
NASA Contractor Report 3033

some Programming Techniques for
Increasing Program Versatility
and Efficiency on CDC Equipment

Sherwood H. Tiffany and Jerry R. Newsom

CONTRACT NASl-13500
AUGUST 1878

TECH LIBRARY KAFB, NM

NASA Contractor Report 3033

Some Programming Techniques for
Increasing Program Versatility
and Efficiency on CDC Equipment

Sherwood H. Tiffany and Jerry R. Newsom
Vought Corporation Hampton Technical Center
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NASl-13500

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

TABLE OF CONTENTS

SUMMARY

INTRODUCTION.

SECTION I: METHODS FOR REDUCING CORE REQUIREMENT

AND INCREASING PROGRAM VERSATILITY.

Dynamic Storage Allocation (DSA)

Example 1. Sample program using fixed dimensions

Example 2. Sample program with DSA using blank common. ..

Example 3. Sample program with DSA and no blank common . .

Automatic Core Sizing

Example 4. Sample program with DSA and automatic core-

sizing.

Example 5. Sample overlayed program using DSA and

automatic core-sizing

Partitioning Techniques

Free Field Alphanumeric Reads.

Applications

Application 1: Program SUSSA (Steady and Unsteady

Subsonic and Supersonic Aerodynamics) ...

Application 2: Program DLAT (Doublet Lattice Aero-
dynamics)

SECTION II: DATA-MANAGEMENT.

Data-Complex Description

Example 1. Programs using sequential files for data

transfer and storage.

Example 2. Programs using a data-complex for data

transfer and storage.

Data-Complex Manager

Example 3. Sample program Data-Complex manager
I

CONCLUDING REMARKS.
APPENDIX A: SYSTEM FUNCTION--MEMORY.

APPENDIX B: BLOCKED EQUATION SOLVER SUBROUTINE

APPENDIX C: FREE FIELD ALPHANUMERIC READ ROUTINES.

iii

Page

1
1

2

4

6

7

10

11

12

14
17

19

21

21

28

30

30

32

32
47

43

46

49

53

59

TABLE OF CONTENTS (continued)

Page

REFERENCES............................... 54

FIGURES................................ 65

iv

SUMMARY

Five programming techniques used to decrease core and increase program

versatility and efficiency are explained. The techniques are:

(1) dynamic storage allocation

(2) automatic core-sizing and core-resizing

(3) matrix partitioning

(4) free field alphanumeric reads

(5) incorporation of a data-complex

The advantages of these techniques and the basic methods for employing

them are explained and illustrated. Several actual program applications

which utilize these techniques are described as examples.

INTRODUCTION

The purpose of this paper is to describe some programming techniques

which are, perhaps, not regularly utilized, with the goal of aiding other

researchers in program development. Five programming techniques used to

decrease core and/or increase program versatility and through-put are

described. The techniques and their primary benefits are:

1. Dynamic storage allocation - Precise allocation (by input) of core

requirements for individual jobs; no re-coding required when problem dimensions

change.

2. Automatic core-sizing - Computation of core-requirements performed by

the program during job execution based upon input dimensions. This can be

done several times during execution, (for example, when a new overlay is called),

thereby controlling the core allocation more precisely to that which is

actually required. Reduced costs and more efficient utilization of computer

resources are achieved.

3. Matrix partitioning - A means of handling operations involving

matrices in sections when the matrices are too large to load into core. This
enables one to analyze large problems and make efficient trade-offs between Ifl

and core storage requirements.

4. Free field alphanumeric and integer read combinations - Enables

the user to read in alphanumeric variables and integer variables using a free

field format, i.e., unformatted. This is especially helpful for interactive

terminal use where alphanumeric names are a convenient form of input for the

user.

5. Incorporation of a data-complex and a data-complex manager relieves

the user from much of the drudgery of data management and storage. This

facilitates the tieing together of programs whose inputs and outputs are

related.

The application of these techniques to improve two large aerodynamic pro-

grams is documented and other sample programs are presented to further show

the use of these techniques. At this point, the authors wish to acknowledge

the efforts of Mr. W. M. Adams, Jr. in making all the theoretical changes to

program SUSSA, the first of the large application programs desribed herein.

A reason for decreasing core-r,equirements is to increase through-put. Over-

laying reduces the amount of code required to be in core at any given time,

partitioning matrices reduces the portion of a matrix required to be in core

at any given time, and dynamic storage allocation reduces the core required

in general by eliminating the necessity for maximum fixed dimensions. There

is a trade-off, of course, because each type of decrease in core requires

a certain amount of increase in I@ activity. The care required to optimize

this trade-off is considered in the discussion. The concept of program

versatility is essentially that a program should be flexible in its ability

to handle different problem configurations without requiring changes in code.

Also, inherent in the concept of program versatility is user convenience.

Changes required by differing problem configurations should be made as often

as possible by user input during execution, in as convenient a mode as

possible.

SECTION I: METHODS FOR REDUCING CORE AND INCREASING PROGRAM VERSATILITY

The ultimate benefits to be derived from reduced core are faster batch

turn-a-round time, interactive terminal capability, and reduced cost. Large

core programs do not lend themselves to interactive use since response time

is somewhat proportional to core length. In fact, large core programs are

often not even allowed to execute interactively. Program versatility is not

only designed for faster turn-a-round time but also for user convenience. Data

can be input in a more flexible manner and less re-coding is required on the

user's part when analyzing different problem configurations. The techniques

discussed in Section I are:

(1) Dynamic Storage Allocation

(2) Automatic Core-Sizing and Automatic Core-Resizing in Overlayed

Programs

(3) Array Partitioning

(4) Free Field Alphanumeric Reads

The techniques employed to reduce core requirements are based on efficient

use of core and efficient storage of arrays, both in and out of core. By core,

one means the actual central memory used by an executing program. Although

code requires a fixed amount of core, determined by the specific code and

compiler, the core required by code can be reduced significantly by over-

laying (reference 1). This is a process of dividing the code into pieces

in such a way that only one piece needs to be in core at a time. The tech-

niques of core-reduction presented in this section carry this same concept over

to the storage of arrays. Core requirements can be reduced significantly by
allocating exactly enough core to store an array and no more. This is dynamic

storage allocation. There are no fixed dimensions in dynamic storage alloca-

tion. Core requirements can also be reduced by storing arrays out of core

(on disc), bringing into core the arrays as needed. Again, only the exact

amount of core required by the specific array is used. This is possible

through automatic core sizing (and re-sizing). Automatic core-sizing allows

the program to automatically size itself during execution as often as is

feasible. This technique is a definite help in core-reduction, but is also

designed for user convenience since it allows the program to compute all field

lengths. Furthermore, core reduction can be accomplished when large arrays

are involved by partitioning the arrays. Arrays can be partitioned much the

3

the same way code can be overlayed, so that not all pieces need to be in core

at one time.

Free field alphanumeric reads are simply for user convenience, allowing

the user a convenient way to read in alphanumeric and/or integer variables

in an unformatted form. This is especially useful in interactive runs when

the most convenient response to questions is in alphanumeric form.

Dynamic Storage Allocation

Dynamic storage allocation has important user benefits as indicated above.

Through its implementation, a user can study new problems having vastly

different array dimensions without penalizing the small array problems by

using the array dimensions required by the larger array problems. There are

no fixed dimensions built into the program, so the changes in the sizes of

the arrays can be done without changing program code and re-compiling. A

program with dynamic storage allocation can be maintained as a binary program

and yet can be used to solve problems having different dimensions without any

excess core. Of course, there are some disadvantages to the programmer. More

care is required in debugging since arrays can easily over write each other if

the proper amount of core storage is not allocated. Furthermore, the actual

address of an array word is harder to ascertain when reading a core dump.

Once debugged, however, the program is far more convenient for the user.

The technique of employing dynamic storage allocation relies heavily on

the knowledge of how arrays are stor*ed in core and the fact that only the

addresses of variables are passed through argument lists in subroutine calls,

not the variables themselves. It is this very fact that makes dynamic storage

possible. The basic idea of dynamic storage allocation, which is extended in

this paper to overlayed programs and incorporates automatic core-sizing, was

presented by Charles W. Bolz of Computer Science Corporation in a lecture on

Optimization Techniques for CDC 6000 Computers prepared January 1973, revised

October 1974, and sponsored by the LaRC Programmer Support Group.

Dynamic storage allocation is the allocation of core area to arrays based

on variable dimensions specified by input. The first word address of each

4

array is determined after the program is executing, based on the input

dimensions. All arrays required to be in core at any one time are stored in

blank common. Note here that blank common is used because blank common is

loaded at the end of program and system code on a CDC system machine. This

ensures that the size of blank common can be altered without overwriting any

code by simply changing the field length requested for the job. If blank

common is not loaded after code, there is an alternative solution which will be

presented in the discussion. Once the first word addresses are determined, a

formula for the field length can easily be derived which prescribes the exact

amount of core length needed to run a particular job. The field length can then

be calculated based on the exact input dimensions and then specified on the

JOB control card (see Example 2, page 7). With automatic core-sizing, even

this becomes unnecessary. Field length is computed and set by the program

during execution.

A program utilizing the dynamic storage allocation procedure will now be

illustrated and contrasted with a standard program which does not employ

dynamic storage allocation.

The three examples which follow are three variations of the same sample

program. This is a simple illustration (using three arrays A, B, and C) which

multiplies matrix A times matrix B to obtain the product, matrix C. The

first example is the basic program with maximum fixed dimensions. The second

is the same program using dynamic storage allocation in blank common, and the

third has dynamic storage allocation without using any commons. The subroutine

MULT is not essential in this case, but is included to illustrate the passing

of arguments which would be required in a more complex program.

Application of this technique to two large production programs is

presented on pages 21-30.

5

Example 1: The following sample program multiplies A * B to get C requiring

arrays A, B, and C to reside in core simultaneously. Maximum

dimensions are used.

PROGRAM SAMPLE (INPUT, OUTPUT)

b DIMENSION A(50,5O),B(50,5O),C(50,50)

C

C THIS PROGRAM MULTIPLIES THE MATRICES A AND B TO OBTAIN C

C C=AxB

ll

WC THE MATRIX A IS OF SIZE NR * NC, MAXIMUM DIMENSIONS 50

*C THE MATRIX B IS OF SIZE NC * NM, MAXIMUM DIMENSIONS 50

WC THE MATRIX C IS OF SIZE NR * NM, MAXIMUM DIMENSIONS 50

C

C READ IN DIMENSIONS Note: The * in the read

C READ *, NR, NC, NM

C READ IN MATRICES A AND B

enables integer and
floating point in-
puts of data in

* READ *, ((A(I,J),I = 1, NR), J=l, NC) unspecified format.

b READ *r ((B(I,J),I = 1, NC), J=l, NM)

C

C PRINT MATRICES A AND B

DO 200 I = 1, NR

200 PRINT 205, (A(I,J),J=~,NC)

DO 220 I = 1, NC

220 PRINT 205, (B&&J = 1, NM)

C

C CALL MULT
b CALL MULT (50,50,50, NR, NC, NM, A, B, C)

C

C PRINT PRODUCT MATRIX C

DO 230 I = 1, NR

230 PRINT 205, (c(I,J),J = 1, NM)

205 FORMAT (8612.3)

RETURN

Note: Maximum first
dimensions must
be passed to sub-
routine as well as
actual dimensions.

6

END
w SUBROUTINE MULT (MAXA, MAXB, MAXC,NR,NC, NM, A, B, c>

DIMENSION A(MAXA, l),, B(MAXB, 1), C(MAXC, 1)

DO 100 J = 1, NM

DO 100 I = 1, NR

SUM = 0.0

DO 150 K = 1, NC

150 SUM = SUM + A(I,K) * B(K,J)

100 C(I,J.)=SUM

RETURN

END

Figure 1 depicts the core image of the program above. The arrays A, B,

and C in the above program require 7500 words (approximately 17000 octal) of

core. This is a sizable amount of excess core if the program is being executed

-for a problem where for example', array A is 5*7, B is 7*4, and C is 5*4.

In this case only 83 words would be required to accommodate the three arrays.

Now consider the same program using dynamic storage allocation.

Example 2. The following sample program multiplies A*B to obtain C.

Dynamic Storage Allocation is employed.

PROGRAM SAMPLE(INPUT,OUTPUT)

COMMON X(1)

READ IN DIMENSIONS

READ *,NR,NC,NM

DETERMINE INITIAL WORD INDEXES

IA=1

IB = IA + NR*NC

IC = IB + NC*NM

FIELD LENGTH FOR PROGRAM IS DEFINED AS

FL = LWA + NR*NC + NC*NM + NR*NM + lOOB, WHERE LWA = LAST WORD ADDRESS

OF LOAD

7

LWA = LOCF (X(l)j

IFL = LWA + IC + NR*NM + l(jOB (Note: 1OOB is simply breathing space

and is not absolutely necessary)

PRINT 10, IFL

10 FORMAT(* FIELD LENGTH NEEDED FOR THIS RUN IS “f?6”B*)

C

-C

b

L

C

C

C

C

WC

WC

)C

C

C

m

t

C

200

220

C

C
w

C

C

PASS INITIAL ADDRESSES TO ARRAYS

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM)

END

SUBROUTINE SAMP(A,B,C,NR,NC,NM)

DIMENSION A(NR,NC).B(NC,NM),C(NR,NM)

THIS SUBROUTINE MULTIPLIES THE MATRICES A AND B TO OBTAIN C:

C=A * B

THE MATRIX A IS OF SIZE NR*NC

THE MATRIX B IS OF SIZE NC*NM

THE MATRIX C IS OF SIZE NR*NM

READ IN MATRICES A AND B

READ *,A

READ *,B

PRINT OUT MATRICES A AND B

DO 200 I=l,NR

PRINT 205, (A(I ,J) ,J=l ,NC)

DO 220 I=l,NC

PRINT 205,(B(I,J),J=l ,NM)

CALL MULT

CALL MULT(A,B,C,NR,NC,NM) (Notice that no maximum dimensions are

passed to subroutine)

PRINT PRODUCT

8

DO 230 I=1 ,NR

230 PRINT 205,(C(I,J),J=l,NM)

205 FORMAT (8615.4)

STOP

END

SUBROUTINE MULT(A,B,C,NR,NC,NM)

DIMENSION A(NR,l),B(NC,l),C(NR,l)

DO 100 J=l, NM

DO 100 1=1, NR

SUM = 0.0

DO 150 K=l, NC

150 SUM = SUM fA(I,K) * B(K,J)

100 C(I,J) = SUM

RETURN

END

Notice only one word of core, namely X(l), is reserved permanently to accommo-

date all three arrays. The LWA = LOCF(X(1)) in the field length formula is the

amount needed to load program and system routines. LOCF is a system routine

which locates the address of a particular word. LOCF(x) is the address of the

variable x in core. In order to determine the amount of field length to

specify on the JOB control card, this last word address (LWA) can be obtained

from the load map after loading the program the first time. In this case

LWA = 17273B, hence

FL = LWA + NR*NC + NC*NM + NR*NM + ToOB
= 17273B + (5*7) + (7*4) + (5*4) + looa
= 17517B

would be sufficient to load and execute the same problem as in Example 1.

Compare this to the 35725B field length required in Example 1. There is a

difference of over 16000B words for the particular problem being run.

Figure 2 depicts the core-image of the program in Example 2 with dynamic

storage allocation.

Figure 3 is a sample run of Examples 1 and 2. Note the input and output

are the same. The only difference occurs in the field-length required.

9

Of course, the field length for Example 2 could actually be larger

than 36000B, if the arrays being input had dimensions greater than the 50 used

in Example 1. If the dimensions were greater than 50, recoding the program

would be unnecessary for Example 2 because of the dynamic storage allocation

but would be essential for Example l!

This next example solves the problem of implementing dynamic storage

allocation without using blank common. The reason for this example is to

demonstrate the technique of dynamic storage allocation when blank common

is not located at the end of code. This same technique can be used with

secondary overlays in overlayed programs.

Example 3. The following sample program multiplies A*B to obtain C. Dynamic

Storage Allocation is employed without using blank common.

PROGRAM SAMPLE(INPUT, OUTPUT)

m DIMENSION X(1)
C

C READ IN DIMENSIONS

READ *,NR,NC,NM

C

LC DETERMINE ADDRESS OF X(1)

IADX=LOCF(X(1))
P
L

,C DETERMINE AMOUNT OF TRANSLATION FOR ARRAY INDEXES
b LWA = 17300B (obtain from load map)
b ITRANS = LWA - IADX

C

C DETERMINE FIRST WORD INDEXES
b IA=ITRANS + 1

IB=IA + NR * NC

IC=IB + NC * NM
n L

C FIELD LENGTH FOR PROGRAM IS DEFINED AS

,C FL = IADX + IC + NR*NM + 1OOB

L IFL = IADX + IC + NR*NM + 1OOB

10

PRINT 10, IFL

10 FORMAT(* FIELD LENGTH NEEDED FOR THIS RUN IS *@6*B*)
C

C PASS INITIAL ADDRESSES TO ARRAYS A, B, AND C

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM)
END

(Subroutines SAMP and MULT are the same as in Example 2.) ,'

Note that in this example, X(1) is located somewhere within the program

code. ITRANS = LWA - ADDRESS OF X(1). This simply means that X(ITRANS) is

located at address LWA. X(1) through X(ITRANS) is equivalent to program and

system code and the first word after code is X(ITRANS+l). Hence, A(l)=X(ITRANS+l),

B(l)=X(ITRANS+l+NR*NC), and C(l)=X(ITRANS+l+NR*NC+NC+NM). (See Figure 4)

In all the illustrations which follow, blank common is used for dynamic

storage allocation, but the above example illustrates an alternative method

which is almost as .simple to employ.

Actual programs which use dynamic storage allocation are discussed in

this section starting on page 21.

In summary, Dynamic Storage Allocation is the allocation by the program of

the work area needed to store all arrays required to be in core at any given

time based on input dimensions, and the determination of the initial word

addresses to be passed to each array.

Automatic Core Sizing

Next,a procedure for automating the dynamic storage allocation will be

described. In the utilization of dynamic storage allocation the field length

associated with a particular problem must be computed by the user and specified

forthe loader via a control card. Automatic core-sizing eliminates this

requirement by enabling the program to compute and automatically set its own

core requirements during execution based on input dimensions. However, auto-

matic core-sizing can only be incorporated on a system which allows field

11

length to be increased during job execution. Most time-share systems would have

this capability, including the NOS (time-share) system for CDC computers.

To accomplish automatic core-sizing, a FORTRAN callable routine is needed

which changes field length. The following Compass-assembly language routine

does this. See also Appendix A.

*

*

*

*

*

*

RFL

MEM

IDENT RFL

RFL THIS ROUTINE CHANGES THE CURRENT FIELD LENGTH OF JOB

R.S.CASEY 75/01/12

*CALL RFL(IFL)

ARGUMENTS:

IFL = VALUE OF NEW FIELD LENGTH

ENTRY RFL

DATA 0

SAl Xl

BX6 Xl

LX6 30

SA6 MEM
MEMORY CM,MEM,R

EQ RFL

DATA 0

END

The examples which follow illustrate automatic core-sizing in the program

SAMPLE and core-resizing in an overlayed program. This first example shows

the changes to.Example 2 needed to incorporate automatic core-sizing. Changes

are marked by an arrow (h).

Example 4: The following sample program multiplies A * B to obtain C. Dynamic

Storage Allocation with automatic core-sizing is used.

12

C

C

C

C

C

C

C

C

10

C

*C
t

C

C

PROGRAM SAMPLE(INPUT, OUTPUT)

COMMON X(1)

READ IN DIMENSIONS

READ *,NR,NC,NM

DETERMINE INITIAL INDEXES

IA=1

IB=IA + NR*NC

IC=IB + NC*NM

DETERMINE LWA OF LOAD = ADDRESS OF X(1)

LWA = LOCF(X(1))

COMPUTE FIELD LENGTH NEEDED

IFL = LWA + IC + NR*NM + 1OOB

PRINT 10,IFL

FORMAT (* FIELD LENGTH NEEDED FOR THIS RUN IS *fl6*B*)

SET FIELD LENGTH

CALL RFL(IFL)

PASS INITIAL ADDRESSES TO ARRAYS A, B, AND C.

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM)
END

(Subroutines SAMP and MULT are the same as in Example 2.)

Note that the only difference between Example 2 and 4 is the automatic

setting of the field length by a call to RFL inside the program. This sub-

routine eliminates the necessity to put a field length on the JOB control card

large enough to execute the program. Field length is set during execution.

Earlier, we mentioned that overlaying the code of a program was an

effective way to obtain significant decreases in core requirements. The idea

13

of course is to partition the code into smaller 'sub' programs, each of which

is called by a 'main' program called,the zero overlay. Only one 'sub' program

is loaded into core at a time. Two actual examples of %his are discussed later,

but let it suffice for the moment that a program which is several hundred K

in size can be effectively reduced to 'sub' programs, called primary overlays,

which are often well under 1OOK in size. (See pages 21 - 30)

In an overlayed program, dynamic storage allocation and automatic core-

sizing become a bit more complicated by the fact that the LWA of the load

changes with respect to each overlay loaded. Furthermore, dynamically stored

arrays needed by two or more overlays must be stored out of core between

overlay calls. Without automatic core-sizing, the field length for an overlayed

program must remain fixed at that required for the largest overlay executed in

a given run, but automatic core-sizing allows each overlay to set its own core

requirements. Example 5 is a simple example of dynamic storage allocation with

automatic core-sizing in an overlayed program.

In Example 5, there are two primary overlays. Array C is transferred from

overlay 1 to overlay 2 via a sequential file which is used to store array C

while overlay 2 is being loaded. In most large overlay programs, however,

random access files should be used instead in order to reduce the number of

rewinds and skips required to access different arrays. Another alternative- is

to use a data-complex as discussed in Section II.

Notice in this example, that to ensure enough core to load an overlay,

a call to RFL is made prior to each overlay call. In this example, assume the
LWA of overlay 1 is 50000B and the LWA of overlay 2 is 65000B. A call for
50000B and 65000B words of core, therefore, are,requested prior to calling

overlays 1 and 2, respectively.

Example 5. The following illustrates the coding necessary for an overlayed

program with dynamic storage allocation and automatic core-sizing.

OVERLAY(SAMPLE,O,O)

PROGRAM MAIN(INPUT,OUTPUT,TAPE2)

COMMON /AAA/ NR,NC,NM,NL

14

C READ IN DIMENSIONS

READ *,NR,NC,NM,NL

C

,C SET FIELD LENGTH TO LOAD FIRST OVERLAY

CALL RFL(50000B)

L

C LOAD FIRST OVERLAY AND EXECUTE

CALL OVERLAY(6LSAMPLE,l,O)

C

WC SET FIELD LENGTH TO LOAD SECOND OVERLAY

CALL RFL(65000B)

L

WC LOAD SECOND OVERLAY AND EXECUTE

CALL OVERLAY(GLSAMPLE,2,0)

STOP

END

OVERLAY(SAMPLE,l,)

PROGRAM ONE

COMMON /AAA/ NR,NC,NM,NL

COMMON X(1)

C

C DETERMINE INITIAL INDEXES

IA = 1

IB = IA + NR*NC
-1C = IB tr NC*NM

L

-C DETERMINE FIELD LENGTH TO ACCOMMODATE ARRAYS FOR OVERLAY 1

IFL = LOCF(X(l)) + IC + NR*NM + 1OOB

C

@C SET FIELD LENGTH FOR OVERLAY 1

CALL RFL(IFL)

C PASS ADDRESSES TO ARRAYS USED IN OVERLAY 1

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM)

15

CC

m

C

C

C

LC

C

C

C

-'c

C

mC

END

SUBROUTINE SAMP(A,B,C,NR,NC,NM)
.

' COMPUTE ARRAY C
.

STORE ARRAY C ON TAPE 2

REWIND 2

WRITE(2) C

END

OVERLAY(SAMPLE,2,0)

PROGRAM TWO

COMMON /AAA/ NR,NC,NM,NL

COMMON X(1)

SET UP INITIAL INDEXES

IC = 1

ID = IC + NR*NM

IE = ID + NM*NL

DETERMINE FIELD LENGTH TO ACCOMMODATE ARRAYS FOR OVERLAY 2

IFL = LOCF(X(l)) + IE + NM*NM*NL + 1OOB

SET UP F.L. FOR OVERLAY 2

CALL RFL (IFL)

PASS ADDRESSES TO ARRAYS USED IN OVERLAY 2

CALL SUB(X(IC),X(ID),X(IE),NR,NM,NL)

END

SUBROUTINE SUB(C,D,E,NR,NM,NL)

DIMENSION C(NR,NM),D(NM,NL),E(NM,NM,NL)

ACCESS C ARRAY FROM TAPE 2

REWIND 2

16

.

* COMPUTE D AND E ARRAYS, ETC.

END

Figure 5 depicts the core image of the main overlay and the two primary

overlays of the preceeding sample program. Notice that the two primary over-

lays are depicted adjacent to one another since they actually replace each other

in core, each one starting at precisely the same address.

Note here that if secondary overlays ('sub'programs to the primary

overlays) are used, the array storage should be allocated in the last level

overlay loaded; or a method similar to that used in Example 3 .(dynamic

storage without / /-common) of determining a translation of addresses could

be employed.

No matter what the program structure is, there is usually some method to

employ dynamic storage and automatic core-sizing. The above examples have

been given to suggest methods available. The primary advantages to be gained

are increased versatility of the program for the user and efficient utiliza-

tion of core. It is the final step in variable dimensioning.

Partitioning Techniques

Scientific applications programs often involve computations using arrays

of data sufficiently large to make the program too large to be loaded into

central memory. For instance, only one array dimensioned in a program at

400*400 = 160K decimal = 470K octal would make the program impossible to load

on the present system at NASA/Langley. The natural thing to do is to partition

or "block" the matrix, in a manner similar to overlaying code, storing all

blocks outside core, reading into core only one or two blocks at a time.

Furthermore, the code for performing computations involving the matrix must be

"partitioned" in such a way as to perform the computations per block.

A blocking technique will now be described which was applied to the

problem of solving a large system of 1 inear equations with complex coeffic

having dimensions of 100 or more. The basic method for solving the system

ients

17

A*X = B was Gaussian Elimination; i.e., triangularizing the augmented matrix

[A:B] and back substituting. The complex coefficient matrix A was stored

out of core in blocks or partitions of 16 rows each. For instance, if A were

a 46*46 array, and since 46=2*16 + 14, A would be partitioned into 3 blocks.

The first two blocks would contain 16 rows each and the third would contain

14 rows. Specificially,

Block 1 would contain rows 1 to 16 of matrix A

Block 2 would contain rows 17 to 32 of matrix A, and

Block 3 would contain rows 33 to 46 of matrix A.

Accessing words from a two dimensional array is somewhat faster if the

first dimension is a power of 2. The reason 24 = 16 was chosen was that, for

the cost formula presently employed at NASA/Langley, 16 was the best trade-

off value between data-transfer cost and field length cost. Appendix B

contains a listing of this matrix-equation solver using partitioned matrices.

There are several alternatives for writing and reading blocks in and out

of core; namely, sequential files using BUFFER IN and BUFFER OUT, binary reads

and writes, or random access (word addressible) files using READMS and WRITMS.

Random access files using direct calls to the system Record Manager could also

be employed. Binary reads and writes would definitely be the method to

employ if system independence were desired. In the blocked routine described

here, a random access file using READMS and WRITMS was employed because it is

faster when accessing arrays in a non-sequential manner and it is easy to

debug. It eliminated the necessity for rewinding and skipping records in order

to store and access blocks during the computations, making the programming

much simpler.

The blocked solver routine is not recolended for small matrices since

computation time is much faster if the entire matrix remains in core. How-

ever, in the programs for which this subroutine was written, the size of the

matrix was on the order of 100 or more. If stored in core, this complex array

dimensioned lOO*lOO would require at least 47K octal words of core. The core

used to store the two blocks of A required to be in core simultaneously

would be 16*100*2 (complex)*2(blocks) = 6400 = 15K octal (approximately),

resulting in a savings of about 32K octal words of core with a minimal amount

of IB requests since A would only be partitioned into 6 blocks.

The blocked-equation solver routine listed in Appendix B has proven to be

a very useful routine, relatively inexpensive, time and cost wise, enabling

drastic reductions in field length. It can be used in any program when

employed according to the documentation in the listing.

In writing the code to correspond to blocking, the easiest technique is

to write the code with the idea in mind that a block consists of one row and

then modifying the code to consist of blocks containing more than one row.

As indicated above, blocking techniques can result in a large amount of core

savings with 10 trade-off cost a minimum. Essential to blocking, however,

is the ability to perform computations using algorithms which lend themselves

to blocking techniques, i.e., algorithms which can be performed on matrices

per row.

Free Field Alphanumeric Reads

Free field reads by a program are convenient for a user in both batch

and interactive terminal jobs. It is particularly useful in the interactive

mode since formats are extremely difficult to adhere to when input columns

are not numbered. Available, via the FTN compiler is the ability to read,

free field, floating point or integer numbers (using the * in place of the

format number), but not alphanumeric words. The utility routines C@NVERT

and SHIFT, 1

alphanumeric

alphanumeric

(unspecified

sted in Appendix C, were written in order to allow free field

and integer combination reads. They enable the user to read in

and/or integer variables in combination using a free field

format. This is especially helpful where alphanumeric names

are a convenient form of input for the user.

Subroutine CONVERT, starting in a specified column of a card image and

ending at the first succeeding column which contains a blank or a comma,

converts those columns into an alphanumeric word or integer word, depending.on

the type desired. CALL CONVERT(A,O) will convert columns to alphanumeric

code without blank fill and store in location (word) A. CALL CONVERT(I,l)

19

Will Convert columns to integer value and store in location (Word)I. CALL

-CONVERT(A,E) will convert columns to alphanumeric code with zero fill and store

in location A. Subroutine SHIFT, called by subroutine CONVERT, performs the

binary bit shifts necessary to convert the integer words.

The labeled common:

COMMON/CARD/ISTART,CARD(80)

must appear in the calling program.

C

2

100

C

C

C

C

C

C

C

C

C

3

20

The essentials for using CONVERT are demonstrated in the following code:

PROGRAM

COMMON/CARD/ISTART,CARD(80)

DIMENSIONS A(lOl), Il(lOO), 12(100)

I=1

END = 3HEND

READ IN ENTIRE CARD IMAGE

READ 100, CARD

FORMAT(80Al)

START IN FIRST COLUMN

ISTART = 1

CONVERT FIRST NON-BLANK COLUMNS TO ALPHANUMERIC WORD

CALL CONVERT(A(I),O)

IF(A(I).EQ.END)GO TO 3

CONVERT NEXT NON-BLANK COLUMNS TO AN INTEGER 11

CALL CONVERT (Il(I),l)

CONVERT NEXT NON-BLANK COLUMNS TO AN INTEGER 12

CALL CONVERT (12(1),1)

I=I+l

GO TO 2

CONTINUE

The above code reads in card images until a card with the word END on it

is reached. The columns on this card are then converted to three words each,

one alphanumeric and two integer. For example, if the following input data

were used for the above code, namely,

GN 1 4

BASKET 2,3

END

then, A(1) = GN , 11(l) = 1) 12(l) = 4,

A(2) = BASKET , Il(2) = 2 12(2) = 3, and

A(3) = END .

Subroutine CONVERT requires that the column numbered ISTART contain a

non-blank character. This routine is not completely generalized, but it has

proven to be an extremely useful routine for interactive work. It will both

blank-fill or zero-fill an alphanumeric word, depending upon the code number

chosen. See Appendix C.

Applications

The above techniques - dynamic storage allocation, automatic core-sizing,

and matrix partitioning - along with overlaying were applied to two moderately

large programs. The modifications and their results are described herein.

The first application is to computer program SUSSA which determines unsteady

aerodynamic forces using methods developed by Morino as described in Reference 2.

The second application is computer program DLAT which determines unsteady

aerodynamic forces using the doublet lattice approach of Giesing, Kallrnan, and

Rodden, as described in Reference 3.

Application 1: SUSSA

The first example, SUSSA (Steady and Unsteady Subsonic and Supersonic

Aerodynamics) is a program for calculating unsteady and aerodynamics using

methods developed for NASA by Dr. Luigi Morino of Boston University under

Grant NGR-22-030-004 to Boston University. The version of SUSSA received by

Langley was written to test out theoretical developments; development of an

efficient, versatile code was not an objective of the grant. Consequently, the

21

complexity of the aerodynamic configurations that could be studied was severely

limited. (A maximum of 100 boxes were available for paneling of all surfaces,

and aerodynamic force matrix elements could be computed for a maximum of nine

modeshape pairs.) Furthermore, to avoid the requirement of prohibitive amounts

of storage with the original non-overlayed code , undesirable, repetitive compu-

tations had to be performed for each new modeshape and reduced frequency. Major

programming modifications have been made to the program. The program code was

completely restructured using one main program and five primary overlays, each

of which performs a basically independent function and is self-contained

except for data-transfer to and from other overlays. Limitations on the number

of boxes for aerodynamic paneling have been effectively removed. The frequency

independent computations have been removed from the frequency loop, and portions

of the mode independent computations have been removed from the modeshape loop.

These efficiency and versatility improvements have been accomplished by means

of the following modifications.

Modifications to Program SUSSA:

1. Restructuring the program into overlays that perform computations which are

independent of frequency and those which are dependent on frequency, and

computing the AA matrix relating velocity potential to downwash and solving

the related equation for all modes of like symmetry simultaneously.

2. Incorporating dynamic storage allocation and automatic core-sizing in order

to remove fixed dimensions.

3. Incorporating blocking techniques in computations involving large matrices

and the inclusion of the blocked Gaussian Elimination routine for solving

a system of linear equations having complex coefficients. The restructuring

of SUSSA resulted in a program having five (5) primary overlays:

Overlay (1,O)

Initializes data, reads in data, and determines geometry. Stores

data on random access file.

Overlay (2,0)

Computes the coefficient matrices which are frequency independent

and stores them on random access file.

22

Overlay (3,0)

Computes (mode dependent) downwash coefficients for all modes

and stores coefficients on random access file.

Overlay (4,0)

Constructs and solves frequency and mode dependent system of

equations using blocked solver routine.

Overlay (5,0)

Computes generalized aerodynamic forces.

Overlays (l,O), (2,0), and (3,0) are frequency independent.

Figure 6 is a flow diagram of the modified program SUSSA. Note that the

zero overlay simply controls the program flow.

Figure 7 depicts the core image of the original version of SUSSA, and

Figure 8 depicts the core image of the modified version. The re-arrangement of

subroutines for the modified version is indicated at the bottom of Figure 8.

Notice that for the sample run, the core length is less than half that

required for the original program. Furthermore, the most expensive overlay

time-wise, overlay (2,0), is more than 1OOK smaller. Note here that when the

two versions were executed for the same problem, it was found that in the

original version of SUSSA, the time and cost were slightly less for one

frequency than in the modified version. But also in the original version, the

time and cost for each additional frequency were the same as for the first one.

In the modified version, however, with frequency independent computations

removed, the computations for each additional frequency required approximately

l/5 the time that the first frequency required for the the test cases examined.

As a consequence, the modified version cost increasingly less than the original

as the number of frequencies was increased.

Another benefit of the modified version, since dynamic storage is used, is

that there are no built-in limitations on the dimensions of any problem.

The following is a listing of excerpts from actual code in overlay (1,0)

of SUSSA which does the dynamic storage allocation and automatic core-sizing.

Notice that core length is reset three times in the same overlay. The second

time because array dimensions following execution of subroutine DATA depend

23

on the value of NELEM which is computed in subroutine DATA. The third time

core is reset because some arrays needed by subroutine PREPRP) are no longer

needed for the rest of the overlay, but other arrays are needed.

2

3

C

C

C

C

C

C

C

C

C

C

C

C

C

OVERLAY (SUSSA,l,O)

PROGRAM INITIAL

COMMON/ZZZ99/KPRINT(lO),NREAD,NWRITE

COMPLEX FREQ

COMMON/RTAPE/ITAPE,INDXR(l) (Dimensioned larger in (0,O))

COMMON X(1)

COMMON /PARAM/ NMODE,NEREQ,NMODEP,NELEM,NNODE,NXYMP,NTWAKE,NESQ

C

DATA KOUNT,O,'

NXMAX,NYMAX,FREQ(20)

READ(NREAD,2)KREAD,NMODE,NFREQ,KGUST,NXMAX,NYMAX

WRITE(NWRITE,2)KREAD,NMODE,NFREQ,KGUST,NXMAX,NYMAX

NMODEP = NMODE + KGUST

NXP = NXMAX + 1

NYP = NYMAX + 1

NXYMP = NXP*NYP

FORMAT(1015)

FORMAT(lOF8.3)

INFORMATION FOR DYNAMIC STORAGE OVERLAY (1,O)

ARRAY NAME DIMENSIONS

MSYMY

MSYMZ

MODE

MODTYP

NOFCT

Pl

P2

P3

KPP

NMODEP

NMODEP

NMODEP

NMODEP

NXYMP*NS

3*NELEM

3*NELEM

3*NELEM

NXMAX

24

C KMP KXMAX C
C NODE 4*NELEM C
C XK 3*NNODE C
C KWAKE NELEM C
C PC 3*NELEM C
C WA 6*NYP+2*NXP C
cc

C

WC COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED BY SUB. DATA

IMY = 1

IMZ = IMY+NMODEP

IMD = IMZ+NMODEP

IMODT = IMD+NMODEP

INOFCT = IMODT+NMODEP

C

PC

m

C

SET FIELD LENGTH FOR SUBROUTINE DATA

IFL=LOCF(X(l))+INOFCT+lOOB

CALL RFL(IFL)

CALL DATA(X(IMY),Y(IMZ),X(IMD),X(IMODT),NMODEP,NELEM)

CALL SECOND(CPTIME)

CALL DISPLA(llH DATA TIME=,CPTIME)

NNS = NS

COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED IN SUB. PREPRB

IPl = INOFCT + NXYMP*NS

IP2 = IPl + 3*NELEM

IP3 = IP2 + 3*NELEM

IKPP = IP3 + 3*NELEM

IKMP = IKPP + NXMAX

SET FIELD LENGTH FOR SUBROUTINE PREPRQl

IFL= IKMP + NXMAX + IFL

CALL RFL(IFL)

CALL PREPR~(NNODE,NXYMP,X(INOFCT),NELEM,NTWAKE,X(~KPP),X(IKMP),

C NXMAX,NNS)

25

CALL SECOND(CPTIME)

CALL DISPLA(llH PREP TIME=,CPTIME)

NRECA = NELEM/16.01 + 1

N= KRECA + 10

IF(KOUNT.EQ.O)CALL OPENMS(ITAPE,INDXR,N+l,O)

CALL WRITMS(ITAPE,X(IMY),4*NMODEP,NRECA+8,-1,0)

KOUNT = KOUNT + 1

C

t C COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED IN SUB. ONEEXT

INODE =. IP3 + 3*NELEM

IXK = INODE + 4*NELEM

IKW = IXK + 3*NNODE

IPC = IKW + NELEM

IWA = IPC + 3*NELEM

) C SET FIELD LENGTH FOR SUBROUTINE ONEEXT

* IFL = IWA + 6*NYP + 2*NXP + LOCF(X(l))
w CALL RFL(I FL)

WRITE(6,lOO) IFL

100 FORMAT(*FIELD LENGTH - OVERLAY (1,O) - INITIAL IS *66)

CALL ONEEXT(X(INODE),X(IXK),X(IKW),X(IPC),X(INOFCT),X(IPl),X(IP2)

C,X(IP3),NELEM,NNODE,NXYMP,NS,X(IWA),NYP,NXP)

END

SUBROUTINE DATA(MSYMY,MSYMZ,MODE,MODTYP,NMODP,NELE)

DIMENSION MSYMY(NMODP),MSYMZ(NMODP),MODE(NMODP),MODTYP(NMODP)

. NELE DEFINED

END

SUBROUTINE PREPR~(NNODE,NXYMP,NOFCT,NELEM,NTWAKE,KPP,~P,NXMX,NNS)

DIMENSION NOFCT(NXYMP,NNS),KPP(NXMX),KMP(NXMX)

.

. CODE

26

END

SUBROUTINE ONEEXT(MODE,XK,KWAKE,PC,NOFCT,Pl,P2,P3,NELEM,NNODE,

C NXYMP,NNS,WA,NYP,NXP)

DIMENSION NODE(4,NELEM),XK(3,NNODE),KWAKE(NELEM),PC(3,NELEM)

C ,NOFCT(NXYMP,NNS),P1(3,NELEM),P2(3,NELEM),P3(3,NELEM)

C M(1)

COMMON /RTAPE/ ITAPE,NRECA

WC COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED ONLY IN COODPT.

WC SPACE RESERVED IN LAST CALL TO RFL.

IW2 = 1 + NYP

IW3 = IW2 + NYP

IW4 = IW3 + NYP

IW5 = IW4 + NYP

IW6 = IW5 + NXP

IW7 = IW6 + NYP

IW8 = IW7 + NYP

ll

CALL COODPT(NELEM,NXYMP,NOFCT,XK,NNODE,NNS,WA(l),WA(IW2),WA(IW3)

C ,WA(IW4),WA(IW5),WA(IWG),NYP,NXP,WA(IW7),WA(IW8))

.

.

C WRITE ARRAYS NODE AND XK ONTO ITAPE

CALL WRITMS(ITAPE,NODE,4*NELEM+3*NNODE,NRECA+l,-1,O)

C

C WRITE ARRAY KWAKE ONTO ITAPE

CALL WRITMS(ITAPE,KWAKE,NELEM,NRECA+2,-1,O)

C WRITE ARRAYS NOFCT,Pl,P2,P3 ONTO ITAPE

CALL WRITMS(ITAPE,NOFCT,NXYMP*NS+9*NELEM,NRECA+4,-1,0)

RETURN

END

SUBROUTINE COODPT(NELEM,NXYMP,NOFCT,XK,NNODE,NNS,HCHORD,HAXIS

27

C ,VCHORD,VAXIS,HCSI,HETA,HYP,NXP,DCHORD,CHAXIS)

DIMENSION XK(3,NNODE),NOFCT(NXYMP,NNS),HCHORD(NYP),HAX~S(NYP)

C ,VCHDRD(NYP),VAXIS(NYP),HSCI(NXP),HETA(NYP),DCHORD(NYP)

C ,CHAXIS(NXP)

. CODE

.

END

Notice in subroutine ONEEXT additional initial word indexes are computed

for subroutine COODPT. The field length did not need to be reset since the

space for the arrays was reserved when computing the field length for the

previous call to RFL. The reason for computing the indexes in ONEEXT was to

avoid passing those addresses through the argument list of subroutine ONEEXT.

The fewer number of argument lists for which an address needs to be passed

through, the less code required to pass the address.

Application 2: DLAT

A second program application of'the techniques described herein is DLAT,

a streamlined computer program for calculating unsteady aerodynamic forces using

the doublet lattice approach described in Reference 3. The program was over-

layed and used random access files for data storage. Hence, significantly large

core reductions due to overlaying and combining files, as in SUSSA, could not be

realized. However, the program would not run on NOS because certain assembly

language routines were not compatible; hence, revisions were first made to make

the program compatible with NOS. Then, the program , when run on NOS, was approxi-

mately seven (7) times more costly than previous costs on ICOPS. The reason

for this was attributed to the excessive number of Iv requests for data transfer

and charges for IP, activity under the NOS system. Furthermore, the program had

built-in maximum fixed dimensions. In order to reduce cost and increase program

versatility, the following modifications were made, bringing the cost down

significantly (approximately to what it had been on NOS) and reducing the time

and core slightly.

28

Modifications to DLAT: .--_

1. Reduction of data transfer activity by incorporation of the blocked

solver routine described earlier for solving a system of linear equa-

tions with complex coefficients, replacing the routine used in the

streamlined version.

2. Removal of an unneeded disc file and buffer.

3. Incorporation of dynamic storage allocation and automatic core-sizing,

removing maximum fixed dimensions.

4. Incorporation of a Data-Complex for storing data. A Data-Complex (or

Data Bank) is a large external file used to store data arrays, by array

name, from programs which supply data for one another. This will be

discussed in detail in the next section.

Figure 9 depicts the core image of the streamlined ICOPS version of the

Doublet Lattice program and Figure 10 depicts the core image of the modified

NOS version with dynamic storage allocation, automatic core-sizing, blocking,

and data-complex. The trade-off between 10 cost and core cost indicated that

it would be profitable to reduce 10 somewhat at the expense of increasing core,

causing the NOS-AMSOL overlay to be much larger than would be required if mini-

mum block sizes were employed. Here, the array block sizes were increased

until an optimum cost trade-off was effected.

The blocked-solver routine using Gaussian elimination in DLAT is similar

to that used in SUSSA except that the coefficient matrix is stored on a data-

complex to avoid unnecessary recomputations. A complete description of a data-

complex is given in Section II.

One should note here that the ICOPS version required a maximum fixed core

length for all overlays based on the size of overlay (5,O) and resulting in

much wasted core. The modified NOS version, with automatic core-sizing, resets

the field length for each overlay. This produces significant cost reduction

since the most expensive overlay time-wise, overlay (2,0), requires much less

core than overlay (5,0). Hence, by using dynamic storage allocation, automatic

core-sizing and blocking, cost was effectively reduced on an already streamlined

version of a program. The NOS cost function included costs for 10 activity

not previously charged for under KRONOS and ICOPS in addition to costs for time

29

and field length. Even so, it was possible to develop a much more versatile

NOS version which is not appreciably more expensive to run than the original

streamlined ICOPS version.

SECTION II: DATA MANAGEMENT

When the communication of data among computer programs is required, data-

management is a very important consideration. When using many sequential files

for this communication, the probability of error in data-management is quite

high. This can result from the many JCL commands (REWIND, COPY, SKIPR, etc.)

necessary to position files for the next program. The retention of data for

future use usually requires the saving and keeping track of a large number of

files. The construction of a data-complex (one random access file) as described

herein, relieves the user of much of the drudgery of data-management. As

illustrated in Figure 11, the communication of data among programs is direct

and facilitates the tieing together of programs whose inputs and outputs are

related.

The data-complex coupled with a data-complex manager make sequentia'l execu-

tion of jobs with linked input and output a much easier task. As will be

described below, the data can be stored on the data-complex in a form that can

be readily identified and accessed by the user. The data-complex manager,

which will also be described subsequently, can perform such tasks as cataloging

and storing of data on the data-complex, accepting data of arbitrary but known

format and filing, punching, etc., in arbitrary but known format for use by

other programs. Another important user advantage resulting from the use of

the data-complex is that manipulation of data files can be accomplished by

means of data inputs rather than by using large control decks. This should be

particularly attractive to the typical user who is not fully familiar with many

of the control card commands. All of these features allow the user to access,

manipulate, and store data much more easily and with fewer mistakes.

Data-Complex Description

Sequential files are often employed in data storage and transfer.

30

Accessing a piece of data is similar to accessing a piece of information from

a file cabinet in which there are no labels. One simply needs to know the folder

number it is in. Then counting from the beginning, he must skip through the

folders until the desired one is reached. If there are only a few folders, this

is not hard. However, in large programs, with many arrays of data, searching

sequentially through files of data can be tedious at best. Often hard-to-detect

errors are incurred resulting from obtaining an incorrect record off the file.

A data-complex is analogous to a file cabinet in which the drawers are

numbered and the folders are labeled. To access a piece of information that has

been filed in a "labeled" file cabinet, one simply needs to know a label and

drawer number. A data-complex contains "data sets" which, like each drawer in

a file cabinet, contains slots labeled by array "codenames". Accessing an array

of data, the user simply needs to know the dataset number and codename the array

is stored under. 'The use of a data-complex is as simple as using a "labeled"

file cabinet to store every array of data used by several programs. Its

advantages are analogous to the

"unlabeled" one.

advantages of a "labeled" file over those of an

In the discussion which fo

presented. The objective is to

llows, a simplified system of programs is

show the basic differences between programs

which use traditional methods of data-transfer and one that uses a data-complex.

The programs are presented in juxtaposition, and the differences are pointed out

by arrows.

Consider two programs, PRE and POST. Suppose program PRE required arrays

AA, BB, and CC to be input and generates arrays DD and EE to be used in program

POST. The two examples which follow are composed of two parts each: A - the

code for the program samples, and B - the control and data decks for executing

a sample job. The first example is one which uses sequential files for data

storage and transfer. The second uses a data-complex. All programs incor-

porate dynamic storage allocation, although dynamic storage is not required in

order to create and use a data-complex. It is assumed at this point that the

input arrays for program PRE (and program PREDC) have been previously put on

the proper input file. Note here also that the EE array generated by program

PRE (PREDC) is different in that it is a multiple-record array; only one

31

record of which is in core at a time. The changes to programs PRE and POST

are marked by an arrow 0) on the left.

Example 1. Programs PRE and POST using

sequential files for data

storage and transfer.

Part 1A: Code for program PRE
PROGRAM PRE(INPUT=1O1,OUTPUT=lOl)

c C ,TAPE1=514,TAPE2=514)

DIMENSIONS FREQ(lO)

COMMON X(1)

COMMON/IDENT/HDR(8)

NAMELIST/PREINP/NM,NBC,NFR,SCALAR,FREQ.

WC REWIND OUTPUT FILE

. REWIND 2

PRINT 5

5 FORMAT(////,*EXAMPLE 1 -- PRE*)

CC BEGINNING OF MAIN LOOP

99 CONTINUE

WC REWIND ARRAY-INPUT FILE

c REWINO 1

C READ IN HEADER IDENTIFICATION

READ 10,HDR

10 FORMAT (8~10)

PRINT 10,HDR

C READ IN DIMENSIONS OF ARRAYS

READ PREINP

C SET UP INITlAL WORD INDEXES

IAA=l

IDs=IAA+NM*NM

ICC=IBB+NM*NBC

IDD=ICC+NBC*NM

IEE=IDD+NM*NM

C SET UP FIELD LENGTH

IFL=LOCF(X(l))+IEE+NM*NM+lOOB

CALL RFL(IFL)

C PASS ADDRESSES TO ARRAYS

CALL PREEXD(X(IAA),NM,X(I8B),X(ICC),NBc

C ,X(IDO),X(IEE),NFR,FREQ)

32

Example 2. Programs PREDC and POSTDC

using a data-complex for

data storage and transfer.

Part 2A: Code for program PREDC

PROGRAM PREDC(INPUT=lOl,OUTPUT=lOl)

DIMENSION FREQ(lO)

COMMON X(1)

COMMON IDENT/HDR/(8)

NAMELIST/PREINP/NM,NBC,NFR,SCALAR,FREQ.

CC OPEN DATA-COMPLEX FILE

t CALL OPENDC(7LDCSAMPL)

PRINT 5

5 FORMAT(////,*EXAMPLE 2 -- PREDC*)

C BEGINNING OF MAIN LOOP

99 CONTINUE

C READ IN HEADER IDENTIFICATION

READ 10,HDR

10 FOR~T(BA~O)

PRINT 10,HDR

C READ IN DIMENSIONS OF ARRAYS

READ PREINP

*C READ IN DATA-COMPLEX PARAMETERS
c CALL READDCM(0)

C SET UP INITIAL WORD INDEXES

IAA=l

IBB=IAA+NM*NM

ICC=IBB+NM*NBC

IDD=ICC+NBC*NM

IEE=IDD+NM*NM

C SET UP FIELD LENGTH

IFL=LOCF(X(l))*IEE+NM*NM+lOOB

CALL RFL(IFL)

C PASS ADDRESSES TO ARRAYS

CALL PREEXD(X(IAA),NM,X(IBB),X(ICC.),NBC

C ,X(IDD),X(IEE),NFR,FREQ)

C CONTINUE?

READ *,ISTOP

IF(ISTOP.EQ.O)GO TO 99

c STOP

END

SUBROUTINE PREEXD(AA,NM,PB,CC,NBC,DD,EE

C ,NFR,FREQ)

DIMENSIONS AA(NM,NM)&B(NM,NBC),CC(NBC,NM)

C ,DD(NM,NM),EE(NM,NM),FREQ(NFR)

,C READ IN ARRAYS FROM TAPE1

. READ(~)AA

. READ(l)BB

. READ(l)CC

c COMPUTE DD ARRAY

C DD=AA*AA+BB*CC*SCALAR

CALL MULT(AA.AA,DD,NM,NM,NM)

CALL MULT(BB,CC,AA,NM,NBC,NM)

DO 100 J=l,NM

DO 100 J=l,NM

100 DD(I,J)=DD(I.J)+AA(I.J)*SCALAR

-c STORE DD ARRAY ON TAPE2
* WRITE(2)DD

C COMPUTE (MULTIPLE-RECORD) EE ARRAY

C EE=(AA*AA+DD)*AA*FREQ(I)

DO 200 IF=l,NFR

CALL MULT(AA,AA,BB,NM,NM,NM)

CALL ADD(EE,DD,DD,NM,NM)

CALL MULT(DD,AA,EE,NM,NM,NM)

DO 300 I=l,NM

DO 300 I=l.NM

300 EE(I,J)=FREQ(IF)*EE(I,J)

C STORE RECORD NUMBER IF OF EE ARRAY

WC ONTO TAPE2
* WRITE(2)EE

200 CONTINUE

RETURN

END

C CONTINUE?

READ*,ISTOP

IF(ISTOP.EQ.O)GO TO 99

DC PRINT OUT TABLE OF CONTENTS

c CALL TOC(0)
c CALL STOPP(0)

END

SUBROUTINE' PREEXD(AA,NM,BB,CC,NBC,DD,EE

C ,NFR,FREQ)

DIMENSIONS AA(NM,NM),BB(NM,NBC),CC(NBC,NM)

C ,DD(NM,NM),EE(NM,NM),FREQ(NFR)

CC READ IN ARRAYS FROM DATA-COMPLEX
c CALL READIN(AA,NM*NM,l,l)
. CALL READIN(BB,NBC*NM,2,1)
c CALL READIN(CC,NBC"NM,3,1)

C COMPUTE DD ARRAY

C DD=AA*AA+BB*CC*SCALAR

CALL MULT(AA.AA,DD,NM,NM,NM)

CALL MULT(BB,CC,AA,NM,NBC,NM)

DO 100 J=l.NM

DO 100 J=l.NM

100 D(I ,J)=DD(I ,J)+AA(I ,J)*SCALAR

*C. STORE DD ARRAY ON DATA-COMPLEX
c CALL STORE(DD,NM*NM.4.1.1)

c. COMPUTE (MULTIPLE-RECORD) EE ARRAY

C EE=(AA*AA+DD)*AA*FREQ(I)

DO 200 IF=1 ,NFR

CALL MULT(AA,AA,EE,NM,NM,NM)

CALL ADD(EE,DD,DD,NM,NM)

CALL MULT(DD,AA,EE,NM,NM,NM)

DO 300 J=l,NM

DO 300 J=l,NM

300 EE(I ,J)=FREQ(IF)*EE(1,J)

C STORE RECORD NUMBER IF OF EE ARRAY
4 ONTO DATA-COMPLEX
c CALL STORE(EE,NM*NM,5,NFR,IF)

200 CONTINUE

RETURN

END

33

Program POST
PROGRAM POST(INPUT=1O1,OUTPUT=lOl)

. C ,TAPE2=514)

COMMON X(1)

COMMON /IDENT/HDR(8)

NAMELIST/POSTINP/NM,IOPT,NFR

4 REWIND ARRAY-INPUT FILE

c REWIND 2

PRINT 5

5 FORMAT(////*EXAMPLE 1 -- POST)

C BEGINNING OF MAIN LOOP

99 CONTINUE

C READ IN HEADER-IDENTIFICATION

READ 10,HDR

10 FORMAT(8Alo)

C READ IN DIMENSIONS AND ANALYSIS OPTION

READ POSTNP

C SET UP INITIAL WORD INOEXES

IDD=l

IEE=IDD+NM*NM

IWK=IEE+NM*NM

C SET UP FIELD LENGTH

IFL=L~~F(~(~))+IwK+NM*NM+~~oB

CALL RFL(IFL)

C PASS ADDRESSES TO ARRAYS

CALL POSTEXD(X(IDD),X(IEE,X(IWK),NM

C ,IOPT,NFR)

C CONTINUE?

READ *,ISTOP

IF(ISTOP.EQ.O)GO TO 99

Program POSTDC
PROGRAM POSTDC(INPUT=lOl ,OUTPUT=lOl)

COMMON X(1)

COMMON /IDENT/HDR(8)

NAMELIST/POSTINP/NM.IOPT,NFR

WC OPEN DATA-COMPLEX

c CALL OPENDC(7LDCSAMPL)

PRINT 5

5 FORMAT(////*EXAMPLE 2 -- POSTDC)

C BEGINNING OF MAIN LOOP

99 CONTINUE

C READ IN HEADER-IDENTIFICATION

READ 10,HDR

10 FORMAT(8Alo)

C READ IN DIMENSIONS AND ANALYSIS OPTION

READ POSTNP

e READ IN DATA-COMPLEX PARAMETERS
c CALL READDCM(0)

C SET UP INITIAL WORD INDEXES

IDD=l

IEE=IDD+NM*NM

IWK=IEE+NM*NM

C SET UP FIELD LENGTH

IFL=LOCF(X(~))+IwK+NM*NM+~~~B

CALL RFL(IFL)

C PASS ADDRESS TO ARRAYS

CALL POSTEXD(X(IDD),X(IEE,X(IWK),NM

C ,IOPT,NFR)

C CONTINUE?

READ *,ISTOP

IF(ISTOP.EQ.O)GO TO 99

CC PRINT OUT TABLE OF CONTENTS
c CALL TOC(D)

c CALL STOPP(0)

EN0

c STOP

END

34

SUBROUTINE POSTEXD(DD,EE,WK,NM,IOPT,NFR) SUBROUTINE POSTEXD(DD,EE,WK,NM,IOPT,NFR)
DIMENSION DD(NM,NM),EE(NM,NM),WK(l) DIMENSION DD(NM,NM),EE(NM,NM),WK(l)

C READ IN ARRAYS AND PERFORM ANALYSIS OPTION C READ IN ARRAYS AND PERFORM ANALYSIS OPTION
* READ(P)DD c CALL READIN(DD,NM*NM,4,1)

DO 200 I=l,NFR DO 200 I=l,NFR
* READ(E)EE c CALL READIN(EE,NM*NM,5,1)

PRINT 20 IOPT PRINT 20 IOPT
20 FORMAT(/*OPTION *13* PERFORMED*) FORMAT(/*OPTION *13* PERFORMED*)

200 CONTINUE 200 CONTINUE
RETURN RETURN
END END

Also, the following BLOCK DATA must be inserted into each and every

program which will communicate with the data-complex. Following the analogy of

the file cabinet, this block data indicates how many drawers are in the cabinet,

how many folders are in each drawer, and what the labels are on each folder..

Basically, it defines the unique aspects of a particular data-complex.

The numbers chosen as normal were arbitrarily picked because they worked

for the data-complexes set up for most of the programs that use a data-complex.

Any number can be used instead.

BLOCK DATA DATACOM

C NOTE:

C

C

C

C

C

C

C

C

C

THIS BLOCK DATA INFORMS THE DATA-COMPLEX UTILITY

ROUTINES OF THE TOTAL NUMBER OF DATASETS POSSIBLE

AND THE TOTAL NUMBER OF DIFFERENT ARRAYS TO BE ALLOWED

ON THE DATA-COMPLEX CURRENTLY BEING USED, AS WELL AS

THE NAMES AND DESCRIPTIONS OF EACH ARRAY. ONCE A

DATA-COMPLEX HAS BEEN CREATED, THE NUMERICAL PARAMETERS MUST

NOT BE ALTERED IN ANY OF THE PROGRAMS USING THE GIVEN

DATA-COMPLEX. HOWEVER, THE CODENAMES AND DESCRIPTIONS CAN BE

ALTERED OR ADDED TO AT ANY TIME, PROVIDED THEY ARE CHANGED

IN ALL THE PROGRAMS UTILIZING THAT DATA-COMPLEX.

C bEFINITION OF PARAMETERS AND NAMES TO BE ESTABLISHED BY

C THIS BLOCK DATA ROUTINE.

C NDSETP TOTAL NUMBER 0~ DATASETS POSSIBLE. (NORMAL IS 10)

35

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

NARRAYS

NIND

NAMEC

NAMES

ISETR

NWORDS

NRECDS

NREC

NIND3

DIMENSION OF ARRAY "INDEX" = NDSETP+2.

THE TOTAL NUMBER OF DIFFERENT ARRAYS

POSSIBLE. (NORMAL IS 15).

TOTAL NUMBER OF WORDS IN ARRAYS "INDEX2" = ll*NARRAYS+l

(NORMAL IS 166).DIMENSIONAL OF "INDEX2" = NIND.

ARRAY OF CDDE NAMES USED TO ACCESS AND STORE ARRAYS

ON THE DATA-COMPLEX. EACH ARRAY ON THE COMPLEX HAS

ITS OWN UNIOUE CODENAME ASSIGNED IN THIS BLOCK DATA

BY THE USER.

DIMENSION OF "NAMEC" = NARRAYS

ARRAY OF GENERAL 2-WORD DESCRIPTIONS OF EACH ARRAY ON

DATA-COMPLEX, EACH NAMEC(1) MUST CORRESPOND TO

NAMES(l,I) AND NAMES(2,I). DIMENSION OF "NAMES" =

(2,NARRAYS).

ARRAY OF READ PARAMETERS DESCRIBED IN READDCM.

DIMENSION OF "ISETR" = NARRAYS.

NUMBER OF WORDS IN EACH RECORD OF EACH ARRAY ON

DATA-COMPLEX. DIMENSION OF "NWORDS" = NARRAYS.

NUMBER OF RECORDS WHICH COMPRISE EACH ARRAY ON

DATA-COMPLEX. DIMENSION OF "NRECDS" = NARRAYS.

MAXIMUM NUMBER OF RECORDS POSSIBLE IN ANY MULTIPLE-

RECORD ARRAY. (NORMAL Is 50)

DIMENSIONS OF INDEX3, USED BY MULTIPLE-RECORD

ARRAYS. NiND3=NREC+l.

COMMON/RINDX/NDSETS,NDSETN,NDSETP,ICSET,DATCOM,INDEX(l2)

COMMON/SUBINDX/NARRAYS,NIND,NINDA,IOP,IMN;I~DEX2(l66)

COMMON/RNAMEC/NAMEC(l5)

COMMON/RNAMES/NAMES(2,15)

COMMON/SETRD/ISETR(l5)

COMMON/SETSV/ISETSV(l5)

COMMON/NWORDS/NWORDS(l5)

COMMON/NRECDS/NRECDS(15)

COMMON/SUB3/NREC,NIND3,INDEX3(51)

REAL NAMEC,NAMES

36

C

C

C

C

C

C

C

C

C

C

C

C

C

C

DATA NDSETP/l O/ ,NARRAYS/15/ ,NIND/166/ ,NREC/50/ ,NIND3/51/

DATA NAMEC/lOHAA

,lOHBB

,lOHCC

,lOHDD

,lOHEE

,lOHFF

,lOHGG

/

DATA NAMES/lOHSAMPLE AA ,lOH

,lOHSAMPLE BB ,lOH

,lOHSAMPLE CC ,lOH

,lOHAA*AA+BB*C,lOHC*SCALAR

,lOHAA*AA+DD)*,lOHAA*FREQ(I)

,lOHFREQ(I)*(D,lOHD+EE(I))

,lOHFF*FF ,lOH

/

END

Part 1B: Control and data decks for PRE and POST.

Suppose two different sets of AA, BB, and CC arrays have been saved on files

ABC1 and ABC2. These arrays are to be used to generate six (6) different DD

and EE arrays, depending upon three different scalars. Each set of DD and EE

arrays is saved on a different file so it can be accessed individually without

having to skip records in order to position the file to locate the desired set

of data. The control deck and data deck comprising JOB1 will accomplish this.

Now suppose option 7, using the DD and EE arrays put on file DDEE12, and option

4, using the DD and EE arrays put on file DDEE23, are to be studied. The con-

trol and data decks comprising JOB2 will accomplish this.

Part 2B: Control and data decks for PREDC and POSTDC to execute same jobs

as in Part 1B.

The control deck and data decks comprising JOB3 and JOB4 will perform the same

computations on the same problem configuration as set up in Example lB, using

programs PREDC and POSTDC and storing all arrays on the data-complex, DCSAMPL.
.

37

PART 1B:
JOBl...

USER,...

CHARGE....

GET,PREBN.

GET,TAPEl=ABCl.

PREBN.

SAVE.TAPEZ=DDEEll.

PREBN.

SAVE,TAPE2=DDEE12.

PREBN.

SAVE,TAPEZ=DDEE13.

GET,TAPEl=ABC2.

PREBN.

SAVE,TAPE2=DDEEZl.

PREBN.

SAVE,TAPE2=DDEE22.

PREBN.

SAVE,TA?E2=DDEE23.

/EOR

ABC1 -- DOEE 1 -- SCALAR*.07

$PREINP NM=50, NBC=75. SCALAR=.07,

NFR=4. FREQ=.1,.2..3..4$

1

JEOR

ABC1 -- DDEE 2 -- SCALAR=1.2

$PREINP NM=50, NBC=759 SCALAR=1.2. NFR=4.

FREQ=.1,.2..3,.4$

/EOR

ABC1 -- DDEE 3 -- SCALAR=1.7

$PREINP NM-50, NBC=75. SCALAR=1.7.NFR4,

FREQ=.1,.2,.2..4$

/EOR

ABC2 -- DDEE 4 -- SCALAR=.07

$PREINP NM=45. NBC=609 SCALAR=.07,NFR=Z,

FREQ=.l..Z$

/EOR

ABC2 -- DDEE 5 -- SCALAR=1.2

SPREINP NM=45, NBC=60. SCALAR=1.2.NFR=E,

FREQ=1,.2$

/EOR

ABC2 -- DDEE 6 -- SCALAR=l.?

PREINP NM=459 NBC=6D. SCALAR=1.7,NFR=2,

FREQ=.l,.Z$

/EOF .

Control
Deck
JOB1

Data
Deck
JOB1

PART 2B:

JOBJ,...

USER,...

CHARGE,...

GET.PREDCBN.

GET,DCSAMPL.

PREDCBN.

REPLACE,DCSAMPL.

/EOR

ABC1 -- DDE 1 -- SCALAR=.07

$PREINP NM350, NBC=75, SCALAR=.D7,NFR-4

FREQ=.1..2,.3,.4$

ALL 1 0

DD 0 1

EE 0 1

EN0

0

ABC1 -- DDEE 2 -- SCALAR=l.Z

$ PREINP SCALAR=l.Z$

DD 0 2

EE 0 2

END

0

ABC1 -- DDEE 3 -- SCAL4R=l.7

$PREINP SCALAR=1.7$

DO 0 3

EE 0 3

END

0

ABC2 -- DDEE 4 -- SCALAR=.07

SPREINP NM=45, NBC=CO, SCALAR=.07,NFR=LS

ALL 2 0

DD 0 4

EE 0 4

END

0

ABC2 -- DDEE 5 -- SCALAR=1.2

$PREINP SCALAR=1.25

DD 0 5

EE 0 5

END

0

ABC2 -- DDEE 6 -- SCALAR=1

BPREINP SCALAR=1.7$

OD 0 6

EE 0 6

END

1

/EOF

.7

Control
Deck
JOB3

Data
Deck
JOB3

38

JOBZ....

USER,...

CHARGE,...

GET .POSTBN.

GET,TAPE2=DDEE12.

POSTBN .

GET,TAPE2=ODEE23.

POSTBN .

/EOR

ABC1 -- DDEE 2 -- SCALAR 1.2

SPOSTINP NM=50, lOPT=7,NFR=4$

1

/EOR

ABC2 -- DDEE 6 -- SCALAR 1.7

SPOSTINP NM=45 ,l OPT=4 .NFR=2$

1

/EOF

JOB4....

USER,...

Control
Deck
JOB 2

Data

CHARGE,...

GET ,POSTDCB.

GETJICSANPL.

POSTDCB.

/EOR

ABC1 -- ODEE 2 -- SCALAR 1 .L.OPTION 7

SPOSTINP NM=50. 1 OPT=7 .NFR=4$

ALL 2 0

END

Deck
JOB 4

0

ABC2 -- DDEE 6 -- SCALAR 1.7.0PTION 4

$POSTINP NM=45,10PT=4,NFR=2$

ALL 6 0

END

1

/EOF

Control
Deck
JOB 4

Data
Deck
JOB 2

The following Table of Contents is dutput by both programs PREDC and

POSTDC by using a CALL TOC(0) command in the program.
TARLE OF CONTENTS FOR DATA-COMPCEK FILE DCSRMI’C”’

DATASET 1

ARRAY ARRAY
NO. NAME

CODE
NAME

DATE TIME NO. NO.
CREATED CREATED WORDS RECORDS

UESCRlrTlDN

--------‘-‘----"---~---------------------.----
1 SAMI'I. E AA AA 77/09/19. 14.48.38. 2500 I AA ARRAY FROM AOCI. ---NM=5D,NBC=75

2 SAMrLE I30 I38 77/09/19. 14.49.01. 3750 1 00 ARRAY L-ROM ADCl. ---NM=5O,NBC=75

3 SAMPLE CC CC 77/09/19. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM=50;NOC=75

rl AAhAAt6B+CC*SCALAR 00 77/09/30. 13.03.42. 2500 1 ABC1 --- DDEE I --- SCALAR =.07

5 (LWCC)**3tBD*CC”oD EE 77/09/3o. 13.03.59. 2500 4 ADCI --- DDEE I --- SCALAR =.07

DATASET 2

ARRAY ARRAY CODE DATE TIME NO. NO. DESCRlrTlON

‘-‘O:___-__!“‘l’li_____-________’_’”rF__---_”’14~IfO___C”E”I’D_____“O~----------__________-_________-_-____
I SAlwlE AA AA 77/W/19. 14.52.10. 2025 1 AA ARRAY FROM AOCZ. ---NM=45,NBC=60

2 SAMPLE UD DO 77/09/19. 14.52.48. 2700 1 BO ARRAY FROM ABCZ. ---NM=45,NDC=60

3 SAMPLE CC cc 77/09/19. 14.53.07. 2700 1 CC ARRAY FROM ABCZ, ---NM~45,NBC=60

4 AA*AAtOD*CC*SCALAR 00 77/09/3o. 13.04.05. 2500 1 ABC1 --- DDEE 2 --- SCALAR -182

5 (BDfCC)**3tDBCCCfOD EE 77/09/30. 13.04.08. 2500 4 ABC1 --- DDEE 2 --- SCALAR =1.2

DATASET 3

ARRAY ARRAY CODE DATE TIME NO. NO.
No

‘DESCRIPTION

-_1__-_-“““~______-_------~~~~------~~~~~~~---~~~~~~~-----~~~~---~~~~~~~-------------------------------------
4 AA*AAt30+CC*SCALAR 00 77/09/3o. 13.04.14. 2500 1 ABC2 --- DDEE 4 --- SCALAR =1.7

5 (DO*CC)**3tBB+CC*DD EE 77/09/30. 13.06.21. 2025 2 AOC2 --- DDEE 4 --- SCALAR -1.7

39

DATASET 4

nRRnY ARRAY CODE DATE TIME
No. NAME NAME CREA’IED CREATED bd%S RE%DS DESCRIPTlON
--______------_---
4 M*AA+BB*cC+SCALAR DO 77/09/30. 13.05.44. 2025 I IILICZ --- WEE 4 --- SCALAR =.07
5 (OD*CC)**3+0B*CC+DD EE 77/09/30. 13.06.21. 2025 2 ADCZ --- DOEE.4 --- SCALAR =.07

DATESET 5

ARRAY ARRAY CODE DATE TIME

rsl------n~~--------------~~~~------~~~~~~~---~~~~~~~-----~~~---~~~~~----------------------~~~~~~~~~~~-

4 M*AA+BD*CC*SCALAR 00 77/09/30. 13.06.26. 2025 I necz --- ODEE 5 --- scnLnR -1.2
5 (BB*CC)**3~8B*CC*DD EE 77/09/30. 13.06.25. 2025 2 ABC2 --- DDEE 5 --- SCALAR -1.2

DATASET 6

ARRAY ARRAY CODE DATE TIME

“O:------r”TE--------------~~~~------~~~~~~~---~~~~~~~-----~~~~---~~~~~----------------------~~~~~~~~~~~-
4 AA*AA+BO*CC*SCALAR 00 77/09/30. 13.06.27 2025 1 ABC2 --- DDEE 6 --- SCALAR =1.7

5 (BO’CC)**3+BBCCCfDD EE 77/09/30. 13.06.28 2025 2 AOC2 --- ODEE 6 --- SCALAR =1.7

To the reader, the above sample jobs probably seem to be about the same

amount of work, with possibly the second example using the data-complex appear-

ing to be a little more. Keep in mind, however, the advantages gained so far

with the data-complex; namely,

(1) the smaller number of files to be maintained,

(.2) the fact that data management and manipulation is done using execution

time input parameters rather than control card file manipulation, and,

(3) an ability to acquire a Table of Contents which gives pertinent

descriptive information about all arrays currently on the data-complex.

Consider now the most powerful as.pect of the data-complex. Suppose it is

desired to perform option 3 in program POST using the DD array from file DDEE13

and the EE array from file DDEEll. With the programs as written, the user has

basically one option. Of course, program PRE could be altered, re-compiled and

re-executed to generate the desired DD-EE array combination. But the best

option would be to employ the following control cards to manipulate the data

files, searching sequentially thr,ough the files to obtain the desired data.

GET,DDEE13,DDEEll.

COPYBR,DDEE13,TAPE2. (copy DD array - first record - onto TAPE2)

SKIPR,DDEEll,l. (skip DD array on DDEEll) Control
Deck

COPYBR, DDEEll,TAPE2. (copy EE array - second record - onto TAPE2)

40

REWIND,TAPE2.

GET,POSTBN.

POSTBN.

/EOR

ABCl, SCALAR=l. FOR DD AND SCALAR =.07 FOR EE

$POSTINP NM=~O ,IOPT=~$

1

/EOF

J

Data
Deck

Note that with this type of data storage and transfer, the data files must

be manipulated and the programs must be completely re-loaded and executed each

time a new problem configuration is desired. With many arrays and files to keep
track of in large program systems, this could verge on the undesirable, if not

the impossible!

Obtaining the same problem configuration for the programs in Example 2

would simply require adding the following data cards into the data stream of

JOB4.

ABCl, SCALAR=1.7 FOR DD AND SCALAR=.07 FOR EE

$POSTINP NM=~o,IOPT=~$

DD 3 0

EE 1 0

END

As a matter of fact, any problem configuration using any combination of

arrays created could be run during this same program execution without reloading

the program or manipulatinq files in the control deck! At this point, for

many large programs, all new possibilities can be achieved. All kinds of problem

configurations can be set up and analyzed with extremely little effort on the

user's part, even without having pre-determined the problem configuration.

Another beautiful part of the data-complex system is that a Table of Contents

can be obtained by the user. See page 39. This enables the user to see the

descriptive parameters he has chosen to identify the data, which data-set a

particular block of data is on, the size of each block of data, etc.

41

At some point-in this discussion, the question might have occurred to

the reader of just how the arrays AA, BB, and CC were put onto the data-complex

in the first place. There are two basic ways this could have been done. They

could have been put on previous to executing program PREDC from another

program in a similar manner to the way program PREDC stored the arrays DD and

EE onto DCSAMPL. The second method, and the one employed in this case, was to

store them from an external file using a DATA-COMPLEX MANAGER program. It is

this method which will be discussed next.

Data-Complex Manager

The data-complex manager is a small independent program which simply allows

the user to manage the data stored on a given data-complex. It can receive

data in any format from an external file and store it on the data-complex. Also,

it can write out, in any format desired, any data which is already stored on the

data-complex so that it can be utilized by an external program or simply altered

and re-stored. A data-complex manager (DC-manager) program is essentially both

a pre- and post-processor for programs which use the data-complex.

The question was raised as to how the AA, BB, and CC arrays were stored on

the data-complex for Example 2. Example 3, part A is a listing of the code

used to create a DC-manager program to run in conjunction with the programs

PREDC and POSTDC in Example 2. Part B is a copy of the interactive job during

which the AA, BB, and CC arrays were stored onto the data-complex DCSAMPL from

the files ABC1 and ABC2. This DC-manager allows the user to input as data the

file names of the data-complex and binary input file. (ABC1 and ABC2 are

binary files.) Similar code could be put in if formatted files are needed.

This program allows the user to input several types of operation codes: STORE,

PRINT, WRITE, REWIND, TOC. Basically these commands are described as follows:

STORE store data into a dataset on the data-complex.

PRINT print out data stored on the data-complex to file OUTPUT.

WRITE write out data stored on the data-complex to an alternative file

in either formatted or binary form.

REWIND FN rewind file FN, where FN is the name of either a formatted or binary

input file or a formatted or binary output file.

42

TOC print out Table of Contents of entire data-complex.

TOC n print out Table of Contents of just dataset n.

Note in the following example that the same block data - DATACOM used in

programs PREDC and POSTDC must also be used with program DCMAN.

Example 3. -- Data-Complex Manager to be run in conjunction with programs PREDC

and POSTDC from Example 2.

Part 3A: Code for program DCMAN

PROGRAM DCMAN(INPUT=1O1,OUTPUT=lOl)

DCFILE=O

BINP=O

CALL OPENDC(DCFILE)

CALL OPENBIN(BINP)

CALL DCM

END

BLOCK DATA DATACOM

COMMON/RINDX/INDS~TS,NDSETN,NDSETP,ICSET,DATCOM,INDEX(l2)

COMMON/SUBINDX/NREC,NIND,NINDA,IOP,IMAN,INDEX2(l66)

COMMON/RNAMEC/NAMEC(l5)

COMMON/RNAMES/NAMES(2,15)

COMMON/SETRD/ISETR(15)

COMMON/SETSV/ISETSV(l5)

COMMON/NWORDS/NWORDS(15)

COMMON/NRECDS/NRECDS(15)

REAL NAMEC,NAMES

DATA NDSEPT/lO/,NREC/l5/,NIND/166/

DATA NAMEC/lOHAA

C ,lOHBB

C ,lOHCC

C ,lOHDD

C ,lOHEE

C /

43

DATA NAMES/lOHSAMPLE AA ,lOH

C ,lOHSAMPLE BB ,lOH

c ,lOHSAMPLE CC ,lOH

C ,lOHAA*AA+BB*C,lOHC*SCALAR

C ,lOHAA*AA+DD)*,lOHAA*FREQ(I)

C I

END

Part 3B: Interactive job session during which arrays AA, BB, and CC were

stored onto the data-complex DCSAMPL from files ABC1 and ABCZ.

/GET,DCMAN.

/GET,ABCl.

/DCMAN.

TYPE IN DATA-COMPLEX FILE NAME

? DCSAMPL

TYPE IN BINARY INPUT FILE NAME

? ABC1

TYPE IN OPERATION CODE

? STORE

TYPE IN INPUT-OUTPUT PARAMETERS

? AA -2 1 2500 1

? BB -2 1 3750 1

? cc -2 1 3750 1

? END

TYPE IN

? AA ARRAY

TYPE IN

? BB ARRAY

TYPE IN

? CC ARRAY

TYPE IN

? TOC

(Figure 12a

44

IDENTIFICATION FOR AA ARRAY

FROM ABC1 ,---NM=50,NBC=75

IDENTIFICATION FRO BB ARRAY

FROM ABC1 ,---NM=50,NBC=75

IDENTIFICATION FOR CC ARRAY

FROM ABCl,---NM=50,NBG=75

OPERATION CODE

is the response to this command)

TYPE IN OPERATION CODE

? END

.185 CP SECONDS EXECUTION TIME

/GET ,ABCZ

/DCMAN.

TYPE IN DATA-COMPLEX FILE NAME

? DCSAMPL

TYPE IN BINARY INPUT FILE NAME

? ABC2

TYPE IN OPERATION CODE

? STORE

TYPE IN INPUT-OUTPUT PARAMETERS

? AA -2 2 2025 1

? BB -2 2 2700 1

? CC -2 2 2700 1

? END

TYPE IN

? AA ARRAY

TYPE IN

? BB ARRAY

TYPE IN

? CC ARRAY

TYPE IN

? TOC

(Figure

TYPE IN

? END

IDENTIFICATION FOR AA ARRAY

FROM ABC2 ,---NM=45, NBC=60

IDENTIFICATION FOR BB ARRAY

FROM ABC2 ,---NM=45,NBC=60

IDENTIFICATION FOR CC ARRAY

FROM ABC2 ,---NM=45,NBC=60

OPERATION CODE

12b is the response to this command)

OPERATION CODE

.217 CP SECONDS EXECUTION TIME

/SAVE,DCSAMPL.

In the above example, the reader should note the response to "TYPE IN

INPUT-OUTPUT PARAMETERS". Briefly, the response is (from left to right):

(1) array codename established by user in block data - DATACOM.

(2) input parameter to indicate how an array is to be read in

-2 read in from an external binary-input file

45

-1 read in from an external formatted-input file

n>O read in from dataset n of the data-complex.

(3) output parameter to indicate to where and how the array is to be sent

-2 write out to an external binary-output file

-1 write out to a formatted-output file

n>O store on dataset n of the data-complex.

(4) number of words in one record or block of array (optional if array is

already stored on data-complex).

(5) number of records or blocks which comprise array (optional if array is

already stored on data-complex).

In the example above, it was pointed out that only a binary input file was

needed in addition to the data-complex itself. However, it is possible to have

a formatted input file, a binary output file, or a formatted output file as

well. To open these files, calls to OPENFIN, OPENBOT, AND OPENFOT, respectively,

can be inserted into to code of program DCMAN. If one simply wishes to print

out a Table of Contents and data-arrays already on the complex, then no calls

except to OPENDC and DCM need to be made.

The OPEN-file routines were written in order to keep buffer space down and

to allow variable input of file names. The buffer space for a file is incor-

porated into core only if the file is opened by a call to an OPEN-file

routine. Furthermore, names of all files opened by these routines can be input

during execution by setting FN in a CALL OPEN-file(FN) to 0 (zero). For example,

CALL OPENDC(FN) where FN=O allows the user to input a file name during execution,

while CALL OPENDC(FN) where FN=5LTAPEl would mean the data-complex file name was

fixed as TAPE1 unless the program itself was altered and re-compiled.

The utility routines have been set up to allow a great deal of flexibility

to the user while keeping the input to a minimum b.y using code names and numbers

to indicate types of options. All the parameters are completely documented

within each routine. A complete listing of all data-complex utility routines is

available.

Concluding Remarks

An attempt has been made to document some programming techniques which

46

are, perhaps, not regularly used, with the goal of aiding other researchers

in their development of programs. Five programming techniques used to decrease

core and/or increase program versatility have been described. The techniques

and their primary benefits are:

(1)

(2)

(3)

(4)

(5)

iDynamic storage allocation - Precise allocation by input of core

requirements for individual jobs; no recoding required when problem

dimensions change.
'.

Automatic core-sizing - Computation of core requirements performed

by the orogram during job execution based upon input dimensions. This

can be done several times during execution, (for example, when a

new overlay is called), thereby more precisely controlling the core

allocation to what is actually required.

Matrix partitioning - A means of handling operations involving

matrices which are too large to load into core, in sections or blocks

and of enabling one to make a more efficient trade-off between I@

and core storage requirements.

Free field alphanumeric and integer combination reads - Enables the

user to read in alphanumeric variables and integer variables using a

free field format. This is especially helpful for interactive terminal

use where alphanumeric names are a convenient'form of input for'the

user.

Incorporation of a data-complex and data-complex manager - Relieves

the user from much of the drudgery of data management and storage;

facilitates tie-ing together of programs whose inputs and outputs are

related. The application of these techniques to improve two aerodynamics

programs has been documented and other listings and sample programs

have been presented to further illustrate applications of these tech-

niques.

47

48

APPENDIX A: MEMORY SYSTEM FUNCTION

49

FUNCTION MEMORY

LANGUAGE: COMPASS.

PURPOSE:

USE:

EXAMPLE:

To allow changes in a job's field length during

execution.

IWORDS = MEMORY (IFL)

where:

IFL is the field length request para-

meter.

If IFL is greater than zero, the

field length is set to IFL.

If IFL equals zero, the field length

is set to the last word address of

program loaded (LWPR, RA + 65s).

If IFL is less than zero, the field

length ?s set to the last word

address of program loaded (LWPR,

RA + 65a) plus the absolute value

of IFL.

I WORDS is the new field length.

Macro Used: MEMORY.

The following program illustrates the use of the

MEMORY subroutine.

OVERLAY (OVL, 0, 0)
PROGRAM SAMPLE (. . .

C

C ----REDUCE FIELD LENGTH TO MINIMUM REQUIRED.

C

IWORDS = MEMORY (0)
PRINT 1001, IWORDS

1001 FORMAT (*FIELD LENGTH NEEDED FOR (0,o) =

50

*, 06)

C

C ----INCREASE FIELD LENGTH TO 60K FOR LOADING

C ----USE OF (1,O) OVERLAY.

IWORDS = MEMORY (6000~)
CALL OVERLAY (3LOVL, 1, 0)

END

OVERLAY (OVL,l,O)

PROGRAM ONE0

C

C ----DECLARE ONE WORD OF BLANK COMMON FOR

C ----EXPANSION LATER

C

COMMON BLNKCOM (1)

C

C ----REDUCE FIELD LENGTH TO MINIMUM REQUIRED

C ----FOR EXECUTION OF COMBINED (0,O) AND

C ----(1,0) OVERLAYS.

IWORDS = MEMORY (0)
PRINT 1002, IWORDS

1002 FORMAT (*FIELD LENGTH NEEDED FOR (0,o) +
(1,0) = *, 06)

C

C ----ADD 2000 WORDS TO BLANK COMMON AREA.

C

51

RESTRICTIONS:

IWORDS = MEMORY (-2000)
PRINT 1003, IWORDS

1003 FORMAT (*FIELD LENGTH WITH EXPANDED B.C. =
*, 06)

END

1. The user cannot increase his field length

beyond the maximum for which he is validated.

2. Blank common cannot be expanded from a higher

level overlay if the calling overlay has

declared blank common.

3. The field length increases and reductions

take place from the upper end of the user's

existing field length.

METHOD:

ACCURACY:

Not applicable.

All field length requests are rounded upward

to the nearest 1008 words.

REFERENCES: The macro used is described in the KRONOS

Reference Manual, pages 7-130.

STORAGE: 23a CM words.

SUBPROGRAMS USED: SYS = .

SOURCES: D. A. Hough, ISSI’, Langley Research Center.

QUESTIONS ON THE USE OF THIS PROGRAM SHOULD BE DIRECTED TO THE ACD PROGRAMMER

SUPPORT GROUP, EXT. 3548.

52

APPENDIX B: BLOCKED - EQUATIONS SOLVER

53

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE SOLVE (N, NROW, A, X, WK, IER, NCOL)

THIS ROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS WITH COMPLEX

COEFFICIENTS, USING GAUSSIAN ELIMINATION. THE AUGMENTED MATRIX

[A:B] CORRESPONDING ~0 THE SYSTEM A*X = B, 1s TRIANGULARIZED AND

THEN THE SOLUTION IS OBTAINED BY BACK SUBSTITUTION.

ARGUMENTS

N

NROW

A

X

WK

IER

NCOL

NUMBER OF COLUMNS IN A

NUMBER OF ROWS IN A

WORK AREA LARGE ENOUGH TO STORE ONE BLOCK OF ENTIRE

A-COEFFICIENT MATRIX. THE COEFFICIENTS MUST BE STORED

ON RANDOM ACCESS FILE PRIOR TO CALLING SUBROUTINE WITH

RECORD LENGTHS OF 2*16*N, (A IS COMPLEX, HENCE THE 2)

ON RECORDS 1 TO NREC. NREC IS THE.NUMBER OF RECORDS OR

BLOCKS INTO WHICH A IS PARTITIONED.

AN NROW * NCOL MATRIX WHICH, UPON ENTERING SUBROUTINE, CONTAI

THE CONSTANT MATRIX B; ON RETURN, THE SOLUTION.

A WORK AREA THE SIZE OF ONE BLOCK OF A

OUTPUT ERROR PARAMETER

0, SYSTEM OF EQUATIONS WAS SOLVED

1, SYSTEM OF EQUATIONS WAS NOT SOLVED DUE TO NON-

EXISTENCE OF PIVOT ELEMENT IN A BLOCK COLUMN.

IER SHOULD BE TESTED UPON RETURN.

NUMBER OF COLUMNS IN CONSTANT MATRIX, B.

COMPLEX A (16, 'I), WK (16, 1), X (NROW, NCOL), TEMP, R

COMMON /RTAPE/ ITAPE, INDXR (101)

NSIZE = 16

COMPUTE NUMBER OF BLOCKS (RECORDS) IN A

NREC = NROW/(NSIZE +.Ol) + 1

:NS

54

C

C

10

5

2

C

C

COMPUTE NUMBER OF ROWS IN LAST BLOCK

IREM = MOD(NROW,NSIZE)

IF(IREM.EQ.D)IREM=NSIZE

BEGIN TRIANGULAkIZATION

DO 999 IREC = 1, NREC

READ IN CURRENT BLOCK

CALL READMS(ITAPE, A, 2*N,IREC)

ILAST = NSIZE

IF (IREC.EQ.NREC) ILAST=IREM

DO 100 IR = 1 ,ILAST

SEARCH FOR NON-ZERO PIVOT ELEMENT, INTERCHANGING ROWS IF NECESSARY

IROW = IR

J = (IREC-l)*NSIZE + IR

IXROW = J

AB = CABS(A(IR,J))

IRl = IR+l

IF(AB.NE.O.O)GO TO 3

DO 5 JJ = IRl ,ILAST

AB = CABS(A(JJ ,J))

IF(AB.EQ.O.O)GO TO 10

IROW = JJ

IXROW = JJ + (IREC-l)*NSIZE

GO TO 2

IF(JJ .EQ. 1LAST)GO TO 1000

CONTINUE

CONTINUE

DIVIDE THROUGH BY PIVOT

R = A (IROW,J)

DO 25 JJ = J,N

55

TEMP = A(IR,JJ)

A(IR,JJ) = A(IROW,JJ)/R

25 A(IROW,JJ) = TEMP
P

C PERFORM CORRESPONDING OPERATIONS ON CONSTANT MATRIX

-DO 20 K=l, NCOL

TEMP = X(IXROW,K)

X(IXROW,K) = X(J,K)

X(J,K) = TEMP/R

20 CONTINUE

GO TO 4

3 CONTINUE

R = A(IROW,J)

DO 7 JJ=J,N

A(IR,JJ)=A(IR,JJ)/R

7 CONTINUE

DO 8 K=l,NCOL

X(J,K)=X(J ,K)/R

DO 8 K=l,NCOL

8 CONTINUE

4 CONTINUE

L

C INTRODUCE ZEROES IN CURRENT BLOCK

IF(IRl.GT.ILAST)GO TO 111

DO 110 JJ=IRl,ILAST

TEMP=-A(JJ,J)

DO 6 K=J,N

A(JJ,K)=TEMP*A(IR,K) + A(JJ,K)

IXROW = JJ + (IREc-l)*NSIZE

DO 30 K=l,NCOL

X(IXROW,K)=TEMP*X(J,K)*+ X(IXROW,K)

30 CONTINUE

110 CONTINUE

56

111 CONTINUE

100 CONTINUE

C

C WRITE OUT CURRENT TRIANGULARIZED BLOCK

CALL WRITMS(ITAPE,A,2*NSIZE*N,IREC,-1,O)

IRECl=IREC+l

C

c TRIANGULARIZE SUCCESSIVE BLOCKS OF A

IF(IRECl.GT.NREC)GO TO 999

DO 40 JREC=IRECl,NREC

C

C READ IN NEXT BLOCK

CALL READMS(ITAPE,WK,2*NSIZE*N,JREC)

ILAST = NSIZE

IF(JREC.EQ.NREC)ILAST=IREM

DO 200 IR=l,NSIZE

J=(IREC-l)*NSIZE+IR

DO 210 JJ=l,ILAST

TEMP=-WK(JJ,J)

DO 206 K=J,N

206 WK(JJ,K)=TEMP*A(IR,K)+WK(JJ,K)

IXROW=(JREC-l)*NSIZEtJJ

DO 230 K=l,NCOL

X(IXROW,K)=TEMP*K(J,K)+X(IXROW,K)

230 CONTINUE

210 CONTINUE ,

200 CONTINUE

C

C WRITE OUT TRIANGULARIZED BLOCK

CALL WRITMS(ITAPE,WK,2*NSIZE*N ,JREC, -1,O)

40 CONTINUE

999 CONTINUE h

C

57

C END TRIANGULARIZATION

C BEGIN BACKidORDS SUBSTITUTION

J=J+l

DO 310 IREC=l ,NREC

IREB=NREC-IREC+l

IF(IREB.LT.NREC)CALL READMS(ITAPE,A,2*NSIZE*N,IREB)

ILAST=NSIZE

IF(IREB.EQ.NREC)ILAST=IREM

DO 310 IR=l ,ILAST

IRB=ILAST-IR+l

J=J-1

Jl =J+l

DO 335 K=l ,NCOL

TEMP=(O.,O.)

IF(J.EQ.N)GO TO 330

DO 320 JJ=Jl ,N

320 TEMP=TEMP+A(IRB,JJ)*X(JJ,K)

330 X(J,K)=X(J,K)-TEMP

335 CONTINUE

310 CONTINUE

RETURN

1000 PRINT 500

IER=l

500 FORMAT(* MATRIX IS NOT INVERTIBLE*)

RETURN

END

58

APPENDIX C: FREE FIELD ALPHANUMERIC READ ROUTINES

59

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

SUBROUTINE CONVERT(IWORD,ITYPE)

THIS SUBROUTINE CONVERTS A CARD IMAGE STORED IN ARRAY CARD

TO ALPHANUMERIC OR INTEGER WORDS IN A FREE FIELD MANNER.

WRITTEN BY S.H.TIFFANY 76/10/20

ARGUMENTS

IWORD THE ADDRESS OF WHERE THE CONVERTED WORD IS TO BE STORED

ITYPE THE TYPE OF CONVERSION REQUESTED

=0 ALPHANUMERIC CONVERSION BLANK FILL

=l INTEGER CONVERSION

=2 ALPHANUMERIC CONVERSION ZERO FILL

USAGE:

COMMON/CARD/ISTART,CARD(80)

READ(INPUT,lO)CARD
* 10 FORMAT(80Al)

ISTART=l *
*cc
*
*cc
*
*cc
*
*
*
*
*

CONVERT THE FIRST NON-BLANK COLUMNS TO AN ALPHANUMERIC WORD

CALL CONVERT(WORD,O)

CONVERT THE NEXT SET OF NON-BLANK COLUMNS TO AN INTEGER

CALL CONVERT(IWORD,l)

TEST ISTART TO DETERMINE IF END-OF-CARD HAS BEEN REACHED

IF(ISTART.GT.80)GD TO 20

ETC.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

COMMDN/CARD/ISTART,CARD(80)

REAL MINUS

60

INTEGER WD

DATA BLANK,COMMA/lH .,lH,/

DATA MINUS/lH-/

IM=l

WD=lOH

DO 10 IS=ISTART,80

CD=CARD(IS)

IF(CD.EQ.BLANK.OR.CD.EQ.COMMA)GO TO 50

10 CONTINUE

IS=81

50 CONTINUE

ISl=IS-1

ISTOP=IS

60 CONTINUE

ISTOP=ISTOP+l

IF(ISTOP.EQ.81) GO TO 70

CD=CARD(ISTOP)

IF(CD.EQ.BLANK.OR.CD.EQ.COMMA)GO TO 60

70 CONTINUE

IS2=ISTART+l

IF(ITYPE.EQ.l)GO TO 100

FORM=lOH(Al)

ENCODE(lO,FORM,WD)CARD(ISTART)

IF(IS2.GT.ISl)GO TO 99

DO 20 I=IS2,ISl

Il=I-ISTART

ENCODE(10,30,FORM)Il

30 FORMAT(2H(A,I1,4H,Al))

ENCODE(lO,FORM,IWORD)WD,CARD(I)

WD=IWORD

20 CONTINUE

IF(ITYPE.EQ.2)IWORD=IWORD.AND.MASK((IS1-ISTART+l)*6)

GO TO 99

61

100

110

120

98

99

*

*

*

*

*

*

*

*

*

CONTINUE

CD=CARD(ISTART)

IF(CD.NE.MINUS)GO TO 110

ISTART=ISTART+l

IS2=ISTART+l

IM=-1

GO TO 100

CONTINUE

WD=C

CALL SHIFT(CD,WD)

IF(IS2.GT.ISl)GO TO 98

DO 120 I=IS2,ISl

CD=CARD(I)

CALL SHIFT(CD,WD)

CONTINUE

CONTINUE

IWORD=WD*IM

CONTINUE

ISTART=ISTOP

RETURN

END

IDENT SHIFT

SHIFT THIS ROUTINE PERFORMS INTEGER CONVERSION OF ONE COLUMN

IMAGE FOR SUBROUTINE CONVERT

S.H.TIFFANY 76/10/20

*CALL SHIFT(CD,WD)

ARGUMENTS:

CD ONE WORD CONTAINING ONE COLUMN IMAGE IN LEFT MOST

BITS

WD ONE WORD CONTAINING PARTIALLY CONVERTED INTEGER WORD

UPON RETURN WD=lO*WD+(CD)

62

ENTRY SHIFT

TRACE VFD 42/OLSHIFT,18/SHIFT

SHIFT DATA 0

SX6 A0

SA6 AOSAVE

SAO Al

SAl Xl

SA2 AO+l

SA2 X2

BX6 Xl

AX6 54

sx5 33B

IX6 X6-X5

MX3 54

BX3 -x3

BX6 X3*X6

sx3 12B

IX3 X3*X2

IX6 X3+X6

SA6 A2

SAl AOSAVE

SAO Xl

EQ SHIFT

AOSAVE DATA 0

END

63

REFERENCES

1. Control Data Corporation. FORTRAN Extended Version 4 Reference Manual.

Publication No. 60497800, 1976.

2. Morino, L.: A General Theory of Unsteady Compressible &ten-&ial. Aero-

dynamics. NASA CR-2464, December 1974.

3. Giesing, J. P.; Kalman, T. P.; and Rodden, W. P.: Subsonic Unsteady

Aerodynamics for General Configurations, Part 1, Vol. I - Direct

Application of the Nonplanar Doublet-LatticeMethod.-AFDL~Y-R-71-5,

1971.

64

LOAD hAP - SAMPLE

FWA OF THE LOAD 311

LWA +l OF THE LOAD 35725

TRANSFER ADDRESS -- SAMPLE 4223

0
CENTRAL PROCESSOR COMMUN,ICATION I

I II

BUFFERS

PROGRAM CODE

10000 -
A MATRIX

(reserved)

B MATRIX
(reserved)

20000

1

C MATRIX
(reserved)

30000 -

SYSTEM ROUTINES

36000 :

Figure 1. - Core image diagram of Example 1, sample

program without dynamic storage allocation.

65

LOAD MAP - SAMPLE

FWA OF THE LOAD 111

LWA +1 OF THE LOAD 17273

TRANSFER ADDRESS -- SAMPLE 4223

0
CENTRAL PROCESSOR COMMUNICATION

111 -
BUFFERS

PROGRAM CODE

1OOOD -

SYSTEM ROUTINES

17000
DYNAMICALLY . A MATRIX B MATRIX C MATRIX

STORED b .-breathing space
ARRAYS

Figure 2. - Core-image diagram of Example 2, sample

program with dynamic storage allocation.

66

INPUT DATA

:. 27. 34. ;: 22: 2 1: 5:
:: 22: 33: 44: 55: 5. :: :- 44:
10. 26.

33.
30. ii

55:
10. 20. 30. 40:

50. 60. 70.
50.

10. 20.
60. 70.

30. 40. 50. 60.
10.

70.
20. 30. 40. 50. 60. 70.

OUTPUT FROM EXAMPLE 1 - SAMPLE PROGRAM WITHOUT DYNAMIC STORAGE
FIELD LENGTH FIXED AT APPROXIMATELY 36000B

1.00 1.00 1.00 1.00 1.00
2.00 2.00

1.00 1.00
2.00 2.00 2.00

3.00
2.00

3.00 3.00
2.00

3.00 3.00
4.00

3.00
4.00

3.00
4.00 4.00 4.00

5.00 5.00
4.00 4.00

5.00 5.00 5.00
10.0

5.00
10.0

5.00
10.0 1O.l.l

20.0 20.0 20.0 20.0
30.0 30.0 30.0 30.0
40.0 40.0 40.0 40.0
50.0 50.0 50.0 50.0
60.0 60.0 60.0 60.0
70.0 70.0 70.0 70.0
280. 280. 280. 280.
560. 560. 560. 560.
840. 840. 840. 840.
.112E+04 .112E+04 .112E+O4 .112E+04
.140E+04 .140E+04 .140E+04 .140E+04

.052 CP SECONDS EXECUTION TIME,

OUTPUT FROM EXAMPLE 2 - SAMPLE PROGRAM WITH DYNAMIC.STORAGE USING
/ /-COMMON

FIELD LENGTH NEEDED FOR THIS RUN IS 017517B

1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 2.00 2.00 2.00 2.00 2.00 2.00
3.00 3.00 3.00 3.00 3.00 3.00 3.00
4.00 4.00 4.00 4.00 4.00 4.00 4.00
5.00 5.00 5.00 5.00 5.00 5.00 5.00
10.0 10.0 10.0 10.0
20.0 20.0 20.0 20.0
30.0 30.0 30.0 30.0
40.0 40.0 40.0 40.0
50.0 50.0 50.0 50.0
60.0 60.0 60.0 60.0
70.0 70.0 70.0 70.0
280. 280. 280. 280.
560. 560. 560. 560.
840. 840. 840. 840.
.112E+04 .112E+04 .112E+04 .112E+O4
.140E+04 .140E+04 .14OE+O4 .140E+04

.053 CP SECONDS EXECUTION TIME

Figure 3. - Input and output for sample runs of Examples 1 and 2.

67

, PROGRAM

AND

SYSTEM

CODE
c

I- A -- NR*NC

I B -- NC*NM

I ~~ C -- NR*NM
rbreathing space

Figure 4. - Core-image diagram of Example 3,

sample program using dynamic

storage allocation without blank

common.

68

500008

OVERLAY(SAMPLE,O,O)

PROGRAM MAIN

SYSTEM ROUTINES

OVERLAY(SAMPLE,l,O) OVERLAY(SAMPLE,P,O)

PROGRAM ONE PROGRAM TWO

DYNAMIC CORE

DYNAMIC CORE

-65000B

Figure 5. - Core image diagram of an overlayed program with dynamic

storage allocation and automatic core-sizing.

.69

4

(OJN
Program
OSUSSA

(1 m (4 30) (5so

INITIAL MATRIX DNWASH SOL GFORC
I

A
FREQ. LOOP

Figure 6. - Flow diagram of the modified program SUSSA.

70

OK -

10K

20K -

30K

40K -

50K

60K -

70K

1OOK -

1lOK

12DK -

130K

140K -.

150K

160K -

BUFFERS

SUSSA PROGRAM CODE

ARRAYS

SUBROUTINES:
SOLUTN

DATA DNWASH CCGELG
COODPT MODSHP COEFF
CHECK SYMSURF AVERAG
PREPRO CUBSPL PHI
GEOMET PRINTA VELXYZ
VEC123 PRINTB CPLINR

SYSTEM ROUTINES

MAXIMUM NO. OF ELEMENTS 100
MAXIMUM NO. OF MODES 9
MAXIMUM NO. OF SPANWISE BOXES 10

Figure 7. - Load diagram of original SUSSA.

71

. ,. ,, . . ,........__-_ --.--

30K -

40K -

50K -

60K -

70K -

1OOK -

10K -

I

(o,W
OSUSSA-code and buffers

20K -
I

SYSTEM ROUTINES

J

SUBROUTINES:

(1 JN Lm

ONEEXT COEFF
DATA
COODPT
CHECK
PREPRO
GEOMET
VEC123
PRINTA

C

NO.
SAMPLE RUN NO.

NO.

!2+?22% DYNAMICALLY STORED ARRAYS

(390) (490) (590)

THREEXT FOUREXT FIVEXT
DNWASH PRINTA PRINTB
MODSHP SOLUTN AVERAG

SOLVE PHI
EQUATE VELXYZ

COLINR

OF ELEMENTS 158
OF MODES 4
OF SPANWISE BOXES 16

Figure 8. - Load diagram of modified SUSSA.

72

30K -

40K -

50K -

60K -

70K -

1OOK -

1lOK -

OK _ --I_~- ~~

(0 m CODE &
1OK _ -DOUBLET LATTICE BUFFERS ,

20K - SYSTEMS ROUTINES

l j//, ARRAYS

Figure 9. - Load diagram of streamlined ICOPS version of

Doublet Lattice program on NOS system. Field

length fixed at load time for entire program.

73

40K

50K

60K

70K

1OOK

1lOK

NO. BOXES 209
NO. MODES 14

>
SAMPLE RUN

NO. RED. FREQ. 10

20K

30K SYSTEM ROUTINES

DYNAMICALLY
b STORED

ARRAYS

Figure 10. - Load diagram of modified NOS version of Doublet Lattice Program.

DATA

COMPLEX

PROGRAM

C

DC
CARDS MANAGER 4

Figure 11. - Diagram of Data-Complex program system.

75

TABLE OF CONTENTS FOR DATA-COMPLEX FILE OCSAMPL

DATASET 1

REC. ARRAY CODE DATE TIME NO. NO.
NO. NAME NAME CREATED CREATED WORDS RECORDS DESCRIPTION
------______---__---____________________---

1 SAMPLE AA AA 77/09/19. 14.48.38. 2500 1 AA ARRAY FROM ABCl, ---NM-50,NBC-75

2 SAMPLE BB BE 77/09/19. 14.49.01. 3750 1 BB ARRAY FROM ABCl, ---NM-50,NBC=75

3 SAMPLE CC cc 77109119. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM-50,NBC=75

Figure 12a. - Table of Contents for data-ComDlex DCSAMPL Drier
to Dataset 2 input.

TABLE OF CONTENTS FOR DATA-COMPLEX FILE DCSAMPL

DATASET 1

REC. ARRAY CODE DATE TIME NO. NO.
NO. NAME NAME CREATED CREATED WORDS RECORDS DESCRIPTION
_________________-______________________---

1 SAMPLE AA AA 77/09/19. 14.48.38. 2500 1 AA ARRAY FROM ABCl, ---NM-50,NBC-75

2 SAMPLE BB BE 77/09/19. 14.49.01. 3750 1 BB ARRAY FROM ABCl, ---NM-50,NBC=75

3 SAMPLE CC cc 77/@9/19. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM-50,NBC=75

DATASET 2

REC. ARRAY CODE DATE TIME NO. NO.
NO. NAME NAME CREATED CREATED WORDS RECORDS

DESCRIPTION

__--___--___-_______.--
1 SAMPLE AA AA 77/09/19. 14.52.10. 2025 1 AA ARRAY FROM ABCZ, ---NM-45,NBC=60

2 SAMPLE BB BB 77/09/19. 14.52.48. 2700 1 BE ARRAY FROM ABCZ, ---NM-45,NBC=60

3 SAMPLE CC cc 77/09/19. 14.53.07. 2700 1 CC ARRAY FROM ABCZ, ---NM-45,NBC=60

Figure 12b. - Table of Contents'for Data-Complex DCSAMPL after
Dataset 2 input.

76

.-- ._....-.. -. . . .-. , ,a .,a ,. . , , . , --....--.. ._-.-__... -----. .- ___-_-_ -. --.--__-

1. Report No.

NASA CR-3033
4. Title and Subtitle

2. Government Accession No. 3. Recipient’s Catalog No.

5. Report Date

Some Programming Techniques for Increasing Program
Versatility and Efficiency on CDC Equipment

7. Author(s)

Sherwood H. Tiffany and Jerry R. Newsom

8. Performing Orgamzation Report No.

10. Work Unit No.
9. Performing Organization Name and Address

Vought Corporation Hampton Technical Center
3221 North Armistead Avenue
Hampton, Virginia 23666

2. Sponsoring Agency Name and Address

11. Contract or Grant No.

NASl-13500
13. Type of Report and Period Covered

Contractor Report
National Aeronautics and Space Administration
Washington, DC

14. Sponsoring Agency Code

5. Supplementary Notes

NASA Technical Monitor, Mr. William M. Adams, Jr.
Final Report

6. Abstract

Five programming techniques used to decrease core and increase program versatility,

efficiency, and through-put are explained. The techniques are dynamic storage

allocation, automatic core-sizing, matrix partitioning, free field alphanumeric

reads, and the incorporation of a data-complex. The advantages of these techniques

and the basic methods for employing them are presented, and two actual program

applications which utilize the techniques are discussed.

7. Key Words Euggested by Author(s)) 18. Distribution Statement

dynamic storage allocation

automatic corelsizing Unclassified - Unlimited

data-compl?x
Subject Category 61

I
9. Security Classit. (of this report1 20. Security Clasrif. lof this pagal 21. No. of Pages 22. Rice’

Unclassified Unclassified 78 $6.00

l For sale by the Natlonal Technical Information Servlce. Sprqfleld. Vlrgrnla 22161
NASA-Langley v 1978

