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ABSTRACT

By observing the transit of various cloud features across the

Jovian disk, Terrile and Westphal (1977) have constructed limb-darkening

curves for three regions in the 4.6 to 5.1 M band. Several models cur-

rently employed in describing the radiative or dynamical properties of

planetary atmospheres are here examined to understand their implications

for limb-darkening. The statistical problem of fitting these models to

the observed data is reviewed and methods for applying multiple regression

analysis are discussed. Analysis of variance techniques are introduced to

test the viability of a given physical process as a cause of the observed

limb-darkening.

The intermediate flux region of the North Equatorial Belt appears

to be in only modest departure from radiative equilibrium. The limb-

darkening curve for the South Temperate Belt is rich in structure and

cannot be satisfactorily ascribed to any single physical mechanism; a

combination of several, as Yet unidentified, processes is likely involved.

The hottest areas of the North and South Equatorial Belts exhibit limb-

darkening curves that are typical of atmospheres in convective equilibrium.

in this case, we derive a measure of the departure of the lapse rate from

the dry adiabatic value 0~1.68), which furnishes strong evidence for a

phase transition at unit optical depth in the NEB and SEB. Although the

system NH3 -H2S cannot be entirely ruled out, the freezing; of an aqueous

ammonia solution is shown to be consistent with the parameter fit and

solar abundance data, while being in close agreement with Lewis' (1969a)

cloud models.



I. IffIit=ION

By applying a embinaticn of radiative transfer and statistical

tecl	 to infrared observations of Jupiter, we can enhance our

understanding of the radiative and dynamical processes that control the

make-up of the Jovian clouds and the deeper atmosphere. Since Jupiter's

atmosphere is widely believed to be significantly stratified in its

spectroscopically active components, observations made over limited

wavelength regions permit us to look down at levels in the atmosphere

where those components play an active role. Moreover, by analyzing the

intensity observed in different regions of the disk, some of the under- 	A_ -

lying physics of Jupiter's belts and zones can be revealed.

The 5 fan region is of n_articular interest since it is transparent

to the abundant Jovian absorbers, gaseous hydrogen, methane and aRmonis.

Gillett et al., (1969) observed that the 5 fan brightness temperature,

averaged aver a large part of the Jovian disk, was anproximtely 2300K.t̀

This value is much higher than most workers had expected and, since it 	
-

corresponds to deep atmospheric levels, was a stimulus to further in-

vestigations. Westphal (1969), in observations of the North Equatorial

Belt, sham-d that the 5 vam flux was caning fram localized hot snots with

brightness temperatures >3000K. He concluded that, if it is assumed that

the cloud layer was near the top of the convective zone, the radiation

was caning from below the clouds. Keay et al., (1973) and Westphal et al.,

(1974) produced high resolution maps of Jupiter confirming the existence

of localized hot spots. In addition, they observed a correlation of 5 M

features with visual features in color photography. High thermal flux
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soared to cam from "blue' ` or ''purple" regions whereas 'tome" or t t t

Mims were not sources of intense 5 m radiation. They specul.Ated

that this dichotomy was likely due to the absence or presence of middle

altitude red clouds. Sagan (1971) had earlier proposed that the blue

coloration was due to Rayleigh scattering at roughly the 1 bar level

when our vier is not inpeded by intervening clouds of red ctrat bores.

Westphal et al. concluded (by studying the flux emanating, from the shadow

of Io as it passed across the Javian disk) that the 5 PM flux was not re-	
4

flected or scattered sunlight but a genuine feature of radiative sources

deep within Jupiter's atmosphere.

Tb better understand the nature of son* of Jupiter's 5 um features,

Terrile and Westphal (1977) measured lint-darkening by selecting a region

of interest and measuring its brightness as it rotated arxmd the planet.

In particular, they observed the hottest emitting areas of the North aid

South Equatorial Belts (with brightness temperatures of about 250 to 2550K),	 .
	 c

t

several bright 5 gun areas in the South Tenper-t- Belt (with similar

brightness temperatures). and intermediate flux regions in the North

Equatorial Belt (with brightness temperatures near 2400K). This entailed

the use of many different images of Jupiter taken over several hours in

order to construct one limb-dares curve. Notably, this technique did

not suffer from the smearing effects of longitudinal inhomcigeneities that

would result from generating limb -darkening curves from thermal maps.

In parallel with terse infrared observations, the atmosphere and

composition of Jupiter was undergoing extensive study. Lewis (1969b) es-

tablished that if the Jovian atmosphere possessed the solar abbe of
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water and aimmia. the clouds were dominated by an aqueous ammia solu-

tion while the topmost cloud layer was solid umorda. He also showed

that if sulfur were present in solar abundance, NH4SH would fozm an im-

portant cloud layer. The infrared properties of liquid and solid watt.-,

(Irvine and Pollack, 1968; Robertson and Williams, 1971) and amrnnia

(Robertson and Williams, 1973; Robertson et al., 1975) have been investi-

gated at 5 um and are known to have very large absorption coefficients.

These 5 lan observations, together with predictions obtained from

models of Jupiter's atmosphere and the infrared properties of its con-

jectured constituents, provide a compelling reason for analyzing the ob-

served liab-darkening of various regions of the planet. In this communica-

tion, we present a combined radiative, dynamical and chemical model that

reproduces the observed limb-darkening curves.

II. RADIATIVE AND DYNAMICAL ACDELS

The plane-parallel approximation to the equation of radiative

transfer is

Td I (T.u)	 I (T,P) - S (T )	 (l)}r

Where arccos p is the angle between the line of sight and the local plane-

tary normal, T is the optical depth, I is the intensity of the radiation

and S is the source function. The optical depth is defined, in differen-

tial form, to be di = - Kdz, where K is the extinction coefficient, and

z the altitude. All quantities in (1) are considered to have been modu-

lated by the spectral response function of the InSb detector employed by
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Terri1e ad Westphal aid integrated over the ir►smrnmt' s 4.6 to 5.1 va

width. Fully. (l) can be intimated to give the lirb-darke-ting

fowtion.

I(O'VO - S (r) 
1,-1 

exp (-Th) d =t	 (2)

(_	 . 1960). 'this equation is ideally suited	 lvsis

sip Terrile and Westphal (1977) have evaluated I (0, 0 . 'thou, by in-

verting (2), we can deterndiv the sotwee function S(i).

In	 ral, the inversion is unique only if the linb-Mrkat.Ing

fu tion I (Q, ti) has a known functioml form. In the case of discrete

data (particularly data contaminated by noise) , the Inversion is not

unique and we mgt choose one of two approaches. In am approach, we cal-

culate an approxirmte im ersion kernel, k (i ,tj) , such that
i

S(i)	 ; K(i .t_) 1(0, ► i) dt;	 (3)
R•

(Sm the recent review article by Parker, 1977. fear a description of

"grtxtrali 3 inverse thmiry. "') . GmtAning (2) and (3). to require that

AO. i ') _ R` `( • v)^'-1 c\T (-: ' 1,Od1+	
(4)

"apprxximtc" the Dirac delta function. ,r (i - i ') . that Is.  that the intgm1l

of AO , i ') omr i or i' is unity and A(x , i ') is stn- ly rvnked whm i' zA-,-

premches v. 11w inversion i.Q -, e conrlete by s ify	 appixixinvite

sotwee fix—tion and an estimto of this width of A(i . it ') for di ffemit malms

of i (which. in tm-n. prLwides a masurt, of ttor characteristic %xmixk)lut iexvil

-ithint, evident in tux- zipprminnvte -,kwtrcc funct ion) . Ot'tcin (19771) i v-

cuttty mploy1Xi this toclydgw in rec-ov?ritW Ox— motui Jovian to 3ratin-c

structure from spectrally resolved tluo-rmal radLuice dzim. 11iis mo-Ovd,

h►a-er, Inxivittes mi Urect insir,ht into the plhysic;l PI-oce; see tux--At ;u
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the wurce of the infrared radiation and, mmwver, has several mathe-

matical deficiencies that are apparently not well-kwwn (sue Appendix 1).

A less general but more physically motivated approach is to cam-

struct several radiative and dynamical models and obtain their corres-

pondirg source and limb-darkening functions. These models will depend,

often nonlinearly, on a small cumber of parameters. By employing multiple

regression methods, we then obtain numerical estimates of the parameters

that are in a statistical sense most likely. By then employing analysis

of variance techniques, we can assess whether the residual errors in the

model fits are compatible with the experimental noise. This approach can

dem mstrate directly that a given physical model could be responsible

for the observed limb-darkening while other models must be rejected. It

is important to rote that the fit obtained is most accurate for -r=l, the

vicinity of the cloud tops and the region of greatest physical interest.

The reason for this is clear from (2). The source function for ¢>O depends

strongly on I(O,u) measured near the limb where instrumental accuracy is

least. The source function for T>> 1 is strongly attenuated and could vary

significantly without seriously affecting the observed limb-darkening

function. Because of the intuitive value of the method, we shall confine

our attention to this technique and turn now to a discussion of models.

A. Power Series mansion Model

Altbmgh the power series expansion

I (O, u) -nL an un	(5)

.	 has no direct physical interpretation, we choose to include it for several
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reams. The truncated lion was useful in an analysis of the limb-

daakonirT of Venus (Goody. 1%5; Win, 1975) . It can provide an es- 	 .

timate for the scatter in the data due to noise that is required in the

analysis of variance. Finally, assuming that I(O,u) is analyticand

regular, the inversion of (2) can be performed directly givinA (5) where

the soux:e function may be written

S (T) 'anTnln'
	

(6)

In one iriRtanee, the well-lawn Eddirgton appmximation, the gated

per series esian is of dial interest.

IAO . I(O ►O) (1 + 31211) (7)

This limb-darkening function results if the flux over the corresponding

frequency Par ssbacd is conserved. If the flux over the entire frequency

spectrum is conserved, we have radiative equilibrium.

S. Corwective Equilibrium Model

In our terrestrial experience.  clouds are ver y efficient infrared

absorbers of solar radiation as well as heat from the surface (additionaltv,

in Jupiter's case, heat generated internally). A warmed parcel of gas

will rise and adjust itsres 	 to that of its s 	 di	
_

A	 n	 the pressure

of which xoies according, to the equation of hydrostatic equilibrium.

dP/dr _og	 (S)	 -

where F is the pressure. o the atmospheric mass density , and g, the local

gravitational acceleration. Thermal eduction times are very slaw cm-

pared witli dynamical times and may he neglected. Thus. the resulting

__
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behavior of the parcel of gas is adiabatic and the pressure in the

parcel behaves according to

P ,, P y	 (9)

where p is the parcel's mass density and y is the ratio of specific

beats.

Assuning that the absorbers responsible for the extinction are

well -mixed with the principal atmospheric constituents, we can express

the extinction coefficient as

	

lc mw/mabs	(10)

where a is the cross-section to absorption, x is the mixing ratio of the

absorbers to the principal atmospheric constituents, and mabs is the mean

mass of a single absorber molecule. Combining (2), (8), and (10), we ob-

tain a linear dependence of pressure on optical depth, namely,

	

dP/dT = gmabs/ax
	

(11)

By terrestrial analogy, we expect clouds to have a fairly sharp top at a

lovel characterized by a temperature Tt and a pressure Pt . The discon-

tinuous boundary may result from the transition from convective to radia-

tive equilibrium or from phase changes. Defining T to be zero above the

cloud top (where we assume there to be no significant absorption),

equation (11) is integrated as

P = Pt 1 +	 T	 (12)
t

Pollack and gap-fin (1965) derived a similar expression for the Venus atcros-

phere. In their case, however, the absorber was the principal atmospheric
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constituent and x-1.

From (9) and the ideal gas law, we find

P a IT	 (13)

P'tt

Let us now assume that the clouds radiate as a black-body. By inte-

grating the Planck function from ':.6 to 5.1 tan (ass;ming a relatively

uniform response in the InSb interference filter employed by Terrile

and Westphal), we obtain the appmodmate power-law dependence	 E
B51jm a T

n 	(14)

Typical values for the eKpmmt n are 12.3 and 11.6 for temperatures

of 24&K and 25&K, respectively. Combining (12) , (13) , and (14) yields

the intensity dependence on optical depth 	 s
Snabs n Y-1

B5VM(T) = B50m (Q) 1 +	 T	 Y	 (15)

If we combine the equation of state with (8) and (9), we obtain

the dry adiabatic lapse rate

dT	 matm Yy1 g
	 (16)EZ =- T Y



trace mnatituent .) This equation Luticates how the tatperature of

our parcel of gas decreases as it riser.

Suppose that the parcel of gas has a trace of a substance that is

g a phase traz ition, for example water vapor in the terrestrial

ate, As the vapor uses, it evolves heat and precipitates

out of the parcel. Because of latent hmt it deposits in the parcel,

the lapse rate is reduced. Li particular (see liters, 1959) the term

(-y-1)1Y in (15) and (16) abould be replaced by (y -1) / m ,where n is given

by

1+1  w
Ek r

n -	 (17)

1+ R

and cp is the mean heat capacity Of an atmmspheric constituent, w the

mixing ratio of condensates to atrospheric constituents, r the ratio of

.	 the molecular weights of the condensates to that of the atmospheric con-

satituents, and L the latent Neat evolved by a single condesnsin^g tmleciAe.

Equation (16), when corrected for the condensate, defines the wet adia-

batic lapse rate. Similarly, k15) becomes

n I -1

B5 0) _ BSt^(0) 1 +van	 T	 (18)
OXIrt-

and describes the effective black body intensity as a function of optical

depth for a wet adiabat .

let us assume that the source function S(i) may be appixrdmted by

the effective black body intensity. For simplicity we write (18) as

S(x) - a(l+bi) c	(19)

9
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where a. b, and c correspond to appropriate tens in the previous

equation. Then, aVl.aying (2) , we fired

1(0.0 - a(bu)°` exp [1bu)-11 r 1tc, (bu) -11 	 (20)

where r is the inomplete G	 Function 017ranowitz arrd Stern,

1965) . A convenient formula for evaluating (20) is

n

I(O.u) - a(bt,)c exp [(b)j) -1 (r (1+c) n o n- 	 -Ki }	 (21)

where r here denotes the complete Gamma T%=tion.

C. Cloud and Intermediate pone Models

These models were employed by Terrile and Westphal (1977) in analy-

zing their data. Their cloud model describes radiation from an optically

thick, hat cloud deck passim ttnrough an optically thin, waYm, emi.ttim

layer. This may be represented by

I(0,u) - % exp(-Tw/U) + Bw 1-ems( -T ,,)	 (22)

where BH and Bw are the black body .radiation emitted from , :he hot and

wenm layers respectively, and tW is the optical depth of the wazm layer.

Radiation from an optically thick intermediate cloud deck passing throuk4,h

a cold absorbh%,; layer (I, Intermediate model) may be represented as

I(O,u) - BI eXp(-TZ /u) 	 (23)

Both of t'aese models can be e=, essed in the form

I(O,u) - a + b exp(-T'iu)	 (24)

,
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D. Thin Shell Model

It is also of interest to examine the limb-darkening function of

an atmosphere characterized by the opposite extreme: an extremely hot,

very thin emitter embedded at T D in a warm, absorbing atmosphere. The

source function used is

S(T) = a + b6(T- T 0 )	 (26)

where 6 is the Dirac delta function. The corresponding limb-darkening

function is

I(O>u) = a + bp
-1
 exp(- T 0/u)	 (27)

Although this model has no known physical counterpart, it provides a

useful measure of the impact of strong temperature variation and pro-

noutLced thermal structure on the limb-darkening function.

Although our list of models is small, it describes a wide spectrum

of behavior. The power series expansion describes virtually any con-

•	 tinuous, smoothly varying limb-darkening function. Tbreover, it can be
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used to provide an estimate of the scatter in the data due to noise.

A special case of the polynomial is the Eddington approximation which

provides an accurate representation of the limb-darkening curve when

the radiative flux is conserved over a given passband, a hint of

possible radiative equilibrium.	 W expect radiative equilibrium to be

om -j a dominant feature of high-elevation, clouds (not under the influence

of direct heating from the planer's interior) if dynamical effects are

uniqvrtant (a situation found to be the cah. on Venus by Newmann. 1975).

On the other hand, we expect that deeper clouds are dominated by dv-

nwdeal effects and	 from the suspected couWaition and tenperat,.We

range of there clouds CLewris, 1969b), subject to phase transitions in

their spectroscopically active conponents.	 For this reason, we have em-

plv, zed the derivation of the convective equilibritri model.	 Finally,

as measures of the degree of therry-il stnicture for the obsetw-d limb-

darkening, we also consider Terrile and Westphal's (1977) clotid and inter-

mediate zone models as w-11 as a thin, extremely hot shell nixtel. 	
The

source and linb-darkening functions for the different models are tabulated

A be-low.

"NEW
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Model	 Source Function	 Limb-Darkwdng Function

ion	
rho an 

Tn/n I	
nt 

an un

Convective
Equilibrium	

a(l+bT)c	 a(bu)"exp	 r 1+c, (bu)-1

Cloud and	 a, a`T`T	 a+b	 T' /u)
Intermediate
Zone	 s + b, r'—̀T

Thin Shell	 a+b&(T-Tip)	 a-+b 
u-1 

exp(-TO/11)

Table 1. Limb-Dariceninp, Properties of Various Trbdels

M. STATISTICAL IMODS1 AMID ANALYSIS

Suppose we have N measurements, at various zenith angles (arccos

= 1, ...., N) of the limb-darkening function (which we denote by Ii).

For sinple cases, a model may be considered composed of a linear combination

of M different functions of vi, say f j (it) ; j = 1.... , it. For example, a

1/ No single reference provides an adequate survey of this problem.

ti.ilston (1965) reviews some of the numerical problems associated with

least-squares techniques. Jenkins and Watt s, (1964) examuuc the theory of

mwxinm likelihood estimators and Gaussian least squares as well as pro-

viding some remarks on nonlinear problems. Graybill (1968) considers

the general linear model and some statistical tests of confidence.



per series aqwmian mploys the functims 1, u, u2 , .... , uM-1

wvd we n*ke the identification f j (u) - uj-1 . Nonlinear models will be

treated later in this section. In addi- tion , we assure that tyre is an

additive Gaussian error noise caTomit , r i , whose nwvm vanishes and has

a variance of `12 . Iberefore, we write

M

!, aj f^ (^^ i) + E i ,	 i	 1,	 N	 (28)

wttere the a, are linear canbination coefficients. We consider the error

to be Gaussian distributed, a reasonable assumption t:rm the Central

Limit `beoren. Systematic  errors, notably those due to calibration, are

not Gaussian, and are often intractable.

Since the errors `ii defined by (28) are C.aussizal distributcxi, the

probability* associated with the estimates of the a i coefficients varies as

N
	exp	 t-_ P 2]

ial

11herefore, the must probable choice of the coefficients is that wftich

minimizes

N	
mU -	 Ii _ 	ajfi 0 d	 (29)

i-1 - j -'

'Ilse process of fir.diW, the values for the a  em-fficients is call(M flit,

maxismm likelihood mctlmod aml is equivnIent to they nmetlxNl of lc.-ast

squares. In this, the liatcar case, it is also lvtown as the '4mxaltiple

regression" nudel. We therefore require that the deriy-ative of V with

respect to each ai coefficient vanish, yielding the mn- mal equations

14

4
4
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i

N	 M	 N

i-1 I
if j (tai) - k-1 ak	 iEl f 

j (u i) fk (ui)	 (30)

This set of linear equations is characterized by a matrix whose j , kth

component is given by

N

(f 
j , fk) _ i t f

J 
("d fk ( tli )	 (31)

The matrix is syttric, semi-positive definite and the system of

equations has a unique solution unless one of the functions fj(q),

evaluated at each p i , i - 1,...,N, could be represented by a linear

combination of the rc^maining functions and is the redundant.

Although superficially simple to salve, the sysum of linear

equations (30) is numericaliv ill-conditioned. For trample, an eighth

degree polynomial fit to an arbitrarily large data set will result in

the lass of twelve significant places of accuracy if a direct method

(e.g.. Gaussian elimination with pivoting) is usedl Tb reduce this

source of computational error, one should use Cram-Schmidt orthogonalida-

tion of the functions fj 60 . j - 1,....M, with respect to the inner

product operator defitu-Ni in (31) . The	 cnitrix, associated with

the non,,ial equations will then be dLkg(xv-Al :uad thw, systcm's solution will

then be trivial to obtain. A relatively recent innovition in solviav,

least-squares problenis is thc' technique of sirpilar value deco	 ,iticm.

Altl"W,h functionall y= equivalent to the (ram-Schfiddt procc-thure, it is

somewhat faster in execution. Dbrc*over, unless pxised in a certain form,

the Gran-Schmidt procedure is susceptible to nvverical instabilities.

1a--..%
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Singular value deeorposition is a very emplex procedure but is de-

scribed in detail in Lawson and Hanson (1974) and Forsythe et al.,

(1977). Also, both texts contain tested ANSI Standard Fortran pro-

grams.

Although the errors associated with an ideal experiment are in-

dependent of each other, the errors estimated by (28), where the aj

coefficients satisfy (30), are not. In fact, conbining, (28) and (30),

we find

N
E cifj (pi) a 0 for j s	 1,...,M	 (32)

i-1

So, although there are N values of e i , equations (32) introduce M con-

ditions or constraints and we are left with N M degrees of freedom.

rbreover, if we calculate the expectation value of U (the sum of the

residual variances) defined by (29), we can show that

<U> 3 
N
	 2>	 (h-R4) 02

i=1 i

The least squares estimation processes introduce a small bias (which

vanishes as the nunixx of data points becomes arbitraril y lame) due to

(32) into our estimates of the F i . By increasing the number of a j co-

efficients, equations (32) show that we reduce the noise level in each

i until the number of coefficients M duals the notnber of data noints N

acid all - i vanish (i.e., the fit is exact). This, nualitztively, is the

result shun by (33). We can amroxirutc the latter by writing

	

2^ 1	 N	 2
	

(34)

(`This result is exact only if we replace c i2 by 
`F 

i2 >.) Suppose, for

(33)
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S

ale. that we laver our lAwb-da*wnirg motion has an awt
}

repmamtatim. apart from noise. as a polynoadal of depw M.

Using (34). wee can estimate o . If we fit the data with a poly-

mmial of degree ASS'. mr estimate of o2 from (34) will rmain ap-

pmd tely the same because the decrease in the noise level is

mactly ompensated for by the denmdnator N-M. Hmover, if we use

an estimate of the polyrcudAl die MSS', we will find that the

residuals ri contain not only noise irformiation but linb-daximW-g

informtion as well. and our estimate of o2 will be too large.

Using (34) we can now define a t2 variable with N-PM degrees of

fry. rmvly

N
1	 s ti P—	(36)

i-1

If 02 is kncm (i.e., we have an absolute estimmte of our sources of

error), we can enploy the usual confidence-level tests.

If 
ky2 

is not know, the x2 test cannot be used. The problm of

finding the polynomial degree M' is then canplicatedd by the fact that

(34) is an approximation. In practice, we find that 
o2 

decreases with

increasing M, until M equals M'. For larger M. the estimate of o2

temis to oscillate amend a constant, makirW, the task of identifying, M'

very difficult.

%, modifying a technique developed by Akaike (1969) in application

to autoregressive deposition, we can construct a variable that will

better equip us to estimate M'. 1* note that, as M increases, the a,

coefficients adapt to the properties of the noise in that experimmt

_.

	

77- 	
_	 -

Ow-
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until the nwber of coefficients and data points are the same and no

residual errors ramin. Let us suppose that, newt door to Terrile

and Westphal, there was a competing group using equivalent instrumenta-

tion making the am observations at the same zenith angles. The

underlying limb-darkening function would be the sane for both grins

but the noise observed presumably would not. (The errors of course,

would be dram from the samme statistical population.) We then ask how

well the aj coefficients computed for Terrile and Westphal's observations

would match their rivals' data. That is, if their competitors observed

Intensities Ii , i-1,...,N, how large would UA be, where we define

N	
,
	 M	 2

UA = 
i 1 I

i - ,
j=

E
1 a

j fj (uj )	 ?	 (36)
=	 .

A straightforward but tedious calculation reveals that

<UA> - (	 a2 = N+M <U>	 (37)

when M>M'. As M increases beyond M', UA (as an appraKiaation to <UA>)

increases because the surfeit of coefficients are adding to UA some of

the raise level observed in the first experiment. This variable UA there-

fore provides a test of the universality of the fit. In practice, we can

only estimate <UA> by evaluating 
1(1+"/ 

(N-M) U. for increasing values

of M. The resulting locus of points is parabolic in character with M'

corresponding to the minin m. Since we have obtained UA (and not <UA>).

the points may oscillate, but the uncertainty in M' is characteristically

reduced. Finally, k wing M' 	 2, we can estimate a from (34). This value,
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ham, is not accurate anough, to pmt anything but the crudest -X2

test of significance.

As an illustration of these methods, we tabulate scare relit

quantities for polynomials fitted to Terrile and West al's obsorva-

tions.

Pulw
+^o" Case A Case B Case C

Pit Equatorial Belt South Tanperate Intermediate
salts Ibt its Belt Flux (NEB)

N 100 50 24

U
1st degree 0.1754 0,2151 0.04681
2nd free 0.1370 0.1343 0.04677
3rd degree 0.1358 0.1327 0.03532
4th degree 0.1323 0.1207 0.03667
5th 

degree
0.1316 0.1097 0.03586

0
lst ^e 0.04230 0.06741 0.04613
2nd degree 0.03758 0.05346 0.04719
3rd degree 0.03761 0.05371 0.04377
4th dew 0.03732 0.05179 ±x,04393
5th degree 0.03742 0. 04994 0.04463

UA

1st degree 0.1825 0.2363 0.05532
2nd degree 0.1455 0.1514 n.06N10

degree 0.1471 0.1558 0.05365
4th degree 0.1462 0.1475 0.05598
5th degree 0.1484 0.1397 0.05976

Table 11. Ir Series mien Parters

In Case A. the Akaike criterion would clearly select a gtmdratie fit.

•	 The oscillation in UA is not a hindrance here. In Case B. the minin i is
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reacted for a fifth degree polynomial. Hmwver, that fit (as well as

the 6th, 7th and 8th order fits) Violates to a negative intensity

at the limb and must be 	 . to consider, accordingly, a quartic

polyniamial to be appropriate. Case C is samewhe ►t ambigumn became of

the strong oscillation in UA. Although M-3 is a minimum, the oorma-

ponding aj coefficients would provide a source function that was negative

at z - 1.41 and Host be excluded. Ham, the first degree polyrx=Lal is

selected. It is Important to note that, in this case, physical and not

statistical considerations resolved the degree of the polyrzudal fit.

Nonlinear models are significantly more difficult to fit and

analyze than their linear counterparts. Instead of linear combination

coefficients aj , we will employ parameters aj , 3 - 1.2,...,M, so that we
can parallel equation (28) by writing;	 .

Ii - F(Ui ; al ,...,aM) + C 	 (38)

where the function F describes our model (such as the convective or cloud

models). Ile define the residual variance U by

N	 2
U	 [Ij - F (ui ; a,...,,aM)	 (39)

i=1

We perform a variation of the parameters aj so as to minimize U, in com-

pliance with the modmm likelihood principle. Unlike the linear case,

there may be several minima and a global search must be performed.

The maximum likelihood eat -1.mates of the parameters a, satisfy the

normal equations (derived by differentiating U with respect to aj),
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(ui al , , ► 	 F(ui ^ al . , , ,	 (Pi; a
l , ....a

1 M i t ... 'M	 (40)

The minimization of (39) or. alternatively, the solution of (40) is a

very difficult computational problem (consider the convective mil (21).

for ale) . A survey of this problem m- y' be found in Luenb er (1973) .

As in the liter case, we have N measures of the error (38) and M

constraints, equations (40). 8y linearizi F (v, , al , ... , a) , we can

demonstrate the approximate validity of (33)-(35) in the nonlinear problem.

Ttus, once we have obtained the taxium likelihood estinate of the aj

parameters, the statistical method of analysis is much the same as before.

Because of n nlinearity, there is no direct anal oque to Akaike's criterion.

In comparing the residual variances u for different models, we re-

quire, followina, (34). that they have the same number of caarters. 11m,

the intermediate zone model may be Wired with a first degree polynomial,

and the convective equilibrium, thin shell or cloud models with a secoond

degree polynomial. higher order power series must be treated can an indivi-

dual basis.

residual varia es V of the models considered are tabulated

below,

UI-0
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Variaaice Case A can B Can C

Pblynamtal	 1 0.1754 0.2181 0.04681
D	 2 0.1370 0.1343 0.04677

3 0.1358 0.1327 0.03832
4 0.1323 0.1207 0.03668
5 0.1316 0.1097 0.03586

OMWective 0.1371 0.1530 0.04683

Shell 0.1516 0.1344 0.04538

Cloud Layer 0.1444 0.1347 0,04556

Intermediaate ------ ------ 0.05466

Table III. Sumsry► of Fitted Results

For large N-M, the )(2 statistic, using (35). defined by (2x 2) -

(2N - 2M - 1) . is approximately Gamian distributed with vanishing mew

and unit variance. Singe we do not know c2 , we cannot employ the x2 test

directly. However, the a: 	 nature of the x2 distribution assures

us that relative differences between model residual variances of only a

few percent can be significant.

In Case A. the hat area of the North and South Fataitorial belts,

the quadratic power series and the convective equilibrium model provide

almost equally reliable fits. while all other models are much less probable.

The convective equilibrium fit (19) gave the parameters b and c values of

2.01 and 2.04 respectively. The value of b cold be varied over a wide

range (while that of c was adjusted in order to minimize U for a given b).
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Hmaver, the value of c did not change significantly. Since c -2, the

correspondence between the goo&*ss of the quadratic and the convective

equilibrium model fits is not macpected. We discuss the physical inpli-

cations of tors result in the next section.

lime South Ta%wate Belt is m)re problemet:ic. The investigation

of power series eqninsions for Cam B reveals a preference for a fit of

high degree, indicating significant structure. The convective equilib-

rium model is clearly rejected. However, the other three-parameter models

(the quadratic polynomial, the thin shell model and the cloud layer models)

are equally likely, statistically! We can only conclude that the physical

mechanism responsible for the behavior of the South Temperate Belt is an

amalgam of several physical processes or a region of transition between

two physical processes.

Finally, the intermmediate flux region of the North Equatorial Belt

allow for several models as possible mechanisms. The preferred degree of

a polynomial fit is unity, as we have discussed earlier, while the addition

of a quadratic term does not significantly change the results. The con-

vective equilibrium model is viable and the associated parw, ,!--er b can vary

from 1.4 to 1.6 (while c =0.9) without significantly affectIM the residual

variance. Note that the t4dington approximation carresponds to b - 1.5 and

c = 1.0. This is highly suggestive of flux conservation and radiative

vc ilibrium. We also observe that the intermediate zone model of Terrile

and Westphal is clearly rejected, while the thin shell and cloud layer

models are approximately equally probable. The latter suggests that there

is more thermal structure present than we normally associate with a state

of radiative equilibrium.
W.



Fully, let us co-raider how Lewis' (1%9a, 1%9b) mil is

comistent with these results. The hot spots have a brightness

to peviture of 250-2550K. This corresponds directly to the transi-

tion :t Lm frm aqueous aria to ice, sugWcirg that a phase

chs%e coupled through the high opacity of aqueous aima—da (and the

&Atypic mbdng that might arise from this low-lying cloud layer) to

corrective equilibrium =y be present. The intem ediate flux zone of

the North Equatorial Belt is cooler and at a higher altitude. Since

no phase transition is predicted and higher-level clouds are less

likely to be dynamically coupled to what lies below, radiative

equilibritm might be a reasonable apprcadmation to the mechanism present.

Finally, the South Teciperate Belt remains an enigma. Since it appears

to be fairly hot. it could be inte m ediate in stricture between the other

regions.

IV. CHMM OF PHASE TgAMMC+LS

In Section M. we crgued for a phase transition in the hot spots

of Jupiter's equatorial belt. From the observation thIt the value of the

convective equilibriun parmneter c = 2.04 and the identification, from

equatiotis (18) and (19), that

c - n (Y-Wo (47)

(c€. Pollack a e. Sagan, 1%5). we can now estimate n, the term defined by

(17) that shmn the degartwre from a dry adiabat. We admit n 11. 6.

Wye new assume that the atimsphere of Juniter is 88.6 7. hydrogen and

11.27. helium. from Weidenschilling, and Lewis (1973) . lhis is consistent

24
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•	 with solar aces and with the 6 Sco occultation data (Elliot

et al., 1974), Pioneer 10 ultraviolet photometer data (Carlson and

Judge, 1974), Pioneer 10 infrared radiometer data (Orton, 1975) and

the infrared spectrum determination by Houck et al. (1975). A

variation of 57. in our assumed He abundance will affect our results,

through -y,  only about 1%. A simple calculation then straws that Y = 1.42.

Combining these results, we find that u = 1.68. The latent heats of

water and ammonia are, respectively, 333.6 and 351 Joules per gram

(International Critical Tables, 1928), Now, neither water nor ammonia

will freeze at 250oK and the corresponding (Sagan and Salpeter, 1976)

P - 2 bars (water freezes at a higher temperature and ammonia at a

lower one). If they could, equation (17) would provide for mixing ratios

of 0.0452 and 0.0494. These values are 5.35 and 42.8 times the estimates

given by Weidenschilling and Lewis for solar abundance. Since, for

clouds, we expect to find an excess of the s pectroscopically active ma-

terials, these excess values are not excluded.

A mixture of water and ammonia, ^-^Avver, nrovides for a large

range of freezing points. (See Zemansky, 1968 and C stellan, 1971 for

a discussion of eutectic curves and freezing mixtures.) The eutectic

properties of aqueous ammonia solutions were investigated over half a

century ago by Potsma (1920) and Elliott (1924). At low temperatures,

water does not readily dissociate in the presence of ammonia to form

amronimi hydroxide. Anmcnia can, however, form two hydra, es , NH 3 • H2O

and NH3 '2H20 by hydrogen bonding, The two hydrates also exis ` on the

freezing point diagram. Therefore, depending on the strength of the

•	 initial aqueous em=ia solution, the sequence in which freezing tale;_

place can be very complex. Moreover, unlike the laboratory situation,



26

the behavior in the Jovian atmosphere is considerably complicated by

precipitation. Water is denser than ice which is denser than frozen

ammcnia which is denser than liquid =wnia (Kuiper, 1952). So, once

the temperature drops to that on the eutectic curve, one of the four

active constituents (H2O, NH3 '2H2O, NH3 •Y, Mi3) will begin to freeze

and either rise or sink faster than the mixture. The depletion of

this constituent from the solution charges its concentration and lowers

its associated freezing point. As the solution is buoyed higher by

convection, it further cools and loses more of one of its constituents.

As a result, the freezing point can be smeared out over as much as 1000K

(for the IIH3--NH3 -H20 system) . Since the latent heats of fusion for

water and amnonia are quite similar, and the bonding associated with the

hydrates of ammonia are quite xaeak, the latent heats of the two hydrates

should not be significantly changed and this picture remains unaltered.

Water and ammonia vapors are relatively poor absorbers from 4.6 to

. i Fui1 . a :,i cv'v c.i , as we —vnp =t both ammonia and frozen a[ mmia to form

above the water or ice clouds (from the above buoyancy ar,L^its :r_d

Lewis, I%9b), we expect that it would be very difficult to see down to

the water or ice clouds at this wavelength. [Perhaps most water vapor

that exists above the water clouds readily dissolves in the ammonia clods

and immediately freezes out. Since we expect large-scale moist convection

to occur below this level (Gierasch, 1976), the amount of venter vapor

present at lower levels will depend on %,nether we are seeing a convective

updraft or downdraft. In the case of a downdraft, the large-scale con-

vective model Predicts the presence of very little water vapor. The

r. eA -c Lion in the expected absorption from water vapor in the downdraft t
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would result in nervations of ttch deeper a hotter levels in the

.Joviaan atmaphere. The coubination, then, of a faze-out r-echinism

at highar levels and motive do drafts below old Main Larson

et al ,,'a (1975)	 todly law water vapor abundso--* and high observed

brightness	 ature

The possibility of hydrogen sulfide plaviw, a for role in con-

vective equilibrium mils cannot definitely he excjtXW. Mike water,

%S readily dissociates in amnmia. Moreover, all atteurts to freeze

such mixtures in laboratories have produced y c<mpounds of pia

i IXvdre^et sulfide. The eutectic curve for the NR 3—H.,S system is in-

coTletely iax yom and appears to have at least one incongruent meltiW

Point (S flan and W-CroWw. 1932). in addition the relevant latent

heats have not been tabulated. For a reasonable estimate of the latent

heat, the rwjuired mixirW, ratios are far in excess of that nrodicted fyxn

solar abundances. If hycArogen sulfide, hc- ver, is not well-mixed in the

anwaphere, its role in the chemistry and color-ation of the hot snots

cannot be discounted (cf. . tyre aid Sagan, 1975) .

AlthcWh carbon nuKxide has recently beer ► detected in the 5 ;ant

band in the oy i-n ?mw re (fir, l9?5) , it is unlikely that 00 could

be responsible fog- `fertile and 40stphal's observations. it is beiieWu

to be fornvci deep in the anwsphere (Larson et al., 1978). In the

ttvlvrature range of interest, it can he e-\Iw ted to react with n1olecular

hychco^gen uxl to form wetMrw (nfiich is transIxAr ent at 5 c ri) and «ter, .

KirtxA-v , to fit the ctxi\vc t i« equilibrium v&-t-atd b.-tt axiel , carbon

rrft-mide wrtuld have to cmcier^x^ H phase citange n^^r 25A and wr-luld

i

i
y .-

in



necessarily be many tee or hundreds of times mare amt than solar

values would swat.

The analysis techniques of the present per should be arplicable

to high-spatial resolution multi-frequency limb-darkening scans of

Jupiter with the Voyager spacecraft (Hanel, et al., 1978) -- which can

potentially clarify much about the lateral and vertical structure,

chemistry and cloud constituents of the Jovian atmosrhere.
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APPENDIX I

Orton (1977) employed Conrath's (1972) formulation of the Backus -

Gilbert generalized inverse theory. In the discrete case in the absence

of noise, the method can be stated quite succinctly. Consider the

problem of best approximating some function AT(x) given m observations

Aii defined by

AIi = It ki (x) AT(x)dx,	 i = 1,...,m	 (I-1)
0

(We adhere strictly to Conrath's notation. The discussion that follows,

hmmver, is indepexidQnt of the choice of the limits of integration, rno-

vided they are finite.) We then wish to construct an anproximste inverse

AT(x) from a linear combination of the observed data, namely

M
AT(x = E ai (x) AIi 	(I-2)

i=1

where we have yet to specify a rule for selecting ai(x). If we define a

function A(x,x') by

M
A(x,x')

	

	 E ai (x) ki (x')	 (I-3)
i=1

we see that

AT(x = ItA(x,x')AT(x')dx 	 (I-4)
0

The function A(x,x'), ideally, should tend to a Dirac d-function. In

practice, it will have a finite width or spread and tends to smooth AT(x).

For this reason, it is called an "averaging kernel." In order to estimate

the width of A(x,x'), we define a "spread function" s(x) by
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s(x) 12 
1 

(X-x' )2 A2 (x,xl) dx t 	(Irt5)

We then perform a variation on a W in order to minimize the "spread,"

subject to the normalization constraint

1 - xI A(x,x') dx'	 (I-6)
4

The factor 12 in equation (I-5) is introduced so that, if A(x,x') is a

rectangle of unit area and width w, a W - w. This variation can most

aiMly be achieved using Lagrange multipliers (Conrath, 1972).

The medal is conceptually attractive since it will provide the

estimate of OT(x) with what seems to be the best possible resolution.

Although the method can be of significant value in certain applications,

it suffers from important mathematical shortcodrws which can seriously

affect its performance. In the absence of any further information about

the physical processes involved, two mathematical principles must be em-

ployed when devising an ad hoc inversion scheme. First, all available

information must be incorporated into the method so that the solution ob-

tained reproduces the available data. Second, the method must yield in-

creased resolution over other approaches.

The variational procedure employed in estimating a i (x) never uses

the information obtained by the observations (I-1) as equations of constraint.

As a result, the approximate inverse dT(x will not, in general, reproduce

the observed data DI i . By not fully introducing the observational informa-

tion available into the method, we compound our ignorance of the solution.



t°

35

s

Mw second problem arises in the determination of the resolution

or, alternatively, the spread, Although, s(x) reproduces reasonably

well t& ,width of a number of functions, it can give spurious results

whet applied to some date kernels. Consider, for example, a

hypothetical eqxximent where we measure Ali def in: 3 by

1
AIi = f Pi-1(x)AT(x)dx, 	 i - 1,...,m	 (I-7)

-1

where Pi(x) is the ith Legendre polynomial. Let us select ai (x) and,

therefore, 15(Z to be given by

ai(x)  2^Pi-1(x)
(I-8)

M 2i-1bT{x = iE1 -t^,(x)Ali

(In many circumstances, we customarily make this choice of expansion

sine it provides the best a !yprox3matian, in an integrated least-squares

sense, to a given function.) Although Conrath's variational procedure

would not make this identification for ai(x). it is instructive to consider

the spread Ration that results from this choice.

Pbw, the averaging kernel becomes

A(x,x') = m-1 Y* (x) P.(x')	 (I-9)
1:_O

(We know, incidentally. from the copleteness relation for Leaendre

polynomials that this kernel "tends" to a Dirac 6-function.) Using the



recurrawe relation

(i+1)Pt+1(x) " (2R+1)XPj (x) + iPi _l (X) • 0 	 ,	 (I-10)

we obtain the Christoffel-Darbo a identity

[P.(X)P.,.,(Xl) - Pm (x' )Pm-1 (X)
A(x,x') - F 	 (I-11)

x - x'

Then, using (I-5) with integration lirdts -1 to 1, we observe that

36

2	 2
S (X) (a2 Pm-1(x + P.4s (I-12)

and the averse spread <s (x)> is

This result shows that the average spread increases as we add more terms

(and corresponding data points) and, as m approaches infinity, reaches a

limiting value of 3 (which is larger than the region over which we are
*j

calculatirf  the spread). the measure of spread that we use mist show in-

creased resolution as we increase the rnmber of data points and, in the

limit of an infinite amount of available information or data, must tend to

zero. The spread function of (I-5) is incanpatible with these conceptual
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Althwgh we have shim that the spree f,mtion (I-5) can be a

'	 misleading indicator of resolution, it is lrrrrtent to understand in

practical terms 4hy this is so. The morphology of a tynical avewing

kernel is characterized by a central peak, for x near x', and some kind

Of "sid--I&e" so-rvctnre. Theoretical kernels (e.g.. rectangles, Gaussians,

etc.) for which (1-5) is a reasonable measure o spread have no sidelobes.

The kind of kernel more likely to be encountered in practice will haw a

eaoplex sidelobe structure. If these sidelobes do not decay much faster

than (x-x') -1 , they will provide a significant if not domina:it contribu-

tion to the spread function (I-S). In practicr. the highly oscillatory

character of the sidelobes tends to cause cm._.,A'.lations and diminish any

sizeable contribution. However, since (I-5) ccstta-is the ire of tt

kernel, this cancelling feature of the sidelobes is lost and their effects

are grossly exaggerated.

This form of generalized inverse throw, then, has two series draw-

backs. It will not reproduce the given data and can provide a very smirious

estimate of the resolution of the result. For completeness, we cite an ap-

proximate inversion formula (see, for example, Foster, 1951) that satisfies

XIt ki (x) t-AT(-X) - 3T(x)	 dx - 0	 i - 1,...,m	 (I-14)
0

that is, ar, errcr in ur approximate inverse canrol be seen from available

observational data. We define a matrix C by its i, j conTxrents

X

C1.j - 
'r t ki (x) kj (x) dx	 i , j - 1, ... ,m	 {1-15)
0



7hen,
mai(X) = 

iE1 
C"1 i'i kj W

m
A(x,x') - E	

C,1 
i ..j ki(x) k

j (X')	 (I-16)
i .3=1 [

m
T(x) =
	 [C-1

i,j Iikj (x)i,3=I

mere 
[C-11 

i , j denotes the i , ] th conpo Lent Of the inverse mu-ix t0 C.
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