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ABSTRACT

By observing the transit of various cloud features across the
Jovian disk, Terrile and Westphal (1977) have constructed limb-darkening
curves for three regions in the 4.6 to 5.1 um band. Several models cur-
rently employed in describing the radiative or dynamical properties of
planetary atmospheres are here examined to understand their implications
for limb-darkening. The statistical problem of fitting these models to
the observed data is reviewed and methods for applying multiple regression
analysis are discussed. Analysis of variance teclniques are introduced to
test the viability of a given physical process as a cause of the observed
limb-darkening.

The intermediate flux region of the North Equatorial Belt appears
to be in only modest departure from radiative equilibrium. The limb-
darkening curve for the South Temperate Belt is rich in structure and
cammot be satisfactorily ascribed to any single physical mechanism; a
combination of several, as yet unidentified, processes is likely involved.
The hottest areas of the North and South Equatorial Belts exhibit limb-
darkening curves that are typical of atmospheres in convective equilibrium.
In this case, we derive a measure of the departure of the lapse rate fram
the dry adiabatic value (n=1.68), which furnishes strong evidence for a
phase transition at unit optical depth in the NEB and SEB. Although the
system N, —HZS camot be entirely ruled out, the freezing of an aqueous
amonia solution is shown to be consistent with the parameter fit and
solar abundance data, while being in close agreement with Lewis' (1969a)
cloud models.




I. INTRODUCTION

By applying a conbination of radiative transfer and statistical
techniques to infrared observations of Jupiter, we can enhance our
understanding of the radiative and dynamical processes that control the
make-up of the Jovian clouds and the deeper atmosphere. Since Jupiter's
atmosphere is widely believed to be significantly stratified in its
spectroscopically active components, observations made over limited
wavelength regions permit us to look down at levels in the atmosphere
where those components play an active role. Moreover, by analyzing the
intensity observed in different regions of the disk, some of the under-
lying physics of Jupiter's belts and zones can be revealed.

The 5 um region is of particular interest since it is transparent
to the abundant Jovian absorbers, gaseous hydrogen, methane and ammonia.
Gillett et al., (1969) observed that the 5 um brightness temperature,
averaged over a large part of the Jovian disk, was approximately 230°K.
This value is much higher than most workers had expected and, since it
corresponds to deep atmospheric levels, was a stimulus to further in-
vestigations. Westphal (1969), in observations of the North Equatorial
Belt, showed that the 5 ym flux was coming fram localized hot spots with
brightness temperatures >300°K. He concluded that, if it is assumed that
the cloud layer was near the top of the convective zone, the radiation
was coming from below the clouds. Keay et al., (1973) and Westphal et al.,
(1974) produced high resolution maps of Jupiter confirming the existence
of localized hot spots. In addition, they observed a correlation of 5 um
features with visual features in color photography. High thermal flux



seemed to come from 'blue'’ or 'purple' regions whereas ''orange'' or 'red"
regions were not sources of intense 5 \m radiation. They speculated

that this dichotamy was likely due to the absence or presence of middle
altitude red clouds. Sagan (1971) had earlier proposed that the blue
coloration was due to Rayleigh scattering at roughly the 1 bar level

when our view is not impeded by intervening clouds of red chromophores.
Westphal et al. concluded (by studying the flux emanating from the shadow
of Io as it passed across the Jovian disk) that the 5 ym flux was not re-
flected or scattered sunlight but a genuine feature of radiative sources
deep within Jupiter's atmosphere.

To better understand the nature of some of Jupiter's 5 \m features,
Terrile and Westphal (1977) measured limb-darkening by selecting a region
of interest and measuring its brightness as it rotated around the planet.
In particular, they observed the hottest emitting areas of the North and
South Equatorial Belts (with brightness temperatures of about 230 to 2559K),
several bright 5 um areas in the South Temper-t= Belt (with similar
brightmess temperatures), and intermediate flux regions in the North
Equatorial Belt (with brightness temperatures near 240°K). This entailed
the use of many different images of Jupiter taken over several hours in
order to construct one limb-darkening curve. Notably, this technique did
not suffer from the smearing effects of longitudinal inhomogeneities that
would result from generating limb-darkening curves from thermal maps.

In parallel with these infrared observations, the atmosphere and
composition of Jupiter was undergoing extensive study. Lewis (1969b) es-
tablished that if the Jovian atmosphere possessed the solar abundance of



water and ammonia, the clowds were dominated by an aqueous ammonia solu-
tion while the topmost cloud layer was solid amonia. He also showed
that if sulfur were present in solar abundance, NH,SH would form an im-
portant cloud layer. The infrared properties of liquid and solid wate.
(Irvine and Pollack, 1968; Robertson and Williams, 1971) and ammonia
(Robertson and Williams, 1973; Robertson et al., 1975) have been investi-
gated at 5 ym and are known to have very large absorption coefficients.

These 5 ym observations, together with predictions obtained from
models of Jupiter's atmosphere and the infrared properties of its con-
jectured constituents, provide a compelling reason for analyzing the ob-
served limb-darkening of various regions of the planet. In this comumica-
tion, we present a combined radiative, dynamical and chemical model that
reproduces the observed limb-darkening curves.

II. RADIATIVE AND DYNAMICAL MODELS

The plane-parallel approximation to the equation of radiative

transfer is

TR FCHO IS AN IR W

T

where arccos u is the angle between the line of sight and the local plane-
tary normal, T is the optical depth, I is the intensity of the radiation
and S is the source function. The optical depth is defined, in differen-
tial form, to be d1 = - kdz, where « is the extinction coefficient, and

z the altitude. All quantities in (1) are considered to have been modu-
lated by the spectral response function of the InSb detector employed by



Terrile and Westphal and integrated over the instrument's 4.6 to 5.1 \m
bandwidth. Formally, (1) can be integrated to give the limb-darkening
function.

10 = TS () v e i/ & )

(Chandrasekhar, 1960). This equation is ideally suited to our analysis
since Terrile and Westphal (1977) have evaluated I(0,n). Thus, by in-
verting (2), we can determine the source function S(1).

In general, the inversion is unique only if the limb-darkening
function I(0,u) has a known functional form. In the case of discrete
data (particularly data contaminated by noise), the inversion is not
unique and we must choose one of two approaches. In one approach, we cal-
culate an approximate imversion kemel, K (1,u), such that

S(1) ~ { KGa) 100 d . &)
(See the recent review article by Parker, 1977, for a descriptim of
"generalized inverse theorv.'). Conbining (2) and (3). we require that

‘ -
AG ") éK(t.u)\:‘l exp (=1'/3)du QY

"approximate' the Dirvac delta fumction, $(1-1"); that {s, that the intepral
of A(i,t") over 1 or ' is unity and A(x,1') is strongly peaked when ' ap-
proaches 1. The inversion is inade conplete by specifying the approximate
source function and an estimate of the width of A(1,1'") for different values
of v (which, in tuam, provides a measure of tle characteristic conwlutional
smoothing evident in the approximate source function). Orton (1977) ve-
cantly anploved this technique in recovering the moan Jovian temperature
structure from spectrally resolved thetmal radiance data.  This method,

hawever, provides no direct insipht into the phvsical processes that are



the source of the infrared radiation and, moreover, has several mathe-
matical deficiencies that are apparently not well-known (see Appendix I).
A less general but more physically motivated approach is to con-
struct several radiative and dynamical models and obtain their corres-
ponding source and limb-darkening functions. These models will depend,
often nonlinearly, on a small mmber of parameters. By employing multiple
regression methods, we then obtain numerical estimates of the parameters
that are in a statistical sense most likely. By then employing analysis
of variance techniques, we can asseas whether the residual errors in the
mode! fits are campatible with the experimental noise. This approach can
demonstrate directly that a given physical model could be responsible
for the observed limb-darkening while other models must be rejected. It
is important to note that the fit obtained is most accurate for 11, the
vicinity of the cloud tops and the region of greatest physical interest.
The reason for this is clear from (2). The source function for >0 depends
strongly on 1(0,u) measured near the limb where instrumental accuracy is
least. The source function for 1>>1 is strongly attenuated and could vary
significantly without seriously affecting the observed limb-darkening
function. Because of the intuitive value of the method, we shall confine

our attention to this technique and twrn now to a discussion of models.

A. Power Series Expansion Model

Although the power series expansion
1(0,u) -“fo a, un (5)
has no direct physical interpretation, we choose to include it for several



reasons. The truncated expansion was useful in an analysis of the limb-
darkening of Verms (Goody, 1965: Newman, 1975). It can provide an es-
timate for the scatter in the data due to noise that is required in the
analysis of variance. Finally, assuning that I(0,u) is analytic and
regular, the inversion of (2) can be performed directly giving (5) where
the source function may be written

S(r) = L a tVn! (6)

In one instance, the well-known Eddington appraximation, the truncated
power series expansion is of special interest:

I(0,w) = I(0,0) Q0 + 3/2y) . )
This limb-darkening finction results if the flux over the corresponding
frequency passband is conserved. If the flux over the entire frequency
spectrum is conserved, we have radiative equilibrium,

B. Convective Equilibrium Model

In our terrestrial experience, clouds are very efficient infrared
absorbers of solar radiation as well as heat from the surface (additiomally,
in Jupiter's case, heat generated intermally). A warmed parcel of gas
will rise and adjust its pressure to that of its surraundings, the pressure
of which varies according to the equation of hydrostatic equilibrium,

dP/dz = -pg C))

where P is the pressure, o the atmospheric mass densityv, and g the local
gravitational acceleration. Thermal conduction times are very slow com-
pared with dynamical times and may be neglected. Thus, the resulting



behavior of the parcel of gas is adiabatic and the pressure in the
parcel behaves according to
Pep Y (9)
where § is the parcel's mass density and y is the ratio of specific
heats.
Assuning that the absorbers responsible for the extinction are

well-mixed with the principal atmospheric constituents, we can express
the extinction coefficient as

K = oxo/myy (10)

where o is the cross-section to absorption, x is the mixing ratiu of the
absorbers to the principal atmospheric constituents, and Mg 18 the mean
mass of a single absorber molecule. Combining (2), (8), and (10), we ob-
tain a linear dependence of pressure on optical depth, namely,

dP/dr = gy [ox : (il)

By terrestrial analogy, we expect clouds to have a fairly sharp top at a
lovel characterized by a temperature T, and a oressure P.. The discon-
tinuous boundary may result from the transition from convective to radia-
tive equilibrium or from phase changes. Defining t to be zero above the
cloud top (where we assume there to be no significant absorption),
equation (11) is integrated as

&Mabs
Pollack and Sagan (1965) derived a similar expression for the Venus atmos-
phere. In their case, however, the absorber was the principal atmospheric



constituent and x=1.
From (9) and the ideal gas law, we find

P T Y_'Y'r

.- (5
Let us now assume that the clouds radiate as a black-body. By inte-
grating the Planck function from 5.6 to 5.1 ym (assuming a relatively

unifcrm response in the InSb interference filter employed by Terrile
and Westphal), we obtain the approximate power-law dependence

13)

By, ™ ) 14)

Typical values for the exponent n are 12.3 and 11.6 for temperatures
of 240°%K and 250°K, respectively. Combining (12), (13), and (14) ylelds

the intensity dependence on optical depth

Fabs

Bg, (1) = Bg (0 [1 + —p Yo, (15)

t
1f we conbine the equation of state with (8) and (9), we obtain

the dry adiabatic lapse rate

] n(y-1)

m
£, "

where m . is the mass of an atmospheric constituent and k is the Boltzmamn
constant. (For an inhomogeneous atmosphere, the meaning of an "atmospheric
constituent' may be ambiguous. We define such a pseudo-particle as being
characterized by a mumber-density weighted average of each component. In
the terrestrial case, the mass of such a fictitious constituent would then
be 0.78 the mass of N,, 0.21.times the mass of 0, and 0.01 the mass of a



‘trace constituent.) This equation indicates how the temperature of
our parcel of gas decreases as it rises.

Suppose that the parcel of gas has a trace of a substance that is
undergoing a phase transition, for examwple water vapor in the terrestrial
atmosphere. As the vapor condenses, it evolves heat and precipitstes
out of the parcel. Because of latent heat it deposits in the parcel,
the lapse rate is reduced. In particular (see Hess, 1959) the temm
(v-1)/y in (15) and (16) should be replaced by (y-1)/ny, where n is given
» 1+ el w

n = -—%—T—t a”n

1+ oF

and cp is the mean heat capacity of an atmospheric constituent, w the
mixing ratio of condensates to atmospheric constituents, ¢ the ratio of
the molecular weights of the condensates to that of the atmospheric con-
stituents, and L the latent heat evolved by a single condensing molecule.
Equation (16), when corrected for the condensate, defines the wet adia-
batic lapse rate. Similarly, (15) becomes

o ng*f-tlz
BSm(T) = lem(O) [1 + —c%ij TJ ny 18)

and describes the effective black body intensity as a function of optical
depth for a wet adiabat.

let us assume that the source function S(1) may be approximated by
the effective black body intensity. For simplicity we write (18) as

5(1) = a(l+b1)€ (19)




where a, b, and ¢ correspond to appropriate terms in the previous
equation. Then, employing (2), we find
I(5,u) = a®u)® ep [(bu)'l] r [HC. (bU)']':] (20)

vhere ' is the inconplete Gamma Function (Abramowitz and Stegun,
1965). A convenient formula for evaluating (20) is

<1l B
10.) = a®n)® e [(bu)'l] r (o) f L%)r; } (21)

vhere T here denotes the complete Gamma Wmction.

C. Cloud and Intermediate Zone Models

These models were employed by Terrile and Westphal (1977) in analy-
zing their data. Their cloud model describes radiation from an opticelly
thick, hot cloud deck passing tirough an optically thin, warm, emitting
layer. This may be represented by

I(0,u) = By exp(-rwlu) + R, [l-exp(-rwlp)-l (22)
where By, and B are the black body radiation emitted from -he hot and
warm layers respectively, and Ty is the optical depth of the warm layer.

Radiation from an ootically thick intermediate cloud decl: passing through
a cold absorbiry; layer (I, intermediate model) may be represented as

I(0,u) = By exp(-14/u) (23)
Both of these models can be expressed in the form

I(0,u) = a + b exp(-1'/u) (24)

10
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where the corresponding source function is given by

a 051!
S(1)= < . (25)

t

a+b T
We do not expect these models to give particularly zood fits because
they require that each cloud and absorbing layer have a uniform tem-
perature distribution. They are included, however, because they pro-
vide some insight into the nature of limb-darkening finctions produced

by atmospheres with relatively little temperature structure.

D. Thin Shell Model

It is also of interest to examine the limb-darkening function of
an atmosphere characterized by the opposite extreme: an extramely hot,
very thin emitter embedded at T, in a warm, absorbing atmosphere. The

source function used is
S(t) =a+ bd(r—ro) (26)

where § is the Dirac delta function. The corresponding limb-darkening
function is

1

I0,u) =a+bu "~ exp(-1 /1) - (27)

Although this model has no known physical counterpart, it provides a
useful measure of the impact of strong temperature variation and pro-
nounced thermal structure on the limb-darkening function.

Although our list of models is small, it describes a wide spectrum
of behavior. The power series expansion describes virtually any con-

timwous, smoothly varying limb-darkening function. lMoreover, it can he



used to provide an estimate of the scatter in the data due to noise.

A special case of the polynomial is the Eddington approximation which
provides an accurate representation of the limb-darkening curve when

the radiative flux is conserved over a given passband, a hint of

possible radiative equilibrium. We expect radiative equilibrium to be

a dominant feature of high-elevation clouds (not under the influence

of direct heating from the planet's interior) if dvnamical effects are
wninportant (a situation found to be the cas. on Venus by Newman, 1975).
On the other hand, we expect that deeper clouds are dominated by dy-
namical effects and, from the suspected composition and temperat:we

range of these clouds (Lewis, 1969b), subject to phase transitions in
their spectroscopically active components. For this reason, we have em-
ph:.. 2zed the derivation of the convective equilibrium model. Finally,

as measures of the degrece of thermal structure for the observed limb-
darkening, we also consider Terrile and Westphal's (1977) cloud and inter-
mediate zone models as well as a thin, extremely hot shell model. The
source and limb-darkening functions for the different models are tabulated
below.
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Model Source Function | Limb-Darkening Function
Power-Series y n ' n
Expansion nio T /nl nio ¥
T ibrign | 8@ a (bu) “exp [(bu)*] r [1+c. (bu)‘l]
%gud anid‘ te a, 05t¢! atb exp(-1'/u)
Zone a+b, 't
Thin Shell | atbs(r-1.) ath ul exp(-r_fu)
Table 1. Limb-Darkening Properties of Various Models
III. STATISTICAL PEIHODSl AND ANALYSIS

Suppose we have N measurements, at various zenith angles (arccos

i i=1, ...., N) of the limb-darkening function (which we denote by Ii)‘

For simple cases, a model may be considered composed of a linear combination

of M different functions of i, say fj G); j=1...., M. For example, a

1/ No single reference provides an adequate survey of this problem.
Rilston (1965) reviews some of the numerical problems associated with

least-squares techniques. Jenkins and Watts (1968) examine the theory of

maximum likelihood estimators and Gaussian least squares as well as pro-

viding some remarks on nonlinear problems. Graybill (1968) considers

the peneral linear model and some statistical tests of confidence.
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power series expansion employs the functions 1, u, uz. e, uM'l
wd ve make the fdentification £,G1) = u'™l. Nonlinear models will be
treated later in this section. In addition, we assume that there is an
additive Gaussian error noise component, r i whose mean vanishes and has
a variance of 02. Therefore, we write
M

Ii =j§1 aj fj(“i) t ey, i=1, ....,N (28)
where the a; are linear cambination coefficients. We consider the error
to be Gaussian distributed, a reasonable assumption from the Central
Limit Theorem. Syvstematic errors, notably those due to calibration, are
not Gaussian, and are often intractable.

Since the errors ¢ { defined by (28) are Gaussian distributed., the

probability associated with the estimates of the a i coefficients varies as

exp =Y E;/\‘
i=1

Therefore, the most probable choice of the coefficients is that which

N M )
ey |- v af, ) . (29)
=1 | by T

The process of finding the values for the a . coefficients is called the

minimizes

maximm likelihood method and is equivalent to the methad of least
squares. In this, the linear case, it is also known as the "multiple
regression’’ model. We therefore require that the derivative of U with

respect to each a coefficient vanish, yielding the normal ecuations
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N ) M N
T f.(u) = & Loofi(ug) £ 00) . (30)
e A U S R L U A
This set of linear equations is characterized by a matrix whose j,kth
conponent is given by
N

The matrix is symmetric, semi-positive definite and the system of
equations has a unique solution unless one of the functions fj (“i)'
evaluated at each My i=1,...,N, could be represented by a linear
cambination of the remaining functions and is thus redundant.

Although superficially simple to solve, the svstem of linear
equations (30) is mmerically ill-conditioned. For exanple, an eighth
degree polynomial fit to an arbitrarily large data set will result in
the loss of twelve significant places of accuracy if a direct method
(e.g., Gaussian elimination with pivoting) is used! To reduce this
source of computational error, one should use Gram-Schmidt orthogonaliza-
tion of the functions fj ). 3=1,....M with respect to the inner
product operator defined in (31). The resulting matrix, associated with
the nommal equations will then be diagonal and the system's solution will
then be trivial to obtain. A relatively recent immovation in solving,
least-squares problems is the technique of singular value decomposition.
Although functionally equivalent to the Gram-Schmidt procedure, it is
saomewhat f{aster in execution. Morcover, unless posed in a certain form,

the Gram-Schmidt procedure is susceptible to mumerical instabilities.
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Singular value decomposition is a very complex procedure but is de-
scribed in detail in Lawson and Hanson (1974) and Forsythe et al.,
(1977). Also, both texts contain tested A'SI Standard Fortran pro-
grams.

Although the errors associated with an ideal experiment are in-
dependent of each other, the errors estimated by (28), where the ay
coefficients satisfy (30), are not. In fact, combining (28) and (30),
we find

N
151 eifyi) = 0 for J = 1,... M . (32)

So, although there are N values of €4 equations (32) introduce M con-
ditions or constraints and we are left with N-M degrees of freedom.
Moreover, if we calculate the expectation value of U (the sum of the
residual variances) defined by (29), we can show that

a1 ;% m @) o (33)

i=1

The least squares estimation processes introduce a small bias (which
vanishes as the mumber of data points becames arbitrarily large) due to
(32) into our estimates of the £y By increasing the number of aj co-
efficients, equations (32) show that we reduce the noise level in each
vy wntil the number of coefficients M equals the number of data points N
and all vy vanish (i.e., the fit is exact). This, qualitatively, is the
result shown bv (33). Ve can approximate the latter by writing

N
o=l o (34)

(This result is exact only if we replace %2 by <¢ 12 >.) Suppose, for



example, that we know our limb-darkening function has an exact
representation, apart from noise, as a polynamial of degree M'.
Using (34), we can estimate o2. If we fit the data with a poly-
nomial of degree MM', our estimate of o2 from (34) will remain ap-
proximately the same because the decrease in the noise level is

exactly compensated for by the denominator N-M. However, if we use
an estimate of the polynomial degree M<M', we will find that the
residuals ¢; contain not only noise irfarmation but limb-darkening
information as well, and our estimate of o? will be too large.

Using (34) we can now define a xz variable with N-M degrees of
freedom, namely

2
i S E{/az . (36)

If o s known (1.e., we have an absolute estimate of our sources of
error), we can enploy the usual confidence-level tests.

If o is rot known, the x° test camot be used. The problem of
finding the polynomial degree M' is then complicated by the fact that
(34) is an approximation. In practice, we find that (‘2 decreases with
increasing M, until M equals M'. For larger M, the estimate of o’
tends to oscillate around a constant, making the task of identifying M'
very difficult.

By modifving a technique developed by Akaike (1969) in application
to autoregressive decamposition, we can construct a variable that will
better equip us to estimate M'. We note that, as M increases, the a
coefficients adapt to the properties of the noise in that experiment
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until the mmber of coefficients and data points are the same and no
residual errors remain. Let us suppose that, next door to Terrile

and Westphal, there was a conpeting group using equivalent instrumenta-
tion making the same observations at the same zenith angles. The
underlying linb-darkening function would be the same for both groups

but the noise observed presumably would not. (The errors of course,
would be drasn from the same statistical population.) We then ask how
well the a ooefficients computed for Terrile and Westphal's observations
would match their rivals' data. That is, if their campetitors obsexved

intensities 11 i=1,...,N, how large would U, be, where we define

A I 2 6
U, = I I - L a He) ?
A a jm1 3373
A straightforward but tedious calculation reveals that
Up> = OHM) 02 - N.N-*_% <U> (37

when M>M',  As M increases beyond M', U, (as an approximation to <Up>)
increases because the surfeit of coefficients are adding to U, some of
the noise level observed in the first experiment. This variable U, there-
fore provides a test of the universality of the fit. In practice, we can

only estimate <Up> by evaluating [(MM)/(N-M)] U, for increasing values
of M. The resulting locus of points is parabolic in character with M'
corresponding to the minimm. Since we have obtained UA (and not <UA>),
the points may oscillate, but the uncertainty in M' is characteristically
reduced. Finally, knowing M', we can estimate o2 from (34). This value,
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however, is not accurate enough to permit anything but the crudest x
test of significance.

As an illustration of these methods, we tabulate some relevant
quantities for polynomials fitted to Terrile and Westphal's observa-
tions.

Pol Casﬁ ) Case B Case C
t Equatorial Belt South Temperate Intermediate
Results Hot Spots Belt Flux (NEB)
N 100 50 24
v
1st degree 0.1754 0.2181 0.04681
2nd degree 0.1370 0.1343 0.04677
3rd degree 0.1358 0.1327 0.03832
4th degree 0.1323 0.1207 0. 03667
S5th degree 0.1316 0.1097 0.03586
a
1st degree 0.04230 0.06741 0.04613
2nd degree 0.03758 0.05346 0.04719
3rd degree 0.03761 0.05371 0.04377
4th degree 0.03732 0.05179 0.04393
5th degree 0.03742 0.0499%4 0.04463
Ua
lst degree 0.1825 0.2363 0.05532
and degree 0.1455 0.1514 0.06010
3rd degree 0.1471 0.1558 0.05365
4th degree 0.1462 0.1475 0.05598
Sth degree 0.1484 0.1397 0.05976

Table II. Power Series Expansion Parameters

In Case A, the Akaike criterion would clearly select a quadratic fit.
The oscillation in U, is not a hindrance here. In Case B, the minimm is



reached for a fifth degree polynomial. However, that fit (as well as
the 6%, 7% and 8% order fits) extrapolates to a negative intensity
at the linb and must be disregarded. We consider, accordingly, a quartic
polynomial to be appropriate. Case C is somewhat ambiguous because of
the strong oscillation in U,. Although M=3 is a minimum, the corres-
ponding 3y coefficients would provide a source finction that was negative
at v = 1.4]1 and must be excluded. Hence, the first degree polynomial is
selected. It is important to note that, in this case, physical and not
statistical considerations resolved the degree of the polynomial fit.
Nonlinear models are significantly more difficult to fit and
analyze than their linear counterparts. Instead of linear combination
coefficients a,, we will employ parameters ay, j=1.2,...,M, so that we
can parallel equation (28) by writing

I = Flugs 8, a) + ¢ (38)

where the fimction F describes our model (such as the convective or cloud
models). Ve define the residual variance U by

N 2
U= iil [Ii - F(“i‘ al....,aM)‘:] . (39)
We perform a variation of the parameters ay so as to minimize U, in com-
pliance with the maximumm likelihood principle. Unlike the linear case,
there may be several minima and a global search must be performed.

The maximum likelihood estimates of the parameters ay satisfy the

normal equations (derived by differentiating U with respect to aj),

20
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J=1,...M . (40)

The minimization of (39) or, altematively, the solution of (40) is a
very difficult conputational problem (consider the convective model (21),
for example). A survey of this problem may be found in Luenberger (1973).

As in the linear case, we have N measures of the error (38) and M
constraints, equations (40). By linearizing F(u; al.....qi). we can
demonstrate the approximate validity of (33)-(35) in the nonlinear problem.
Thus, once we have obtained the maximum likelihood estimate of the ay
parameters, the statistical method of analysis is much the same as before.
Because of nmlinearity, there is no direct analogue to Akaike's criterion.

In comparing the residual variances U for different models, we re-
quire, following (34), that they have the same nunber of parameters. Thus,
the intermediate zone model may be cawpared with a first depree polynomial,
and the convective equilibrium, thin shell or cloud models with a second
degree polynomial. Higher order power series must be treated on an indivi-
dual basis.

The resicual variances U of the models considered are tabulated
below.
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Variance Case A Case B Case C
Polynomial 1 0.1754 0.2181 0.04681
Degree 2 0.1370 0.1343 0.04677

3 0.1358 0.1327 0.03832

4 0.1323 0.1207 0.03668

S 0.1316 0.1097 0.03586

Convective 0.1371 0.1530 0.04683
Shell 0.1516 0.1344 0.04538
Cloud Layer 0.1444 0.1347 0.04556
Intermediate e 0.05466

Table III. Sumary of Fitted Results

For large N-M, the x° statistic, using (35), defined by (2x0)¥ -
(2N - M - 1)¥, is approximately Gaussian distributed with vanishing mean
and unit variance. Smcewecbmthwcz. we cammot employ thuex2 test
directly. However, the a. nature of the X2
us that relative differences between model residual variances of only a

distribution assures

few percent can be significant.

In Case A, the hot areas of the North and South Equatorial belts,
the quadratic power series and the convective eyuilibrium model provide
almost equally reliable fits, while all other models are much less probable.
The convective equilibrium fit (19) gave the parameters b and ¢ values of
2.01 and 2.04 respectively. The value of b could be varied over a wide
range (while that of ¢ was adjusted in order to minimize U for a given b).



However, the value of c did not change significantly. Since ¢ =2, the
correspondence between the goodness of the quadratic and the convective
equilibrium model fits is not unexpected. We discuss the physical impli-
cations of this result in the next section,

The South Temperate Belt is mure problemstic. The investigation
of power series expansions for Case B reveals a preference for a fit of
high degree, indicating significant structure. The convective equilib-
rium model is clearly rejected. However, the other three-parameter models
(the quadratic polynomial, the thin shell model and the cloud layer models)
are equally likely, statistically! We can only conclude that the physical
mechaniam responsible for the behavior of the South Temperate Belt is an
amalgam of several physical processes or a region of transition between
two physical processes.

Finally, the intermediate flux region of the North Equatorial Belt
allows for several models as possible mechaniams. The preferred degree of
a polynomial fit is unity, as we have discussed earlier, while the addition
of a quadratic term does not significantly change the results. The con-
vective equilibrium model is viable and the associated param-ter b can vary
from 1.4 to 1.6 (while ¢ =0.9) without significantly affecting the residual
variance. Note that the tddington aporoximation corresponds to b = 1.5 and
¢ =1.0. This is highly suggestive of flux conservation and radiative
<¢ (librium. We also observe that the intermediate zone model of Terrile
and Westphal is clearly rejected, while the thin shell and cloud layer
models are approximately equally probable. The latter sugpests that there
is more thermal structure present than we normally associate with a state

of radiative equilibrium,
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Finally, let us consider how Lewis' (1969a, 1969b) model is
consistent with these results. The hot spots have a brightness
temperuture of 250-255°K. This corresponds directly to the transi-
tion vegion fran aqueous amonia to ice, suggesiing that a phase
change coupled through the high opacity of aqueous ammonia (and the
dynamic mixing that might arise from this low-lying cloud layer) to
corrrective equilibriun may be present. The intermediate flux zone of
the North Equatorial Belt is cooler and at a higher altitude. Since
no phase transition is predicted and higher-level clouds are less
likeiy to be dynamically coupled to what lies below, vadiative
equilibrium might be a reasonable approximation to the mechanism present.
Finally, the South Temperate Belt remains an enigma. Since it appears
to be fairly hot, it could be intermediate in structure between the other
regions.

IV. QGIMISTRY OF PHASE TRANSITIONS
In Section III, we crgued for a phase transition in the hot spots
of Jupiter's equatorial belt. From the observatica that the value of the
convective equilibrium parameter ¢ = 2.04 and the identification, from
equations (18) and (19), that

c=n (y-1)/uy . (47)

(cf. Pollack a ¢ Sagan, 1965), we can now estimate n, the term defined by
(17) that shows the decarture from a dry adiabat. We adont n - 11.6.

We now assume that the atmosphere of Junmiter is 88.67, hvdrogen and

11.2% helium, from Weidenschilling and Lewis (1973). 1his is consistent
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with solar abundances and with the B Sco occultation data (Elliot

et al., 1974), Pioneer 10 ultraviolet photometer data (Carlson and
Judge, 1974), Pioneer 10 infrared radiometer data (Orton, 1975) and

the infrared spectrum determination by Houck et al. (1975). A

variation of 5% in our assumed He abundance will affect owr results,
through v, only about 17. A simple calculation then shows that y = 1.42.
Combining these results, we find that u = 1.68. The latent heats of
water and amonia are, respectively, 333.6 and 351 Joules per gram
(International Critical Tables, 1928), Now, neither water nor armonia

will freeze at 250°K and the corresponding (Sagan and Salpeter, 1976)
P ~ 2 bars (water freezes at a higher temperature and ammonia at a
lower one). If they could, equation (17) would provide for mixing ratios
of 0.0452 and 0.0494. These values are 5.35 and 42.8 times the estimates
given by Weidenschilling and Lewis for solar abundance. Since, for
clouds, we expect to find an excess of the spmectroscopically active ma-
terials, these excess values are not exzluded.

A mixture of water and ammonia, "“mever, nrovides for a large
range of freezing points. (See Zemansky, 1968 and C .stellan, 1971 for
a discussion of eutectic curves and freezing mixtures.) The eutectic
properties of aqueous ammonia solutions were investigated over half a
century ago by Potsma (1920) and Elliott (1924). At low temperatures,
water does not readily dissociate in the presence of ammonia to form
amonium hydroxide. Ammonia can, however, form two hydrates, NH3'HZO
and NH3'2H20 by hydrogen bonding. The two hydrates also exis. on the
freezing point diagram. Therefore, depending on the strength of the
initial aqueous ammonia solution, the sequence in which freezing take:

place can be very complex. Moreover, unlike the laboratory situation,
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the behavior in the Jovian atmosphere is considerably complicated by
precipitation. Water is denser than ice which is denser than frozen
ammonia which is denser than liquid amwonia (Kuiper, 1952). So, once
the temperature drops to that on the eutectic curve, one of the four
active constituents (1120, NH3-2H20, m3-1120, Ml3) will begin to freeze
and either rise or sink faster than the mixture. The depletion of
this constituent fram the solution changes its concentration and lowers
its associated freezing point. As the solution is buoyed higher by
convection, it further cools and loses more of one of its constituents.
As a result, the freezing point can be smeared out over as much as 100°K
(for the NH3—N{3'H20 system). Since the latent heats of fusion for
water and ammonia are quite similar, and the bonding associated with the
hydrates of ammonia are quite weak, the latent heats of the two hydrates
should not be significantly changed and this picture remains wnaltered.
Water and ammonia vapors are relatively poor absorbers from 4.6 to
5.1 im. Moreover, ac we expect both ammonia and frozen ammonia to form
above the water or ice clouds (from the above buoyancy arguments and
Lewis, 1969b), we expect that it would be very difficult to see down to
the water or ice clouds at this wavelength. [Perhaps most water vapor
that exists above the water clouds readily dissolves in the ammonia clouds
and inmediately freezes out. Since we expect larpe-scale moist convection
to occur below this level (Gierasch, 1976), the amount of water vapor
present at lower levels will depend on whether we are seeing a convective
updraft or downdraft. In the case of a downdraft, the large-scale con-
vective model predicts the presence of very little water vapor. The

retction in the expected absorption from water vapor in the downdraft



vould reault in observations of mich deeper and hotter lewvels in the
Jovian atmosphere. The cambination, then, of a freeze-out mechaniam

at higher levels and convective downdrafts below could explain Larson

et al.,'s (1975) wexpectedly low water vapor abundance and high observed
brightness temperature. ]

The possibility of hydrogen sulfide playing a major role in con-
vective equilibrium models camnot definitely e excluded. Unlike water,
H,S readily dissociates in ammonia, Moreover, all attempts to freeze
such mixtures in laboratories have produced many conpounds of ammonia
and hydrogen sulfide. The eutectic curve for the M;—H,8 system is in-
completely known and appears to have at least one incongruent melting
point (Scheflan and MceQrosky, 1932): in addition the relevant latent
heats have not been tabulated. For a reasonable estimate of the latent
heat, the required mixing ratios are far in excess of that predicted from
solar abundances. If hydrogen sulfide, however, is not well-mixed in the
atmogphere, its role in the chemistry and coloration of the hot spots
cawmot be disconted (cf. Khare and Sagan, 1975).

Although carbon monoxide has recently been detected in the 5 m
band in the Jovian atmosphere (Beer, 1975), it is unlikelv that Q0 could
be respongible for Terrile and Westphal's observations. It ts believed
to be formed deep in the atmosphere (Larson et al., 1978). In the
tepperature range of interest, it can be expected to veact with molecular
hvirogen and to form methane (which is transparent at 5 um) and water.
Moreover, to fit the convective equilibrium wet-adiabat model, carbon

nonoxide would have to undergo a phase change near 250°K and would
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necessarily be many tens or hundreds of times more abundant than solar
values would suggest.

The analysis techniques of the present paper should be anplicable
to high-spatial resolution multi-frequency limb-darkening scans of
Jupiter with the Voyager spacecraft (Hanel, et al., 1978) -- which can
potentially clarify much about the lateral and vertical structwure,
chemistry and cloud constituents of the Jovian atmosphere.
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APPENDIX I

Orton (1977) employed Conrath's (1972) formulation of the Backus-
Gilbert generalized inverse theory. In the discrete case in the absence
of noise, the method can be stated quite succinctly. Consider the
problem of best approximating some function AT(x) given m observations
AI; defined by

e
AL; = 6 k; (%) AT(x)dx, i=1,...m . (I-1)

(We adhere strictly to Conrath's notation. The discussion that follows,
however, is independent of the choice of the limits of integration, vro-
vided they are finite.) We then wish to construct an aoproximate inverse
A/Tix\) from a linear conmbination of the observed data, namely

m
AT(x) = ¢ a; (x) AL (1-2)

i=

where we have yet to specify a rule for selecting ai(x). If we define a
function A(x,x') by

m

M) = T 260 k&) , (1-3)
we see that
T = ZtA(x,x')AT(x')dx' . (1-4)

The function A(x,x'), ideally, should tend to a Dirac é-fuinction. In
practice, it will have a finite width or spread and tends to smooth AT(x).
For this reason, it is called an "averaging kermel." In order to estimate
the width of A(x,x'), we define a '"spread function' s(x) by



s(x) = 12 :’;t ox)? A2oex) axt 1-5)

We then perform a variation on s(x) in order to minimize the “spread,"
subject to the normalization constraint

1= :f:t AGX') ' . (1-6)

The factor 12 in equation (I-5) is introduced so that, if A(x,x') is a
rectangle of unit area and width w, s(x) = w. This variation can most
3imply be achieved using Lagrange miltipliers (Conrath, 1972).

The method is conceptually attractive since it will provide the
estimate of AT(x) with what seems to be the best possible resolution.
Although the method can be of significant value in certain applications,
it suffers from important mathamatical shortcomings which can seriously
affect its performance. In the absence of any further information about
the physical processes involved, two mathematical principles must be em-
ployed when devising an ad hoc inversion scheme. First, all available
information must be incorporated into the method so that the solution ob-
tained reproduces the available data. Second, the method must yield in-
creased resolution over other aporoaches.

The variational procedure employed in estimating a, (x) never uses
the information obtained by the observations (I-1) as equations of constraint.
As a result, the approximate inverse m will not, in general, reproduce
the observed data AIi. By not fully introducing the observational informa-
tion available into the method, we compound our ignorance of the solution.
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The second problem arises in the determination of the resolution
or, altermatively, the spread, Although, s(x) reproduces reasonably
well the width of a unber of functions, it can give spurious results
when applied to some degenerate kemmels, Consider, for example, a
hypothetical experiment where we measure AL, definci by

1
AL, = -{ Pi_l(x)AT(x)dx, i=1,...m a-7

vhere Pi(x) is the ith Legendre nolynomial. Let us select ai(x) and,
therefore, A/T(;T to be given by

ay @ = Zlpy @
(1-8)

Tw = 1?1 Hlp e,
(In many circumstances, we customarily make this choice of expansion
since it provides the best approximation, in an integrated least-squares
sense, to a given fimction.) Although Conrath's variational procedure
would not make this identification for a;(x), it is instructive to consider
the spread function that results from this choice.

Now, the averaging kernel becomes

m-1
acx’) = 1 ZHp @) px") : (1-9)
=0

(We know, incidentally, from the completeness relation for Legendre
polynomials that this kernel "tends" to a Dirac &-function.) Using the
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recurrence relation

we obtain the Christoffel-Darboux identity

Py O0B, 1 (') - Pmcx'wm_loo] w1

Ax,x") =3 [ -

X-X

Then, using (I-5) with integration limits -1 to 1, we observe that

2 Pmgl(x sz(x)»
S(x) = 6m —ml + T (1-12)
and the average spread <s(x)> is

1
<8(x)> = %{ s(x) dx . (I-13)

_ 1
-1

This result shows that the average spread increases as we add more terms
(and corresponding data points) and, as m anproaches infinity, reaches a
limiting value of 3 (which is larger than the region over which we are
calculating the spread). The measure of spread that we use must show in-
creased resolution as we increase the number of data points and, in the
limit of an infinite amount of available information or data, must tend to
zero. The spread function of (I-5) is incompatible with these conceptual

requirements.
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Although we have shown that the spreed f.nction (I-5) can be a
misleading indicator of resolution, it is iryortant <o understand in
practical terms why this is so. The morphology of a typical averaping
kernel is characterized by a central peak, for x near x', and same kind
of "sid=lobe" s‘ructure. Theoretical kernels (e.g., rectangles, Gaussians,
etc.) for which (I-5) is a reasonable measure o° spread have no sidelobes.
The kind of kernel more likely to be encontered in practice will have a
complex sidelobe stxucture. If these sidelobes do not decay much faster
than (x-x')"!, they will provide a significant if not daminmit contribu-
tion to the spread function (I-5). In practice. the highly oscillatory
character of the sidelobes tends to cause can.cilations and diminish any
sizeable contribution. However, since (I-3) cunta..:s the square of t}
kernel, this cancelling feature of the sidelobes is lost and their effects
are grossly exaggerated.

This form of generalized inverse theory, then, has two serious draw-
backs. It will not reproduce the given data and can provide a very spurious
estimate of the resolution of the result. For completeness, we cite an ap-
proximate inversion formula (see, for example, Foster, 1961) that satisfies

14
x .
ét ky (x) iéT(xs - AT(x)} dx =0 i=1,...m : (1-14)

that is, ar: errcr in cur approximate inverse camnot be seen fram available
observational data. We define a matrix C by its i, j components

X
C.ov =Pk k() dx i,j=1,...,m . (1-15)
i} 0 i

3
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