General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
Determination of Bulk Diffusion Lengths for Angle-lapped Semiconductor Material via the Scanning Electron Microscope—A Theoretical Analysis

(NASA-CR-157352) DETERMINATION OF BULK DIFFUSION LENGTHS FOR ANGLE-LAPPED SEMICONDUCTOR MATERIAL VIA THE SCANNING ELECTRON MICROSCOPE: A THEORETICAL ANALYSIS

Prepared for Department of Energy by Jet Propulsion Laboratory California Institute of Technology Pasadena, California (JPL PUBLICATION 78-47)
Determination of Bulk Diffusion Lengths for Angle-lapped Semiconductor Material via the Scanning Electron Microscope—A Theoretical Analysis

Oldwig von Roos

May 31, 1978

Prepared for
Department of Energy
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
(JPL PUBLICATION 78-47)
A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P–N junction and measuring the resultant short circuit current I_{sc} as a function of beam position. A detailed analysis of the I_{sc} originating from this configuration is presented. It is found that, for a point source excitation, the I_{sc} depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I_{sc} of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I_{sc} of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, $2 \theta_1$, is smaller than 10°.
I. INTRODUCTION

In continuation of previous work (Reference 1), we are now addressing ourselves to the configuration shown in Figure 1, which displays a cross section through a solar cell together with typical dimensions. The bulk material, that part of the junction which shows maximum thickness d ≈ 200 μm in Figure 1, consists of uniformly-doped P material extending to the junction edge where the transition region between P and N material begins. The back surface of the cell has been partially cleared of the ohmic contact, polished, and lapped in such a manner that the plane of the back surface and the plane of the junction edge subtend an angle of 2 θ1. An electron beam is directed toward the surface, excites electron-hole pairs, and produces a characteristic short-circuit current Isc.

An analysis of the Isc under the circumstances depicted in Figure 1 has been done by Hackett (Reference 2). His result can be stated in our notation as:

\[I_{sc} = e S_0 \left[e^{\phi \cos (2 \theta_1)/L} + \frac{1 - n/\cos (2 \theta_1)}{1 + n/\cos (2 \theta_1)} e^{-\phi \cos (2 \theta_1)/L} \right] e^{-x/L} \] (1)

where \(e \) is the electronic charge, \(S_0 \) the strength of the point source of electron-hole pairs, \(L \) the diffusion length of the minority carriers, and \(n \) is given by (Reference 1):

\[n = L \phi /D \] (2)

Equation (1) is valid only for \(x/L \gg 1 \). For moderately low surface recombination velocities, \(s \), of the order of \(10^4 \) cm/sec and taking \(l = 50 \) μm and the diffusion constant for 10 Ω cm P material (Reference 3) \(D = 27 \) cm² sec⁻¹, \(n \) turns out to be 1.85. Since in this case, one and \(n/\cos (2 \theta_1) \) are comparable in magnitude,
the effect of increasing the angle between the two planes has an effect identical with an increase of the surface recombination velocity, s. Also, since ξ, the penetration depth of the electron beam (essentially the position at which maximum pair creation occurs) only depends on the beam energy, it is puzzling that, according to Equation (1), the effective penetration depth decreases with an increasing angle between the surface and the junction plane. These are strange features of expression (1) which must be explained. In the following pages we shall analyze the configuration represented by Figure 1 and show that the unphysical behavior of Equation (1) is due to the failure of not taking the boundary conditions, prevailing at the surface of the solar cell and the junction edge, properly into account. Although they will be shown in detail later on together with the limitations inherent to the model, we will give here the pertinent results and compare them with Equation (1).

Already implicit in Hackett's work (Reference 2) and also as derived by the author* is the expression for the I_{sc} generated by a point source excitation valid for a planar junction (a junction in which the surface and the junction or depletion layer edge form parallel planes a constant distance d apart, the material consisting of a uniformly-doped extrinsic semiconductor). It is given by:

$$I_{sc} = e S \left(\frac{cosh (\xi/L) + \eta sinh (\xi/L)}{0 \cosh (d/L) + \eta sinh (d/L)} \right)$$

The important result to be derived in the next section consists now of the following statement: If the surface plane of the semiconductor is tilted with respect to the plane of the junction edge as shown in Figure 1, we merely have

*See Reference 1 Part II, Equation (C2) for the general case.
We notice that Equation (4) does not exhibit the unphysical features of Equation (1), and we also notice that Equation (4) and Equation (1) become identical if \(\cos(2 \theta_1) = 1 \). In all practical cases the angle \(\theta_1 \) is rather small, ranging from 5° to 0.5°, since solar cells consist of flat and thin wafers and the approximation \(\cos(2 \theta_1) = 1 \) is a good one indeed. We shall however, show in the next section that the result (4) is still valid even when \(\cos(2 \theta_1) \neq 1 \).

However, we hasten to say that if \(\theta_1 \) becomes larger than about 15°, the approximations inherent in the derivation of the simple result stated above become rapidly more and more unacceptable as the angle increases. Resorting to numerical analysis then becomes the only alternative, but fortunately, for the small angles encountered in practice, there is no need to deviate from the simple expression (3) (with \(d \) replaced by \(x \) of Figure 1).
II. ANALYSIS

As in previous work (Reference 1), the task at hand is to find a solution of the diffusion equation obeyed by the minority carriers, to wit:

\[\frac{\partial^2 N}{\partial t^2} - L^2 \frac{\partial^2 N}{\partial x^2} = -D \frac{\partial}{\partial n} \frac{\partial N}{\partial n} \]

subject to the boundary conditions

\[-D \frac{\partial N}{\partial n} = s N \]

at the surface of the semiconductor and

\[N = 0 \]

at the junction edge. The meaning of the various symbols in Equations (5) and (6) are identical with those used in previous papers of this series (Reference 1) but are explained again for the convenience of the reader: \(L \) is the diffusion length of the minority carriers, \(D \) is the diffusion constant, \(N \) is the number density of minority carriers, \(S(x, y, z) \) is the source function or the number of excess carriers produced by the electron beam per \(\text{cm}^3 \) per second. Finally, \(s \) signifies the surface recombination velocity and \(n \) the outward normal to the surface. The negative sign in Equation (6a) is due to this choice. We like to emphasize again that Equations (5) and (6) are only valid if Shockley's junction theory applies (Reference 1). Low-level injection conditions are therefore assumed throughout.

Let us now look at Figure 1. The boundary conditions (6a) and (6b) have to be satisfied at the two inclined planes shown there. It is obvious then to employ a cylindrical coordinate system with the \(z \) axis perpendicular to the plane.
of the paper on which Figure 1 is shown to the reader and located at the intersection of the two planes depicted there, one being the surface, the other being the junction edge. The radial distance \(r \) from the \(z \) axis constitutes the second coordinate, and \(\theta \), the angle measured counterclockwise around the \(z \) axis, completes the specification of the coordinates. For convenience we define the zero angle \(\theta = 0 \) to be situated half way between the, by now notorious, planes defining the junction geometry (see Figure 1). Therefore, \(\theta = \theta_1 \) constitutes the equation for the plane of the semiconductor surface and \(\theta = -\theta_1 \) signifies the equation for the plane of the junction edge.

The diffusion length \(L \) for minority carriers is of the order of 100 \(\mu m \) for solar cells*. The distance \(x \) (defined in Figure 1) is of the same order of magnitude. A 20 keV electron beam possesses a range of 4 \(\mu m \) (Reference 1). The radius of the interaction volume produced by the beam is about a third of that (Reference 1). The penetration depth \(\xi \) is of the order of the range or, more likely, smaller. \(r_{max} \) is defined as the distance between the point of intersection of the two planes (see Figure 1) and the edge at which the angle-lapping was started and is given by \(d / \sin (2 \theta_1) \) which turns out to be for \(d = 200 \mu m \) and \(\theta_1 = 5^\circ \), \(r_{max} = 1152 \mu m \). The magnitude of these numbers clearly indicates that a number of approximations may be introduced in turn, without undue harm to the analysis.

The first approximation to be introduced is the following:

\[
S(x, y, z) = s_0 \delta(z) \delta(\theta - \theta_0) r_0^{-1} \delta(r - r_0)
\]

(7)

*Solar cell grade semiconductor material can actually be defined that way.
The significance of this choice for the source function S is rather readily understood. A point source of strength, S_0, (pairs created per second) is located at the position $z = 0$, $r = r_0$, and $\theta = \theta_0$ ($\theta_0 \leq \theta_1$) in our cylindrical coordinate system. The Dirac δ-function for the radial coordinate is defined by

$$\int_0^\infty r \, dr \, r_0^{-1} \, \delta (r - r_0) = 1,$$

(8)

as is customary.

Transcribing the boundary condition (6a) into our cylindrical coordinate system, it becomes:

$$\frac{1}{r} \frac{\partial N}{\partial \theta} = - \frac{s}{D} N, \quad \text{at } \theta = \theta_1,$$

(9)

This boundary condition together with the diffusion equation (5) leads to a system of equations which is not separable, and it is therefore impervious to a simple analytical solution. However, the choice (7) for the source function, dictated by the prevailing magnitudes of the parameters involved in this analysis, makes it rather obvious to introduce a second approximation, viz.:

$$\frac{\partial N}{\partial \theta} = - \frac{s \, r_0}{D} N, \quad \text{at } \theta = \theta_1,$$

(10)

with r_0 the radial position coordinate of the point source (7). In order to ascertain the significance of this second approximation, let us notice first that in the two extreme cases, $s = 0$ as well as $s = \infty$, the replacement of r by r_0 is immaterial, since then either $\partial N / \partial \theta = 0$ for $s = 0$, or $N = 0$ for $s = \infty$ independent of r. On the other hand, if s has an intermediate value, Equation (10) constitutes a true approximation. To see whether this approximation is not harmful to
the subsequent analysis, let us consider the situation in more detail. The number density of excess carriers diffusing outward from the interaction volume has reached a value of roughly $e^{-2} = 0.15$ of its peak value at the interaction volume 2L or two diffusion lengths away. Those carriers which happen to reach the surface and are annihilated by traps residing there, two diffusion lengths away, will encounter a trap density which is slightly lower or higher than that prevailing at $r = r_0$ if the approximation (10) is made. But the number of carriers reaching the surface at a distance 2L away from the interaction volume is only a small fraction of those being collected by the junction. We must remember that $x < 200 \mu m$ and $L = 100 \mu m$ in our example, typical for solar cells. This state of affairs can be put in another way. The correct boundary condition (9) makes the product s r variable as r is changed. The approximate boundary condition (10) insists on a constant product s r_0. As long as $r_0 \gg L$ the approximation (10) is excellent. We now realize that the approximation we are discussing is essentially a small angle approximation in the sense that

$$\frac{2L}{r_0} = 2 \sin \left(2 \frac{\theta_1}{2} \right) \frac{L}{x} \ll 1, \quad (11)$$

must be satisfied in order that the approximation (10) is valid.*

Keeping in mind that the approximations (7) and (11) are usually quite well satisfied, the analysis proceeds along customary lines. First we find a complete orthonormal set of functions in the angular variable θ which satisfies the

*We note that condition (11) may well be satisfied for larger angles θ_1 provided that $L \ll x$.

8
boundary conditions (10) and (6b), the latter being \(N = 0 \) for \(\theta = -\theta_1 \), the junction edge. It is given by

\[
F_n(\theta) = \left(\frac{\sin \frac{\theta}{\theta_1}}{\frac{\sin \frac{\theta}{\theta_1}}{\theta_1}} \right)^{-1/2} \sin \left(\frac{\theta}{\theta_1} \right),
\]

(12)

where the eigenvalues \(\xi_n \) must satisfy the transcendental equation:

\[
\tan (2 \xi_n) = -\frac{D}{8 \xi_0} \xi_1 \xi_n,
\]

(13)

for \(n = 0, 1, 2, \ldots \) etc. In terms of these functions the angular \(\delta \) function occurring in Equation (7) can be written

\[
\delta (\theta - \theta_0) = \sum_{n=0}^{\infty} F_n(\theta_0) F_n(\theta).
\]

(14)

The choice for trigonometric functions for \(F_n \) is dictated by the structure of the Laplace operator \(\nabla^2 \) in cylindrical coordinates. Continuing, we recall the fact that (Reference 5):

\[
r_0^{-1} \delta (r - r_0) = \int_{0}^{\infty} k \, dk \, J_m(k \, r_0) \, J_m(k \, r),
\]

(15)
where m is an arbitrary integer and J_m the Bessel function of order m. The source function of Equation (7) may now be written in terms of orthogonal functions as:

$$\int_{-\infty}^{+\infty} \int_0^\infty \frac{d\theta}{2\pi} = -\sum_{n=0}^\infty \int_{-\infty}^{+\infty} \int_0^\infty k \, dk \, e^{ilz}$$

$$J_m(k \, r_0) \, J_m(k \, r) \, F_n(\theta_0) \, F_n(\theta). \quad (16)$$

If we now adopt the "ansatz":

$$N(r, \theta, z) = \sum_{n=0}^\infty \int_{-\infty}^{+\infty} \int_0^\infty k \, dk \, C_{nm}(k, \ell) \, J_m(k \, r) \, F_n(\theta) \, e^{ilz} \quad (17)$$

we note that the boundary conditions are automatically satisfied by virtue of the choice (12) for the angular functions F_n. All which is left to do is to satisfy the diffusion equation (Equation (5)) with the source term given by Equation (16). But this is a matter of simple algebra with the result

$$G_{nm}(k, \ell) = (\ell^2 + k^2 + l^{-2})^{-1} \frac{D^{-1} \, S_0}{2\pi} \left(\theta_1 - \frac{\sin 4 \, \ell \, n}{4 \, \ell \, n}\right)^{-1/2}$$

$$J_m(k \, r_0) \, F_n(\theta_0) \, \delta_m, \ell \, n / \theta_1. \quad (18)$$
The Kroneker δ symbol indicates that the integer \(m \) must be equal to the number \(\ell_n/\theta_1 \). In general of course, \(\ell_n/\theta_1 \) is not an integer. On the other hand, Equation (15) is only valid if \(m \) is in fact an integer. But it is always possible to choose an angle \(\theta_1 \) such that \(\ell_n/\theta_1 \) becomes an integer for all \(n \). To see this more clearly and at the same time to see that the selection of \(\theta_1 \) in such a manner as to satisfy the requirement \(\ell_n/\theta_1 \) = integer for all \(n \) does not unduly restrain the possible values \(\theta_1 \) is allowed to possess, let us contemplate the case \(s = 0 \). Equation (13) reveals that the possible eigenvalues \(\ell_n \) are now given by:

\[
\ell_n = \left(\frac{n}{2} + \frac{1}{4} \right) n, \quad n = 0, 1, 2, \ldots
\]

(19)

If we now choose \(\theta_1 = \pi/4N \) with an arbitrary integer \(N \), we are assured that \(\ell_n/\theta_1 = (2n + 1) N \) is indeed integer for all \(n \). Choosing the angle between the semiconductor planes to be \(10^\circ \), for instance \((\theta_1 = 5^\circ) \), we have \(N = 9 \); for \(5^\circ \) \((\theta_1 = 2.5^\circ) \) we have \(N = 18 \) etc. It becomes obvious now that an analytic continuation performed on the index of the Bessel functions validates Equation (18) for arbitrary values of \(\theta_1 \). The excess minority carrier density \(N \) is now completely determined via Equations (18) and (17). But we are not particularly interested in this quantity since it is rather difficult to observe directly. Here, as in the previous papers (Reference 1), we are concerned with the short circuit current \(I_{sc} \), a quantity which can be measured with ease. It is given by:

\[
I_{sc} = eD \left[\int_0^\infty dr \int_{-\infty}^{\infty} dz \left(\frac{1}{\rho} \frac{\partial \rho}{\partial \theta} \right) \right] \bigg|_{\theta = -\theta_1}
\]

(20)
The electronic charge is either positive for holes or negative for electrons depending on the material under investigation. In any case, using Equations (18), (16), and (20), performing the integrations over \(t, r, \) and \(z \) gives this result:

\[
I_{sc} = e S_0 \sum_{n=0}^{\infty} \int_{0}^{\infty} k \, dk \, (k^2 + L^2)^{-1} \frac{1}{J^2_{/\theta_1} (k \, r_o)} \left(\frac{\theta_1 - \sin 4 \, \frac{\xi}{n}}{4 \, \frac{\xi}{n}} \right)^{-1} \sin \left(\frac{\theta_1 + \theta_0}{\frac{\xi}{n}} \right)
\]

(21)

In the appendix it will be shown that expression (21) is equivalent to

\[
I_{sc} = e S_0 \frac{\cosh \left[r_o \left(\frac{\theta_1 - \theta_0}{L} \right) \right] + n \sinh \left[r_o \left(\frac{\theta_1 - \theta_0}{L} \right) \right]}{\cosh \left[2 \, r_o \frac{\theta_1}{L} \right] + n \sinh \left[2 \, r_o \frac{\theta_1}{L} \right]}
\]

(22)

if the smallest value for the index of the Bessel functions, \(\xi_0/\theta_1 \), is not smaller than \(5 \). The error introduced by identifying Equation (21) with Equation (22) will also be discussed, and it will be shown that the error is always small and becomes totally negligible as \(\theta_1 \) approaches zero, as of course it should.

Realizing that for small angles

\[
2 \, r_o \, \theta_1 = x, \quad r_o \left(\theta_1 - \theta_0 \right) = \xi,
\]

(23)

where \(x \) is the distance between the two inclined surfaces of Figure 1, and \(\xi \) is the penetration depth of the SEM beam, we see that Equation (22) goes over into Equation (3) with \(d \) replaced by \(x \), thus proving our original claim.
The result for the I_{sc} we have derived and which is given by Equation (22) is surprisingly simple, since it says that whether or not the pertinent surfaces of the semiconductor junction are plane parallel as in an ordinary solar cell or angle-lapped, and therefore inclined as shown in Figure 1, the same expression for the I_{sc} as a function of L etc. applies. This is of course subject to a number of approximations which we like to enumerate again. There are three approximations basic to our result other than the assumption of uniform doping and Shockley's low level injection theory. The first one is minor and is satisfied almost always. It is the assumption of a point source as the generator of excess electron-hole pairs. In fact, the radius of the interaction volume, being of the order of 1 μm, is small compared to both L and x which are of the order of 100 μm.* The second approximation, the small angle approximation embodied in Equation (11), is always well satisfied for solar cells. The third approximation, the simplification of the integral (A6) of the appendix, is also a small angle approximation. The analysis shows that if the angle between the two planes of Figure 1 is less than 10°, the expression (22) for the I_{sc} is excellent.

*This is to be compared with Reference 1, Part II, where this approximation was not possible.
REFERENCES

APPENDIX

PROOF OF THE EQUIVALENCE OF EQUATIONS (21) AND (22) OF THE TEXT

For the convenience of the reader we repeat Equation (21) here.

\[
I_{sc} = e S_0 \sum_{n=0}^{\infty} \int_{k_0}^{\infty} k \, dk \left(k^2 + L^{-2} \right)^{-1} J_{\kappa / \theta_1} \left(k \, r_0 \right) \left(\theta_1 - \frac{\sin 4 \, \kappa / \theta_1}{4 \, \kappa / \theta_1} \right)^{-1}
\]

\[
\sin \left(\kappa / \theta_1 \right)
\]

(A1)

Consider the integral

\[
I_m \left(r_0 / L \right) = \int_{0}^{\infty} k \, dk \left(k^2 + L^{-2} \right)^{-1} J_m \left(k \, r_0 \right)
\]

\[
= \int_{0}^{\infty} x \, dx \left(x^2 + r_0^2 / L^2 \right)^{-1} J_m \left(x \right)
\]

(A2)

This may be rewritten as:

\[
I_m = \int_{0}^{\infty} dx \int_{0}^{\infty} dt \, e^{-xt} J_m \left(x \right) \cos \left(\frac{r_0}{L} \, t \right)
\]

(A3)

interchanging the order of integration and performing the integration over \(x \)
yields:

\[
I_m = \int_{0}^{\infty} dt \, (1 + t^2)^{-1/2} \left[(1 + t^2)^{1/2} - t \right]^m \cos \left(\frac{r_0}{L} \, t \right)
\]

(A4)
With the substitution

\[t = \sinh y \]

(A5)

the integral (A4) goes over into:

\[I_m = \int_0^\infty dy \, e^{-my} \cos \left((\sinh y) \frac{r_0}{L} \right) \]

(A6)

For small enough angles, certainly for those angles which satisfy the approximation (11) of the main text, \(\frac{r_0}{L} \) tends to be large. Therefore, only small values of \(y \) may be considered. Otherwise the \(\cos \) term oscillates so rapidly that little contributions toward the integral arise.* Furthermore, for large values of \(y \) (\(y > 1 \)) the exponential cuts down the amplitude of the integrand tremendously particularly for large \(m \) (\(m > 5 \)).** Therefore, the argument of the cosine in Equation (A6) may comfortably be replaced by \(y \frac{r_0}{L} \) and the value of the integral becomes

\[I_m \left(\frac{r_0}{L} \right) = \frac{m}{m^2 + \left(\frac{r_0}{L} \right)^2} \]

(A7)

Identifying \(m \) with \(\frac{f_n}{\theta_1} \) as suggested by Equation (A1), we obtain now for the \(I_{sc} \) the following expression:

\[I_{sc} = e S_0 \sum_{n=0}^{\infty} \frac{f_n \theta_1}{\frac{f_n}{\theta_1}^2 + \left(\frac{r_0}{L} \right)^2} \left(1 - \frac{\sin 4 \frac{f_n}{\theta_1}}{4 \frac{f_n}{\theta_1}} \right)^{-1} \sin \left(\frac{f_n}{\theta_1} + \frac{\theta_0}{\theta_1} \right) \]

(A8)

*The integral (A6) converges even for negative \(m \) less than one!

**\(m \) is of course given by \(\frac{f_n}{\theta_1} \) from Equation (A1), and, therefore, a large \(m \) again signifies a small angle \(\theta_1 \).
If we let $\theta_1 \to 0$ and at the same time let $r_0 \to \infty$ in such a manner that the product $r_0 \theta_1$ stays finite, the sum (A8) must go over into the expression for the I_{sc} corresponding to the planar case (plane parallel surfaces of the untreated junction) given by Equation (3) of the text. Furthermore, we notice from Equation (12) of the main text that Equation (A8) is nothing else but an expansion of I_{sc} into a complete set of eigenfunctions $F_n(\theta_0)$. We strongly suspect therefore that Equation (A8) and Equation (22) of the main text are identical. In fact, the following identities can be proven trivially:

\[
\int_{-\theta_1}^{\theta_1} d\theta_0 \sin \left(\frac{\theta_0 + \theta_1}{\theta_1} \right) \cosh \left[\left(\theta_1 - \theta_0 \right) r_0/L \right] = \frac{\xi_n \theta_1}{\xi_n^2 + \left(r_0 \theta_1/L \right)^2} \left[\cosh \left(2 \theta_1 r_0/L \right) - \cos \left(2 \xi_n \right) \right], \quad (A9)
\]

and

\[
\int_{-\theta_1}^{\theta_1} d\theta_0 \sin \left(\frac{\theta_0 + \theta_1}{\theta_1} \right) \sinh \left[\left(\theta_1 - \theta_0 \right) r_0/L \right] = \frac{1}{\xi_n^2 + \left(r_0 \theta_1/L \right)^2} \left[\xi_n \sinh \left(2 \theta_1 r_0/L \right) - \frac{r_0 \theta_1^2}{L} \sin \left(2 \xi_n \right) \right]. \quad (A10)
\]
If we now add Equation (A9) to \(\eta \) times Equation (A10) and observe Equation (13) of the text, we obtain the result:

\[
\int_{-\theta_1}^{\theta_1} d\theta_0 \ I_{sc}(\theta_0) \sin \left(\frac{\theta_1}{n} \frac{\theta_1 + \theta_0}{\theta_1} \right) = \frac{\xi}{n + (r_{\theta} \theta_1/l)^2} \]

and this fact completes the proof that Equation (A8) and Equation (22) are indeed identical. That Equations (21) and (22) are equivalent rests on the approximation \(\sinh y = y \).