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PREFACE

The work described in this report was performed by the Information

Systems Division of the Jet Propulsion Laboratory.
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ABSTRACT

This paper introduces a globally adaptive image compression structure

for use in a tactical RPV environment. The structure described would

provide an operator with the flexibility to dynamically maximize the usefulness

of a limited and changing data rate. The concepts would potentially simplify

system design while at the same time improving overall system Performance.
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RPV APPLICATION OF A GLOBALLY ADAPTIVE

RATE'CONTROLLED COMPRESSOR

I. INTRODUCTION

The purpose of this report is to briefly introduce a globally adaptive

rate controlled image compression structure which is ideally suited to the

tactical environment of a Remotely Piloted Vehicle (RPV). Such a structure

could provide an operator with the flexibility to dynamically maximize the

usefulness of a limited and changing bit rate. This structure was previously

developed as a fundamental part of image compression algorithm RM2t.[1], [2]

Required modifications to standard algorithms are noted.

RPV Environment, Simplified

The assumed tactical problem is one in which an operator-controlled

RPV equipped with an imaging device flies over terrain looking for various

targets. An operator views imaging information transmitted back and first

seeks to detect and recognize targets of interest. Once accomplished, the

operator may initiate automated tracking and/or various actions against

the targets.

A sophisticated adversary will seek to jam both the command uplink and

imaging downlink of the RPV communication system. We will assume that

a necessarily digital spread spectrum anti-jam (AJ) downlink is used to

counter such jamming threats. For our purposes here we will also assume

that the AJ protection is sufficient to provide an error-free uplink. A

simplified picture of the operational environment that results is shown in

Fig. 1.

t Performance curves for an adaptive cosine algorithm were mislabeled in
Ref. 2 as adaptive Fourier.
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Fig. 1. Simplified Block Diagram.

As shown in Fig. 1 the error rate at the ground station receiver is

automatically monitored. When the error rate exceeds some threshold, an

uplink command is given to reduce the available data rate (to gain more AJ

protection) until the received error rate is acceptable (this could be an

automated or operator controlled function). Similarly if the jamming

situation improves the available data rate is increased.

Thus the operator is faced with accomplishing his task of detection,

recognition, etc. , under limited and changing data rate conditions. He must

dynamically communicate commands to the imaging data system to select

modes which maximize the usefulness of the limited data rate.

2
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II. RM2 SYSTEM STRUCTURE

This section provides a tutorial view of the RM2 algorithm internal

structure and a description of the flexibility it provides in utilizing a

limited number of bits more effectively in a given image frame. r. later

section will be concerned with extending this flexibility to sequences of

images within an RPV tactical environment.

Bits/Pixel vs. Quality

In simple terms RM2 can compress images to any requested bits per

picture element (bits/pixel). A higher requested bits/pixel results in a

better decompressed approximation to the original image. This basic

relationship is shown in Fig. 2.

0	 1.;)	 2.0	 3.0	 4.0
BITS/PIXEL i

Fig. 2. Monotonic Relationship Between
Bits/Pixel and Image Quality
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Internal Bit Allocations

RM2 treats an image as an array of subpictures (e, g. , 32 x 32

pixels) and first surveys these subpictures to determine thei: "data

activity" Al , A2 , ... AN as shown in Fig. 3. These measures of activity

directly relate to the relative need of each subpicture

1321

,
	

r-I 32

Fig. 3. Array of Data Activities.

for the limited number of bits available for the complete image. An

internal algorithm [ 1 will allocate the total number of bits available

for an image frame, B, to the subpictures in a way that reflects this need.

The more active subpictures receive more bits that the less active sub-

pictures. As in Fig. 2 more bits applied to a given subpicture imply

better quality. Let bi , i = 1, 2, ... , N be the bits assigned to the J.

subpicture, then

B = E b 
	 (1)
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Rate distribution parameter. The rate allocation algorithm described

in Ref. 1 includes a parameter which controls the amount of nonuniformity

of rate distribution. At its lowest setting, this parameter causes the same

bits/pixel to be allocated everywhere, regardless of any differences in

the activities. As this parameter is increased the range of bits/pixel

allocations also increases (provided the activities aren't all the same).

The consequence of this effect is that very low parameter settings put a

"quality emphasis" on inactive subpictures relative to active ones whereas

a very high setting emphasizes active subpictures.

Edit header. Define an edit header

E = e 1 e2 , . . e 	 (2)

where ei is a one bit indicator of the editing status for the ith subpicture in

the image. If e  = 1 then the i th subpicture is treated normally, whereas if

e  = 0 then the ith subpicture will be "edited" and the allocation b  is only one

bit (the header bit). If e  is zero, then the ground decompressor would repro-

duce subpicture i as all zero. The bits that would have been used on edited

subpictures are instead allocated (still according to relative activity), to the

non-taited subpictures. This means that different frame sizes can be speci-

fied by sel sting a 4ifferent header, as for example in Fig. 4.

Enchanced Q for Selected Areas

Suppose it is desirable to emphasize the quality in a selected area

while still limited to a fixed bits/image. This can be accomplished quite

5



EDITED SUBPICTURES
0.-0

Fig. 4. Changing Frame Size by
Editing Subpictures.

simply by artificially increasing the activity measurements for the selected

subpictures. The algorithm that allocates bits would cause more bits (and

hence quality) to flow to these subpictures at the expense of the subpictures

that did not get an artificial increase to their activity.

Foveal spot, The most obvious application of selective quality enhance-

ment is the concept of a foveal spot where an operator selects the central

part of an image for emphasis as in Fig. 5.

ARTIFICIALLY
INCREASE ACTIVITY
VALUES IN HERE

Fig. 5, Foveal Spot,
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The size of the foveal spot is of no conseciience, other than its

boundaries should correspond to the subpicture boundaries. The tradeoff

between quality inside or outside the foveal spot is easily varied by pro-

viding a single parameter, say P, which simply multiplies the normal

activity measures before bit allocations are made.

Cursor foveal spot. It might be desirable to allow the operator to move

the foveal spot to areas which are of specific interest. chat is, the operator

may want excellent quality in some specific region. This might mean moving

the central foveal spot to an operator controlled cursor or introducing an

altogether separate region of emphasis. In either case, the implementation

is no different: multiply the activities of the sel::.ted region by some param-

eter p'.

Target screener. While not immediately available in hardMare form,

pattern recognition techniques would provide in the not too distant future

the ability to automatically select areas which, "with high probability, " con-

tain targets of special interest. This is mach like the foveal spot except the

spots are automatically selected instead of selected by the operator.

However, the same concept holds. Given a limited number of bits

available in a frame time it is clearly desirable to place them where they

do the most good. This leads to the most general situation depicted in

Fig. b.

In the figure we show the following:

a) A selected edited region which reduces frame size.

b) A selected foveal spot region.

c) Subimage regions which an automated pattern recognition algorithm

has determined as likely to contain targets of specific interest. Two

possible classes are shown.
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CLASS 2

DETECTED
CLASSFOVEAI SPOT BORDER

Fig. b. General Flexibility.

In actual situations, a data rate limitation forces a tradeoff between

frame 'rate, frame size and the bits available per frame time. As discussed

earlier:

1) the specified edited regions would receive no bits (except for the

header bits);

2) activity measurements would be made in non-edited areas;

3) activities inside the foveal spot would be increased by some factor,

4) areas identified as target class 1 would get an added boost say yl,

and class 2 area activities would be boosted by y 2 . The values of

yl, Y2 no doubt reflect the importance of target classes 1 and 2

but would be experimentally determined;t

5) bits are allocated to subimages according to the relative activity

measures;

b) actual compression coding of the image is performed.

t Observe that the target screening need not be applied only to non-edited
regions. If a "target" was determined to be likely in an edited area -he
edit command could easily be overridden in that specific area.



In a real system, various edit headers, foveal spot definitions and

activity emphasis parameters could be stored in ROMS and selected by

appropriate system commands.

The combination of a target screener, once practical, with a compres-

sion algorithm which is structured like RM2 should result in significant reduc-

tions in the required data rate needed to accomplish various mission objec-

tives. A flow chart of these simple steps is shown in Fig. 7.

Modifications to Standard Algorit`:^ns

If we delete the ability to distriL .Ae a given number of bits according to

a "data activity" measure then the more familiar standard two-dimensional

algorithms can be simply modified to accomplish most of the features

described in previous paragraphs. The required at, :-ibutes are as follows:

a) The algorithm should be structured to operate on subpictures (this

is usually inherent anyhow).

b) Rather than be limited to one or two compression options, the

algorithm should provide the ability to choose closely spaced bits/

pixel options for each subpicture which are monotonically related

to the quality of reproduction of a given subpicture t Each coded

subpicture would be prefixed by a header which identified the

selected option. The range of options should be broad (e. g.

0. 5 bits /pixel to 2. 5 bits /pixel).

These are not difficult requirements and would permit most of the rate

distribution capabilities just discussed: editing, arbitrary foveal spot empha-

sis (cursor or center), and target screener emphasis. The same rate alloca-

tion algorithms could be used by assuming activities were all uni t.) .

tSee Ref. 1 for simple RM2 control loops to handle cases where the allocated
number of bits does not equal a prescribed option. Basically, any discrep-
ancy is rea:it►cated to subsequent pictures or subpictures.
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Fig. 7. Generalized Bit Allocation Flow Chart.
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Computation. The conversion of standard algorithms to the desired rate

control structure would have a minor impact on overall computation require-

ments. Adequate activity measures can be obtained using only a few adds and

subtracts per pixel. Further, the per pixel computations needed to determine

subpicture bit allocations are negligible.

Adding activity measures. Actually, it is a simple matter to obtain

activity estimates quite similar to those derived in RM2. An estimate of

data variance, or entropy would suffice. Any of these, properly normalized,

would permit a direct use of the RM2 or similar rate allocation and control

algorithms. All of the preceding discussions would hold. The only difference

would be the manner in which a given subpicture is represented at a specified

bits /pixel.

III. DATA SYSTEM COMMAND AND CONTROL

The preceding discussion should indicate that a globally adaptive rate

controlled structure can provide extensive flexibility to make the most of a

limited number of bits available for a static image frame. Here we extend

discussions to the dynamic situation in which an operator is making real-time

decisions on how he will make most effective use of a limited and changing

data rate.

Parameters

Frame rate, 30/k Assume that all possible frame delays, k/30,  lying

between k min J30 and k max /30 are options. (This indirectly specifies frame

rates fk = 30/k. )

k	 k	 +l	 kmin	 min	 k	 . . . max	
(3)30	 ' 30	 ^0	 30
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Frame size, FS. A collection of frame sizes labeled FS = FS i where

FSi equals the number of pixels in frame size i (assumed to be a multiple

of the subpicture size). Assume also that the FSi are monotonically ordered

a o that

FS  < FS  < FS2 < . . . < FSi	 (4)max

Increasing or decreasing frame size will mean stepping through the FS i in

this order.

Foveal spot, FV. These are similarly defined as FV
i
 where

FV 0 < FV l < FV2 <	 < FVJ	 (5)max

Bite/pixel, b. For later use we specify parameters

bmax and bmin
	 (6)

as the maximum and minimum desired average bite/pixel, b, in a frame.

bmax might correspond to the compression rate at which no noticeable degrada-

tion is possible and bmin to a minimum acceptable quality under severe

conditions.

Data rate. Let D = D  be the possible data rates available where

DD < D l < D2 C .	 Dd	 (max	 7)

While an operator could choose D, it is more reasonable to assume that D is

automatically determined by monitoring the bit error rate at the ground receiver.

Increasing or decreasing D will mean stepping through the D  specified in (7).

12



Basic Constraints

Quite trivially we have the equation

D = Ems) (FS ) (b)	 (8)

Since bits/pixel, b can be arbitrarily assigned when using RMZ or some

other properly structured algorithm, the parameters k and FS are acceptable

options provided b lies in the allowable range. That is

bmin < b < bmax
	 (9)

The only constraint on foveal spot size FV is that it be less than or equal to

the corresponding choice for frame size FS.

FV C FS
	

(10)

We will henceforth assume that any foveal spot command for which (10) is not

true will automatically be converted to FV = FS (which is equivalent to "no foveal

spot").

Changing System States, Concept

This section addresses the problem of allowing an operator to efficiently

move between the potential system states specified by k, FS and b. The concept

is introduced in Fig. 8. For the moment we will assume that data rate D is

fixed.

In the figure an operator has three levers or slide switches at his com-

mand, one for frame rate, one for frame size and one for quality. The relative

position of the levers corresponds to an operator's current relative importance

13



EMPHASIS LEVERS

REFERENCE
STATE SET
BUTTON

•

FRAME	 FRAME	 QUALITY
RATE	 SIZE

PARAMETER HOLD BUTTONS

Fig. 8. Lever Control of System States.

that he places on the 3 variables k, FS and b. t When the 3 levers are all in

the same horizontal position then the system will be in some preselected

reference state defined by

S *(D) = (k *, FS *, b*)	 (11)

where S *(D) satisfies (8) at data rate D. This reference state might have been

determined from a prior run on a target at rate D or simply established as a

good choice during training. In any case it can be reset at any time to a current

state by pressing a "state set" button as shown.

If he moves one of the levers away from the equal emphasis position (all

switches in the same horizontal position), more (up) or less (down) emphasis

t Remember k = 30/(frame rate) and b = bits/pixel is monotonically related to
image quality.

FM

W
N

V
Z

W
N
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V
W0
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is placed on the corresponding parameter. For example, as he raises the qual-

ity lever, the bits/sample would increase at the expense of the other parameters

frame rate (30/k) and frame size (FS) which would have to decrease to satisfy

the constraint equation (8). If a limiting value for a parameter is reached

(i. e., max or min) no more changes to system states would occur. Such bound-

ary conditions could be signaled to an operator. An operator can always return

to the reference state by equalizing the lever rositio".

Fixing single parameter. If an operator wants to fix a particular parame-

ter and trade off the remaining two he simply presses the appropriate "Parame-

ter hold button" as shown in Fig. B. This would fix the selected parameter at

its current value. Subsequent adjustments to the remaining two lever positions

would effectively trade off the relative importance of the remaining two parame-

ters, while still satisfying (8).

Automated adjustments to b. Instead of fixing the bits/pixel parameter

b as above, an "activity track" mode could be implemented. In earlier discus-

sions we described the internal operation of RM2 (or modified standard

algorithms) as one which uses subpicture activity measurements as a measure

of the relative need of each area for a limited number of bits, with the more active

areas requiring more bits than less active ones. Such measurements can be

used to roughly maintain a given average quality as terrain changes. When an

"activity track" mode is activated, b would be adjusted up or down in subse-

quent frames depending on the values of average image activity compared to

the corresponding value at activation.

Automated edit. When there is a gradual sweep of ground terrain, much

of each image may be redundant. Improved quality in the non-redundant image

areas can be obtained by editing those image areas where frame overlap

occurs. The internal rate control structure described earlier allows for a

15



simple implementation of the editing functions. The information necessary

for automated de.;isions of which areas are affected should be available from

camera gimbal controls, RPV position and motion information. This could

have a significant impact on capability during panoramic scans. The lever

controls of frame rate, frame si:.,, and quality (bits/pixel) described in Fig. 8

would still operate in the same manner. Quality would increase at a given

frame rate and frame size because bits which would have been allocated to

edited redundant regions would instead be allocated to "new data" areas only.

The operator might then elect to increase frame rate or frame size.

Data rate changes. As noted earlier, data rate D can be expected to

change as a function of variations in the jamming environment. Such changes

could be in factors of two. Ideally the system should switch from a set of

parameters which the operator has optimized for the particular tactical

situation and rate D, to one which is similarly optimized for the new rate D'.

In a real system, the closer the new set of parameters is to the ideal, the

less the operator has to fiddle with knobs, etc. The concept described in

Fig. 8 is a reasonable approximation to these goals.

Each data rate D has a corresponding reference state S *(D), where

S *(D) has been previously determined as a "good" choice. S *(D) might be

determined as simply a state which is typically good for data rate D. More

dynamically, S *(D) could be selected by the current operator as his best

choice for the given situation (perhaps as determined by an earlier run at

rate D).

If the operator's levers are held in an equal emphasis position (all in

the same position) then the system would switch between reference states as

D varied. However, when an operator moves away from S *(D) to some new

16



state by moving the levers he is establishing a new relative emphasis between

the parameters k, FS and b. If D is changed to D' this same relative emphasis

is instead applied to move the state away from reference state S (D). That

is, the system responds as if the system had been in reference state S (DI)

and the operator had then moved the levers.

Joy stick. It may be simpler for the operator if the three emphasis

levers are combined into a single joy stick implementation.

Parameter Emphasis

This section provides some additional detail on potential approaches

to the implementation of state adjustments by parameter emphasis.

Let 6F„ 6 F and b b be operator assigned priorities for frame rate

(30 /k), frame size (FS) and b e bits /pixel (quality) respectively, satisfying

bF 6 F bb - 1	 (12)

Let k, FS and b be parameter values corresponding to reference

state S (D). Then new values satisfying (8) can be determined from

D = (bF ' 3;) (6FS FS) (bb b )	 (13)
k

as

k' = b , F5' = b F.S FS, b ' = bb b	 (14)
F

Some additional tests are necessary to ensure from 3, 4 and 9 that

a) k', FS' and b' lie within the allowable boundary values (i. e., the

maximum and minimum range), and

b) The chosen values are actually available options.



The boundary conditions on k, FS and b simply mean that the b are

also bounded. For example

k k
	 4 bF 4 k 	

(15)
max	 min

Further motion of a given amphasis lever beyond a boundary value

would have no effect. That is, the corresponding parameter is fixed at

the boundary value. Reaching a boundary value can be easily signaled

to an operator (e, g. , buzzer).

If the values of k' and FS' as computed in (14) do not match up with the

allowed values in (3) and (4) they are set to the nearest allowed values. b' is

adjusted to satisfy (8). It is not necessary that the available options for b

match up precisely with the computed b'. A simple control loop described

in Ref. 1 will handle this mismatch provided the available options are in

steps of 1056 or so.

IV. CHANNEL CONSIDERATIONS

Error sensitivity problems with transmitted data have generally meant

reducing transmission rate (increase SIN) to reduce the error rate to an

acceptable level. A given compression technique will tend to become more

sensitive as that technique is modified to become more adaptive. Individual

errors have a more dramatic impact on reconstruction. Errors in identifiers

of algorithm changer (such as headers) can propagate their effect over long

sequences.

A practical solution to this problem was developed for space applications

in Refs. 1, 3 and 4. Briefly, the solution is to concatenate a (large symbol)

interleaved Reed-Solomon code with a convolutionally coded, Viterbi decoded
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inner channel, yielding virtually error free data at the same SIN that an uncoded

link would have a P e 1/33. In addition interleaved Reed-Solomon coding by

Itself can provide significant burst error protection. Boyd, Cain and Clarke (5)

clearly suggest that high rate implementations of the desired RS coders and

decoders is feasible with today's technology. The RS/Viterbi combination would

appear to be directly applicable to the various A^ spread spectrum techniques

likely to be elements of an RPV communication system.

V. DISCUSSION

The globally adaptive rate controlled compressor structure clearly opens

up the practical possibility of providing an operator with extensive flexibility to

dynamically maximize the usefulness of a limited and changing bit rate. Prelim-

inary descriptions of possible approaches were presented above. Potentially,

such techniques should result in significant improvements in overall system per-

formance within severe tactical environments.

Standard approaches to system design would require selecting a few param-

eter options years before they are used. This essentially means trying to pick a

set of options which would "on-the-average" perform beat over all possible

tactical environments, operators, sensors, data rates, etc. The choices

would necessarily be only i ntelligent guesses eince testing all the possibilities

beforehand is a pract.	 sibility. This perhaps "most difficult" aspect of

system design is alleviated by the approaches described above since "all" the

possible options are always available to an individual operator.

The compressor rate control :trurture and the operator control approaches

presented here exhibit some degree of autonomous operation. That is, a limited

number of bits can be adaptively distributed spatially and temporally to improve

the return of desired information. Further degrees of autonomous operation

which further reduce operator intervention should be possible.
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