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SUMMARY 

The development of the equations of dynamic equilibrium for a lifting sur- 
face from Lagrange's equation is reviewed and restated for general exponential 
growing and decaying oscillatory motion. Aerodynamic forces for this motion are 
obtained from the three-dimensional supersonic kernel function that is newly gen- 
eralized to complex reduced frequencies. An existing computer program for the 
kernel-function method was modified to solve the equations. Illustrative calcu- 
lations were made for two flutter models at supersonic Mach numbers. Preflutter 
and postflutter motion isodecrement curves were obtained. Variations of motion 
decrement with Mach number and with air density were much milder than those pre- 
dicted from conventional curves of velocity plotted against damping required 
(the V-g type) using simple harmonic aerodynamics. This type of analysis can 
be used to predict preflutter behavior during flutter testing and to predict 
postflutter behavior for use in the design of flutter suppression systems. 

INTRODUCTION 

The phenomenon analyzed here is the preflutter (decaying or subcritical) 
and postflutter (growing) oscillations of an aerodynamic surface in an airstream, 
which is a nonconservative system. For the usually analyzed condition of neu- 
trally stable flutter motion, the equations of motion express a condition of 
zero net exchange of energy between the fluttering aerodynamic surface and the 
passing airstream. In contrast, for growing and decaying motion, a net contin- 
uing exchange of energy occurs. The approach using Lagrange's equation is 
reviewed and applied for this motion so as to show the way the associated aero- 
dynamic and structural damping forces are accommodated. This approach is done 
in accord with the original application in reference 1 and with the reassurance 
given by reference 2. 

Hassig in reference 3 described what is called a true-damping solution for 
growing or decaying motion and presented sample results obtained by using aero- 
dynamic forces for simple harmonic motion. Those results were obtained by three 
solutions called the p-method, the p-k method, and the k-method. Each of 
these solution methods gives near flutter results that are approximate because 
of the simple harmonic aerodynamics employed. Of the three, the p-k method is 
believed to give the nearest approximation to what would'be obtained with the 
motion-matched aerodynamic forces, as developed and used in the present paper. 

A few analyses of near-flutter motion with motion-matched aerodynamic 
forces have been reported. Dugundji, Dowell, and Perkin include in references 4 
and 5 analyses and results for the unstable motion of panels at speeds greater 
than the flutter speed by permitting a canplex wave speed for the traveling 
waves of panel deflection. Morino presents in reference 6 the development of 
an aerodynamic potential by using a Green's function for timewise arbitrary 
motions. Some applications of this method given in reference 7 show generalized 



aerodynamic coefficients for growing, steady, and decaying oscillations of a 
rectangular wing at supersonic speeds and some chordwise distributions of pres- 
sure coefficient for growing oscillations of a wing-body-tail configuration 
pitching in a subsonic flow. As part of its overall development based on the 
Laplace transform technique, reference 8 gives certain functions for general expo- 
nential motions in two-dimensional flow. These are the generalized Theodorsen 
circulation function for two-dimensional incompressible flow and the velocity 
potential and associated lift and moment functions for two-dimensional super- 
sonic flow. 

In the present paper the aerodynamic forces for the growing and decaying 
oscillatory motion are obtained by generalizing to complex frequency the super- 
sonic three-dimensional velocity potential of reference 9 and the kernel func- 
tion of reference 10.  The analysis is illustrated by applying at supersonic 
speeds to two flutter-tested configurations the kerriel-function aerodynamic 
forces in a computer program modified from that of reference 11.  This type of 
analysis has applications to the prediction of motion decrements during wind- 
tunnel and flight flutter testing and to the design of automatic controls for 
flutter suppression. 

The appendix reviews the relation between the structural damping coeffi- 
cient and the logarithmic decrement of motion in the presence of solid-friction 
structural damping (mechanical hysteresis) as used in the analysis. 

SYMBOLS 

a real part of p (see eq. ( 2 ) )  

bm half of mean geometric chord 

b0 half of root chord (see fig. 1) 

C speed of sound 

g structural damping coefficient 

h shape of modal deflection (see eq. ( 4 ) )  

i unit of imaginaries, fl 
K supersonic kernel function 

k reduced frequency, wbo/V 

1 reference length 

M Mach number 

m mass per unit area 

mi generalized mass of mode i (see eqs. ( 2 0 ) )  
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P exponential coefficient of motion i n  ePt 

AP 

Q i  

: Qij  

S 

T 

t 

U 

V 

W 

W,W 

x, Y? z 

P 

l i f t i n g  pressure, positive w i t h  z 

generalized force (see eq. ( 5 ) )  

element of generalized aerodynamic-force matrix (see eq. (1 4 )  ) 

generalized coordinate of motion 

amplitude of q (see eq. ( 4 ) )  

area of l i f t ing  surface 

ratio of semispan to root chord (see fig. 1 )  

kinetic energy of structure 

time 

potential energy of structure 

u n i t  function (see eq. ( 2 9 ) )  

free-stream speed 

downwash on l i f t ing  surf ace 

time and space varying functions, respectively, i n  w (see eq. ( 2 4 ) )  

right-hand Cartesian coordinates, x positive to rear, z positive 
upward 

= x - s  

= y - n  

z-coordinate of deflection shape 

= d G  
logarithmic decrement of motion (see eqs. (31,  ( A 3 ) ,  and ( A 7 ) )  

virtual displacement and virtual work, respectively 

limits of ll-integration (see eq. ( 2 5 ) )  

a 
= 1 - i - (see eq. ( 2 ) )  

w 

mass ratio 
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5, dummy variable for x and y, respectively, representing locations 
of sources and doublets 

P air density 

CJ effective spring stiffness of structure (see eq. ( 7 ) )  

-i variable of integration in K 

‘IU, *1 limits of integration in K 

‘I1 *2 times of origination of disturbances that affect point (x,y) at time 
t (see eq. (25)) 

4.l 
% 

perturbation velocity potential on upper surface 

potential function for doublet located at origin 

W circular frequency of motion 
- 
W = W/V@ 

Wb base or reference frequency 

WiiWj natural frequencies of modes i and j, respectively 

Subscripts : 

aero contribution from aerodynamic forces 

b base or reference mode 

sf solid friction (mechanical hysteresis) 

Mathematical notation: 

( * I  first time derivative, a (  )/at 

(“) second time derivative, a2( )/at2 
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ANALYSIS 

General Exponential Motion 

For the purpose of this paper it is sufficient to analyze the perturbations 
of an initially plane surface. Figure 1 shows the lifting surface and the coor- 
dinate system. Essentially all findings apply to nonplanar and multiple lifting 
surfaces as well, but the procedure is illustrated without the complications of 
nonplanar and multiple surfaces. The surface analyzed has its timewise mean 
location in the plane z = 0. 
tion away from the mean location of the surface is 

The z-coordinate of the instantaneous perturba- 

where the space variation Z(x,y) can be complex. The exponential coefficient 
p is of the form 

where i = \IrT is the unit of imaginaries, W is the circular frequency, and 
a is the exponential'time rate of growth of motion. For a/w << 1 

where 6 
end of one complete cycle and is positive for a decaying oscillation. It is 
commonly called the log decrement. 

is the logarithm of the ratio of the amplitudes at the beginning and 

,(See appendix. 1 

Equations of Equilibrium 

For the general unsteady aerodynamic forces considered here, direct solu- 
tion of the equations of motion for flutter is usually not feasible. Accord- 
ingly the flutter deflection is approximated in the usual way by a finite modal 
series 

( 4 )  
i 
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where t h e  modal d e f l e c t i o n s  hi(X,Y) 
ence 2, and q i  is t h e  canplex ampli tude of  q i  (t) . are real f u n c t i o n s  as s p e c i f i e d  i n  r e f e r -  - 

The equ i l ib r ium equa t ions  are obta ined  from Lagrange's equat ion ,  which is 
a s p e c i a l i z e d  form of t h e  p r i n c i p l e . o f  v i r t u a l  w o r k  

(i = 1, 2, . . ,.) (5 )  

where T is t h e  k i n e t i c  energy, U is the  p o t e n t i a l  energy (elastic only  i n  
t h e  p r e s e n t  u s e ) ,  and Qi 
a l i z e d  displacement  q i  
forces (aerodynamic forces and s t ruc tura l  damping). 

is t h e  gene ra l i zed  force a s s o c i a t e d  wi th  t h e  gener- 
and is obta ined  f r a n  t h e  v i r t u a l  work  due to e x t e r n a l  

The k i n e t i c  energy of t h e  s t r u c t u r e  is 

where S is t h e  area of t h e  l i f t i n g  s u r f a c e ,  and m(x,y) is i ts  mass per u n i t  
area. The elastic p o t e n t i a l  energy is rep resen ted  by 

where a ( x , y )  r e p r e s e n t s  t h e  e f f e c t i v e  sp r ing  s t i f f n e s s  rate of t h e  elastic 
r e s t o r i n g  force .  

Appl ica t ion  of  Lagrange's equat ion  i n  t h e  absence of e x t e r n a l  f o r c e s  g ives  

Using t h e  r e l a t i o n s h i p s  (see eq. ( 4 ) )  

q j  q j ( t )  = q j e P t  
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, 
t 

I( 1 in equation ( 8 )  gives 

1 

! ' ing forces involving (J in terms of the mass-inertia terms involving nWj2e2. 
which is the usual Rayleigh type approximation for replacing the elastic restor- 

Note that in the absence of external forces, a = 0, p = iW, and W becomes 
the modal eigenvalue Wj. 

The virtual work is that done by the external forces moving through the 
virtual displacement hibqi; thus, 

6~ = GWaero,i + 6Wsf,i 

The aerodynamic contribution is expressed initially by 

The lifting pressure distribution Ap 
lel to that for deflection z in equation ( 4 ) ;  thus, 

is approximated by a modal series paral- 

J 

where 2 is a user-selected reference length such as 2b0, and Ap- is the 
complex amplitude of the lifting pressure distribution caused by ana associated 
with the modal deflection hj(x,y). 
tions ( 4 )  and ( 1 2 )  

With substitutions of the series of equa- 

= Qaero,i% 

from which is obtained 

(i = 1,  2 ,  . . .) 



where the generalized aerodynamic-force element 

Qij f 1 APjhi dS 
1 (1 5) 

This development is valid for real mode shapes 
and as discussed in C,17 of reference 12. 

hi as determined in reference 2 

The solid-friction structural damping force is of the same form as in the 
damping term of equation (A51 of the appendix. Thus, 

Use of equation ( 4 )  gives 

where the structural damping coefficient gsf,j can differ among the modes j. 
The contribution to Qi is 

Using the equality developed in equation (10) 

The equality given by equation (10) applied for the condition of no external 
forces, and the modes and frequencies are thus for the natural undamped or nor- 
mal modes for which hi and hj are orthogonal with respect to the mass dis- 
tribution; that is, 
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Cj # i) 

Substitution of these developments into Lagrange's equation (5) gives 

In order to put the equilibrium equations into a form for routine solution by a 
complex eigenvalue subroutine divide by 

Then the result is (for 6/r << 1 )  

(i = 1. 2. . . . I  . .  
where 

A matched solution is obtained when the output value of the log decrement 
from an eigenvalue Rg matches the preselected input value in Apj and in the 
denominator term 1 + i6/r. (The lifting pressure Apj is a function of 6 
as well as of x, y, M, and k.) For the case of simple harmonic aerodynamics 
(input 6 = 01, equation (22) reverts to the conventional flutter equation, and 
-6/m in the eigenvalue is equivalent to and interpretable as the conventionally 
used structural damping coefficient g. 
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Aerodynamic Forces for General Exponential Motion 

The lifting pressure distribution for general exponential motion required 
in equations (15) and (22) can be obtained for supersonic speeds by generaliza- 
tion to complex frequencies of the results of references 9 and 10. 

V e l o c i t y s u p e r s o n i c  flow.- The velocity potential analysis of 
reference 9 is applied here to the general case of exponentially growing and 
decaying oscillatory motion; that is, with the time variation of downwash 

wtt) = .iwteat = =(a+iw)t = .iwet (23) 

where a and W are real, and 

a 
O z i - i -  

w 

Where a lifting surface is analyzed as a distribution of source-sink pairs over 
the projection of the lifting surface onto the plane z = 0 (see fig. l), the 
local strength of the source-sink pairs is proportional to the local downwash 

w(x,y,z=O,t) = W(x,y) G(t) (24) 

(The notation here is mostly parallel to that of ref. 9.) Parallel to equa- 
tion (15) of reference 9, the velocity potential for the upper surface is (in 
the plane z = 0) 

where 

x - E  
rll = y - -  

6 

x - s  
112=y+- 

6 
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c is the speed of sound, and 5 and Tl are dummy variables for x and y, 
respectively. 
that for the upper surface. In the integrand the time variation is 

G(t - fl) + E(t - ~ 2 )  = e 

The velocity potential for the lower surface is the negative of 

a (t-Tl) eiw (t-Tl 1 + ?a (t-~2) eiw (t-~2) 

This time variation is the same as that just before equation ( 1 9 )  of reference 9,  
except that w is -replaced by we. Thus, for the upper surface 

where 

Acceleration potential and kernel function in supersonic flow.- As shown 
in the preceding section for an exponentially growing (or decaying) oscillatory 
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motion with time variation 
for a simple harmonic motion eht, with w replaced by we. 

eiwet, the velocity potential is the same as that 

Given the relationship between velocity potential, acceleration potential, 
and the kernel function shown in equations (8) to (12) of reference 10, the 
same replacement of W e  for w,ke for k, and W e  for w applies throughout. 
This is true for supersonic flow because the integrations back over events orig- 
inating in past time, extend over only a finite time, and are therefore distinct 
and finite. 

Thus the potential for the doublet located at the origin is 

a e  iWe te-iM%e 2box cos (M332b0(x2 - B2(y2 + z2 ) )  

where W Z w/W2. Equation (28) is a generalization of equation ( 4 )  of refer- 
ence 10. The planar (z  = 0) supersonic kernel can be used in the form 

where the unit function 

and 

(xo - 1 
Tl = - 

B21YoI 

TU =- (XO + 
B~ I Yoi 

Equation (29) is a generalization of equation (16c) of reference 10. A similar 
generalization applies to the nonplanar kernel for supersonic flow such as that 
presented in reference 13 (with sign corrections as explained in section entitled 
"Results and Discussion"). 
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Method of Solution of Equations 

i Numerical solutions of the equilibrium equations are made for a model with 

the set of equations (29) for its eigenvalues n6 for each of a selected range 
of values of air density p ,  usually beginning with P = 0. From each eigen- 
value a frequency w and output value of decrement 6 are extracted, and asso- 
ciated parameters, such as flutter-speed index or stiffness-altitude parameter, 
can be calculated as desired. Plots of desired results are made for the range 
of p used, with attention given to properly connecting the modal roots. Par- 
ticular attention is given to finding the values of P for which the output 6 
equals the input 6. These values indicate matched conditions. (The important 
matched points are usually those near the flutter crossing with the lowest 
dynamic pressure, called the critical crossing.) For a particular k-value the 
matched-point results may not fall in the desired range of density or mass ratio. 
In this case a new k-value can usually be estimated on the basis of a constant 
dynamic pressure and constant frequency. This estimate gives k proportional 
to $5, which is also proportional to m. 

known parameters by first selecting values of M, k, and 6 and then solving 

2 

RESULTS AND DISCUSSION 

Analytical results have been obtained by using a modified version of the 
computer program in reference 11. This program employs supersonic kernel- 
function aerodynamics. For calculating supersonic kernel-function values for 
complex reduced frequencies, it was convenient to use subroutines based on the 
appendix of reference 13.  (In ref. 13 the series summations with the coeffi- 
cients am and bm have incorrect signs that were reversed in the present 
use.) Downwash collocation values and modal deflections for calculating gener- 
alized aerodynamic forces were obtained by interpolating the experimental modal 
deflection data by using a surface-spline computer program based on the analysis 
in reference 14. Certain experimental modal deflection data had sufficient 
irregularity to require smoothing, especially in obtaining streamwise slopes for 
downwash collocation. Accordingly the spline program was modified so that, in 
effect, the modal data were attached to the spline by a uniform set of rather 
stiff springs. 

Clipped-Tip Delta-Wing Model 

Experimental mode-shape, natural-frequency, and mass data for a clipped- 
tip delta-wing model are given in tables I to I11 of reference 15. The first 
six natural modes were used in the present calculations. (Spot checks for 
modal convergence with nine modes indicate that six modes are sufficient for 
convergence. ) 

Simple harmonic aerodynamics.- For M = 1.3, k = 0.47, gi = 0, and 6 = 0 
(simple harmonic aerodynamics), figures 2(a) and 2Eb) display two associated 
results, -6/n plotted against flutter-speed index V/b,,,%@ and against P, 
respectively. Figure 2ta) includes a sketch of the wing-model planform. Only 
the mode 2 traces are plotted because this mode gives the critical flutter cross- 
ing (lowest V/b,,,w2@). In the flutter-speed index bm and 1-I are as in ref- 
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erence 15; b, is one-half the mean geometric chord, and Ll is the ratio of 
the wing mass to the mass of air contained in the frustum of a cone that just 
encloses the wing. 

The crossing points at 6 /T  = 0 are the ones that match the input 6 = 0 
in the aerodynamic forces for simple harmonic motion and give the values of 
V/bm%/F and P at the flutter boundary for this M, k, and other parameters. 
At the end of the section entitled "Analysis" it was pointed out that, for input 
6 = 0, - 6 / T  is interpretable as the conventional g. Thus the curve in fig- 
ure 2(a) is a V-g type. In some past analyses V-g curves have been inter- 
preted as predicting rates of growth and decay of the oscillatory motion, (See, 
e.g., ref. 16 and the description of the k-method in ref. 3,) The two labeled 
points at 0.05 and -0.05 could accordingly be interpreted to indicate near- 
flutter motion with log decrements of motion of -0.05T and 0 . 0 5 ~ ,  respectively, 
but such an interpretation does not match the input 
forces. In figure 2(b) the three points discussed (6 = 0, - 6 / ~  = 0.05 and 
-0.05) are projected to a plot of P against V/hqifi. (The latter scale is 
at the upper right.) These three points are used in subsequent figures. 

6 in the aerodynamic 

Matched aerodynamics for growing and decayLng motion, 6 # 0.- Now con- 
sider the result of using input values -6/T = 20.05, Figures 3(a) and 3(b) 
show the same type of results as those in figures 2(a) and 2(b). The mode 2 
traces for 6 = 0 are replotted here. Segments of the traces for input 
-6 /T = k0.05 
the lower motion-matched point 
motion matches that of the aerodynamics. Similarly at the upper motion-matched 
point 
aerodynamics. The three motion-matched points are projected to a plot of p 
against V/bmw2@. 

are plotted, and the matched crossing points are indicated. At 
-6 /T = -0.05, the decay rate for the predicted 

-6/T = 0.05, the growth rate for the predicted motion matches that of the 

(The latter scale is at the upper right in fig. 3(b).) 

The question arises as to whether there is a significance to points on 
these curves that do not match the input 6. Such points can be interpreted to 
represent ordinate values of -6 /T + g, where g is the uniform-for-all-modes 
increment of g that would make those other points the ones of matched motion. 
For example, in figure 3tak on the curve segment for -6/T = -0.05, the point 
with an ordinate of -0.03 represents ( - 6 / T )  + g = -0.03, from which g = 0.02. 

Thus far only one value of k = 0.47 has been presented. Figure 4 pre- 
sents the results from solutions for a range of k-values from about 0.33 to 
about 0.55. The flutter-speed index V/b,.@2@ is plotted against density p. 
The three points from figure 2(b) obtained with simple harmonic aerodynamics 
(6 = 0) and the three points frun figure 3Eb) obtained with motion-matched aero- 
dynamics are indicated by the symbols. 
two sets. Solutions frun a range of k give the isodecrement curves shown, 
solid-line curves for the three motion-matched values and dashed-line curves 
from a V-g type prediction that used simple harmonic aerodynamics. Curves 
for other decrement rates 6 are not plotted. 

The point for 6 = 0 is common to the 

Use of isodecrement results.- An example of the use of isodecrement curves 

A possible wind-tunnel operating curve is shown in figure 13 of ref- 
is shown in figure 5. The isodecrement curves from figure 4 are included in 
figure 5. 
erence 15. In this reference the vertical lines to the flutter boundary are for 
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fixed M and increasing dynamic pressure. A n  example of that general type of 
tunnel operating curve (fixed M and c and increasing P) is included in 
figure 5 rising from the lower left. The intersections of the operating curve 
with the isodecrement curves give the associated values of flutter-speed index 
and p .  Projections can be made as shown in figure 5 to obtain the associated 
plot of decrement against density. On this plot the rate of change of the decre- 
ment with increasing p predicted from the matched aerodynamics (the solid-line 
curves) is readily seen to be sharply less (about one-third) than is predicted 
from V-g type curves with simple harmonic aerodynamics (the dashed-line curves). 

The preceding results are for M = 1.3. Similar results have been calcu- 
lated over a moderate range of supersonic M and are shown in figure 6. Bound- 
aries of flutter-speed index are plotted against M. The contrast between the 
two types of prediction is virtually the same throughout the Mach number range. 

All-Movable Horizontal-Tail Flutter Model 

Flutter model HT-7 of figures 6 and 7 of reference 17 was also analyzed. 
It is a semispan model of an all-movable horizontal tail. In figure 7(a) the 
flutter-speed index is plotted against M, and the same type of boundaries as 
before are shown. The density P is 1.70 kg/m3, which is the density of the 
experiment at M = 1.64. For this case the contrast between the two types of 
prediction is even stronger; that is, the dashed-line curves fran a V-g type 
prediction with simple harmonic aerodynamics (input 6 = 0) are very close to 
the flutter boundary, thereby indicating a steep gradient of motion decrement 
with changing M. (Although not presented here, the gradient-of-motion decre- 
ment with changing density for fixed M and c is also very steep fran a V-g 
type prediction.) Observation of the solid-line curves from motion-matched 
aerodynamics shows a small rate of change of motion decrement with changing M. 
That rate of change is also small with changing P for fixed M and c. 

Figure 7(b) gives the same results for model HT-7 in terms of stiffness- 
altitude parameter plotted against M as in reference 17.  In figures 7(a) and 
7(b) the upper Mach number limit of the calculated boundaries is the value of M 
for a sonic leading edge, which is the upper limit for the supersonic kernel- 
function computer program used. 

CONCLUDING REMARKS 

The equations of dynamic equilibrium are reviewed for a lifting surface in 
an airstream undergoing general exponential motion, that is, growing and decay- 
ing oscillations. With the appropriate motion-matched aerodynamics in these 
equations, analyses are made of preflutter (subcritical) motion and postflutter 
motion, as well as the usual flutter boundary. 

The three-dimensional supersonic velocity potential and kernel function 
were generalized to complex reduced frequencies appropriate for growing and 
decaying oscillatory motions. A n  existing computer program for the kernel- 
function method was modified for the eigensolution of the equilibrium equations. 
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Illustrative calculations were made for two flutter models for which these 
aerodynamic forces are applicable. In addition to the usual flutter boundary 
for zero motion decrement, example isodecrement curves were calculated for 
selected decaying and growing motion decrements. For these two models the rates 
of change of the motion decrement as functions of Mach number and air density 
were found to be much milder than the rates of change predicted from V-g type 
(velocity plotted against damping required) curves using simple harmonic (zero 
decrement) aerodynamics. 

This type of analysis has applications to the prediction of motion decre- 
ments during wind-tunnel and flight flutter testing and to the design of 'auto- 
matic controls for flutter suppression. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
May 31, 1978 
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APPENDIX 

THE RELATION OF SOLID-FRICTION (MECHANICAL HYSTERESIS) DAMPING 

TO THE DAMPING DECREMENT OF EXPONENTIAL MOTION 

The differential equation of motion of a simple spring-mass-damper system 
subjected to a continuous simple harmonic forcing function is, in complex 
notation 

mj; + ck + kx = Fei (a+@ (A1 1 

where x is displacement, m, c, and k are constants representing mass, 
damper constant, and spring constant, respectively, F is the real amplitude 
of the forcing function, and a is the phase angle between F and x. The 
solution of equation (Al) is 

where the magnification factor n is a function of m, c, and k, and 17 is 
the phase delay angle. 

For free oscillations (i.e., F = 0), the logarithmic decrement 6 of the 
ratio of amplitudes at the beginning and end of one complete cycle is 

weer C C 
6 = 21r = 21r - + - 2lT - Jm ccr Ccr 

where ccr is the critical value of c. 

For solid-friction structural damping (mechanical hysteresis) experimental 
results (see refs. 18 and 19) have shown that for forced simple harmonic motion 
the energy dissipated (converted to heat) by the structural damping is propor- 
tional to the motion amplitude squared but varies little with frequency, Conse- 
quently a good approximation is to make the replacement 

where g is the structural damping coefficient, and to treat k, g, and kg 
as constant. Thus for solid-friction damping 



where 

The solution of equation (A.6) has the same form as equation (A2). 

For the case of free oscillations with solid-friction damping, the method 
described by Bishop in reference 20 is based on the assumption that equation (A41 
is still an adequate approximation for exponentially damped oscillations, even 
though the motion is not simple harmonic. (In actual practice the common method 
of experimentally determining g is to measure the decay of a free oscillation.) 
Thus, 

This result is that of reference 21 and, through the order of g, is the same 
as that of references 22, 23, and others. 
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Figure 1 .- Lif t ing  surface and coordinate system. 
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Figure 2.- Flutter and near-flutter eigensolutions obtained with simple harmonic 
aerodynamics ( 6  = 0) for clipped delta-wing model of reference 15.  M = 1.3, 
k = 0.47,' and g i  = 0. Only c r i t i c a l  (mode 2) root  is shown. 
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