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Abstract

A charged particle detector array flown in a high altitude

balloon has detected and measured some 3 x 10 4 cosmic ray nuclei

with Z >,12.  The charge specrtum at the top of the atmosphere for

nuclei with E > 650 MeV/n and the energy spectrum for 650 < E <1800

MeV/n are reported and compared with previously published results.

The charge spectrum at the 'source' of cosmic rays is deduced from

these data and compared with a recent compilation of 'galactic'

abundances.
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Introduction:

A determination of the charge and energy spectra of the heavier nuclei

(Z ;o 12) in the primary cosmic radiation can provide information on several

important questions. These include the general problem of the propagation

of cosmic ray particles through the interstellar medium, as well as the na-

ture of the possible source region. Since it has become apparent that the

chemical composition of the matter that is accelerated to high energies

is not radically different from the general run of astrophysical samples of

matter, it has become necessary to try aid look for small differences.

1	 Clearly any distinctive characteristics of high energy matter could lead to a

better understanding of the origin of cosmic rays. It is therefore necessary

that on these nuclei we attempt to make measurements that have good statistical

weight and charge resolution. This psper describes the results from oa-^ such

observation, using a large but lightweight detector ^hz r could be employed to

make measurements of much greater duration.
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Experimental Details

A large area, lightweight detector of heavy cosmic ray nuclei was flown

on a high altitude research balloon for 11 hours at a mean altitude of 2.6 mb

from Fort Churchill, Manitoba, on August 8, 1974. This detector consisted of

four active elements, two scintillation counters and two Cerenkov counters

arranged in the configuration shown in Fig. 1. In all four elements the

light pulses produced by the radiators were emitted into a diffusion box

and then collected by photomultiplier tubes (PMI's). In the Cerenkov elements

the outputs of six PMT's evenly spaced around the perimeter were summed and

analyzed by quasi-logramithic 2048 channel pulse height analyzers (PEA's).

In the scintillation elements the outputs of four PMT's, three around the

perimeter and one mounted in the center, were zeparately analyzed by similor

PHA's. This last feature permitted us, by using the relative pulse heights

in each PHA, to locate the impact position of each _:,smic ray nucleus on

both of the 1.22 m diameter scintillatoos to within a standard deviation

of 4.5 cros, (Scarlett, 1977).

In this detector the geometry was defined by the two Cerenkov radiators,

giving a corrected geometry factor of 0.410 ± 0.007 m,
2
 srand thus, with a

total live time of 3.432 x 10 4 secs, an exposure factor for the flight of

3.91 ± 0.07 m`sr hrs.. The total weight of the complete detector, which was

flown unpressurized and covered only by an aluminized mylar solar blanket,

was 225 kg, and as a consequence the atmospheric corrections were kept to a

minimum. Some 3 x 104 nuclei with Z > 12 were detected at a float altitude

that decreased steadily from 1.5 mb to 3.8 mb.

The flight data were processed by determining the trajectory of each

particle and, after making corrections for the path length through the
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detectors and for non-uniformities in light collection and thickness, con-

structing plots of the outputs of the scintillation counters versus those

of the Cerenkov counters. This procedure, which is rather standard, but

tedious, is described in detail in Scarlett (1977). One unique feature,

the position location, will also be described in detail elsewhere.

The uncertainty in charge and energy determination depends on

fluctuations in the energy deposited in the scintillators and the number

of photoelectrons in the Cerenkov detectors a4 well as on the accuracy of the

corrections for thickness, uniformity variations, and for path length.

The thickness and uniformity corrections were accurate to an average of

0.5 X and the path length correction to 1.3 X. A detailed analysis of the

factors affecting the charge and energy resolution is given in Scarlett

(1977).

Experimental Results

a) Charge Spectra

The resulting charge distribution is shown in Fig. 2, which plots the

mean charge of nuclei having E > 550 MeV%n in the detector as determined

from the values calculated separately in the top and bottom pairs of

counters. Examination of this figure shows that the FWHM of each of the

charge peaks at 2 - 12, 14, and 16 is one unit of charge, which suggests a

standard deviation, a of 0.42 charge units, inadequate to resolve indivi-

dual neighboring elements on a one-to-one basis, Waddington (1977), but

adequate to det^.rmine the features of the main charge peaks and to allow

statistical separation of the elements in samples of sufficient weight.

Fig. 2 is based on 20,525 nuclei that satisfied all the requirements imposed

to remove interactions and other sources of degradation. It is therefore

possible to unfold the distribution, using a multiple linear regression
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technique, Bevington (1969). This technique assumes gaussian distributions

with fixed mean and standarded deviations and derives the relative abun-

dances best fitting the experimental distribution. The assumption of gaussian

peaks is generally reasonable though due to the relativistic rise in the

scintillators there is a small tail on the high side. Hence, high energy

nuclei from an abundant element can contaminate the next higher peak. This

problem is particularly evident in the contamination of the cobalt and

nickel peaks by high energy iron. The results are given in Table 1,

where the errors shown include those for both statistical and goodness of

fit.

These results have to be corrected for several effects in order to

determine the abundances at the top of the atmosphere. Among these corrections

are those for interactions in the detector, and in the overlying atmosphere,

as well as corrections for the selection criteria used to qualify events for

inclusion in Fig. 2 and for the energy window used. The interaction

corrections have been made using the cross-sections for interactions of

heavy nuclei in air of Meyer at al (1977 and private communication),

together with a propagation program due to Hagen (1976 and private communica-

tion). The resulting intensities at the top of the atmosphere are also

shown in Table 1, with errors that include an estimate of the errors in the

various corrections. It may be noted that the largest corrections are in

general for effects in the datector, which are relatively well-known, while

the atmospheric corrections, which are less well deterained, are signifi-

c±ntly less, due to the small amount of residual atmosphere.

However, it is also clear that even for a relatively thin detector

such as this, the corrections for effects in the detector are large and any
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uncertainties in the nuclear parameters will lead to similar large uncer-

tainties in the calculated intensities. Partly fcr this reason, and partly

because of the intensity variations due to solar modulation, few of the

recent experiments in tiAs field have attempted even to quote absolute

intensities but instead discuss only the relative abundances, where the

iffer's of these corrections will be reduced, although not eliminated.

The abundance] that we find of the elements relative to iron are

compared in Fig. 3 with those of a number of other experiments. The

agreement is reasonable in view of the differing corrections applied and

the varied energy ranges covered in the experiments. There is some

indication that the magnitude of the odd-even effect we observe is

somewhat less than that reported by the majority of other experiments.

This suggests that we have not been entirely successful in unfolding

the distributions. It can be noted that for several of the elements the

quoted errors lie well outside those to be expected for a unique value.

Whether this is due to energy dependent variations, or to experimental

optimism, is not clear at present. Examination of Fig. 3 also suggests

that the total relative number of nuclei is not the same in all experiments,

but that there are quite wide divergences in total relative numbers.

This is illustrated in Fig. 4, which shows the integrated relative number

of nuclei as a function of decreasing charge for Z < 25, for several of the

experiments shown in Fig. 3. While some of these differences could presumably

be a consequence of the differing magnitude of the corrections applied,

the energy independence of the corrections implies that at least some of

the differences are energy dependent. It should be noted that our data

are the only ones that are for all energies above the lower limit. Ire
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every other case an energy range is specified, with both an upper and a

•	 lower limit. Hence our sample must include proportionately more high

energy nuclei than do any of the others. Our lower rate of growth in

Fig. 4 can be explained by assuming that the iron nuclei have a flrl-ter

energy spectrum than do the lighter nuclei. This interpretation is

supported by the observations of Julliot et al (1975); No. 5 in Fig. 3,

which have the highest energy limit of any of the other experiments and

also show a low rate of growth.

Such a difference between the energy spectra of the iron nuclei and

those lighter is in agreement with an extrapolation of our own results at

moderate energies, to be disc • issed shortly, and with those reported by

other groups. The uneven quality of the data makes it unreasonable to

attempt an anelysis of these energy spectra differences, although they

aFpear to be consistent with what would be expected.

In view of the previous discussion we have no reason to doubt the

general validity of our absolute intensity values , which we consider

to be the best available at this time, although the relative intensities

are no better than others reported. It can be noted that if we sum the

intensities for Z ^, 20 nuclei with E > 650 MeV/amu we obtain a value of
e

0.865 t 0.018 nuclei /m2 .sr .sac, which is in good agreement with the value

of 0.891 t 0,05 obtained by Freier and Waddington (1968) for VH-nuclei

above the same energy limit and at a time of similar low solar modula-

tion. If we assume that each element has the same mean mass number A

as solar system matter then we can calculate the total nucleon intensity

brought into the earth's atmosphere by each element. The total intensity

of E > 650 MeV nucleons brought in by nuclei with Z 3 12 is thus 94.3 t 1.9

i
_	 i	 .
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nucleons/m2.sr .sec.

b) Energy Spectra

The energy spectrum for a particular charge can be derived over a

limited energy range from the Cerenkov signals. In this case we find that,

up to the highest energy considered, errora of less than 12 are introduced

by ireglecting the convolution correc ,.ions described by Lezniak (1975) and

assuming instead that we are using a perfect detector having a 6-function

redtitribution functio^ In o-der to calculate energy spectra we initially

selected a set of energy windows at the top of the atmosphere. For

each charge a corresponding set of windows was then calculated at the

detector in the center of C top for a particle at the secant @ averaged in-

cident angle of 20% with the telescope at the mean depth of 2.58 g/cm2.

The number of particles in each window was then determined. Fig. 5(a)

shows the resulting differential energy spectra for iron nuclei, iron

secondaries (21 4 Z < 25), calciur. nuclei, light iron secondaries

(17 4 Z S 19) and sulphur nuclei. Similarly, the integral spectra are

shown on Fig. 5(b).

Although most of the differential spectra look as though they could

be represented by power laws, this is only true over the very limited

energy ranges shown. Examination of all the data, including the integral

intensities for E > 1800 Merl/nucleon, show that none of the spectra can be

truly represented by a simple power law in any of the usual motion para-

meters, total or kinetic energy, or rigidity.

However, it is clear from Fig. 5(a) that the iron nuclei have a

flatter differential spectra in the energy region 650 ` E 4 1800 MeV/n

than do the other elements, even though the integral spectra are rather

. _..-.	 1
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similar.

Fig. 6 shows the abundance ratio of iron secondaries to primary

iron as a function of energy, together with data from other groups. Also

shown is the prediction of a pt.:pagation calcula 'ian, Maehl et al (1977),

whi:h assumes no appreciable abundance of iron secondary nc.clei at the

source, an energy independent leakage path length of 5 g /cm2 , and energy

dependent cross-sections from the semi-empirical formula of Silberberg and

Tsao (1973a, 1973b).

However, recent measurementz by Raisbeck and Yiou (1975, 1977 and

private communication) of some of the cross-sections for the ` . ragmentation

of iron on protons and helium nuclei indicate that only a small fraction

of the energy variation of the iron secondary to iron ratio can be accounted

for by energy dependent fragmentation. 'Thus it seems more likely that

an energy dependent leakage path length is required to explain the data,

even at these relatively low energies.

c) Source Abundances

F

	

	 The abundances measured at the top of the atmosphere have been propaga-

ted to the source using & -leaky box model with 
X  

a 5 g/cm2. The propa-

gation program, written by F. Hagen (1976) uses a matrix technique origi-

nally described by Cowsik and Wilson (1973). The results are shown in

Table 2 along with those of Garcis -Munoz et al (1977), and Fisher et al

(1976). Also shown are the 'galactic abundances' of Meyer and Leeves (1977).
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The results of this work, which are in substantial agreement with those of

Garcia-Munoz et al (1977), show generally good agreement with the galactic

abundances, but with a few distinct differences. The most atriking disagree-

meats are the S /Fe and Ar/F2 ratios. Cosmic ray sulphur is diminished by

a factor of 2 to 4 while Ar appears to be absent in the source, On the

other hand, the abundances of Si and Ca are in good agreement with the ga

lactic values. It must be pointed out that the galactic abundances of Ar

and S are not well known, (Casse and Meyer, 1977).

There have been two types of explanations for the source composition

of cosmic rays, either nucleosynthesis including mixtures with the inter

stellar medium ( eg., Hainbach et al, 1976) or preferential acceleration

which is dependent on some atomic property such as the first ionization

potential (Haynes, 1973; Kri.stiansson, 1974; Casse et Al, 1975), The

former attempts to find a particular nucleosynthesis process which explains

the cosmic ray source abundances. The latter notes that there app, ars to

be a correlation between the ratios of the zosmic ray to galactic source

abundances and the first ionization potential (or other atomic parameter,)

Shapiro and Silberberg (1 0,77) and Schramm and Arnett (1977) havz rem

Gently concluded that neither explanation can completely explain the cosmic

ray abundances and that a hi' , id of the two approaches is probably required,

Casse and Meyer (1977) have rrviPwed the Si. S ; Ar. and Ca abundances both

in the galaxy and is Lhe cosla:r ray sources and have concluded that the

cosmic ray source abundances =nnot be explained by explosive Si burning,

the process propoaed to be the principle source of the four elements, They

{ 'I	 also conclude that no one S abundance in the galaxy is ccasistent with pre-
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sent views on both nucleosysthesis ,..d production of the cosmic ray source

composition.

It appears that at this time there is neither enough detailed informa-

tion about the nucleosysthesis processes nor about the cosmic ray source

composition to reach a definite conclusion. The low Ar and S abundances

do lend support to the theories that preferential acceleration is at least

in part responsible for the cosmic ray source abundances. Isotopic com-

p) t.,....on measurements of the heavy nuclei should place enough constraints

on both the nucleosysthesis mechanisms and on the cosmic ray source cim-

position to greatly improve our knowledge of both.

4

F
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Table 2.

Relative abundances of the cosmic ray nuclei at the source.

This work: Galactic abundances Garcia-Munoz

Z Meyer & Reeves (1977) et a1 (1977)

12 92±16 123±4 ---

13 22±4 9.8±0.4 ---

14 96±7 116±4 125±15

15 7±2 1.1±0.4 <2
16 16±3 45.4±16.3 16±3
17 2.4±1.2 0.430.23 <2
18 <2 5.8±3.5 <3
19 2±2 0.4±0.1 <3
20 9±3 7.630.5 14±5
21 4±1 0 <2
22 <3 0 <4
23 <2 0 <3
24 <3 1.5±0.2 <3
15 <3 1.0±0.3 <2
26 100 100±9 100
27 -- 0.2±0.05 <0.4
28 7.3±1 5.4±0.6 5±2

Fisher et al
(1976)

153

17

127

5.3
20

4.67

11.3

2.0
1.3
100

 1
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FIGURE CAPTIONS:

1. Schematic arrangement of the detectors.

2. Histogram of (Z top
+ Z 

bottom ) /2 for particles with T)550 MeV/n. Note

that since these data are not corrected the relative abundances are not

those at the top of the atmosphere.

3. Abundances relative to iron obtained in this experiment and compared with

results reported by: 1. Meyer and Minegawa (1977), 2. Tueller at al (1977).

3. Garcia-Munoz at al (1977). 4. Lund at al (1975), 5. Juilot at al

(1975), 6. Benegas at al (1975), 7. Webber at al (1972), 8. Fisher at al

(1976).

4. Integrated number of nuclei relative to an iron abundance of 100 as a

function of decreasing charge. Referencew are the same as in Fig. 3.

5. (a) Differential energy spectra as a function of kinetic energy.

•	 (b) Integral energy spectra as a function of kinetic energy.

-- Lines are drawn through the various experimental points to guide the eye,

not represent a mathematical fit.

6. Ratio of iron secondaries to iron nuclei as a function of kinetic energy.
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Figure 5.
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