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ADHESION OF A BIMETALLIC INTERFACE

Abstract

by

John Ferrante

The Hohenberg-Kohn and Kohn-Sham formalisms are used to examine
adhesive binding (binding energy as a function of separation) between
combinations of simple metals in contact. The'metals examined are
Al (111), zZn (0001), Mg (0001), and Na (110). The adhesion of dis-
similar metal contacts of Al, Zn, Mg are examined using a simple
overlap model with the Hohenberg-Kohn formalism along with Smith's
parameterized density. The adhesion of similar metal contacts be-
tween Al, Zn, Mg, and Na are examined completely self-consistently
in an entirely ab initio calculation using the Kohn-Sham formalism,
Crystallinity is included using the Ashcroft pseudopotential via
first order perturbation theory for the electron~ion interaction;
and the ion-ion interaction is inciuded exactly via a lattice sum,
The adhesive binding energy was determined both in the local-density
approximation and including gradient corrections to the exéhange
and correlation energy using the gradient corrections of Rasolt and
Geldart, Binding was found in all cases,  In dissimilar metal con-
tacts the interfacial bonding energy was greater than that in the

weaker material predicting the experimentally observed possibility
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of metallic transfer.

minimum in like metal contacts is explained in terms of consistency
between the Ashcroft pseudopotential and the bulk charge density.
Good agreement with experimental surface energies is obtained in the
self-consistent calculation when nonlocal terms in the exchange ard
correlation energies are included. Good agreement is also obtained
with experimental elastic stiffness constants as compared with

values obtained from the curvature of the binding energy curves

near the minimum,

was found to be of the order of 0.2 nanometers.

with molecular binding are found when examining the kinetic and po-
tential energy contributions to the binding energy as compared with

the Ruedenberg and Feinberg examination of molecular binding in

hydrogen.

sum rule as compared with the jellium force at zero separation in-

dicating a high degree of self-consistency,

iii

The nonzero position of the binding energy

The range of the strong chemical bonding force

Strong similarities

Excellent agreement is obtained with the Budd-Vannemenus
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BACKGROUND

Friction and wear are of great technological importance. Ad-
hesion, the mutual attractive force between similar or dissimilar
materials when brought into contact is d% fundamental importance to
friction and wear [1,2,3]. In spite of the importance of metallic

Pt
adhesion, little work has been done to describe the nature of the
strong attractive force between metals in contact or at small sepa-
rations. This has been due in part to the lack of theoretical tech-
niques for modeling metal surfaces, the lack of’experimental data on
clean metals and the complexities involved in friction, wear, and ad~
hesion experiments. The experimental‘daﬁa available in the litera-
ture is at best 6nly statistically repeatable, i.e., a sufficienf
nuiber of experiments will give a most probable value. The eruption
of surface oxides during rubbing which results in strong adhesion and
thus the generation of wear particles is at best a random process. A
number of difficulties exist even in adhesion experiments carefully
performed in ultrahigh vacuum systems with characterized clean metal
surfaces [4,5]. The first difficulty is the fact that real surfaces
are not ideally flat, there is a hill and valley structure which
makes the trué'contact area unknown. Second, thererare mechanical

effects such as recovery of elastically stored energy or bulk defect

structures [4] which affect the breaking strength of the bond. Con-

sequently, in order to tackle the complicated problems involved in




i
i
4
{

metallic adhesion it is necessary to separate its various parts,
i.e., binding force, mechanical effects, true surface area, etc.
The hope is therefore that an understanding of these isolated phe-
nomena will result in the ability to put the results together and
gain a general understanding. In this spirit the present work at-
tempts to understand one phase of the problem, the nature of the
clean metal-metal binding force.

Another aspect of the present work is that in previous surface
energy calculations onlyvenergies at zero and infinite separation
were computed. There is a further check which must be performed to
verify these results and that is that the binding energy curve must
have the correct behavior at zero separation, i.e., zero slope.
Therefore, the present work is also a necessary check upon surface
energy calculations [6,7]. In addition, a further comparison with
experiment can be made in that elastic constants can be estimated

from the curvature of the binding energy at the minimum. This study

therefore consists of several parts. The adhesive energy (binding

energy for two metals versus separation) is calculated for a simple

overlap model where the electron gas is held fixed at its bare sur-

face distribution for all combinations of Al, Zn, and Mg. The adhe-

‘sive energy is then calculated for the more difficult situation al-

lowing relaxation of the electron-gas with separation for the like -
metal pairs Al, Zn, Mg, and Na. Crystallinity is included in both
cases. Finally, the constituents of the binding energy are examined

for analogies between adhesive and molecular binding.
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- ' I ~ SELF-CONSISTENT CALCULATIONS OF THE ELECTRON NUMBER DENSITY

A. Hohenberg-Kohn-Sham Formalism

The present calculation relies on recent advances in surface
' : theory based on the work of Hohenberg, Kohn, and Sham [8,9] who ex~
tended the Thomas~Fermi-Dirac Theory. The Hohenberg-Kohn-Sham Theory

: is an exact formal variational principle for the total energy of an

P interacting inhomogeneous electron gas in which the total electron
density is the functional variable. A number of excellent reviews of

’ this theory are available in the literature [10,11,12]. 1In this sec-

E tion we will summarize the highlights of the Hohenberg-Kohn-Sham

P Formalism.

‘ Hohenberg and Kohn (HK), [8] formulate’the total energy of a

system of interacting particles as a functional of the electron num-

ber density n(x) for an external potential v(x). They write

Fa [na] = jc_f‘: WE) mee) + Flme)] 1

where

S P = Bl 5 B ) o

The functional Ts[n(g)].is the kinetic energy of the noninter-
) ’ acting electron gas, the second term is the classical Coulomb energy
and Exc[n(g)] is the exchange and correlation energy which accounts

for the remainder.

HK then proceed to argue that for a given external potential

i
i E
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v(r) the energy functional Ev[n] acquires its minimum value for the
i ‘ correct density n(r) subject to the constraint v/rn(g)dg = N that

states. the conservation of the total number of particles. HK then
define a new functional G[n] which omits the classical coulomb en-

] i ergy and for a slow variation (though possibly large) in the density

4 : : n(r), G[n] is expanded in terms of the gradient of n.

- ; 2
G Lmee= Sde [oama)+ gaomee)) mag*+---]
Where G[n] = Ts[n] + Exc[n]' The term go(n) represents the energy

+

P density of a gas of uniform density, n,, and is referred to as the
E local density approximation (LDA). The LDA has been to date the ap-

proximation most frequently used in surface energy calculations [12].

More recent surface energy calculations [13,14,15] have been extended
beyond the LDA to include the gradient terms represented by gz(n(E)).
Once an approximation is selected for the exchange and correlation
energies, nonlocal energy, and a potential is specified, then the

. variational principle

L sEeensene) = o

is applied where u is a Lagrange multiplier. A differential equa-
tion for n(r) can then be derived and solved self-consistently with
Poisson's equatioh enabling the calculation of the electron number
é i : ~density, the electrostatic potential, and the total energy of the

system.
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Kohn and Sham (KS), [9] have extended the principles in the HK

Formalism by considering the variational equations

S&/Y((r) %{’(_V_‘) + %%Qﬂ + Kxc [m]_} dr-o (52)

Y Sme) die =0

(5b)
where

(;b(_t)::/l/'(ﬁ) +fit' {%%‘ ®
and

Kxe = -c%;\ (/nE:xc(m(r))) : (7

where € is the exchange and correlation energy/particle of the
uniform electron-gas of denmsity n. Therefore for a given ¢(x) one
obtains a result that is identical to the HK formalism for a system
of noninteracting electrons moving in a potential ¢(x) +kuXCOb(£)).
As a consequence they establish a set of one-particle Schroedinger

equations (atomic units used throughoﬁt A=m=e=c=1)
2 : £ : '
$-4 VA4 [$(6) +hixe e} f =€ e ®

with a self-consistent potential ¢(x) + uXCOQQg)) where

ma:) = (Z’/Viff)/z | | ‘ (9)

TR NS sy it b5
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wi(g) are the N-lowest lying orthonormal solutions of equation (8).

M) is an ade-

The only approximation in the procedure is that Exc(

quate representation of exchange and correlation effects. Inclusion

of nonlocal terms will be considered later.

B. Lang-Kohn Surface Energy Calculations [7]

i. Formulatiom of the Kohn-Sham Equations

The papers most relevant to the present results are the surface
energy calculations of Lang and Kohn (LK) ([7] and references cited
therein) and Smith [6]. The LK approach work will be summarized
here. The application of Smith's results is discussed in the theory
section. LK used the Kohn-Sham Formalism to calculate the surface
energy of metals ranging from r = 2 to r, = 6 where r, is the
radius of the Wigner-Seitz sphere. The surface energy is the energy
per unit area required to form a free surface. Alternatively it may
be thought of as the energy per unit area required to separéte a slab
of metal into two pieces along é plane to infinite séparation.

LK solved the Kohn-Sham equations for a bare metal surface using
the jellium model. In this model the external potential v(r) is
that obtained from the jellium positive charge density n+(£). Where

o X>o
VM) = 7 (10)
' M X<0

where =x is the dimension perpendicular to the surface and n, is

the magnitude of the bulk electron density. For this model the elec-.

troétatic potential is given byqu. (6) and is modified to the form

M e e b s AOMSCE ecalhb  aicmas 0




N Pe) = ' M) W

therefore ¢(r) can be determined by Poisson's equation

S VP = -1 (M) -Mecr)) (12)

i 2 ool

The constraint on the total number of particles can be incorporated

S (Extd- 1 M) de] =0 | v

r ; into the expression via a Lagrange multiplier
s
t

 therefore for the correct density

5 : for large N, py 1is equal to the chemical potential. Performing a

volume average over the metal gives

pop i e

;{ﬁi : where y is the bulk chemical potential relative to the mean inte-

RN LS

rior electrostatic potent1a1 (1n an infinite metal jellium model

-

0). From Eqs (3) and (13)

Fo
SRR SRR 4

= bt Exc[M o
/“ = +é'k5‘+ gx;\« /m-.-/m- 16)

LK defined

o | /V;#(K) = CP(,Z’) ’f'/‘xr.(/ﬂ(r)) o | (7

B 4!/
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in Eq. (8) and labeled the states by the quantum numbers k,ky,kz

with the following meaning

Vo b ko)~ Te) €xplbsdsike?)

(18)

where for x + =

Yk(x) = Sm(kx—b’(k)) a9

where +vy(k) is the phase shift introduced by the presence of the sur-
face. The choice of u = 0 to define the zero of energy gives

. 2
finally veff(x);;:;;— 1/2 kF from Eqs. (15), (16), and (17) and

- é.(%":i + Mege (m,g)) o) = = (R= kf) fulk)

(20)

Picking the Kohn-Sham form for the exchange energy per particle and

the Wigner interpolation formula for the correlation energy per par-

ticle of the uniform gas they have

_ 0.958 O. ¥4

Cxc« =" TThi7s | (1)
shere

/)’];/ - ("'/37'2) r83 (22)
Finally converting the sum in Eq. (9) to ankintegral, they find

(23)

o= s §RGE-R) [Hs ]

where L 1is the slab length in the x direction nor-

mal to the surface. Equations (12), (17), (22), and (23) establish
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a self-consistent set of equations that could be used to obtain a
solution within the LDA. These equations form the bases for part of

the present paper.
2. Surface Energy Calculation

LK used the calculation of the bare surface electron density
within the jellium model to calculate the surface energy of the solid.
The surface energy was defined as

o= 2x [2(6n+Ees [m])-(6Dnd- Fesnd)]

(24)

where n(r) is the distribution for the bare surface and n'(r) is
the distribution for the uncleaved solid, A is the cross-sectional
area of the sample, and EeS .is the electrostatic contribution to

the total energy. The surface energy in the jellium model is

Ou = 6?“‘@(2“’0?5 ' | (25)'

where

Os = 2/0,7_ ijGI.ék (-E—*X(k)) —iézm«)[W#g"ﬁ)*W#(@~”ﬂ (26)

This is the equation for the kinetic energy from an expressioﬁ de=

rived by Huntirgton [16].

Q;‘C‘-::‘_[:"‘Xmo‘)(ﬁkc(fvw()-éxc(mi-)) N @
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is the exchange and correlation contribution to the surface energy

and
Oes = j:"lx 95//”1,)()[/1’1&)— Y+ (X)) (28)

is the total electron-~jellium contribution to the electrostatic en-
ergy.

The result of this calculation was that the system was unbound
in the jellium model for r, < 4.,0. Consequently, LK introduced two
éorrections to the jellium energy which include crystallinity. The
first which will be discussed in greater detail later was to include
the effects of the ion-ion interaction exactly by performing a lat-
tice sum. In this sum the jelljum-jellium interaction is subtracted
and consequently acts like a background electfon gas for the lattice
of point positive ions. LK refer to this term as dock. The second

correction includes the electron-ion interaction via first order

perturbation theory. In this the Ashcroft pseudopotential

o r=r

%s (r) =

(29)
~Z. >R
r C
which has been used successfully to calculate bulk properties of
simple metals is used to model the electron-ion interaction. The
contribution due to the electron-ion interaction for split minus

unsplit crystal is given by
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a©
Sops =\ dx [ma) -] Swiex)
[0

-0 (30)
where 6v(x) is the average over the y-z plane of the sum of the
ionic pseudopotentials of the half lattice minus the potential due
to the semi-infinite charge background. Details and criticisms of
this result will be presented later. The general approach in the
Lang-Kohn calculation is similar to that used in the present. study

for determining the binding energy versus separation.

II. OTHER SURFACE ENERGY CALCULATIONS

After the initial calculations of Lang and Kohn, an alternate
model to explain surface energies was proposed by Schmit and Lucask
[17] and Craig [18]. The result of the model was that the depend-
ence of the surface enérgy on r. could be explained by the as-
sumption that correlation was dominant. An excellent summary of this
model and its implications is presented by Brown and March [12] and
references cited therein. The theory expresses the surface energy in
terms of the change in the zero point energy of the plésmons and
points out that this could be a large contribution. The surface
plasmon model has been criticized from a number of standpoints and
now has become passé as a criticism of the Lang and Kohn Calculations.
The criticisms invdlved the cutoff wave number seleéted for surface
plasmons, inclusion of dispersioh, effects of particle—hoie excita-
tions and changes in bulk-plasmon energy. Griffin and Kranz [19]
have recently performed a model calculation determining the bulk and

surface changes in the plasmons using an infinite-barrier, random-
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phase approximation which they argue reflects the situation of a
real metal. They conclude that the surface plasmon contribution to
the surface energy and the bulk plasmon contribution to the surface
energy are of comparable magnitude but of opposite sign thus giving
a small net contribution and supporting the work of Lang and Kohn.
The Lang-Kohn calculations and related calculations such as the pres-
ent work are applicable for simple bulk metals where the s-p char-
acter of the conduction band is well separated from d-states.
Cyrot-Lackmann [20] has successfully predicted trends in surface en-
ergies using a tight-binding approximation and an expansion of the
density of states in terms of moments for transition metals. Brown

and March [12] also give an excellent summary of these calculatioms.
ITII. NONLOCAL TERMS IN THE GRADIENT EXPANSION

As indicated in Eq. (3), Kohn and Sham suggested a form for the

gradient expansion.
Eee 1] = J e (A [ +Buc [m) [Pl”) o

Smith and others [21] have pointed out the importance of thé gradient
terms to surface theory. Until recently an expression for Bxc was
not available in the range of metallic densities. Because of the im-
portance of these terms there have been a nuﬁber of recent attempts
to “ineclude them in surface calculations. Rasolt ‘and Geldart have
determined = B, ﬁumerically within the random phase approximation
[22]. - Lau and Kohn [13] have obtainedﬂanrappfoximate expression

for By. by requiring that the surface enefgy for two adjacent

i e AT e e e S IR ronh. M B  is aa e a
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N b metal films of nearly equal density be the same as that obtained
r

’ from the electronic polarizability of Vashista and Singwi, [23],
i i Rasolt, Wang, and Kahn [24] have examined the convergence of the
¥

exchange energy by calculating the exchange energy exactly for a

Yukawa potential with a finite barrier potential with a barrier
. f height chosen to reproduce the LK density profile. The model po-

tential approach was used since a calculation for real systems would

F ' ﬁ be prohibitively difficult, if not impossible. The.results indicate
L ; that the gradient term models the exact energy very closely over the

[ entire range of Yukawa screening length A, whereas the local term

g is ~15% too high for X < 0.4 XTF (ATF = Thomas-Fermi screening

k 1 length). The agréement is excellent for r, = 3 and is slightly

[ 5 worse for r, = 4., An argument is given for the correlation energy
; which would be difficult to calculate having the same behavior.
Therefore, they conclude that the gradient expansion is an adequate
representation of the exact energy.

Rose, et al. [1l4] have included the gradient expansion self-
. ; consistently into the surface energy calculation. Lau and Kohn [13]
g3 have included’it through perturbation theory. Both found an approxi-
3 : '; mately 50% increase in the eﬁergy for aluminum. Rose found only a
small change in the electron density by including this term and a
smali change in the work function. This discrepancy was attributed
f s ; to the perturbation approach and the fact that small changes in the
density can produce large changes in the dipole layer.

Rose, et al.kand Lau and Kohn disagree about this correction

. with‘regard to how well they represent experimental surface energies,

Hean
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This results from a conflict in the experimental literature. This
will be discussed later in the paper.

Gupta and Singwi [25] have also estimated this term using the
gradient expansion and the work of Bvashista and Singwi, and obtained
results which are somewhat smaller but agree to within 30%. Perdew,
Langreth, and Sahni [26] have used a wave vector analysis rather than
a gradient expansion to extend the results beyond the LDA. They
again obtain a result which is ~50% smaller using a wave vector anal-
ysis. 1In general, the calculation of this term is quite difficult.
The degree of agreement ~50% and that all calculations are in the
direction of increasing the surface energy can be taken as confirm-
ing the general magnitude and direction of this term. (The Rasolt-~

Geldert gradient term is included in the present calculation.)

IV. METALLIC INTERFACE CALCULATIONS

The first attempt to calculate interfacial densities and po-
tentials using the Kohn-Sham Formali;m was performed by Bennet and
Duke [27]. They used a parameterized form for the number density and
potential and solved the Kohn-Sham Equations self—consistently’by
varying parameters. The first attempt to calculate the adhesive en-
ergy for a metallic interface was performed by Ferrante and Smith
[28,29]. They used the HK Formalism and Smith's [6] ﬁarameterization
of the electron number density but did not allow felaxatidn of the
electron gas. This work was the first to calculate binding energy
versus separation for Al, Zn, Mg, and all possible combinations. De-

tails of this calculation are presented herein.  Ferrante and Smith

DT T TSP L P PL T I T PO VPLTT T 1Y TP TRV o T oy
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[30] were the first to obtain a completely self-consistent numerical

solution of the Kohn-Sham equations for the case of similar metals

in contact versus separation and to include higher order terms in the
| | gradient-expansion self-consistently [31] for the like metal combina-

tions Al, Zn, Mg, and Na. No detailéd account of this work is in the

literature and will be presented herein. Nieminen [32] solved the

Kohn-Sham Equations for the force versus separation for metals rang-

! % ing from r, = 2 to 6 self-consistently. Vannemenus and Budd [33]
i % solved the HK Equations self-consistently for two jelliums in con-~
3 tact, Rouhani and Schuttler [34] and Mehrotra, Pant and Das [35]
and references cited therein calculated the adhesive energy for
N ﬁ . alkali-metals in contact comparing zero and infinite separation using

hahbalit™y

the HK Formalism and Smith's parameterized density., Finally, Allan,

Lannoo, and Dobrzynski [37] estimated the adhesive energy for zero

and infinite separation for dissimilar merals in contact using the
techniques of Cyrot-Lackmann.
p A more detailed discussion of these papers will be presented

¥ 1 later in comparison with the present results. The paper will now

proceed by application of the Kohn-Sham Formalism to the calculation

b of binding energy as a function of separation for bimetallic con-

tacts.
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THEORY

I - SIMPLE OVERLAP MODEL

A. Model

In this section are described the procedures of Ferrante and
Smith [28] for calculating binding energy as a function of separa-
tion for similar and dissimilar metal combinations of Al, Zn, and
Mg. In this calculation the contribution of electron overlap to
the binding energy is presented. The electron density distribution
is held fixed for each metal at the distribution for therbare metal
case and therefore relaxation of the electron gas is not permitted.
It will be shown that this simple approach has some appealing fea-
tures and gives some surprisingly accurate results. The model is

shown schematically in Figure 1 where

:rJelllum—\\ , n(+2’
|
|
I4 nz
~—— 7
- . S % -//’ “Nyotal (l)Location of nuclei for the
Location of nuclei forl ~\< Al | {111) surface plane of Al
(0001) surface plane of Zn S
I Pl s | 1

-3 -2 -1 0“3’;“ 1 2 3 4
Distanc)g, atomic units

Fig. 1. - Jellium charge deris’ity to scale for Al-Zn, n} and n, denote the metal |
vacuum electron number qensities for Al and Zn, respectively. -

16
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where

M) = [mi-4m ewlax) o)+ nlexplgix ) BK)

(32)

e

M) = [ 5 mE e g2 66-2) + 111y NP Flis)) 6

I

v(x) =1, x>0
n(x)==nl(x)-+n2(x) and 0(x) = is the Heaviside
8 (x) 0, x <0

I

r . function [37]. The electron density n(x) is the parameterized form
used by Smith and B is the exponential decay constant determined

} bby Smith for the bare metal surface. The most densely packed planes

are assumed in modeling the density. This assumption is used to

P minimize the effect of density variations in the y-z plane which are

[ assumed to be uniform.

é B. Definition of the Energy

Following the Hohenberg-Kohn Formalism we first define the ad-

hesive binding energy by

D Atk s

. E(0)-Era)
Eno ‘2'/)9 (33)

where

- Em=fterrmme) +5 Z 5 Eoy @
, 34 09
3 and - [fm) = %(3»”’-)%[@/;1‘5(_4:}3(7—%) ’f#’m’%g)

-0.056 j &,Lﬂv/’(i”.__*) i jdr m +—j di-di' M) mce')
TS I /() -]

il N sl 0
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The first two terms in E[n] are the electron-ion and ion-ion
interaction energies and Rij is the distance between ion cores. The
first three terms in TF[n] are the kinetic and exchange energies and
Wigner's interpolation formula for the correlation energy, each for
the uniform electron gas. The next term is the next order term in the
gradient expansion for the kinetic energy, which is large compared to

the correlation energy, and the last term is the classical electrosta-

tic electron-electron interaction energy.

C. Calculation Procedures

The calculation proceéds’by first evaluating the energy for jel-
lium and then introducing crystallinity exactly for the ion-ion in-
teraction, and approximately for the electron-ion interaction via
perturbation theory following Lang and Kohn. In evaluating the jel-
lium part of the electrostatic enérgy it is convenient to combine‘a
part of the first term in Eq. (34) with the last term, the classical

electron electrostatic energy giving:

Fos= /[ 050 posa) | G5)

where ¢(x,a) is given by

g__’é% - yirpia) = L9 -mual.
X , : '

Once the jellium adhesive binding energies were obtained these en-

ergies were modified to COrrect the jellium electron binding energy

to include the effects of the actual ion core potentials via first
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order perturbation theory. The Ashcroft pseudopotential'is used to

give the energy

EP_S' = A\YJ){ S/UTX)GJ/V}(X) a-) 37

where &v(x,a) is an average over planes parallel to the surface of
the difference in potential between an array of pseudopotentials and
the jellium and thus is treated as a perturbation in the jellium po-
tential. Details of this calculation ate given in Appendix I. Im
addition, the ion-ion contribution to the total energy is included

exactly by a lattice sum,-

D. Classical Interaction Energy

The ion-ion interaction energy is tﬁen included exactly via a
lattice sum using a technique developed by Rao and Kohn [38]. In
this sum the interaction energy between the two half spaces for ar-
rays of positive ions having the correct geometrical positions for
the planes chosen minus the jellium-jellium interaction energy is
calculated. The subtracted jellium~jellium term serves the role of
a negative background, thus gives a convergent reSult.

Formally, the interaction energy is written as

4 ,( ;‘(_Cl |
Wy @ = 552‘!01‘.: 7;;(3‘ ‘) e

where

o= 7 77 Sk E7 %) 8@ - 0 78603

the subscripts 1 and 2 refer to the two half spaces, z is the
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ionic valence, o is the ionic charge per unit area representing the
jellium background. The net density p(g) can then be expanded in a
Fourier series in the <y-z plane, so that

O(r) = 6 ;Zig {S“*Xm) Z f Cuugh, EHP(550Y) XP (51 2)

h=-00 (39)

. the primes in the £ and h summations indicate that the term

8, = 8, = 0 which cancels the jellium background has been omitted
from the summation. W;,. 1is evaluated for the fcc[lll] direction,
the hcp[0001] direction and the bcc[110} direction. A sample cal-
culation for the fce[ll1l1] direction, the most difficult of the three,

is presented in Appendix II. /A is given by:

fce[l1l] ; it d’é A
w0 o ) =

Mf@: Z)EZMJ,%Z(:Jr(og/?/\)(m_l)x-?«;nx A g(osgé X

+((05 3”/‘+ COSP/’)X ‘{"‘ 4((05 h A COSZM)XZ"(L‘ + [05"1/» ng

2¢

Z/n-}— Z ;(m () ((-»LSLO.S/?‘F/X JIWZX 3 f((?bnfx

+Hcosmg) X +3xf+(/+com£))< 28, s ek

) (osTh
_ﬂ__ (m-1) ( I+ Com(/nw)) 3"”‘)( f
+ Z/"M “‘Z[ g ; D in
«@std X5+ [Cosh +Cas7rA Costl] X% +3X
+ Cccg h cogw,“(osz?k]xzo +CosT X f
(40a) -

where d is the interplanar spacing, ¢ is the nearest neighborrr

distance -
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x = exp(-2nd/¢c), D = ‘/22 + 112/3, o = \/5/3;

hep [0001]
A

Woe (@) _ 4B 5 A 2 Z Z(m iy x - 2mb X" =y
A -

2ech (osﬂf.’. XO(A}

{COS 2th 42x

+L,/rggﬂ7+z Z(‘"“/) (/+C£5“ri’)x-2mf)< */"{)( 2)<~”+X(}

-—( L=l ) ﬁp
+ 8BZM+ 7: Z Z(m—/) mraﬂ(/,w)) X_sz X (4D

- § Goszlh X* +2x20 + (o5 23 xj

(40b)
vhere B = (4/3d)/(45¢);
beec[110]
g on L Zotghom
gxswh fav“r/\X ~F>§ . Z/m z JZ‘(nH) (1+Gstf)
X*““"X“J"g(fﬂzx”mkg + Z M+ %{;I .thm /)(*(”5 f(mﬁ)
K2 PX @D Gosnly §XT 4 205 K27 +X 3 o

"~ where D=='VR2 + h2/2, o= \ﬁi/z. For the hcp and fcc cases a

simplifying approximation which agrees to the exact value (summed to

six significant figures) to 1.0 percent is now presented as

A e T SN sk ot s




4

22

W @) - - 2[3_?__2 exp(- i"éLr‘-/——gcoHa))
A c3 <

(41)

The exact values for the sums are tabulated in Appendix II along with

a comparison of the exact values with Eq. (41).

E. The Order of the Error

This simple overlap model might be expected to give reasonably
accurate results for [%iz)]//ﬁlil{]% L. It is exact for a = 0 and

nil) = niz) since expanding E[n(x)] we have

Ermecay)= fIm]+ |desme) (St e, )
+5) f dv-oAv! Sm()Sme!) (S*Eml fimec)Sinee ) +-- -

(42)

where 6n is the variation of the electron number density. Since

~/ﬁg_gcsn(_z)(SE[n]/ﬁn) = 0 by the variational principle, E[n(x,a)] is
accurate to second order in 6n. As will be seen for the case of
like metal pairs, the simple overlap model predicts all of the prin-

ciple physical features of the binding energy.

IT - SELF~CONSISTENT: CALCULATION

A. Background

In establishing the theory for the like metal calculation, the
presentation will proceed with a more general discussion of dissimi-

lar metals in contact. Then these results will be applied to the

RTINS, WO I : . N : -
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?! specific case of like metal couples. The case of two dissimilar

metals in contact can be represented schematically in an energy di-

agram as in Figure 2.

Potential barrier
0 0
27+,

—EFL 7

Fig. 2. - Schematic energy diagram for dissimilar metals
in contact.

where the shaded areas are the conduction bands, the zero of energy

(af ter equilibration) is taken at the Fermi Level and E and EF

FL R

are the Fermi energies of the left and right hand metals. We would
have for the Schroedinger equation,(~l/2)VZW'+ Voggd T Ey. The de-

tails of v will be discussed later but at present we can see

eff

that it has a general form that can be represented by Figure 3.
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VeffX )

|

VL>VR R

Asymptotic values of the
Vi potential

Fig. 3. - General bimetallic potential.

=V, X>=0a
veff(x) ='{ ’ which is the condition we would have for two dis-

-VRx->oo

similar metals in contact, taking V and VL to be positive.

R

In the asymptotic regions there are two types of degenerate

solutions

‘LX XQ—OO O>"E>""/£

~ T, e keX X — O | (43)
Wa ~ TR _eﬂ/nx " X > —oo | o
~ e_“‘k&X+PR€, KX xsoo (44)

R ;

where ka = 2(&; - E), taking E to be positive,.and R and T

are complex constants. For —VR > ~E > —VL

: ~cReX P
‘R X X~» —eo
W, ~e " +Ree | 45)

~ 7, e BrX X




!
L
:
)v

i
R

SR e T S

" g i

T e R R T LT T PR e e Rt e et ST T T e e L T G T T e T R T T L T T T T PR AT R T R R S T LG T R AT S R

25

where now IRLI = since there can be mo net flux into the classi-

cally forbidden region and dp = ,JEGETT?E;Y for -E < —VR and
using the property of the Wronskian that if two solutions correspond
to the same energy then the Wronskian of those solutions is inde-
pendent of X [39]. It can easily be shown that using the asymp~

totic solutions will give

R (i ~|RLl1) = ke \TLIZ (46a)

hL Hi‘z = k’g (l"‘RRlz) ; (46Db)
Re 7. = keTz (46c)

With this frame work we can now examine the asymptotic form of

the electron number density in each solid. Starting with Eq. (9) we

N
have n(}-_) = 2 H’-(.E) 12. Converting the sum to an ‘integral we
i=1
have n(r) = ———¢ Z: v/Pd k]w ] where the summation index j
(2ﬂ)

is over the two degenerate solutions. Using cylindrical coordinates

we have
| b (HRk M
Ncr) :(227}‘—)3 ZJ{;OFI 0(¢/(4(6(/<;16/k/&/ o
]:
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Taking the left hand metal, using the asymptotic form for the wave
function, Eq. (46) and the definition of the bulk density in terms

of kF we get

) Rev

M(X) = —Ef’t—?— o c“?t- UE?:.-@L)Z Eﬁ (K‘(é‘-) C?‘" kLX}

(48)

Adawi [40] has shown that the integral has a leading term

2¢ kFLX).

A/ﬂm% Re (Ru(ke) € AN=MGJ-Msr (49)
2 iy e

The result for the right hand metal is similar. Therefore the elec-
tron number density in the bulk of either metal is represented by the
bulk density plus terms with decaying oscillations whose wavelength
is half the Fermi waveiength and whose amplitude depends on the re-
flection coefficient evaluated at the Fermi momentum. This result

is similar to that obtained by Lang and Kohn [7] as would be ex-
pected. The result shows that the wave function normalization con-

sistent with Eq. (47) is an incident wave of unit amplitude. Ob-

viously, for the same metal cbuples the problem simplifies greatly

since we have symmetry about the midpoint between the two metals.

It is interesting to note that this formulation can be viewed as a

scattering problem in terms of Jost functions [41] where the eigen-
functions can be represented as a'lipear combination of the two lin-
early independent solutions ¢(k,r) and ¢(-k,r) whose asymptotic

limits are @(R,X) ~ e1kX o (-k,X) ~ e_lkx.

MO Ry
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B. Working Equations

The next step in the present work is to establish the working
equations for the calculation. A model for the jelljum and electron
density for Al is shown in Figure 4, As presented previously the

effective potential can be expressed in general as

Ve (e) = WTe)+ Jder LD o o)

-l
where v(r) is an external potential, e.g., from the jellium back-
' n(x') . s ; .
ground dr - :_r'] is the classical electrostatic potential and

ch is the exchange and correlation potential :(Eq. (6), 7), and
(11)). For the jellium model the first twb terms can be lumped to-
gether to give the total electrostatic potential. We now want to de-
velop explicit expressions for these terms in order to determine the
self consistent potential and electron number density.

Since we are dealing with a variational problem we usé a stand-
ard calculus of variations approached in order to obtain the work-
ing equations. Thus the symbolic notation SE[n}/Sén becomes the

operational equation %%-—-éi'ggg where n' = dn/dx.

1. Electrostatic Potential

Starting with the electrostatic terms in the total energy with

the jellium giving the external potential, we get the same result as

Lang and Kohn for the total electrostatic potential previously given 

in Eq. (11) as
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Density (normalized to n,)

L2—

"

A
Location of nuclei for (111)
" surface plane of Al
le——— 3 ————]
0 | I I l I I | |
-4 =3 -2 -1 0 1 2 3 .4

Fig. 4. - Electron number density n and jellium ion charge density, n,, for an Al-Al con-

tact normalized to unit density.

Position x, nm
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This equation can be simply restated in terms of Poisson's equation

3 ' which for one dimension is d2¢/dx2 = <4r(n(x) - n+(x)). Boundary
L

conditions will be discussed later in this section and numerical

methods will be discussed in the calculations proéedures section.

2. Exchange and Correlation Potential

r ~a. Local density approximation
r The total exchange and correlation energy is given by the ex-
’

pression Exc[n(g)] = d/ﬂdz_n(g)exc(n(g)) where €c 1S the ex-

and correlation contribution to the potential is Hee = (d/dn)(nsxc).

F ﬁl : change and correlation energy per particle. Therefore, the exchange
!

|

h Using the Kohn-Sham exchange and the Wigner interpolation formula for
D

the correlation energy (Eq. (21)) as did Lang and Kohn [7], we get
i/ 0. y(4) B,lh -
/(‘(xc (/V] (&)) - -0.458 ("3!-) (_‘7’37_}') ‘- m s - (:/4. ‘73)82/3.(7])1/3ﬁ’/§~
) 0.44 (3) (§)5am> ?
N . | | T T 7.8 () "5m"3)* (50)

AT

b. Nonlocal Terms (Higher Order in the
Gradient Expansion) ¢

As pointed out in the background%section, inclgsion of - the next
higher order terms in tﬁe gradient_ggpgnsion should be considered in
surface energy calculations since there is a substantial chénge in
| : » the ele;tron number density and thus the gradient of the density is

large near the jellium surface. The difficulty with including these
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terms from the recent work of Geldart and Rasolt [22] arises from the
fact that an analytic expression for the coefficient in the gradient
expansion is not available. Therefore, in order to interpolate and
extrapolate the numerical values, the coefficient as a function of

T, (kindly provided by Dr. Rasolt) was curve fit to an expression
which was found to fit the values well.

The expression for the energy per particle is given by

(51)

fo Sy

where Cxc has been approximated by

C_Am-%
Cxem)= 4 nc € g (52)

wheze

2.494(3 x107 3

2.61029¢ X103
- 344333 x10°%

i

A
8
C

The term chosen for CXC prevents a divergence [41] in the po-
tential which would otherwise occur for small number density. The
limitations of this procedure will be discussed later. A plot of the
curve fit along with the values of Rasolt and Geldart are presented
in Figure 5. ~Applying the variational principle to Eq. (51) gives

o Cren) (7 A el
M) = meh (2 S + Stm) ) (53)
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26— 0 Values of C,.
C Curve fit

24— Cxc(rs)=ArgC exp(-BrE)
A = 2,56447 E-3
B =6.78977 E-3

20—

1.84—

1.6}—

14—

12—

1 2 4 5 6 1 8

oL L 1 | | | | |
3 92 10
: re, au |

Fig. 5. - Curve fit to the Rasolt and Geldart [22]
gradient coefficient, C,. asa function of rq.
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?.
- where
/ ¥4+28 -2
Smy = L (3c-%+28m
' 3m
i (54)
X
f 3. Boundary Conditions
' a. Potential
: The jellium potential is of the form
s Ui o) = Pmte) - pc (mcs) 0
r where D is a constant and where we now are considering the LDA. We
b
f must take the numerically derived ¢ and u and include the correct
P ? asymptotic values for Vg As stated previously
I -1/2 klerx+-°°
g Vv . (x) = for the zero of energy chosen. Therefore,
; eff 2
’( -1/2 kI _x-
! FR
2> KeL = +MK((/”4L) "D
2 ' A A
| Nege () = POV + rxc (x) @ (-0 - Mc (ne) 5 b s
( :
n
it At the right limit we have
; i ~-L kz ) (0) ‘ L%
| 2 RFR = (p( * Mrc (Mer)- ¢(‘“’)"/“"< (M) - ‘2‘/?:(.

Therefore

) , Aq) i ¢(w) -¢(~m) :—-ZL((’;}_"‘?:R )+/4xc (MH.) - Mxc (rmz)
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and we have a restriction on the electrostatic potential. In
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addition the electrostatic potential must satisfy the conditions
dé 5O jol/\;;“ s O | (58)

in order to satisfy charge neutrality in the bulk of the materials.
A similar result applies to the nonlocal case. However, we note that

' ——= 0 since Vn = 0 - in the bulk. The situation for the sym-

ch Xt

metric like metal problem is obviously simpler and we can in this
case use the condition that d¢/dx = 0 at the symmetry point thus
requiring less computational effort. This condition on the electro-
static potential is used to solve Poisson's equation.

In the present and other numerical calculations, the boundary
conditions as x»>t® cannot be satisfied directly because of the
finite computational space. This‘problem has been approached from
a number of different standpoints [7,32]. In general, in this work
the numerical solutions were forced to match the bulk conditions at
the computational space. (slab) boundaries selecting them so that
they are large enough not to cause serious perturbations in the so-
lutions.r The charge neutrality condition was handled differently
in that initially charge neutrality was imposed in the computational
space to promote convergence. Then this restriction waé removed
when the solution was sufficiently convergent and allowed to relax
to the final solution. . The aséuﬁptionIWas that since the selfw
consistent solution for'thé‘éemi~infinite film is charge neutral,
tﬁe‘final solution would be dri&en.towards this condition. dn eval-

uation and comparison with other results of the success of these
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calculations will be presented later. They will be presented in the

DISCUSSION section.

b. Wave functions

The form of the wave functions in the asymptotic region is given
’ ; in Egs. (43) to (45). In this calculation the potential at the slab
(computational space boundaries) is assumed to be sufficiently flat

that the asymptotic forms of the wave functions apply and therefore

r ‘ the numerical solutions are matched to these values at the slab
boundary. The details of this matching are given in the section de-

i voted to describing the calculational procedures.

b C. Self-Consistent Equations

F ! o In summary, we have the following self-consistent equations

| 2, : ¢ !z LRV
- & et gty = £ RHE)Ye (580
Jkiik (k7 -K) (Yl ®
Z ),

| | MK) = ‘/“r?— (58b)
o W . e

L —g-{-g— = YT (m(x) - M+ x)) " ome)
o -

A /(‘XC = Q‘f__ (2 S(m)( ) ) . (58d)

and/or

c. 45102 m"B__
(1402.5735Mm"3) |
_2.912umMB__ ‘ (s8e)
([+/25735m"™)*

fg = —0- 18130 m'3
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The procedure then is (a) to solve for the wave functions;
(b) calculate the number density from the wave functions; (c) solve
Poisson's Equation for the electrostatic potentialj; (d) calculate the
second order contribution to the potential evaluated locally (first
order = 0) for the gradient expansion for the nonlocal case and/or
(e) calculate the Oth order exchange and correlation contribution to
the potential evaluated locally (for the LDA only this term is in-
cluded). Equations (58c), (58d), and (58e) give a new potential,

Veff(x)’ which can be used to repeat the process.

D. Calculation of the Binding Energy

The adhesive energy is defined in this calculation as

g - E@ - E@

Ad T where a 1is the separation between materials and

A 1is the sectional area. The reason for this particular form for
the definition of the energy is that it emphasizes the similarity

to molecular binding, The difference in energy is given by

E(m(xa))= 4}‘*950(,“) (’“(f\’,q)‘/’%(x)a)) LUt @)

15 (NGqa)) +Exc (M) +Exe (Misa)) 44 Sy SYmya)
(59)

where n+(x,a) represents the total jellium density for both mate=

rials. The kinetic energy difference is given by
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(60)
where n,. and oo are the bulk densities in each material, 6 is
the Heaviside function, and s is the spin.

The energy in Eqs. (59) and (60) is referenced to zero separa-
tion for each bulk material for computational convenience. Infinite
separation is chosen for the referencing when the results are plotted
because it emphasizes the similarity to molecular binding. The
finite limits on the integral indicates that the slab is sufficiently
large that the deviation from bulk conditions past the slab bound-
aries is not significant. This can be tested by the form in which
the integral is written by increasing the slab length in a test case
and then esﬁimating convergence on the basis of the form of the den-

sity in the bulk. Equation (10) is modified by use of the

Schroedinger equation to the form

(Z h#,) 3 2 %; 4 p
/s~(25+f)/7f & Zc el & (3’}) (mitscog)

Lmi3 (9(xu))3 A 5 ox J 4@(/’4“,»}) EH AN M)

(61)

where the + and"L,R are chosen to suit the proper half-space.

The first term can be evaluated to order 'L—l (appendix IV) in a
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¥ manner similar to that used in calculating the electron number den-
’* sity. Changing the sum to an integral and using cylindrical coor-
t dinates we get for the integration over k-space

E 2 .

? : / kF {¥1{2A2&2k2 [dklyk (é/-‘ k)
S =0 7] de lte £ /wz,
S 81 & o
s f (62)

Substituting these expressions for the first term in expression (61)
gives the Kinetic Energy Contribution to the total energy. The dif-

ference in electrostatic energy difference is given by

X
Fes = [ 4x$Q) (nosameca) + Wi ).

(63)

Expressions for Wi, (a) are given in the previous section.

?
i

The exchange and correlation energy (LDA) difference is given by

R S

.:‘:l
{ $my

f‘r ' 5( = ’3‘ /BAJ‘ gm«/g q) M (9(@’”//"/7’1%90( )} (65)
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(66)

For the nonlocal contributions

S B NS A

Me,a) = Mot O(-(+9,.)) + Mer EOK-%2) (64)
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/ cﬁ—)"-x" o Cxc (M(X,‘l)) (0/41(/4)

Xo "’/3 (X, ) (67)

The pseudopotential contribution to the energy requires a somewhat
more detailed discussion. These details taken from Lang and Kohn [7]
are repeated here for completeness. In addition, some derivations
not given by Lang and Kohn are presented in Appendix I. The general

expression for the pseudopotential contribution to the energy is

Xo
A IX:{X S¥ha) me) (68)

(The presentation here will be for one half-space since the exten-
sion to both is simple.) Where

S’U'(X,Q): Z <0)> ¢0‘) (69)

X.{o

and where the brackets indicate an avefage over the vy-z directions
and the summation is over plénes passing through the centers of the
lattice planes perpendicular to the =x-direction. The second term

is the potential due to the semi-infinite jellium. The general pur-
pose of expression (68) therefore is to add in the proper electron—
ion inﬁeraction aund subtract off the electron-jellium interaction
which is already included in ekpression (63). As can be seen, the
additional term is introduced through first ordgr perturbation theory

on the assumption that this term is small compared to the total

L e
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potential. This pcint has been in contention but recent work which
will be presentad in the DISCUSSION section will show that this is
a good approximation'fof the s&mple metals. LK now break up this

term into two terms

S = 84!7()()4—5’!!;(*')

(70)
whereﬂw
2!
gfv';(k) -~ <§<o) Z/—- __?l > *‘¢+(X) o3
)= Z Nps 4 Z/E-1"!
V(<o) (70b)

The average in (70a) treats the charges as though they are smeared
out over a lattice pléne. From the previous definition (Eq. (29))
of the Ashcroft pseudopotential we see ﬁhat the term (70b) is zero
outside the ion core and has a 1/r dependence inside the core

which is averaged over the y-z planes. Working through the elec-

~ trostatics for these terms (details of which are presented in Ap-

pendix I) gives

S« )=- 2w M [X+Ld 0 (-X- (z/-//a//zj 2

(71a)

c.and

SAL () = 2mdme (- 1X+ (20-1)% ) §lc- /X*(Z?'O%U

(71b)
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where £ is an integer designating the lattice plane and these re-
sults apply if there is no core overlap, as is obvious from the

method used to do the averaging.

E. Checks on Self-Consistency

Fortunately there is now a method to examine the degree of self-

consistency for the jellium part of the calculation. Budd and Van-

nemenus [42)] have derived an expression for the force at zero separa-

tion using the Hellman-~Feynman Theorem. The force per unit area is

given by

(72)

F/A = ?”7+ A C]S(‘t)

where ‘a 1is the separation betwéen the two jellium slabs and A¢

is the difference in electron electrostatic potential energy between

the jellium surface at a separation a and the jellium surface at

infinite separation. F/A is also given by 9JE/3Q where E is the

total energy and @ dis the total volume.

dEe ’—"/hl,éﬁ | (73)
DS 3am |

where f is the energy per electron for the uniform electron gas and

where the subscripﬁ FO kindicates a = 0. Since we have an expres-

sion for thé'energy per particle for the uniform electron gas. a com-

parison of Egs. (72)band (73) gives a check on the degree of self-

consistency for the numerical calculations. Heinrichs and Kumar [43]

derive a similar expression:for dissimilar metal contacts and this

: R

S P




41

result will be used to evaluate the validity of the simple-overlap
model. Equation (72) also erables evaluation of the force versus
separation for the jellium and thus the total force when the lattice
sum and pseudopotential contributions are included in the total en—
ergy by taking the derivative of these terms. Equation (73) ex~

pressed in terms of T the Wigner-Seitz radius is

3
Qb — 0.43%% 12 (040829~ 2: 17615
3 ’ [l/ d (Vs+28)2) (74)

Q5L

The Heinrichs-Kumar expression for the jellium force between dissim-

ilar metals is

Fro @)= P+ AV@) (=42 | (75)
where
= 0118858 0.036¢%6 _ 0.0350192
4 rs4 (Vs'2+7-GV_i')7f (75a)
AYz©) = —L— [m&(p-p2)- (P-R )]
[} (2)
g +—ﬂ7+ - (75D)
Mi L4158 5 410667 _ 0.4 _ guqe66U3
rs* Vs (V$+7-9) (r3+78)2 (75¢)

AVl(O) is obtained:from AVZ(O) by interchanging subscripts 1
and 2. 1In evaluating the_simpie oveflap model the results of
qu (75) will be compared‘with (dE jeliium/da)a=0 the deriva-
tive of the jellium portion of the binding energy evaluated at

a.= 0.

B
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F. Other Checks on Results

There are a number of checks that the results of these calcula-
tions must meet. The first is that the binding energy and its com-
ponent energies must agree with the bare metal results at large
separation. Another comparison of practical importance would be to
predict experimental surface energies. These two conditions essen-
tially only examine one point on the binding energy curves. An
additional comparison which can be made with experiment is to obtain
the elastic constants for a given direction from the curvature of
the binding energy curve at equilibrium. This comparison has the
additional feature of not simply depending on the energy at a single
point but on the behavior of the binding energy curves at small
separations. Since for small separations from equilibrium Hooke's

Law will apply (Fig. 6)

d 4 d d o

—000 OO0~

Fig. 6. - Change in interplanar spacing upon forming a surface.
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F=Ce =ka 76

where F is the force unit area, C 1is the elastic constant, & is
the strain, k is the spring constant and a is the change in dis-

tance between lattice planes from pulling the metals apart, however,

€ = S—) and a=4d - dO, therefore,

C =fdo (n

In this we assume a nonuniform strain between the two planes forming
the surfaces with the other planes undisturbed [44,45]. In additionm,

we assume no distortion in the y or =z directions.
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CALCULATIONAL PROCEDURES

Obtaining a numerical self-consistent solution to the surface
problem has proven to be quite difficult. L-K [7] found that they
couldn't get a solution using convergence fuactor techniques, there-
fore, they resorted to a functional equivalent of the Newton-
Raphson method [46]. Rose and Shore [47] took a different approach
in which a parameterized trial potential was used as input in which
the parameters were varied by a simplex method [48] in order to min-
imize the total energy. The trial potential obtained in this manner
reproduced the LK number densities and surface energies. Alldrege
and Kleinman [49] and Appelbaum and Hamman [50] were able to obtain
self-consistent solutions to three-dimensional problems by using
convergent factor methods. Both found that the zeroth order
(k’l = 0) term was the most unstable part of the calculation and
the higher order terms in the Fourier expansion converged rapidly.
It is this unstable term that is evaluated in the present study.

In this section the techniques used to obtain a solution for
the like-metal bimetallic Kohn-Sham equations with varying separa-
tion between the half-spaces are described. An IBM 360-67 time

sharing system was used fo§ the computations.

44
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I ~ SOLUTION OF SCHROEDINGER EQUATION AND POISSON's EQUATION

The Numerov method [46] is used to obtain a solution for the
Schroedinger Equation (Eq. (58a)). The Numerov method is a pre-
dictor corrector technique for second order differential equations
in which the first derivative does not appear and has a remainder of

(6)h5/240 where y(6) is the sixth derivative of the

the order of ¥y
function and h is the mesh size in configuration space.

Quadrature is used for the solution of Poisson's equation
(Eq. (58d)). Therefore, the potential is found by integrating the
net charge twice. The Adams' method [51] with error of order h6
is used to perform the integrations since Simpson's rule [49] with
an interpolation proved to be unstable. - The instability arose from
the fact that the integral of the net charge density was a decreas-
ing rather than increasing function of position in the bulk of the
solid; therefore, in the asymptotic region errors of the order of
the éharge density fluctuations arose from the need to interpolate
to obtain alternate mesh points with Simpson's rule curve fit to the
number density. A’spline fit (Appendix V) followed by integration
was also adequate but required substantially greater computer time
and storage. The jellium net charge and potential were determined
analytically and then combined with the numerical integration of the
electron density. The solution of Poisson's Equation was checked by
constructing a trial density similar to Smith'sy[6] with a small
sinusoidal form in the bulk to simulate Friedel oscillations. The

results agreed to 1-2 parts in 106. In the célculation of the elec-

trostatic potential the integration proceeded from the symmetry point

e i N it 3 ol A 5 i a W e it b MR b A Eamn
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where the slope or the field was taken to be equal to zero. The in-—
tegration proceeded into the bulk to the end of the slab where the
entire potential, electrostatic plus exchange and correlation was
required to equal the bulk potential.

A different test was applied to the soiution of Schroedinger's
equation. The solution was checked by comparing the wave function
and number densities obtained from the solution of the Schroedinger
equation for a triangular potential, the details of which are pre-
sented in Appendix TIII. It was found that the slope discontinuities
for a square barrier created large errors in the solution obtained
from the Numerov method.

Once the wave functions were determined both analytically and
numerically the electron number density was calculated using Eq. (58b)
by performing the k-space integrations. The results for the calcu-
lated and analytic densities are shown in Figure 7. The agreement
was again good. The final self-consistent solution was probabl&
superior to even these since small errors were introduced into the
wave functions at the discontinuities in the slope of the triangular
potential. The k-space integrations for the number density were
performed by Simpson's rule since it required keepihg only three
wave functions in computer storage. The configuration sﬁace and
k~space mesh sizes were selected by determining the maximum values
that were neceésary for accurate solutions. Thesa were found to
be 0.25 au and 0.02 kF.

The solution of Schroedinger's equation for a given potential

proceeded by assuming the form of the wave function for the trans-
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Fig. 7. - Electron density for a triangular potential for a
barrier height kg with a Fermi wave number, kg =1
au and barrier width of 2 au. '
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. mitted wave for an electron incident from the left half space to be
gl
. )
b ky = {2[0) - V(1)

deep in the bulk of the second half space where

1/2 where V(LR) is the value of the total

potential at the right hand boundary LR' The Numerov Method uses
two points to start the calculation rather than the slope and func- j
tion, therefore, the same value of k was used for the second point

which has an x value one mesh point from the right hand extreme

which is equivalent to assuming the potential is constant at this

Co rial where the numerical solutions were matched to

. _ b,
%é(x’) _y (e‘k‘h +fRee LL) (78)

}

|

[ ‘ ; point. The integration proceeded into the bulk of the second mate-
§ i

]

where the coefficients were chosen as described in the THEORY sec-

tion. The same assumption holds in this form of the wave function

as for the starting values, i.e., the potential is essentially flat.

o The matching was performed by requiring the slope and function to be
! ;

o equal at X = L; - Numerical derivatives were obtained with an I.B8.M.

: computer routine called DET5 (Appendix VI). The wave functions
were then renormalized by division by the constant -A as outlined
in the THEORY section. Thesé wave functions are then used to calcu-

v : late the electron number density (Eq. (58b)) .

: I1 - TRIAL SOLUTIONS AND SELF-CONSISTENCY PROCEDURE

| : . A, Trial Solutions

The calculation proceeded by first constructing a trial
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potential at the smallest separation between half-spaces used,

0.25 au, on the assumption that the system would deviate least from
the uniform density at zero separation. A trial density of the Smith
type as discussed in Chapter 2 was used in constructing a trial po-
tential, but this proved to be unstable. The criterion used for
judging the sufficiency of the trial potential was that the differ-
ences between input and output potential between the second and third
iterative loops should decrease. The potential derived from the
simple exponential density was insufficient to satisfy this criterion,
by varying the exponential decay constant B. A successful trial po-
tential was obtained by using the previous trial potential with a
Gaussian well which simulated the first Friedel oscillation in the
potential and whose position and strength could be varied along with
B. This potential proved to be an adequate starting point to ob-
tain a self-consistent solution at a separation of 0.25 au. For the
subsequent separations a trial potential was obtained from the po~
tential at the previous separation. First the potential at the pre-
vious separation was fixed relative to the jellium surface, then the
points needed to complete the potential between the two metals were
obtainéd by a linear'extrapolafion. At larger separations it was
necessary also to increase the jellium slab length because of the in-
crease in amplitude and range of  the Friedel Oscillations near the
jellium surface. In these cases the potential for large x was ex-
trapolated by using the bulk value of’the potential. It was later
found that trial solutions for intermediate separations could be‘ob—

tained starting from a solution at a larger separation by fixing the
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potential relative to the jellium and reflecting those values through
the symmetry point, thus omitting the need for extrapolation. Trial
solutions could also be obtained at intermediate separations by inter-
polation of the potential between to previously obtained solutions,
e.g., a solution at a separation of 2,5 au could be obtained from the
solutions at 2 and 3 au,

This procedure was used to obtainra complete set of solutions
for rg, = 2. Trial potentials were then generated for other values
of rg by multiplying the previously obtained self-consistent poten-
tial of the rg value nearest to the desired value by k%z/kgl’ the
ratio of the bulk potentials squared. Trial potentials were also
needed for the calculations inciuding nonlocal terms in the exchange

and correlation energies. The self-consistent solutions for the

local density approximation were sufficient trial solutionms.

B. Self-Consistency

1. Procedure

Before commenting on the procédure used to ob;ain self-
consistency it should be mentionzd that in‘order to obtain conver-
gencé it was iﬁitially necessary to require charge neutrality in the
slab. The technique used to obtain neutrality was simply to renor-
malize the electron denSi;y by multiplying it by the appropriate con-
stant to make. the net‘charge in the élab equéi tovzero. This tech-
nique was also used by Applebaum and Hamman [48] and pterd to be
édequate; Lang and Kohn [7] obtained neﬁtrality by adding a Gaus-

sian which was centered at the jellium surface to the electronic
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o —

< = charge. The amplitude of the gaussian was adjusted to insure that

dveff

i 5 dx  yiw
X |

0. The converged number density obtained from requiring

neutrality was in general nonneutral. Requiring neutrality in the
' % slab was needed for the comparisons of input and output potentials.
Once convergence was obtained with the charge neutrality restriction,
e ; it was removed and the self-consistency procedure was continued.
i j These converged solutions proved to give adequate ;rial potentials
f for other values of ro by the simple ratio technique without first
requi. ing charge neutrality.
As stated eérlier a convergence factor method was used to ob-

tain self-consistency rather than the Lang-Kohn method which would

have been cumbersome for this calculation. The convergence factor
involves using a linear combination of the output and input poten-

tials as the trial potential for the next loop of the iteration

(Vm)(+/ _ (W;,),' c o ((Wowr)i =(Vin)d) | | (79)

oy { ’ In the early stages of the calculation starting from the in-
vented trial potential it was necessary to use a very small conver-
gence factor o = 0.002, to promote convergence due to the extreme
instability of the system. This could Be ihcreased to 0.025 as
bonvergence occurred. Larger convergence factors resulted in diver-
gence. - However, even with o = 0.025 the rate of convergence proved

f to be quite slow. At this stage i; was found that more rapid conver-

gence could be promoted by,usiﬁg a large convergence factor, typ-’

b
i
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ically 0.25 to 0.5 depending on the separation between slabs in order
to promote the establishment of features present in the final solu-
tion followed by a small convergence factor for a number of itera-
tions in order to damp out instabilities introduced by the large con-
vergence factor. The same procedurz could be used for the solutions
where the charge neutrality constraint was removed, but a much
smaller convergence factor typically, 0.005, was necessary for con-
vergence in subsequent loops since the lack of requiring charge
neutrality in the slab during the iterations caused a much more
severe instability. It was found that this procedure could be re-
peated to obtain any degree of self-consistency. The criterion for
stopping the calculation will be discussed later.

The calculation of the wave functions and thus the number den-
sity consumed the greatest amount of computer time. In order to
minimize computer time it was found that k-space intervals of
0.05 kF were sufficient to obtain convergence in the initial stages
of iteration. In the final stages the k~space intervals were reduced
to 0.02 kF. This procedure was onlyxused when the nonlocal terms
were included in the potential but very likely would have been ade-

quate in all cases.
2. Condition for Self-Consistency

In similar previous calculations' the condition for self-
consistency was based simply upon the difference between input and
output potential presented as a fraction of the bulk value. - How-

ever, in the present calculation a more reasonable criterion is: to
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base the maximum fractional difference as a percentage of the bar-
rier height., This is comparable to previous bare surface calcula-
tions for large separations and a much more stringent condition for
small separations. It should be mentioned that using the potential
rather than the density to judge self-consistency is also much more
stringent since the potential depends very strongly on the density.
The highest deviation (3.,5%) between input and output potentials was
for sodium at a separation of 0.25 au. The deviations were as low
as a fraction of a percent. The largest deviations were for the
smallest separations since considerably more iterations were needed
to obtain convergence at these separations. It was found that the
binding energy which is the result of this study was not a strong
function of the degree of self-consistency for deviations of less
than 100 meV. TFor example, for aluminum a difference between 60 and
2 meV only made a difference of 27 in the binding energy for alumi-
num, nonlocal, at a separation of 15 au. An additional test was
used to determine convergence. The final output potential was used
as ‘an input with a convergence factor of 1.0 to determine whether
deviations between input and output would remain of the same order.
However, continued iterations at large convergence factors would
cause a divergence because ofrsmall deviations from neutrality.

It is possible to attain a higher degree of self—consistency
for any separatioﬁ. The potentialé and densities are available on

punched cards, if a higher degree of self-consistency is required.
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III - BINDING ENERGIES

The binding energy were evaluated by performing quadrature with
the exception of Wint as outlined in the THEORY section. These in-

tegrations were performed using QSF (Appendix VII). Since all of the

functions were well behaved no problem arose in using this procedare.
IV -~ ELASTIC CONSTANTS

The procedure for transforming the elastic constants for a given
crystal direction from experimental data are given in reference [52].
The calculated elastic constants were obtained by taking the second

derivative of the binding energy curves by fitting them with a

spline curve fit (Appendix V). This procedure allows a nonuniform

spacing for the separations when fitting a function.
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RESULTS

Presentation of the results will be in a form that reflects the
order in which they are produced in the self-consistent calculations.
Since the binding energy versus separation is the principle result
of the calculation it will be presented last. Also included will be
checks of the results, tables of self-consistent densities and po-
tentials, force curves, tables of components of the binding energies,
a comparison of experimentally and theoretically determined elastic
constants, and a listing of the computer program. The tables of

number densities and potential energies (Appendix X), energy break-

~ downs (Appendix IX) include a complete listing of all results ob-

tained at each separation in the hope that this will serve as a com-
prehensive document. For results obtained from the simple overlap
model only the binding energy curves will be presented for purposes
of comparison. The number densities can be obtained simply by use

of Smith's [6] bare-metal calculations, and the potential energy

and componénté of the binding energy can be obtained using qﬁadrature
of the éxpressions presented in Section I of the THEORY section. The
tabular results will be organized by presenting them in increasing
order of T for the materials considered. A listing'of the com-

puter program is presented in Appendix VIII.
I - NUMBER DENSITIES AND POTENTIAL ENERGY

Figures 8 and 9 show some typicél.plots of the electron number
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density for Na and Al at 0.25, 3.0, and 15 atomic units. We can see
two main features; the electron number density falls off rapidly as
the separation increases, the oscillations in the density increase
as the separation increases and the magnitude of the oscillations
are larger for sodium than aluminum. Figures 10 and 11 shows simi~

lar plots for the potential energy V as a function of sepa-

eff(x)’
ration for Al and Na. Here we see the barrier height increasing with
separation and in addition again the oscillations are increasing with
separation and likewise increase from Al to Na. Figure 12 is a plot
showing the increase in barrier height versus separation for aluminum
for both the local and nonlocal approximation. It can be seen that
the barrier height versus separation differs for small separations
which is typical of each element examined but the difference disap-
pears at larger separatioms. In addition, at separatiomns of 15 au

the "work function,” the difference between the barrier height and

the top of the conduction band has not as yet saturated to the bare-

metal value. The barrier height varies much more slowly than the

number density with separation which changed little between a sepa-
ration of 10 and a separation of 15 au.

Figure 13 shows a plot of the potential energy for Al at a sep-
aration of 15 au including the nonlocal terms in the potential. It
is apparent that some anomaly has appeéred at this separation. There
is a dip in thé potential energy on either side of the symmetry
point. The question arises concerning whether this is an actual
physical effect or a breakdown in the numerical techniques used.

This point will be addressed in the DISCUSSION section. A listing
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of the computer program for the self-consistent calculation is in
Appendix VII. The complete self-consistent densities and potential
energy tables for the local and nonlocal gradient expansion are pre-

sented in Appendix X,
II - SIMPLE OVERLAP BINDING ENERGIES

Figure 14 shows a plot of binding energy as a function of sepa-
ration for the demsest packed planes of Al, Zn, and Mg for each pos-
sible combination of contacts beﬁween any pair of ﬁhese elements.
They also include the possibility of having the lattices in registry
or lack of registry for the like-metal contacts which means that
Wint is included or omitted from the total binding energy. The
primary features of these curves are that the minimum was at a non-
zero separation, the range of the strong binding force is 4.0 atomic
units and that the dissimilar metal contacts had stronger binding
than the weaker of the two similar metal contacts for nonregiétry
(Wint = 0) which would be the situation which has been observed in
bimetallic contacts [4]. A list of the binding enérgies are pre-

sented in Table I. A check of the Budd-Vanemenus Sum Rule [42] for

Table I

Binding Energies Simplé Overlap Model

Wint = 0 Perfect Registry
(wint #0)

Al-Al 405 ergs/cm2 525 ergs/cmz,
Al-Zn 360

Al-Mg - 320

Zn-Zn 320 345

Zn-Mg 285

Mg-Mg 255 315

PRI PO
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i Table II
i Jellium force at Zero Separation
| Simple Overlap Model
!
: Heinrich-Kumar [43] Present Study
:1 AL-AL  2.56x1073 au 2.56x10"3 au
o Zn-zn  1.36x107 1.36x1073
" : Mg-Mg 5.61x10 3 5.60}{10—4
;. Al-zn  1,87x1073 1.88x10 >
‘, Al-Mg  1.20x107 1.22x1073
5: Zn-Mg 8.81x10 8.78x10
r the jellium as altered by Heinrichs and Kumar [43] is presented in

’ Table IT.
3

ITII - SELF-CONSISTENT BINDING ENERGIES

The binding energy versus separation for the self-consistent

like-metal contacts in registry are given in Figure 15. The two

curves give the binding energies for the LDA and nonlocal approxi-

mation for the densest packed planes of Al, Mn, Mg, and Na. In-

finite separation was taken at 15 au since the binding energy satu-
rated at this value as can be seen by comparing to its value at 10 au.

Figure 16 presents the binding energy for the metals obtained from

finding the bulk density which minimizes the cohesive energy to first
order holding the Ashcroft ion-core radius fixed. The self-
consistent binding energies are qualitatively quite similar to the
simpié overldp results.  There is a nonzero minimum and the attrac-
tive1forces are quite short range ‘as can be seen by comparing Fig-
ures 14 and 15. Quantitatively the binding energies are larger in
magnitude -and are slightly'shortet in range than’for simple

overlap. A comparison of analytical (taken at the minimum in

Re ‘»1';;4 .
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ke,

the binding energy curve) and experimental surface energies are pre-

f -sented in Table ITII. The binding énergies presented in Figs. 14

and 15
Table III

5 | Comparison of Binding Energies
with Surface Energy

i ; Simple Overlap LDA NLCL Exp Ref.

: | Al 525 ergs/cm® 720 1090 1169 [53]
: : (1140£200) [54] '
Zn 345 , 545 810 1040 [58] ?
3 Mg 315 550 710 730 [55] f
| | 688 [56]
% Na ——- 240 275 273 [58]

differ from those using the experimental bulk density by the fact

that the minima are at zero sepération thus identifying the reason

i for the nonphysical, nonzero minima. ~Actually, the bulk density could

é~ | have been held fixed and the ion-core radius could have been varied
but since the primary objective was to identify the reason for the
nonzero minimum and both n+‘ and r,  are experimentally determined
quantities the choice is somewhat arbitrary. This approach can be
easily taken for those who are interested. Checks on the degree of
self-consistency by calculating the jellium force at zero separation

3 ; using the Budd-Vannemenus theorem [42] are presented in Table IV. A

typical total force versus separation curve for magnesium including

local and nonlocal effects is shown in Figure 17, - These were ob-
f - ~ tained by numerical differentiation of the total energy curves using
a gpline fit.

' The constituents of the binding energy at each separation and

‘3 for all cases considered are presented in Appendix IX. Figure 18
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Table IV

Jellium Force at Zero Separation
Self~Consistent Calculation

B=V Theoreum [42] LDA NLCL
AL 2.558x107 au  2.558x10_3 au 2.580x1073 au
zn  1.365x10 1.368x10 1.363x10_,
Mg 5.612x10_, 5.615x10_, 5.628x10_,
Na  1.437x10 1.452x10 1.447x10"

presents a typical plot of these energies for the specific case of

a Mg(0001)-Mg(0001) contact. There are two intereéting features in
these curves; the kinetic energy is negative and the potential energy
is positive at intermediate separations relative to infinite separa-
tion. Thus, the kinetic energy is responsible for bonding in these
regions.

Finally, the elastic constants for each element are estimated
by numerically taking the second derivative of the binding energy
curves near the minimum. This calculation gives an additional com-—
parison with experiment which tests some details of the curves near
the minimum. The surface energy only gives a comparison with exper-
iment of one point. These results and their comparison with éxperi—

ment are presented in Table V.




i
|
§
!
;
'

70

Table V

Elastic Stiffness Constant
€1, ((dynes/en?) x1012)

Theory Exp.

Local Nonlocal

Al (111) 0.746  1.23 1.23 [57]
Zn (0001) .680 .927 .688 [58]
Mg (0001) .619 .666 .665 [59]
Na (110) .183  .170 .133 [60]

Sttt




o - R o s

Adhesive force, dyneslcm2x1010 .

B

SR T

71

——— LDA
Nonlocal

N Y

I N

0 2 4 6
Separation a, au

8 10

Fig. 17. - Adhesive force versus separation
for a Mg(0001)-Mg(0001) contact for tiie
LDA and including nonlocal terms in the
exchange and correlation energies.




1400
1200

1000
800

600
400

N
)
o

Energy, erglcm2
o

1 t
o ~nN
(o] o
o o

72

Kinetic energy

/ ;7~._ = Pseudopotential energy

4. > Electrostatic energy
~600~ /\\ - Total energy
-800 “>— Exchange-correlation energy

-1000
-1200

O
~= \l

NN EEEN

2 4 6 8 10 | 77
‘Separation a, au OB 17-2287

Fiq. 18. - Self-consistent energy components

of the binding energy for a Mg(0001)-Mg(0001)

contact_. |

S e e T T T




S
4
-

'

DISCUSSION
Having now presented the results of the metallic adhesion calcu-
lations, the implications and explanation of the results in terms of
adhesion and their relationship to other similar surface calcula-
tions currently being conducted will be discussed. The format will
follow that presented in the RESULTS section including general com-
ments on certain aspects of the calculation. We should point out
that the present work is an ab initio calculation which depends on

no fitting parameters.
I - ELECTRON NUMBER DENSITY AND POTENTIAL ENERGIES

A. Electron Density

Figures 8 and 9 show somerof the typical electron density pro-
files as a function of separation for aluminum and sodium. As we
can see there ar;\a\number of features readily observable in these
plots namely, that éé the metals separate the eliectron number den-
sity in the intermediate region falls off rapidly and that the oscil-
lations in the density increase with separation. The other inter-
ésting feature is that at a given separation the oscillations in the
number density are larger for sodium than for aluminum, These oscil~
lations are similar to the familiar Friedel oscillations [61] oc-
curring with an impurity atom in a solid. Théy arise from the per-
turhations introduced into the potential by creating the surfaces.

As would be expected the amplitude of the oscillations should in-
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' crease with the strength of the disturbance as is observed in Figures
8 and 9 corresponding to Figures 10 and 11 which show the increase
of the potential barrier between the surfaces as a function of sepa-
ration, For all separations the oscillations will have the gen-
eral form given by Adawi as shown in the THEORY section and for large
or infinite separation the number density should approach the form
given by LK

> S Coo(zheX-2¥F) +O(4s
M) X-> i’oo/y{+ [+ (krX)2 (ke ) ~ )1 (80)

where Yp is the phase shift at the Fermi momentum. A similar re-

sult is obtained for the infinite or square barrier model. If we

’ examine this we see that An m-ji u n;2/3, therefore, the amplitude
: + k
1 F

of the oscillations should increase with decreasing n the bulk

+1
electron density or conversely, increase with increasing Too the

: Wigner—Seitz radius. This effect is manifested in the larger oscil-

lations for sodium and serves as a check on the results.  Another

o e ReR e e 5T

‘,; 5 perspective in explaining the oscillatibns is given in terms of

the discontinuity in the slope of the dielectric function [61] which
is due to the sharp cut off at the Fermi surface and produces
oscillations in the potential of wave number ZkF.~ The wavelength

: ) ?  of the Friedel oscillations was checked by examining xz(n(x)-n+)
‘near the slab boundary. In all cases it was found that near the

boundary the oscillations had wavelengths very close to 'rr/kF

[ ('\Il"‘z%) *

S BB T L

e oy ma—

SIS AN




TG T - T e e

ei
‘Iﬂ{

75

Plots of the densities obtained from including gradient correc-
tions to the potential were not included, because differences between
these and the LDA densities were not perceptible with the scale used.
Complete listings of these densities, however, are presented in Ap-
pendix V. This result is in agreement with that obtained by Rose,
et al. [14] in their bare metal calculations who also used the
Rasolt and Geldart gradient correction and also obtained only small

differences in the electron number density.

B, Potential Energy

Figures 10 and 11 show the pétential energy veff(x) for sep-
arations of 0.25, 3, and 15 atomic units for both Al and Na. We
see that the barrier increases in both height and range with sepa-
ration as would be expected. In addition, we can again see that the
oscillations in the potential display the same behavior as with the
density, the oscillations increase with separation and with T

Figure 13 shows a similar plot but for the gradient correction
term included in the potential for aluminum at 15 au. In this fig-
ure, however, the potential is plotted from ﬁhe end of the slab to
the simmetry point. It can be seen that an anomolous depression
appears in the potential. A similar behavior occurs in the poten-
tial for every value of r, calculated. However, the potential is
well behaved at 10 au, The behavior at 15 au is a result of the
extrapolation of the Rasolt and Geldart [22] coefficient breaking
down at these separations. Rasolt and Geldert have suggested that

this coefficient is not accurate for values of rg much greater
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than six since the random phase approximation is used. At a separa-
tion of 15 au for aluminum the equivalent density falls to a minimum
value equivalent to r, = 14,5 whereas for a separation of 10 au

the equivalent Ty value is 4.5. The comparison is similar

for sodium. The behavior of a = 15 is therefore attributed to a
breakdown of the expression. An examination of Equations (53)

and (54) shows that the term multiplying Cxc(n) is divergent as

n -+ 0 for an exponential fall-off in the density, . This fact is
well known and the general procedure in atomic calculations, Herman,
Van Dyke, and Otenburger [41], has been to multiply the potential

by a function which prevents this divergence. We can see for an ex-
ponential fall-off that although the potential is divergent, the
contribution to the total energy (Eq. (67)) is convergent. The
argument used is that although the potential is divergent or incor-
rect, the density is small in this region and thus gives a small
contribution to the energy (Eq. (67)). Rose, et al. (private com-
munication) eiperienced a similar problem in that they approximated
Cxc(n) by a linear fit. However, an additional function was also
used to prevent divergence in their trial potential. This was the
reason, in addition to the excellent curve fit, that a gaussian was
chosen in the presént work to fit Cxc(n). As a test we see that

in examining the binding energy curves (Fig. lS) that the binding
energy has essentially saturated at'a.SeparatiOn of 10 au and there
is no strong effect at a separation of 15 au. This can be verified
by the fact that the LDA binding energies which do met contain this

term have similar behavior.
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Figure 12 shows the increase in the barrier height versus sepa-
ration in aluminum for the LDA and including the gradient terms, We
can see that the two differ at small separations and approach one
another at large separations. In addition, the work function has
not saturated and is smaller than the Lang-Kohn (private communica-
tion) value for the jellium at a separation of 15 au. Although the
differences in density are small between LDA and nonlocal and the
binding energy has essentially saturated, this is not a surprising
result. The electrostatic potential as determined from Poisson's
Equation (Eq. (58c)) depends on differences between large numbers
and thus small differences in density can be transformed to large
differences in potential. Whereas, small differences in density
will not be reflected as large differences in binding energy due to
the variational principle as pointed out in Equation (42).

At this point some difficulties in determining the electrosta-
tic potential should be mentioned. The self-consistent solution
to the Kohn-Sham equations should require charge neutrality which

d¢

is equivalent to requiring that —-—= 0. Although this condi-
PO

tion is imposed explicitly in the H-K formalism it does not arise
as readily in the Kohn-Sham formalism and results in serious. con-
vergence problems in the self-consistent calculations because of the
long~range nature of the coulomb interaction., Lang and Kohn usedra
variational technique which avoided this difficulty by starting with
a neﬁtraliéed trial'density and then expanding the density in the

surface. region in terms of derivatives of harmonic oscillator wave
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functions which preserved charge neutrality and then determining the
expansion coefficients of these terms in such a way that self-
consistency was required. The present author used this technique
successfully on the bare-metal problem, but found it cumbersome for
the bimetallic problem. Therefore, the approach described in the
calculation section was attempted. First, neutrality in the slab
was required, then this restriction was removed and the iterations
were continued to convergence in the potential., Examination of the
electrostatic potential energy near the slab bulk boundary demon-
strated that x2¢(x) had the correct behavior in this region for
charge neutrality, i.e., sinusoidal oscillations. A further check
of these results is obtained from the Budd-Vannemenus Theorem since
the forces calculated in Table IV depend on the Eifference in elec-
trostatic potential in the bulk and at the jellium surface. As can
be seen the agreement is excellent. The result is not surprising
since the self-consistent solution should be neutral over all space.
Any solution which is not neutral would diverge. Another approach
hés been used in surface calculations to handle these problems by
Perdew and Monnier [82] and Niemenen [32]. They modify Poisson's
equation by addition a term which guarantees that the electrostatic
potential satisfies the correct asymptotic bouﬁdary conditions.

The Perdew-Monnier Results for the bare metal agree well with the
present calculation at large separations, and tﬁerefore, both ap-

proaches serve as a mutual confirmation of each other.
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IT -~ BINDING ENERGIES FOR THE SIMPLE OVERLAP MODEL

The binding #nergies versus separation for the simple-overlap
model are shown in Figure 14, The binding energies are given in Ta-
ble IIT zlong with experimentally determined surface energies. This
calculation was the first successful attempt to examine the adhesive
interaction between two dissimilar clean metals. A number of inter-
esting results are apparent; the range of the strong binding energy
is approximately 4 au; the dissimilar metal nonregiétry contacts
(Wint = 0) were stronger than the weaker of the two metals; the
minimum occurs at nonzero separation, and the binding energies are
within reasonable agreement with experimental surface energies.

The agreement with the qualitative and quantitative features of the
self-consistent calculations (Fig, 15) is quite remarkable for such
a crude approximation. In addition to reasonable values for the
surface energies, the calculation gives good values for the range
of the strong binding chemical forces and predicts that transfer of
material from the lower surface energy to the higher surface energy
can- occur which is observed éxperimentally‘[4]. |

The simple overlap model is also important from two other
theoretical'aspects; in evaluating the success of Smith's Surface
energy ﬁalculations and in evaluating the importénce of charge,
transfer to binding. .Examination of Figure 14, cufve II; shows
that the simple surface energy calculation comparing zeré'and in-

finite separation which is the self—consiétentZSmith solution for
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. ' g? like metal pairs gives a poor result for the suriace energy, Examin-
ing the binding energy versus separation in the spirit of cohesive
energy calculations in which both energy and lattice constant are

examined gives a different perspective on Smith's work in that it

shows that the procedure can give better surface energies than ex-
pected. The present result shows that reasonable surface energies

for similar metal contacts but poor lattice constants are obtained.

Including the correct ion-ion interaction into the calculation

(curve I) in effect improves the lattice constant and somewhat im-
proves the binding energy, The question of the location of the min-
imum will be examined in detail later, The second result of impor-
tance especially to the dissimilar metal contacts is that binding

is obtained without charge transfer and that indeed binding is ob-

tained simply from electron-sharing. This will be important in

’ evaluating self-consistent dissimilar metal contacts and helps

P PP P

separate the physical contribution necessary for binding.

A check of this calculation can be performed by a comparison

rAsTT— e

withVHeinrich and Kumar's [43] modification of the Budd-Vannemenus
biii.,‘ Theorem as presented in Eq, (75). This comparison is presented in
Table II. ‘As can be seen the results are remarkably good for dis-
similar metals. Since the similar metal result is self-consistent

at infinite separation the result for this case is not surprising.

i ) : The good agreement is possibly é result of the argument in Eq. (42)
concerning'the effects of errors in the numﬁgr density on the energy.

Recently, Raykov [63] derived an expression for the difference. in

L 1 G e e st A it G a
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electrostatic potential for the jellium model between dissimilar
metal contacts as a function of separation from Heinrich's and Ku-
mar's work. ﬁaykov concluded that simple overlap did not correctly
predict the difference in potential at the jellium surfaces for the
simple overlap model in contraction to the good agreement with

forces. This result is to be expected, since the calculation was not

done self-consistently. Although the approach in this calculation is

somewhat simple, it, in general, has produced some interesting and
important results in metallic adhesion and have been used by other

researchers. in the field [14, 64, 65].
III - SELF~CONSISTENT BINDING ENERGIES

In this section of the paper there are a number of topics to
be discussed such as comparisons with experiments for the binding
energy, the location of the minimum in the binding energy curve,
forces, and others. Each topic will, therefore, be discussed in a

separate section for clarity,

A. Local and Nonlocal Contributions to the Binding Energy

Figure 15 shows the binding energy versus separation for Al;
Zn, Mg, and Na both in the local density approximation and including
the next higher order contribution to the exchange and correlation
energy in the gradient expansion as determined by Rasolt and
Geldart. We can see that the general features in these cufves are
quite similar to the simple overlap model. Quantitati?ely, however,

the results are improved with regard to agréement with experimert

and location of the minimum., The range of the strong bonding force
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is still of the oxrder of 4.0 au (defined as ~10% of the binding en-
ergy) .

As can be seen in Table ITI, including the Rasolt;Geldart non-
local contributions improves the agreement of the calculated surface
energies with experiment (taken at the minimum in the binding energy
curves), This result is in agreement with attempts by others to
include such terms as discussed in the BACKGROUND section. In fact,
the problem is mot in the scatter in theoretical values for the sur-
! face energy, but rather the scatter in experimental values [51] for
the surface energies. The experiments are usually performed of
necessity at elevated temperatufes and on liquid metals and the
concomitant surface contamination problems often make the results

£ of these difficult experiments questionable. An excellent review of

these experiments is presented by Hondros [66]. In addition, the

g

present and the other surface energy calculations are truly brittle ;

fracture at 0 K models. Consequently, it is necessary to obtain sur-

face energy measurements for solids of which there are few or to i

extrapolate from liquid metal values. The latter is the approach

M et

taken by Lang and Kohn, however, in performing thé extrapolation

3 ; ! they extrapolgted through a phase change.  In this paper, we choose
instead the values published by Wawra [53], who derived the surface
energies indirectly from solids at close to 0 K via ultrasonic at-
] ; ' tenuation, Wawra's method suffars from the same experimental un-
certainty as other studies (~320%) because it depends on the fact

| that the surface energy is proportional to the bulk modulus [67].

g
e

sarf

He uses this principle and the surface energy data of others in
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order to determine the proportionality constants. His experiments
are performed under the correct experimental conditions, i.e., solids
at low temperature and thus require no extrapolation. Unfortunately,
for Mg we could not find values for sclids and have used the extrapo-
lated values of Bohdansky and Shins [55] and compare to £hose of
Tyson and Miller [56].

Evaluating these results in terms of adhesion experiments is
quite difficult. Clean real surfaces in contact do not have well
defined surface areas because of the asperity problem and conse-
quently quantitative comparisons may be questionable; In addition,
elastic recovery, ductile fracture in metals, and defects may make
comparisons even more difficult. The practical importance of the
present work is in setting bounds for studies of both breaking force
and contact areas. When’evaluating real surfaces the question muet
also be asked whether the strong short range is the dominant force
in contacts, since the "true'" contact is jusﬁ over a fraction of the
apparent area. - In between it is not obvious whether the strong
short range or the weaker long range Van der Waals forces dominate.
Inglesfield [65] directed himself to this question using the results
of Ferrante and Smith [28] and his own Van der Wzals calculation and

concludes that the long range forces make a negligible contribution

in mechanical adhesion for aluminum based on estimates of the true

contact area and an estimate of the average separation between

~asperities, In conclusion, it should be pointed out that the strong

bonding forces are important in adhesive wear [4] where wear par-

ticles are generated because of adhesion and in brittle fracture of

&
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metals at low temperatures [44].

B. Location of the Minimum in the Binding Energy

As stated previously the location of the minimum in surface en-
ergy calculations is analogous to examining the accuracy of the lat-
tice constant in cchesive energy calculations. Therefore, the pres-
ent work is a further check on surface energy calculations which
evaluates the accuracy of how well it predicts ﬁhe lattice constant.
As we can seen in Fig. 15 for Al, Zn, and Mg we overestimate the in-
terplanar spacing at the surface whereas for Na the calculation
underestimates the surface lattice constants. It was speculated that
the reason for nonzero minimum was that the bulk lattice constant (or
ny) must be chosen such that the cohesive energy is a minimum for the
Ashcroft pseudopotential. The Ashcroft pseudopotential did not
minimize the observed equilibrium bulk density for most bulk metals
[62]. In order to accomplish this we use the expression for the
ground state energy per atom for the solid obtained by Heine and

Weaire [68].

U = Llosz™ 0.4BE” 2% ow2® 4

n Va+182% TV
32
+ 2 2r ) A"( ‘*“(“‘/9)2%, ~ (81)
1/3

Where r, = Z T and Z is the valence of the ion. . The
first term is the kinetic energy per electron. The second and third
terms are the exchange and Wigner form for the correlation energy

per particle. The next three terms are a combination of the poten-
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tial for a uniform electron gas and the ionic pseudopotential which
is averaged over the ion-core sphere, These terms correspond to the
pseudopotential corrections presented earlier. The last term corrects
for Ewald energy for point ions in a uniform electron gas and is sim-
ilar to what we have previously called Wint. Therefore, it is a
point ion correction where the constant o is given for a number of
crystal structures in Reference [69]. The form for the energy pre-
sented in Eq. (81) is written in terms of the Abarenkov, Animalu,

and Heine pseudopotential., In order to use the Ashcroft pseudopo-
tential we set Aj, the value of the potential in the ion core, equal
to zero and r =T, We proceed by finding the value of r and

a
thus T, which minimized Uo by differentiating and finding the
zeroes of dUO/dra. In the subsequent calculation for the hep
metals the value of the axial ratio which minimized the Ewald e.-
ergy is used, however, the difference between this and the ideal
ratio is negligible in the present calculation. Having determined

the Ty which minimized U for the Ashcroft pseudopotential for

0
each metal we repeat the self-consistent calculations for the bind-
ing energies. The results are shown in Figure 16. These can be

compared with the results obtained for the experimental Ty values

(Fig., 15) for both the LDA and with gradient corrections. We see

that the minimum has moved and occurs at zero separation. This is

somewhat difficult to iudge for Al, Zn, and Mg because if we look
at the binding energies for experimental 'rS values we see that

there is a very rapid rise from the minimum. Curve fitting the new

binding energies in the region of the minimum and extrépolating to
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a < 0 dndicated that there was indeed a minimum. Also using the
binding energy curves in Figure 15 near the minimum for comparison

is convincing that there is indeed a minimum at these points. The
results are most obvious with Na where the minimum for experimental
values occur for a < 0 and the shift in the position of the mini-
mum is toward the right. Therefore, it is apparent that a large por-
tion of the discrepancy in the location of the minimum can be ac-

counted for by the consistency between x, and n, with regard to

C

the cohesive energy.

C, Components of the Binding Energy and Forces

Appendix V gives the components of the binding energy for each
material combination., The kinetic, exchange, and correlation total
electrostatic (jellium + Wint), pseudopotential, nonlocal, and
jellium components of the binding energy are presented for each
separation referenced to a separation of 15 au. Since only the
bare metal values for these quantities are available in the liter-
ature [7,14,62] we compare our values for the components of the sur-
face energy with these values. The present results do not compare
well with Lang and Kohn but agree extremely well with those of
Perdew and Monnier [62]. The reason for the disagreement with Lang
and Kohn and the agreement with Perdew and Monnier is that Lang and
Kohn interpolated to obtain densities for nonintegral ry values
whereas Perdew and Monnier and the present author used the experi-
mental values of r, for each material, Perdew and Monnier had

also come to the same conclusion. The fact that the surface energy
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agreed well between the three even though the componénts did not is
attributable to the argument given in Eq. (42) for the écéuracy of
simple overlap. That is, that the errors in the energy are second
order in the number density. There is a disagreement with Perdew
and Monnier's energies for zine. The authors have checked their
calculation (private communicacion)‘and now agree well with these
results, As was mentioned, theie was somewhat of a discrepancy
with the results of Rose and Shdre [14] concerning the nonlocal
contributions to the energy, but these have also been resolved

to be related to interpolation to obtain densities and a less ac-
curate technique for obtaining numerical derivatives (private com-
munication), It should be poinﬁea out, therefore, that we get the
correct separated solid limit for unot qnly‘che surface energy but
also the components of qheksurface energy.,

| A second point tha; sﬁould be addressed is the validity of
using perturbation theory in orde; to evaluate the electron-ion
contribution to the energy.  This contributidh*is large and is
needed for binding since the jellium is unbound. It is small com-
pared to the kinetic energy. ?erdew and Monnier found the pertqu
bation theory to be faitly accurate (-10% error in surface energy
for Al ranging to little effect of Na) but poor for lead by
/

including the electron-ion pseudopotential self-consistently

in their surface energies. That fact that it is poor for lead

is not surprising since it is the only tetravalent metal tested,
has more than one value for the ion core radius depending upon the

property that is fit and and has by far the highest atomic num-

e
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ber of the elements examined. This was first pointed out by Lang
and Kohn [7].

Figure 18 is a plot showing the breakdown of component energy
versus separation for'Mg relative to infinite separation (a = 15 au).
Some interesting features appear in this figure, namely, that over a
portion of the curve the kinetic energy is n;gaﬁive relative to in-
finite separation whereas the potential energy is powitive., The
total energy shows none of these interesting features as might be
expected. Therefore, at large separations the change in kinetic
energy 1is responsible for the binding. Before entering into a dis-
cussion of this behavior at this point a more general discussion
concerning the details of the calculation is of interest.

It is interesting to examine the present calculation from the
standpoint of the variational principle and of chemical binding to
wvhich the present work bears strong analogies. In order to have
bonding it is necessary to have the energy lower at a finite sepa-
rativ than at the separated solid limit as is the case in chemical
bonding. Also by analogy to the chemical bond the bonding appar-
ently arises from sharing electrons in the bond region. In chem-
jicval binding the energy lowers tu 4 minimum value at the equilibrium
separation and then rises beyond this point due to nuclear repuyl-
sfon. Examining the binding energv curves simply from their quali-
tative aspects reveals that it would be difficult to distinguish
them from those that would be expected for binding in a diatomic
molecule, In a4 sense bimetallic adhesion can be looked upon in

terms of the binding of two ]AWge molecules when hrought into ¢on~

e g g 57 A e
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density on the total energy. It is interesting to see how far the
analogy will carry over. 1f we compare the components of the bind-
ing for simple overlap (Fig. 19) and for the self-consisteﬁt case

we find that the kinetic and potential energies change monotonically.
Thus, the behavior observed in the self-consistent case is not
necessary for bonding and is a result of charge rearrangement. The
fact that bonding occurs for simple overlap is sufficient to.say

that bonding will occur for dissimilar metals by the variational

principle.

. - Exchange energy
VN
v “-tlectrostatic energy

~2000 \ \
\ -Kinetic energy (first order term)
\-Pseudopotential perturbation \
| [ { | ]
0 1 2 3 4 5 é

Separation, atomic units
Fig. 19. - Energy components for tte typical case of Al-Zn.

3, Is the location of the energy minimum,
In seeking an explanation for the behavior of the potential

and kinetic energy we again find a direct analogy in the work of

Feinberg and Ruedenberg (FR) [70] on the formation of a hydrogen

gf« molecule, Hy. FR solve the hﬁdrogen molecule problem variationally

7]
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bv uyse of trial wave functions. They then in a manner similar to
the present calculation determine the kinetic, potential, and total
energy as a function of separation. The same behavipr for the ki-
netic and potential energy is observed in the hydfogen molecule as
in the self-consistent, like-metal, bimetallic cése. FR have an ex-
planation of this behavior both in terms of the wave functions and
the electronic charge density. The drop in the kinetic energy is a
result of the symmetric wave functions in the bond region. The
overlapping orbitals produces a smoothing of the wave functions in
the bond region effectively destroying dy/dx in this region. The
TII component of the kinetic energy is reduced relative tokthe sepa-
rated atom limit. The behavior of the potential energy is caused by
charge transfer into the bonding region. In this case charge is
transferred from a region where potential energy is low near the
nuclei to a region where potential energy is higher in the bond.
Since the kinetic energy effect dominates, kinetic energy is re-
sponsible for incipient bonding. It is this kinetic energy term
which is also responsible for bonding at the equilibrium separation
where the virial equation T = -(1/2)V must be satisfied. The low~
eriné of the kinetic energy pressure results in a charge Lontraction
towards the nuclei thus lowering the potential energy and near
equilibrium a subsequent increase in the kinetic energy because of
the contraction. As a result of the combined effect the energy min-
imum is reached at a higher value of the kinetic energy. FR point
out that in viewing the effects in terms of the density that the

smoothing of the density in the bond region gives a decreased ki-
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netic energy by virtue of the uncertainty principle.

The situation in the adhesion problem is similar to that in mo-
lecular bonding and gives the same qualitative behavior. Unfortu-
nately, it is not possible to do a complete examination for adhesion,
because of the self=-consistent calculation., In molecular bonding
with trial wave functions it is simple to fix certain properties
such as spacing and examine the effects on the energy of others such
as charge distribution. FR conclude that the difference in kinetic
energy pressure in the molecule as opposed to the atom is essential
to the formation of the covalent bond. This is not the case in ad-
hesive bonding. The simple overlap model demonstrates that electron
sharing is sufficient for bonding without the paradoxical effects
in the kinetic and potential energies. The rate of loss in potential
energy is simply greater than the rate increase in kinetic energy.
Similar effects to molecular bonding occur in the self-consistent
calculations but these must be a result of charge rearrangement
analogous to those presented by FR for molecular bonding.

Finally, we show a plot of the adhesive force versus separation
for the LDA and gradient expansion for Mg (0001) vs Mg (0001). This
result is typical for all other’materials. We can see that the
force rises rapidly with separation to a maximum value which gives
the forcezfor brittle fractuxe. The nbniqqal approximation gives a
higher breaking force than the LDA in agreement with binding energy
curves. The force achieves its maximum value at approximately
0.1 nanometers, Also included is Table IV which shows the jellium

force at zero separation calculated for present results using
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Eq, (72) and using the Budd-Vannemenus theorem (Eq. (74)), This ta-
ble is actually a check on the self-consistency of the present cal-

culation.
IV - ELASTIC STIFFNESS CONSTANTS

The elastic stiffness constants can be estimated from the bind-
ing energy curves by taking the second derivative as pointed out in
the THEORY section. Comparing elastic constants with experiment is
an;important check on the Kohn-Sham formalism, since the only pre-
vious comparisons were with surface energies which only exumines one
point on the binding energy curves. The elastic constants check the
behavior of the solution in the vicinity of the minimum. In addi-
tion, unlike surface energies, elastic constants can be determined
very accurately experimentally. The results of the calculation as
determined by a spline fit are presented in Table V along with ex-
perimental values [57,58,59,60}, as can bé seen the agreement is
quite remarkable and is of the same order of accuracy as obtained
from cohesive energy calculations [71,72]. Tpe nonlocal values are

better than the local with the exception of zinc which also devi-

ates for the surface energy. Monnier and Perdew [62] point out that .

the Ashcroft pseudopotential may be in error for zinc and conse-
quently this may account for the poorer agreement. The agreement
for Na is quantitatively poor and probably is worse than the others
since points are not available near the minimum for the spline fit.

The trends in elastic constants are also predicted correctly.

3
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The degree of agreement may have been somewhat fortuitous since

there are not many values of binding energy available near the min-
imum. Obtaining binding energies for more separations near the min-
imum is difficult since it would require a variable mesh size with
smaller intervals in the gap between the surfaces or a small uniform
mesh size which would require large computer storage and long com-
putation times. The spline fit is convenient since it is smooth,
provides an analytic form, and can handle a variable spacing. In
spite of the questionable accuracy the results are sufficiently good
to encourage more sophisticated numerical techniques to obtain self-

consistent solutions for small gap sizes.
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CONCLUDING REMARKS

The adhesion of simple metals in contact (Al, Zn, Mg, and Na)
has been examined by use of the Hohenberg and Kohn formalism and the
Kohn and Sham formalism with and without gradient terms in the ex-
change and correlation energy. The spirit of this calculation is
similar to cohesive energy calculations in which both the energy and
latﬁice constant are investigated by examining binding energy versus
separation., Strong analogies to molecular binding are also observed
when examining both the binding energy curves and the component en-
ergies versus separation.

The results of the Hohenberg and Kohn simple overlap calcula-
tions (no relaxation or self-consistency), give reasonable quantita-
tive and qualitative results. The surface energies are of the right
ord;r of magnitude, give the correct relative trends, and the range
of strong chemical bonding forces is given. The model predicts
trénsfer in dissimilar metal contacts in that interfacial energies
are greater than binding energies in the weaker of the two materials,
The possibility of incorrect lattice constants (nonzero minimum) is
predicted as is observed in self-consistent calculations., In addi-
tion, the model demonsztrrates that charge transfer (relaxation is not
necessary for bonding),

The self-consistent Kohn~Sham calculations for similar metal

contacts are quite quantitative. Good agreement with experiment for
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both surface energies and elastic stiffness constants are obtained
when nonlocal terms in the exchange and correlation energy are in-
cluded. The range of the strong chemical bonding forces is found to
be 0.2 ﬁanometers. Corrections to the lattice constant (nonzero
minimum) are obtained by determining the bulk density which minimizes

the cohesive energy for the Ashcroft pseudopotential. Excellent de-

grees of self-consistency are obtained as can be verified by com-

parison with the Budd-Vannemenus theorem. Strong analogies to
molecular binding are observed when comparing the behavior of the
kinetic and potential energies versus sepération to similar results
obtained for Hy molecules by Feinberg and Ruedenberg. Crystallinity
included in perturbation theory for the pseudopotential and a lattice
sum for ionic potentials is found to be necessary for binding and

agreement with experiment.
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APPENDIX I
PSEUDOPOTENTIAL CORRECTION

We here present the derivations of Eqs. (70a) and (70b) for
completeness since these derivations do not appear in the litera-
ture. The first term Eq. (69a) has a simple geometrical interpre-
tation, The first term is the potential due to an array of sheets
of charge with a surface density given by the proper planes of in-
terest (e.g., fce(lll)). The second term is the potential due to
the jellium charge density éxtending half an interplanar spacing
on each side of a lattice plame. Thus the gecmetfical model for
this term is a series of sheets of charge imbedded in the uniform
distribution of charge with the jellium surface extending half an
interplanar spacing beyond the first lattice plane. Let us first
consider the firét lattice plane since the extension to other planes
is elementary. From elementary electrostatics and simple geometri-

cal considerations the field due to the first sheet of charge is

£ X< - c//z Ell)

where d is the interplanar spacing and we are defining the elec-
tronic charge as positive. The field due to an element of jellium

for x > -d/2.
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3! : X
E. = ‘/77/’%) dx = V¥, (x+dr2) |
~lfe (12)
The total field is
E = E +E, =9tmmux = - Vol
(13)
For' V=0 at x =0 we have
- 2 X > -
V = -20meX © >X >-f (14)
for -d < x < -d/2, we again have
£, = YoMe (x+%2)
E=F,+£ = "M (X+d) = - ol (15)
*
|
Requiring continuity of the potential at x = -d/2 we get
, (16)
V&,: -4217347+(1[+¢J) 2
Eq. (70a) follows simply by extending this results to other lattice
planes,
The second term in the pseudopotential (Eq. (69b)) is a plane-
wise average of the difference between the coulomb potential and
Ashcroft pseudopotential [73]. Thus the term is zero outside the
ion-cores and the plane wise average of the coulomb potential within
the ion cores. Considering only the left-half and the first plane }
of pseudo~ions as an example we can evaluate this term, The inte~ §
f{* gral we wish to evaluate is thus ’ j
i
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where A 1is the cross-sectional area and v is a summation index
that locates the centers of the ions. Since the integrals over each

ion core are identical choosing now a single plane and atom we can

write
‘ . JD‘JZ‘

(18)

where N is the total number of ion cores in the plane, A is the

cross-sectional area and we are now integrating over a single ion

core

Med = 244 (19)

We can now show the integration schematically with the following

diagram
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i
~ Plane through lon core
| |
= -
/ ~Jellium
v surface
W )
_, -di2
I.1. - Geometrical construction for the pseudo-
3 potential contribution from the ion-core.
i R i g Transforming to cylindrical coordinates in the y-z plane we have
B - > ~alF
3 | NI AL rdrdé
¥ ° (110)
S
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‘integrating we get
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d: = 20maed (Ve - [X+ %dl) o(r -(X+ %'JI) ()

i

where the Heaviside function restricts the contribution to within

the ion core, Again the extension to the whole lattice in order to

IRASE A ekt e A

obtain Eq. (73b) follows easily.
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APPENDIX II
LATTICE SUM

In this Appendix a more detailed presentation of the techniques
used to derive the expression for the lattice sums in Egqs. (40a),
(40b), and (40c) is presented. This again is included for complete-
ness since Ferrante and Smith [28] outlined the procedure in their
initial adhesion calculations. The evaluation of these rerms will
be presented for the specific case of an fcc(lll) versus fcc(lll)
interaction as an example.

As stated in Eq. (38) the interaction energy is given by

W@ = | EOLEL dr e

al [r-r'/ (111

whaere the subscripts 1 and 2 refer to the half space and pi(g)
is the net charge density ion minus jellium. The principle in-
volved here is similar to the pseudopotential correction for the
electron~ion interaction. The jellium-jellium interaction is sub-
tracted out and the ion-ion interaction is added in. The differ-~
ence in this case is that the result is exact. Thus we have a
situation where calculationally we are evaluating the equivalent
of the interaction energies of two periodic arrays of positive
ions in a uniform distribution of negative charge, The primary

vontribution of this calculation is that it has extended the evalu-
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ation of interaction energy to nonzero separation between the slabs
which has been put to use in other calculatiens [32].

l The charge density is given by
pic) =7 “‘Z Sﬁ*)‘m)lz{ Iy~ 3e)S-24)- 07 J3Ue-hm) (11

where Z is the valence of the ions, the 4&'s are Dirac 8-functions
and % is the charge per unit area of the jellium. The procedure
applies only to the case in which the jellium from the two half-

spaces do not overlap. The general procedure is to expand the den-

sity in a Fourier series giving

@ , . :
7 CwlheMe P

eey: o 7 Skkm) 7 g

1 y 2

where B, and 8, are components of reciprocal lattice vectors,

Cmih is a structure factor and the prime indicates that the terms
g# =g, = 0 has been omitted. This term cancels out the jellium
background and gives a convergent series.

We now proceedlwith an example calculation to demonstrate the

a procedure used. Taking an fcc(l1ll) surface we choose an orthogonal

coordinate system as shown.
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11.1. ~Breakdown of fcc(111) or hepiG0D]) planes
into Wwo subiattices.

where a and a, are basis vectors for the M mesh which has a
unit cell area Al where a; = cl\[:; 5; a, = clﬁ where 3 and k
are unit vectors in the y and 2z directions and ot is the nearest
neighbor distance. The N sublattice can be lbcated with respect
to the M using the translation vector (ﬁ/Z)clj + (1/2)(:112, thus
we have a two-dimensional lattice with a basis, The fcc structure

(1)

has ABC stacking. Let p be the difference between the discrete

charge density and the jellium charge density for the A-planes

o 5 suiA
{O - - Ci'; WZ’. S (x KJ
jel‘lrnfm ,
+ 1 Z éZIS(x—X&”,))(S(giﬁc,) SG@-ct)
M - mesh Ny
+ 2 Z %IZ § (X-Xne,) S(y-ﬁﬁ(bf%)é(z'-cﬁ)
e N - mesd | (113)
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where the summation indices hi and £i locate points in the di-
rect lattice.

This can then be expanded in a Fourier series with reciprocal
lattice vectors determined by the standard procedures given by

b, = (\/3/3cl)j; by = (1/c)k for the A planes giving

< v | 5= 57 Gy 'iM} . "71—5 - )
(o(l/") \xgj’JZ) = -0y %7 ét/\"f\m,) ”*.g-: 5’ 75 56\’ X"")

. explranize) hy] e xp[rans) 2]
+ o 2 ,Z;T S (K-Xm:) €XP [(:'zfrfaaj,/s'él ']
m, L+ #,

. eXPRi2l )i 2) eXPLinGi+h )]
(L14)

where the hl and Rl summations locate points in the planar re-
ciprocal lattice.

The B set of planes can be located with respect to the A by
the direct lattice vector (\/3/3)c1j and the C set of planes by
adding (\/glﬁ)clj + (l/2)c1ﬁ. For the total charge density which
will be used in the potential we have

pO): /OM)'*/O ), pi)

(1I5)

An example of the three-dimensional lattice is shown in Figure II-2.
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11.2. - Thres-dimensional drawing showing co-
ordinate axes and basis vectors for fec(lll)
planes.

The potential at a point outside of the metallic half space is

given by
,§¢(‘?’ = 5&#' /0(@)
Y St (116)

evaluating this integral we get

0 oc ¢ /4exp[m(llmjl 1P Gh
S¢ = T g’é: { (02+ [’,2/3)//2 CXP( 5 N34 ‘1)
. exp[i 2h] exp [-2 Gx’) (4244%) %]

| ar/ @) 272 Y
o exp[224) exp[- A o) (0%hi5)"]

1 exp[in(hiy +H)] exp[ R 0xI(#2eh8)"]

(117)

S LT T T I T PP



106

In performing these integrals the following relationships have been

used
S” dx  Cos@X) - K, (4g) o B >0
. (g ’

S:Ax Ko (*(x348Y) Gos (¥x) = IT W

for Rea > 0; Ref > 0, and ¥ > 0 where K. 1s the modified Bessel

0
function of the second kind of order zero.

In order to calculate the interaction energy we perform the in-
tegral

Wt @ = [ de pe)5PY

(118)

where p(z)(g) is the charge density in the second slab.

Wint/A is composed of terms of the following form

gt 5 Z’Z' (Hexz’fm%.,413’)](’/«’»\'/9[10(4/%)])
. L/ mgm, .-’:,Ar 1:/12 (!,Z«f'/],‘z /3)

o exP [ 2L XX ) (074 h%5)] expli0 (hsfs 48]

’ jji‘%‘g E’KP[%(%*%)] ("Xl’[zih‘(.g'l_ -oé_t_)}

(119)

where X;?) = -3d(m1 - 1) - (1/2)d, X;

2)
2

similar expressions can be derived for B and C planes [28]. We

= 3d(m2 - 1) + (1/2)d + a

can see that the y-Z integrations give respectively Kronecker
deltas in hl,—h2 and 21’-?2’ respectively. Finally since the

sums extend from - to « the terms can be simplified by com-
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bining positive and negative terms to give trigonometric functrions
and using the identity 2‘ 2 g(ml + mz) = : ng(m) for the

, my= m2'1 me=
planewise summations in the x-directions and considerable algebra
we get Bq. (40a) for the fcc(1lll) lattice sum. The sums for the
hep(0001) and.Bcé(OOI) surfaces follew the same procedures with_only
the geometrical specifications of the lattice vectors and basis dif-
fering for these planes.

Another interesting aspect to this calculation is a considera-
tion of what occurs in the lattice sum in the case that two dis-
similar metals in contact. In this case we get nonregistry between
the half spaces facing one another. This is equivalent to having
h2/c2 and ﬁzlc2 in the integrations shown in Eq. (II9), conée-"
quently instead of getting Kronecker &'s 1in the integers h and

£ we could only get a nonzero result for the lowest integer ratios

h

2 c
Eéh' --EL 8:31-(a more general discussion of this point is presented
2 2 2

by Ferrante and Smith [28).) Since for most dissimilar materials
this would be quite a large number the ¢ohtribution to Wint for dis-
similar materials would be quite small because of the exponental
sion of the ion-ion interaction registry which applies to the case
of separating a perfect solid to nonregistry which applies to dis-

similar metals in contact and for which the prineciple ionic con-
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tribution is the jellium-jellium interaction of the leading term in

the lattice sum.
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APPENDIX TII

SOLUTION FOR THE TRIANGULAR POTENTIAL

There has been considerable interest in a linear ramp potential

for simulation of the bare metal problem. Sahni and Grunebaum [74]
have found the slope and barrier height which minimized the total
Kohn-Sham energy and got good agreement with the self-consistent
Lang-Kohn densities and energies. Although the solution for the
triaﬁgular potential (Fig. III.l) was simply chosen to check the
numerics in the present calculation inclusion of details of tech-
niques used to solve the symmetric triangular potential are pre-

sented since they may be useful for metal-metal contact calculationms.

111.1. - Teisngular potential barrier,

109
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The potential enérgy for this c¢alculation is defined as follows.

o X < -

oK (K+) -Q@< X'<O

V(X) - ol (- x+.a)4 O<cx<a
X >a

© (1I111) -

We have therefore for the Schroedinger.equation in each region
~ L C/z -(éz/z)%
2 x
: . Y
o - % 5(4—,% +ol(Xsa)f = (k% ) ¥
L Y xra) = 6 ) ¥
11 - > oD(2.+ )5& Z)

= (é”) y’ (1112)

‘
IV - Z d
;Considering Eqs. IT and III we see that these can readily be

cast in the form of Airy's equation [75] starting with region II

we have

di¥ _y (X+d-E')f‘:‘0

dAx? (I113)
where Yy = 2a and E' = k2/2a. We next make a variable transforma-
tion zZ, = Y1/3(x + o - E') giving

d*¥ _ 2¥ = o (T114)

dz*

which is Airy's equation. Using a similar procedure for region III

Rl e ikad s sl
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c we obtain

ﬁ - ZzF:O (I115)
;qi‘;

wﬁere 22 = Y1/3(—x + a - E') following the procedure outlined in

the THEORY section we have as one of the independent sets of solu-

tions for a plane wave incident from the left

Vr - Ae®s8e “)
VI - CAsc) +D 6 (2) (b)
‘- E Aie @) + F 6k () )
W = e )

{
(1116)

The particular normalization chosen is to facilitate mathematical
simplicity of the solution. tThe wave functions must be renormalized
by dividing by A at the end to satisfy the requirements of unit
inqident flux. Ai(z) and Bi(Z) are the two independent solutions

to;Airy's equation and some useful identities used in the calculation

are presented:




|
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F
dx

112

Aicz) = 547 [T456)- 14 (5)] (a.)

M) = 547 [Tn@)+Tnis)]  (6)

Bi(2) = /T3 [L6®+Tn05)] (e
B2 V% [ Tu(s) - Tn(s)] (4-)

Ri@)= -% 2 [I-205)-Tus(5)] (e)

A‘(%)- B 2[Ju)- Jug)l 0 (F)

Be) = AMB) [(Tapis)eTpie] ()

Bi(d)= (243) [ Ta5(5)+ Tosi] (h)

Wik, B@f - @)

Where J and I are Bessel function and modified Bessel functions

3/2

of the first kind, W is the Wronskian, z = (2/3)Z and the prime

denotes the derivative.

We now proceed to obtain a solution by requiring continuity of
tﬁe slope and function at each boundary.
At x = -a

/4; e.'fzc\_‘_ge & = C/-I'k(t?(x- -a)) +0 Bib (2.(x=- ) ca.)
kA € H*kge’® - §BCAR( &= -ap+Y BB (2. =-1)  (B.)
at x=0

C A R (2i(x=0) 4D Bik (2:k=0)) = £ fi4(2:20) +FBit@sz 0) (<)
C Aik (2, cx= D) 40 Bk (2 (x x=)) < £ Ai(22:0) + EBlktr=0) (“)

(IT118)

oy P
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at x = a
E f?ré(?z:c‘g) J L Bp(Blxz0)) = €
xogﬂié Gﬁé&ag).@5“#Qﬁféa2“k:q»::dé€{éﬂ-

Solving Eq. (III8) we get
E -net Bip (. (k=0) kY BBt )] =k
£ - kY Phk @) €X RikG=)] = 1

G2 Vi Ak (3. (X-0)) 413 B f(Z:(x=0))
=k Air (7, (x=0)) + V3 Bre (260 )
C= 1 (13 B (2. k=0)) -V Bk Auth=2))

D= N [ V3 fip(2ix=e)- rqﬂ:k(?,(x:o))

Gz g Ak (ZG-a)+ G Pik (2 (=-%)
G = ¥ [ Rkt 0¥ Bl )]
A = (ekagy) (kb )

B - (e*Y%e) (kh-15)

(kq

(a)

(6)
«)
(d)
(e)
+)
()
(h.)
(C.)
)

(I119)

The résults are then inserted into Eq. (58b) in order to calcu-

late the number density. The resulting density is then compared

a
with the number density obtained numerically (Fig. 7) for the same 1
]
]

potential for kF =1 and a =1 au. As can be seen the results

are quite good,
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\ APPENDIX IV
t
- KINETIC ENERGY INTEGRALS
é' 5 In this Appendix we will justify the approach used for calcula- ,

tion of the kinetic energy (Eq. (62)) and point out the differences
with the Lang-Kohn [7] (Eq. (26)) approach which is a gemeralization
of the Huntington [l6] approach. An excellent discussion of the

latter is given by Sugiyama {76]. The starting point for the two

expressions is basically the same, namely, using the Schroedinger

3
R
e
R “v
¥
£

3
equation to define the single particle kinetic energy as the differ-
ence between the eigenvalue €y and the potential energy per par- 3
2 : 1
5 ii ticle. The approach, however, in obtaining the sums over the states 3
? is quite different in that the L~K approach is basically macroscopic F
3 | 5
’ and ours is bagsically microscopic. In the L-K expression the sum
& 4
3
: over eigenvalues is examined before and after creating the surface. ]
! f Starting with particles in a box creating a surface in the middle 3
E ‘:““‘- » ' ‘ “k 3
‘!_J . of the box aauses,% shitt in the density of states in k-space because
For T the k-values tndésgo'a shift in value k » k + Ak. Therefore, for a 3
4 : ,
3 ! 2?: %
% crystal of length 2L the new values of k are given by ,
| mir Gy ;
B = = el ,
2 k ‘:;f ) L L /‘f— Py
. i ; : _
E Qr 5 1
: k -k YD
L' ' (1v1)

|

: g
RS
=2

I

\

i

/
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: z where n is an integer and vY(k) is the phase shift in the wave w
function deep in the bulk caused by scattering from the surface po- §
tential (Eq. (19)) and the k' are the k-values before creation

of the surface. The term v(k)/L is of order 1/L. We can think

e el

of the change in terms of the infinite potential barrier as a change
! in the size of the box of the order of a lattice spacing. With a 3
real potential, "however, the phase shift depends on k, unlike the
infinite ?otential barrier, L-K proceed to derivekan expression for
the kinet&c energy in terms of the change in the sum over eigen-

values,

7 (kkgube)
2 | (1v2)
k,ky, k2

ocCC.

s

between the split and unsplit crystal and in terms of the phase
shift y(k). For the bare metal calculation +vy(k) can be easily

determined,

In this work the kinetic energy is determined in terms of a
twofold integration in k and configuration space in terms of the
exact wave functions (Eq. (60))., Proceeding in general for the

{

k-space integration we have

7 &y avy
R ky, ke

ocC. :
where f(k,x) is some function of k such as the arguments of the

integrals presented in Eq. (60). In converting the sum to an

integral using the Euler-McClaurin formula [75] we get
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i

‘L;h‘dn f(k,x) ignorning higher order terms (referring now only to

the x-~direction) where no is the highest occupied state. The
density of states in k-~space ﬁi(n) has shifted from the profile
in a box value to

dm _ 2L £ )

—O-(E~1)— LIE {/+ ) B tle)

(1IV4)

ﬁhere v'! 1is the derivative with respect to k. In converting to a

"k-space integration we get

ke
kr ‘4
! £
Zrl;‘ L Ab «[.(A')X)'f' —‘% ?dJklf(f)h,Uj o (IV5)

therefore, in using the particle in a box density of states we are
ignoring terms of order 1/L (the second term in (IV5)). We must
next consider the errors in the x-integration. We can assume

C = (xO/L) is constant where X, is the length of the jellium in
the computational space in order to neglect the effects of slab
length on iﬁkegrating the second te;m in configuration $paEe (x-

integration in Eq. (60)). The next consideration is selecting %

such that the deviation of the density from bulk conditions

(Eq. (80)) is sufficiently small. This was checked by compating

"the result of using Eq. (60) to the Lang-Kohn values of the kinetic

energy for the bare metal case with integral values of rg.

b
LRl s R, Gihia gt J
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PURPOSE:

USAGE:

RESTRICTIONS:
ERROR MESSAGES:

METHOD:

ACCURACY:

SUBPROGRAMS USED:

REFERENCE:
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APPENDIX V

PROGRAMMERS MANUAL
LEWIS RESEARCH CENTER

11/70

Spline Curve
R. Bruce Czuright, Jr.

'l‘iq provide a function y = f(x) which interpolates for a given table of data
p‘pmts ("i’ yi)

To fit data, the call
CALL SPLINI(X, Y, NPTS, BO, BN, J)
where

X - the array of points x; in ascending order
Y - the array of corresponding yj
NPTS - the number of these points
BO- the boundary condition at lower x boundary
BN- the boundary condition at upper x boundary
J - =1, the boundary conditions are the slopes dyAlx

=2, the boundary conditions are d“y/dx
3
is required. After this, the spline fit is available through two entry points
in SPLINL:
YY = F(XX) where

XX independent variable, within the range of the X
YY resultant interpolated Y value at XX.

and

DY = DF(XX) where

XX as above
DY approximate slope dy/dx at XX.

1) 3 < NPTS = 50
2) X(1) = XX = X(NPTS)

When the input X is out of the range specified, a warning message is
printed. The return is normal, but the answer is generally meaningless.

The curve-fit is a set of cubic equations passed piece-wise through each pair
of data points, constrained to match the derivatives at the data points. The
fit is therefore very ''smooth’', excellent for interpotation or plotting, It
is not to be used for extrapolation. Further this spline fit is not intended for
large batches of data with scatter, noise, etc., because the fit passes
exactly through every data point,

The method requires the boundary conditions to specify completely the
solutions to the interpolation equations (reference). 1t is usually sufficient

to say that the dzy/dx2 at the boundary are zero, whenever the boundary
conditions are not known,

Dependent - the input data, DF is about one s.f, less accurate than F,
None

Kopal, Zdenek: Numerical Analysis, Wiley & Sons, 1961,
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PURPOSE:

USAGE:

RESTRICTIONS:

METHOD:
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APPENDIX VI

PROGRAMMERS MANUAL
LEWIS RESEARCH CENTER

/70

QSF/DQSF
NUMERICAL INTEGRATION

IBM Scientific Subroutine Package
i

To compute the vector of integral values for a given equidistant table of
{unctlon values.

CAUL QSF(H, Y, Z, NDIM) for single precision, or

CALL DQSF(H, Y, Z, NDIM) for double precision.

where

-~ The increment of argument values.

- The input vector of function values.

- The resulting vector of integral values.
Z may be indentical with Y.

NDIM - The dimension of vectors Y and Z.

DOIIBLE PRECISION: H, Y,and Z must be declared double precision in
the calling program if the call is to F.

N

NDIM must be 3 or greater.

To compute the vector of integral values:

A
2 = 2(x) = f ¥(x) dx
a

withx, = a+ (i-1) h
for a table of function values y‘(i = 1,2,...n), given at equidistant points
X -.a +(@-1) h(t= 1,2,...n), Slmpson's rule together with Newton's
3/8 ‘rule or & comblnauon of these two rules is used. Local truncation

errér is of the order h in all cases with more than three points in the
given table. No action takes place if the table consists of less than three
um le points.

The fnnction to be intes rated is assumed to be continuous and differentiable
(three or four times, depending on the rule used).

Formulas used in this subroutine (z are integral values, y’ function
values) are:

3=z +.% (1255, g + 29y - 0.88 ;) m
5= 52 *f 0j2+ ‘Vj-x Yy ('Sh;;g-on'a @

(Nevton'l S/I rule)

P

o
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PROGRAMMERS MANUAL
LEWIS RESEARCH CENTER

} 11/70
!
: h
5 2y= 28 +; (yi_5+ 3.875 Vi-4 * 2.625 Yi-3
§ i
- : +2.625 y; o+ 3.8T5 y; 4+ vy ®
3 N
.‘ ) [combination of (2) and (3)]
Z Sometimes formula (2) is used in the following form:
‘ 2= 2i9 -2 ¥+ 4 Vi V2 (5
i ] j+2 3 ] j+1 j+2
5
ERROR MESSAGES: None k
i
ACCURACY: Local truncation error is of the order h5 in all cases with more than
’ - three points in the given table. 4
f SUBPROGRAMS USED:  None ] 3
‘. | : i
: : REFERENCES: Hildebrand, F. B. Introduction to Numerical Analysis. McGraw-Hill, 3.
' - — New York, 1956, !
k E
| !
] D
.. }
i ~
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IDENTIFICATION:

PURPOSE: -

USAGE:

RESTRICTIONS: »

METHOD:

ERROR MESSAGES:

ACCURACY:

SUBPROGRAMS USED:

REFERENCES:
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APPENDIX VII

PROGRAMMERS MANUAL
LEWIS RESEARCH CENTER
‘ | /70
S Mgzu PAGE 1
NUMERICAL DIFFERENTIATION R QUAL{T?

IBM Scientific Subroutine Package

To compute a vector of derivative values given a vector of function values
whose entries correspond to equidistantly spaced argument values,

CALL DETS (H, Y, Z, NDIM, IER) for single precision, or
CALL DDETS (H,Y, Z, NDIM, IER) for double precision.

where
H - Constant difference between successive argument values,
i H is positive for increasing argument values and nega-
tive otherwise,
Y Given vector of function values (dimension NDIM).
k4 Resulting vector of derivative values (dimension NDIM).

Dimension of vectors Y and Z,
Resulting error parameter,

I IER = -1, NDIM is less than 5 and there is no
computation

If IER = 0, there is no error.
KIER= 1, H is equal to 0 and there is no computation.

DOUBLE PRECISION: H,Y, and Z must be declared double precision in
the calling program if the call is to DDETS.

NOTE: Z can have the same storage locationas Y. If Y is distinct
from Z then it is not destroyed.

H must be greater than zero, and NDIM must be greater than 5.

H X is the suppressed vector of argument values, then except at the

dmthe {(&),.)n(& )‘((N“DIM‘-‘I‘}, and X NDD‘“),d I is th: deTrlvnmie at X(“)
rangian inter on

is relevant to the § lucg:uive ﬁ’:lnu X(1+K), Y(I+X)) with Ks-p; ylm0,

None

Dependent upon the characteristics of the input data.

'None

Hildebrand, F.B,: Introduction to Numerical Analysis, McGraw-Hill, 1956,
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APPENDIX VIII

FORTRAN IV LISTING OF THE COﬁPUTER PROGRAM FOR
OBTAINING SET CONSISTENT DENSITIES

AND POTENTIALS
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HUYMEFNV IMTEGTATION CMTLEX WRVE FUNITIONS
; NIMENSTUN TV"(ZT’).VLF}(”"),“X(z‘D) FNTSRL (257), "DEKS(27D), VEFF1 (251
s ' DIMERSION TDENG1(2S0Q),VFFTT (230), vu~v°(254),:nvvsé(290)
‘ COMNNN/FIL/NI,FY, PT

COHMUN/RRT/IX, NS, 4T, T3, T2, ¥P, Ali, ¥DL

COMMON /dCW/CNPLUS, JET A, &

FEAL X,KK,KAT1,KAD2,C%I¥C, "OENS (258C) ,PHT (250), wUXCT (25€)

COMBLEX SLOPE, FUNZ,U11,022,012,021,2%0, PST2(23N0)

DIHENRICN WAVY(T),DwAVE(? ),dAVhl(’) CWAVET (7)

DIMFNSION =N1(27C) ,EV2(259), PALT(250) ,ENRGI(231)

PIMEZNSTON "erql(zkn),vq*"Z(v"ﬁ), 0on(25C) ,PAD(23D) *
| DIMINSTON N7 (28 ),rr,1() )) ,PADT1{230),PAD22(256) '
* ‘ TIMINSION ZXG11(250),7N522 (250), 20D 1 (25¢C)

l ' ‘ DIMENSTON DHL(250) ,EYLI(257)

DIMENSTION SXC(257) ,C¥Z(259), DIDENS (250)

DOMLLE PRTCTSTAXN DENS(25D) ;
DTXENSION EN12(257),FNL3(25)) 3
S ; comeLax RIY,RIT,AITI,RPIII

) COMPLEYX PSI(EEC),?(243).J.PSI1(250),TEHPI.PE!”2,’E!P3 3
: COMPLEX G1,G2,63,% 1
» COMPLEX T£x1,TE!2.D1,E2.D3,DH,DS,D?,R1,!2.F3.Ru ;

DELK=2,E-2 3

: DELTA=.25L0

PI=L, EO*ATAN (1. EC)
ES522.170
R$1=2,070 :
€953,/ (4.*PI) g
CNEBLUS=3,20/(4.FC*¥2TI*¢RSPRSERS) %
CNRL2=3.EC/ (k. EC#RS1¥FS1%ES 1) : !
FK1= (3. L0®DI®II*CNPLZ)** (1. /3.) . g
FK=3 (3.EN*PIRDIXCNELUS) *% (1, /3,) 3
ONHG=FK*FK/ (FK1*FK1) ) i

: OMEG=1.£000C20 RGG'

o O oRIGNAE Tl ey

A vy

N22120 ofF PO

MI=NI/2

AH=.25000C90 )

EX (1) =22.24 ; :

A=2.82000¢C0C ; -

TA=A/AH

MXSEX (1) /Al

NS=MYX-Ta+1

NT=NS¢2*IA

TX=2%MX 41 .

1=1IX-4

NR=IX-NT

MDL=YX+1

MDL1=%DL1-1

IK=50

MI1=4DL/8

EI2=MDL/S

MAX 123441148

HAXZ=54MI245

I S S Y e
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91

1050

73
1000

123

EKINT=.3» (3.*PI*PY) ¢ (2. /3, ) % (EX(1)-A)
EKINI=EKIN1*CNPLUS**(5,/3.) *1.557E¢€
MICKEY=5%MI2

IF(MICKEY.SQ.MDL) MaX2=v0DL

IB=2%IA¢+1

ALEPH=.5550¢34

Yc=0.

Y1=2.05E-4

= ‘ c
oz,
> 2

CONTINUE

AQ=.3% (3, %PI*DT) *¢ (2. /3.) $TNPLIIS=® (5. /3,)
DO 1115 I=1,MDL
IF(I.LE.NS) ENBG3(I)=A)

IF(I.GT.NS) FNPG3(I)=n,0nr{N000
CONTINUE

DO 91 I=1,1IX

IF(I.LE.NS) PDENS(TI)=CNPLUS
IF(I.GT.NS.AND.I.LT.NT) PDENS(I)=0.EC
IFP(I.GE.NT) PDENS(I)=CNPLUS

CONTINUE

BETA=1, 24

CENTER=5.25

CONTINUE

DO 73 1I=1,IX

X=EX(I)

TOMPI=ALEDPH* (X-5.25)
TOMP1=TOMPI=TOME1

TOMP2=ALEPH* (X+3.25)
TOMP2=TOME2¢TONF2

# (TOMP1.GT.59.) TNMP1=59,
IP{TOMP2.GT.5J.) TNAMP2=5Q,

BI=Y1*EXP (-TONPY)

B2=YO*EXP (-TOVP2)

TEMTYI=EXD (3FTA* (X+A))
TEMT2=EXP(BETA* (X-1))
TEMT3=EXP(-BETA® (X+A)])

TEMTU=EXP (-BETA® (X-1))

IF (I.LE.XS) EDENS(I)=B14R2¢CNPLUS*(1.+TEMTI/2,.-TEUTU/2.)
IF(I.GE.NS.,AND.T.LE.NT) EDENS(I)=B1#DB2+CNPLUSS (TEMT3I*TENT2) /2.
IF(I.GT.NT) EDENS(I)=B14¢B2+CNPLUS*(1,-TEMT1¢TENT2) /2,
CONTINUE

w=0

MM=MMe

IP(MM.GT.59) DELK=2,E=2

IF(MM.GT.53) IK=50

CORF=. 0000000000

IF (MM.EQ.2) CONF=,0C000

IF (MM, EQ.21) CONF=,1525

IF (MM.GT.21) CONF=.00373

IF(WM.EQ.U1) CONF=.5

IP (MM.GT.41.AND. MM, LT.51) CONF=,00275
IP(MN.EQ.61) CONP=,05387

IP (MMN.GT.61) CONP=,003750000
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200

3000

§ 1001
1002

5555
4oc

201

8052
352

155
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IF (MM.EQ.B1) CONF=.5
IF(MM.GT.81,AND.MN,LT,.101) CONF=,005
IF (MM.EQ.101) CONF=.1

IF(M%.GT. 1) MIT=1

DO 200 I=1,IX

EDENS1(I) =EDENS(T)

CONTINUE ; |
IF(MN.GT.1) GO TO 3000 ' ORIGINAL PAGE
DO 2 I=1,MDL .
T1=.5% (£X (I) ~CENTER) QE ROOR QU,

T1=T1*T1
IF(T1.6T.50.) T1=50. .
2=Y1%EXP (~T1)
T3=,5% (:X (I) *CENTER)

3=T3%73

'F(T3.6T.50.) T3=50.

TU=Y1*EXP (-T3)
TF(I.GT.NS.AND.I.LE.MDL) PHI(I)=T2¢TUsPUN2 (EX(I))
TF (I.LE.NS) PHI(I)=T2+F4+FIN2(A)
CONTINUE

DUMB=PHT (1)

Do 3 I=1,%DL ,

PHI (I)=PHI (I)-DUMB

CONTINUE

CONTINUE

IF(MM.EQ.1) GO TO 8052

JJ=0

JI=53+1

IF (JJ.GT.MIT) GO IO 8032
CONTINOE

Q=ABS (Q)

IF(JJ.EQ.1) A2=Q

A1=Q

CONTINUE

WEITE(6,4C0) A1

FORMAT (14 ,3HA1=,E16.9)
0=1.0000000

DO 201 I=1,IX
EDENS1(I)=EDENS (I) #Q

CONTINUE

GO TO 1001

WRITE (6,352) MM

FORMAT(7H EDENS,2X,3HAM=,I3)
IF (MM. NE.N3) GO TO 156

NF=0

NF=NP¢1

KNAX=5*NF

KINT=KMAX-4

IF(KINT.GE.MAX2) GO TO 156

KMIN=KMAX-4

IF(NPLEQ. 1) NG=1

IF (NF.GT. 1) NG=KMIN

WEITE(6, 151) NG, (EDENS(I),I=KMIN,KMAX)

TR i T T T T I YT, W R N % e e ey e
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CAMAT(TY LT3, (110

GroI2 175

CarTINg.

CuNTTHLL

CELL XC(T7u¥31,v097, 1%, T¥PLUs, CHIXC)
TF(M.ov.1) 3 TG 3111

CoNTIvHS

Lo 27 1=1,I¥
I1=IX=~-14+1
TE(L. L. L)

TF(1.31.MDL) VFEFY (1) =VTPF1(TI)

T LOMTINUE

POTAY=(VIFA1( 1) SVLFE1( 1)) /(17 *aAl)
[ELTY=VIFF (1) -VEFF1 (1)

PVSZE (VEEF (1) -VosF (1)) 7 (D, =2 1)
WEITE (&,20°0) ZOTAV,DRELTV,DVIZ, NS

= -

CONTINUE 7%

IF (MY .GT.1)JCALL "ERE(YEFE,YZFFY, TX, XDL, 44,93, 84,22, PIRTRE)
IF(LIGETF. T, 10.) 30 72 203

IF (MY.+0.1) fIAD(7,3) (V2FF(I),T=1,MA¥2)

FCRMAT (2 (215.5))

IS(F%.6%.1) G35 TO 2%

pn 27 I=1,1IX

I1=1X-I+1

TE(1.LE.ADL) VETF(T)=0ME3«VAT7(])

1E(I.5T.KDL) VEFF(T)=VEFF(IT)

27 CONLINUF

2%

31

CONTINUE
ne 30 I=1,1IX
VEFFH (TYy=VEFF(T)
CDENSE (1) =70 38vS (1)
CONTINUT
IF(M1.20. 1) 63 1Y 2%
CONTTRYUT
po 21 1=1,7TX
VEFG (I)y=VAFF (D) +CORFs(VOTFT (D) -VEFF(T))
TP(MM, 5. 1) VEFF(I)=VIF=1(T)
COWIINUL
CONTINUF
IT (MY NE.N3) 39 1O 1777
WRITE(6,8) (VIOFI(I),I=1,42X2)
CONTINUY

IF(MY.B2.83) 150 Ty 31

IF (E%.EQ.1) GG TO 17°
IF(¥M.LL.50G) GO TO 33

00 32 T=1,I%
VEFF(I)=VFTF€ (I)

32 CONTINUR

WEITE(71,43) (VEFRF(I),I=1,%2K2)
WRITE(72,43) (FDeNS(TY,I=9,MAX2)
WRITE(€,03) (DUT(L) ,T=1,4%0X2)
WATTS (€,43)  (AXC(I) ,I=1,42%2)

43 FORMAT (Z(E18.9))

e 1 (T ’—(FK'FK’Z.)—P.EC‘!I*?HI(I)O!UKC(I\-!UlC(IV)01V$(I)'“Y:(IY)

a, 2,848 T
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PR

; %
]
A 32 covTiNDE
l ~ TR(YE.L7.17C) 40 79 1¢0L
] DO 1003 T=1,~
IF(MM.F2. 1) VIFF(I) =V FF1(T)
< : 1063 CONTINUE
| N 1G04 CONYTISUR
TR(MN.SZ.NT) 30 Ta 1-3 .
. WRITF(€,351)
351 FORMMT (4it  verr) CINAL PAGE N, .
-‘ : HK=0 ORILL Qum H
: TEC MNK=NK+1 QOR s
Ji : LYaX=5*NK PE K i
¢ a LINT=L¥AX-Y
i IF(LINT.GE.%AXZ) 31 75 yae
LMIN=LMAX-4
IF(SK.L: 1) WL=1
i IF{¥K.GT.1) NL=1X%
€rIr?(§,1fd) NI, (v-"F(r),T LYTY,L¥aY)
49 TO s

el FOSMAT (1M , T3 ¢ Z(Elo.0))
1ol CONTINUL
175 CaxrInir
LF (M. L0 K3) 3 7y B0
Fa 8¢ 1=1,71¥¢
s NTGAL(T)=n.n

FDINI (D) =00
ENRR1(D) =..0
TNAG(T) =n .
ran(T) =0,
FAL(I) =0, 3
N Cen T,
Ih 1Nt e, T
ARTTRE LKL LUAT (V)
> FAPTSRES (2 TORVIDF (1) 6 (5K XK) = (PR-KK))
KAPZISASS (201 2V VaFe (1) 4 (FRRE) = (FK-KX)
RAFT= 30T (X2 1)
EAv2210.1
PS5 (1) =CFNS
RT3 moTx
CALL WAVE (Kn, PRI L PEIR) VTPR, 8T, TY)
| SRY (1) =T RAL (PST
Ly “AVz(2) =TRAL (PST
R2VT () REFAL (RS I (Le])) i
! WAV E(H) =TEAL (BPRT(L)) 1
, WAV (3)=FSAL (PSI (L=1)) 1
; WAVE (o) =ReAL (OSI(L-2))
WAVE(7) =F¥AL (PST (L-1))
WEVEY (1) =aT¥2 5 (Pal(Le 1))
RAVET(2) SATEA (PST(1+7))
AAVLT(3) =4T¥2 5 (PS1(Le 1))
FAVET (0} SATIMAT(FIT (L)) :
WEVET(S) =aI¥2 5 (151(L-1))
"nvr1(6)=z\tu S(EST(L-2))
WAVLY(7) =A% 3(FRT(1-1))
3
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CALL DETS (A, whVE,DKAVE, T, ITT)
CALL DETS (AH,WAVE!,BWAVE1,7,IL7)
SLOTL =bWBVE (M) +I¥DWAVII (L)
FHRC=RAVE (L) ¢ J¥uavet (2)

CRLYL FFANGEM(SLOT 2, FUNC, 3¥(L) ,KK,D1,3,AMF,U11)
GAH=CADS (111)
U22=RE:L (T11) =J=ii%rG(U1Y)

T1=(CALS (1. EC/AND)) ##2

T2=1, 50= (CAES (U11)) *¥2

IF (M.F0.TX) WETTE(€,301) »vp

B ,31HL5=,201¢.7)

i

Do 73
PEI(T)
CORTINUE

T7=CARBS (AUP)

T1=17*77

Do 81 1=1,1X

II=IX-TI+1 .
PSI2(I1)=PSI(T) 5
CONTINUR 4
po 9%t 1I=1,TX

DK=KK/F¥K
TI=CABS(P3I(T))
T3=T3%T3

TU=CABS (PSIZ (1))
TH=TU4*T4§

CO¥F=4,.EC
IF(MOD(M,2).20.C) COEF=2,7)
ENTGRL (I)=CNPLUS*(1,~-DK) *# (1. +DK) * (I 3+TL) *DELK/H4.EQ

FDENS (I)=COFF#*#7NTREL (I) +ZNENS(T)

TERM1=(1.+DK) *¥(1,-DK)

TTRM2=TEFMI*TERM1

FN1(I)=aP*DELK*DK*DK*TEIMN1*(T3+T8) /3,3C

EN2 (I)=AP*DLLK*TERM2% (P3+T4) /3, F0

ENFG1(I)=ENRGT1(I)+COEFeIN1(I)

ENES2(I)=ENEG2(I)+COFF*EN2(I)

CONTINUE

CONTINUT

DO 1111 I=1,MDL

II=I-NS+1

FOD(T)={(~TK*FR/2.-VETF(I)) *#SDENS(T)

IP(I.LEJNS) PAD(I)=PHI(I)* (EDuNS(I)~-PDENS(I))

IF (I.GF.NS) PADT(II)=PHI(T)*EDENS1(I)

CONTINUE

NDIM=IAa+1

CONTINUE T

TP(MM.E9.0) CALL GRD(EX,EDENS,B3XC,CXC,DIDBNS,IX,MDL,AH)
CONTINUE

DO 1112 I=1,vHL

JI=I-NS+1

TF(I.LE.NS) ZEING(I)=(EN?S1{I)+,5*%*ENKG2(I))/(8.*PI*DPI) +POD(T) -ENFGI(I)
IF(1.5E. NS) EHNG1(IT)=(ENRG1(I)+.5*ENRG2(I))/(3.*PI*PI)+POD(T)
PNL(I)=1.557F¢»CXC(I)*DINENS (I} *DIDENS(T) / (EDENS(I) ** (. /3.))
T=EDENS({(I)

1,IX
SI(T)/AMD

Yoy

PRI

ki

YRR




T1=DIDENS(I)
T2= (EDENS (I) 7€)%« (1./2,)
T3=T2eT2
TU= (21264, C13%T2¢, 0342 T3) nCO8® (4, /1,)
ENL2(I)=.5%1.557E6«TLeT1¢T1/(Toe (8, /3,))
1112 CONTIHNUE
CALL QST(Pi,cNG,ENT1T,KNC)
CALL QSP(AY,ZHG1,TNG22,%0TY)
CALL )SF(AH,PAL,PADTI,NS)
CALL JSF (AH,PAD1,PADI2, KDIVY)
CALL QJ3F(RH,T7p, 7DD, “NL)
CALL JSF (A, ENL,ENLT,™DL)
CALL QSE(AH,TFL2,ENL3,unL)
IE(NDIM.LT.2) ERG22 (LDIM)= (5951 (NDLIY) ¢ENGYI(KDIY-1) )®AH/2,
TF(NDTM.LT+3) FAL22(ND1%)=(PANT(NDIY) ¢PADI(NDIN-1))*ali/2,
ESE=2.*LI*(DADV11(XS) ¢PAT2?(NDIV) ) *1,5EFFF
EKIN= (ENCT1(VS) ¢ENG2T (NDIM))*1. E57kF
CPKIW2=E2% (ERTNeTKTN ) -TK TN
WRITE(6,1117). ENSY (1) ,2031(2), PKIN2, S 1IN : :
1113 FORMAT(ISH KINETTZ TMEDP3Y,2X,T12.6,2X,F12,7,2%,T13.7,2Y,513.7) %
WRITE(E,111L) wiL,PRlI(%DL) (PALT(Y) ,PANYI(2)
) 1114 FOEMAT (44 25T4T EN,2%,213.7,2¢,%13.6,2X,F13.6,2%,713.¢) 1
§ A5=2,%A ;
N23=N3-1 ‘
CTIR(MMLTQWN25) WIITT(E,111c) A3,FS,EX(1),2
1115 FORMAT(IH ,3MA= ,E12.6,2Y,v 408> ,E13,7,2X, 04X = ,212.+-,0V,340= ,F13.7)
WEITS(h, 1117) PHLI(MOL), TNL3 (¥:L) i
1117 FORMAL (1 ,17HEDNLCL #N=,T14,7,2%,018,7) 4
74 CONTINIFR :
502 CONTINUE
L v IF (M%.Le.NY) 5C 70 1727
; 503 CONTINUE L
RETURY 3
END
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SUSBTINTINT THARGE(URANS T ,PNNS , IN 0, AR NG, NT,, 24,20, 18, L, ¥ Y, MT)
DIMENSION SLENSI(?230) ,2D0RS (287 ,0NFT(257) ,FHI(257)
DIVENSTON CNLTV1(227) ,CNET2(250) ,Caf™3(230),LI21(253) ,nTr2(04M) ,nIr3(?=T)
DIARNSION CNIT(I80) ,TY(250),DIP(2%Y)
coMann s -1 B/00, TX, 7T

¥=MDL+1 1

N=PI/(EK=*r%)

N=NeY

MM=Ke

A=PI/FK

B=A=AHSFLOAT (N=1)

p=0.

C=1IA o

CALL ATNT(LLLNST,PDENS,DIPY, Vi, 4DL)

po 397 i=1,40L

II=I+¢NDL-1

III=MDL-I¢1
Qnat§11)=ctp1(r)p(Ex(rr)oc-AH)OPDLSS(Ix)
QSET(III)=QNLT (IT)

CORTTNUE i

DN 98 I=1,MDL

II=1¢%DL-1

DIP(II)=DIPI(T)

CONTINUE

Do 161 I=1,MDL

III=MDL-I#1

DIP(III)=DIP1(I)

COYTINUE

DEN=DIP (IX)

CALL AINT(DIP,PLENS,PHI,AH,YDL)

CONTINUL )

W=PHI (MDL)

po 99 TI=1,%0L - _
II=I+MDL-1 :
TEYPI=.5% (EX(TI) ¢C*AH) ¢ (SX(LI) +C*EH)
PHI(IL)=EHI(I)Y-TZMDI*PDPSNS(II)

CONTIVUE

PHI(IX) =W=-.5% (DY (1Y) +C*aH) € (EX (IX) ¢C*AH) *PDINS (IX)
vo 102 I=1,MuL

II=MDL¢I-1

III=4DL~-I¢+}

PHI(III)=PHI(II)

CONTINUE

V=PHI(IX)

Do 100 1I=1,1Y

PHI(I)=PHI(I)-V

CONTINUL

L=IX

ITII=TX-1

IF(JJ.LT.3) 30 7O 1901

DO 1030 I=1,M%

COEFF=2,

IF(MOD(1,2).70.C) COLPF=4,

I¥(1.50Q.1) COEFF=1,

i,




e

) IF(I.C0.0) COLYE=T,
; SFMET=LX (I) *EX () «CDG (2. »FK*EX(I)) Z{IX(I) *B¥ (1))
; D=D#COEFF* TL™D
1000 CONTINUE
QNET(MM) =UNS (2. ¥FKSEY (IIM)) /(X (M) #EX (*¥))
CHET(N) =COS (P *FKeTX (M) ) Z(5X (V) =2X (X))
FpXi(MM) 2 X (VM) $0N "1 (VM) -E7 (X)) €«EX (N) *QNFT (N)
\ F= (B/AU) *F#FX (M) $EX (3} *DUFT (V)
| TEMP2= (S (MM} *EX (M) VI (MM) +F) € (B-2'1) /2. ¢D€A /T,
G= (EX(‘)-R) el ~PX (V) LLEN
H=3.¢TFNP2/G

‘ RRITE (F,1002)
4 10C2 FOFMAT (3K CCHARGE=,Zi¥,513.8)
] 101 CONTINUE
ALRH=BDI NS (L) * (EX (L) +C® Aii) 3
C=ALPH/Du
: ] P=ARS (Q) E
f FETU™N
FND o5 :
| < {ggﬁlk
¥ : %, -y
pt ‘P‘*‘ . £
| SR s a
o ¥ . g
}
i;‘ :
. %
}
3 .
;
B




L 131

« \ORI Gm‘u
1}
)
4
!
|
SUBFOUTINE KiJOPM(SLCTE, FUNC, X, KK,PL, ¥, A%P,U11)
CORPLEX SLOKE,FONC,J,247,101Y,PST,PSIP,D1,D2,03
FEAL XK
PSI=FUNC
PSIP=SLOPE
. CO#F=SQRT (2. S0*FI*KK)
{ CORF=1.EC
' DYZCEXD (J*KK*X)

D2HCEXD (~J® KK*X)
D3=2. FOSKK®J

ABP=COLF® ((DI*PSI/2.E0) ¢DSIP)/(D1%D3)
U11=COLF® ((DISPSI/2.E0) ~-PSTIP) /(D2*DIeANP)

RETURN
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SUBBDUTINE aalF (KN, TR ail,d, JLLE, DV, P2,VIFF,PST,IX)
RZAL KK

INTFGER O

DIMHLSION ViTE(28Y)

COMPLEX P1,b2,d,05I (250

PSI (1) =M :

FSI(2)=p2

o 15 I=2,IX

PSI(T¢1) =2, LO=PST(I)-PSI(I-)

0=0

& M=REAL(PSTI(Te))

Q=0e1

TI=FRAL(TSI(T¢Y))

V2=gLAL(PSI(T))

TI=CSAL(DSI(I-))

T122, 8T =T3¢ {1, /12, ) *A 1A ¢ (FROKK) ®(FPR-KK) (T 1e40, 8T 077)
2o (1,/5 ) SEUBPHS (VEFF (T01) D10 10, ¢ VFUS(I) ST VEFF(I-"*T])
Y=AES ((T1-A) ZN)

CEI(I#N) =T1eIOAT MRS (TST (T 1))

IF(0.6GT. ) 6 To 1R

IF(Y.3T..CA001Y) 40 To R

10 CONTING®

END

N=O
7T BFALMAGUPSI(I¢1))
N=Ne1
TU=p TR (TS (Ie1))
TO=AIMAG (PSL(T))
TE=FIMAS(EST (T 1)) )
Thmg 0T =THRE (1, /1ae J P AHCAN® {FROKL) » (FR=KK) 6 (THe Th oL eT!)
SH (V1 /8. )P AHSAIS (VERF(To 1) e TUSTI s VEEF(T) 0TV T 47 (T =)0 T0)
WSAST ((TU-8) /)
PEY ([+1) =SSAL(PaI(T41)) edvrly
IF(ReSTab) G T 1N
IF(R.GT. .20y 6T 7
1Y CONTINUS
FST(Le1)=TredeTy
15 CONTTIGY
DETURN

o 3.
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SURFOUTINE DETS(H,Y,7,NDIN, IFR)
@R&\J‘I‘ IA.. Theor.

DIMENSION Y(1),7(1)

TEST OF DIMENSION
IP(NDIN-5) 4, 1,1

. TEST OF STEPSIZE
IF (i) 2,5,2

'PREPARE DIFFERENTIATION LOOP
HH=.08333333/H
YY=Y(NDIM-U) :
BEHH® (=25,%Y (1) +48. ®Y (2) =35 .8 (3) + 1€, Y (L) =3, 0¥ (5))
CEHH® (-3.%Y (1) =10, %Y (2) ¢ 12, %Y (3) =6. Y (4) +¥ (5))

START DIFFERENTIATION LOOP
DO 3 I=5,NDTN
A=B
B=C
CaHH® (Y (I-0)-Y(I)¢6.2(Y(I-1)-Y(I-3)))

FND OF DIFPERENTIATION LOOP

NORMAL EXIT

IER=0

ASHH® (=YY +6. %Y (NDIM=-3) =19, %Y (NDIN=2) ¢10,.#Y (NDIM=1) ¢3,#Y {5DIN))
ozqunxu) HH® (3. %YY=16.%Y (NDI¥=3) ¢3€, #Y (KDIM=2) -U B, *Y (NDI¥=1)

+25. %Y (NDIN))

z(uozn 1) =A

Z(NDIN-2)=C

2 (NDIN=-3)=3

RETURN

ERROR EXIT IN CASE NDIM IS LESS THAN 5
IBR=~-1
RETURN

ERROR EXIT IN CASE OF ZERO STEPSIZE
IZR=1
RETURN
END
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SUREOTY Tan YO (R0 eV T pMIAU, IV, CATLUS, (NUXC)
FEAL MUNT(25C), anua NS 28

P72, L0

LR TR IR

W) @ I=1,TY

TI¥DYETAENS (T) PeTN

TUVMELIEY L e 10T T AT T JaT o |

'WXC(')2""";‘T1-?7'?‘!”1/?'”72»“80(TL%P1"“9)/(TE"P2“95)
& CONTIN'IY

nEMP3ECYTLT e

LT SUAES I Sk SR DO e i L

‘ SNz et p e PRN JaT e (T T tunt g T (YT R RE/TFRPY SR ES)

‘ VRTUR G
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LN

-
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FUNCTION GA®1(X)
D3LTA=.2510
TEMPI=DLLTA®Y X
IT(T£1P1.GT.:ﬁ.) ANl BE
TF(T MDP1.L%.%C,) Ja¥1=EXF(-TEMIY)
’ ERTNRN
( eND

|
\
] :
RY :
S d :
“ i
o4 :
4 o
oo
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b
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SHUROUTING AINT(X,Y,7,AH,N)
NESLASTION X(Z30) .Y (25C),2 (250)
AQ=251./720,

A=636./720.

A2==244, /720,

23=10€6./720.

ré==13,/720.

2(1)=0.0

NAT=N+1

L0 1 I=1,%a7

IZI=I+¢N . §
T0=X(1I) ;
21=X(II-1)

T2=X(1I-2)

13=X(II-3)

TU=X(1I-b)

Z(I+1)=2 (1) ¢AH® (ROSTOSAISTI A28 2¢AIST IeAUSTY)

1 CONTINUE
FETURIN |
END .

i
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FUNCTION FUNT(X)
COMMON/WOW/CYDPLYS, SFTR,A

Ti=(X-4) *53Ta

T1=2XDP (~T1)

T2= (K+ih) 85T

T2=EXP (-T2)

T3I= 1, =ZXP (=2, %31 1; *4)

FUNT=CYPLUS® (=T14T2¢T3) / (2, sRETASEETA)
TETHYY

END
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‘ |

: RONCTION FUN2(X) :
4 ‘ COMMON/WOH/CNPLUS,BETA, A : Y\
7 T1=EXP (-BETA¥ (X+A))

- . T2=EXP (BETA* (X=A)) % h
’ N T322.*EXP(-BETA%A) % i
. ( E FUN2=CNPLUS® (T1+4T2-T3) /(2. *BETA*BET)) , “_
l

A 1

i BETURN €.

END ‘&,oé : ;
.’ ; Pt
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1
SUBROUTINI GRL(EX, EDLUS, 3XC,CXC,D1UENS,IX,¥DL, Al) -
UIMENSION EX(25C),EDENS (259), BXC(25C), DIDENS (250), CXC (257) ,8 (287) 3
DINENSION D2DENS (230) ;
CALL DETS5(AH,:DENS,DTLENS,TX,TEP) ’
CALL DETS (AH,DVDLNS,D2DENS, IV, TER)
2=2.63412739E-3
) 822,81233%€-2
d C=.1533
§ 50 1 I=1,TX
1 T=EDENS (T)
. S{I)=(C-b.+2.~B¥ (T3 #(=2./3.)))/(3.%T)
® CAC(I) =A% (T*% (C/3.) ) *LXD (~2% (Tw% (=2,/3.)))
T1=DIDEHS (I) *DIBEES (T)
T2=L2DLNS (I)
T3=CXC(T) /(T¥*¥ (t./3.))
BYC (I) ==T3% (2.&T2+5 (I) #T1)
1 CONTINUE
2 CONTIHUE
RETURN
END
?
}l -r::‘ﬂg :
b
W %
o |
'T-
)
1
;
)
oy
i A
R
i
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5
j
&

FUkSlIng v2(VY)
oTws NOYTEUT Y a2y, (10 2) LD (D)
DIMENEION a(172) ,5(102),o0102) ,0(1C)
IZNTRY = 1

50 T 1%

FEATLY SoLINT(Y,Y,n,50,3%,) wom ’ 11
DIMENSTIOY L(1),Y (1) ,0Y(1"2)
KY = - ) :

(.O ™ (‘D,S) ,J

s

§ BE1) = 1.0
C(l) = 0,0
u(l) = RO
A QW) = 0.0
agN) = 1.0
DN} = 3N
G0 TO &
& B(1) = 2.0
c(1) = 1.¢C
DY) = 3.0%(Y(2) =T (D) Z7{X{2Y =X { 1)) =CoS* (X (2) =X (1)) *RC
A(NY = 1.0
L BIN) = 2.0 E
| UAN) = 3,0% (V) =Y (X)) 7 (X (NY =X (NT)) 40.5% (C(N) =X (NT1))ywpy ]
| £ DY 1 1=2,8) ;
! A(T) = X(I+1)~X(D)
l ¢ B(I) = 2.0% (X(T+N)-X(I-1))
| C(L) = Y(I)~Y(I-1)
| _ T D(I) = 3 0% (Y(TeY *T(I)rbe2¢Y(I)*(A(T)*2~C(I)v®2) =V (T-1)23()*"2)/~
b ® (C(I)*A(I))
) PN DY) = D(1)y/B (1)
e DO 2 I=2,% ) L E
] B(I) = BAI)-A(I)}sC(L-1)/R(I-1) %
~ 2 D(I) = (D(I)=&(1)*D(T=~1))/B(T) .
DY (X} = D(N) |
Do 3 I=1,N1
K = N~-I
, 3 DY(K) = D(K)~-C(K)=DY (K1) /R (K)
: A(1) = () =-X{1)
: DO 8 I=1,N1
) D(I) = (2.0%Y(TI)=2.08Y(L#1) ¢A(T)*DY(I)+2(X)*#DY (I+1)) /A(T) **3
| . C(I) = (=3.0%Y(I)+2.CHY(Ie1) =2 IXA(I) *DY (T) ~A (I)*DY (I41)) /A (T) %*2
klﬁz E(I) = DY (I)
L, A(D) = YD) +X(I)*(=23(I1) +X{D) *(T(T)~X(D)*D{I)))
A . BE(I) = S(I)0X(I)‘(-2‘.'C(I)0X(;)'3 NED(T))
ot B C{T) = C(I)=3.0=D{I)*X(I)
3 ' DO 4500 I=1,%
; R1(I)=A(])
X B1(I)=0(T)
C1(I)=C(I)
S D1(I)=D(I)
[ 4500 COMTINUE
! GO TO 20
ENTEY DF(X1)

IENTRY = 2
IF(XT1.LT.¥(1)) REITE (#,201)

-
T

i s il i A e
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T

DO 16 I=2,N
K = I-1
TE(X1.LE.X(T)) GO TO (17,18),I8NDry
1€ CONTIYUR
WRITS (%,202)
GO TO (17,18) ,I"NIFRY
17 P2 = L(K) X V1* (R(K) +X 1% (Z(K) +X1*D(K)))
i G0 TO 20 |
i 1R F2 = 2(K) $X1%(2.0%C(K) ¢X1€3.0%D(K)) |
2C KETURN
201 FOEMAT(3€H w%JARNTNG®® X 3TLOW XMIN IN F OR DF )
202 FORMAT(EH **RABNING*® X ABOVE XMAX I¥ F 0397 ) |
ND

TR I TP

G . B

|
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SUTPHYLINS BRI (VLFT VRFTT, T, “D%, 14, N7, N6, Y22, BIGETR)
DIMENSTUR VEUF(230) ,VIFA1(250) , 22 (250 ,N(2) , 4?0 (25N
, Xs6.
e KIRFER=0,
D0 1 I=50,4DL

. TEMTV=VIFC(I) ~VERF (1)

i ; TEMPI=AES (TEVPT)

| £F (L) =T&MPI*T2YED |
WRO (I)=TENP1 ,
X=X +TLMDI¥TFMP ‘
IF(I.GT.50) D(1)=SQFT (ER(1-1))
TF(D(1) ¢ GE.ETGITPR) BYZHEZ=N(1)
U(2)=TEMEY
IF(D(2) «GTLRISILF) M=T ‘
IF (U(2) .GT.BIGEYR) BRISKEFR=D(2)

1 .CMNTINVE
E=FLOAT (MDL-52)
STDLF i=30KT (Y/F)
WRlTE(6,2) STINERD,BIGERD,™

2 POSMAD (M ,AH 3TDERE=,716.7,EH 3IGEPR=,E18,7,3H 4=,13)
IF (HM.M2.K3) GO TO o
Lo & I=1,%0L
WRO (T) =ABS(VESF(I)-VEFPI(I))

€ CCNTINU:

WRITZ(5,5) “CL

LP=0

NF=NF+1

KMAX=5% NF

9 KINT=KMaX~4

IF (KTNT.GE. MAX2) 30 TC 4

KMIN=KNAX=-4

IF(NFeQ.1) wri=1

IF(NF.GT.1) KG=KYIY

i M

T TR T T T T TN T
-
in
(¢ ]

e gagi el o

A WRTTE (€,151) KG, (WRO(I) ,I=KATY,KAAK) . :

L 151 FORMAT(1H ,13,5(C16.7))

: G0 70 155
4 CONIIMUE -
5 FORMAT (14 ,2%,5KWDL= ,13) e

. RETURN -

- LD

b

]

F

k

!

AT

e
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I
10GON FSRRANTE,,, 1800
FTHNLIB
PDEFP PTO6F001,VS,BDGAR,63T=T
DDEF FTO7P001,VS,PCTE1
DDEF FT71F001,VS,VFFFé
DDEFP FT72F001,VS,SNELE, RET=T
BIAD
PRINT EDGAR,PRTSP=EDIT,ERASEsY
_§* PECAT VEFF6,POTEN
’ PUNCH POTE1
PUNCIl SNEDE
PUNCH POTE1
PUNCH SMEDE
} LOGOPF

)
b

| ORIGINAL PAGR Y
| _ Q& ROOR QUALITY

R ¥

IR Y ORI

oy

i
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APPENDIX IX

COMPONENTS OF BINDING ENERGY'

! This Appendix contains tables of the componeunts of the binding

energies for each material qu’éach separation used. All energies

<

are references to the iﬁfatomic units separation values at which

i ]
point the adhesiveﬁﬁﬁergy had essentiahly saturated. The following

: rd
defines the sygbbls.

8]
es

PS
NL

0 =g 40 +0 -~
u 05 0y 0~ Wint

C

Separation between slabs in atomic units
The kinetic energy in ergs[cmz_‘
The sum of the exchange and correlation ener-
gies in ergs/cm2
The sum of the electrostatic energy and Wint
. 2
in ergs/cm
The pseudopotential contribution to the energy

.jn"érgs/cmz

‘““The nonlocal contribiition to the energy in

ergs/cm2
The jellium contribution to the energy in
ergs/cm2

The total adhesive honding energy in ergn/cnz

Y
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4717.7
3882.4
3156.7
2506.9
1960.7
1175.5
597.9
. 270.1
65.0
-173.7
-560 9

o3
4915.5
4067.8
3347.0
2687.4
2140.8
1302.0

726.6

357.1

119.4

-132.3

-390 5
0

Oxc

Alu
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minum rg=2.07

-2850.4
-2470.4
-2122.3
-1812.7
-1531.9
-1093.3
-727.2
-486.4
-313.1
-87.0

Oxc
-2954.8
-2569.7
-2221.4
-1911.2
-1633.6
-1770.9

~813.8
~554.5
-366.4
-121.2
-23.8
-7.8

0

-5.22
27.6

Ges Ops
-1522.1 -1055.1
-1364.6 -762.2
-1183.8 -533.8

-972.4 -362.2

-792.1 -230.4

-483.1 -67.74

-231.3 | =9.30

-95.17 54.8

-3.54 64.0

74.5 57.6
84.7 38.5
12.5 5.0

0 0

Aluminum Nonlocal rg=2.07

Ces
-1618.
~1459.
-1274.
-1069.
-870.8
-534. 4
-285.1
-105.0

-1.3

108. 4

116.4

18.2

0

ops ou

9 ~1094.2 750.4
6 -800.7 331.3
2 -570,0 6l1.2
5 -394.3 «142.9
-259.7 =255.9
=-82.0 =347.7

i 2.5 =344.2

. 54.1 -287.7

6418 =240.9
68.9 -142.9
50.3 -72.0

6.7 -13-5
0 0

ou
753.4
340.4
"60.45
-127.9
-255.6
-345.8
-332.44
-297.0
-244.24
-151.9
-83.7
-14.8
0

~710
=714.7
-683.3
-640.5
~-593.8
-468..7
-353.4
-256.6
-187.7
-96.2
-6507
-9-8

6'1'-
-1075.9
-1084.7
-1037.0
=999.1
~925.8
~763.8
«~620.0
=468.3
-372.5
-229. 7
-113.9
-2696




0 4598.3  -2811.0 -1528.8 -1073.9 654.5  -312.2 -1127.6
0,25 3811.8 -2451.3 -1376.0  -782.4 268.7 -310.9  -1108.9
0.50 3134.5 -2118.5 -1200.3  -553.3  19.8 -307.0  -1044.7
0.75 2509.8 -1818.9 -1005.8  -377.7 -168.3  ~300.6 -993,2
1.0 1995.0 -1554.3 -818.4  -245.2 -272.6  =292,0 -915.0
2.0 667.1 -774.5 -264.5 11.2 -344.0  -300.6 -602.9
'i[i 3.0 87.0  -342.8 9.2 72.4 -239,2  -242.1 -358.2
: 5.0  -190.2 -8.5 120.2 $54.7 -78.0  -184.1 -113.7
10.0 -52.6 23. 22.0 7.0 -6.96  -89.4 -6.02
15.0 .0 0 0 0 0 (] 0
Zinc rg=2.30
<A a O Sxe Jas Ops v s+ ;
- 0 2835.1 -1993.6 -759.1 -557.9 183.1 -475.5 1
0.25 2339.5 -1740.1 -704.0 -426.9 -34.3 -531.6 |
, 0.50 1913.0 -1513.1 -625.5 -318.3 -176.4 -543.9 %
' . 0.75 1536.6 -1316.5 -527.3 -231.3 -273.3 -538.5 | 3
1.0 1203.3 -1121.8 +426.2 -160.6 -320.8 ~505.4 I ;
1.5 ©703.7 -807.8 -267.0 +63,7 ~366.1 -441.6 F
2.0 ©379.4 -579.7 +119.3 +12,51 -313.8 -332.1 ;
2.5 149.7 -392.5 ~44.4 119,  =284.2 - =267.4 f
3.0 24.1 -264.1 21.8 27.5 -216.7 ~190.7 E
4.0 -100.8 <100,2 50.3 37.9 -158.9 ~121.5 ;
i 5.0 -118.3 -32.0 66.6 21.2 -83.5 -62.6
‘ 10.0 -12.0 -13.2 3.7 .69 2.90 3.21 ¥
15.0 0 0 0 o 0

Koia o —anie
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Aluminum* r.=2.097238

< 95 Fxe Jés Ops oy %

0 4408.9 -2714.6 -1438.2 -1032.8 652.1 -776.7

0.25 3624.5 -2351.6 -1286.8 -741.9 270.0 ~756.2 ;
0.50 2950. 2 -2024.9 -1115.1 -516.8 14.3 ~706.6 i
0.75. 2340.6 -1731.6 -918.2 -347,5  -162.6 -656.7

1.0 1830.0 -1462.2 -774.0 -218,5  -278.1 -601,7

2,0 541.6 -693.2 -215,9 16.4  -339.6 -351.1

3.0 52.6 -305.4 -0.6 65.0  -204.8 -187.2

5.0 -136.1 -18.8 77.5 36.0 -76.9 ~41.0 .
10.0 -27.6 9.0 7.6 2.3 -10.9 -8.6
15.0 0 0 0 0 0 o

Aluminum* Nonlocal rg=2.097238

¢ o3 Skc  gés  Ops U oRiL oF

bt

P
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Zinc Nonlocal rg=2.3

a O e Tes Ps 1
0 2942.4 ~2045.3 -821.3 ~569.4 176.4
0.25 2446.8 ~1796.0 -766.1 ~441.4 -45.0
0,50 2014.5 -1564.6 -6%5.6 -335.3 -186.7
0.75 1623.2 -1356.0 ~584.9 ~248.8 -283.8
1.0 1288.8 -1167.0 -482.8 -178.5 -337.0
1.5 768.6 -848.5  -301.1 -80.5  -369.2
2.0 418.2 -606.8 ~153.8 -22.6 -336.6
2.5 177.2 ~412.8 -85.8 9.31 -282.4
3.0 =~25.3 =275.9 21.5 25.1  -227.7
4.0 -123.3 -107.2 84.9 37.7  -145.1
5.0 ~162.3 <17,7 94.8 28.8 -85.0
10.0 «10.0 4.2 11.5 3.00 -5.93
15.0 0o 0 0 0 0

! Zinc* rg=2.61389

[ : _

o O3 Oxe o%s OFs

0 1466.3 -1224.1 -475.2 -343.4
0.25 1202.3 -1070.1 -427.9 -=261.3
0.50 973.1 -928.3 -373.0 -}93;6

(f‘ 0.75 767.4 +802.4 ~310.7 -139;2

10 590. 2 -685.0 -250,7 -95.3

2.0 130.7 -337.9 -66,9 -:21
3.0 - =50.3 0 ¢ =-147.2 26.9 23.1
5.0 -111.4 -4.3 54.5 19.9
10.0 ~9.63 6.4 4.36 1.25
15.0 0 P 0 0

Zn* Nonlocal r;3%2.61389

Q. -F Oxc Ses Trs oU
0 1557.1 -1227.2 -516.7 -353.3 103.7
0.25 1289.1 -1123,2 ~469.3 -271.8 -205.1
0.5 1066.5 -985,1 -413.2 -204.9 -259.2
0.75 852.9 -854.3 -350.2 -149.7 -298.1
10 671.2 ~734,1 -287.1 ~105.0 -310. 6
2,0 187.7 -378.5 -88.6 «4.86 ~267.7
3.0 =24.6 -175.1 18.5 24,5 =177.8
5.0 -121.2 =2.00 63,7 23.2 ~59.2
10.0 -24.86 10.0 9.55 2.55 «5.32
15.0 0 0 0 0 0

Tl
"2600 3
-239.4
<236.7
-232.3
-226.3
-210.4
~190.7
-169.4
-144.8

~108.2 .

=74.6
-4.87
-0

99.9
~197.5
-255.3

. =292,2

-306.1

~262.4

-58.1
1.13

OnNec
-166.4
-165.8
-164.2
-161.5
-157.9
-135.9
"1081 0

"57 ) 1

-3.97
0

ST
-734
-795.2
-807.6
~798. 64
-765.9
-635.0"
-555.7
-408.5
-351.9
-179.2
-131.0

3.81

-576.5
-557.1
-521.4

 -484.9
~ -440.9

-273.9

¢ =147.5

-39.5
2.21

-756.5
~740.8
-700.8
-662.8
-613.0
-420.1
-26‘. .8

-92.8

6,75

e
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A e Al dai

g
| %
| |
i - 3
| Magnesium rg=2.65 §
. a Os Oxc Tes Sos 2V or i
, 0 1373.4 -1173.2 =450.1 -291,2 120.0 -541.0
i 0.25 i28.1 -1030.4 -404.8 =243.1 -210.8 ~550.1 ! i
- 0.50 913.3 -893.4 -352.3 ~199.6 -261.0 -531.9

0.75 721.2 ~774.7 -~293.2 ~161,4 -293.9 ~-508.1 ’ :
1.0 556.1 -663.2 =-235.9 -128.1 -303.7 -471.0 j
1.5 300.7 -481.3 -143.9 -75.8 -302.8 -400.1 g
2.0 122.9 -330.1 -61.9 -40.55 ~-257.2 ~309.6 § :
2.5 19.0 -229.8 ~16.4 =1743 -220.7 ~244.4 f v j
3.0 =48.9 -146.9 27.6 -8.58 ~164.6 -176.8 ? ;
4.0 ~100.6 -52.9 34.4 9.50 -112.7 -104.3 3
5.0 -107.9 0.117 46.9 5.38 -60.6 -55.5 ;
6.0 -87.8 17.3 28.3 6.9 -42.1 -35.3 ?:
10.0 -6.90 -0.235 4.20 .53 2.93 -2.41 :
15.0 0 0 0 0 0 0 ;
'3
Magnesium Nonlocal rg=2.65 ?
| §
o O3 Oxc Ces Sys &y SN T J
0 1460.3 -1225.4 -489.3 -282.9 124.,6 -159.8 -697.0 %
0.25 1209.4 ~1078.5 =444.1 -237.0 ~216.9 -159.2 -709.4 3
0{50 1001.9 -949.2 -391.6 -197.1 -267.6 -157.7 -693.8 ?
0,75 798.5 - =819.6 -331.2 -160.9 ~299.5 -155.2 -668.4 ;
1.0 633.7 ~711.4 -272.8 -129.3 -311.4 -151.7 -631.5 |
1.5 367.8 -527.1 -168.1 -80.9 -305.9 -142.5 -550.8 j
2.0 186.8 -379.7 -85.3 -45.6 -266.4  ~130.8 =-454.7 f
2.5 57.4 -262.8 -23.3 -23.1 -222.3 -117.9 -369.8 j
3,0  -25.0 -172.41 15.6 -8.97 -178.3 -104.2  -296.1 |
4.0 -97.8 -67.0 55.8 6.78 -107.1 ~-78.4 -179.8 |
5.0 -117.4 -2.9 57.2 8.44 -62.3 -55.4 -109.5 :
6.0 -110.4 22.9 52.8 9.11 -34.3 -38.0 «63.3 f
10.0 -23.15 1.9 7.60 1.47 -13.7 -3.92 -16.2
15.0 0 0 0 0 0 0 0

<




T T ge——

g o Os
1’ 0 1059.7
; 0.25 868.9
{ 0.50 704.1
; 0.75 554.3
1.0 424.9
2.0 87.23
3.0 -S4, 4
5.0 ~98.6
10.0 -23.5
15.0 0
% as
0 1112.7
‘ 0.25 921.7
” 0.50 753.7
{ 0.75 600.5
' 1.0 469.2
: 2.0 116.2
; 3.0 ~53.6
{ 5.0 ~124.4
10.0 ~42.0
15.0 0
a o
0! 144.3
0.25 108.7
0,50 83.8
0.75 57.6
1.0 35.6
2.0 -26.9
3.10 —43.‘0
$.0 ~46.4
10- 0 '6- 5
15.0 o

S T RN TR RS e
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Magnesium rg=2.78926

Oxc
-985.3
-866.6
-757.4
~659.6
-293.6
-132.4

-2.99

6.34
0

Magnesium rg=2.78926

Oxc
-1025.7
-907.7
«795.4
~694.9
"6030.3

' -320,2

-1509
‘5.0
-302

0

-2§7.a
~228.4
=200.4
-174.1
-151,0
-7“-r0
-350 1
3.72
1.32

Ses
-356.9
-320.8
"‘279- 3
—233.2
-187.7

-50.54

25.1

38.7
1.90
0

Sodium rg=3.99

Ges
-77.3
-69.1
-60. 4
-5:1. 3
~42.1
“13. 2

5.4
12.4
1.87

0

Ops U Or i
~274.9 173 -557.5 :
-217.6 ~236. . =536.2 5
-169.1 ~270.6 -501,6 5 -
-128.8 -291.9 -476.2 i .
-95.4 -294.7 =425, ! 3
«16.2 -245.7 -273.1
9.32 ~161.4 =155.6 :
12.7 -62.8 -50,2 3
.92 -15.2 -14.3 :
0 "0 0
SU She o7 ;
191.6 ~137.5 ~716.7 ;
-255.6 -137.1  -697.0 i
-289.9 -135.8 -661.6 ;
-310.6 -133.8 ~625.2 |
-315.3 -131.0 -582.4 1
-26501 -113-7 -410.3
.6 -184.4 -91.5 -269.8
.2 ~76.6 -49.6 -110.3
.1 -30.1 ~3,60 -31.6
0 0 0
Sos oo ST
-38.2 -157.5 -228.6
-36.3 ~160:4 -223.0
-34.3 =156.1 -211.3
=32.1 "=151.2 -199.9
-29.8 «144.3 ~-187.4
-21.0 -108.9 -131.1
~15.3 ~76.1 -93.4
-6.7 -29.9 -36.9
-045 -39 31 "3078
0 0 0

3
1

r AR i
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: e
l ¥ * Sodium Nonlocal rg=3.99
f A @ Cs Oxc Ois s % om. o7
| i 0 169.8 -279.4 -82.8 -34.9 -159.5 -45.7 -273.1
n : 0.25 137.8 -251.3 -74.8 -33.4 -162.1 -45.6  -267.4
f 1 0.50  109.8 -223.2 -66.1 -31.7 -158.6 ~45.4  =256.6
: : 0.75  83.6 -198.7 -56.9 ~29.8 -155.4 ~44.9  -246.6
: & 1.0 60.3 -173.5 -47.6 -28.0  -147.6  ~-44.2  -233.1
: 1 2.0 -5.86 -95.5 -16.20  -20.5  -112.3 -40.0  -178.0
: 3.0 -42.6 ~  -40.6 3,91 -15.1 -77.2 ° -33.9  -128.3
g 5.0  -4b.4 ~4.2 15. -6.9 -32.7 -20.7 -60. 6
: 10.0 -15.0 10.8 3.18 -0.5 -1.02 -1.87 -3.39
: 15.0 0 o 0 0 0 0 0
' ,
: Sodium* rg=3.88127 ,
% > Ss Tnc Ges Gys 0o oF
i ) 170.1  -289.9 -84.4 -38.0 -168. 4 -242.2
: 0.25  131.7 -258.8 -75.2 -38.3 -173.2 -239.8
: 0.50  100.2 -225.5 -65.8 -37.9 -168.7 -229.0
A 0.75 70.1 -196.0  -55.7 -36.9 -163.9 -218.5 E
« A 1.0 44.6 -170.3  -45.5 -35.5 -157.2 -206.8
i 2.0 -25.9 -86.0  -13.3 -27.7 -119.7 -152.9 1
: 3.0 -52.5 -40.0 6.48 -21.5 -84.0 -107.6
£ 5.0  -50.3 2.49 13.8 -10.0 -33.7 -44.1
‘ 10.0 -8.54 2.04 1.74 -0.66 ~4.75 -5.42
i 15.0 0 0 0 0 0 0 ,
% : k:
i
iﬁ 1 Sodium* Nonlocal rg=3.88127
:,’ .
§ 5
i i * O Cuc Oe O7s oy o Or f ,
Kid] : 0 199.3  ~312.2 925 <328  -169.6  -50.0  -288.1 : g
! . 0.25 162.1  -279.4 -83.5 -33.5  -172.4 -49.9  -284.1 ; :
Lo 0.50 128.8  -247.6 -73.8  -33.3  -170.1  -49.5  -275.4 § 1
- i 0.75 97.8  -217.3 -63.2  -33.1  -165.0 -49.0  -264.8 g
£ 1.0 71.3  -190.6 -52.8  -32.2  ~158.2  -48.3  -252.8
: 2.0 -4.70 -103.6  -17.5 =-26.3  =120.4  -43.5  -195.7
‘ i 3.0 -40.5  -51.9 4.6 =-21.0  -85.7  -36.8  -145.5
: i 5.0 -523.0 1.54 17.4  =10.4 -33.4  -22.2 -66.3
: 10.0 -12.9 5.73 3.41  -0.89  -3,71  -2.00 -6.60 . 3
g 15.0 0 0 0 0 0 0 0 ;
f
2 W
¢
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APPENDIX X
SELF~CONSISTENT POTENTIALS AND DENSITIES

In this Appendix the self-consistent potentials and densities
a*e‘listed in order of increasing L values. Each element is
treated as a section. The ordering is LDA followed by nonlocal

values. The superscript + indicates self-consistent densities

obtained by minimizing the cohesive energy. Each element is pre-

sented in order of incregsing\separation. The first entry is the
i

first point at the computational space-bulk boundary. The =x-values
are readily obtained knowing the x-value of the first entry and
the mesh spacing whicli are included in the following table. The

symmetry point is readily recognized as the minimum in the density

or the maximum in the potential. Each listing contains a few en-

tries past the symmetry point. The maximum number of separations

were calculated for Mg in order to Separate Force Curves.
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<p
ah Separation, x-value of Mesh size, Entry of sym-
i au first au metry point
’ entry, ’
H au
} 0.25 -15.0 0.125 121
e 50 -15.0 .25 61
3 .75 -15.125 .125 122 ‘
; 1.0 ~15.25 .25 62. |
y 1.5 -20.75 .25 e 84 J
: 2.0 -15.75" .25 64 |
i 2.5 -21.5 .25 87 é
. 3.0 -21.5 .25 87
4.0 -22,25 .25 90
5.0 -22.25 .25 90
6.0 -25.0 .25 101
10.0 -25.0 .25 101
15.0 -27.5 .25 111

r
E(A‘
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redir pote?

LOADING
REKEYED
EDIT
99

onoo1nn
onnna20n
nonn3nn
0onon4nn
0000500
eNn0A00D
0000700
nonosono
anonann
00601000
0001190
onc1200
oon1300
annl4on
non1s5non
0nn16ENn
onn17n0
non1e00
n00i 20N
ann2000
0002100
ann2200
anon230n
nnnN240n
fon250n

POTR2

AL LDA a=025

DENS

TOP RECORD

0.2691270RF=01
N,269129508=-01
N.26916128R=-01
0.26919544R-01
0.26919156%-01
0.269144407=01
0.26910007E=01
0.269119147-01
0.26919331t-01
0.26923835E-01
N0.260919041%=N1
0.26909515E=-01
0.269083607=01
0.26920R77F=01
0.726933812F-01
N.2602616A0T=01
0.26806294E=-01
0.26R74297F-01
0.268016978=01
0.7691°380F=01
N.26224001%=0N1
N.26429903L=01
N.25664750T=01
0.247459377=N1
N.2425%422F=01

0.269172525E-0]
N.26913393%-01
0.26916951E~01
0.26919860E-01
0.26918478E-01
0.26913334E=01
0.26909757E=-01
0.26913159E=-01
0.26920751E=01
0.26923683E-01
N.26917148F=01
0.26908219E-01
N.26909R899T =01
0.26924156E=-01
0.26934419% =01
0.26921414F-01
N.26889024F <01
0.268742°1F=N1
0.26899002R =01

0.26914028T-01

0.26774235F7=-01
N.263N4714%-01
N.254797718=01
N.245R9259F =01
N.242272800F=N1

ORIGINAL PAGE |8

DE POOR QUALITY.

N.26912440E-01
N,2691394R2F =01
0.269177272R =01
0.269199687-01
N0.26917633T=01
0.26912276E-01
0.269098]1 3E=-01
0.26914582E=01
0.26921999E-01
0.26923094T-01
N0.26915103F=-01
0.26907388r~01
0.26912056E~-01
N.26927274F=01
N.26934035E-01
N.26915R04F=01
0,268R4202% =01
N0.26R76125FR=01
0.26906323F=01
N.2690535NF =01
N.267108537=0N1
N.7261642677=N1
0.725290940% =01
N.24455283IT=01
0.24350792E-01

N.26912481E-01
N.26914626T.~-01
0.2691R4417 =01
0.26919913F=01
0.26916634E-01
0.26911311F-01
0.26910201E-01
0.26916131F=-01
0.26922952F=-01
0.26922088F =01
0.26913065r=01
0.26907105R=-01
0.26914667m=01
0.26930064F =01
0.26932530F-01
0.269N09564E-01
0.26R794R9F =01
0.26879810E-01
0.26912753%=-01
0.26888050T-01
0.266327R6N =01
0.26009571E=01
0.25102392F =01
0.24350792E=01
0.244552%3F =01

0.26912633E-01
0.26915342FE-01
N.26919067 =01
0.26919633E-01
0.26915558E~01
0.26910547E-01
N.26910012E-01
0.26917756K-01
0.26923593E-01
0.26920740FE=01
0.26911177E-01
0.26907414F~01
0.26917:55F=01
0.26932205E-01
0.26929896F-01
0.269N2962E =01
N.2A876ANRRE-01]
N.26R85118E-01
0.26917178F =01
N.26R861444%-01
0.26539274F =01
0.25R42309E-01
N,.24012059K-01
N.24282809E-01
N.245892507-n]

AP s

row

q
redit potel
LOADTING POTE]
PPREYFD
ERIT
po°

TOAP RECORD
0nNN10N=N,4207%472F
ANN02N0=N, 420004 T4E
noNeINN-N, 42981 291F
0AON400-N,42000] 52"
anNnNNsSNN-0,429703073"
fONNANND , 420]NA2 T
ADRNTINOSN 420704 43T,
nNNaNpON-n, 420700701
ANNNANNLN, 420901 34T
ooaIONNan 4000201
NANLLINNN, L204NSAT
(!_hﬁ"ﬂ‘\f‘-(‘. ‘:’_00""101‘,
LUGIS LUV LES EARE
ANNLADNSD ,AD0R]732F
ANNLENN.N, 42082 €97T
ANNLANNN L2087 74T
NNNLI7INNaN, L2077 4577
200100020, 420657208
ANDLIONALA, 42N IRAKTT
onaaNnNLnN, 429343107
ANNILINLN, A2R4KaN4 T
DANIIANLN AR 4LFET
AAN3INNLN,AONN]QS5T"
NONIANNLN  ANETOORLT
nON2SNN-N, 3081 11208

VEFF

NN=0,42979503F
NND=N,420R]1 K06
NN=0.4208]505F
NO=DLA29RN242T,
NN=N, 420000307
0N=N,429R] 440T
NN=0,42070191F
NN 47070957%,
NA-0,4200030]T
NN=N.470010217T,
NN=N,420°3405p
NNanN, 470025707
NMN=N 42081722
ANaN, 4200] 845
NNaB 420027277
Af-n,A7a0] 2007
NN, 42075704 T
NPaN 420G4125"
AN ATNSARI4T
A0aN,47027777T
ARG AP LN
AN 4284754 °
NN 4100NNT4KT
ANaA, ANTANORIT
NN=0,3P017]170"

0N=N, 429794377
NN=N,4298]1 70RF.
NN=N,A4208NKIST
NN=N,42079062F
NN=N, A20RNA4LT
00=N,A20R]10941%
Nh=N,42079032"7
NN=N, 420704737
NN=N,472080370F
NNaN 42082364
fhan, 4200722207
NN=n, 420097997
NNanN, 429814797
NN, I.:N‘!Pgnlﬁr
NN=N, 420P20%,4T
NN=N, 4200 14T
NNen, 42073709
NNl A2NA]LSSAT,
AMMNeN 4794 762FTF
ANan, 420100207
ANN, 42804742
ANeN A244402 T
AN 41570757
NN=N,200n3700"
NN=N, 30425841

NN=N, 429P0540T
00=0,420R194]1%
NN=N.42080045T
NN=N,42978Q78E
NN=N,420790974F,
0N=0.42981476AF
NNaN,42072084F
0N=N, 42079717
N0=0.,47020373F
NN_N, AL20026T74E
NNaN, 47200210737
NP APORD1 707
NN=N 4200816017
ANaN, 470029077
AN=N,420p20%20aFR
NNaN AN D AT
NNaN 47171857
Qﬂ_!\."ﬂ\_f‘cﬂ“\‘
=N A2 4DSOF
AN AR0087007
AN A2780 "
NALA L2006
NN=N, A]13N0L 477
NNanN, 104285842
AN=N, 2009077001

00=0,420805047
00=0,42081029F
00-0,42079962F
N0=0,42079042F,
00-0,42000456F
00=0.42079%16F
00=0,42979000L
00-0,42070020%,
00=0,42981521%
00=0,420R4051]T
nO=N.42007040"
NA=0, 4200201 2F
00=N, 42001 R4RT
NN=N, 42082405F
NN=N, 420P26R0F
NP=N 470720247
NNaN, 420460291
NA=N, 420562757
ARLA, 429%0000T
fNan, 420004708
AN, 427021 04T
NPaN 421722797
Nhaf.41011%00T
NNen, 300171 70F
NNan 4nInarenr

0n
o0

on
on

nn
ne
0o
nn
on
nn
an
nn
nn
no
on
na
nn
nn
ne
an
an
nn
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redir ted
L:A.nn':o»:"qa AL LDA a=05>5
RTVEYEN
mp1T DENS
pao

nnnninn
onon200
oanninn
onpo4nn
nnnosnn
nnnnaNN
anonnINNn
ocnoenn
aennann
naninnn
anniLeo
oon1200
nor1130n
rar

1

O™ RECO™N

N.2601 4777 =N]
N.2A091773N0F=N1
N,260235071.N]
0.26904460NT=N]
N,2602%A4T="1]
N,26017037F N1
C,26P95367R<N]
N.260402R90F.N]
0.268772R427%<N]
N, 2RRANINSTaN]
N,26714230T=N]
N.2434°856A7=N1
fe217419427% =01

redit notel

ToADPTNG
RTYEVED
| 415 Sud
n90

POTES
VEFF

TOP RECORD

N.269]1 27607 N1
N,26021030F="1
N,2602N0032T=N]
N.,269N04551T -1
N,26020%9R87.N]
N.269N2] 48T =N]
N.26001775T=0N1
N.2604R60NF =01
N.2685N540F=N1
N.26910672F =01
N0.26472472F 0]
N.23647004% 0]
N.218064N9NT =01

0.26911974E=-01
N.,26923869T =01
N.269154R3F=N]
N.26007124F.=N1
N.2693041%7 0]
N.268097447=01
N.26915964F =01
N.26030A/12E=01
N.?68375012=01
N.2603N4 18T =N
0.26114963F=01
N.220441007<-01
N.22331°71E=0N1

0.269126528=01
0.26025504T=01
0.769107338=01
0,26911795E=01
N.260701967-0]
N.26R03795%-01
N.26020501F=01
N.26022006E=01
N.2683R0NAF=N]
0.26010931F=01
N.25636472R=01
N.7223311871%=01
0.229441001=-01

N.26914705E=-01
0.269255007-01
N.26906732F =01
N.26917715E=-01
N.26924513E=-01
0.2A892N21F=-0N1
0.26941650E=01
N.26898265E=01
0.26753193E-01
0.26856028F-01
0.,25045827E-01
N.21R96090F =01
N.23647904F-01

0 ND1TN-0.42076A800F
00NN200-0,42077029F
annnN30nN-n.42 5547
20004000, 42 ;5926L
00005SNN-N,42075271F
nNONNAKRNN=N, 42070070 .
00NN700-N. 42974287 .
NONORNN=N,. 4297794 1F
NONNONN-0,42974001F
fON1NN0-0,4293]1658F
0NN110N=0,42753R63F
nON12nN=0,40951037%
0NN130N<0.3516A734T

0N=0.42977315F
N00=0,42977124F
N0=0.42976439F
N0=N.4207602%F
00=0.,42075R70E
00=0.42978454F
0N=N.42907379%F
NN=N,42970592F
0N=0,42967R20F
00=N0.42020303F
NN=0,42620176F
NN=N,40N0AR42T.
nN=n,3557303n%

N0-0.42975879rF
NN=0,42077089F
00=9.,42977273E
NN=N.420750]4F,
NN=N,42977858"%.
00=0.,42077506T.
N0-0.42974007E
NN=N.420R0522F
NN=N,42950940FE
N0=N.42004K51F
0N=N, 42406666F
0N=-N,3R8930]1 1R%
NN=N.37602210F

N0=0.42976171TF
00=-N.42976665T.
N0=-0.42977995F
NN=N,42975408%
00-0.42978579F
N0=-0.42976379T
00=N.42074776F
NN=0,429%0313F
00=N.42950982"
00=0,42878020F
NN=N.420R]1749E
00-0.37602210F
00-0.32930118"

0N=N.42975825F
00=0,4297R036E
00=N,42976660F
00-N.42975301F%
00=0,42979294F
00-0,42075217E
00-0.42976224E
00-0.42978209F
00=0.42941546%
00-0.42R33465%
00=0.41609442T
0N-0.35573930%
00=0,400629427,

roe
a
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redit potef
LOADINE POTEG
REKEYED

EDIT

AL LDA a=075%
DENS.

p99

nnoo1an
0000200
0000300
oonnann
0000500
nonnaoNn
nnnnzoo
0n00nNen0n
npnnann
0001000
0nn1100
o00n1200
n0011300
0oN1400
0001500
0001600
non1700
0001800
oanieno
0002000
0np2100
0nn220n
nne2300
0on240n
00n25n00
EOF

"

TOP RECORD

N.269]1 1RSS5 =N
0.26907496T =01
0.26915759F <01
N.26928134T7 =01
0.26928589E-01
0.2691352nF<01
N.26899]122F=-N1
0.269N04564% 01
N.26927222F=01
N.26940603F =01
N.2A923474F=-01
N.26RO0NS580F-01
N.268R3744F =01
0.26922211T=01
0.26966430F=N]
N.26049760R =01
0.268620157T=01
0.267060A2F =01
0,2684947°7 =01
0.269438N3F=01
N.2A7N65N6F =01
N.25632P517=N1
0.23537274%=01
n.200000307.01
N.19402360T =01

redit note?

LOADINC
REEKEYED
EPIT
n99

POTE?

3

N.26910156T=01
N.269N0R1F3%=N1]
N.26918410T =01
N.26920587%-01
N.26926544T-01
N.26009843F=01
0.2689R302F=N1
N.290R342T7. =01
0.26931670F=N]
0.269307 AE=N]
0.260916073F=N1
0.26R8580R" =01
N.2688R%]195E-01
0.269327°3"=01
0.26069653F=0N]
N.269364K4F=0N1
N.726843809r-01
0.26795801%-01
0,26R727R4T =01
N.26939329F =01
N.26572667%=01
N.,252R0706F=-N]
0.23030836F =01
N.20550523T=N1
N.1035549PFE=0N1

N.2690R87031 N1
0.2690938]1F=-01
N,269211578=-01
N.26093N410E-01
0,2A0238R4F =01
0.26005371F=01
0.2A8083887T=01
N.26912719E=-01
0.26035425E=-N1
N.26937544E-01
0.76910041%=01
N,268R25298 =01
N.26R94569FE=-01
N.26943140F =01
N.26069RN2E =01
0.26920397% =01
0.26826534E-01
N.26R"01307E=01
C.26R06726F =01
N.26917834E=-01
N.2A4008NRE=N]
N.240N4%66%=01
0.22512072E=01
0.2N0151682T =01
N.1940P169T =01

0.26907846F.-01
N.26911102F =01
0.260237837=01
N.2693N548F=01
N.26920736E=-01
0.26903320F =01
0.268090502F-01
N.260174R7E=-01
0.2693R8297F-01
0.2A933904F-0N]
0.26903082E=-N1
0.2A88N968F =01
0.26902590F-01
N.269526137=01
0.26966508% N1
0.26902214E=-01
0.26R17166F=N1
0.2A2]12408T =01
N.2691°7138=01
N.268274863F =01
N.261RN1AF=N]
N.24481151F=01
N,210040]10E=-01
N.199]1R1467=0]
N.19565321E=01

N,2A007382F=01
0.26913267E=N1
0.26926164T=01
0,260299157-01
0.26917193%-01
0.269008227 =01
0.26901580F=N]
0.26922423R=01
N.26040081F=01
0.26920233F=-01
0.26R964667=01
N,26281133NF =01
n,26011052r-n]
0.26960567F=01
N,269590] 5FE=N"
N.26R82730T=01
N.26801709F=N1
0.26228R03F =01
N.26035611F=01
0.26RO5R874F =01
N.2503234AT =01
N.24023746F =01
N.21485450P =01
N.105651R1F=N]
N.19819146%=01

TOP RECORD
0NN0100=0,42072603F
000N200-0,42077610F
00N030N=0,42077643F
0000400-0,42070] 217
0000500=N, 42078004F
0000600=0,420723273F

= NOONTNO=0.42076RAAT

i NONNRNN-N,42075801F

/ 0000000-0,42077011%
: 0001000=0.42070878"

} -5 N0N1100=N, 420820547

] 0001200-0,420793427

0001300=0,42975163F

! 0001400=N,42974203T

N001500-0,42079306"

00N1A0N=0, 420841107

0001700=0,42075000F

00N01°20N-0,420499057T

NON100N=N,42012570F

NON2000=0, 422623267

NON21AN-0, 42604 N0NET

00N2200-0,420721678"

ANO2300-0, 403730277

0002400=0.367415677

NON"5N0=0, 113450467

rOw

00=-N,429779]1 1%
NN=0,420766R3F
00=0.42077387F
C0=N,42072507E
0N=0,42079360T
NO=0N,42072] NRE
NO=0,42076576T
00=0,42075074%
0N=0,4L2077422F,
00=0.42020373T
00=0.420P)1 70T
00=N, 42079571 F
00=0,A20745557
AN=N,47074008n
nnN-N.4298n450m
00=0,A20030941F
NN=N, 420720467
DNeN 420421 4°F
00=0.42004R79F
N0 A2044540F
ND=N,42A22530F
NN=N, 412501707
NN=N,30228259%
ND=N,3571R0O77F
NN=0,3121735¢e"

N0=0N0.42073424F,
N0=0,42976003T,
00=N,42978072E
0N=N.420786S56L
0N=0,4207R8537¢%
N0=0.42072030F
N0=N,42076427F
NN=N,42076052T
NN=N, 420777387
NN=N, A2N8NRSAT
00=0.42981139°F
00=N,42977625F
NNa0, L29741567
0N=N, 429757008
NN=N,4208]1927TF
NN=N,429R1]127"%
ANaN 420672427
NNaN A20T4024F
NN=N A2°0R4°ST
NNaB 42221187
ANaN, A2530173T
ONanN,41572015F
NNaN, 101279447
NP=N 34572560
NNN, 1145046

NN=0,42977977T
00=0,42°76400F
00N, 420778467
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