2)
where (?, 3. f() is the orthogonal triad of the Cartesian reference system,
The particular form of the potential function associated with the gravitational
force exerted by the attracting body depends on the mass distribution of that
body. The potential function must satisfv Poisson's equation
S,
vV Vix,u,8) = 47 G/o(x,g,z.) (3-3)
where the divergence operator is defined by
v aa"-raa'?-\-—aaﬁ 3-4
" axe! dtjaj dzd @-4)
and where G s the universal gravitational constant and P X, ¥y z) is the density
per unit volume at the point (X, v, z). At all points where the density vanishes,
{.e., outside the attracting body, Poissoa's equaticn reduces to Laplace's equa-
tion, {.e.,
Q
v V(x,y,2) = 0 (3-3)
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The general solution of Laplace's equation yields the potential function for the
gravitational force exerted by a body of arbitrary mass configuration on an ex-
terior particle located at the position (x, ¥, z). The potential function for a given
mass configuration is specified by the appropriate boundary conditions in addition
to the general solution of Laplace's equation. In general, these boundary condi-
tions are unknown, and, in practice, the potential function is ultimately deter-
mined by a semiempirical method. This method assumes knowledge of the form

of the general solution of Laplace's equation which is obtained below.

The method of solution for Laplace’s equations is the standard separation of
variables technique and is usually developed in spherical coordinates (r, ¢ ,¢ )
where r20, 0SY<2mr, and -7/2S@< /2. In spherical coordinates, Laplace's

equation takes the form

d [ av 1 a( a\/) 1 %
br(r g)-ke;—-d? + = 0 (3-8)

The solution is assumed to be of the form

V = A ¥ &) (3-7)

Substituting Equation (3-7) into Equation (3-6) and dividing the result by Equa-
tion (3-7) vields the differential equation

td(adae L d d3 (@)
Ale) de (r de ) * 3 cosp dd (cos d¢ )
(3-8)
L dwe

Y ose Uy dva

e Y



Since only the first term is dependeunt on r, it must be (most generally) a con-
stant to satisfv the above differential equation. It is convenient to choose the

constant to be of the form £ (£+1), hence

1 d ( a dA(f)
v

A dr \" ar ) = LLe) -

which can be expressed in the form

dAte) dAlr)
K St A “2(L1) Alr) = 0 (3-10)

The agreement between the power of r and the order of the derivative in each

term of this equation suggests a solution of the form

Alr) = " @3-11)

Substituting this form into Equation (3-10) vields the equation

n(n-1) + 2n - L(L+1) = 0 (3-12)

which admits the solutions

‘ 4 (3-13a)
Nw
| -(2+1) (3-13b)

Therefore, the general solution of Equations (3-10) is of the form

Alr) = ¢, et ey it (3-14)
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where ¢, and ¢, are arbitrary constants. For the gravitational potential,

¢, =0 (3-15)
since the gravitational potential is assumed to vanish at infinity, i.e.,
dim V(r0,8) = 0 (3-16)

ra®

The remainder of the potential function i3 then determined. Substituting Equa-
tion (3-9) into Equation (3-8) and multiplyving the result by cos:"¢ vields the dif-

ferential equation

cos P dd d?

.Lfﬁ'rl) cos:‘gb + § %(COS¢ 3) + -‘1? Wv = 0 (3=-17)

The last term is clearly constant since it alone depends on ¢ . If this constant

is denoted by -m2 , then
da
3‘% * MEPP) = 0 (3-18)

which is the equation for a harmonic oscillator and which admits the solution

Ya Ceosmy &+ Ssinmy (3-19)

where C and S designate arbitrary constants of intcgiation.
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The final function $(P) is determined by substituting the constant -m? {nto
7 Equation (3-17) and multiplying the result by @ /cos2¢5 which vields the differ~ {"’
‘ ential equation
| 5
[ 1 -
1 d dd ) ] m ]
1y =
| —lcosd — ) ¢ | L(Le}) - = 0 3-20)
i cosd do ( ¢ d¢ L ) cos*¢ % ( i
* .
!
" Transforming the independent variable in Equation (3-20) through the relation g’
!, .
ﬁii X s sing (3-21) !
) L
|
.’ L.
| 2
L vields the resulting differential equation -

M [(L-x“) _"_@] . [L(bi) - ]@ = 0 (3-22 y

dx dx

L aTI ey ay -

’ For m =0, this equation reduces to the classical equation named after Legendre

(Reference 30) and which admits as solutions the Legendre polynomials PL ), t.e., ‘

Bi@) = ¢y Pylx) = CyR (sing) for m=0)  (3-23) t

where Cq is an arbitrary constant. The Legendre polynomial is defined on the

[

{ N

{ interval -1€x<0 by Rodrigues' formtula (Reference 30) 3

‘ 1 4t .\L
= — (1-x*) 3-24
{ Rl o @3-
-t
‘
RETH]




The solution to the more general differential equation given in Equation (3-22) is

denoted by
B = ey 0 = ¢y Py, (s (3-25)

N and is called the associated Legendre polynomial of degree & and order m. The

u associated Legendre polynomial is defined on the irterval -1<x<1 by Ferrer
¢ “ (Reference 30) to be?

(W] m
St mi2 4" Py(x)

= (149 —_—t .

« U Pn‘m(") = (1-x%) T (3-26)
7
‘ ( ) A complete discussion of the general differential equation is given in Reference 30.

[

However, one fu ther point is of interest for this discussion. The general differen-
“’ tial equatio: given in Equation (3-22) can be obtained from Legendre's differential
equation tor which m = 0 by differentiating the latter m times. However, since
N U Legendre's differential equation admits a polynomial solution of degree £, m

N must be restricted to the range 0 <m< 4 in order to obtain a noatrivial result.

' /
U In view of Equation (3-14), (3-15), (3-19), and (3-25), the potential V depending '
J
) on the constants £ and m and denoted by V 2.m W be expressed as \
U ’
+ <2-1 . * . . } -
vﬂ,m x~ p F?z,m(s““ ¢) (c,\.m cosmy + Sg.ms my) (3-27)
. T o |
, Some authors include the factor (-1)™ in the definition of the associated Legendre 1
i polynomial given by Equation (3-26) (Reference 42). These differing definitions [

have contributed to a certain amount of unnecessary confusion, The effects of
this definition difference will be observed in the sign of the spherical harmonic
coefficients of odd order m. Reference 30 adopts the notation of P 1 m(x) for
Ferrer's definition and the notation ’

Py = (0" Py 00 i |
3
i

for the alternate definition. This convention is observed in this report.
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where

»
Com ™ g0 {3-28a)

*
Am

Sim ™ €039 (3-28b)
are dimensional spherical harmonic coefficients. Since the dimensions of a grav-
itational potential function are (length/tlme)2 , a set of dimensionless spherical

harmonic coefficients (C .m’ S ) are obtained through the definitions
] m 1’ m

* - 1 t B
Com= Mde Cam (ieaa)
* L
Sum® M0 Sy, (3-29b)

where uL s the gravitational parameter of the attracting body, defined in terms
of the mass of the attracting body, M, and the universal gravitational constant,
G, by’

/LL = GM (3"30)

and @, designates the mean equatorial radius of the central body.

A complete account of the method is given by Fit.patrick (Reference 43) and a

more physical approach is provided by Battin (Reference 44).

The complete general solution is obtained by suniming over all admissible values

of £ and m, which obtains the following final result:

,LL°° L
Va-L2)
| ' A—
£18 msd

ym

1\’:1lufes for the gravitational parameter arve better obtained through observation of
the satellite mean motion, n, and the semimujor axts _gt‘ the satellite orbit and
through the use of Kepler's Third Law expressed as n* a8 = Mo
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where
e\t , .
Vl.m = (..;.) Pymsin®) (Cm cosmy + S, sinmy) (3-32)
and where M = the gravitational parameter = GM

r = the distance of the satellite from the origin of the

coordinate system reference frame
Qg = the mean equatorial radius of the attracting body

@ = the latitude of the satellite

<
1

the body~fixed longitude of the satellite

= the spherical harmonic coefficients which are deter-

mined empirically for a given body

1)

(x) = the associated Legendre polynomial of degree £,

p
2,m
order m, and argument x

The term of zero degree and zero order, i.e.,
Voo = - — (3-33)

corresponds to the potential function of the point mass of classical two-body theory.

Inspection of the expression in Equation @-32) indicates that the values for the

are completely arbitrary and can be taken

sphertical harmonic coefficients S 2.0
1]

to be {dentically zero, t.e.,

q 2.0 a 0 (3-34)
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Furthermore, it can be shown that the spherical harmoanic coeffictents C1 0’
.

C y and S vanish identically if the origin of the coordinate svstem s placed

1,1 1,1
at the center of mass of the attracting body (Reference 43). Consequently, under

this coadition,

Vis280 (3-35a)

Viy20 (3 -35b)

and the nounspherical gravitational potential function takes the form

@ L
M ae\t : . . .
V s - Y 1+ Z Z (-F-) P,‘m(nn(p)(k.g‘mcoem#' *‘Sj.m‘"‘ ml{') (3-36)

e d msO

The disturbing function R is obtained by taking the negative of the potential func-

tion and deleting the point-mass term to yield

[

Zr

1
R a ": Z (95) Py (S0 ) (Cpp 05 MY + Sgm 8 my)  @-37)

m20

o
P

Y

The partial derivatives with vespect to the equinoctial elements of the disturbing
function are requirved by the equations of motion. It {s desirable to express the
disturbing function directly in terms of the equinoctial elements, rather than
relying on the application of the chain rule. A complex variable representation
of the disturbing function will factlitate the transformation to equinocttal cle-

ments.  The disturbing tunction is given Ly the veal part of the cxpressionl

L
- L ‘
Z Z (9':;) (Copm = JStum) Prumlsing) & im(g-6) (3-38)
£:2 me0

1
Reference to the real part of the complex vartable representation will be dropped
until the final form of the potential and its partial derivatives are obtatned,
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wheve § {s the {maginary unit, V=1, and the bodv-tixed longitude. ¢ , has been

expressed as the ditference of the right asceasion of the satellite, g, and the

* s b
aremars

{

Greenwich Hour Angle or some equivilent angle for a central body other than the

Earth.
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3.2 TRANSFORMATION TO THE EQUINOCTIAL ELEMENTS

All quantities in the disturbing function which are dependent on the satellite pos-
ftion must be expressed in terms of the equinoctial elements. This transforma-
tio. .nplicitly or explicitly requires a rotation of the coordinate reference frame
associated with the coordinates (¥, @) to one of the equinoctial reference frames
(direct or retrograde). A general discussion of rotations is presented in Sec-
tion 2. 1.1 and the specific rotation required is discussed in Appendix A of Refer-

ence S§.

Inspection of Equatinn (3-38) indicates that the only quantities dependent on the

satellite position are the spherical harmonic functions
~2-1 : mg
r P,!. m (em Q) e

The general theory of the rotation of the spherical harmonic functions is dis-

cussed in Section 2.1.2,

In addition, the radial distance of the s_atellite. which is invariant under a rota-
tion, must be expressed in terms of the equinoctial elements. This is accom-~
plished through a Fourier series representation in the true, eccentric, or mean
longitude. Since sines and cosines of multiples of the true longitude, L, a.re
introduced by the rotation of the coordinate reference system, it is really neces-
sary to develop Fourier series expansions of functions of the form

(-E.—-)n cos sl (ﬁ—)n sin sk

The development of these Fourier series expunsions is discussed in Section 2,2,
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3.2.1 Rotation of the Spherical Harmonile Functions

The rotation to the oquinoctial reference frame can be expressed by the product

of three simple rotation matrices (seo Appendix A of Reterence 3)

U T = R, (-10) R 1) R,(Q) (3-89)
. U whore 1 and { ave the right ascension of the ascending node and the inclination
: of the satellite orbit, vespectively, and 1 is the retrograde tactor. The rotation
.1: U matrices Ry and Ry ave defined by Equations (2-6) and (2=7). The rotation
o
i transtorms the spherical coovdinates (r, g.¢ ) to the spherical coordinates
1} ,
N @, L, @101, Tho satellite latitude s {dentically zevo in the equinoctial refor-
i U
;{' ence svstem since the fundamontal plane i3 the orbital plane.
r L‘ There are two approaches to the transtformation of the spherical harmonie tune-
’ ‘ tions,  Kaula (Reference 16) used a brute-force substitution of the Keplerian
L
j.! U elements for the right ascension and latitude ot the satellite. ! Exprossions wore
! X obtained of the form ({(n complex variables)
oy
| mg LS i Yemal]
: . ymg S _ 1 Ap)(Fr) e mQ
ot Pumlsm® ™ = 0§ F e . (3=40)
o ps0
| . where  is the true anomaly and the inclination tunction, ¥ L m p(1) i3 dotined to
G e
. A-mQé ™
c W (2L-ARY! s ) m) .
' () a . ) cos i
Lep T R emeat B8 (°
30

(=41)

) p-t-¢

t
xv(ﬁ-m-lhs)( m-s )(-l)c-k
c

1 \J A
This substitution can be obtained from Egquations (2-22) and (2-23) by designating
Aas the right ascension and N' as tho true anomaly, e, A' =1,
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| : . where k is the integer part of (- m)/2, the summation index, t, varies through
! ! ) the range 0<t<min(p,k), and ¢ is summed over all values for which the binom- L
{ , f ial coefficients are defined.
A
o ‘ Iszak (Reference 45) and Allan (Reference 46) simplified the expression for the [
' : inclination function by using the inclination half angle to obt:ain1 i
‘i ka ,
0 , (2+m)! W [a8-2p 2p j
. Fums 90 = o ) [ () (130 '
, p: pJ (3-42)
; | k'-'kL “~ ﬁ
' 52-m-2p- 2k . m-Ledpeadk |
; X C0S P (1/2) sin P (l/i)} ﬂ
g l where k, = max(0, L -m-2p) B
N j=v-1 B
, : " To facilitate the development of a simple recursive scheme for evaluating the ﬁ
i inclination functions, Cefola (Reference 13) suggested the alternate approach
| based on the theory of the rotation of the spherical harmonic functions presented ﬂ
' in Section 2. The rotation of the spherical harmonic functions to the equinoctial
1’ ; reference frame takes the form (Reference 25) ﬁ
=
L ) ’
. img V (1-9)! ms sk
.. P‘l‘m(smm g = /. mt Pl‘s(o) Su (p,or,T) (3-43)
. sa.-k !

1
This particular expressicn was vuiained by Iszak; Allan's expression incorpor-
ates the factor j4=M {n the above definition.
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sinee the latitude of the satellite {n the equinoctial veference frame, @', is iden-

tically zevo.  The parameters @, o7, and T for this case will be defined shortly,

It should be noted that the function Pl s(l)) {s a constant depending only on the
*

indexes £ and s.

It tollows from Equation (3. 6. 1) of Reference 26 and from the footnote on page S-7

that
- [ (o]
- v Y
P (0) = —== cos [(l«-s)—] @-44)
1 ' . '
v [ (5]
(This expression is valid for all {ntegers s.)
It {s obvious that for odd values of £+ s,
Pl 5(0) 20 (3=49)
Using the velations
[(neg) = 5 M%) (3=462)

Mg« = @-46b)

{t ts casily shown that

(082 (Les-1)1t

Pi.a(o) = (-1) oon G-47)
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provided the definition

(1) = ¢

is made. An alternate definition which avoids the double factorial notation is

(1-8)/3 (2+s)!
Pm(o) = (-1) az(m) (: s) (3-48)
2 2

Since only terms which satisfy the condition £ s = 2p contribute to the summa-
tion in Equation (3-43), the range - £<s< 4 can be replaced by the range
0 <p< 2 toyield

L
(s} o jst
oy S,y (P,c' 7) f, (0) é
S:-l (3_49)
[L1s even] N
(ap .! 39 j(2-2p)L
Z ™ 31 (p0,7) P 143p (0) e

This modification is of no significance for machine processing and will not be
adopted in this report. However, it does demonstrate the refationship between

the present formulation and the standard Kaula approach given by Equation (3-40),
3.2,1,1 Determination of the Function 5212“5([0’ a,T)

To obtain the appropriate form of the function S ( P »6,T), it is necessary

to determine the parameters L T and T in te1 ms of the Euler angles (¥, ', '),
which describe the orientation of the equatorial reference system relative to the
equinoctial reference systems. The rotation from the equatorial to the equinoc-

tial reference systems, which was derived in Appendix A of Reference 5, is given
by Equation (3-13).
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Tor the purpese of this discussion, the inverse trausformation is required, i.e.,

. -1 - -1
T R, (Q) R:(n R, (IQ) (3-30)

Since the constituent rotation nmtx‘icés, Rl( 8) and Ra(e) , are orthogonal, it

follows that

-1 T
R (8) = R (8) = R(-8) (3-51)
Consequently,

T e Ry Ry RL(IN) (3-52)

Comparison of this result with Equation (2-5) indicates that, for this case, the

Fuler angles are

w' = -0 @-33a)
i (3-53b)
o = 1IN (3-53¢)

The primed symbols denote the general Euler angles and the unprimed symbols
denote the funiliar Keplerian orbital elements. The parameters o, @' and T
are thus obtained trom Equations (2-16), {.e.,

Q- (T )L

g = 1 n 2 (3~54a)

3=17
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(1-1)n

P = T T TR

N e dma

i
R @
&

'I
t:-l-

(3~54b)

(3=54¢)

These expressions can be substituted into Equations (2-44) to obtain the function

52n ;"s; however, it i{s just as easy to substitute the above Euler angles directly

into Equation (2-43), which yields the result

m, s

S

7

The substitutions

were used to obtain the above results,

3-18

2 = e [ite-mE] exp [j(m-19)0 ]

Cia Suz oo™ (-4<s5-m) (3-55a)
) | m:$ m-S m-$ S
X < ((les‘;: ((: r:; Cia a P“_m (¢) (-mgs<m) - (3-55b)
+5)t (1-8)!
- . -m, mes
\(-L)""' eha S?‘:' P_:_s (¢, ms<ssL)  (3-35¢)

= D .S =2

= T
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The collapsed form of the inclination function is obtained by substituting the Euler

angles (Equations (3-534)) into Equation (2-30) to vield

ms

S.an = exp [j(u-m)%] exp [3(M-€Ism] o

*

”~

\

mees M-€S M-$ M

(L+m)! (1-m)!

(Les)t(2-8)! Cia Sya Py (60
S SreM  g.em _s.m,mas
1) ya ya Ppg el

where € assumes the values ¢ =21,

(0€8<m) (3-56a)

ms<s<ld)  (3-56b)

The inclination functions can be expressed in terms of either the equinoctial

elements p and ¢ or the direction cosines, with respect to the equinoctial ref-

erence system, of the 2 axis of the equatorial system,

The relationship betwecn

the direction cosines (x, @3, ¥), the elements p and q, and the Keplerian ele-

ments £l and { are

- apT
ie plr ql

= 'IS;Sn.

3~-19

L e S s o o o = T
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(3-571)

(3-57b)
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where, clearly,

qa“+,61+ 1" a |

These expressions are easily obtained from the transformation matrix in

Appendix A of Reference 5.

3.2.1.1.1 The Function 52";"

It follows from the definition of the direction cosipnes that

® {n Terms of the Direction Cosines a, ﬁ, Y

Yol -
eJ = ./6__123 (3-58)

Vi

By direct substitution and some algebraic manipulation, it can be shown tlLat

” . m m-Ts [2+118 m-1s
exp [j(s-m) E‘] éxp [](M-Is)ﬂ] = T (-1) \/’T——;’_ 'a"" (3-39)

Using the relations

¢ \/_*ii (3-602)
[1-7
S‘ a \/ ru (3-60b)
- YR
\/t¢: - \/111-; (3-60c)
3-20
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it can also be shown that

Substituting Equations (3-59) and (3-61) into Equations (3-55), using the relation

|

(a-m
vV 1-¥2

(3-62) :
Vi-x*
and examining the direct and retrograde cases yields (after some algebraic ma- ,;' -
nipulation) the following final expression: / :
’ M

H

(™0™ & (B0 (e T R ™ (-LSs<-m) (3-63a)

m>s im (Jem)!t (Lem)! p™* mes
'Y et vy - < < - -
. ( T en™ T ara)™ " (™ % (-m<s<m) (3-63b) :
L 1™ (i e B ) m<s<L)  (3-63¢) :

\

\

3-21

T N e L ian e seoncieveme -

-m-5 m-5S
C\[;L S'.la. =
m+S m-$S
C".la. a =
med s.m
N S a
UL Vil

PR S

(23_15_

)

2" (e (Vi xa)m's

)" i

L (1+ xim(\/f-??)m-s

P (1+x)m(\/1-xa)s-m

(3-61a)

(3-61b)

(3-61c)

- -



Similarly, the collapsed form of the function S?;_ takes the form
»Ms,é m fam
a L€
m-s -m (o)t (2om)! m- eIs &Ts _m.s,mes
-1 '(T?)'._u")?‘“’ yI8) +I10) TR, (&) (0<s<m) (3-64a)
.3
2* - 1e®)* T e ™™ BE™ ey (Mm<s<L) (3-64b)

3,2.1.1,2 The Function szn;'s

It follows from Equatiors (3-57) that

in Terms of the Equinoctial Elements p and q

-l

ar(p = —5—3 (p¥3Iq) (3-652)
P g yIq
a+)If 2 — ( ) -65b)
B T3 A S P-1q ®
r L
{+IY¥Y &8 ———T 3-65¢
1+pa*Q°' ¢ )
Substituting these expressions into Equations (3-63) and (3-64), respectively,
and simplifving yields the expressions
( I‘(p-nqvl"‘"‘ (Lepteq®’ P 208 (-L<s<-m) (3-66a)
m,$ s (Barm ) {iam)! -m m s, MeS _ s
a ™ < T (p- ]%) (h-p pq) .!m (¥) (m<s<m) (3-66b)
. -1 . -8 M, N
LT ™ (pey 1) (1pe ) P, ()  (m<s<d)  (3-66c)
3-22
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The distwrbing tunctfon {n tevtas of the votated spherieal havmonde tunetions s

This completes the discusston on the development of the function 8

obtatned Ly subatituting Byuation (3-8 {uto Bguation @=38), which vlelds

L

0 & 2ok - (t-s) e j(sk- ma@) ‘
R r Z >... }__.. —“) (L l\m) mt P\‘,‘m) oy ¢ 3=-68)
Jed Ml 30}
[tar aven]

The collpsed form of the disturbing funetion s obiatued by sabstitating Bquee-

tlon (2-32) qwith A < 2«8 ad @' v 0) {nto Byuation (@=38) to vield

T J((\L -m@)
€

e 0 .

R " L ‘\__‘2_‘ E_‘ (d.) (¢ L o tm)“:\‘ L)"i( -6
2ad M0 we
Ciee aven]

whete € assutes the valuos 21 ad Sa = deftned tn Bquation (2-4m,

G302 Expangion of the anetion {(1 v"\"l\\g-""l'\]

The represeatation of the digturbing funetion (n equinoctial eloments {s completed

by wsing 2 Fourter aeriex expansfon for the tactors
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3.2.2.1 Choice of the Expansion Variable

Any one of the mean, ecceatric, and true longitudes can be chosen as the expan-
sion variable. [n most applications, the mean longitude {s chosen since it is a

simple linear function of the time which i{s the natural {ndependent variable. The
mean longitude is therefore well suited for generating ephemerides or any appli-

cation where the time history of the elements is closely monitored.

Use of either the true or the eccentric longitude in the disturbing function with
time as the independent variable in the enuations of motion requires that more
complicated expressions relating the chosen longitude to the time be evaluated

at every step. If the eccentric longitude is chosen, then Kepler's equation

A=s F-ksinF+hesF (3-71)

must be evaluated. I the true longitude is chosen, then the expression

L- tan.x(%) {ve F- tar{l(-‘&-)
tan [——-—;—— = e tan T (3-72)

must be evaluated in addition to the evaluation of Kepler's equation,

Transforming the independent variable in the equations of motion to the desired
longitude will remove the necessity of evaluating these expressions, but the rela-
tion to time is no longer apparent. If the explicit time dependence is required,
one or both of the above expressions must be inverted, depending on the longi-
tude. The tversions of Kepler's equation requires an iterative procedure, €uZe,
the Newton-Raphson method, and is considerably more expensive than simply
evaluaticg the expression. Consequently, the eccentric and true longitudes as
independent variatles are best suited for those applications where knowledge of

the time is not required or, at least, is required infrequently.
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In addition to the above considerations, the particular characteristics of the
Fourier expaasion must be considered. In Section 2,2, Fourier expansions for

the function

were developed in terms of the mean, eccentric, and true longitudes. For the

nonspherical gravitational disturbing function, n is a negative integer, i.e.,

na -(L+1)

For negative values of n, the expansion in the mean longitude i{ntroduces the

infinite series

NTTSV Y s g
(—;:) et . }:Y% * et (3-73)
%\'&
~2-1

where the modified Hansen coefficients, Y ’S. (defined in Section £ {n Equa-

q
[ D

tion (2-303)) are infinite power series in either 8~ or e™, both of which are func-

tions of h and k. The expansion in the eccentric longitude also introduces a

similar {nfinite series,

In contrast, for negative n, the expansion in the true longitude introduces the

finite expression

S0a) L W “eh)  jlQeedl
ARSI D Vq e (8-74)
1.-(“1)

Consequently, when choosing the expansion variable, the simple time-mean

longitude relation and the infinite Fourier series representation must be weighed

- -

-,
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against the more complicated time-true longitude relation and a closed-form

Fourier series representation. Expansion of the nonspherical gravitational

disturbing function in the eccentric longitude offers the worst of both of the other

alternatives, thus introducing Kepler's equation as well as an infinite Fourier

series in the development. If the complete nonspherical gravitational disturbing

function is required, the true longitude appears to be the better choice for mod-

erate to large eccentricity satellites and the mean longitude is the better choice
for small eccentricity satellites.

However, in the averaged disturbing function, all short~period contributions are

to be eliminated, regardless of the particular formulation used. In the absence

of resonance, only the constant term of the Fourier series should survive the

1
averaging process.” Hence, anyv advantage in one expansion over the others

depends ultimately on whether the constant term in one of the expansions has a
computationél advantage over the constant terms in either of the other two expan-
stons. This discussion in Section 2,2 gives simple relations between the constant

terms in the three Fourier expansions (see Equations (2-211) and (2-212)), i.e.,

s m-15 V:n-&
6 ° 8 2 (3-75)
t-e

and, therefore, no one constant term possesses a significant computational ad-

vaitace over the other two. Thus, in the absence of resonance, insofar as the
averaged nonspherical gravitational disturbing function i{s concerned, it makes

no difference whether the true or mean longitude is chosen for the expanslon.2

1’I‘his. however, requires certain assumptions about the perturbation model.
This {s discussed in more detail {n Section 3.3.

2However, for the formulation of the first-order short-period variations in the
osculating elements (Reference 5, Section 4), which requires the short-periodic
part of the disturbing function, the finite formulation afforded by the true longi-
tude expansion {s very {mportant in all but the very-near circular cases.

£ o o  wme e -
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If the possiblity of resonance phenomena is considered, the chotce of the expan-
sfon variable is no longer arbitrary. The mean longitude (anomaiyv) must be
selected for the Fourifer series expansion if the resonant contributions are to
be isolated. This is because a resonance occurs when the ratio of the mean
motion of the satellite, n, to the central body rotation rate, w, is very nearly

the rvatio of two small integers, i.e.,

n N -
R 3 N (3-76)
This causes the term
N'A-N6 = ult) (8-77)

referred to as the critical term, to vary quite slowly, thus introducing a very
long-pertod, A-dependent component to the motion instead of the usual short-
period contribution produced in the absence of resonance, There is apparvently
no corresponding formulation of the critical argument in the true or eccentric

longitudes @nomalies).
3.2.2,2 Introduction of the Fourier Expansion in the Mean Longitude

Since the averaged equations of motion are to be developed for the resonant
tesseral harmonics in addition to the zonal and nonresonant tesseral harmonices,
the Four{er expanston in the mean longitude {8 required. Substituting Equa-
tion (3-73) {nto Equation 3-68) vields the following complete expansion of the
disturbing function:

».&
SN

ded MmO sk e (3-78)
(lte aven]

L

I ©
L .
) 5_‘ Sq (%.Q-) (Cl.m‘ ) S.l,m) &%

- L

b

my o84 j(qA-me)
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The corresponding collapsed expression for the disturbing function, where 0<s<4l
and 0 £ ¢4 <o, follows immediately by replacing s by €s and ¢ by Yq in the above

expression, where the parameters e and ¥ are mutually independent and assume

the values
‘ -1 (s <0)
€ = (3-79a)
( +1 (s20)
s -1 q<0)
Va l (3=79b)
+4 (q20)

aad the quantities s and q are restricted to be nonnegative integers. I[n view of

Equation (2-52), the resulting expression for the collapsed disturbing function is

e 2390 )T Y nn

122 m:0 0 q:0 et wvaty

L 2as even] (3-80)
. JMSE Rtes j(ugh-m)
Wl p (g go ™y I
(2-m)t &7 TAL vg
where 8 and 6(1 are defined by
1 &k = 0)
8, ‘ (3-81)
( 1 k>0)

The above expression is simplified by substituting the values of € and v in the

factors

s Ww™mBE  -lLes  j(ugA-mB)
()

e SR wouns BN oanw BN SS0i
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and using the definition (Equation (2-305))

-2-4,65 les-vgl -1-f, es

Yug = (k-jnh) Kug (3-83)

where 7 = sgn(vq- €s) and

=218 -R-1,s
K,% = K% (3-84)

which follows from Equations (2-134) and (2-303). The final result can be

expressed in terms of € and V as

& S,‘M.S.* Y-J--i. €s ej (VqA-m8)
a® vq

' (3-85)
<ms.& 1e(s-YQ)] -0-1,Vs 3(eug)x-me)
e

= €55, (k-inh) Kq

where T = sgn[e (Vq-s)].

Substituting the right-hand side of Equation (3-85) into Equation (3~80) yields the

final expression for the collapsed nonspherical gravitational disturbing function,

i, e.,
4 )

R*= %izzzzze 8, 8 (%" (Cypm 1S4

ms) $20 Q-O €3l ety

(L2 even (3-86)
. ms,& le(s-vq)l -2t us j(evqA-m8)
8‘ 2! Py (@ 85, (k-jnh) } Ky & ?
my

where 7 = €sgn(vq-s).
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3.3 THE AVERAGED DISTURBING FUNCTION

This section discusses the application of the averaging operation to the nonspher-
ical gravitational disturbing function. The concepts of time-independent and

time-cependent averaging are discussed and related to the classical assumptions
of a stationary central body and of exact resonance., The discussion of resonance

is extended to include the phenomenon of near resonance.

Also presented are the time independently averaged disturbing functions for the
zonal harmonic, the combined zonal and tesseral harmonic, and the reduced

resonant tesseral harmonic fields.

3.3.1 Application of the Averaging Operation

The first-order averaged equations of motion require that the disturbing function,
expressed in terms of the mean elements ( i.x ), be averaged over an appropri-
ate interval to remove all short-period components. The development of these
equations was discussed in Section 3.2 of Reference 4. In the absence of reso-

nance phenomena, the appropriate form of the averaging operation is

k(s

R(a,x>> [ R@EA) 6-87)

A ar
-
-n

However, in the case of resonance, this averaging operation is strictly valid
oaly for properly reduced force models consisting of quasi-isolated resonant
terms in the disturbing function.1 If the force model is not properly reduced,

the averaging operation should be defined as

NT
i - -
<R(3,7\)> 2 — R(Z,A) dA (3-88)
X 47N
“-Nn
where N is the number of satellite revolutions performed during the smallest

period common to both fast variables (in this case, the satellite mean-mean

1Se@ Section 3.4 of Reference 4 for a detailed discussion.
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longitude and the Greenwich Hour Angle or its equivalent describing the central
body rotation). For example, for the case of 2:1 resonance (i.e., n/w = 2/1),

N = 2 and for the case of 7:1 resonance, N=7,

In practice, the averaging interval will not generally be centered around the origin
of longitudes, i.e., X =0, as implied by Equations (3-87) and (3-88), but will, in
fact, be centered about the value of the mean-mean longitude associated with the
time of the numerical integration step, \ 0 Consequently, Equation (3-87) is more

correctly expressed as
Ao@‘”

<R(K /\)>. ——f R(Z.X) dA (3-89)

The same modification is also appropriate for Equation (3-88).

This dependence on the value of the mean-mean longitude at the integration step

time has important implications, particularly for the numerical averaging method.

This is discussed in Section 3.3.1.2.

One form of the averaged disturbing function is obtained by applving Equation (3-89)
to Equation (3-78), which vields

Ao”' ® =Y

<R(1,1)>X= f ZT}:Z? (Cpm™ 1S4m)

.-” 422 me0 gs-2 ?.-w

U C2ts even] (3-90)
(2-8)1 ms o 4-4,8 j(q1-m8)
x P .(0S,"Y
0 (em)t 4 g &
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Clearly, only the imaginary exponeatial function is dependent on the mean-mean

longitude, A, and, therefore,

(R - £ i it

232 m:0 ss-L qr-=

(Lxs even] (3-91)
YRS ¢
ms -f1s ’ j(v[X-me)
Pa,sw)saa Yc‘ e dA
Xo"r

3.3.1.1 Evaluation of the .\veraging Integral

The evaluation of the above definite integral is straightforward. The classical
approach has been to assume that either 8 is completely independent of A,
which tacitly requires a constant Greenwich Hour Angle for Earth satellites,
or that the ratio of the central body rotation rate to the mean-mean motion of

the satellite is iu the ratio of two integers, i.e., exact resonance.

The first approach of holding @ constant over the averaging interval during the
averaging operation will be referred to as time-independent averaging, How-
ever, since the value of @ is to be evaluated at each integration step, the effects
of the rotation of the central body are introduced in the long-term satellite mo-

tion.

The second classical assumption of exact resonance i3 a special case of time-
dependent averaging. Specifically, the Greenwich Hour Angle, 8, (or its equiv-
alent for some central body other than the Earth) is permitted to vary during

the averaging operation according to the constraint

N
N

sijlo-

(3-92)
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or, equivalently,

jA-m8 =0 (3-93)

where the integers j and m are multiples of the integers N' and N, respec-

tively, t.e.,

j= kN’ (3-94a)

m= kN (3-94b)

In practice, neither of the classical assumptions may be strictly valid for a par-
ticular satellite, [n the following discussion, the more general time-dependent
averaging approach i{s used in evaluating the definite integral in Equation (3-91).
Each of the special cases corresponding to the classical assumptions is then
deduced from the general result, Viewing the special cases against the back-
ground for the general result provides additional insight into the application of

the method of averaging.

The method of averaging requires the disturbing function to be average: over
some time {nterval, {n this application, the mean revolution period of the satel-
lite. Because of the simple relation between the mean-mean longitude, A » and
the time, this requirement is easily traaslated to averaging over :\. on the inter-
val [0, 2], However, the time dependence of other parameters, t.e., the
Greenwich Hour Angle (or {ts equivalent) should not be discounted simply because

the averaging operation {3 deffned {n terms of A {nstead of time.

The Greenwich Hour Angle (or its equivalent) is easily expressed {n terms of A
to accommodate the X-form of the averaging operation. First, 6 can be ex-

pressed as a function of time through the relation

8+ wt+8, (3-95)
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where w is the rotation rate of the central body, considered to be constant ove.
the averaging interval, and 90 is the apparent Greenwich Ho - Angle at the
integration step time. Equation (3-95) ignores the effects of precession and
nutation on the value of 8, over the averaging interval, « <cept at the center of

the intervai.

For the purposes of the following discussion, it is assumed that the ratio w/n
{s constant with respect to the time. This assumption is not inconsistent with
the basic assumption of the method of averaging, {.e., that the slowly varying

elements remain constant over the ¢ veraging interval.

The mean-mean longitude of the satellite is expressed explicitly in the time by

A= Rtedg (3-96)

where T is the mean-mean motion of the satellite defined by

S

= Vo
Aos oy o -9
\/ PE (3-97)

The quantity a is the gravitational parameter of the central body and a {s the
mean semimajor axis. Hence, the mean motion, ®, is either conwiant or

slowly varving, depending on the exact perturbations.

Eliminating the time between Equation (3-95) and (3-96), {.e.,

6-6p A=),
-~ " = 3 (3-98)
vields the relation
0 N
6 = —a—(x-koneo (3-99)
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The special cases of a constant Greenwich Hour Angle and exact resonance cor-

respond, respectively, to the conditions

w
T C 0 (3-100a)
and
IR N
TN (3-100b)

where N and N' are integers.

Substituting Equation (3-99) into the definite integral in Equation (3-91) yields the

expression
AgtT
__1__ J(Qx-me) d-x
ar
Ao-Tr
(3-101)
Agt T -
. () ] . w
4 e-Jm(Go--ﬁ-/\o)f eJ(a‘-m%-)A]dX
T
Xo‘w

_ Evaluation of the right~hand side of Equation (3-101) yields the general result

PR L (forqg=m =0 or (3-102a)
L j ej(gx-me)dx q = mw/1n)
an sinf(g-m =) 1 (QAa- :
A [(% w" ) ] e 1qho-meg) (otherwise) (3-102b)
(3-mz)7
3=35
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Inspection of this result indicates that the time-dependent averaging operation

does not generally remove all satellite~dependent ( A-dependent) short-period

terms {n the disturbing function. Nor does {t remove the 6 -dependent medium-

and short-period contributions except in the case of resonance. (This last
observation is, or course, to be expected.) The residual short-period terms

shown {n Equatfon (3-102b) possess the periods

- T

1 g7 - mw (3-103)
" where T is the mean period of the satellite, i.e.,

of

§
- L

. T = — (3-104)

1 n

4 Their contributions at the integration step time, i.e., -A- - -XO , may survive the

averaging operation, The sine factor {in Equation (3-102b), referred to as the
averaging factor, determines whether in fact the residual short-pertod effects
really persist after the averaging operation and, if so, their degree of signifi-

cance.

3.3.1.2 The Averaging Factor

It is apparent that the averaging factor acts to suppresas both the amplitudes of
the residual satellite-dependent short-period terms and the amplitudes of the

! 6 -dependent medium=~ and short-period terms, since

sin [(q—m%"—)v]

(q-m%)7

41 (3=105)

{s always satisfied. The degree to which the averaging factor actually suppresses

e
e
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! : "I ’ the residual periodic terms depends, among other things, on the period of the
- ‘ , J term,
| !
{4
j g g( Inspection of the right~-hand sides of Equations (3-101) and (3-102) shows that
B . .’! J
;i ! - frequency of a given term {s proportional to the denominator of the averaging
I f b factor. Hence, the averaging factor is more effective in suppressing shorter
N ! = period terms in general. The effect of the averaging factor is discussed sep-
’ % ‘I\j arately for the zonal and tesseral harmonic terms.
LX} i o
H i 3.3.1.2.1 The Averaging Factor for the Zonal Harmonic Terms
I
f 2 The zonal harmonic terms in the disturbing function are those for which m =0,
AT Consequently, the averaging factor in Equation (3-102D) reduces to
IRE
)|
t ‘_ i J L (for q = 0) (3-106a)
sin(qm
i sinlqm) 20 (for q #0)  (3=106b)
L 4
{
I
1}
z l The case where q = 0 corresponds to those terms which contribute only to the
) long-period and secular motion of the satellite. The case q # 0 corresponds to
Pl é \} the A-dependent short-period terms which are completely suppressed by the
l 1 :
P averaging factor.
h 3.3.1,2,2 The Averaging Factor for the Tesseral Harmonic Terms
U The tesseral harmonic terms (including the sectoral terms) {n the disturbing
function are those for which m # 0. The discussion for the tesseral harmonic
I terms is presented separately for the m=datly nonresonant terms (q = 0), the
general nonresonant terms, and the resonant terms tfor which
! L
- a—
! w
. s satisfled.
l 3-37
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3.3.1,2,2.1 The Averaging Factor for the m-Daily Terms
The m-daily terms in the tesseral harmonice tield are those terms for which q =0,

The periods of the m=-daily terms are given by

]
X (3-107)
m

where ' is the rotation period of the central bodv. Hence, the m-daily terms
produce effects in the satellite motion with a frequency of m cycles per day

(rotation period).

Substituting q = 0 in the expression for the averaging factor in Equation (3-102bh)

vields the averaging factor for the m-daily terms, which is

s\n[%’- mn]
— = (3-108)
Y
n
Clearly,
sin [g. mrr] ‘ =1 (for L =0) (3-109a)
n )
L W
7 M <1 (for = #0) (3-109b)
4]

Equation (3-109a) is easily obtained by using the theory of limits on Equation @3-108)
or substituting the values q = 0 and ©/f = 0 directly into the right-hand side of
Equation (3-101) before evaluating the definite integral. Equation (3-109b) follows

from the properties of the sine function,

Equation (3=109a) corresponds to the classical assumption of a stationary central
body. In view of Equations (3-109b), the significance of the m-daily terms in the

averaged disturbing function is inversely proportion:l to the rotation rate of the
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central body and directly proportional to the mean-mean motion of the satellite.
It is not surprising that the m-daily effects become less significant as the central
body rotation period approaches the satellite mean revolution period. Further-
more, for supersynchronous satellites, the m-daily effects become much less

significant than the A -depenrdent short-period terms.

In addition, for a fixed ratio /8, inspection of Equation (3-109) indicates that
the m-daily terms become less significant for increasing order, i.e., increasing
m. This is expected, since the higher order m-~daily terms are of shorter per-

iods.

For close-Earth satellites, the difference in the two averaging factors (Equa-
tion 3-109) is negligible for the low-order m-daily effects, i.e., m =1,2,3,
However, the discrepancy grows dramatically, percentage-wise, as the order m
increases. Fortunately, the amplitudes of these high-order m-daily terms
decrease rapidly. Thus, although the large percentage errors contribute much
smaller absolute errors, the effects of each high~order m-daily term is signifi-
cantly corrupted by using the averaging factor tor the time-independent averaging

theory.

More importantly, theve exists a cutoff value of m where the two averaging fac-
tors produce a discrepancy in the sign of the term, thus introducing a phase
error of 7 radians. This is easily demonstrated as follows, If it i8 assumed

that the ratio W/ is bounded by the reciprocals of the integers k and k+1, {.e.,

—_——

| <_1_
kil k

si|e

then

W { 1 for msk
) SIN | == MTT) -
n ( n z -1 for m>k
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3.3.1,2.2.2 Nonresonant Tesseral Harmonic Terms Excluding the m-Daily
Terms

Excluding the m-daily terms, the remaining nonresonant tesseral harmonic

terms are those for which q #0 and m # 0. The corresponding averaging factor

takes the general {orm given in Equation (3-102b). This can also be expressed

=i
m [

as

For the classical assumption w/@ =0, the averaging factor reduces to

f-‘%"—}’-‘- 2 0 (3-111)

Thus, it suppresses all residual nonresonant, \-dependent, short-period terms in

the averaged disturbing function analogous to the case of the zonal harmonic terms,

In the general case for which w/@ #0, the 'averaging factor in Equation (3-110) is

appropriate and can be expressed in the form

(3-112)

3.3.1.2,2.3 Resonant Tesseral Harmonic Terms

Exact Resonance

For the case of exact resonance, i.e., where

¢

w N
= = =
)

N
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the averaging factor given in Equation (3-110) takes the form

il )or
(i- N')mfr

m- N

(3-113)

ol S S _ U

Those terms in the disturbing function for which

»
—

q = kN’ (3-114a)

m = kN (3-114b)

Fr

produce the resonance phenomena. Tt averaging factor for this limiting case is

unitv.

The discussion for the averaging factor in the case of exact resonance is broad- ;o

ened to include not only the pure .esonant terms, but also the quasi-isolated and ’ :
'

‘ embeddad resonant terms discussed in Section 3.4 of Reference 5.

R
| L\ i The entire nonspherical gravitational disturbing function can be considered to be

an embedded resonant term in a general sense. The expansion of the disturb-

—_—

L ing function in the orbital elements results in a proliferation of terms as shown

B in Section 3.2. More particularly, the imaginary exponential function which

-

contains all the pertodic {nformation depends generally on two indexes q and m,

The index q is introduced by the expansion in the mean longitude, and the index
m is the order of a given spherical harmonic term in the nonspherical gravita-
tional disturbing function. These indexes can assume any value in the range

~0<q<o and 0Sm< L, where L is the degree of the given spherical har-

monic term.
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A quasi-isolated resonant term is any term or group of terms in the disturbing
function for which Equation (3-114b) alone is satisfied. The range of the indexes
in the imaginary exponential function is then -0 <q<® and m = kN (where

N is called the order of the resonance). Quasi-isolated resonant terms are a
subset of the embedded resonant term. The pure resonant terms are those
quasi-isolated resonant terms for which Equation (3-114a) is aiso satisfied and

are therefore a subset of the quasi-isolated resonant terms.

For quasi-isolated resonant terms, the averaging factor assumes the form and

values

‘ L for 1" kN’

sin (q- kN) s
; 2 (3-115)
(%‘ kN )77 l 0 ;0" %* ch

This result is obtained by substituting Equation (3-114b) into Equation (3-113).
Consequently, the pure resonant terms for which q = kN' are completely trans-
parent to the averaging operation and the averaging operation completely sup-

presses all other quasi-isolated resonant terms for which q # kN'.

For the remaining terms in the embedded resonant term, i.e., the disturbing
function, the averaging factor retains the form given in Equation (3-113). It
will tend to reduce the effects of the corresponding residual short-period terms

but will never completely suppress these contributions.

However, {f the averaging operation defined in Equation (3-88) and centered at
-XO i{s used, it is easily verified that the corresponding averaging factor takes

the form

sin[(% - %)me]

—— (3-116)
(-31- - %‘) mN
3-42
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Clearly, this averaging factor vanishes for all cases where the argument of the

sine function assumes a nonzero integral multiple of 7, i.e., if
gnN - mN = k (for k #0)  (3-117)

This condition i{s satisfied by all possible values for the indexes q and m, with
the exception of those that yield k = 0, which specify the pure resonant terms.
Consequently, the averaging operation based on Equation (3-88) completely sup-

presses all nonresonant terms in a general embedded resonaat "term."

This fact is of little significance for analytical theories {n which the pure reso-

nance terms are easily isolated. However, the significance cannot be over-

stat>d for numerical averaging applications. Failure to properly reduce the

force model to only the quasi-isolated terms requires an tncrease by a factor

of N {n the cost of the averaging operation, if all residual short-period terms

are to be completely suppressed.

Near Resonance

Exact resonance i{s a limiting case which is seldom, if ever, encountered,

However, near resonance, defined by the constraint

Nl
—_—
= N e~

si|e

(3-118)

is of considerable practical importance. Substituting the condition of near reso-

nance into the expression for the averaging factor in Equation (3-113) yields the
expression

(% -% -e)mw 3-119)
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The pure near-resonant terms are still specified by Equations (3-114) and the

nveraging tactor reduces to

sin kN
———— -1
ekNT  3-120)
The periods of these near-resonant terms are given by the expression
T
3-121
ekNTw ( )

Clearly, as € approaches zero, i.e., as the resonance becomes deeper, the
averaging factor approaches unity and the periods of the near-resonant terms
become longer, Conversely, as € grows larger, the resonance becomes
shallower; the periods of the near-resonant terms grow shorter; and the aver-
aging factor decreases in mug:nitude. vesulting in the greater suppression of

the amplitudes of the near-resonant terms.

The quasi-isolated near-resonant terms are restricted to those terms which
satisfv the constraint given by Equation 3-111b) as in the case for exact reso-
nance. Substitution of this constraint into Equation (3-119) vields the averaging

factor for the quasi-isolated near-resonant terms, which simplifies to

sin kN
[1+e)kN-q}r

q-kN

sin (tt- kN - ekN) 7

(- kN = ekN) =ty

(3-122)

For q = kN, this expresaion reduces to the expression given in Equation 3-120)

for the pure near-resonant terms.,
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Generally, Equation (3-122) {ndicates that the residual short-period contribu-
tions from the averaged quasi-isolated near-resonant term will be quite small
since the numerator is quite small for small € and small values of kN. For
larger values of kN, the denominator grows larger, which heips to suppress

the residual short-period contributions.

In summary, the analysis of the averaging operation and, particuiar , the aver-

aging factor shows tnat time-dependent averaging methods can fail to eliminate i

all short-period contributions in the averaged resonant »ad nonrescnant tesseral

harmonic disturbing functions. In contrast, the classical assumptions eitner of

a stationary ceatral body during the averaging interval (time-independent aver- :

-

aging) or of an exact resonance do permit the complete elimination of all short-
period terms. However, these assumptions can also produce an overestimate
of the actual amplitudes of the long-period (resonance cases) and medium-period

m-daily terms which survive the averaging operation.

This circumstance presents something of a dilemma. For the analvtical aver-
aaing method, the residual short-period effects can be suppressed by simply

deleting them from the force model. However, this is, {n essence, equivalent '
to inserting the avernging factor for the general time-dependent averaging oper-

ation into the time independently averaged tesseral harmonics models (resonant

and nonresonant). The method of numerical averaging i{s, however, not amen-
able to such an accommodation, since the averaging factor differs for each term
in the fully expanded disturbing function and since numerical averaging methods

in general avotid this fully expanded disturbing tunction representation.

Generally, the chotce for both analvtical and numerical averaging methods seems
quite clear. The nonresonant tesseral harntorics terms should be deleted from
the perturbation model, both to avotd the present dilemma and, more importantly,
to maximize the numerical integration step size as discussed {n Section 3.4 of
Reference 5 or alternatively, to minimize the averaging tnterval. These contr{bu-
tions can be evaluated from analytical formulas (Reference 49) and superimposed

on the integcrated mean elements when necessary,
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If, however, these averaged nonresonant tesseral harmonic terms are retained

in the perturbation model in numerical averaging applications, the error (usually
small) in the amplitudes of the m-daily effects introduced by the time-independent
averaging operation is definitely preferable to the noise generated by the residual

short-period terms?

introduced by the time-dependent averaging operation or to
the: small step size required to accurately numerically integrate these residual

short-period contributions.

For the case of tesseral resonance, time-dependent averaging is necessary.
The residual short-period contributions are easily eliminated by restricting the
force model to quasi-isolated resonant terms alone or by averaging full force

models over the appropriate number of satellite revolutions.

3.3.2 The Averaged Zonal Harmonic Disturbing Function

The averaged zonal harmonic disturbing function consists of those terms in the
averaged nonspherical gravitational disturbing function for which m = 0. Re-
stricting the value of m accordingly in Equation (8-91) vields one form for the

zonal harmouic disturbing function, If J, = -C X then

A W
ol 4 o
(BN w2 YY) gy e
/:i a -/_‘ YA L a It .
Lea s1-4 g (3-123)
IS
0%  -~L:48 [-o qu -
x P,‘ (0) SJ!. Yq di
Ayt
Clearly,
Rgem
A 3 {1 forq=0 (3-124a)
eVl « 8y, l
i 0 for q # 0 (3-214)

Ao- ™

1Short-period contributions which are propagated with large step sizes appear as
spurious noise in the integrated results.
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which agrees with Equations (3-102) and (3-106). Thus, the averaged zonal

harmonic disturbing tunction simplifies to

o X
* ) __,lf_ Y L (g-9) 0.6 ,~&-1 s ‘
<-R >X z = ‘_‘Z 3‘,. T P“(o) S:u. ‘(° (3-125)
111 se-4

In view of the discussion in Section 2, 1.2.4, the summation over the index s for
the range - £$s <2 is easily collapsed to a summation over the range 0SsSL

to give

, 1! 0

, /
P A S

§23 420

o K
<R‘>X a - % Y‘ X_‘ S, ¢J ( )" (25! P (o) ‘S'QWY.".‘"s (3-126)

where

‘1/1 for sa0
3-127
l 1 For s30

The inclination function is defined by Equation 3-64) or (3-67). Evaluation of

Equations 3-64) for m = 0 vields

Ose 5 ] -5 . [ 3 $,9
S' = € 2 (a-jeg) Py («¥)  (for 0SssL) @-128)

Several simpliftcations can be made in Equations (3-126) and (3-1238), First,

from Equation (2-305),

-1-4,68 ' lesl -1-1,¢s
Y, = (k-jmh) K, (3-129)
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; where
L 7 = sgn(-¢s) = -¢ (3-139)
|
Also, it follows from Equations (2-134) and (2-303) that
: -1-4,88 218
: o = K, for € =X1) (3-131)
l
v
t Therefore,
B -1-1 €5 s -l
Y, = (k+jeh) K, (3-132)

In addition, it follows from Equations (2-303) that

!
,!
-2-1,% -s ~i-1s

g : Ko = e X, (3-133)
q Thus

~2-1,88 R BN
Y = (k+jeh) e X, 3-134)

Second, the Jacobi polynomial representation of the inclination functior for the

zonal harmoaics case given in Equation 3-128) can be simplified since

1-5 &8

$.9
P 6(&‘() a P (¥) (3-135)

and since it is easily shown (Reference 26) that

2! ( t‘)'mP (Y)
- - 3-136
(1#5)'. 1. !Is ( L

13,9 [
Prot) = 2
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Therefore, the inclination function for the zonal harmonic terms takes the form

—_— -137
»/_f:’t_“) “(x) (3-137)

39se s 4 [a-)EB
- (2es)!

Substituting Equations (3-134) and (3-137) into Equation (3-126) yields the expres-

sion

) 1aa\E (1-3)!
< > Ezyzssﬂi ) oy ae® Past®

s sxl) e=zi
(irs evenl (3-138)

. S )
< («-seﬁ) (k+)eh) X-J-i.s
Vi-v& ¢ o

Since

X+ )y s X = Jy
Re m s Rel T (3-139)
. $ s . $ N
«-)€8 k+}_é_b_ 1 a-38 k+ih
'*w (F5) (4 )s’ et () (5] | oo
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and Equation (3-138) s further simplified to the form

0 j
: _Ar aq\t (2-8)!
<R >X e Z Z 5 3-2(-5:) (Qes) Pi.t(c) Pj,s(n

Jud e
(s evenl (3-141)

. s $
« a-)8 ke+ih x-l~1,s
Viva)\ e °
since ounly the real part of this expression is of importance. Furthermore, the
possibility of vanishing divisors is eliminated through Equation (3-133) and the

following definition

-8/

Q, N = (-3 B @-142)

The function QR s(i) i{s a polynomial in ¥ and is simply the sth derivative of

the Legendre polvnomial P, (¥) (Refevence 26), {.e.,

2
S
Q“_(‘() a = B (¥ (3-143)

Shstituting Equations (3~133) snd (3~142) into Equation (3-112) and detining

-e)!
V-u‘)P

™ ey e .

vields the tollowing expression for the zonal harmontic disturbing function:

()2

This form of the averaged zonal harmonic disturbing function will be used in the

[

5 §
NN ) s
d \ . .
Z T (%) vL,Qmm Ky (-i8Y (ko) (3-145)
§ I W TV
[1rs aven]

development of the averaged equations of motinn presented in Section 3. 4.1,
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3.3.3 The Averaged Zonal and Nonresonant Tesseral Harmonic Disturbing
Functionl

The combined averaged zonal aud nonresonant tesseral harmonic disturbing func-
tion consists of all nonresonant terms in the averaged nonspherical gravitational
disturbing function given in Equation (3-91). For the purpose of this discussion,

it {s assumed that no resonance exists.2 The disturbing function is

G 5T T s 828

1- 2 Mma0 s2-l Qz-®

LLts evenl - (3-146)
of‘ﬂ" ( x )
ms -2.18 jq ~mb) -
X P.e,s(o) Su Y‘i f e dA
Ay~ 7T

'To avoid residual short-period terms in the averaged disturbing function, time-

independent averaging is used. Therefore,

- 8%,0 (for m = 0)
e](q’)\-me) dA = B.Jm% (for q =0)

J (3-147)
(for ¢ # 0, m # 0)

- § - ym8g

\%-ml é

1The averaged zonal and nonresonant tesseral harmonic disiurbing functions are
combined to factlitate computational efficiency when both models are requested.

2‘I'he combination of resonant and nonresonant spherical harmonic terms in the
equations of motion is not generally warranted because of the relative insignifi-
cance of the nonresonant terms and the unacceptably small step sizes they
impose on the numerical integration procedure,
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i Conéequently, the time independently averaged zonal and nonresonant tesseral

harmonic disturbing function takes the form

!
i RoNT ‘ Y
';] <R ZZZ ""'"s“')umw
X

L2 M) gr-@ -
1 Cins mven] (3-148)
¥ mS <215 _im@
i , 19 =1MO,
| - xRS, Y, e
b
{
f' since for q # 0
i
} Sltl-ml =0 (3-149)

The averaging factor is unity for all nonvanishing terms and is ap over estimate
of the more realistic averaging factor obtained fp om the time-dependent averag-
ing operation and which is given in Equation (3- 109). This time-dependent aver-

aging factor is used to obtain the correct amplitudes of the m-daily terms,

In view of Equations (3-86), (8-147), and (3-149), the collapsed expre: ssion for
the averaged zonal and nonresonant tesseral harmonic disturbing function, in-

cluding the correct averaging factor for the m-daily terms, takes the form

PR DI

243 ma0 520 (1S 31

(3-150)
[R2s even ]
i
' : < Jmé,
8 (0)3 (kﬂeh) Ky %Y Lmn] be
] | nlgon]
‘l = mr
n
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where the sum over v has been performed and where the inclination function is

defined by Equation (3-64) to be

S M (e} (2 m)t m-els £1s m-s mes
(-1) doayt (et & o +j10) (1e1¥) B (eX) 0Ss<m-1)
ms, € m lim (3-151)
. - €
i
s-¢Im €Im  s-m sem
i (a- )] (h1v) B lew) Mm<s<4g)
Substituting this expression into Equation (3-150) yields the expresston
o L L
2eNT M T S_‘ .o m m ) '5"\9
<R A =1—LZL_. Rm‘ibl‘m)I & sm[-:—mrr] e o
2+ ma0 &et} %mv
m-{ )
les ™M-s .m (fem)!
-1 P (o
x Ze 5,0 a2 o
ss
{L2e aven]
(3=-15
C_ m-els s Qs els  m.g mes
X (ou-jI;S) (k+jeh) Ko ({+1Y) PR-m (&Y)

. -eIm
y‘ g, ot el ﬂ - Pl (a-;eﬁ) (\wjeh)s
$-m

(2
(a9 even]
-t-1% £§Im M, SeM
KM e T R e
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Since L fs is restricted to take on only even values, the factor el S is always
unity and can be deleted from the above expression. This form of the averaged
disturbing function will be used in the development of the averaged equations of

motion presented in Section 3. 4.2,

3.3.4 The Averaged Resonant Tesseral Harmonic Disturbing Function

The averaged resonant tesseral harmonic disturbing function is isolated from
the averaged nonspherical gravitational disturbing function given in Equation (3-91)

using the near-resouance constraint

W N' 5

wo_ N 3-153

n N ( ‘
or

NA - Nw = 8 (3-154)

In order to avoid confusion with the notation € = 21, the symbol 8 is used in the

above equations instead of the € used in Section 3,3.1.2.

Since .
t -
A= f Rdt o+ A, (3-155)
0
and
t
© =jw dt + 8, (3-156)
0
it then follows that
N'A-N8 = wlt) (3-157)
3=54

AP AT T ! ‘ A : ' !

~ -

-
—

S

o S

 —

—

e on g s

EE P I N



"~ ea o~ .

- -

-

-

4&:-

- e
e m e o an

i, T

P

of

,————— o .

c:::a[

——my
Aot

{

-

oo T

o s

i

——
——

o

U
i
i
i
|
i

*r N ; i i i 1 ! PR . 1 \ .
| i \ S ' - '
1 E i t t E . ; pe © & I' ¢ - i‘MMM"
where, most generally,
t
/u,(t) - f& (£) dt + u, (3-158)
0

and {8 referred to as the critical avgument,

Consequently, the resonant harmonic terms {n the averaged nonspherical gravi-

tational disturbing function in Equation (3-91) are those for which

Q= kN (3-1592)
m = kN (3-1590)

are satisfied. Thus, the averaged resonant tesseral harmonie disturbing function

is given by

k'

o L

/ RT\ w aa\t ) (2-9)
R ) = = Tv(i) ¢ -19, ) ——
\ //:\' & Z‘./__a L_..o @ ( l'kN 3 LN (l‘kN)‘
ded s:-0 ke
Clts even]

kN,s <218 1k(N'Mq- NB,)
v . \ ) ) a
X P"s(o) Sn W ©

-

(3-180)

where k' {s the {ateger part of £./N,

The argument of the imaginary exponential function is constant tor exact reso-
nance.  For near resonnnee, it assumes the role of the eritical argument in

Equatfon (3-137),  The averaging factor for exact resonance, which has a value

L .
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of unity, is assumed above. If the resonance is not a very deep resonance, the

appropriate averaging factor

sin® kN
SkNTr

(3-161)

(where 8 is defined by Equation (3-153)) should be used. The inclination func-
tion is defined exactly as in Equation (3-63) or (3-66), with m replaced by kN,

In order to accommodate the user's desire to specify the particular terms of
degree 4 and order m to be included in the nonspherical gravitational disturb-
ing function, it is convenient to express the averaged resonant disturbing func-

tion for a specific degree and order as follows

X
RT ~ ae\t . (3-8} ms
<R,Q.m>;\. = Y Z (T) (cl.m-.l s},rn) ———U-m)'. Pﬂ,s(o) SQL
-l )
Eltsscvm] (3-162)

~£-4,5 gin (8kNT) §(kN'Ag - m8y)
kN, TN

where m satisfies Equation (3-159b). The averaging factor in Equations (3-161)

(if used) assumes the form

ain (dmr)

3-163
Swmr ( )
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Substituting the expressions for the function b"l.’ (Equation (3-63)), the modi-

, and the appropriate averaging tactor given

-4-1,s
RN?
{n Equation (3-161) into Equation (3-162) vields the result

fied Hansen coefficients, Y

L \ j(kN'A~m8
L2 e, - i5,,) Snlbnm) o (kKA

&)

Q Smr
-m-4 T
M-t s (R-5)! . am-s
X Z 1) a UT?)T RONCEST)
ss-l '
[Lzs aven]
[s-kN]l  -g-1,s -Im  ™M-5-m-§
x (k-jnh) Ko  (+I0) B 7 ()
T 1
M-S .m (fam)! . m-1s oo
¥ Z(.n a TIEY Pj‘s(o) (mjtp) (3-164)
Sv-Mm
[its even]
Js-kN'l  .2.1s Ts  me.s, mes
X (k-ﬂlh) Kun! (1+ 1Y) PJ-m (Y)
S I {s-kN'{
-3 (£-5)! L oa3mim . §-
— - -\nh
, Z 2 oy Pas@ (- jg)  (kejmi)
ssmal
(trs aven]
~2-1,8 Im  smsem
x Ky (1+1%) B,
where 7 = sgnkN'-3) .
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Expressing the first summation and the first half of the second summation in
| Equation (3-164) over positive values of the index s (using Equation (2-51)) yields l
| ; the form ]
RT 2.\t in(dmrr)  j(kMN'A-mb |
| (REY ~ 2 () (e 150 Sam)  0A-8)
o ' x o (1 9 ' ' sm‘ﬂ' 0
| L]
] 2 .
o m -5 (g-s)! . mels i
S X [ Z -0 2 T Pys (a+}1B) [.
‘ Ssmel -
‘ [22s even’] U
‘1 1-s-kN'l  -2-1,-s -Im  mes,s-m
x (k-jnh) Ky (1eT0) P () {i
- 1-8-kN |
‘ -m )1 m+Is ~8-
1 + Z (-) (ym)] P (0 (a+71P) (k-inw)
; (Ras)t 48 |
L1 L
a [irs even]
; o R ) ~1s mes m-9 b
| x K (Lexn) P () (3-165)
5

- i
Mmoo (dym) L
] + ) (a) 1) 7 B0 (x+]1p) i

ss0
{irsaven]
|s-kN'l -3-1s Ts  mes,mes
X (k-jrzh) Kew (1+10) B ()
- -8 (1.8)! ) s-Im . 1s-kN') U
N 3 g Pas®) (a-18)  Cke-jmi) |
temid '\ }
Lizs even]) ,
-2-4,8 Im  s-m sem -
A KkN' (1*1‘) P‘.t () ! ’
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This equation can be simplified by defining € = -1 for s<0 and € = +1 for 820,

which vields the result

RY de\l . n (8 1 (kN'A-m8)
<R1|m>' . Z % (%) (Cﬂ.m' 351,17\) sin (Sm) 2 em Im

S

m i
5 m-$ -m (lem)! .. m-els
X ZS,% -1) 2 VY P s(0) (+)IB)
$20

Liz; even’)

les-kN'| -1-4, €5 Ts  m-s, mes

€
x (k-j1h) Kew UeT¥) P, o (eX)  (3-166)

- y s-el les-kN]
4 .5 (1. -€am =
+ Z/as (-9 Fls(o)(a-jeﬁ) {k-imh) .

(1-m)!
semyl
{ixs eren]
-1-1,es elm  s.m sem
X KkN’ (1+1Y) Pl-s (%)

where 7 = sgn (kN' - €8).
This result is identical in form to that of the nonresonant tesseral harmonic case

given in Equation (3-152), with the exception of the factors

' les-RN'l  -1-1,es
(k'l}zh) KkN'

which are a generalization of the equivalent factors in the nonresonant case.

Equation (3-165) i{s used in the development of the averaged equations of motion

for the case of resonant tesseral harmonics presented in Section 3. 4. 3.
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3.4 THE FIRST-ORDER AVERAGED EQUATIONS OF MOTION

The first-order averaged equations of motion for the nonspherical gravitational

perturbation are based on a modified version of Lagrangc s Planetary Equations

(discussed in Sections 2 and 3 of Reference 5).

terms of the mean equinoctial elements take the form

do _ da OR
dt A O\

dt

dk
dt

dA
dt

where

1+8 2A

9_&1:_3_( __h aR+kc(éR 93)
it )

1AD

(&8, 2 9&)-_“3(£+ _R_)
A 1+8 OA A1AB pép %a%

pC (kg_g éR*éR) e* &R
dn 3k~ 3A/ T 4AB &g

i.c_( 9&-\,‘35. E.R_) et 2R

oh Ok N/  4AB op

s n-i&‘_35+ B (6 k—) .E...(
Pa "

A da A(1+B)

A = na*
B = \/1-h*-K3
3-60

These equations expressed in

(3-167a)

(3-167b)

(3-167¢)

(3-167d)

(3-167¢)

—) 3-167f
% ( )
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and the elements (a, h, k, p, g, A) are understood to be mean elements, n is

the mean-mean motfon, and R i{s the averaged disturbing function.

The disturbing functions developed in the previous sectious of this report have
been expressed in terms of the mean direction cosines (&, ﬁ,?) of the equatorial
2 axis with respect to the equinoctial reference frame (?, §, Gr) , rather than in
terms of the equinoctial elements p and q. Consequently, expressions of the

form
3R _ R 3R OZ L SR OY
ap dx dp 98 dp oY op

oR 3R da AR 98  OR oY

*'55“55 ST

-b_cig do\a%

are required to modify Equations (3-167) in order to accommodate the particular
form of the disturbing functions. The following results are demonstrated in

Appendix C of this document:

dx 2
3; -~ -z (%pr + Y) (3-168a)
dat ApBI

a 3-168b
C ( )

) aqaT
o8 . gl (3-168¢)
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A
' .b_a - i ..d...R_ - ‘ra_R.. +
y %  C oA T N oa
A
] 3R at [ &R a8
3 c [’sax 55 *

_ Nyveger werpuee iy - .

(3-168e)

(3-168f)

L (a 3% 8 a_a)] (3-1692)

oR OR
— - — 5-169b)
P(cl 3B 8 éo&)] (3-1697

R AR a R aR) R aa\) .
Pa "33 "¢ [P(“ o Vaal T ?1(53?"?5} @

where C is deftned as before. Substituting these expressions into Equations (3-187)
vields the final form of the averaged Variation of Parameters (VOP) equations of

motion used in the current investigation, i.e.,

da 1a OR
TR )N (3=17 1)
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", ﬂ _ B gﬂ . _k_ ) he -6_R
4 dt ~ A ok AB (pRQ,Y - I%Rﬂ,\‘) A(1+8) ) (3=171b)
1
: de | _[BR kB R
| U at [A on " am (PRyy- 1qRyy) A1) O ] 3-171c)
"‘ o ¢ | 3R
dt ~ 2AB P(R‘":k'R«.a' a—A) i} Rﬂ,r} (3-171d)
: Li L
o dg P ,
- at = 3ae | SR Rus™ 3y ) - TRax (3-171e)
- 2
dA 2o 3R B L
ar _ . _ 2% 08 L ) ) :
f“ U dt " A do * A(1+B) Rh.k AB (pRu.f I‘lRa.@ (3-171f) 1

\ 14

where n =1; A, B, and C are defined as in Equation (3-167); and

R = % _a_R.. - b_R. \
RN 3y Y% (3-172)

for any two variables x and y.

e S g B e

=

B These equations admit simplifications for certain cases. For example, it {s shown
that
" )
da
— =0 (3-173)
'z
; u
i u 3-63
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for the zonal and nonresonant tesseral (m-daily) harmonic perturbations. In

r’«—-

addition, ir is demonstrated that the zonal harmonics model admits the simpli-

fication

=

Rh,k - RW3 z 0 3-174)

The averaged equations of motion for the zonal harmonic mode!l are preseanted
in Section 3. 4. 1; the averaged equations of motion for the combined zonal and
nonresonant tesseral harmonics model are presented in Section 3.4.2: .ad the
averagead equations of motion for the resonant tesseral harmonic model are

presented in Seciion 3.4.3. The final form of the averaged equations of motion

= = = e

as given were implemented into the Research and Development (R&D) version

of the Goddard Trajectory Determination System (GTDS).

=

3.4.1 The Averaged Equations of Motion for the Zonal Harmonic Model U
]

Inspection of Equations (3-171) and (3-172) indicates that the averaged equations

of motion require partial derivatives of the zonal harmonic disturbing function

[_,.,..—1
.

with respect to the elements (a, h, k, o, ﬁ . ¥, A) (the direction cosines «,

15’ Y are a redundant set of parameters). The averaged zonal harmonic dis-

]
[ pp——

turbing function obtained in Section 3.3.2 (Equation (3-143)) is given by the real g
' A
part of the expression Q !

© 2
2 2 -1.1,5 .8 S :
\ ":>; - —tfi Z Z 8, I, (%.g) Vi Rp MK, (a-)p) (k*lh)s @-173) (-] i

,l:a 820
Lirs even ] "

The averaged disturbing function is rearranged into a more optimal form for

evaluation purposes before the required partial derivatives are obtained.
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Practical constdecations require that the summation over £ be truncated at
some finite value, fie,, 2€ LS L, Inaddition, a closer inspection of the func-

tions in Equation (3-173) indicates that, tor s = &,

-1 2
Ko s 0
since (Equation (2-249))
-R-12
Xo a 0
Also, for s = £-1,
Pay(0 20

Thus, the index s can be restricted to the range 0Ss<£-2, along with the

condition that £<s must be even,

It ts often desirvable to trunceate on powers of e sini for certain cases, Since

I(a-j@)i(kqmil + (e sin L)i $-176)

the range of the index s is truncated to VS8 <3< -2, where 8 is the maximum

power of e sint vetained.

The exact ovder in which the two summations are performed depends on the re-
currence relations used to evaluate the various quantities {n the disturbing func-
tion. [t is desirable that the vecurrence relations be free of computational small
divisors and that they use simple starting values, Clearly, the complex polyno-
mials (o - jp)s and (& ¢ 3 should be evaluated in order of uscending powers

3 i ovrder to avold a divide opevation which could introduce a small divisor

1ng'hz‘1‘ powers of the eccentvicity will usually be retained since the function

E et T TR polvnomial in (1 - ey- 12 Truneating on the complex poly-
nomial Kk « ¥ {8 equivalent to truncating on the D'Alembert characteristic
el8l {n classical elements,




tor small eccentricities or inclinations. Similarly, the parallax factor (a.e/a.)"
should be evaluated in ascending powers of L. The real polynomial Q L s(( )
possesses recurrence relations based on the recurrence relations for the asso-
ciated Legendre polynomial, P .L,s(x) . These recurrence relations are obtained

by substituting the relations

-5/ s -3/
Q0 = (=¥ PN = (0N (¥ R enma)

s { X s ) s .
RN = 2 [exp(Js Z) P, (1+j0) + exp(-js ) Pl(t-Jo)] (3-177b)

1/2 L/
(z"- 1) = exp (:}%) (1-‘(‘) (8-177¢)

into Equations (2-232) thrcugh (2-240) (Reference 26). The resulting fixed-order(s)

recurrence relations

Qp, 1) = (e ¥ Q0 - (e)Q, (O]  @-179)

L-s+d

can proceed {n ascending values of £ without any small div: . . difficulty. The

fixed-degree recurrence

i
Q3~"‘1(n T Tse) (1es) [lerm(Y) - (1-1‘)Q3‘Mm] (3-179)

must proceed in descending values of the index s in order to avoid the possibly
small divisor 1 - ¥2. This direction s, however, not well suited for the complex
polynomial recurrence formulas., This also applies to the recurrence relations

for the function K"Lﬁl' S , since they are also govecrned by the associated
0
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Legendre polynomial recurrence relations (in view of Equations (2-229) and
(2-303)) and thus are better evaluated using the recurrence on ascending values
of L. Infact, it is shown below that these functions can be expressed in terms
of the polvnomials Ql’s(f) and, thus, Equations (3-178) and (3-179) directly
apply.

Consequently, the fixed-order (s) recurrence relations appear to be the best
choice and require that the summation over £ must be performed before the
summation of s. It is easily verified that

L o2-2 S4L-1 L

NIEDWY

122 820 $30 faged

The averaged disturbing function is then expressed as

$sL-d L
3 $ L <118
<R‘>X x - %—}: Ss(c(-jlﬂ) (k»}h) Z I-l. ((}f) Vx.s QR.S(Y) Ko (3-180)
$20 Aased

(A&ts even]

For the purpose of sottware implementation, the following definitions are made:

$ )
G, + jHy = (a-33) (kein) (3-181)
and
b Qa 1 -85
Hy ("o.") Visl0 Qg 0 K (3-182)

which is strictly a real function.
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The real part of the averaged zonal harmonic disturbing function (Equation (3-180))

then takes the form

S<l-
<R = Z 8 G Z ILH‘. (3-183)
3«0 d16ed

(2rs even]

Before the necessary partial derivatives for the averaged equations of motion

are presented, it is necessary to elaborate further on the function I\ -4-1,s .

As shown in the discussion in Section 2,2.1.3.4, the special Hansen coefficient

.\'0 S can be expressed as (Equation (2-223))

~d-1.8 TSRS B g
0 e K,

Furthermore, from Equation (2-229),

~2-1,8 (2-1 FIRLY
X 2 —— (
0 ey © P
where
L
X =
1-e*

Since only positive values of s are of interest, the absolute value notation is

dropped. Clearly,

~R-1.8
' _ (R .8 Qs
= P (
0 Thes-0)t L x)
2 (3-184)
(R- LM =% 2 ane
m (-e) x (L-x%) Ql.s(x)
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in view of Equation (3-142). Since

s/2 -ad \S/3 s
(1-x3) = ( e;) = (-e) x

it follows that

(3-185)

Thus, the partial derivative with respect to h and k will be obtained through

the chain rule, i.e.,

-1-1,% -%-1s
3K, U 3Ky A
oh Ox oh
etc. Since
-1/ -1
x = (1-e3) = (1-h-KY)
then
ax 3
ol x h
and
X 3
ak T Xk

(3-186a)

(3-186b)

The following partial derivatives of the real part of the disturbing fuaction given

in Equation (3-183) are easily verified:

a§a‘>x
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where

36,

oh

3G,

3

ok

36,

da

{ * PR f > .
i | b 8.
i ] . dl
s 3G 3G, 3H;
s Iy H 8s Gy Ii'ax_
s L s
S-* 6 8 H] 3 5“1
L_JSS-‘S:- Ty Hy +kx 8s Gy v
$ L s X

- Rel o - 3[5)5 ki-]h

‘ ' s-1 i s]
= RQIS(G-HS) (kf-jh)

!

(3-187b)

(3-187¢)

(3-187d)

(3-187e)

(3-187f)

(3-187g)

(3-188a)

(3-188b)

(3-188¢)

.

=

g f’m1
- S

— 1 ——
= = T/

——
L s,

r

-
P ——

-

==

 pidt S i

= =2 2

=

e,




¢
U
2} 563 ‘ . . Se1 s ’
E 3z Re('is(“'.‘?) (keih) (3-188d)
X 5 ~2-4,s
’ J —ai& = (_a.e_)]’ VooQ. (Y) _—
dx @ 58 4,8 Ax
i (3-188e)
. . . o
- Qe (R4 2es-4 Les dQl o™
n - (_a-) Vs Q0 e (1) 7, 0+ £ SR
{
]
S
| OH ae)d 44,5 dQ, 0
Ls ~—2 . (—“-) 48,1 (3-188f)
oY a s o dx
' .
‘ The summations are performed over the ranges 0 Ss<S<L-2 and s+2< LX< L. ,
\b The following recurrence relations are used to evaluate the above quantities: ' ,'

Recurrence Relations for the G and H Polvnomials and Their Partial Derivatives '

- [‘-—
—

Gy = (ak +8h) Gy = (ah-8KIH (3-189a)

-

l’ Hg = (an-gk) G, + (ak+8h)Hq. (3-189b)

3G,

.t 8B G- saHy (3-189c¢)
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aG E
So = skGap - shHgy (3-189e) &
] dG 5 |
I ‘5‘5 = shG,.; + skH (3~189f) L
|
| i
G, = 1 (3-189g) :
Hy = O (3-189h) a
(&’}

Recurrence Relations for the Quantity Vy ¢

(==

(L-5-1)
' Vﬁ.s = - V“'s (3-190a) :
' i
|
I
i i - o
| Vou = 37 Vetiset @-1000) {] I,
!
i X
Voo = 1 .

, (3-190¢)
| 1 \

Recurrence Relations for the Polynomials Qg s(¥) and dQg s(¥)/d¥

= S

5 Q“(Y) = TLs [(a).-.i)\' Qag s - (Rfs-t)Qj-a‘,(f)] (3-191a)

|- arw——y
| Re—

Q.. () = (15+1)‘(Q“a(!{) (3-191b)

s+l

~t
—~
-
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S and dKg

-1-
Recurrence Relations for the Function Ky

For the software implementation, the notation

s -2-1,8
D"(x) a Ko

was used. In this notation, the recurrence relations take the form

s s+l
b 3
D () = -

<

D, 9 = (s+0)x*D,,,(»

' (2-1) %% s s
D) * s L(34-3) Dy ) - ()0, ]
» = (2s44) =
dD:,a(x) N o
T = (s+l) x (As+3) —1-;
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dC,(x) (2-1) x* dDg.1(x) dD:.;m
- (22-3) —/— - (1-2) —

dx (L+s-1)(2-5-1) dx X (3-193f)

d s
+ —
m D ‘(x)
Since the averaged disturbing function is independent of A, it fcllows that (liqua-
tion (3~171a))

da, da OR*
® A w0 (3-194)

Also, it can now be demonstrated that

% L)

Rh'k- RMi 2 0 (Equation (3-174))
From Equation (3-172),
: 3R* . R?®
- » —— . ——— - 5
R\"‘k vy k o (3-195)

Multiplying Equations (3-187c¢) and (3-187b) by h and k, respectively, and taking
the difference yields

. Ssl-d L
3R oR* u ( 3G, ae,) Z s
\'\S-;-k—a';‘- =T ¢ h—ar'k—a;- AN (3-196)
%0 Qseed

Similarly, multiplying Equations (3-187e) and (3-187d) by & and p. respectively,
and takiag the difference yields

-
‘é_R_- oR -ELL_Z 3G, EEE'Z s N
B AT o e
4002
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Therefore,

R Rap s -2 ) (- 432) - (w32 - p32)]
s
[
A Z :LHI.
R

Multiplying Equations (3-188b) and (3-188a) by h and k, respectively, and taking

. m—— —

(3-198)

ML R _

I' } the difference ylelds

oy

dG 3G
u h -é-f - k-sﬁ- = (sah - spk) Gs-x + (sBh+ ‘“k)Hs-x (3-199)

Multiplying Equations (3-188d) and (3~188c) by & and p , respectively, and

e g st Seamedinbelinee= i clinhatiet
=

taking the difference vields

- =

! G 3G -
| o425 L (s G, o ooy G0

- = =T

Comparison of Equations (3-199) and (3-200) shows that

3G, | aG, 3G, 3G,
hae ~ %o a5y TP, (3-201)

and Equations (3-174) is veriiied.

In view of Equations (3-174) and (3-194), the final form for the averaged equa-

tions of motion for the zonal harmonic case is simplified to

g&- = (
dt (3-202a)
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% : % %{1 * },% (pR, 4 - I14R, ) (3-202b)
%’ : '% %i: - ’:_3 (PR::,@ - 1q R';,,) (3-202r)
%:- T ﬁ'i? R;,r (3-202d)
% = - ;:]% R:,r (3-202e)

)Y W dR B . 1, _a 2
T "V r s Rkt 7s PRar-IgRey ) @-2020)

z . . ,
where R” {s the averaged disturbing function, the elements ar interpreted to be

mean elements, and n designates the mean-mean motion.

All of the requisite partial derivatives huve been obtained and arve given in Equa-~

tions (5-187) and (3-138).

3.4.2 The Averaged Equations of Motion for the Combined Zonal and Nonresonant
Tesseral Harmonic Modell

The averaged disturling function for the combir.ed zonal and nunr_sonant tesseral
harmonic model given in Equation (3-132) must be rearranged to maximize com-
putational efficiency. First, the summation over L is truncated at L, i.e.,

2s L <L; the summation over m is allowed to vary through the range

0sms<MsL; and the two summations over s are ..!lowed to vary through the

1'I‘his assumes time-independent averaging, i{.e., a stationarv central bodyv dur-
ing the averaging opecation, and, thus, this model contains only the m-daily
contribution of the tesseral harmonic model.
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ranges 0<s<(m, s £L-2[ (where [ ] denotes the minimum value) and M+1<s
£ SSL-2 (where S<L-2 is the maximum power of e sini retained in the expan-
sion), The summation over s is bounded above by L-2 for the same reasons
presented in the discussion for the averaged equations of motion of the zonal
harinonic model, The averaged disturbing function for the combi .ed zona! and

nonresonant tesseral harmonic field is given by (Equation (3-152))

L (aM] 1
r 0. -jmb
(- 5 8T im0t
x 1]
2] mad gat %‘:-Vn'n'
Tm-1,5]
m-S o (Qem)! m-els
X Zss CEV I VY Py (x+71B)
se0
(2ts aven)
s =219 €Ts  w.. maes
x (kejeh) Ko o (Le10d P 0 (e¥) (3-203)
Sx<l-d
. (2 s)
Z 8§ X MONCE jed)™
szm
(4125 aven)
s -2-1s eIm  s-m sem
x \k+jeh) Ko (1+1Y) Pl-a (ef)j
sin(‘*’mw)
where [ ] derates the minimum value. The averaging factors 1 and—7 -
=m
n

are appropriate for the cases m = 0 aud m >0, respectivelv.
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Clearly, all real and complex polynomials should be computed recursively in
order of ascending powers to avoid a divide operation and, hence, possible
small divisors. The one exception is the evaluation of the real polynomials
1~ ”)els and (1 + I‘o’)e[m, since the order of increasing powers is dependent
on the sign of the factor €I. However, since the quantity ¥ is always non-
negative, {.e., I=1for ¥20 and [ =~1 for ¥< 0, then (1 +1I¥) 21 is always
satisfied and there is no possiblity of a small divisor. The required computa-
tional sequence for the functions K&Lnl’ S is the same as in the zonal harmeoenics
case, i.e., the recurrence uses ascending values of L and a fixed value of s,
The final consideration is that of the computational sequence of the Jacobi poly-

nomials.

Recurrence relations for the Jacobi polvnomials can be found in References 26,

47, and 48. The particular recurrence relation

a,b L
ned o A (ne ) (n+p) (An+p-1)

‘ a a1
* } (An+p) [(&nf-p-l) (Anepsl)x + 2°-b ]Pn (x) (3-204)

a,b
- Alnea)(neb)(Anep+l) P, () s

where

p= a+b+l

is well suited in that only a single parameter, i.e., the degree of the polynomial,
n, varies. In addition, the starting values for the recurrence relation are quite

simple, i.e.,

a,b
P0 () = 1 (3-205)
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3,b (o+b+2)x  a-b
PL (x) = 2 + 2

(3-206)

and are easily verified from the definition of the Jacobi polynomial given in
Equation (2-33). The requirement that the Jacobi polynomial recurrence be
performed for increasing degree in Equation (3-2035) requires that the index £
be varied in ascending order while holding m cons*ant in the first sum over s,
0 < s<min@m-1, S), and that £ be varied in ascending order for fixed s in the
second sum over s where m<s<[L-2, S]. The net result of all of these con-
siderations requires that the averaged disturbing function he expressed with the

summation over £ as the innermost summation.

The ovder of the summations over m and s depends on the range of s. The
order of the summation< i{s rearranged as follows, First, if the following

summations are considered:

w4 [2am]

YOS e

220 wad sad

it is easily werified that

(e-a,m]  [2-a,m] (4]

L
>3

ms0 $s0 %20 a

“w

L MsL L
2

NN

Red. mal m=0 Q=
max(m,d)
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(2-aM] [eaM] L

A [
423 $»0 $:0 Qamax(s*l,m) . l'
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Thus, l
L& [eam]  [LaMm] MsL L i
{

NIEDINIDY
222 mz20 ss0 820 mis  Rawmax{sed,m) !‘
L W

Next, if the following summations are considered:

2-2

L &
Z Y‘ (3-212)
L

A3d ma0 samed

then it is straightforward to show

Loo[eM] -2 (LMllsya] L
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Thus, the net result of the above considerations on the ordering of the averaged

disturbing function is

(5.M]
<RMT>_ . gz [ Z (1) 8y (ks jen) (1eTY)
A

PS $s0
MsL i
eI\ ). (w N -jm8, . \m-€ls
% (-T) sm(—ﬁ-m'n‘ e (OH'JI‘B
ms$ %m‘ﬂ’
L
4 1 .
Qe . (2am)! SL45 _mes,mes
X Z (T) (Cl.m° Jsi.m) (2+8)! P.l.s(O) K0 P;..m (&)
Lsman(m,s¢2)
(hts even)
1
M .
i m elm N -]mQ'o B-214)
+ (eI) (L+1Y) sin(Emm) 5 e
mz0 l %m‘:r
& -8 s-61m 8
X Z 3 (a-je8) (k+ieh)
stmed
L
7 A (8-9)! T
X A (T) (Cﬂu'\‘ Jsx‘m) (R-m)! P«Qoﬁ(O) KQ $-8 (ex>
L=8+2
(L9 even)
where 8 s L-2,
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While the above ordering appears to satisfy the requirements of the various
recurrence relations, it also imposes the recomputation of certain functions

or, alternately, sufficient storage requirements to store these quantities. For
the purpocse of this investigation, it is assumed that auxiliary core storage
resources are limited. In addition, the unnecessary recomputation of quantities

will be avoided.

Inspection of the second series of summations in Equation (3-214) indicates that

-2-
the functions KO 1,8

over m is increased by one, The alternative is to store all possible values

will have to be reevaluated each time the outer sum

for this function, which number (L-1)x8S < (L-1)(L-2). The storage require-

ment can be minimized by rearranging the outer two summations, i.e.,
ML S4Ld S<L-2 [s-1,M]

INIEDIDY

m:0 Szmel
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Equations (3-214) then take the form

€atd $:0
Mel .
m . -ym8@ m-¢l¢
5 bt 7 e
m:$ %m“d‘
L
(Qem)! ~2-1,5 M5, mes
x Z( ) (Com= iSam) syt PO Ko P (60)
L3 max(m, Sed)
(2% even)
S<L-d (3-215)
-5 . °
* ZQ (kqeh)
82d

[9 i Mu,; ! 1 .
Im W -jm8, 5-¢Im
X Z(el) (h-IX) 3‘“(‘1 mTI\ ¢ (a-}z8)

mTmT

31](:

ma0

e

L
L -£-{,5 sm sem
x Z(ﬁs.) (1 S) e B OV Ky P (et)}
Qesed

where S§< L-2,

3-83

SR oA ‘. A R AR S ; o
o L ] } ! R L R R O N SN DY Y | o
1 S Le i - T e e 4.---»'»:)4“ L‘ Y Tt Mrm o .



AR . .‘..“ —— : [P S

¢

-L-
As a result, the computation of the function K0 1,8

summation and, hence, they are evaluated only once as they are needed. How-

ever, the complex polynomial (& - jé,B)s ~&m no longer proceeds in ascending

is not affected by the m

powers for €1 = +1, Consequently, the recurrence relation requires that they
must be evaluated and stored prior to entering the second series of summations.
The maximum number of quantities thus stored is 2S s 2(I1-2), which is gener=-
ally significantly fewer in number _than the total number of polynomials, KO- 1-1,s .

Close inspection of the summations in Equation (2-215) {ndicates that

[SM] MeL 5 [s-4,M] S

TYITrE e

¢:0 wmss ssl ma20 830 wms0

and the expression for the real part of the disturbing fung:tion in Equation (2-215)
can be simplified to

5 M
L
WNT .
Emy -4 ) *.,;,.U..,/m]% ) [8.6,, desnen
) — | Coimm o v
820 =0 B

L
4
Z Com Ex‘m(mx)R S0+ 8 \-\t mlBNk8)  @-217)

=
max (M)

L . .
X Z S,ﬂm El‘m(&'*) Ra,m,su) ]
A=

moa(m sed)
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U where

bl

()

[ e
Gt,s,m+

L
t . s m
(ak-1€8) (b;;%ﬁ) (elcos8, - jelsing,) (m<s) (3-218a)
&
team = <
+ .8 by . el |
\(m-]lﬂ) (-k-j¢h) (- e_a_ 050, + | % smeo) (m 2s) (3-218b)
‘ s-&Ilm (m<s) (3-219a)
t =
lm-eIs (m=2s8) (3-219b)
s s -e-1,s
Ej Slax) = V;m(“) Ko () (3-220)
ag\t (g8
</ T PI.Q(O) m<s) (3-221a)
s
Vﬂ‘m\o.) ® N
Qo\L (Lem)t
\(T) (lesd! P! 5(3) (m2s) (3-221b)
eIm _sm,sem
(1+1%) Pz-. (<¥) (m<s) (3-222a)
0
R ()=
2ms
€ls m.s,mes
(LeI¥) P (ex) (m2s) (3-222b)
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The following partial derivatives are required for the averaged equations of

motion due to the combined zonal and nonresonant tesseral harmonic terms:

a(RY  3RY  2(RY  ¥R) 3(RY 3(R)
da * dh 7 &k ? dx ' 3y ' Y

Clearly,

ESS? = 0

> (3-223)

In order to obtain the partial derivatives with respect to h and k, it is necessary
to take the partiai derivative with respect to x. Thus, the complete partial de-

rivatives with respect to h and k, respectively, are designated by

SR _ 9R n OR| ox (3-224a)
oh oh dx dh

K, X LIS
OR R} R & (3-224b)
ok ok Ox dk.

h,x h,k

where the notation

oR

dh

kR
denotes the partial derivative with respect to h while k and x are held constant.

In view of Equations (3-186), then

3¢R) |
+ hs ™ I (3-225q)

hk

3R) _ d(R)
dh  oh

k,x
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The partial derivatives of the disturbing function given in Equation 3-217)

require the following partial derivatives:

-
3 (En‘m(ﬂ,x)) L+ 4 $
™ Y z - i EI‘M(Q‘X)

s
-G
0Gy sm ‘ R,
A ) ‘(
“5Gt,s-x,m

€S
Ae ‘ -T Ht\i'l,m
at’t,sgn
a
an l
“ "sHi|$‘1,m
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(m<s)

(m2s)

(m< 3)

(m 2 8)

(m«<s)

(m2s)

—~

(3-225b)

(3-226)

(3-22%0)

(3=227b)

(3-2281)

(3-228Db)

(3=2292)

(3-229b)
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1 \d 3
by t,s-4m
=

= tG

t4,s,m
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et H

t-4,5,m

-Ith-x,s.m

¢ €

( - et Gk-x,s,m

-

€
l Ith-i,s,m

derivatives in terms of the functions themselves.
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(m<s)

(m< s)

(m2s)

(m<s)

(m<s)

(mz2s)

It is just as practical to compute the partial derivatives of the functions

(3-230a)

(3-230b)

(3-231a)

(3-231b)

(3-232b)

(3=233a)

(3-233b)
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In view of Equations (3-226) through (3-283), the rartial derivatives take the form

S M
MR u s [ - K
da o ) . Sin ? {em
§s0 wmsd -“:’-m e-:‘
n
s ¢
(2+41) C“m E‘\m(a,x) Rl‘m‘sm (3-234a)
Lamaa(m,se2)
L
€ \ LY & i
v O H, L(l«-l) Sim Egmiad Ry mst®
Lemax(m,se3)
: S _
5<R) M 1 ‘ -Sis- I 5 Hé
3h o / sm-rmr ‘ l cs ‘ $ 't sm
e 320 ma0 S oy ‘e-:x
L
X Z ComEx E CRY Rxm (3-234b)
Lewan(m,se2)

L.
€
= 85 Gt‘s.i'm Z alm E-ﬁ m(& x) R.l M,t ]

Luraan(m,sed)
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-l-max(mmi)

& Y s (4
+ 85 Ht,s-i,m /_ Sj..m Ei‘m(n,x) Rx.m.s(Y)

feman(m s+3)

€
Z A sin-.“:':' m Z [ssGt,S.M

30 msQ __g €sty
A m
-2-1,s
dK 6 EY
cm am (a) ——~—- ams (¥) (3-":34d)

j.-max(m,u:)

L dk'““
0 € .
- 83 Ht,s,m Z S‘m\/*‘m(o\ dax Rl,m.t&“’ ]

famax(m,s02)

3-9¢

oy
—rd

<

————y
4

r~

e

[ 5ol




ot U - NP

.
S S v B e B oo S o

£ “‘";M‘ -ﬁl -t .
!,—» \

[

e s e mm = O O T T

I
=

20
o

0 O s Ml It RO M T3 SO Gl U LI O S 'y
1 s s-€Im z ¢
inlmr b/ Lmeess | | O Cene
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n
L
s €
cm Em(a,x) R“m.s(\') (3-234e)
dzmax(m,s¢d) -
c s € i
+ 63 Ht,s,m Sl.m E.l m((“"0 Rx.-n.s“) z
fzman(m,sed) "’
S M -
1 brs
M w (¢s-Tm) e
a SINF mT Ea ,
20 m=0 gm'zr Gutl ;- .
n |
E
N s ¥ 234f P\
X 83 Ht-i,s,m cl‘m Ez\m(an") Rx,m.s (3-2341) :
Lamax(m,s+2) 3
L 4
G, (a0 R :
-5 t-1,8,m Sgm E 2,%) .Qms(‘)
Lsmax (msed)
\
Vo
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€xzi
L
d
X Z cn.m Em(o. x) T R.o,m‘s( ) (3-234g)
Lemax (m,Sed)
L
[}
+ 55\'\.“”" Z Sa‘Lm (a.x) d—‘(les(ﬂ
L=max (m,5+3)

Two linear combinations of the indexes s and m appear in braces in Equations
(8-234b), (3-234c), and (3-234e). The top quantity appearing inside the braces
i{s valid for m< s and the bottom quantity is valid for m 2s. In addition, the

averaging factor is unity for m =0 or w/fM = 0 and is

T2
Sn-a m-T
[X)
%—MTT
for m#0 or w/n % 0.
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The following recurrence relations are used to evaluate the functions in the partial

derivatives.

Recurrence Relations for the Polynomials Gy ¢ iy and Hy ¢ o

The general recurrence relations take the form

€ Ge € H& HG
Gt*a., s+b, mec = t,s.m Go,b,c " t,s,ma,be

e Gf e & Gf

t+a, sebmee = t,sm Ha,b,c + H1:,:»,m a,o,c

These recurrence relations will be represented by the notation

(t+o, s+bo,mre) €— (t,5,m) x (a,be)

for a.20, b20, and ¢2>0. .

.The recurrence relations used when m<s, for which t=s - €Im are
(s-eIm,s,m) €e— (s-eIm-1, s-1, m)x(41,0)
(s-eIm-1,3s,m) €— (s-eIm-1, s-4, m)«(0,1,0)

(s-eIm 54, m) &— (s-eIm-4,s-1,m)x(1,0,0)

(3-2352a)

(3-235b)

(3-236)

(3-237a)

(3-237h)

©

(3-237c¢)

(s-els,s,s) €&— (s-1-el(s-1), s-4,8-1) x (L-€I,,1) (3-237d)

where

j o s em aw =

(3-238a)

(3-238b)
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€
Gy o 1“—;& (3-2392)
& €
Hi.l.o = T (ah-A8k) (3-239b)
€
Go,xo = l:;_' (3-240a)
é €h
Ho,x,o - (3-240b)
3
o €
. . (3-241a)
i Gyoo®
WY (3-241b)
Higo® "€R
The term Jesignated by
| . (0,4,1) for eT= 1 (3-242a)
(1-€I,1,1) =
(2,1,1)  $or el=-1 (3-242b)
is easily obtained, since for €l =1,
(0,1,1) «— (0,4,0)x(0,0,1) (3-243)
where
Go,o,x = ¢Tcosh, (3-244a)
Hooy = -€Lsing, (3-244b)
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- and tor el = =1,
U
U’ (2,1,1) « (0,1,1)x(2,0,0) (3-245)
and
(3,0,0) «— (1,0,0)x(1,0,0) (3-246)

The followtit. x recurvence relations ave used for m 28 = 0, for which

t = m=-6EIs=m:

— (— — C— =

(m,0,m) €— (m-1,0,m-1) x (1,0,1) (3=247n)
(m-1,0,m) €— (m-1,0,m-1)x(0,0,1) @-247b)
)
s L
where
|
L G -\ (8-2481)
0,0,0

!

¥ My Th 0 (3-248b)
i

B

L Gx,o.x = - _Gi_ (Ta Cosd, + 33inBy) (3=249n)
- L\ Ho.o.x . % (Iasing, - 3cosdy) (3-249b)
i
I o
i |

&
- n Go‘o,l = - cosdy (3-2300)
- el . e
| u HO,J,L - '_,i— sin ea (3"-\)0[))
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The following recurrence relations are used for the case m2s5>0:

(m-els, s,m) €— (m-els-1,s-¢,m-1)x (L 1,1) (3-251a)
(m-els-1,sm) &— (m-gls-1, s-1, m-1)x (0,1,1) (3-251b)
(m-els,s-4,m) &— (m-els-1,s-1, m-1)x(1,1,0) (3-251c)

(s-€ls,98,8) &— (s-£-€l(s-1),s-1,s-1) « (L-€I,1,1) (3-252a)
(s-els-1,s,s) «— (s-1-€lls-1), s-1,s-1) = (-€I,1,1) (3-252b)

(s-€Is,s-1,s) &— (s-1-€l(s-1),s-1,5-1) x (1-€1,0,1) (3-252¢)

Clearly,

\ ‘ (0,1,1) (for €I=1) (3-2532)
(L-€I, 1,1) =
l (3,1, 1) (for €l =-1) (3-253b)

‘ G401) = 0 (for el=1) (3-254a)
(~eI, 1,L) = l
(4,4,1) (for €l = -1) (3-254b)
{ (6,0,0) (for el=1) (3-2554)
(1-¢I,0,1) = l
(3,0,1) (for €l = -1) (3-255b)
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These quantities are eastly constructed from (0, 1, O, (1, 0, 1), and (©, 0, 1),
The uantities (1, 0, D oand (U, O, D) ave given by Equations (2=249) and (2-2530), -

The quantity (0, 1, 0) uses the tnitialization values

g = P T Y
Go‘t'o k (8 —\)b\‘) .
.- 8-256b |
LJ, H 04,0 eh ( ) I
)
! R
N VS . 3 - -£ - 1 3
- Recurrence Relations for the Functions E ,_me.) s\ l.m(""“ v Ko ',
t and tiKQ‘I‘l's(x) dx -
The structure imposed on the expressions for the disturbing tunction (Equa-
Lj tion ((3=2171 and its partial derivatives (Equations (3-226)) requires that recur=-
rence relations for varving £ must be omploved fivst, tollowed by the necessary
\
L‘ velations for varving m.  The recurrence relations for varving £ used to eval-
. R -L-1,8 -4-1,s
uate the functions \‘; m\a,) ' KU \(s) , and dl{“ \m dx require that
‘ bl ]
8 each ot these tunctions be evaluated sepavately and the necessary products then
X 3, .
' tormed, toeee, E 2 (@, X) or, in the case of the parttal devivative with respect
1 ]
L8 ~L-1,s . .
s to X, the product \ l.m(a.) « uR, *T(X) dx. Each of these products is
. stored {n a singly=dimensioned arvay to provide the necessary back values rve-
i
}\j quirved for the recurrence relation used to evaluate the products tor varving
. values of m.  More specitically, the fivst time through the summattons s =0,
- m=0, and 2 Ls L. The recurrence relation
) a 3
v ( q) (Qes-2)(R-0-1) V.
a = 8-257
1,0 o 2(1-1) 12,8 i
N 8 ' . [ . . —1- 1. 3 .
{s used to evaluate the \ 1 m % X) function,  The function K, (N) is denoted
\ ]
3 .
l Ly l)l\x) in the software implomentation and the necessary recurvence relations
' 3-97
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for KO- l-l’s(x) = Dz(x) and its derivatives are
dse
( "a—,- (for £ = s+1)(3-258) U
1
s xl&?3 [}
D,(x) = < (s01) 2 (for & = s+2) (3-258b)
(L-1) x? s s
\ et (-9 0y, - -0, ] (for L>s+2) (3-258c) I

¥
ds {:

( (as+l) :_s (for £ = s+1) (3-2592)
[
dD‘l(x) X s
arre (o+1) x* (2s+3) ey (for & = 5+2)@3-250b)
\ (u:;():, 0 [aen 5 - ’“"] * 5 0, (for 2> 5+2) @3-259¢)

For each value of £, the products

S S L
B, 6 = V(@) D)

s |

BE} mlan) _ v Rp [
Ax dx
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are formed and stoved as back values to be used in the recurrence relations

. ————— - =

) s
; (-me ) E, LY. m s) (3-260a)
, 3
’ . E“"1(a") =
vy s .
! Ui (lq-nn‘) E1 m.x\Q,X) (m > s) (3-2600)
ol
“ S
! s
{ 1R Y
g f [} . (1-med) ——‘a——-— m< s) (3=261n)
t OE; .(a,x) N
¢ i —_— . . .
it LI 3E ¢ o nl0,x)
¢ (Lam) 3 (m2s) (3-201b)

T T X T e
r‘m

. X 8 .8
LR Each value of the tunctions F (A, X) and JdE (2, X) AX are stored over the
! £om ) Lom
, iy provious values B (4, X) and 3t (@eX) OX as thev are evaluated,
i L 4, m-1 L.m=1 :
i ' r After the summation over m @ sm < M) {s performed, the value of 3 is incroased
{ N IR by one, the value of m {s resot to soro, and the recurrence relations over £
{
i , [maxm, s+2) £ L < L) are vepeated for the new value of s and the cvele repeats,
o \\ ¢ ¢
a o Recurrvence Relations for the Polvnomials R! m, gt V) and ARG LYV dY
i .
. t » . h AR AR 1)
b Recurvence Relations for the polvnomials R Lm %n) defined in Equations (3-222
‘ i ] [
of

ave based on the recurrence velation for the Jacobi polyuomial given {in Equation
(3=2040 The recurrence is performed only over the index 4. Changes in the

values of the indoxes m and 8 ave {ncerporated tato the starting values for the

recurrence over £,
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The recurrence relations for m < s are

€ elm
Roma®) = (L+1Y) (3-262)
€
Rs'l)m‘s(x) 2 [(51‘1) e{ - M]Ri‘m.s(f) (3'262b)
R (1) = - *(u Y [m 1) e¥ R
gms 0 (1) (Res)(2-9) - ) mS Nrams
(22 s+2) (3-262c)
€
- llhm-x)(l-md)Rl.l‘m‘s(f){
and
dRG (Y) eIm-4 T
3, m,s N - elm & _opa.
T em (L+1Y) Do Rems (3-26341)
a ¢
AR, mell) AR oo (D) .
_13541_ = [(5+1)e‘1-m] —%‘3“'—" + e(sel)Rg qsl®) (3-263b)
dRG (¥) \
am,s i
—— = 2-1) 1 A(2- Y-ms
day (2-1)(2es)(2-9) l (at-1) [ (I-t)e m:}
¢ &
dR (¥) dR () (£2s8+2) (3-263¢)
j" ) i'al )
X dx\‘ms - A(R*m'l)(ﬁ’m'l) de 2

v (20-1)2 (-0 Ry (0 {
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The recurrence relations for m>s are

& els
Ruyma(¥) = (Le1¥)

€
Rt ms = [(menev-s RS (0

mms

.
@ ..

(3-26+4b)

(12m+2) (3-264c¢)

€ 1 |
Rems™ * D emytemy | (10 (100 er-ms]
¢ .
x Rﬂ-l,m,s(x) - 2(R+s-1)(2-5-1) R:-J,m,s(x)
and
€
dRm.W‘t.s(n &ls-t els Re (
v €s (L+I0) 1o15) Rem,s(¥)
¢ ¢
AR et m,s (1) [ ARy o (V) .
v = (rml)e‘l-s] vt e(md)Rm‘m“(r)

4R o (V)

dy

1 |
(1".)(10"1)(2-“\) l (21‘1) [l(x-i)&f'MS}

de_l.m‘,m
aY

- 2(fes-1)(t-s-1)

dRi-l.m.s(”

e S ORI Y
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(3-263a)

" (3-265b)

(L2m+2) (3-265¢)
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3.4.3 The Averaged Equations of Motion for the Resonant Tesseral Harmonics

Model

The averaged equations of motion for the resonant tesseral harmonics model
were implemented in the R&D version of GTDS in such a manner as to provide

the flexibility for the user to specifv any set of spherical harmonic terms of

degree and order (£, m) desired up to a maximum of 10 such terms. (This

limit i{s reflected {n the specific dimension statements and is easily modified.)

No particular relationship is assumed among any of these terms. This can

result in the recomputation of certain quantities common to two or more terms

or {n an {acrease in the cost of evaluating some of the necessary functions.

The form of the averaged disturbing function for the resonant tesseral harmonics
model given tr Equation (3-163) is used for the development of the averaged equa~

tions of motion. The expression for the averaged disturbing function for a single

term of degree and ovder (£, m) takes the form

P 4
RT v
R > = R R; (3-266)
< a4m : 0 .ZL
where
sin (Smm) J(kN'A-m8) _m

R, » %(—-) (Com- 531",)—-5——— e I @200

L
m . (1) Im |-s-kN'|
Z (-1} 15 C,‘: (x+)8) " (kejh)
Samsl (3-267b)

(1ts even)

14,8 ~Im Mesm.s
X (L+1Y) P - (¥)
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sincel 7 = sgn(s ~kN" = -1,

m
m (3) m+1ls |-s-kN'|
R,* Z(-:n Cpg (2x+318)  (kin)
LB
(1ts even)
(R=267¢)
-d-1,-3 Is _mes,m-s
x Kewe (Le1) P00 ()
since1 7 = sgn (KN' =s) = +1,
m
T em s (2) o mIs |s-kN'|
Ryr ) aea" Ol teinaf T G
320
(Lts even)
@=-267d)
-1-1,s Is  m.5 Mes
A KO (1eIY) P (Y)
WN -
where 7] = sgn (kN'-3),
= by 18-k N'|
.5 (1) i $-dm ) K
R." Z a Cp, (a-j8) (k-)nh)
Semel B=-267¢e)
(its even)
A5 . I s, gem
x K .suﬁ-il) F (Y)
kN 1-s

where 1] = sgn (KN'-3)

1'I‘!m ratio A/0 = N/N' is alwavs positive if the retrograde equinoctial vefor-
ence svstem s used for retrograde cases. Also, ounly nonnegative values of m
appear in the disturbing function, Thus, it i3 easily shown that both k and kN’
must be positive integers.
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;zwa (2-5-1)1 (Ras- LI

(1 Lo (m+lss<l) (3-268a)
M (g-s)t
2,8 RIS P.Q.s(o) = 4
(22-104
\  (Lem)? (s = 4) (3-268b)
D (Rem) (-8} (2em)!
2,5 N (Res)! Pﬂ,s(o) a (.1') (21_5)“(2_5)“ (s s m) (3-269)

In some cases, it may be desirable to truncate on the eccentricity. Therefore,
if all powers of the eccentricity through the nth power are retained, then the

exponents of the (k, h) polynomials must satisfy the conditions

|-s-kN'| ¢ n (3-270)

or
-n-kN' ¢ s & n-kN (3-271)

in sums Rl and Rz, and

| s-kN'| s n (3-272)

or
kN-n s & ¢ kN'+n (3-273)
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{n sums R3 and R 4 The summation limits for the four sums are then

I
P
! et e ——

c*:r:::c:t::::::af

[n-kN' 2]
’ Ry ~ (3-274a)
% Ssmel

[n-kN;m]
! R, ~ (3-274b)
{1

[N+ n,m]

Ry~ ) (3-274c)

s amax (0, kN"n)

(4, kN'en]
R =~ (3=274d)

samax(ms1, kN-n)

pos

where [x, v] denotes the minimum value of x and y.

The four sums are arranged in order of increasing powers of the («, #) poly-

_n-—-—-‘..._.. e Areana - b a
t;-m.:' -z .

nomial. Since this exponent depends on the retrograde factor, I, the ordering
of the sums is also dependent on the retrograde factor. For [ =1, the order

chosen s
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' R = Ry(Rq+Ry+Ry+ R,) (3-275)
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and for I= -1, the order is that given in Equation (3-266), i.e.,

R =Ry (R +R, +Ry+Ry) - (3-276)

In each case, the placement of the underlined sum in the ordering scheme is

arbitrary because of the appearance of the complex conjugate of the («, p) poly-

nomials which appear in the other three sums. These conjugate polynomials
are computed independently of the other polynomials in order to avoid the possi-

bility of a small divisor.

Although the four sums are arranged in order of increasing powers of the («, p)
polvnomial, inspection of Equations (3-267) indicates that the (cx,p) polynomials
are not ordered similarly inside all summations. Specifically, for [ =1, the
exponent of the («x, ,5) polynomial progresses in decreasing order in the summa-
tion Rg. Similarly, for the retrograde case I= -1, the exponents of the (a.ﬁ)
polynomial decrease in the summation R, . Thus, these polynomials (the real
and imaginary parts) are evaluated and s;ored prior to performing either of

these particular summations.

The (k, h) polynomials were not arranged in order of ascending powers because

of a counflict with the order of the (o, p) polynomials and because their expo-
nents are not necessarily monotonic functions of the index s. These polynomials

are evaluated and stored prior to the summation in which they appear.

The partial derivatives required for the equations of motion are developed next.

Inspection of Equations (3-267) shows that

Ro= RelTA) (3-277)
and

(3\57?)-‘:\-»:) {=12,8,4) (3-278)
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-4-1,s
(N!
h? 42 « No finite formin x = 1/ (1-e2\ exists and, thus, it is not introduced

. - 2
The functions I\, are infinite power series in e™ or, equivalently, in

in this model. The partial derivatives take the form

R _ My ¢ ) o O
o -53.2 ZR‘ T ; Ro ZR‘. (3-2790)
sl X3
4
3R @R,
YRR ZRi
[N
o e ne e S(Omm)  J(KN'A-mB) m )
Y (“a-.%) (C’a.m'-\sj.‘mhkN ‘&mr ¢! I R, (3-279b)
=
4
= -jkN'Ro ZR;

The partial dertvatives of the disturbing function with respect to o, ‘5 , ¥, h k

are of the general form

4
oR dR; -
63 2 RQZ 6\3“ (3-280)

isd

The bar notation designating mean elements {s dropped in the above and following
equations. The elements are to be {nterpreted as mean elements and the disturb=-

ing function or its constituent sums are understood to be "averaged."
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[§ s e T e U L ]
8
L The partial derivatives of the first sum R , are
A
| -kN'2
éRk [ J m s () L Imesey J-s-kN'|
e Z -2) 2 les (Inns)(otnﬁ) (ki-jh)
‘, Samad -
;" (213 even) (3-281a)
> Y ~Im  Mesmes
* K ez R ()
; {n-kNi2]
oR, m o) ' o Tmest gl
' 'a?' = -0 2 C‘.s (Im+s)3(o(+3§)‘ (k+3h)
Lsﬂ.:sm;:u\) (3-281b)
-4-1s Im  mes mes
* K (e e
(n-xn| 2] l
' oR m s W) . Imas [~s<kN'
b (-1) 2 Cos (0+iB8)  (kejh)
oY '
Samei
(213 aven)
~2-1,8 ~IMm-1 wmeg m.s
X KkN‘ ~Im(1+1%) Pios €9) (3-281c¢)
“Im g mes mes
+ (1+1Y) T F")_s §9)
3-108
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If the real and imaginary parts of the complex polynomial (a+ jp)t and (k + jh)t

are denoted by

: Cank
Ap- 1By = (&) (3-282)
. r
Go+jH. » (kejh) (3-283)
3-109

gifod o sl SWEAEE AL RN T S v ey L ey

i aal L R N O €~.;_.¢ y b :: @ 14 "oy
A R ke L e s
[n-kN; 2]
aRA ) Imes -Im vms,m-s
i (v Qt Q \oH-J,B) (Le1¥) 1_‘ (¥)
Ssmsl
{(Lrs aven)
-s-kN'| L -g-1s
X [J (3ekN') (ke h)‘ KN (s+kN'2 0) (3-281d)
CJes-kN deN’
+ (k*)h) “h -
n-kN)Q
OR, [ ] C Imes -Im m«»%ms
™ () 4 s (@) (1) Py
SsMaey
(23 even)
xr ) \ka\\ “1 -lys .
X ;(ska (k+jh) Ky (s+N' 2 0) (3-281e)
d-lxs
_ \-a«kN\ KN




and, since s-kN'20 in Rl » Equations (2-281) are expressed as

|
i
|
R
:
¥
|

[n-kN; 2]
R (" 30 (Tmes) (A '
A — -1 s mes Imes-t ¥ JBImn-L)
Semed (3-284a)
. -84, 8 ~-Im _mes,m-s
X (GMN,”HMN,) K (L1077 P 7 ()
i [n-kN; 2]
5FRL m s _(1) .
‘SE‘}— = (’l) a. CR)S (IM+S) (.BIM‘Os'i ""AAIM*Q_L)
N Samel
ﬂ (3-284b)
. ) -1.4,s Im Mg m-g
i X (Gs¢kN' +) H‘E\-kN'> KkN' ( L*I{) P -5 ()
o
' [n-kN', 2]
aRL m .a (l)
_5—\’_ : Z 1) 4 Cf.s (Alm»s * :\BImss) (GstN' *‘:l“s+kN'>
Samedl (3=284c)
-3-1,s ~Im-1 mism-s -Im deos,m-(?()
X KkN’ [-Im (L1+1X) P‘,‘.s (¥) + (L+IY) —n;;——"
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The partial derivatives of the other three sums are similar in form and can be

obtained in a straightforward manner.

Finally, the real parts of the partial derivatives are obtained as follows., If

[n-kN' 2]
()
L‘ (- 1') 1 C' <AI“\?$ * .\BI.MOS) (L"Ir\ Pj.s )

Im M3 Mm-s

Ssmed
-4
X (5+kN)( Hska 1 *‘.\GsskN L) (3=284d)
~2-l s
+ (GstkN' + JHsrkN )
[n-kN‘ 2] .
) . ~Im s m-s ?
SR o Almea * 1B ) (e T B )
Semel
, ~Q2-4,s :
X (5+kN )(G$§k“' 1 * J\'\‘*ku' 1) . (3'2849) *
“d-{s
dK

+ (Gska' + iH“kN') dk

4 ..
UeijV = Z R, (3-283a) -
.

ind \
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and
- OR
Ugi-ng . Z ® (3-2850)
ind

where g {s anv of the parameters («, p. ¥, h, k), and, similarly, if

X+iY = R, (3-286a)

and
oR, e
X.,Lf 7 W (3-286b)

where 7] is either a or A, then the real part of the partial derivatives of the

disturbing tunction take the general form

3 <RRT>A

57 a xqu - Y'IV (3-2877)
A - - -‘.)m‘-
"“-""""‘ag Xug YVE (3-287D)

The recurrence relations used tor evaluating the functions in the partial deriva=-
tives are determined next,  Sinwee this theory was tmplemented separvately from
the nonresonant theory in Section 3, 4.2, some of the recurrence relations used

may differ slightly,
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Recurrence Relations for the (&, &) Polynomials and the (k, b Polynomials

Recurrence relations for the complex polynomials (& + jﬁ)t and (k + i’ are

. €
straightforward and are special cases of the recurrence relations for the G,

. *or
AR

'rc ) “wS,m

[ and Hte s m polynomials discussed in the previous section, Specifically, if

i \

(a+§8) in R (3-233a) :

. . . t

i A+ By = { (x+)18) in R, and Ry (3-288b)

NS

, (o-38) in R, (3-288¢)

I

u then

( A = A A - B, B, (3-289a)

.

( By = A B, + B A (3-289D)

"

L wherve

Ay = L (8-290x) ‘
L .
By = 0 - (3-290)

U A& T aQ (3=291a)

l ‘ B tn R 3-291b)
l BL =\ I3 tn R, and R, (3-291c)
l -8 in R 3-291d)
l 3-113
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The rec'rrence relations for the (k, h) polynomial ave identical in form; {.e.,
if

then

where

{ (kejn)’

G+ jH_ =
r * R ((k?}ﬂh)r

Gr = Gr-iGL ) H\“-lHL

He = G K+ R 6y

r
o
"
(]

3-114

in Rl and Rg

in R, and R4

3

in Rl and R

in R3 and R4

2

(3-292a)

(3-292b)

(3-293a)

(3-293b)

(3=-2942)

(3-294b)

(3-295a)

(3-295b)

(3=295¢)
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-2-1,28 \kN's 8] i
| Wwooo ¢ WN
e
L In view of Equation (2-183),
( 0
s -{-4,t5 S‘-‘ am+|kN'3sl  ame|kN'ss)|
n -‘

N’ * ., \xN'zs| € (3-297)
L m=0
L
L Therefore, through the nth power of the eccentricity,
U n/3d

-1, AmelkN'ssl  am
, n e
U kN \kN'ss)
me0Q
U In view of Equation (2-191), this can be expressed as
ﬂ n/d
-2-4.ts -2-4,t8  am
3-299
I Kive * Z Xoo © (3-299)
mal

I 3-115

Recurrence Relation for the Jacobi Polvnomial and Its Derivative

The recurrence relation for the Jacobi polynomial given in Equation (3-204) is
used. The recurrence relation for the derivative of the Jacobi polynomial is
obtained by differentiating Equation (3-204). The factors (1 + “)-Im and
1+ II’).Is and their dertvatives are computed explicitly,

1,%s ~Le1,z

-L- -L-1,2
Evaluation of the Functions KNt , dEkN! $ /dn , and dKiN? L S /dk

These functions are evaluated using the Newcomb operator method discussed in

Section 2.2.1.3.3. From Equation (2-303),

(3-296)

(3-298)




where

lkN'3s ]+ (kN'.3)
3 3=-300
p m+ Y { a)

. {RN'3s} - (kN'ss)

g = m 7 (3-300b)
Also, since
et = Wik (3-301)
it follows that
3 -Lins (neg)/ s g
‘f oy Ko = Z am X P-°" he™? (3-302)
ms0
! and
: 3 -tass (net)/ s gmes
‘ 5: KkN’ a am XPF ke (3-303)
m=0

(It should be noted that the tnteger k in the product kN' should not be confused
with the equinoctial element k.)

The upper limit of the summation over m i{n Equations (3-302) and (3-303) is
increased from n/2 to (n+-1)/2 to guarantee that the partial derivatives with

respect to h and k contain all terms through order e".

The Newcomb operators are computed with the recurrence relatious given in
Equations (2-196) and (2-198), They are stored in a singly-dimensioned array

in the order in which they appear {n the disturbing function,
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SECTION 4 - ENPLICIT THEORY FOR THE DISTURBING

THIRD-BODY PERTURB.A I'TON

This section presents the explicit development of the third-bodv disturbing func-
tion in terms of the equinoctial elements of the satellite. Also, the first-order
averaged equations of motion for the special case of the nonresonant near-Earth

(Moon) satellite are presented.

Section 4, 1 discusses the development of the third-body disturbing function from
the equations of motion tor three mutually gravitating point masses, Section 4.2
describes the representation of the disturbing tunction in terms ol e equinoctial
elements of the satellite and the classical elements of the third body. In Sections
4.2, 1 and 4.2, 2, the rotation of the satellite~dependent and third-body-dependent
spherical harmonic tunctions are presented.  Generally, thi= formulation intro-
duces two inclination functions, one tor the satellite position and one tor the
third-body position, In Section 4.2.3, {t is shown that appropriate selection of
the coordinate roference svstem climinates one of these inclination tunctions,
The Fourier expanstons in the mean longitude of the satellite and the mean anom-

alv ot the third body are introduced in e disturbing tunction tn Section 4.2, 4.

Section 4.3 tocuses on a special case which is applicable to nonresonant near-
Earth satellites, In Section 4.3. 1, the third-body disturbing tunction {s developed
in terms of the equinoctial elements ot the satellite and the direction cosines of
the third bodyv. The relationship between this special case and the general case

is explored, In Section 4, 3.2, the Fourier series expansion in the mean longi-

tude of the satellite ts introduced fn the disturbing tunction,

Section 4.4 discusses the averaged disturbing functions for the general and spe-
cial cases (in Sections 4,4, 1 and 4. 4. 2, respectivelv) and the averaged equations
of motion for the spectal case are presented tn Section 4,50 In addition, the
algorithms which were tmplemented {n the Research and Development (R&D)

verston of the Goddard Trajectory Deterr aation System (GTDS) are described,
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4.1 DEVELOPMENT OF THE THIRD-BODY DISTURBING FUNCTION

Generally, a Variation of Parameters (VOP) formulation of the third-body effects
on the motion of a satellite assumes that the distance of the disturbing third body
from the satellite is great relative to the satellite distance from the central body.1
At such distances, the effects of the nonspherical gravitational field of the third
body can be neglected and, thus, a point mass is assumed. The equations of
motion describing the mutual gravitational attraction of three point masses in

an arbitrary inertial reference system (see Figure 4-1) follows.from the universal
law of gravitation and Newton's Second Law of Motion. These equations of motion

take the form

(Fe - ) (Fe- 1)

¥ = —_— G ——— (4-1a)
¢ -Vl m-r |¥e-Tel?
. ® 7D (Fy~ )

= - —_— . G — 4-1b

ERR e R D -
(F.-T.) (Fo=T)

r.=-6m _T_.ca - Gm, ——— 3 (4-1c)
|Pe-Tel |7~ 7

where r designates the position vector in an arbitrary inertial referehce system
and the subseripts ¢, s, and T designate the central body, satellite, and third

body, respectively.

1For the case of a close third body, a restricted three-body problem treatment
(Reference 49) (s more appropriate,
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It is destrable to transter the origin of the reference svstem to the center of mass
of the central body @see Figure 4=1), This is accomplished through the transiation

specified by the equations

¥ e F-F t=2a)
?‘ ] -FT‘-F\‘. =2
It follows that
F-F.o: F-F 4 (4=3

The equations of motion tor the satellite and third body relative to the center of
mass of the central body are obtained by subtracting Equation (4=11) from Equa-

tions (4-10) and ({#=1¢), respectively, which vields

0 = x -,
. AT - A r
) - - b (- - ) -t
r 6("‘0."’?‘53 EE My FERNERE (=4
- ?‘ " Z .F
¥ e elmeen) o - 6ol (7 - ) (o

Since the satellite mass, myg, is negligible, the second term in Equation (4=+4b)
can be omitted.  Thus, the wmotion of the disturbing thivd body is that of the classt-

cal two=body problem, which is l\nown.1 Consequently, this decoupling permits

1Equutions (=4 could have been formulated to account tor the nonspherical grav-
{tational attraction of the central body on both the satellite and the thivd body,
Howoever, this is not necessary since thexe eftfects appear ondy in the {iest torm
on the vight-hand side of Equations ¢4-4) and sinee the purpose of this discussion
is to obtain the disturbing function tfor the thivd-body disturbing acceleration
represented by the second term in Equation ¢1--4a).,

4-4
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the solution of Equation (4-4a) without solving Equation (4-4b) stmultaneously.
Generally, an independently generated ephemeris for the third body is used in

the evaluation of the disturbing acceleration in Equation (4-4a),

Since the disturbing acceleration is the result of a conservative force, it can be

expressed as the gradient of a potential function. It is eastily verified that

—

A ? 1 PR
—_ - n -V - J=3
TAERREAE (m m‘) -9

¢

where the gradient operator V is defined in Equation (3-2). Thus, Equation (4-4a)

can be expressed as

. T
¥+bm,——3 = VR (4-6)
e ‘ = Ia 3
where the disturbing function, R.3 , is given by
L
R.= Gmo [ - & ) (1=7)
3 VAL e ‘

The first term in the disturbing potential, 1/ IKI , is called the direct term and
reflects the direct gravitational effects of the disturbing body on the satellite,
The second term, referred to as the indirect term, reflects the indirect effects
caused by the third body oun the satellite through the perturbing effects of the
third body on the central body. Specifically, the indirect term cccounts for the
offects on the aatellite motion due to the motion of the central bodv about the
barvcenter of the central=body/third-body system caused by the gravitational

attraction of the third body.

|
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The expanston of Equation (1=7) {8 considered nexts To obtain the expanston of
the disturbing tunction in either the general case or the spectal ease which is
constdered later {n this section, {t {s necessary to expand the direct part of the
disturbing tunction in powers ot the vatio of the saellite and third=-body distances,

1 . .
(t/rN T The vector equivalent of the Law of Cosines gives

L R R -3

If the magnitude of a vector X {s denoted by

x = [¥] (4-9)
then, clearly,
i r d -
A= v/l + (?) - &—'_-, cosy {=10)
sinee
-F.-T‘” a Y r' cos\P (.1-11)

where ¥ s the elongation angle between the vectors v and v, Thus,

Gmy Gmy

+=12)

1'1‘\\0 dizcussion {n this sectton has assumed that v« ety however, this need not
Le the cage, The tollowing theory ts equally valtd for very distant satellites
bevond the orbit of the disturbing thivd body, tied, v> e, provided that the
expansion s performed {n powers of (' 1),

4-Q
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The second tactor is the well-known generating function for the Legendre poly-

nomials (Reference 42) defined in kquation (3-24), {.e.,

o0

120

and, therefore, the direct part of the disturbing function takes the form

Gm, Gwm, )
L = Z(rl) P, (ws¥)

The first few Legendre polynomials are

Po(x) 2 4
Px.(“) 2 x
3 a2 L
P (x) = 2 X 3
and so forth. Consequently,
GMT = oy {1+ — cosy +-(-r—)1'1(ms \
Ja) v’ r! v (1
Clearly,
Gmy v F.F
= — s = Gmg =3
oo | #
4=

-1
(\/u(%)*-a% cosy ) 2 Z({-)l P, (cos¥)

(4-13)

{-14)

{4=-151)
(4-15b)

(+-15¢)

(4-16)

(4-17)

S R e — L
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Thus, the Pl(vos ¥) term in the expansion of the direct par* of the disturbing

potential function cancels the tndirect part of the disturbing potential function,

\ and the expansion of the disturbing potential function in powers of . 1") takes

the form

N
Gm L
Ry = r,T 1+Z(—:-) P, (cos¢) (4-18)

The object in performing the expansion is to tacilitate the development of the
partial derivatives with respect to the satellite elements which are required
for the Lagrange Planetary Eguations. However, the point-mass term is
completely tndependent of the satellite position. Thus, it does not contril ute
to the equations of motion tor the satellite because the requisite partial derviv-
atives are i{deatically zero. Consequently, the above expression, with the
point-mass term, Gm.r r', deleted, will be used in the development of the

disturbing functions for both the general and special cases.
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4.2 A GENERAL EXPANSION OF THE DISTURBING FUNCTION IN
EQUINOCTIAL ELEMENTS

The expansion of the disturbing function in terms of the equinoctial elements of

the satellite and the classical elements of the third body requires that their dis-

tances from the central body and the cosine of the elongation angle, ¥, between

them be expressed directly in the elements. The elongation angle is considered

first.

It is assumed that the positions of the satellite and third body are given respec-
tively by the spherical coordinates (r, 8, ¢) and (v, 8', ¢"), where r2>0,
0<8<2r and (-7/2)< P<(m/2), etc., and are measured relative to some right-
handed coordinate reference system with the origin located at the center of mass
of the central body. For the purposes of discussion, the equatorial reference

syvstem is assumed, It follows from spherical trigonometry that
os¥ = sind sind' + cos cos@d’ cos(6-6') (4-19)

Application of the Addition Theorem (Reference 30) for the Legendre polynomials
vields

Pi(costP) 2 Pl(sin(p) Pl(s'm¢‘)

+ lz 8. :: m ) (smm P (s‘mdi') cos m(6-8')  (4-20)

mai

(- 3'
Z Sem T = Jl\m(s{wﬂi)) Pum(3in ") cos m(s-8")

me0

ot v e e




where
‘ -l- (for m = 0) (+-21a)
8 = ) > o
m = l
1 (form 0) (4-21b)
Since

s it (8-6")

Re = | * cos wm(e-8') (4-22

Equation (4-20) can be expressed as

(QO&‘P) a Re Z 5m((im} f m( 5\n¢) (smct) 6 ym (0- 9)1 (4-23)

ms0

The complex variable notation will be used throughout the discussion., The real
part of the expressions will be obtained as the final result. In addition, m' will

denote the third-bodv mass in the remainder of this section.

Following Kaula (Reference 17), the following definition is made:

Gm' (2-m)! . jmé@’
Y ” L e ——— 1 ! 4-24
Com™ 150m ™ TTT Gyt Tamisiné @ -2

The functions C 1 and S im depend only on the disturbing third body since

) 4
Gm'= at= qt3 , where n' and a' are the mean motion and semimajor axis,
respectively, of the third body. The disturbing function in Equation (4-13)

minus the point-mass term can be expressed as

o 1 -
] . ) m
Ry 2 Z Z e (Com= §9am) Pomtsm®) ¢! (4-25)
¢ed mad
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4.2, 1 Rotation of the Satellite-Dependent Spherical Harmonie Functions

jmé must be expressed in the

The surface harmonic functions P 2 m(sinqS) e
equinoctial elements. In view of the discussion presented in Section 2. 1,2
(Equation (2-24)), the appropriate transformation from the original reference

svstem to the equinoctinl reference system takes the form

1
, ymd (2-9) ms jsi e
g‘m(sm(b)e = Z ot me) S;u. e (4=26)
sa-%
(Lts even)

since the latitude of the satellite is identically zero in the equinoctial reference
system. The longitude, L, is the true longitude of the satellite, measured from

the origin of the longitudes in the equinoctial reference system,

The inclination function is given generally by Equations (2-45), where (1%, i*, W™
are the Euler angles describing the orientation of the original coordinate system
(equatorial) with respect to the equinoctial reference system. (The symbol * in
the above expression i{s used to distinguish Euler angles from the classical ele-

ments 1, i, W.

If the original coordinate system is the equatorial system, the Euler angles are
the same as those given in the discussion of the nonspherical gravitational per-
terbation which is given in Equations (3-33). Any of the definitions for the
{nclination function S.?E's given in Equations 3-33), (3-63), or (3-G6) ave
appronriate, Substin:tlng Equation (4-26) into Equation (4-23) vields the ex-

pression:

® X2 A

(2-8) ‘ LM psb .
Ry= 2 ZZ Z TSI R (Cl.m'-‘sl‘m) S, e (4=27)

292 M0 3u-L
(Qxe even’]
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4.2.2 Rotation of the Third-Bodv Dependent Spherical Harmonics

It may be desirable to express the functions C 4m and S 4,m in terms of some
set of orbital elements (e.g., classical, equinoctial, etc.). This is particularly
true for cases involving resonance phenometia. There is no compellin/- reason
to require a '"'nonsingular' set of elements for the third body since they are only
parometers in the equations of motion for the satellite and do not introduce any
singularities., Consequently, classical elements and the associated nodal refer-

ence frame will be used for the representation of the third body.

The nodal reference frame is defined by the right-handed orthogonal triad
(QN, YN zN) , where x\I points from the center of the central body to the ascend-
ing node of the third-body orbit, £, relative to the equatorial reference system,

The unit vector 3\1 is the unit angular momentum vector of the third-body orbi-

tal motion, i.e.,

The unit vector ?N , which completes the orthogonal triad, lies in the third-body
orbital plane, 90 degrees ahead (in the direction of the third-body motion) of the
unit vector XN+ The relationship between the equatorial refereuce system

(§, ,3. 2) and the third-bndy nodal reference system (§N, et Z\I) is shown in

Figure 4-2.

Applying the transformation in Equation (2-24) to the surface harmonics in
Equation (4-24), i,e., rotating the surface harmonic functions to the nodal

reference frame for the third body, yields

i

jm@’ (1-p) 19(‘9 )
Pz.m(’m ge’ = Z (n.:n' Py o(0) s (4-28)
pr-d
(2:p aven)
4-12
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Figure 4-2, Relationship Between the Equatorial and
Third-Body Nodal Reference Systems \
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where &' and f' are the argument of pericenter and the true anomaly of the

third body, respectively. Hence, it follows that

am T %m T 0T ) ey
1 ps-L
' (22p even)

L
) Gm' (2-p)! mp _jplw'+s) ‘
C. +iS, = Z Pm(o) Su e 4-29)

Assuming the equatorial reference system as the original coordinate system,
the Euler angles specifyving the orientation of the equatorial system with respect

to the nodal reference system are obtained from the tr:msfox‘mation1

o

Tyt Ra(0) RGN Ry 7 (4-30)

where ?\, and T are the positions of the satellite in the nodal reference frame
Al

E
and the equatorial reference frame, respectively, and i' and £1' are the inclin-

ation and longitude of the ascending node of the third-body orbit referred to the

equatorial reference system. The Euler angles corresponding to the inverse of

the above transformation are required and are as follows:

oo B TS ——— I —— [ cnens R Stee S oo Y e S —— Y - T %o I ™~ B o S e R e o

Q=0 (4-31a)
' e i (4=31b)
W' s -0 #-31c)

1Clearl_\'. the rotation R3(0) is an {dentity transformation. U

o
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m,p

Substituting these angles into the zcneral expression for the function S i

given in Equations (2-43) {with s replaced by p), vields

m,p _pm e :‘mn'

a * )
[ cmp mp mp,om-p
s si'/a. g (¢ (-2<psS-m) (€-32a)
(Rem)! (L-m)! ™P m-p  _m-pwmip
x‘ oyt (gt CVIL Siia Prm (&) (-m<p<m) 4-32b)
Pm mep  pm  pem,pem
L(-1) Cira Sia Py (¢;) m<p<)  (#-320)
since
C.=¢C,
Sk *°S,
If the function S.::'p is expressed as
mp  em  jmQ mp
S:n. x e V., (4-33)
4-15
T T T T :
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where the definition of T™*P

21 follows from Equation (4~32), then Equation (4-29)

takes the form

Gm' (9-m)! . n ~im8
me(smme

c‘\m‘.ss"’imz "‘ Led (l‘bl‘\'l“ )

L (4-34)

Gm' (2-p! pm omp i plws i) emn
RETY! Z - P, (0) § Uu e [ ]

pa-L
( 2tpeven)

Comparison of this result with the result chtained by substituting Kaula's expres-

sion (given in Equation (3-10)) into Equation (4-23) yields the relation

% ’om_@ M)“l% (M'L)“ (al-a .1)“ m i-f"
.y = (- \‘ . o o = .. Q . y q _

where

2-p = 2q (4-36)

This completes the rotation of the third-body-dependent spherical harmonic func-

tions to the nodal reference system of the third body.

Substituting the complex conjugate of Equation (4-34) and Equation (4-26) into
Equations (4-25) yields the following expression for the disturbing function:

© L L 2
aGm (8-8)!  (2-p)} "
R3 T e Z Z Z Z (Rem)! (2-m)! P‘_\a(O) Pl,p(o) (?)
223 m=0 s$1-4 p..p_
Cizs even; Jzp ‘vM] -

M o.m UM‘P ¢3{5L-[p(u}'+$’)+ m.ﬂ.’]}

Saa ) aL

b
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4.2.3 Elimination of One Spherical Harmonic Rotation

A judicious choice of the system of reference used for the decomposition of

the elongation angle (Equation (4-~19)) in the application of the Addition Theorem
permits the elimination of the rotation of one set of spherical harmonic func-
tions in Equation (4-20). The selection of the equinoctial reference system as
the system of reference eliminates the rotation of the set of satellite-dependent
spherical harmonic functions. Selection of the nodal reference frame, associ-
ated with the orbit of the third body, as the system of reference eliminates the
rotation of the third-body-dependent spherical harmonic functions. In essence,
the argument of the single remaining inclination function is the mutual inclina-
tion between the instantaneous planes of the satellite and third-body orbits,

respectively,

Classically, the plane of the disturbing body has been adopted as the reference
plane for those formulations involving expansions in the mutual inclination,
This choice possesses the advantage of obviating the necessity of referring the
orbital elements (position) of the third body (usually obtained from an independ-
ently generated ephemeris) to another reference system, Because of this con-
sideration, the plane of the third body is adopted as the reference plane in the
following discussion. The reference system, referred to as the nodal refer-
ence system, is shown in Figure 4-2., For the purposes of this discussion,

the dvnamical system of reference is assumed to be the equatorial reference
system and is analogous to the original reference system in the preceding de-

velopment involving two spherical harmonic rotations.

Clearly, *"e cosine of the elongation angle is independent of the particular
reference system used to measure the latitude and longitude of the satellite,

(¢, &), and the latitude and longitude of the third body, (¢', 8'). In the nodal

L . |’ . + ' » i
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reference svstem, the angles @', ', describing the position of the third body

on a unit sphere, are

¢'a O (4-382)
' s w'e?¥ (4=33b)

where @' and {' are the classical argument of pericenter and true anomaly of
the third body, respectively. Thus, the general expression in Equation (#-19)

reduces to

osP a cos @ cos [e-(w’+ $‘)] 4-39)

where the satellite latitude and longitude are measured with respect to the nodal
reference syvstem, The Addition Theorem given by Equation (#-23) assumes the

form

i
(L-m)! _ ym{8-(w'es)
P,(cos¥) = Re ‘l Q-Z 8 ey P P misind) e’ L u (4-+40)

m=( ‘
Cizm even]

6

The spherical harmonic functions P 2.m (sin @) ejm must be rotated to the nodal
reference frame. The Euler angles required for the specification of the function
S‘?;’ 8 are obtained from the vrotation of the equinoctial reference frame (?. ;:\. \Av)
(defined with respect to the equatorial reference trame) into the nodal refercace

frame, .04,

?N = Ry (7)) R (-41) Ryl1AvT) Fg (4=41)
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where 'y and r, ave the position vectors of the satellite referved to the nodal
. \

and equinoctial frames, respectively, Ai {s the mutual {nclination between the

two orbital planes, €' is the longitude of the ascending node of the satellite

orbit referred to the nodal reference system, and T i{s the angular distance {n

the satellite orbital plane between the longitude of the ascending nodes with

respect to the equatorial and nodal reference systems of the satellite orbit.

The above rotation follows immedtately from {nspection of Figure 4-3.

stituting the Euler angles

W% = -7

(% = -Ai
Q% =« TNz

into Equation (2-43) vields
ms sm -j(st1nen)-mT']
S ) ®
pa

MYs  aMes MeS M-S om-3

GO Cua Saa Pre  Ca)d

)""‘ (Rl (Bowm)l ™M mes

xﬁ (-1

mes  4em _%.m, M
sA'\il P.\-‘ ( A\)

L C’Ai!l

4-19

(Res)! (R-e)! Al SA'\!&

(~Lss<-m)

m-almﬂ

(Ca)) -msssm)

mess )

Sub-

(d=420)
(4-42b)

(4-42¢)

(4=432)

(+=43b)

(4=430)
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The expression for the disturbing function takes the form

(2- s) Q m,s isL
= ZZZB Prsl® (¢, e ,sxm) 5, ¢ (4=44)

23 mad ss-2
(2ts even)

where
Gm' (R-m)! jm (w'q.@‘)
Com™ 150m™ THT oy Tam® € (4-45)
Substituting the explicit express’ouns for the functions C and S into

4, m i, m
Equations (4-44) yvields

©® L 2
l,. ' (l' i 1 ma :rﬁL‘ {w' ‘F"]
R, = 26m NN Z e ORAOT ] S, ¢ T e

Y A A (Qem)! 29
L:1 Mma0 22
(Ats even)

(Ltm even)

Thus, a comparison with Equation (4-37) shows that one summuation has been

eliminated. However, this is accompanied by an increase in the complexity of
m,s
22

Since the equations of motion are still referred to the equatorial system, the

evaluating the remaining S function.

quantities ¢', Ai, and T, appearing in Equation (4-43), must be related to the
equinoctial elements of the satellite and the classical elements of the third body
(both of which are assumed to be referred to the equatorial reference system).
The relationship between the classical elements of both the satellite and third
body and the quantities ', Al, and T are easily obtained. The relationship
in terms of the equinoctial elements can then be constructed using the results

given {n Appendix A of Reference §.
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The relationship between (z', A, T) and ({, £, ', QL") can be obtained from
the formulas of spherical trigonometry or as follows., In addition to the trans- U
formation given in Equation (4-41), it is clear from the inspection of Figure -4-3
that U
R, = R RyQ-Q) R () Ry(IN) & I
g™ ™ 3 FAMR TN Q (4=47) ,
Therefore, a comparison of Equations (4=41) and (4~47) vields the relation U -
iR
R0 Ry(-0) RyGD Ry(1IN) = R, (-7 R (A1) Ry(IA+T) (4-48) o
1
Clearly, )
X
Ry(IQ+T) = Ry(T+IN) = Ry(z)- R(IN) 69y
LA -
Substituting this result into Equation (4-48) and postmultiplyving each side of the j} 1 ! .
resulting equation by R:; 1( 1) vields L j '
Ry (Y Ry(A-R) Ry = Ryl R (-4i) Ry() (4-50) (1,; '
. [
Performing the matrix multiplications {n the above expression and comparing the ﬁ
respective elements of the two resulting matrices yields the relations B
cos (U-N) = cosT’ cosT + cosdi sinT sintT (4=31a) D ,‘ 3
| ‘\‘ :
eos i sin('-N) = cos T’ sinT - cosdi sinT’ osT (#-31b) H LI
§ ) b
L
§
-9 ¢
$-22 ‘) ‘
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sini sin (-0 sinlAi sinT (4=51c)

cosi' sin (Q-0) cosAi ST sinT - sinT eosT (4-51d)

cosi €osi' ¢os(LU-N) + sini'sini = CosAi COST COST +SInT sinT  (4-5le)

sindL e0sT' = sini’ cosi - cosi' sini cos(n'-n) (4=51f)
-sini sin(Y-N) = -sin Al sinT’ (4-51g)
simi' sin(U-0) = sindi sinT (4-51h)
eosdi = cosi eosi' + sini sini' cos(nV-0) (4=511)

If the equations of motion are referred to the nodal svstem also, a new set of
equinoctial elements (al. h

, K., P,y 4., A,) and a new equinoctial reference
A e P tr

frame (f 1 gl. wl) are introduced. In view of the definition of the equinoctial
elements in terms of the classical elements (Reference 5, Appendix A), it follows
that the equinoctial elements of the satellite, referred to the nodal reference

system, are given by

a, = a (4-52a)

hy = e sin(wy;+T7") (4-52b)

ky = e cos(wy+I') (4-52c)
T(4i) ..

py = tan (S sz (4-52d)
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q, = tan" (%‘-) cos T’ (4-32e)
/\1 = 2+ w, ¢TI (1-532f)
where1
W, = W-T (4-53)

is the argument of pericenter referred to the nodal reference system and w is

the argument of pericenter referred to the eauatorial reference system,

A A A
The equinoctial reference frame described by the orthogonal triad (f 1‘-51’-1"1)-

is based on the orientation of the satellite orbital plane relative to the nodal svs-

tem. (This is in contrast to the previous case where the equations of motion

A A A
were referred to the e_quatorial system through the orthogonal triad (f, g, w) des-
cribing the orientation of the satellite orbit relative to the equatorial reference

system,)

The rotation from the nodal reference system to the new equinoctial reference

system {s (see Figure {-4)

A

Xy v Ry-I7) R (&) Rylz) %y (4-34)

Qy
where I is the retrograde factor. This rotation is identical to that expressed in
Equation (A=-4) in Appendix A of Reference 5, if the symbol £l is replaced by T*'
and { i{s replaced by At.

1’I‘he only classical elements dependent on the system of reference ave 1,01, @,
which describe the orientation of the osculating ellipse with respect to the system
of reference. The classical elements a, e, and £ are invariant with respect to
a change in the reference system,
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The Euler angles for the function $ correspond to the inverse of the above

o8
transformation and are -
w* = -7 (4-55q)
" s -4 ({-55b)
SO I ¢4 | (4-35¢)

Substituting these into Equation (2-49) vields an expression fc ¢ the function Sf;' s

which is identical in form to that given in Equation (3-35), with, of course, the

conditions
na <z (4=562)
i Al (4=36b)

In addition, Equations (3=63) and (3=63) ave also valid, provided that («, -3 ¥)
are understood to be replaced by (al. pl. '(1) in Equation (3=-63) and that
. q, ¥) are replaced by (pl. ap )’1) in Equation (3-66), where

A -2
X, = #1-;.N = ——%—E—i = -18,; Sy (4=372)
h Lepy +q,
A A aq‘.
. q-3, = « S5, Cq (4=57b)
pt 9," Bx 1*9%#‘]% Al
Y oo Wit = —i " Ca #-57c)
Lepi*qy
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For this case in which the equations of motion are referred to the nodal refer-
ence frame, the disturbing function is of the same form as that given in Equa-
tion (4-46). The s;;'s
consistent with the integrated elements, ihus avoiding the transformations in

function arguments (0(1, fsl’ ’(1) or (pl’ 4y fl) are

Equations (4-31). Since the integrated equinoctial elements are referred to

the nodal reference system, they must be transformed {f equinoctial elements
referred to the equuatorial system are desired. (However, this transformation
{s applied only at the output potnts.mther than at every integration step.) Equa-

tions (4-51) provide the basis tor this transformation.

4,2,4 Introduction of the Fourier Series Expansions

The next step in the expansion of the disturbing function i{s the introduction of
Fourier series expansions for the products

. ’
L sk i ipt
r-e ) P Led e

for the satellite und third body, respectively. The third-body product need not
necessarily be expanded. However, if a properly reduced force model for third-
body resonance cases is desired, the expansion must be performed. The con-
siderations on which the selection of the exprnsion variable is based are similar
to those discussed {n Section 3 for the nonspherical gravitational theory. Al-
though the Fourier series expansion of the product rL ¢J8L g finite in the
cccentric longitude, it is of no significance for the averaged disturbing function
and is not suitable for cases of resonance. Hence, the mean longitude i{s chosen.
Also, the mean anomaly chosen is the expansion varfable to facilitate the case

of resonance, Substituting the expansions

o
r 2 i‘L 1,5 i%A
-] & u Y, ¢ (4-58)
I I
qe-e
127
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where qu 'S {s defined in Equation (2-304) and
] m . )
a' \i*! jpf -L4,p L
(7) e = Xy ¢ (4-39)
tx-00

where A' is the third-body mean anomaly, into Equation (£-37) yields the follow-

ing expression for the disturbing function in Section 4.2.2:

o
G O Y (k-s) (2-p)t
1em \" LZ’Z“ P, )P, 0)
Ry= a' [__, (Qem)t (2om)t LS R

(228 even { L:p even) (4-60)

s om mp hs bip §[qA-tL-po’-ma
e alivan i ]

Substituting Equations (4=57) and (4-38) into Equation (4-46) vields the expres-
sion for the single-inclination-function form of the disturbing function obtained

in Section 4.2.3, {.e.,

o 4 L2 & o

le S_' (2-$)
. Z Z Z Z P, O P, (®)

20 M0 sa-l qQe-® tr-c0
(128 even ¢ Lim even) (4-61)

L oms  Ls Ry ' qk-tk’-mo‘]
“(%) :u.Yg t mex[

The expressions for the disturbing functions given in Equations (4-39) and (4-60)
may be further improved; however, they suffice for the purpose of outlining the

development of the disturbing function,
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4.3 EXPANSION OF THE THIRD-FODY DISTURBING FUNCTION - A SPECIAL
casel

Expansion of the disturbing function in terms of the direction cosines of the third-

body position vector, relative to the equinoctial reference frame, results in a

striking simplification, However, the formulation does uot lend itself to obtain-

ing reduced force models for resonant cases. The following discussion assumes

the equatorial reference frame for the equatic as of motion (i. e., the satellite

equinoctial elements are referred to the equatorial reference system).

4.3.1 Representation of the Elongation Angle in Terms of Direction Cosines

The definition of cos ¢ in terms of the dot product of the unit position vectors
T and £l ,» relative to the equinoctial reference frame, of the satellite and third-

body, respectively, are considered. Clearly, tor the satellite,

¢=0 (4-62a)
Therefore,
pue - - -
cosg e2s0 cos L
v = |espsn®| = | sinL (4-63)
‘ 0
| ¢ || 1

and, for the third body,

= g (4-64)

l’l‘his development {s given by Cefola in Raference 10.
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where o, ﬁ, and ¥ are the direction cosines of the third body and are defined by

cos @’ cos 6’

R
"

cos ¢’ sing’

»
n

¥ = sing’

(4-652)

(1-65b)

4-65c)

The quantities 8' and ¢' are the longitude and latitude, respectively, of the

third body relative to the equinoctial reference frame.

Since

it then tollows that

cosy = axeosl « Sanl

It also follows that cos ¥ can be expressed as

cosy = Re {(u-jﬁ) GSLB

where

i

. ST
*+|p = cosd 6!

4=30
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(4-66)

4-67)

(4~68)

(4-69)
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In view of Equations (4=62), (#-65), and (#-67), Equation (4=20) takes the torm

Plﬁcos ) = Pl(u cosL+Bsinl)

{ R B el B0 P, ) & i
- e TR
}I ed mad
J L2tm even]
U It follows from Equation (#-69) that
f U e-Jme - (E‘_L@.)m - (“'-"'5 )m @=71)
Qs @ 1-Y2
L)
‘f‘ Thus,
t \J .
| SN L (
| (- m jm .
P"(COSQ’) s Re [1 Z Zsm (ewm)} Lm \0) Q (") (Q Jé) e- ] (4"10 :
U 13 wme0
(Rtm evén)
S
i \
' ; L‘ wheve §
B R m 9
NN . a-mln. d PI(COSLP) ‘ t
Q Mm (L-x¥%) Px.m(x) a —;—;;‘-— (4=73)
l If
. Co\m \
I Com=19m = (a-)p) (4=74) ]
' i
, l 4-31 |
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then Equation (4-72) takes on the exact form given by Cefola and Broucke in

Equation 29 of Reference 11,

In view of Equation ({-72), the dizturbing function in complex variables takes

the form
JG = (2-m)t '
' 2-m)! r ™ ij
R = ™ (l*m)a (‘:l) P‘l‘m(O) QI‘YX‘) (q"jﬁ) e (4-75)
220 m=0
Cazm even)

This formulation contains only two summations in contrast to Equations (4¢-37)
and ({-46) which contain four and three summations, respectively. However,
it is pointed out that the reduction in the number of summations from three to
two requires some preprocessing of the ephemeris data to obtain the direction
cosines of the third body («, 8, Y ) relative to the equinoctial reference frame,
This processing, however, is not very expensive, particularly if the ephemeris

is in the form of Cartesian position components, since

A, A
o= v.¥F (4-7Ga)
A, A -
p 2 r'. g (+=76b)
¥ = oW (4-76¢)

4.3.2 Introduction of the Fourier Series Expansion

ﬂeij

The Fourier series expansion for the product r is required to complete
the expansion of the disturbing function. No similar expansion is performed

for the third body due to the specific formulation.
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Since this formulation ultimately assumes no resonance phenomena, there is no
compelling need to adopt the mean longitude as the expansion variable, The
eccentric longitude provides a finite series representation which is useful for

the representation of both the short-period and the long-period and secular
contributions of the disturbing function, However, the eccentric longitude rep=~
resentation possesses no advantage over the mean longitude for the averaged
disturbing function. Thus, for the sake of cousistency with the previous develop-
ments, the mean longitude expansion is adopted. The resulting form of the

disturbing function is

® 4 o N
aGm' (2-m)! Jay
r Z Z Z S (Rem)! (.‘:) Pldﬂ(m Ql""(n
l:a ms0 %a—(n
(Lim even) H#=77)

Ry=

. oo 3qA
X (a-;,ﬁ)m Yi : e,%

4-33

rm,,
- -
-

[ s atuie
f o ————
N

1]

§

e

s
§

‘.

ok

P



A e e e e e ——— i e

- o

P e

.
e et e e

- .

. - 9

- .y

LS

e e A —

e et . -

T e e e

e e e, R

| SN

- P

4.4 THE AVERAGED DISTURBING FUNCTION

The averaged disturbing tunctions {or both the general and special cases are
developed in this section. The averaging operation {s defined in Equation (3-389)

and {s vepeated below for convenience:
L 2 3y 4%
R > a — R.(T,A)dA 4=T78)
< 2 aw 30

4.4.1 The General Case

Application of the averaging operation to the disturbing function given in Equa-

tion (4~359) vields the expression

L 2

o X @® ©
<R \ A6 m' T‘ i“‘ S‘“ (-3 (-pW
73 A - - (2-m) (Ram)}
222 mM20 s:- pek qrm te-0
(Lte even { Lxp even)

L m s -4
. Q m,s . P‘M \P 15 4 t,P "
x PO F;'Pm(g) AU (4=79)
. Ao+t ‘
e-j(pw'nnn.) _1__ e](q/\-tl‘) d)
ar
Ao-w

This expression cousiders the motion of the third body during the averaging {nter-

vals  The followng development ts analogous to the corvresponding develepment
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for the nonspherical gravitational disturbing function given in Section 3. 3.

{ Since
. A= oat + ) (4-80a)
! and ?
A4 |
L = n'teld, (4-80b)

-
-

eliminating the time in the above expressions yields the relation

A
1R BRI
_ L
J Ca (A 81
b
¢ which is analogous to Equation (3-99) in the nonspherical case, Substituting
; ‘ this relation tnto the definite integral in Equation (4-79) and evaluating the result
o vields !
P
: { 4 M
| ’ S Lot . of
i ).J )\oﬁ-'ﬂ' { (101 gq=t=0or q= T) (+-82a) !
L j(QA-t2) !
ar e’ ¢ d\ ﬁ n' :
sin [(‘1*:)] i(qhg-t2y) . i
Ay ' e (otherwise) (4-382b) !
-t8\x
L % n }
i
which s the third body equivalent of Equation (3-102), 3
|
The discussion of the averaging factor and the residual short-period terms
given in Section 3.3 {s also directly applicable for the general third-body case, 5
Briefly, all the short-period contributions by the terms in the disturbing func-
A
tion tor which q # 0, t = 0 in Equation (4=-79) are completely eliminated in AN

both time-dependently and time=-{ndependently averaged third-body cases. The

1-35
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t-mouthlyl terms, f.e., g =0 and t # 0 in Equation (4=79), are partially sup-
pressed in proportion to their frequency in the time-dependent case. For the
time-independent case, the t-monthly terms are transparent to the averaging
operation, This can result in an over estimate of the amplitude of each term

and also in a phase error of 7 radians, as discussed in Section 3,3.1.2.2, 1,
For the case of exact resonance, the pure resonant terms survive the averaging
operation, while the other quasi-isolated terms are completely suppressed. For
cases of near resonance, the amplitudes of the '"resonant terms' are reduced,
depending on the shallowness of resonance. Also, the quasi-isolated short-
period terms are only partially suppressed for near resonance. A more detailed
discussion is given in Section 3.3. The analogy between the nonspherical gravi-
tational disturbing function and the third-body disturbing function is straightfor-

ward.

In addition, the foregoing discussion also applies to the tive~-sum disturbing func-

tion given in Equation (4-61).

4.4.2 The Averaged Disturbing Function for the Special Case

Application of the averaging operation given in Equation (4-77) to the disturbing

function given in Equation (4-76) vields the expression

£ o
Gm' t-mMn ja m
<R3 >'X T e Z L_, a Sim (Lem)t (T'-‘) Pn\nsm Yq

} mad Q' -®D

Lam even] (4-33)

-(oi-‘ﬂ' q-.i
A (@80 ) "
Ay

1. .

The "t-monthly' terms in the lunar model are analogous to the m=-daily terms
contributed by the nonspherical tesseral harmonic model, The effects contrib-
uted by the Sun would be "t-yearly," etc.

4=-36
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This result recognizes the time dependence of the third-body direction cosines
and the third-body distance. However, this form is apparently not well suited

for evaluating the above integral analytically.

Kaufman (Reference 50) has developed series expansions for the direction co-
sines up through the fifth power in the ratio of the mean motions n'/n in

order to model the time dependence. The resulting disturbing function is then
analytically averaged. However, according to the discussion in Section 3.3

and its analogy to the third-body disturbing function, it is obvious that allowing
third-body motion during the averaging operation introduces short-period terms,
except in those cases of deep resonance., Thus, it seems that the utility of such
expansions is limited to those cases of deep resonance. However, due to the
treatment of the third-body position in Equation (4~83), the disturbing function
for the resonance case is, in essence, an embedded resonant term. This also
appears to be true for Kaufman's series representation of the direction cosines.
Hence, the averaging operation defined in Equation (3~88), centered at XO’ must

be used.

Of course, the direction cosine formulation could be used with the numerical
averaging method for cases involving deep resonance, provided the averaging
operation (Equation (3-88)) for embedded resonant terms is used. However,
this is clearly an expensive procedure. In addition, for such applications, the
disturbing function in Equation (4-83) is more expensive to evaluate than the

disturbing acceleration gtvén by the left-hand side ef Equation (¢-5). 1

1'I'he disturbing acceleration must be used in a Gaussian VOP formulation of the
equations of motion.

4=-37
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The time-independent averaging assumption applied to Equation (4-83) requires
that the direction cosines and third-body distance are constant over the averag-

ing interval, Thus, Equation (4~83) can be expressed as

16m’ T (ke 4 .
<Rs>; - Z Z }d Sm uf:s‘s (%") Pom® Y‘:m

422 ma0 Qe-® (4-84)
{Lxm even)
e
L i A -
X (o&-)p) Qx‘m(\’) '5-7-; e’ di
Xo‘n

which simplifies to

© X
AGm’ (-m)l oyt tm,
<R3>,\ = Z Z Sm (-—) Px‘m(o) Y, («-}g) Q“m(x) (4-85)

v (Qem)t \ ¥
2L ma0

Implicitly, the absolute value of the averaging factor has been set to unity and
the disturbing function contains only the long=-period and secular contributions
and the contributions from the 't-monthly'' terms of the disturbing function given
by Equation (4-79). This is quite satisfactory for :atellites with orbital periods
that are much smaller than the third-body orbital period. However, for satel-
lites with longer periods, the absolute value of the true averaging factor will
depart significantly from unity. For the "t-monthly" terms, the averaging factor

is giveu by

sin (%l {-.'n')

s L (4=86)
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where t is the index in the Fourier expansion in the third-bodsy mean anomaly

used for the general approach. Thus, the effects of this theory, when used on

P

satellites of longer periods, will be to exaggerate these "t-monthly' effects.
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4.5 THE FIRST-ORDER AVERAGED EQUATIONS OF MOTION FOR THE
SPECIAL CASE OF NEAR-EARTH NONRESONANT SATELLITES

The first-order averaged equations of motion for the third-bodyv effects are given

by Equation (3-167), where the elements are interpreted as mean elements.

The disturbing function is the averaged disturbing function given in Equation (4-83)

and, thus, the equations of motion are valid for nonresonant cases onlv. The

equinoctial elements p and q do not appear in the averaged disturbing function,

The equivalent information is contained in the direction cosines of the third-body

position vector, in view of Equations (4-7) and the definition of the vectors

AAA
(£, g, w) given in Appendix A of Reference 5, i.e.,

£=+(p,q) (4-87)

ete. Thus, the equations of motion require the partial derivatives

R _ 3R dx R 38 3R JY

3%  dx Op OB dp = oY 3p (4-88)

and similarly for q. This exactly parallels the development in the nonspherical
gravitation theory, which uses the direction cosines of the inertial 7 axis with
respect to the equinoctial reference system. In fact, Equations (3-168) apply
also to the third-body averaged equations, with the exception, of course, that
the definition of the direction cosines differ. This result is demonstrated in
Appendix C. Consequently, Equations (3-171) als;) apply to the third-body case.
In addition, a simplification of the equations of motion for the nonsnherical grav-
itational zonal harmonic terms in Equations (3-73) and (3-74) also appears in

this formulation for the third-body perturbation. Specifically,

Rh.k - Ru,ﬂ s 0 (4-89)

where R‘ v is defined in Equation (3-172). This simplification is deronstrated

below,
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relations for the functions KOJ" ™ and Ql’m(\’):

—

s Ms<L
1 3
: { dGm' LM LM
1 L <R3>} 2 = Z Sp (a-18) (kejh)
“ L m:o
e L
) (R-m) ;2 am
4 t x Z (Lem)! (-t:) Pl.m(o) Ko Ql.mu)
' Laman(a,m)
[ (2tm even)
U
\ If the following definition is made,
4l L
! ) .om m
54 » G‘mq-mea (a-jp) (kﬁ-‘\h)
5 L)
|
.
} then the real part of the disturbing function is given by
" LY
: ‘ ! MslL L
Gm' m
' (Ray+ 5 ) bnCn ) 7]
: 4 ms:0 f= maxi(m,2)
| h C2am even ]
\ where
{ .
: m a\d 2,m
. [ =4 —
U T (r) Vim Qx.mm Ko
' and
l (T-m)!
Vim * @t Fam®
ll ' =41

Before the requisite partial derivatives for the equations of motion are obtained,

the disturbing function is reordered as follows to accommodate the recurrence

(4-90)

(4-91)

(4-92)

(4-93)

(4-94)

~ .!mu:u.—-.:a:«.a'
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The partial derivatives of the disturbing function are

d(R,)

———

do.
o

2Gm' aGmZ
dh Y ™M dn

L
. 16"‘ Va G, bF‘

.l-man(ﬁ.m)
(12m eren)

* Q.hz Sm mz

faman{m,2) ms0 hmx(n.:)
C2em elen’) (aswm even

M
e R R
. ma0 n-mux(m.n ms0 Lamanimd)
Cism even Tizm aven’)
M |
5<R5) = 1Gm' < eGm F'-'n
ot v M da i
ms:0 Lxman{m,2)

b(R;} - _1_9_?_: MZ‘S
YR

ms0

d(R,Y
oY v

m:0

where

Chsmevenl

-1c4 =
™ m
nas Lt

femox (m,3)
Cazm eien]

dom O = oy
m
LB bnta) w0

2emax{(m,)
(12w wen?)

(4-952)

(4-95b)

(4-95¢)

(4-95d)

(4-95€)

4-950)

(4~96)

— =

~—y
-




'. . "g " R B L [3 - 2 )
| .* ' \ [ ’ 1 !
ot l ! : ' oo : "'. 4 e

Y R B AR A

c 2 = e
Q
@
3

- m3G, . - maH (4=972)
L ol ma G,y + ma3H (4=97b)
dGm
t e + mkG,y, - m““m-i (4-97¢)
f 36
B L' -~ . MG,y * "‘k"\m.x (4=97d)
1 3R
LI, aF," ¢ tm
L a a:(O X
e = (?) V“m Qj‘m('l) Se s (4=98)
{ L
m
¢ AF i am dQ, (N
i L L&)y, , 4-99)
|
{
i
L.
It follows from Equations (2-230) and (2-303) that
)
o4 “

im m (1-mel)! i m
KO « (0 (e ) xitt gm Phx“)

~——
S

m 240 +=100)

(L-me ) 1§
(2e1)1  xisi gm Pl*i."'(*)

c=
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Since
m(d
m (1-x%)
(-e) = —m (4-101)
it follows that
am m (-m+M man-4 -mfa
Ko = O o * (1-x3) P, L0
k) hm (4-102)

M (2-mei)!

men-1
= (O =T x Q¥

For the software implementation, the definition

v (2-m+1)!  wmea-d @-103)
A,Q*a  Teo Qm,m( g ,
. !
is made.” Thus, o
m m m ' \
Ko = 1) A.ua. (4-104) :
and
]m m
= - —— -
PE e (4-105)

This treatment of the function Kée' » is somewhat different from the treat-

ment given in Section 3, It is presented in this manner because it reflects the

1This notation is used by Cefola in Reference 11,
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software implementation for the third-body model. For the software implemen-

tation, the factor (- 1)m {s included in the definition of Sm , leee,

-;)1- (for m = 0) (4~106a)
Sm =
)™ (for m>0) (4-106b)

Because of the commonality of the special functions between this third-body model
and the nonspherical gravitational zonal harmonics model, the recurre.ce rela-
tions given in Equatious (3-189) through (3-191) apply. The only exception is the
recurrence relations for Cefola's A E_ 2 functions and their derivatives which

are

-
("lﬁ,iiTm (& =m-1) (4~107a)

m T amel M
A ( ot Nmed (2 =m) (4-107b)

dlsl om Q+m){(f-m) m

Do ——e (L>m) 4-107¢)
Lot A a(0e1)  d (

. - - . I-—-""V e~y 't M N 3 e
: A o aao oy -y = R IO B B
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and
d m
—= A
de*> ied
( ams i m
(me)(mea) ™t

(2em)(8-m) m
L(Le1) X

al+y d m
< “1ei ded gt ¥

Wt d o owm Qem)l-m) d
[ Ast ded At 221D de

The identity

R Rya =0

nk 8

which results in the stmplification of the equations of motion, is demonstrated

below.

It tollows from Equations (4-95) that

OR, . OR, _ 16m
= e e R g ——
R, = h kS - § o (1

LIS ok

|9
"YF:‘
e

2a max (Am)
€ 2tw even]
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A Ny ey Ty Ty T ——erY it TVemord S -_-.-T——-—w_.q_.-q . e 3 i

- , ———— . . - +

(L =m-1)
(L=m)

m m
Al - AL] (L>m)

3k dn

(4-108a)

(4-108b)

(4-108¢)

(4-109)

(#-110)
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v
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¢
|
¢

+

U and
| Ry  ORy  26m
. ml A6
, 1\ R = o 3 -ﬁ 5 = Sm(qar’m -p Um)
“p 38 o v 3P dat
m=0
) Y (4-111)
- -
: L
m
¥ < )R
3 2=max(3,m)
! I [2tm even])
‘ Therefore,
I : L
A . 1Gm' . m
# Rh‘k- Rm“3 = '_‘:" Z Sm [(u,,&h‘k- (Gm\“‘g] Z F. (4-112)
; t m=0 L3 max(m,2)
¢
1 " However, from Equations (1-98), it follows that f
[, /
/ 36 '
OG m '
li (Emlp ® "3 ™ T
| (4-113)
U = mc\th‘L rmphd - mBKG g v kR
and
dG oG
(Gqu‘ﬁ = & —-é 2. _aotm
A (4=114)

2 mahB,  + mxkR,  -mBkG,  + mBWR_
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and, thus,

(Gm)h.k- (Gm)u;@ = 0

Equation (4-109) follows immediately from this identity.
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APPENDIX A - DERIVATION OF VON ZEIPEL'S PARTIAL
DIFFERENTIAL EQUATIONI

The derivation of Von Zeipel's partial differential equation (Equation (2-192))

given by
nk
(1-eh) nk (s AP, dX
- + *
1-e)e de o
(A-1)
a e:\ ak
= ‘ k [1-(1oe1)3la‘] + (k-n) %‘ +(dk-n)ex + (km)fa—xaix
l
where
V\,k r " X)k
X = (BT) (z (A-2)
obviously requires that expressions for the partial derivatives e bl\'n’ l"/ de and !
z OX 'k/'bz be obtained, '
Clearly, \
nk
X e : (-':-)n (l)k - ex® S (—‘"-)nxk (A-3 [
€ %e T %% |\a \7 de |\ @ A9

jL

since z =@ s independent of the eccentricity, e. Then,

ez ® 2 [(.‘.'.)" x‘] - ex® n({:)mlxk -éée-(-}) + k(%)n £ %—Z— (A=d)

1This derivation {s based in part on notes contributed by P. Cefola.
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j’ : Substituting the relations ‘
V)
o _5_( T ) _ XX A l
B de '\ o Y (4=3)
4 !
dx L -t
— = x| L= = (A-6)
Oe r i-e <L
HI
1 !
f into Equation (A-4) vields (in view of Equation (A-3)) g

R i il SRt
B e e A
m
o
><?
=
[}
]
=
w
—
|-
\_/3
A»
J/
x
LN
%3
+
b
]
»
St
[ f‘ﬂl

X
| de L la/ \2 “
i ‘
' %

! -1 Kk &

: ke [ r\"x -1
V +—- — oasmen - A"7
- : a (a.) (i) (x-x77) @1 I
[ s

i . i n

o ke /ey R\, )
1 + —— —— - .
! } ;1(1-@)( a.) (a) (x5 [l
B 3
. &

With the aid of the identity

| i

(A-8) '
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Equation (A-7) can be expressed (after some algebraic manipulation) as

"

d
Y [m%— - (1k+n)%x’1‘

e~ o L s o e

a a
+ (Qk-n\% x - (k+n) %—- xa' + (k-n) 94— x>

n, k
The expression for the partial derivative z

Equation (A-2),

s e afanpaa = g o g

-nﬂﬂmmmr—ﬂc_rwprr—:ﬁr—mmmt

Also, from Equation (2-265)

(nekd e (r)"‘i x‘-:-i

2V1-e3 ‘%

n-kde (r-)“'1 xk-oi.

) aVi-e* '@

k (r)“ X

+

Vi-ed \&
A-3

By e ] ol Ay e = . . —— -
U T A B —— +

N . . e
L T -‘.m.mam»mmdw'n, -

(A-9)

> is now obtained., Clearly, from

(A-10)

(A-11)
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Therolore, it follows that

n,k

d -k 3 . n k
A I BN
\ etk ) n K (A-12)
Lede (07" - Lede ()

- = G @

In view of the identity given in Equation (A-8), Equation (A=12) can be expressed

(after some simplification) as

o™ X i

&t e
az = mlfaki-n) ax 1-(_3.\(\/\)&)(

= 3/2
+ k%: + k[i-(i-e“) ] (A-13)

| d
e -3 e A
+ (nek) T % - (n-k) el

|
)

Inspection of Equations (A-9) and (A-13) shows that the expressions for
K

" /s x“'K

and (1= ed 2

e dz

(t-eN e

contain similar terms. Summing these expressions vields Von Zeipel's partial

differential equation given in Equation (A-1).
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APPENDIX B - A JACOBI POLYNOMIAL REPRESENTATION FOR THE
FOURIER SERIES COEFFICIENTS WD, S

The coefficients (Equation (2-130b)) given below are considered first:

s -n it-sl n-s n+s
W ' = (1.* 3) (' )
: s 8 it-s)+ k-8 1t-s]- (%-s)
2y ) ®-1)
e ol (b 2
E It 5\;‘.({ ) _n*s’lt_s_\_i(t_"’).-n-s, lt-sler; B

Application of the linear transformations

(L-x)Y™ F(n, e-b, ¢y ;"_I) (B-2a)
Fla,b,c; x) = b
(1x7 Floea,e 22) 0 @)

to the hypergeometric series in Equation (B-1) yields

*s

1 - -4l (%-
F[ts\;ts_n ’Its\a(ts)_

n-s, lteslayy pa"]

lk-s\+k-s .

(1-8%) T

n-s-(1t-slet-3)/a
F [ nes

a
,“"‘“"s snesed, lt-sleg; '—6-] (B-3a)
a ‘;3.1

Aa.
3 ﬁJ'L

nes= [1t-sl-(t-9)] IaF [\t-s\- (t-3)

- s, 1-31- (4-s)

(+-8%) = ] (B-3b)

+nesed, lteslet
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Using the relationship between the hypergeometric series and the Jacobi poly-

m!

x, Y
F-m, asfaemrl, xelyx) = P, (L-2x) (B-4)

(ote L)

nomial (Reference 26), i.e., B

it follows that Equations (B-3) can be expressed as

F[lt‘ﬁ\i‘(i-ﬁ) -nes, \t-s\-a(t-s! <n-s, \t‘ﬁl*‘ii ga‘]

(

n-s-(lt-slet-s)2L {na-Tik- . -8, tes
(1-63) {n-s-[it-siett-0]/a ]l 0
(1k-sl+1) n-s-(lt-s\let-8)/2

. (B-5a)
nes-{lt-s]at-s]/2

"
N

.n -3
G s ) (1t-sls 1) ms-[li-sl-(t-sﬂ/l(x) (B~5b)

\ ms-[\t-:-l-(t-s)] &

where t+s 20 in Equation (B-5a) and t+s <0 in Equation (B-5b), and

148 _ ¢

X = (B-6)
1gr  Vi-er

|

g

|

. )

nes=[ltest- (=93] /4 {nes-Cie-ol- (kea)1/2 Y P\t-sl,-(iu) B
i

i

d

]

. —




» ‘ { [ ¢
. 1 B | . t ¥ g &9 4 | f
} : 1‘«4. SR S AV R SOV S R T NS SR WL.,,!.;.M..,., R

. 4
po
N R
by
N I
1
o Equations (B-3) can be simplified by considering the sign of the quantity t~s.

R u For Equation (B-3a), where t-s20,

18
N 1)n~s-(\t-sl«+.-s)/a {n-s-[\t-s\f(t-sﬂll}! It-ol, tes
W) i-

S (1-3 (1t-sle1) n-s-(\t-slft-s)/a.(*)
J ! n-s~(1t-s)st-8)/Q
il
2 . n-t tes,tes
\ | - -5,
P 3) (n-t)! {t-s 20)’

: {- —_— P (») t|s ~7a)
il L WD e e trs<oQe2Ish @
4 =

LT {
l = ; n-5 (n.s’! ﬁ‘t, t*s (t"s <O))
A -8%) —— (%) N (It} <s) (B-7b)
d t (-8 (s-tet) , o n-s (t+820)$0
b
s P
!

Similarly, Equation (B-3b) (where t-s <0) simplifies to

—

nesfit-sl-(6-0]/2 {ps- [1t-sl-(2-8)]/ad )

B-3

E 1) [tesl, (tes)
I 1- (x)
, U (-8 (lt-siet) nes-{1t-sl- ()] /2 nes-[1t-s]-(£-8)]/2
; nes t-s,- (£48) !
ﬂ Q4 (nes)! ’ t-820|n .. .
(1-8%) TorD o P. W <t+ss0)\0““5 Ith (B-82)
0 .
net (net) s-‘t,-(‘tti) (t-s<0))
A% PRSI A N t<=- B-8b
i -89 T o et () g5 30)| D E 18D (B8
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Substituting Equations (B-8) and (B-7) into Equations (B-3) vields the Jacobi poly-

nomial representation of Equation (B-3), i.e.,

F[ ttes]+(t-9)

L

”

\

&

(0] R P

(1-gt) LoDt PR

sl EL

(,_.‘3‘.\)"*'t (nv:.::.:;:-t“ ::;'(t*ﬁ)u)
B-4

lk-s]-(&-5)
nes,— 3 -

n-s, lt-sl+ed; ﬁa']
J

oo
c1ifpestinn
¢ ig;:[)(ss-ltlﬁo) (B=9¢)
trasoot-lsh @0
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Substituting Equations (B-9) into Equation (B-1) and simpiifving the result vields

- v
A

t-s,tes

( -
(1-3%) P+ (x) t2]st 20) (B-10a)

Y

- <L, kes
o (nee)! (n-)t e ot
B ey | CREYEORD (1-8%) "B W ez-ltl2o @-10)
i "~ (1-,3 ) e
e RRATT A
A {nes)! (n-9)! 32 -9~ Ltes)
i - ~ltl<0) (B-
' ) L {net) ! (08 8% pms ) s<-lel<o) (B-10c)
d *
ol
.Y ’ Ll t S‘t)' (th)
N (1*,*33) P (x) (t<~|s|< 0) (B-10d)
1“4 F \ n+t
ll’ '. l_,
by

i

ihis expression is further simplified to

(nes)! (n-s)! ~ls| _It-sl Ites)

h ( >t B-11
n (npti‘.(n-t)!( ) LA x) (Isl2]th (B-1la)
ns L_aa |48}
We = (5)e
' g\-itl Jtesl, ltesl
) (%) P x) (sl < It])  (B-11b)

This completes the derivation of the Jacobti polynomial representation for the
Fourier series coefficients, W?'s .
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The coefficients Wt-n’ s also admit a Jacobi polynomial representation. This

is demonstrated using the definition given in the footnote on page 2-36, i.e.,

14-8|+(£-8) -1 1t-sl- (t-s)'i
-ns “S(M) ng el TR Bt
W = (1- Cos
t (1 P £ {5+ (£-5) [t-8]=~(t-s)
LN
(B-12)
" osl-tes 1L-slet-s
x F!-i- =8 T 7 y denese—", |t-sl+i; ,63'
«
Application of the linear transformation given in Equations (B-2) to the hyper-
geometric series in Equation (B-12) yields E}
Fl. L s ___lt—sl;.(t-s) R i~n+sr‘———{'5‘;“ﬁ, t-sl+t pa} 3
[ ns~d-[itesl- -] /2 a
' . 1t-5]-(t-9) [t-5]-(-3) 2
(1-89) r—[x-n-w-—a——i, neselEZE g, E%] (B-13a)
- ( g
n-s-L-[lit-els(t-9)]/2 elet. celade 2
(L-ﬂa) l-:-msq-l-t—ir—t—s- , N4sS+ i :‘-"i 2 s 1t-slety E’i—i ] (B-13b) E
L L -

B-6
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which, in turn, admits the Jacobi polynomial representation

F[i-n-sq—————-‘t-s\-(t's), 1-n+s+-—-—--———-“'°‘*(t‘s), lk-sl+Ly p“']

[\ e
¥
P
z '
L [ nes-1-[it-si-t93]/2 § 1-[it-sl-te-91]/23) 1t-31,-(tes)
-4-{iteslat- nes-1-Lit-sl-te-s | -31,={tes
i (1-p%) (l-sts 1) RLTRI P (B-1dn)
: [‘ nrs-L-[ibel-ten]/a Mrailtsi-te]a
J N = *
1‘ (i_‘“)n-s-L-[\t-s\+t-s]/.l. {nos-t: bslviel/al) P‘t-si't’s (x) (B-14b)
! i Ut-s““n.s-\-(lt-slﬂ:-s)/:L n-s-4-(1t-slet-3)/a

where t+s <0 in Equation (B-1ta) and t+s 20 in Equation (B-14b). This result

=R ewew

can be simplified to vield

F [i.—n-u- l-t—ﬂi-'ﬁ R 1-n+s«m}“—.s) ) Weslety ;5&]
| ( (1-#“)“.1 ————-"‘(*:;:l";ti’-‘ P:::it's)(x\ g'zzgz }‘ D s<-[tl)  (B-15a)
(L_Isa)mt-l 9_\(%:_,3_;:2 P::iim}‘“ g:zigzzg ¢<-ls)  (B-13b)

-
apy ——-—————("'(:'_?_\1(:‘””! f:t’:am g:iig; f’ D ¢2|sh  (B-150)
L(1-,5‘ et -———(“(::\l:fi)—' P:'_:_t;”m g’i’;g; z D (tiSs)  (B-13)
ot S
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Substituting this last result into Equation (B-12) and simplifying vields

( s _t-s.-[tss)
-R4 ? - ;
(1 B ) Pm-s-x (x) (s <-itl) (B-18a)
(n-t-1) (net-1)! 2. ¥ 3t (kes)
1-84) P (x) t<-{s]) (B-16b)
(n-s-1)! (n+s-1)! (1-4 nat-4 ) es-ish
-n
N3 1-51) It-s)
w{: - (1.+5i P §
(ns+t-1)! (n-t-1 ) ack Jtsites
(nes-1)! (n-s-4) (1-4%) Pn-t-j_-(X) t¢21s])  (B-16¢c)
4 o8 s-t,t+s
. . \ (-8 P, & (s21t])  (B-16d)

which further simplifies to

7

l (net-1)} {n-t-0)1

(e5-1)8 (nes-1)!
-n
‘“-3- 1_53.) It-s!
Wf ) (1&-5“ ’6 <

ot 1t-sl, il
(487 P gy (t! 2 1s]) (B-17a)

———— o e

. ———— D P

-is)  1t-sl, ltes)

(1-89) P oy @ (sl 21¢]) (B-17b)

:uﬂ
i o <

i

=

Ty
< -



PR

e o= e S o o am e w

A comparison of Equations (B-17) with Equations (B-11) shows that

-3an.1
-(n+e1),s 1t-s] ( 1-51) (net)! (n-2)l 0%

W, = G0 1+83 eoy! (noa)! Wi

(B-18)

In addition, it is also apparent that Equations (B-11) and (B-16) satisfy the con-

ditions (see page 2-30)

ns in,-9

wW = W (B-19)

The Jacobi polinomial representations derived above provide a new source of

in,s
recurrence relations for the evaluation of the coefficients Wt 'S .

ORIGINAL PAGE 1S
OF Peok QUALITY




e e e~

"L‘v

© e

.

Rl . SAR

e i o 8 i et i |

S
‘.

N . - =, - i ] . ;. ) ¥ il ! ] 1 1 1 !

i { \ 1 t ! 1 i ' 3 -h ¢ f ’? v <L o 1 '4 , .’4 ‘* ? .
| ‘ oy k ! e L S . A ! .

; o, s © b e PUVETRDH SN e e e e A e R R R A s pes e st e sl s o pve

o0 2 e el .

— -

et

r—

:

cC—

-l e s O T

APPENDIX C - DERIVATION OF THE ARTIAL DERIVATIVES
d(a, B, ¥)/3(p, )

The direction cosines (¢, p , ¥) with respect to the equinoctial reference frame

A A A A
(f, g, w) of an arbitrary unit vector v is considered, i.e.,

A
«=f-0 (C-1a)
g = é.{) (C-1b)
¥ = w-v (C-1c)

. A A
The expression for the unit vectors (f, g, \/x\/) were derived in Appendix A of

Volume I of this report (Reference 5) and are given by

B ]
l-pa+ %a
A i
foe Lepteqt P -2
- 2pl
L. -
B 7
apql
A i CPR
5 — 1+p™-g™)1 -2b
EEPPC A (1+p™-q") (C-2b)
q
b -
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s

s
Basia

Evf "

dp
A bR 1 C-20)
W = —— - -2c
i+pa'1-cf“ 1%1
(L-p-q9)I

A
The unit vector v is independent of the equinoctial elements p and q. (For the
applications in this report, the unit vector v is either the inertial 'z\ axis for the
nonspherical gravitational theory or the unit position vector of the third body, 'x\",

in the third-body theory.) It follows from Equations (C-1) that

A
A of A
3 e— (C-3a)

a(p.g) 3(p,q)

A
o8 . 83 A _—
3Py | 3p) (€
A
o¥ = oM 3 (C=3¢)

3(p,q) 8(p,q)

A
Taking the partial derivative with respect to p of the unit vector f yields

: Lpeqt - 3p
of -3ap 1
— = a + —— a (C-4)
op [1.4-911-(1&]1 P L+p“+\f‘ ?
-3pl -al
- - L- -
c-2
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|
r—- —
> (l‘pa#'q.a")
"ol l+pa+c1°‘ P
. i
' A a
oo of -2 ap’q
Lo FY S X, o2 2 a3 (C-5)
3 ’
| -apiI
P =
{ 1.+pa+%

which simplifies to

R e v s = .
- W T T T T T = e

- = — (C-6)
op “‘Pa"%l 1.+na'+<il
I- paI + CfI
1+p“+(t°~
e -l
C-3




Using Equations (C-2), it is easily verified that

LA, -2 [ IA-\-Q]
op 1+pa+cf' 149

Similarly, it can be shown that

EA‘F_ - Q.Ip A
dq trpleg? 3
and
A
89 . _31q @
dp 14-p3+%3
é-g- D S (pﬁ-\:l)
GCL i.i-paa-(la
dw a 2
op x+p‘+cﬁ
dw _ -aT A
é% B L+pa+%a 3
C-4
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(C-7a)

(C-Tb)

(C-8a)

(C-8b)

(C-9a)

(C-9b)
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Substituting Equations (€C-7), (C

and (C-3¢), respectively, and simplifying the result vields

iq_ - -a' ( IA..,Q) v = —;L
dp la-p%cl‘ it 1+p3+ct°~
dat aT AN aIp
aq Lepleg? Py = L+pieqd P
7!
| |
B . 81 gp . _ayg
dp L+p°+%a L*pag.%a
5‘@ ~aTl T AN A - AT
o = —— (pF-w). U = -3
dc% Lq-p‘\»q‘ (p ) 1+p4+c%a (par-¥)
Y A AA L
— = ——— #.v = ———————
op 1«-914-%3 1+p3+¢1l “
ﬂ _ -3l A 3 - -arT
a% ) ii‘paiQa 3 l*,Pa*‘ql p

F = F(p,q)

and

p = p(O(,‘B,x)

q = q(=B,¥)

C-5

Using Equations (C-10) through (C-12), it is straightforward to show that if

co 2 A
e m‘wmkww‘m—w,ﬁmwwmﬁ%ﬁﬁ‘

=8), and (C-9) into Equations (C-3a), (C-3b),

(q18+¥] (c-100)

(C-10b)

(C-11a)

(C~11b)

(C~12a)

(C-12b) \

(C-13)

(C-14q)

(C=~14b)




(where o, ‘3 , ¥ are a redundant set), then

OF  dF o dF 04 , OF dY

% 3 dp 9B dp oY p
B S D
B i+pa¢q aét 60\ 1

and, similarly,

6—F = ..___..__“a'I ca—F - \‘-a—E. +*
3 g P "Ya P

dF 3F
(“ﬁ " B3

3F oF
& -]

A TR A DY 1
PR T, -.ni-..—...-: 'm‘ﬂ';-Aﬂl‘-:‘
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