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across an angle-lapped surface of a P-N junction and measuring the resultant

short circuit current Isc as a function of beam position. A detailed analysis of

the Isc originating from this configuration is presented. It is found that, for

a point source excitation, the Isc depends very simply on x, the variable dis-

tance between the surface and the junction edge. The expression for the Isc of a

planar junction device is well known. If d, the constant distance between the

plane of the surface of the semiconductor and the junction edge in the expression

for the I
sc 

of a planar junction is merely replaced by x, the variable distance

of the corresponding angle-lapped junction, an expression results which is cor-

rect to within a small fraction of a percent as long as the angle between rite

surfaces, 2 e l , is smaller than 10%

iv



i . rNTRoDucTioN

In continuation of previous work (Reference 1), we are now addressing our-

salves to the configuration shown in figure 1, which displays a cross section

through a solar cell together with typical dimensions. The bulk material, that

*

	

	 part of the Junction which shows maximum thickness d a: 200 um in Figure 1, con-

sists of uniformly-duped P material extending to the Junction edge where the

transition region between P and N material begins. The back surface of the cell

has been partially cleared of the ohmic contact, polished, and lapped in such a

manner that the plane of the back surface and the plane of the junction edge sub-

tend an angle of 2 e 1 . An electron beam is directed toward the surface, excites

electron-hole pairs, and produces a characteristic short-circuit current Isc•

An analysis of the Isc under the circumstances depicted in f=igure 1 has

been done by Hackett (Reference 2). His result can be stated in our notation as;

I	 - e S	
e & cos (2 9 1 )/L + 1 - tl/cos (2 61) e- & cos (2 e 1 )/L	 a-x/L

sc	 1 + n/cos (2 01)
(1)

where a is the electronic charge, S0 the strength of the point source of electron-

hold pairs, L the diffusion length of the minority carriers, and q is given by

(Reference 1):

n - Ls/D
	

(2)

Equation (1) is valid only for x/L »l. For moderately low surface recombination

velocities, s, of the order of 10$ cm/sec and taking I . 50 um and the diffusion

constant for 10 0 cm P material (Reference 3) D - 27 cm  see -1 , n turns out to

be 1.85. Since in this case, one and n/cos (2 6 1 ) are comparable in magnitude,

1
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the effect of increasing the angle between the two planes has an effect <dentical

with an increase of the surface recombination velocity, a. Also, since C, the

-penetration depth of the electron beam (essentially the position at which maxi-

am pair creation occurs) only depends on the beam energy, it is puzzling that,

according to Equation (1), the effective penetration depth decreases with as

increasing angle between the surface and the junction plane. These are strange

features of expression (1) which must be explained. In the following pages we

shall analyze the configuration represented by Figure 1 and show that the unphys-

ical behavior of Equation (1) is due to the failure of not taking the boundary

c:)nditions, prevailing at the surface of the solar cell and the junction edge,

properly into account. Althoragh they will be shown in detail later ou together

with the limitations inherent to the model, we will give here the pertinent

results and compare them with Equation (1).

Already implicit in Hackett's work (Reference 2) and also as derived by the

author* is the expression for the I se generated by a point source excitation valid

for a planar junction (a junction in which the surface and the junction or deple-

tion layer edge form parallel planes a constant distance d apart, the material

consisting of a uniformly-doped extrinsic semiconductor). It is given by:

I

	

	
cosh W Q + n sinh (&JL)	 (3)

e
i	 sc	 U cosh (d L) + n sinh d L)

The important result to be derived in the next section consists now of the fol-

lowing statement: If the surface plane of the semiconductor is tilted with

respect to the plane of the junction edge as shown in Figure 1, we merely have

*See Reference 1 Part 11, Equation (0) for the general case.
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We notice that Equation (4) does not exhibit the unphysical features of

Equation (1), and we also notice that Equation (4) and Equation (1) become iden-

tical if cos (2 01 ) - 1. In all practical cases the angle $1 is rather small,

ranging from 5° to 0.5% since solar cells consfst of flat and thin wafers and

the approximation cos (2 81 ) - 1 is a good one indeed. We shall however, show in

the next section that the result (4) is still valid even when cos (2 0 1 ) # 1.

However, we hasten to say that if 8 1 becomes larger than about 15 0 , the approxi-

mations inherent in the derivation of the simple result stated above become

rapidly more and more unacceptable as the angle increases. Resorting to numerical

analysis then becomes the only alternative, but fortunately, for the small angles

encountered in practice, there is no need to deviate from the simple expression

(3) (with d replaced by x of Figure 1).

4



11. ANALYSTS

-D 3N
an

 N,

at the surface of the s€miconductor and

N - 0,	 (6b)

at the junction edge. The meaning of the various symbols in Equations (5) and

(6) are identical with those used in previous papeis of this series (Reference 1)

but are explained again for the convenience of the reader: L is the diffusion

length of the minority carriers, D is the diffusion constant, N is the number

density of minority carriers, S (x, y, z) is the source function or the number

of excess carriers produced by the electron beam per cm  per second. Finally,

a signifies the surface recombination velocity and n the outward normal to the

surface. The negative sign in Equation (6a) is due to this choice. We like to

emphasize again that Equations (5) and (6) are only valid if Shockley's junction

theory applies (Reference 1). Low-level injection conditions are therefore

assumed throughout.

Let us now look at Figure 1. The boundary conditions (6a) and (6b) have

to be satisfied at the two inclined planes shown there. It is obvious then to

employ a cylindrical coordinate system with the z axis perpendicular to the plane

(6a)



cif the paper on which Figure 1 is shown to the reader and located at the inter-

section of the two planes depicted there, one being the surface, the other being

the junction edge. The radial distance r from the z axis constivites the second

coordinate, ons 3, the angle measured counterclockwise around the z axis, com-

pletes the specification of the coordinates. For convenience we define the zero

angle 8 - 0 to be situated half way between the, by now notorious, planes defin-

ing the junction geometry (see Figure 1). Therefore, 6 - $1 constitutes the

equation for the plane of the semiconductor surface and 6 - -9 1 signifies the

equation for the plane of the junction edge.

The diffusion length L for minority carriers is of the order of 100 um for

solar cells*. The distance x (defined in Figure 1) is of the same order of

magnitude. A 20 keV electron beam possesses a range of 4 um (Reference 1). The

radius of the interaction volume produced by the beam is about a third of that

(Reference 1). The penetration depth C is of the order of the range or, more

likely, smaller. rmax is defined as the distance between the point of intersec-

tion of the two planes (se- Figure 1) and the edge at which the angle-lapping was

started and is given by dlsin (2 0 ) wistc'h turns out to be for d - 200 um and

01 - 5% rmax - 1152 um. The magnitude of these numbers clearly indicates that

a number of approximations may be introduced in turn. without undue harm to the

analysis.

The first apprixiwation to be introduced is the following:

S (x. Y . z) = SO ti (z) 6 (6 - 00) r0i 6 (r - r 0)	 (7)

*Solar cell grade semiconductor material can actually he defined that way.
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The significance of this choice for the source function S is rather readily under-

stood. A point source of strength, S0, (pairs created per second) is located at

the position z - 0, r - r0 , and 8 - 80 {80 < 81 } in our cylindrical coordinate

system. The Dirac 6-function for the radial coordinate is defined by

•	 m

r dr r01	(r - r0}	 1,	 {g}

0

as is customary.

Transcribing the boundary condition (6a) into our cylindrical coordinate

system, it becomes:

1 aN =
 -
 s

	r o	 D N,
	 at e = 81
	 (q)

This boundary condition together with the diffusion equation (S) leads to a sys-

teat of equations which is not separable, and it is therefore impervious to a simple

analytical solution. However. the choice (7) for the source function, dictated

by the prevailing magnitudes of the parameters involved in this anal ysis, makes

it rather obvious to introduce a second approximation, viz.:

s r

	

N -	 N,	 at 8	 8 1 9 	(10)

•	 with r0 the radial position coordinate of the point source (7). In order to

ascertain the significance of this second approximation. let us notice first that

in the two extreme cases, s - 6 as well as s - -, the replacement of r by r 0 is

Immaterial. since then either ".r'a6 - 0 for s = 0, or N - 0 for s - - Independent

of r. On the oth,ir hand. If s has an intermediate -iaiue, Equati:3n (10) consti-

tutes a true apprtximation. To see whether this approximation is not harmful to

7



the subsequent analysis, let us consider the situation in more detail. The num-

ber density of excess carriers diffusing outward from the interaction volume has

reached a value of roughly a-2 . 0.15 of its peak value at the ' *eraction volume

2L or two diffusion lengths away. Those arriers which happen to reach the sur-

face and are annihilated by traps residing there, two diffusion lengths away, 	 #

will encounter a trap density which is slightly lower or higher than that pre-

vailing at r . r 0 if the approximation (10) is made. But the number of carriers

reaching the surface at a distance 2L away from the interaction volume is only

small fraction of those being collected by the Junction. We must remember that

X < 200 um and L - 100 um in our example, typical for solar cells. This state of

affair:, .i.i be put in another way. The correct boundary condition (9) makes the

product a r variable as r is changed. The approximate boundary condition (10)

insists on a constant product a r0. As long as r 0 '> L the. approximation (10) is

excellent. We now realize that the approximation we are discussing is essentially

a sauall angle approximation in the sense that

2L/r0 = 2 ain (2 0 1 ) L/x — 1,	 (11)

must be satisfied in order Ciat the approximation (10) is valid.*

Keeping in mind that the approximations (7) and (11) are usually quite well

satisfied, the analys a proceeds along customary lines. First we find a complete

orthonormal act of functions in the angular variable 0 which satisfies the

*We note that condition (11) may well be satisfied for larger angles p 1 provided

that L << x.

8



tan (2 in) - - s r 
0
D 

2 
tn,	 (13}

for n - 0, 1, 2, ... etc. In terms of these functions the angular d function

occurring in Equation (7) can be written

CO

d (8 - 80) = 1: Fn (8 0) Fn (8).	 (14)

n=0

The choice for trigonometric functions for F n is dictated by the structure

of the La Place operator V 2 in cylindrical coordinates. Continuing, we recall

the fact that (Reference 5):

m

r01 d (r - r 0) =	 k dk Jm (k r0) Jm (k r),	 (15)

0

6

a

9



re a is an arbitrary integer and 3 the Wesel function of order m. The

If we now adopt the "ansatz":

N (r, 0, z)	 f	 di	 k dk Gnm (k, 0 J  (k r) fill 
(0) eii_z

n-0	 fOO

(17)

we note that the boundary conditions are automatically satisfied by virtue of the

choice (12) for the angular functions Fn . All which is left to do is to satisfy

the diffusion equation (Equation (5)) with the source term given by Equation (16).

But this is a matter of simple albegca with the result

-1	
sin 4 2_ ^1

n

J  (k ra) En (00 
`gy m, z to '
	 (1R)

n 1

10



If we now choose 01 = 1414M. with an arbitrary integer N, we are assured that

En
/0 1 Is (2n + 1) N is indeed integer for all n. Choosing the angle between the

semiconductor planes to be 100 , for instance (8 1 R 5°), we have N - 9; for 5"

(8 1 N. 2.5 * ) we have N - 18 etc. It becomes obvious now that an analytic continu-

ation performed on the index of the hessel functions validates Equation (18) for

arbitrary values of 0 1 . The excess minority carrier density N is now completely

determined via Equations (18) and (17). But we are not particularly interested

in this quantity since it is rather difficult to observe directly. Here, as in

the previous papers (Reference 1), we are concerned with the short circuit current

1$c , a quantity which can be measured with ease. It is given by:

Ise ^ e Adr	 dz r-1 
3

it	

0

	

To
	

(20)
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In the appendix it will be shown that expression (21) is equivalent to

•

cosh 
[ra 

(9 1 - 
°a

)IL) + 9 sinh Ira (8 1 - ea) /L]

Isc a 'a	 cash 2 r  0 1 /L + n sink 2 r  61lL1	
(22

if the smallest value for the index of the Eessel functions, t 0!8 1 , is not

smaller than S. The error introduced by identifying Equation (21) with

Equation (22) will also be discussed, and it will be shown that the error is

always small and becomes totally negligible as 
81 

approaches zero, as of course

it should.

Realizing that for small angles

2 r  el = x ,	 r  (9 1 - 8a) - & ,	 ( 23)	 •

where x is the distance between the two inclined surfaces of Figure 1, and C is

the penetration depth of the SEM beam, we see that Equation (22) goes over into

Equation (3) with d replaced by x, thus proving our original claim.

12



III. SUMK4kRY

The result for the I we have derived and which is given by Equation (22)

is surprisingly simple, since it says that whether or not the pertinent surfaces

of the semiconductor junction are plane parallel as in an ordinary solar cell or

#	 angle-lapped, and therefore inclined as shown in Figure 1, the same expression

for the Ise as a function of L etc. applies. This is of course subject to a

giber of approximations which we like to enumerate again. There are three

approximations basic to our result ether than the assumption of uniform doping

and Shoockley's low level injection theory. The first one is minor and is satis-

fied almost always. It is the assumption of a paint source as the gener"tor of

excess electron-hole pairs. In fact, the radius of the interaction volume, being

of the order of 1 pm, is small compared to both L and x which are of the order

of 100 tam.* The second approximation, the small angle approximation imbodied in

Equation (11), is always well satisfied for solar cells. The third approximation,

the simplification of the integral (M) of the appendix, is also a small angle

approximation. The analysis shown that if the angle between the two planes of

Figure 1 is less than 10% the expression (22) for the 1 $c is excellent.

M

*This is to be compared with Reference 1, Part 11, where this approximation was
not possible.
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APP ENDIX

PROOF OF THE EQUIVALENCE OF EQUATIONS (21) AND (22) OF THE TEXT

For the convenience of the reader we repeat Equation (21) here.

a	 -1	 sin 4 1	 -^

I sc = e S
0	k dk (k2 + L-2 }	 J t 

	
(k r0) $ 1 - 4 1 

n

n=0 f0,0 n 1	 n
s

81+8fl
sin in 	 $ 

1	
(Al)

Consider the integral

Im (r0 /L) =	 k dk (k2 + L 2)	
Jm 

(k r0)

0

-1
=	 x dx (x2 + r2 /L2 )	 Jm (x)	 (A2)

fl

This may be rewritten as:

m

Im =	 dx f dt a-xt Jm (x) cos [(r0/L) t]	 (A3)

fo 	 0

interchanging the order of integration and performing the integration over x

yields:

m

I 
	 dt ( 1 + t2)

-1/2	 1J2

[(1 + t2) 	 -
 
t,	 cos [(r0/L)t]	 (A4)

0

15



I

mO 

dy a-My cos [(sinh y) r0/L]	 (A6)

For small enough angles, certainly for those angles which satisfy the approxima-

tion (11) of the main text, r 0/L tends to be large. Therefore, only small

values of y may be considered. Otherwise the cos term oscillates so rapidly that

little contributions toward the integral arise.* Furthermore, for large values

of y (y > 1) the exponential cuts down the amplitude of the integrand tremen-

dously particularly for large m (m > 5).** Therefore, the argument of the cosine

in Equation (A6) may comfortably be replaced by y r 0/L and the value of the inte-

gral becomes

I (r /L)	 m	 (AJ)
M 0	

m2 + (r0/L)2

Identifying m with 
to/g1 

as suggested by Equation (Al), we obtain now for the

Isc the following expression:

-1 E	 £ 8	 sin 4 i	 8+ 8
n l	 n	 1	 0e	 -	 sin	 ksc	 fl 

n fl 
t2+ 	 (r0 81/L)2	

4 kn	n	 81

(A$)

*The integral (A6) converges even for negative m les3 than one!

**m is of course given by to/9 1 from Equation (Al), and, therefore, a large m
again signifies a small angle 81.

a

4
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If we let 0 1 - 0 and at the same time let r0 -+ m in such a manner that the

product r0 e1 stays finite, the sum (A8) must go aver into the expression for

the Isc corresponding to the planar case (plane parallel surfaces of the

untreated junction) given by Equation (3) of the text. Furthermore, we notice

from Equation (12) of the main text that Equation (A8) is nothing else but an
a

expansion of Isc into a complete set of eigenfunctions Fn (e 0). We strongly

a	 suspect therefore that Equation (A$) and Equation (22) of the main text are

identical. In fact, the following identities can be proven trivially:

f

01	 e1+60
de  sin	 in	

a	
cosh [(8 1 - 8 0) r0/L]

8	 1
1

	

Rn	 1	
2 [cosh (2 8 1 r0/L) - cos (2 tn)] ,	 (A9)

R2 +

	

n	 (r 

0

0 1/L)

and

0
d8 0 sin	 in$ sinh [(8 1 -0 0) r0/L]fol 1

1

r 02

	

t 2 + r l 8	 2 181 in sinh (2 0 1 r0/L) - 0L 1 sin (2 Zn )	 (A10)

*	 n	 ( 0 1

17
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If we now add Equation (A9) to n times Equation (A10) and observe Equation

(13) of the text, we obtain the result:

81	
81 +^	 z  01

d 00 
1 s (0

0) sin	 to	
9	

= ,	 (All)

1 ) i
and this fact completes the proof that Equation (A8) and Equation (22) are indeed

s

identical. That Equations (21) and (22) are equivalent rests on the approxima-

tion Binh y s y.
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