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1.1 

I. INTRODUCTION
 

This compendium is a record of NASA's propagation research to
 

the present, identifying specific objectives and accomplishments of the pro­

grams. The material is presented in a chronological format. Attention is
 

restricted to frequencies above 4 GHz, hence the discussion primarily concerns
 

wave propagation in the troposphere.
 

OVERVIEW OF PROGRAMS
 

For over a decade, the National Aeronautics and Space Administration
 

(NASA) has performed, and also supported through contractual agreements,
 

research in the field of radiowave propagation. The Goddard Space Flight Center
 

has been responsible for the implementation of these programs. Inview of
 

NASA's statutory obligation to provide advisory services in the area of satellite
 

communications (Ref. 1-1), the focus of NASA's propagation research has naturally
 

been directed toward the optimization of satellite communications systems. These
 
efforts, still ongoing, have included experiments ranging from radiometer and
 

radar measurements to monitoring of satellite beacons and have been complemented
 

with theoretical modeling. As has been noted elsewhere (Ref. 1-2, 1-3), the primary
 

goal of the program isthe development of experimentally verified methods for
 

predicting important propagation phenomena.
 

Initially At the request of the Director of Telecommunications Policy
 

a multi-agency committee was formed to prepare the United States position on
 

interference between satellite Earth stations and microwave relay links for
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the 1971 World Administrative Radio Conference (WARC). The committee included
 

representatives from NASA, the Department of Commerce, the Federal Communica­

tions Commission and the Office of Telecommunications Policy. The committee's
 

program objective was to acquire, analyze and disseminate space propagation
 

data pertaining to frequencies below 10 GHz for a user community of space systems
 

designers, operators, and regulatory agencies. To provide the space communi­

cations data, NASA implemented propagation and interference studies and experi­

ments.
 

Anticipating that similar information would be required for frequencies
 

above 10 GHz, NASA instituted communication link characterization studies
 

addressing both propagation and interference effects. The technical approach
 

was to obtain experimental data which complements analytical models. The ulti­

mate goal in each technical area is the establishment of experimentally confirmed
 

predictive procedures.
 

The current studies are being conducted as part of NASA's Technical
 

Consultation Services (TCS) Program. This program was initiated by the Inter­

agency Committee and has utilized the data base prepared for the 1971 WARC.
 

Within the TCS program, the propagation studies are being termed the millimeter
 

wave propagation and link characterization program.* The studies are being
 

done by universities, non-profit laboratories and NASA personnel.
 

The present time is appropriate for a summary review of NASA's propa­

gation research. First, recent results are brought together in a single docu­

ment with extensive references to additional data. Second, new designs in
 

satellite communications (broadcast satellites, public service communications
 

system, time division multiple access systems, frequency reuse by means of
 

orthogonal polarizations) should consider known propagation effects to assure
 

reliable operation. Third, a compendium of NASA's research may be useful for
 

assessing the scope and direction of future research, in light of the recent
 

report by the National Academy of Sciences Space Applications Board Committee
 

on Satellite Communications (Ref.1-5). This committee recommended substantial
 

* Many measurements made to date have been in the 10 to 30 GHz frequency range
 
which is usually termed the microwave regime. However, initially (Ref. 4) the
 
program was to extend to 100 GHz which is well into the millimeter wave region.
 
Thus, the name millimeter wave propagation program was assigned and has remained
 
with the program.
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1.2 

increases in NASA's research and development in the space communications field.
 

Finally, a summary of propagation study results can provide additional input
 

into NASA's preparations for the General World Administrative Radio Conference
 

in 1979.
 

SATELLITES USED FOR PROPAGATION RESEARCH
 

NASA's satellite millimeter wave propagation program began with the
 

propagation experiment that was developed for NASA's fifth Applications Tech­

nology Satellite (ATS-5). Design studies for this space-borne experiment
 

package were begun under NASA contract by Raytheon Corp. in 1964. These studies
 

, included detailed analyses (Refs.1-4, 1-6) of potential experiment configurations
 

and appropriate spacecraft orbits consistent with the goal of making measure­

ments to assist in the characterization of Earth-space communications links at
 

frequencies above 10 GHz. After further refinement, the ATS-5 propagation ex­

periment was configuredto include a 15.3-GHz downlink and a 31.65-GHz uplink
 

on a geostationary spacecraft. The two prime areas of investigation were to be
 

a comparison of signal effects versus meteorological data and a preliminary
 

channel correlation analysis (Ref. 1-7). Concurrent with the development of the
 

ATS-5 spacecraft, plans were made to institute 15.3-GHz receive capabilities
 

at various ground facilities in the U.S. and Canada, and complementary ground
 

measurements of meteorological conditions(e.g., with radiometers, radars, and
 

rain gauges) were implemented at various sites.
 

The ATS-5 satellite was launched in August 1969 from Cape Canaveral,
 

Florida, and was intended for geostationary 3-axis stabilized operation at
 

108 deg W longitude. Unfortunately, problems during the transfer orbit and
 

synchronous injection phases caused the satellite to spin at about 76 rev/min
 

at a final position of 105 deg W longitude. In spite of this spinning condition
 

the propagation experiment aboard ATS-5 was still able to yield significant
 
propagation information. The spin-modulated data format did of course eliminate
 

the possibility of continuous recordings of signal amplitude and phase, and
 

signal scintillations at frequencies above about 0.5 Hz could not be detected.
 

Reviews of the ATS-5 propagation experiment configuration, hardware, and some
 

results are available from Refs. 1-8 and 1-9. Further discussions of results are
 

provided in Section 3 of this compendium.
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Two space-borne propagation experiments were developed for the ATS-6
 

spacecraft which was successfully launched into a geostationary orbit at 94 deg
 

W longitude in May 1974 (Ref. 1-10, 1-11). These experiments were designed by
 

NASA and COMSAT Laboratories (Ref. 1-12). The NASA millimeter wave downlinks
 

were at 20 and 30 GHz and via cross-strapping permitted engineering analyses
 

at 4 GHz (downlink) and 6 GHz (uplink). The COMSAT experiment employed a
 

space-borne transponder with 18- and 13-GHz uplinks downconverted to a 4-GHz
 
downlink. This system design allowed multiple transmitters to be positioned
 

at 15 sites east of the Mississippi River. All the propagation data on the
 

4-GHz downlink was received at a central receiving and data acquisition site 
and could be uniformly processed at one site having extensive computer capabili­

ties. In later experiments, the 2-GHz transmitter installed on ATS-6 for the 

Tracking and Data Relay Experiment was also used in propagation studies (Ref. 1-13). 

Using the ATS-6 propagation experiment links, studies were performed
 

of rain attenuation, scintillations, depolarization, site diversity, coherence
 

bandwidth, and analog and digital communications techniques. During the move­

ments of ATS-6 from 94 deg W to 35 deg E longitude in June 1975, and back to
 

140 deg W in September of 1976, unique opportunities existed to study scintil­

lations at low elevation angles (Refs. 1-13 to 1-15). These direct measure­

ments of propagation parameters were augmented with ground measurements using
 

radar, radiometers, and rain gauges, so that rain attenuation predicted by
 

various experimenters will be presented in Section 3. It should be noted that
 

ATS-6 is still operational; however, no experiments are now being performed.
 

NASA also supports propagation research using signals from the joint
 
U.S.-Canadian Communications Technology Satellite (CTS), now called Hermes.
 

This satellite was designed and built in Ottawa, Canada at the Communications
 

Research Centre (CRC); NASA provided project management and a high-power 200-W
 

traveling wave tube amplifier and power supply. The CTS which employs a 14-GHz
 

uplink, a 12-GHz downlink and an 11.7-GHz beacon, was successfully launched
 

into a geostationary orbit at 116 deg W longitude in January of 1976. Various
 

NASA-supported researchers have monitored the 11.7-GHz beacon to investigate
 

attenuation, angle-of-arrival, depolarization, and phase and amplitude scintilla­

tions (Ref. 1-16).
 

Additional GSFC support is being provided to researchers using the
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recently launched COMSTAR satellite (Ref. 1-17). These satellites are part of
 

the American Telephone and Telegraph Company's domestic satellite system, but
 

include experimental beacons operating at 19.04 GHz and 28.56 GHz. The 19.04-


GHz beacon transmits orthogonal linear polarizations, switched at a 1-KHz rate,
 

while the higher frequency beacon transmits a single linear polarization. Three
 

COMSTAR satellites are planned, to be placed in tightly maintained (0.1 deg)
 

geosynchronous orbits spaced between 95 deg and 128 deg W longitude.
 

Two of the COMSTAR satellites, DI and D2 were launched on May 13 and
 

July 22, 1976, and have been positioned at 1280 and 950 W longitude, respectively
 

(Ref. 1-17). Both satellites contain beacons at 19.04 and 28.56 GHz. NASA funded
 

research efforts include measurements of attenuation, comparison of radar pre­

dictions of rain attenuation with actually observed attenuation and depolariza­

tion measurements utilizing these beacons.
 

A summary of the millimeter wave satellite programs Is shown versus
 

time in Figure 1.2-1. The ATS-6 satellite remains operational but no propaga­

tion experiments are being conducted with the satellite at this time. Active
 

propagation programs are underway with both the CTS and the two COMSTAR satellites,
 

while these satellites provide services to other users. A decided advantage
 

with these satellites, compared to the ATS series, is that the satellite beacons
 

are always available since no time sharing with other experiments is required.
 

Therefore, more accurate cumulative propagation statistics are expected to be
 

developed with these satellites.
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CALENDAR YEARSFREQUENCY
SATELLITE BANDS (GHz) 69 70 71 72 73_f74 75 76 77 

ATS-5 15,32 I 10Sow --. -

ATS-6 13,18, 20, 30 9W 

ATS-6 RETURN 13, 18, 20, 30 1400 W 

CTS 12,14 116 0 W 

COMSTARS 19, 18 128-950 W 

FIGURE 1.2-1. MILLIMETER WAVE SATELLITE PROGRAMS
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II. PROPAGATION DATA BASE
 

NASA has sponsored a program of experiments whose purpose is to
 

characterize the propagation of centimeter and millimeter signals along trans­

mission paths between satellites and ground stations. Supporting measurements
 

have also been made to correlate meteorological parameters (primarily rain
 

cell characteristics) with degradations in transmission. This research has
 

been performed both by NASA facilities and by university-affiliated laboratories
 

with long-term propagation programs. These university research groups include
 

the Applied Physics Laboratory of Johns Hopkins University, the ElectroScience
 

Laboratory of Ohio State University, the Electrical Engineering Research Labora­

tory of the University of Texas, the Electrical Engineering Department of Virginia
 

Polytechnic Institute and State University (VPI & SU) and the MIT Lincoln
 

Laboratory and Dept. of Meteorology. Additional work has been performed under
 

contracts with companies such as Raytheon (Sudbury, Mass.), Westinghouse (Baltimore,
 

Md.), Martin Marietta (Orlando, Fla.), COMSAT Laboratories (Clarksburg, Md.),
 

and a government laboratory, NRL. Other organizations, such as Bell Laboratories
 

(Holmdel, N.J.) and the Communications Research Centre (Ottawa, Canada), NELC,
 

ESSA Wave Propagation Laboratory, AFCRL, USA SATCOM Agency, Rome Air Development
 

Center, and Dept. of Transportation, have used NASA satellite signals in their
 

own propagation programs. The results of these investigations are recorded in
 

technical papers and reports under NASA sponsorship.
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To assist the reader in identifying the institutions and the associated
 

propagation research activities to date, a series of tables follow. These tables
 

are arranged to provide
 

* propagation phenomena versus institution and satellite,
 

S, propagation phenomena versus satellite system,
 

* propagation-related satellite characteristics versus satellite,
 

* propagation phenomena versus ground-based facilities.
 

These tables are intended to assist the reader in identifying the
 

source of the particular information desired and for reference to the appropriate
 

sections within this report, or the reference data base for more extensive infor­

mation. An effort has been made throughout this compendium to reference both
 

the original technical reports and open literature publications, where available.
 

An overall index of the propagation study areas cross referenced with
 
institution and satellite is given in Table 2.1. These study areas, relating
 

only to satellite-Earth links, are discussed in later sections of this compen­

dium as indicated. A review of this table indicates- 1) a majority of the
 

study areas have been performed by Ohio State, NASA (GSFC and Rosman), University
 

of Texas, and Virginia Polytechnic Institute and State University (VPI & SU);
 

2) the study areas of attenuation and site diversity contain the largest data
 

base.
 

Tables 2.2 through 2.4 delineate in more detail the propagation experi­

ments related to the four satellites ATS-5, ATS-6, CTS and COMSTAR. At this
 

time all of the ATS-6 studies have been completed. Experiments with ATS-6 are
 

continuing at a reduced level since the launch of CTS and the first two of three
 

COMSTAR satellites. The spinning of the ATS-5 satellite reduced the mission
 

objective to studies of the average attenuation and scintillations (on a limited
 

basis). In sharp contrast, the NASA and COMSAT-sponsored ATS-6 experiments
 

were highly productive and have yielded extensive data bases. At this time
 

work with the CTS is well underway and COMSTAR satellite measurements have
 

been underway for one year. Active programs with these satellites are ongoing
 

at three institutions.
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Investigator's 

Institution 


University of 

Texas 


Martin-
Marietta
 
(Orlando)
 

Ohio State 
University 


CRC 

(Ottawla) 

COMISAT 

Battelle PU1l 


VPI&SU 


NASA 
Rosman, N C 

NASA/GSFC 


APL 

IIestinghouse 

TABLE 2.1 

INDEX OF PROPAGATION STUDIES BY INSTITUTION AND SATELLITE 

Attenuation 
Scintillations 

(Sect 3 1) 

Video Site 
Communication Diversity 

(Sect 3 1) (Sect 3.2) 

Low Angle 
Scintillations 

and Fade 
(Sect 3.3) 

Depolarization 
(Sect 3.4) 

Angle of 
Arrival 

(Sect 3,5) 

Bandwidth 
Coherence 
(Sect 3.6) 

ATS-5 
ATS-6 

ATS-6 ATS-6 CTS 

ATS-5 

ATS-5 
CTS 
ATS-6 

ATS-5 
ATS-6 

ATS-6 CTS 

ATS-5 

ATS-5 ATS-6 ATS-6 

ATS-6 

ATS-6 
CTS 
COMSTAR 

ATS-5 
ATS-6 
CTS 
ATS-6 
CTS 

ATS-6 
COMSTAR 

ATS-6 

ATS-6 
CTS 

CTS ATS-6 

ATS-6 

ATS-6 

ATS-6 COMSTAR 
CTS 
ATS-6 

ATS-6 

AT%-6 



TABLE 2.2 

SUMMARY OF PROPAGATION EXPERIMENTS UTILIZING ATS-5 

Link Institution Geometry of Link 

Microwave 
Radiation 

Parameter(s) 

Ground 
Station 

Antenna(s) 

Experiment 

Data 

Ancillary
Meteorological 

Data Reference(s) 

ATS-5 to ground U of Texas at 
Austin 

540 elevation 
angle 

15 3 GHz Two 10 ft. para-
boloids at Austin, 
one 16 ft parabo-
loid at Fort Davis 

Attenuation Sky temperature 
at 35 Gllz, rain 
guages 

2-1 
2-3 
2-4 

ATS-5 to ground 

ATS-5 to ground 

ATS-5 to ground 

liartin-Marietta 
(Orlando, FL ) 

Ohio State U 
(ESL) 

Communications 
Research Center 
(Ottawa, Canada) 

480 elevation 
angle 

370 elevation 
angle 

300 elevation 
angle 

15 3 Gilz 

15 3 G6z 

15 3 GHz 

10 ft parabola 

30 ft fixed anten-
na, 15 ft mobile 
antenna 

30 ft paraboloid 

Fades Insig-
nals 

Diversity sta-
tistics, scin- 
tillations 

Attenuation 

Tipping bucket 
rain gauges 

15 5 GHz weath-
er radar rain 
guages 

Sky temperature 
radiometry, 2 86 
Gz radar back­
scatter 

2-2 

2-3 
2-4 
2-17 
2-18 

2-3 
2-4 

ATS-5 to ground COMSAT (Claiks-
burg, Md ) 

15.3 Giz 16 ft dish Attenuation Sky temperature, 
solar radiation 

2-3 
2-4 

Ground to 
ATS-5 and ATS-5 
to giound 

NASA/GSFC 
(at Rosman, N C ) 

31 65 Glz up-
link, 15 3 GHz 
downlink 

15 ft Cassegrain Uplink and Radiometers at 
downlink attenu- Ku and Ka bands 
ation Meteorologicalparameteis 

2-3 
2-4 



TABLE 2.3
 

SUMMARY OF PROPAGATION EXPERIMENTS UTILIZING ATS-6
 

Link Intititon Geoot, y of L int Paia.il r Slat n .[Ieti olo a 'ii i I 

P iae-er(e1 ,itmai 1(sl Data 

ATS-6 to Onound CCRIT 
(ClhisLuig, d ) 

420 ole%-FIon 
anglo 

20 61-
30 GI 

pit, 3 nid 5 r ,eS C,teili t' 
"Lten, 
m-OaSUlr. 

Sty radn tty 
at II 6, 21 and 
30 ?lZ 6 rln 
qauges aloig rath 

2-6 

ATS-6 to g, ound Satelle P13' 
(Richlant, I'nsh) 

30 clevation 
annle 

20 GI: 33 ft Cisseroin Attenuation Radionetty, 
100 n from 
antenna 

'-7 

ATS-6 to giound U of Teas 
Austin 

at 550 elevation 
angle, aso 
1 5 to £5 

30 ONa To 3 P orabo-
lod at Belcones,
1 5 r pareuolod
at Aastln 

Sit' ar" fie-
nuen', d t P '-
sit,, sc ntil­
faten 

Rdiorotrj 
£0 Ol'z 

at 2-8 
2-9 

ATS-b to ground VPI & SU 
(Blacksburg, Va ) 

450 elevation 
angle also 10- 9

0 
20 Ch, 4 ft dianeter 

dual lunch feed 
Depolarization 
and atter.aticn 

Rain and snoi 2-10 

ATS-S to ground CSFC.CO.AT. 
hRL, lestinghouse 

42 
° 

el0oaiol 
angie (40 at 
liestinghousef 
Baltimird) 

20 GPz (Wn) 
also 30 Viz at 
CO.-SATaid 
GSFC onlj 

IG ft Cas egain 
at GSFC 12 L 
paraboloid at 
testingnoJse 

Long ba ~liePain rate, also 
diversit', also 11 Gz sty ter­
sciiln' ,ons perature at C SAT 
and 20/3, Gz
lntensl - ratios 
at GSFC, 
Differential rade 
ac-oss v~deo band 

2-11 

at 'testinghouse 

ATS-6 to giound GSFC at Posman, 
bierthCarolina 

470 20 GFz and 
30 GHz (ClI:and 
mijltitone) 

4 7n dish at 
Posnan, [NC 

-tenuat on, Rain rate, radar 
20/30 Gz atten,-rain gauje net-
ation ratio, dif-worls 
ferentia phase 
scintillatlon 

2-11 
2-25 

ATS-6 to ground 
during reposi-
tioning of 
satellite 

OhlioState U 
(ESL) 

0 40 - 440 
elevation 
angles 

2 075 GHz and 
30 GHz 

4 &wCssegran 
antenna, 1 near 
polarization 

Scintillations 2-12 
2-13 

ATS-6 to ground Ohio State U 
(ESI) 

420 elevation 
angle 

20 Oit and 
30 GHz 

GSm Casseg-c n Diversit and 
Scintillations 

20 ard 30 Gz 
radiometry 

2-12 
2-13 

Ground to ATS-6 
to ground 

COASAT Uplinks from 13 2 and 17 8 
39 ground ter- GHz uplinks 
ninals in the 
Eastern U S to 4 GHz dcon-
ATS-6. dcinlink link 
to Andover, 
Maine (elevation 
angle of 33 60) 

4 GHZ horn 

32 5 dBl 
uprInk antennas 

lainstor- atten- Pain gaune 
uatlon corrcla- reasurc-cnts 
tion ove, a larqe at uplin 
geogranhic area stations 
site di ersity 

2-22 

Ground to ATS-6 
to ground 

COISAT 
(ClarksbJrg, .id 
and Friendship 
Airport (testing-
house), I' ) 

3 6
o 
- 140 

elevation 
angles 

13 2 Gilzuplin
t 

4 GHz doanlink 
Cz eorn 

1pll antennas 
greater than 
33 dI 

Low ele,-ticn 
scintillatinn 
data on return 
of ATS-6 fret 
Europe Tio 
Jplint stations 
for 1otr base­
lire sW- diver­
sity 

Rain gauge 
measure~ents 
at uplin? 
stations 

2-23 

Ground to ATS-6 
to ground 

APL 
(Wallops Island, 
Va 

42 30 
elevation 
angle 

13 2 and 
17 8 Gliz uplint
2 24 GHz radar 

32 S dOl 
antennas 

Correla - S-band 
radar re'urn 
with easurcd 
gruund-atcll e
Upllni , tilua 

-

tion 

Pain gauges 
and 
disdromter 

2- 4 
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TABLE 2.4
 

SUMMARY OF CURRENT PROPAGATION EXPERIMENTS UTILIZING CTS AND COMSTAR
 

Link Institution Geometry of Link 
Microwave 
Radiation 
Parameter(s) 

Ground 
Station 

Antenna(s) 
Experiment 

Data 

Ancillary 
Meteorological 

Data 
Reference(s) 

CTS to ground U of Texas 
at Austin 

49 40 
elevation 
angle 

11.7 GHz beacon, 
right-hand-cir-
cular polariza-
tion (RHCP) 

3 m parabolic 
dish with 
turnstile feed 

Attenuation, 
Cross-polari­
zation 

Rain rate 2-14 

CTS to ground VPI & SU 330 elevation 
angle 

11.7 GHz beacon, 
(RHCP) 

12 ft. parabola Attenuation, 
with dual pqlar- Cross-polari-
ized feed zation 

Rain, wind, 
temperature 

2-15 

CTS to ground Ohio State U. 
(ESL) 

32 70 elevation 
angle 

11.7 GHz beacon, 
(RHCP) 

Self-phased 
array with 
four 0.6 m 
dishes inone 

Angle of arrival 
attenuation, 
scintillation 

Rain rate 
20 Glz 
radiometer 

2-16 

meter square 

r 
n 

CTS to ground HIASA/Rosman, 
North Carolina 

360 elevation 
angle 

12 GHz video 
and tone down- 
links, 11 7 GHz 
beacon 

15 foot 
parabola 

TV experiment, 
propagation, 
EMI experiments 

Radars 
(3and 8 GHz) 
and rain gauges 

2-31 

Ground to CTS 
to ground 

NASA/GSFC 310 elevation 
angle 

14 25 GHz 
uplink
12 GHz downlink 
11 7 GHz beacon 

10 ft. parabola 
uplink,
15 ft. parabola
downlink 

TV experiments, 
attenuation 

Rain gauge 2-31 

COMSTAR to 
ground 

VPI & SU 44.20 elevation 
angle 

19.04 GHz and 
28.56 GHz linear 
polarization in 
two orthogonal 
directions 

I 

4 ft diameter Cross-
prime focus polarization, 
disk with scaler attenuation 
feed horn and 
orthomode 
transducer 

Rain, wind 
speed 

2-30 

COMSTAR to 
ground 

APL 41.60 elevation 
angle 

28.56 GHz Attenuation Rain gauge and 
disdrometer, 
S-band radar 

2-29 



These tables reference only experimental data. Papers of purely
 

theoretical nature, whether related to engineering or to socio-economic
 

benefits of satellite communication systems, are not included.
 

Since the satellite parameters define to some extent the types of
 

propagation experiments, Table 2.5 summarizes several of these key parameters.
 

All of these geostationary satellites are positioned to view the continental
 

U.S., however, ATS-6 provided a rare opportunity for studies of low angle fading
 

when itwas repositioned and then returned to 1400 W longitude. Additional
 

details of the satellite hardware are available in the references, but in
 

general the satellite beacon signals have been stable (except for the ATS-5
 

spin) and have provided signal plus noise-to-noise ratios in excess of 1OdB
 

except during high-fade periods at CONUS ground stations.
 

In addition to the Earth-space link measurements, additional experi­

ments were performed employing terrestrial links and radar diagnostics of rain
 

cells and rain gauge networks. These experiments, summarized in Table 2.6,
 

were carried out early in the link characterization experimental program. The
 

results of these studies are presented in Section 4 of this compendium. Analy­

tical and modeling studies performed inthis program are discussed in both
 

Sections III and IV.
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Satellite 


ATS-5 


ATS-6 


CTS 


COMSTAR 
(satellites O 

and 82) 

Launch Date 


8/12/69 


5/30/74 


1/17/76 


DI 5/13176 

D2 7/22/76
and 


TABLE 2.5
 

SATELLITE PARAMETERS RELATED TO PROPAGATION STUDIES
 

Satellite
 
Position Uplink Frequencies Oownlink Frequencies Antennas Reference(s)
 

Initially over 31 65 GHz with 15 3 Giz with side- Linearly polarized 2-3
 
Indian Ocean, sidebands at +1,+10, bands at 40.1, +1, conical horns with 2-4
 
drifted to 1080 W and +50 MHz from- +50 MHz ffom carrier 200 coverage and
 
longitude, remained carrTer 19 1 dB boresight
 
spinning at 76 rpm gain
 

940 W longitude COMSAT Exp COMSAT Exp. COMSAT EXP 2-5
 
13 19 - 13 2 6Hz 4 14 - 4 15 GHz Dual-frequency 2-11
for first year 


4 16 - 4.17 Gliz linearly polarized 2-22

then move to 350 E 17 74 - 17 8 GHz 
long and returned NASA/GSFC Exp dish 
to 1400 W 20 and 30 GHz NASA/GSFC6Exp0 0

8 sidetones 20 GHz x 9 horn00 Spaced ± 180 MHz 20 dish
 
30 Gllz similar to
 

above
 

1160 wj 14 0 - 14 5 Glz 11 7 GHz beacon 160 horn, RHCP for 2-28 
11 7 - 12 Z Giz beacon
 

DI 1280 W long Both satellites Both satellites
 
19 04 and 28 56 G11z Linearly polarized off- 2-29

long parabolic dishes
D2 95002)setW 

19 04 Glizswitched
 
between vertical and
 
horizontal polarization
 
28 56 Giz veltically
 
polarized
 



TABLE 2.6
 

SUMMARY OF PROPAGATION EXPERIMENTS UTILIZING TERRESTRIAL LINKS AND RADAR DIAGNOSTICS
 

Link Institution 


Ground-to- VPI 

ground 


Atmosphere to NRL 

ground (Waldorf, Md ) 


Ground-to- NASA/GSFC 

ground 


Rain radar APt at Wallops 

Island 


Rain radar MIT 


Ground
Station 

Antenna(s) 


4 ft diameter 

reflectors 


60 ft Casse-

grain 


1 2 parabo-
loid trans-
mi~ter, 40 
cm horn re­
ceiver 

2.7 - 2.9 GHz 

1, 2, or 5 , 
sec pulses with 
frequency dl-
versity 

2 8 GHz with 
1 5 " sec 

pulses 

9 4 GHz with 

2.0 or 0 5 

user pulses 


Experiment
Data 


Cross talk and 

direct attenu­
ation
 

Atmospheric e-

missions as a
 
function of ele­
vation angle
 

Amplitude fluc-

tuations and 

scintillations 


Statistics of 

rain cell sizes 

and spacings, De-

tailed structure 

of individual
 
rain cells
 

Rain cell dis-

tributions 

with high spa-

tial and tem-

poral resolu-

tion 


Ancillary Reference(s)

Meteorological
 

Data
 

Rain rate 2-19
 

2-20
 

Rain data 2-21
 
(5 tipping 
buckets)
 

Weather station 2-26
 
data, tipping

bucket measure­
ments
 

Flow meter and 2-27
 
tipping bucket
 
rain data with 30
 
sec time resolu­
tion of rain fall,
 
radiosondes from
 
3 nearest weather
 
stations
 

Geometry of Link 


1 43 km line of 

sight 


Elevation angles 

of 90, 60, 45, 

30, 20, 10, 75, 

3, 2, 1,0.5, 
0 2, and 0 0 de­
grees
 

4 6km path 

length 


Within a 280 km 

diameter circle 

centered at 

Wallops Island 

20 elevation 

angle used to lo-

cate rain cells
 

Construction of 


Microwave
Radiation 

Parameter(s) 


17 65 GHz, line-

ar polarization, 

T 450 from verti-

cal
 

15 3 Gllz 

15 GHz, ver-

tical polari-

zation 


60 ft antenna, 

raster scanned 

across rain 

cells 


30 beamwidth @
3-dimensional pro- 2 8 Glz 

files of rain 10 beamwidth @ 

scattering Inten-

sities 9 4 GHz 
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3.1 

III. PROPAGATION RESEARCH USING
 
SATELLITE LINKS
 

ATTENUATION
 

The quality of an Earth-space communication system can be degraded by
 

the presence of attenuation in the troposphere. This attenuation is caused
 

principally by rain and can be accepted in most communications systems
 
because of the low percentages of time in which heavy rain occurs in the U.S.
 

The long-term prediction of fade events can only be done statistically.
 

Therefore, utilization of alternate links along lower attenuation paths must
 
be preplanned (site diversity). Alternatively, the system design could choose
 

to maintain the link margin by increased power levels, but this "brute force"
 

solution is frequently costly and consumes large amounts of satellite
 

platform resources.
 

These system design considerations have been one of the prime
 

motivating factors for propagation investigators to spend a significant amount
 

of time evaluating the magnitudes and frequency of tropospheric attenuation
 

events on Earth-to-space paths. Models and diagnostic procedures (radiometers
 

and radars) for the measurement of rain attenuation have been developed and
 

will be discussed in Section IV of this compendium. In this section, the
 

experimental attenuation measurements will be presented. The measurements
 
will primarily deal with the ATS-5 and ATS-6 satellites, since they cover the
 

13.2 to 30 GHz frequency range and their data bases are sufficiently large to
 
provide meaningful statistics. Measurements with the CTS and COMSTAR
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satellites are now ongoing at several NASA installations and NASA-sponsored
 

institutions. In future years these satellites will provide additional
 

attenuation data bases.
 

3.1.1 Rain Attenuation
 

Attenuation for millimeter wave Earth-space communications links is
 
caused by precipitation (hydrometeors). The magnitudes and durations of
 

these effects depend on local storm properties. Inprinciple, these can be
 

characterized for large regions using long-term statistical samples. The
 
demonstration of this direct approach is the basis for the experimental
 

program.
 

Connection of the radio communication data to meteorological effects
 

has been approached through several empirical relationships. The primary
 

experimental measurements of rain attenuation A have been to­
a) 	evaluate the coefficients a and b in the empirical
 

relationship (Ref. 3.1-1)
 

a Rb
A (dB/km) = 


where R is the rain rate, in mm/hr.
 

b) determine an effective rain path length L so that the
 

product (AL) yields the total attenuation. The effective
 

L considers the effects of uniform dispersed rain and rain
 

cell 	structures.
 

c) 	determine the frequency scaling ratio for attenuation,
 

i.e.,
 

Af c fd
 

AfA
 

where c and d are frequency dependent constants and Af and
 
Af2 are the attenuations per kilometer at frequencies fI and f2.
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d) determine the cumulative distributions of the rain attenuation
 

events over a significant period of time for a variety of
 

geographical sites, e g., worst month and annual statistics being the
 

more useful time periods of presentation.
 

Early measurements of the attenuation versus rain gauge rates (Ref.
 

3.1-2) indicated a poor correlation to the relation A = a Rb. However, these
 
rain measurements are the most readily available from the Weather Service and
 

techniques for interpreting the time-retarded readings of several rain gauges
 

along the satellite ground track have been developed (Ref. 3.1-3). Therefore,
 
theoretical estimates and measurements of A and AL have been made at various
 

institutions. Some typical results (A in dB/km, L in km, R inmm/hr) are
 

given in Table 3 1-1 for the frequencies of ATS-5 and -6 and CTS. Theoretical
 

calculations of the frequency parameters a and b are shown in Figures 3.1-1
 
and -2 (Ref. 3.1-4). Additional calculations of the a and b parameters are
 

now being prepared for publication (Ref. 3.1-7).
 

One difficult parameter inmeasuring A is knowing the path length L
 

through the precipitating media. Frequently, L has been estimated from rain
 

gauge measurements (Ref. 3.1-4) and has been found to vary significantly with,
 

among other parameters, the rain rate. The curves generated from ATS-5
 

(Ref. 3.1-2) are shown in Figure 3.1-3. Also shown in this figure are four
 

storms (labelled 1 through 4) observed at Rosman, North Carolina in 1971.
 

These are to be compared with the CY 1970 data which averages all tRe Rosman
 

aata (12,581 minutes) during 1970. The COMSAT plot was obtained from a combina­

tion of radiometer and direct measurements. Inaddition, the sun tracker data of
 

Evans (Ref. 3.1-8) is shown. These curves do describe the generally accepted
 

model of thunderstorms with intense rain cells of limited extent and lighter,
 

more evenly distributed rain events.
 
It is useful to scale experimental results for rain attenuation
 

available at one frequency to another frequency in order to estimate system
 

performance through the same rainfall. This scaling is usually accomplished
 

using the relations for frequencies f, and f2
 

A2L -a2 R (b2-b1) a2
 

A1L a1 a1
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TABLE 3.1-1
 

THEORETICAL ESTIMATES AND MEASUREMENTS OF A AND AL
 

RESULT FREQUENCY MEASUREMENT LOCATION/PERIOD REFERENCE 

A = 0.035 R 1.155 15.3 GHz Predicted values for a and b 3.1-4 

A = 0.2 R 1.0 31.65 GHz Predicted values for a and b 3.1-4 

AL = 2.365 R 0.3663 15.3 GHz Rosman, N.C., 210 hr avg during 1970 3.1-5 & 6 

A = 0.0687 R 1.1 20 GF}z Predicted values for a and b 3.1-7 

A = 0.1649 R 1.035 30 GHz Predicted values for a and b 3.1-7 

A = 0.0159 R 1 25 11 GHz Predicted values for a and b 3.1-11 

AL = 0.1339 R 1.1006 11.7 GHz Rosman, N.C., nearest bucket, 3.1-11 
data from one-year period 

AL = 0.1639 R 1.1081 11.7 GHz Rosman, N.C., ground average rain 3.1-11 
rate, data from one year period 

AL = 0.5843 R 0.7863 11.7 GHz Greenbelt, MD, data from one year 3.1-11 
period 



00$ 

011$ 35
 

O005
 

FREWEIRX 31 C . 

FIGURE 3.1-1. PARAMETER "a"AS A FUNCTION OF FREQUENCY (Ref. 3.1-4)
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since b2 - bI z 0. However, the assumption that the rain is homogeneous and
 

the neglect of the rainfall rate factor, Rb2 -bl, yields a poor approximation
 

(Ref. 3.1-9). Assuming a Gaussian distribution to the spatial distribution of
 

the rain, yields (Ref. 3.1-9)
 

A2 L a2 AL_ - b/ 2 
A llAlL= 

Utilizing the numbers in Table 3.1-1, for fl = 15.3 GHz and 2 = 31.65 GHz,
A2L a2 : 

yields A : 1= 5.7 for the simplest approximation and 

Aa12L (17.3 0.134.2( 1 )03
1 3 4
AI-r=r . A( .(AL-'3
 

for the Gaussian spatial distribution.
 
I 

Two examples of A2/A1 for the ATS-5 links are shown in Figures 3.1-4
 

and -5. In Figure 3.1-5 the measurements were made during nearly continuous
 

rains, while high variations of rain rate were associated with Figure 3.1-4.
 

It is assumed that the variations of drop size distribution accounts for the
 

scatter in Figure 3.1-5. The ATS-6 results (Ref. 3.1-10) shown in
 

Figure 3.1-6, including 287 minutes of rainfall, do not show a simple relationship
 

between the attenuations at 20 and 30 GHz. Clearly, these results have not
 

demonstrated the validity of the proposed models. However, when cumulative
 

statistics (to be ditcussed in more detail below) are compared, the ratio
 

appears to be much more uniform. A best fit curve for the 20 and 30 GHz
 

measurements during July and August 1974, shown in Figures 3.1-7, yielded
 

(Ref. 3.1-12)
 

0 0306
 A30L - 1.88 (A Q) . 
A20L 2
 

The cumulative distribution of fades for ATS-5, ATS-6 and CTS have
 

been measured by NASA at Rosman, North Carolina. In Figure 3.1-8 the ATS-5
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attenuation statistics from February 14 to December 31, 1970, including
 

11,756 minutes of attenuation measurements, are presented. Since the two
 

rain rate distributions in Figure 3.1-8 are similar, the estimated satellite
 

attenuation curve for CY 1970 was developed. The ATS-5 cumulative distribu­

tions for January 1 through August 3, 1971 are shown in Figure 3.1-9. A best
 

fit equation for the CY 1970 Rosman data was developed and applied to other
 

locations where instantaneous precipitation data was available. The resulting
 

estimates are shown in Figure 3.1-10. These estimates demonstrate that
 

variations of several orders of magnitude can be expected depending on
 

location within the continental U.S.
 

The cumulative statistics for the ATS-6 satellite beacons for
 

Rosman, North Carolina are given in Figure 3.1-11. From this long-term data
 

taken from July 1974 to May 1975 (except for October, November, and December),
 

the ratio A30L/A20L - 2.1. The rain rate exceeded 10 mm/hr (corresponding to
 

approximately 5 dB attenuation) about 0.2 percent of the time. This
 

reference point allows one to shift the curves in Figure 3.1-11 to cover the
 

total time periods of July - October 1974 and January - May 1975 (Ref. 3.1-10).
 

The initial year's data from the 11.7 GHz CTS beacon has been
 

analyzed for both the NASA Rosman and GSFC ground stations. The cumulative
 

results for the period June 1976 to May 1977 are shown in Figures 3.1-12 and
 

-13. The data in Figure 3.1-12 (GSFC) represents the total available CTS
 

beacon time (318 days) while the Rosman data (Figure 3.1-13) represents a
 

shorter period because measurements were only made 8 hours per day from
 

June 1976 to March 1977. From March through June the data was recorded
 

automatically 24 hours per day. The rain rate data was taken with a single
 

tipping bucket at GSFC and with both a single bucket and a network of nine
 

additional buckets under the beam (Ref. 3.1-11) at Rosman, NC. For comparison,
 

the worst month data for this same year period is given in Figure 3.1-14. The
 

Greenbelt (GSFC) data utilizes instantaneous measurements, compared to four
 

second averages at Rosman. Consequently, the peak attenuation values below
 

the 0.1% level are expected to be higher for Rosman. For percentage values
 

near 0.01% and less, it has been observed that the data is dependent on the
 

averaging time. Therefore the GSFC (Greenbelt) data isexpected to be more
 

representative of the worst month statistics.
 

3-12
 



0j 
0 

uJC-) 
X 
Lu 

100 

1 

10 

' ' I ' ' ' ' I ' ' 
MEASURED RAINFALL RATE 
DURING ACQUISITION PERIOD 

7,,/MEASURED SATELLITE ATTENUATION 
APRIL 1-AUG 31 (825 MINUTES) 

Co 
L) 

"' 

01 

001 

",, /NESTIMATEDSATELLITE ATTENUATION 

N FOR JAN 1-AUG 31, 1971 PERIOD 

0 0001 

Z 

o 
e.."00001 

MEASURED RAINFALL RATE> 
FOR JAN 1-AUG 31, 1971 PERIOD 

"".. 

... 

0000011I 
0 

1 I 

0 

2 

I 

20 

~ ~ ± ~ w 
4 6 8 10 12 14 16 18 20 22 

153 GHz ATTENUATION IN db 
1 I I I I I I I I I I 

40 60 80 100 120 140 160 180 200 
RAINFALL RAJE, IN MM/HR 

w 
24 26 28 30 

FIGURE 3.1-9. CUMULATIVE DISTRIBUTIONS FOR 1971, 
ROSMAN, N C. 

3-13
 



O 
W 
J 

X 

01 

001 

ISLAND BEACH. 
NJ 

CORVALLIS,
OREGOPP--. 

\\ \-
\\<_MIAMI. FLA 

_ROSMAN,N C 
RS 

N 

\\ COLUMBUS, OHIO 

-

---

MEASURED ATTENUATION, 
ROSMAN. NC 
CALCULATED FROM 

0S U PRECIPITATION 
RATE DATA 
CALCULATED FROM 

PRECIPITATION RATE 
DATA (HOGG, 1967) 

Z = < \\x \ \] ,_ HOLMDEL, N J 10MNUE 

4 
Ld 
,,0\X\ _0001 
0-I 2 

\ 
8 

\ 
ENGLAND 

IBEDFORD.I\"I 
14 1\ \ 10MINUTES 

'X, \\I MINUTE 

0 0001 
0 

, , , L , , 1 , 
2 4 6 8 10 12 14 16 

, 
18 

, , , , , , 
20 22 24 26 28 30 

153 GHz ATTENUATION, INdB 

FIGURE 3.1-10. PREDICTED ATTENUATION DISTRIBUTIONS FROM PRECIPITATION RATE DATA 
FOR VARIOUS LOCATIONS 



-4 

100 
9 LONG IIM A l I1NU,[lO\, 

7 CUML IAI IVL DI11, 1R119 ITONS 

5 
JUL (1974) THROUGH MAY (1975) 

4 

3 

2 

10 30 (i1' 
9 

7 

~933 \UI'?-

-"* 1117 MINI_ Fl h 

01 
9 

7 

S 

5 

4 

2 

01 

05 

I 

1 

I1 ( 

15 

) 

2" 

i I 

25 

) 

30 

I 

35 

All ENI AION (dB) 

FIGURE 3.1-11. LONG-TERM ATTENUATION CUMULATIVE DISTRIBUTIONS 

3-15 



1000 

NASA GREENBELT CTS STATION 
CUMULATIVE DISTRIBUTION 
117 GHz ATTEN4UATION 
MINUTELY MEANS 
JUNE 1976-MAY 1977 

BASED ON 14,647 MINUTES OF DATA ACQUISITION 
CUMULATIVE PERCENTS NORMALIZED TO TIME OF AVAILABILITY OF THE 
CTS BEACON (318 DAYS) 

ICORRESPONDS TO 96 7% OF 
TOTAL AREA PRECIPITATION)

C 

0100 
I 

'C 

, 

, 

Lu 
001 

2 

I-

O 10 is 20 25 3 

ATTENUATION (DB) 

FIGURE 3.1-12. YEARLY CUMULATIVE DISTRIBUTION FOR 11.7 GHZ ATTENUATION
 
MEASURED AT THE GREENBELT STATION (GSFC)
 

3-16 



NASA ROSMAN CTS STATION 
CUMULATIVE DISTPIBUTION 
ATTENUATION AND GROUND AVERAGE RAIN RATE 
FOUR SECOND MEANS 
JUNE 1, 197-JUNE 30, 1977 

RAIN RATE NORMALIZED TO 
ATTENUATION TIME -4148 MINUTES 

117 GHz ATTENUATION 

D100 
2ioGROUND AVERAGE RAIN RATE 

w (CORRESPONDS TO 22 4% OF 
TOTAL AREA PRECIPITATION) 

o 

I 

-
- 01 

0 
\ 

o \ 

' lO 
In\ 
0-\ 

\ 
\ 
\ 

I 

3-1 

. .I I I I I I I I I I I 1 
o 10 20 30 40 5O 60 70 80 90 100 110 120 130 

RAIN RATE IMM/HR) 
S I I I t 1 I I ! I I I I 

O 2 4 6 8 10 12 14 16 18 20 22 24 25 28 

ATTENUATION (08) 

FIGURE 3.1-13. LONG-TERM GROUND-AVERAGED RAIN RATE AND ATTENUATION
 
DISTRIBUTIONS AT THE ROSMAN, NORTH CAROLINA STATION
 

3-17
 



1000 

WORST MONTH ATTENUATION 
CUMULATIVE DISTRIBUTION 
117 GHz ATTENUATION 

- ROSMAN JUNE 1977 
FOUR SECOND MEANS 

GREENBELT AUGUST 1976 
MINUTELY MEANS 

0100 
S\1 

\ A 

w 
F \ 

\ 

3-1 

C N 
C"000\ 

I-\ 

= 0 1001 
C\ 
I-Xz\ 

0 001 1 I I I I I I 
0 2 4 6 8 10 12 14 16 18 20 22 24 25 28 30 

ATTENUATION (DO) 

FIGURE 3.1-14. WORST MONTH ATTENUATION CUMULATIVE
 
DISTRIBUTION 11.7 GHZ ATTENUATION
 

3-18
 



A summary of the first year's NASA attenuation measurements on the
 
11.7 GHz CTS beacon is presented in Table 3.1-2. InGreenbelt, May 1977 is
 

also listed as a worst month but is probably not representative because of
 

the violent storm on May 6. This single event dominated the month for over
 

0.01% (43 minutes) and is a very rare occurence.
 

3.1.2 Amplitude Scintillations
 

Amplitude scintillations on ATS-5 and ATS-6 have been measured
 
during both clear and rainy weather. Because of the 76 revolutions/minute spin
 

imparted to ATS-5, the scintillation measurements were limited to frequencies
 

removed from the spin frequency. Analyses were performed at Ohio State and
 

are reported in Ref. 3.1-13.
 

Scintillations of + I dB have been recorded as a cloud passes 

through the ATS-6 20-GHz beam (Ref. 3.1-12). The fluctuation rate was fairly
 
constant at about 16 cycles per minute. The scintillations lasted for about
 

200 seconds. Inaddition, short bursts of scintillations have been observed
 

for 10 to 20 second intervals on clear days. Their amplitude reaches 3 dB
 

pk-pk with a fluctuation rate of 20 Hz. The causes of the clear air bursts
 
have not been determined and are presently under study.
 

3.1.3 Attenuation on Video Channels
 

NASA Goddard and Rosman are beginning to evaluate the effects of rain
 
attenuation on television transmissions via the CTS satellite. To date, the
 

scheduled video transmissions and rain events have not coincided (Refs.
 

3.1-11, 3.1-14 and 3.1-15).
 

Simulations of link carrier-to-noise (C/N) and test tone-to-noise
 

(TT/N) ratios (in4.2 MHz bandwidth) have been completed by varying the GSFC
 

ground link transmitter power Ptg during clear weather. Reception was also
 

done at GSFC. The results of these tests are given in Table 3.1-3.
 

Note that 10 dB C/N is sufficient to yield a good picture.
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TABLE 3.1-2. SUMMARY OF CTS 11.7 GHZ ATTENUATION STATISTICS
 

Rosman (4 See. Mean) 
Yealy=4148 Minutes 
(Less than 22.4%of Total Precipitation*) 

Worst Month June 1977 
689 Minutes 

Gzeenbelt (Minutely Mean) 

Yeaily = 14647 Minutes 
(Within 96.77 of Total Precipitation*) 

Worst Month August 1976 
351 Minutes 

Worst Month May 1977 

227 Minutes
 

*Corresponds To Total Area Precipitation. 

PERCENTAGE VALUFS 
0.1% 0.01% 0.005% 

2.2 dB 8 dB 11.2 dB 

6.4 dB 20.2 dB 21.2 dB 

2.1 dB 10 dB 15 dB 

5 dB 15.6 dB 19.4 dB 

6.5 dB >30 dB 



Pts Ptg 

96 watts 

72 " 

46 " 

36.5 " 

29.5 " 

23 " 

30 watts 

21 " 

10 " 

8 " 

5 " 

4 " 

TABLE 3.1-3
 

VIDEO SIGNAL QUALITY VERSUS LINK PARAMETERS
 

Link 
C/N Link TT/N Comments
 

12 dB 30.5 dB (est.) Good clear picture 

10.5" 29.5 No noticeable noise 

7.5 " 24 Noise becoming noticeable 

6.2 " 21 Becoming objectionably noisy 

5 " 15.5 " Picture very noisy (objectionable) 

3.9 " 6 " Picture completely objectionable 
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3.2 SITE DIVERSITY 

3.2.1 Overview 

NASA has initiated, supported, directed and participated in the study 
and application of site diversity (sometimes referred to as path or space
 
diversity) techniques to improve the reliability of Earth-satellite links.
 

Above 10 GHz these links are primarily influenced by rain cells passing
 
through the link path. By properly positioning two or more ground stations and
 

utilizing the signals from the station having the strongest signal, a diversity
 
gain results. This gain is shown schematically in Figure 3.2-1 for one
 

station and is defined as the improvement in system margin at a given
 

reliability level. Additional gain terms are defined when three or more
 

stations are participating in site diversity.
 

The site diversity measurements have been made utilizing the beacons
 
on both the ATS-5 and ATS-6 satellites at Ohio State University and utilizing
 
the ATS-6 beacon at GSFC, COMSAT Laboratories, NRL, Westinghouse and the
 
University of Texas. Therefore these results are applicable to the eastern
 
and mid-USA. OSU has published an empirical fit to their ATS-5 diversity gain
 

data (Ref. 3.2-1) which is
 

.24A)j [1-e- 0 .46 D(1-e O 2 6A)j
G = [A-3.6(1-eO ' 

where G is the diversity gain in dB
 

A is the fade attenuation in dB
 

D is the separation between stations in km.
 

This relation fit the OSU and Bell Telephone Laboratories data (Ref. 3.2-1) to
 
+ 0.75 dB in the 15 to 16 GHz frequency range. The following data also 
demonstrates that the diversity gain is relatively independent of frequency in
 
the 13 to 30 GHz region and is only slightly dependent on the rain cell
 
direction of motion with respect to the link path for moderate elevation
 

angles (30-500).
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3.2.2 Site Diversity Experiments with ATS-5
 

Ohio State University (OSU) and Bell Telephone Laboratories (BTL)
 
have made measurements of the diversity gain versus site separation distance.
 

OSU used the ATS-5 beacon at 15.3 GHz and BTL used radiometer temperature
 

data (related to rain attenuation) to measure fade depths at seven different
 
terminal spacings ranging from 3.2 to 31.4 km (Refs. 3.2-1, -2). These results
 

are summarized in Figure 3.2-2 which demonstrates that the diversity gain is
 
relatively independent of separation distances greater than 8 km, and for
 

fade depths greater than 3 dB the diversity gain is 2 to 3 dB below the ideal
 
diversity gain for two stations. These results have generally been accepted
 
as being representative of the realizable diversity gain and the separation
 

distance dependence of the diversity gain.
 

3.2.3 Site Diversity Experiments with ATS-6
 

Based on the ATS-5 results more advanced diversity experiments were
 
conducted utilizing the 20 and 30 GHz beacons on ATS-6. A long-baseline site
 
diversity experiment (Ref. 3.2-3) including the four sites at NASA/GSFC, NRL,
 

COMSAT and the Westinghouse Defense and Electronics Systems Center near
 
Baltimore, MD was established with site separation distances ranging from
 
27.9 km to 75.8 km. For these site separations it appeared that the prob­

ability for separate rain cells affecting more than one sIte at the same time
 
was higher than for 8 km (nominal) separations. Also the weather patterns
 

(i.e., the percentage of time a fade exceeded a specified value) were
 
significantly different at the various sites. The resulting diversity gain
 

was therefore small compared to that shown in Figure 3.2-2.
 

Both OSU and COMSAT continued to investigate the separation distance
 
dependence of the diversity gain and the optimum orientation of the sites with
 
respect to the rain cell motion and the satellite link. At the OSU site both
 
OSU and COMSAT conducted experiments. The OSU stations (Ref 3.2-4) were
 
located in a triangular configuration, while COMSAT's terminals were arranged
 
in an E-W orientation as shown in Figure 3 2-3. The OSU data shown in
 
Figure 3.2-4 clearly indicates that the NW-SE orientation of the sites yielded
 
the highest diversity gain and that the diversity gain decreases slightly
 

for 30 GHz compared to 20 GHz. Other OSU data indicated that for a
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separation distance of 13.2 km the diversity gain at 30 GHz exceeded that at
 

20 GHz (see Figure 3.2-5). The solid curves in Figures 3.2-4 and 5 are
 

plots of the empirical relation presented in Section 3.2.1.
 

At the University of Texas a two-site diversity experiment was
 

conducted at 30 GHz over a separation distance of 11 km in a N-S orientation
 

(Ref 3.2-5). The diversity gain measured over a 93 day period is shown in
 

Figure 3.2-6. This data agrees closely with the OSU/BTL results given in
 

Figure 3.2-5 and extends the OSU data to fade depths of the order of 25 dB.
 

Three groups of ground stations participated in the COMSAT 18 GHz
 
site diversity experiment (Ref 3.2-6). Each site employed four stations
 
spaced inan E-W orientation at 4, 12 and 8 miles. This COMSAT data appears
 

similar to OSU, BTL, and U of T data up to fade depths of the order of 10 dB.
 
At higher fade depths the COMSAT diversity gain remained constant or decreased.
 

Similar results were observed at the other two COMSAT diversity sites.
 

As an example of the effectiveness of utilizing site diversity, the
 
University of Texas group estimated that their two-station system was equiva­

lent to raising the fade margin at one site by 20 dB. In particular, assuming
 
a 10 dB link margin at 30 GHz, the reliability of one station was 99.83% and
 

increased to 99.997% with two stations.
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3.3 LOW ANGLE SCINTILLATIONS/FADING
 

Measurement of low elevation angle scintillations or fading have
 

been made while ATS-6 was descending and ascending for US observers. In
 

addition, measurements of non-synchronous satellites have been made as their
 

path sweeps through the atmosphere (Ref 3.3-1). These latter measurements
 

are not reported here
 

As ATS-6 was being moved to 350 E longitude, experimenters at the 

Virginia Polytechnic Institute and State University measured the 20 GHz 

carrier amplitude during clear and rainy tropospheric conditions from 90 

elevation angle down (Ref 3.3-2). During clear weather the average signal 

decreased due to clear air attenuation, but 2-3 dB scintillations with a 
period of 4 minutes were observed at 90 elevation angle. As the weather 

became hazier, the amplitude of the scintillations remained near 2 dB but 

the period decreased to 6 seconds. As the elevation angle decreased to 4 

degrees, signal fluctuations averaged 7 dB. During rainy conditions, fades ot 

15 to 20 dB were observed for 10 mm/hr. rain rates. These high values are 

assumed due to the long path length at low elevation angles.
 

Ohio State University also observed the descent of ATS-6 (Ref 3.3-3)
 
from 42 to 20 elevation angle. The variances of the scintillations as a
 
function of elevation angle are given in Figure 3.3-1. Because the distribu­

tion suggested a cosecant behavior, a minimum mean-square-error curve was fit
 

to the data as noted in Figure 3.3-1.
 

During the return of ATS-6 to 1400 W longitude (ascending for U.S.
 
observers) Ohio State and COMSAT conducted elevation-angle measurements over
 
land, while the University of Texas observed over water. The ascending OSU
 
data (Ref 3.3-4) was taken at 2.075 and 30 GHz from -0.7 to 43.90 elevation
 
angles (not corrected for refraction) with no discernable precipitation
 

along the path. The resulting variance is similar to Figure 3.3-1 except
 

that the 2 GHz variance is about 10 dB below the 30 GHz data. OSU also
 
observed that the received power level was significantly below that predicted
 
by simple atmospheric path loss calculations. The power spectra of the
 

scintillations, other than the general reduction of amplitude of all
 

components, was similar for all elevation angles and for the presence or lack
 

of cumulus clouds.
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COMSAT Laboratories (Ref 3.3-5) conducted 13.2 GHz measurements at
 

COMSAT and Westinghouse's Facility at Friendship Airport near Baltimore
 

(Ref 3.3-5) as the elevation angle increased from 3.6 to 14 degrees. The
 

results from the Clarksburg site are given in Figure 3 3-2. The crosses
 

denote the median signal levels and the minimum and maximum signal levels
 

recorded during each 45-minute period are indicated by the vertical solid
 

lines. The median signal strength was on the order of 3 dB lower than the
 
predicted clear sky signal strengths. Typical fluctuation periods were 2
 

seconds with up to 15 dB amplitude fluctuations.
 

The University of Texas (Ref 3.3-6) installed a 30 GHz receiver at
 

Port Aransas, Texas, to obtain a propagation path entirely over water. The
 
beacon was monitored for at least one hour each day for 16 days in
 

September 1976 while the elevation angle varied from 1.5 to 17.30. The
 

results presented here are based on 3.36 hours of data (15% of the data base).
 

The cumulative distributions of the log attenuation relative to the day's
 
mean attenuation for an arbitrarily chosen record per elevation angle are
 

shown in Figure 3.3-3. Negative values of the ordinate represent signal
 

levels above the mean. A rain event was observed while the satellite was
 

near 8.50 elevation angle. Because the rain was over water, no rate was
 
measured. However, the mean attenuation increased by 16 dB andthe standard
 

deviation increased to 2.7 dB during the rain.
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3.4 DEPOLARIZATION
 

Frequency reuse, achieved by utilizing orthogonally polarized signals
 

over the same path and at the same frequency, has stimulated investigators
 

to research the depolarization effects for signals above 10 GHz. Rain, snow
 

and ice crystals will cause depolarization resulting in a reduction in dual
 

channel isolation. The measurement of depolarization involves the complex
 

effects of the atmosphere, the polarization utilized and the off-boresight
 

polarization characteristics of the antenna. At this time, measurement
 

statistics for the overall effect are being acquired, but separating the
 

various contributions to depolarization is just beginning.
 

In f974 Virginia Polytechnic Institute and State University
 

(VPI & SU) began observing the north-south linear polarization of the ATS-6
 

20-GHZ beacon which at the spacecraft ismaintained to +0.10. They found
 

that mechanical and satellite misalignments were not sufficient to explain
 

the variations they observed during clear weather, nor were Faraday rotation
 

and dielectric stratification a satisfactory explanation (Ref 3.4-1).
 

Measurements at 20 GHz on ATS-6 during snow squalls indicated one depolariza­

tion event during the heaviest snow squall of the 1974-75 winter when the
 

cross polarization ratio (CPR) rose from -33 dB to -21 dB. The CPR is
 

defined as
 

0power output from cross-polarized porti
 
10 log10 [power output from co-polarized port ]
 

{I(dB)j 1 [Isolation]'--

During rain events, there appeared to be little correlation between the
 

mean attenuation, the CPR and the rain ,gauge rates. No explanation is
 

offered for these results. At low elevation angles additional depolarization
 

anomalies were observed, however, several of these were associated with
 

multipath signals entering the antenna sidelobes. These early results,
 

completed in August 1975, stimulated considerable interest in additional
 

studies with the CTS and COMSTAR satellites.
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VPI & SU has continued their depolarization studies with both the
 

CTS 11.7 GHz right-hand circularly polarized downlink and the COMSTAR D2 19.04
 

GHz switched linear and 28.56 GHz linearly polarized beacons. To date only a
 

limited number of storms have been reported in the literature (Ref 3.4-2 and
 

-3), their data base is continuing. The results of one storm in June 1977
 

are shown in Figure 3.4-1. Herein the rain occurred for 160 minutes and
 

peaked at 29 mm/hr. The isolation versus time plots show that the 11.7 GHz
 

isolation rose about 3.8 dB average due to a phase shift of the signal
 

resulting in a better match to the antenna. Simultaneously the 19.04 GHz
 

vertical isolation decreased 4.5 dB to a minimum of 22 dB and the horizontal
 

isolation was about 2 dB lower than the vertical isolation. The 28.56 GHz
 

clear-weather isolation was low at 22 dB, but the isolation dropped to 19 dB
 

during the peak rain events.
 

The signal phases experienced maximum excursions of approximately
 

1000. The 11 GHz signal showed a more frequent phase variation than the 19
 

and 28 GHz signals. These results, for the same June storm, are shown in
 

Figure 3.4-2. Other storms have been observed, but none have had the
 

intensity of this June 22-23, 1977, storm. VPI & SU is now continuing to
 

develop its statistical data base on isolation and phase angle variations.
 

At the University of Texas at Austin studies of the CTS 11.7 GHz
 

beacon attenuation and cross-polarization isolation are ongoing. During the
 

period from 12 June 1976 to 30 August 1976 (80 days) there were eleven days
 

with more than 2.5 mm total precipitation (Ref 3.4-4). Data for the heaviest
 

rain event is shown in Figure 3.4-3. The rain rate was measured with a
 

single tipping bucket rain gauge located near the antenna. An accumulation
 

of 1 minute samples for this 80-day period is presented in Figure 3.4-4. A
 

least squares fit for all data with attenuations greater than 2 dB yields a
 

cross-polarization isolation (CPI):
 

CPI = 38.9 - 17.4 log A
 

where CPI and attenuation A are in dB. For comparison the theoretical
 

curves (Ref 3.4-5) have been included. The logarithmic fit of the points
 

deteriorates below 3 dB attenuation. A contributing factor to this is the
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anisotropic phase shift introduced by frozen particles (ice). These
 
particles have very low attenuation. An example of the ice-induced depolari­

zation is shown in Figure 3.4-5. Clearly the-rapid cross-polarization changes
 

are not correlated to the signal attenuation. These results indicate that in
 

some cases Earth-space links will be limited by attenuation, while in others
 

depolarization will be the dominant factor.
 

The depolarization resulting from ice (sometimes referred to as
 

anomalous depolarization) is now being actively studied by European investi­

gators. These investigators became aware of this effect because the local
 

elevation angles to the US and Canadian synchronous satellites are lower in
 

Europe, and therefore their propagation paths extend through much more ice
 

resulting in significant depolarization. Their results are reviewed in the
 

Proc. URSI Meeting, La Baule, France, 28 April-6 May, 1977.
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3.5 ANGLE OF ARRIVAL
 

Communication links operating above 10 GHz frequently utilize
 

antennas whose beamwidths are of the order of tenths of a degree. For these
 

narrow beamwidths, variations in the angle of arrival of a microwave signal
 

can result in significant AM modulation of the signal. Therefore studies are
 

now ongoing to characterize the fluctuations in the angle of arrival for the
 

CTS 11.7-GHz beacon at Ohio State University (OSU). As part of these studies
 

OSU is attempting to resolve whether the apparent fluctuations are due to
 

variations in the direction of the propagation vector t of a plane wave or if
 

the wave front is being distorted resulting in a spatial dependence to the
 

vector If the latter is the case, large aperture antennas will average
 

over the wavefront resulting in a reduced AM effect on the received signals
 

at a ground station.
 

The measurements are being made with a 2 x 2 matrix of O.6m diameter
 

parabolic antennas arranged on a lm square matrix (see Fig 3.5-1 and Ref
 

3.5-1). The detection circuitry shown in Figure 3.5-2 indicates the amplitude
 

and phase information available to the investigators. The angle of arrival 

resolution in one plane is + 0.05 deg for the system. Data in a 80 Hz band­

width is recorded at a 1/3 sample per second rate with an option of 10 

samples per second. 

Initial OSU data (Ref 3.5-1) has demonstrated that for a 2dB fade
 

during a rain, 0.06 deg pk-pk angle of arrival fluctuations were observed.
 

For a 12dB fade the fluctuation amplitude increased to 0.16 deg pk-pk.
 

Additional data (Ref 3.5-2) taken with the system in Figures 3.5-1 and -2
 

indicate that antenna gain degradation due to angle of arrival scintillations
 

accounts for the reduced signal levels compared to predicted levels at low
 

elevation angles. Design curves for gain degradation as a function of
 

antenna aperture size, frequency and elevation angle are being developed.
 

The angle tluctuation versus amplitude measurements are continuing with the
 

objective of determining ift is space dependent over the array aperture.
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3.6 BANDWIDTH COHERENCE
 

The ATS-6 beacons at 20 and 30 GHz were both capable of being
 

modulated with +180, +360, +540 and +720 MHz signals. These signals allowed
 

measurements of coherence over a 1.44 GHz range centered on 20 and 30 GHz
 

The required receiving and recording equipment was available at NASA's Rosman
 

ground station to utilize these signals (Ref 3 6-1). Measurements of both
 

the attenuation (selective fading) and the phase between signals were
 

possible for averaging intervals of one second, four seconds and one minute.
 

In general, only minor phase variations across the 1.44-GHz range
 

were noted for signal levels when the receiver remained locked on the
 

signals. Also, the phase and amplitude variations were most evident for the
 

shorter (one- and four-second) averaqing periods compared to the one-minu+P
 

period.
 

Typical selective fading events across the 1.44 GHz bands are shown
 

Figures 3.6-1 and 3.6-2 for 20- and 30-GHz carriers, respectively These are
 

four-second averages taken on day 270 of 1974 just before the onset of a
 

fade event (232000Z), at the beginning of the fade event (232352Z), and
 

before receiver lock was lost during the fade event (232428Z). Except for
 

fade depths in excess of 20 dB, the accuracy of the attenuation measurements
 

is+1 dB. These results, while representative of those taken at Rosman, do
 

not appear to be sufficiently accurate for deep fades because the signal
 

levels approach the noise floor of the receiver. For one-minute averages,
 

no measurable selective fading was observed (Ref 3.6-2).
 

Measurement of the phase between the O.72-GHz sidebands and the
 

20- and 30-6Hz sidebands showed no variation for fades less than 12 dB at
 

On another occasion, a variation of 200
 30 GHz for one-second averaging. 


between the 20.72 and 20.0 GHz signals was noted, but this occurred for a
 

These results are in agreement with
fade of the order of 20 dB at 20 GHz. 


analytic results by Meneghini (Ref 3.6-3).
 

The ATS-6 satellite links at 4-, 20- and 30-GHz have also been
 

employed to demonstrate high data rate digital transmissions (Ref 3.6-4).
 

Data rates of 100 kbps to 15 Mbps using bi- and quadriphase signal structures
 

The test results indicated that the links
 were downlinked to Rosman, N.C. 
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(20- & 30 -GHz) could support telemetry rates in excess of 15 Mbps for
 

bi-phase modulation (30 Mbps for quadriphase) with minimal signal degradation
 

from dispersive effects. The results were obtained in clear weather.
 

Theoretical calculations have been carried out for pulse transmissions
 
through rain (Ref 3.6-5). These calculations indicate that above 10 GHz the
 

rain attenuates, but pulse distortion does not become significant until the
 

rain-induced attenuation exceeds 100 dB. For carrier frequencies below
 

10 GHz, intemperate climates, pulse width increases of 2 and 60% were
 

calculated for 3.6 GHz bandwidth pulses (pulse length = 0.3 nanosecond) at
 

49 mm/hr and 196 mm/hr, respectively. At 3 GHz bandwidth the pulse length
 

increases only 30% at 196 mm/hr and continues to decrease rapidly with
 

decreasing bandwidth. Therefore, based on the ATS-6 coherent sideband and
 

digital results, the ongoing CTS video measurements (Ref 3.6-6) and the
 

theoretical calculations, bandwidth coherence is not a significant contributor
 

to Earth-space link degradations.
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4.1 

IV. ADDITIONAL PROPAGATION RESEARCH EFFORTS
 

NASA has coordinated the experimental measurements of satellite beacons
 

with the development of theoretical models and ground-based diagnostic experi­

ments. The theoretical models have emphasized rain attenuation and depolari­

zation on satellite links. The diagnostic experiments have involved use of
 

radiometers, radars and rain gauges for correlation with the signal effects
 

discussed in Section III.
 

THEORETICAL MODELING
 

One of NASA's initial theoretical propagation modeling activities was
 
to predict the magnitude of rain-scattered interference for terrestrial-space
 

paths. The interference resulted in a modification to the coordination distance
 
(Ref 4.1-1) and an increased probability of interference between stations.
 

The results of these studies provided an input for the 1971 World Administrative
 

Radio Conference for Space Telecommunications.
 

A review of the scattering and absorption by hydrometeors (raindrops,
 

hail, snow and sleet) yielded a qualitative value for the attenuation. In
 

addition, for non-spherical raindrops it was observed that there was a 20 per­

cent difference between horizontal and vertical attenuation (Ref 4.1-2).
 

Studies of the evolution of clouds indicated that a significant amount
 

of water and ice can contribute to the attenuation by clouds before any rain
 

reaches the ground. Also due to updrafts within clouds, the amount of rain
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measured at the ground may only be a fraction of the rain contributing to
 

the attenuation.
 

To circumvent some of the deficiencies of rain gauges, the use of 

radiometers was proposed to estimate path attenuation from the apparent sky 

brightness temperature T . However, because T is proportional to 

(1-exp(A/constant)), attenuations A greater than 10 to 15 dB are not distinguish­

able. Use of the sun as a source of microwaves, which does not saturate, have
 

been utilized by several observers for attenuations up to 30 dB, but the variable
 

sun tracking angles and lack of data at night tend to limit the statistical value
 

of these results.
 

Also radars have been studied as a means to diagnose-the spatial
 

distribution of the attenuating media. Unfortunately, the calibration of the
 

radar becomes critical since the backscatter and return beam's attenuation are
 

both frequency dependent and the radar attenuation may be quite large.
 

Based on these general results it appears that, depending on the type
 

of meteorological correlation to link measurements being performed, one or a
 

combination of these diagnostic techniques ismost applicable. Ongoing studies,
 

reported below, have shown this to be the case and current experimenters with
 

the CTS and COMSTAR satellites are employing all three techniques.
 

To support the experimental measurements, Westinghouse Corp. has prepared
 

for NASA/GSFC a computer program which calculates:
 

* 	 attenuation
 

* 	 16 and 35 GHz sky temperatures
 

* 	 integrated radar reflectivity
 

for comparison with observed parameters (Ref 4.1-3). As inputs the program
 

requires ground temperature and rain rate. The comparisons of the model results
 

with 	the measured data yielded the following­

s the model consistently underestimates the sky temperatures and
 
the carrier attenuation, probably due to the inaccurate rain
 
measurements
 

* 	 the Ku-band (15 GHz) integrated radar return does not appear to
 
correlate with the model or the carrier attenuation. Apparently,
 
because of attenuation the radar only "sees" backscatter from the
 
leading edge of the rain and therefore isnot indicative of the
 
entire rain volume.
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Ohio State University (Ref 4.1-4) also developed a model for the struc­

ture of rain cells and the attenuation associated with them. The model for a
 

cylindrical storm cell as shown in Figure 4.1-1 represents the region of intense
 

rain usually associated with the convective cells which produce severe fading.
 

The model is statistical and utilizes readily available information, e.g., hourly
 

rain rates rather than instantaneous rates. The system and climate parameters
 

utilized in the model include frequency, path elevation angle, rain rate dis­

tribution and rain cell dimensions. The model yields the fade distribution for
 

a single site and the joint fade distribution for site diversity terminal pairs.
 

Figure 4.1-2 is an example of the comparison of the model with the Rosman 1970
 

cumulative distribution. Comparisons with other single and multiple site 

OSU data also confirmed the usefulness of the model. 

Based on their experimental findings for terrestrial links, the Virgina
 

Polytechnic Institute and State University has developed a model to predict the de­

polarization of millimeter waves due to rain (Ref. 4.1-5). Since raindrops tend to be
 

elongated, an electric field vector oriented along the narrow demension of the drop
 

is attenuated less than when oriented along the wide dimension and the phase is
 

affected differently for different orientations of the electric field with respect
 

to the drop. These effects change the state of the polarization and give rise
 

to a component which is cross-polarized with respect to the input polarization
 

state. The model assumes that all drops are the same size, identically oriented
 

with a mixture of shapes and that the forward scattering properties of a simple
 

raindrop are known. The model yields the total field amplitude, path attenuation
 

and cross-polarization for various drop canting angles, rain rates and path
 
lengths. As shown in Figures 4.1-3 and 4 the results of the model are in good
 

agreement with all data taken during the last five months if 1972 and averaged
 

together for each one mm/hr of rain rate.
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4.2 RADIOMETRIC MEASUREMENT TECHNIQUES
 

A sky-viewing radiometer measures the following three radiative thermal
 

emission terms
 

a) the transmission term (e.g. emission from the sun) 

b) the scattering term 

c) the absorption term (the reradiation from the atmospheric medium) 

These terms are frequency dependent and both the transmission and absorption
 

terms contain the radiative attenuation, A,which is the quantity experimenters
 

desire to determine. An emperical equation has been derived (Ref. 4.2-1) which
 

relates the attenuation with the sky temperature Ts, but the scaling of this
 

relation with frequency is unclear. The relation is
 

A(dB) =-10 log10 (InMs) 
where Tm is the mean absorption temperature in 0K of the attenuating medium 1.12
 

(ground temperature in OK) -500K (Ref. 4.2-2).
 

In general the dynamic range of radiometers is limited to 10 or 15 dB
 

of attenuation, but they have two significant attributes­

1) they are sensitive to small values of attenuation such as those
 

associated with snow and ice, and
 

2) they do not require a satellite beacon for their operation.
 
Therefore they have frequently been used in studies at sites and
 

frequencies where direct satellite transmissions are not available
 

for'development of cumulative fade statistics (Ref 4.1-1 and -2).
 

These attributes have been exploited for both the ATS-5 and ATS-6 millimeter
 

wave characterization programs.
 

With ATS-5 Ohio State University directly correlated the sky temperature
 

Ts versus the signal level at the receiver output as shown in Figure 4.2-1.
 
For this 15 minute period the correlation between the attenuation A and Ts was
 

found to be 0.9. This value is probably pessimistic since small antenna pointing
 

errors significantly influence the attenuation measurements while having little
 

effect on Ts. OSU, COMSAT Laboratories and the Bell Telephone Laboratories also uti­
lized radiometers to obtain more data regarding site diversity gain versus attenuation
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and separation distance. The results (see Figure 4.2-2) confirm the results
 

quoted inSection 3.2. All the Bell measurements were made with radiometers
 

calibrated at 16 GHz.
 

Because operating times of the ATS-6 beacons was limited by the
 

requirement of the satellite to support other experiments, radiometer data
 

(available 24 hrs per day) contributed significantly to the ATS-6 data bases
 

for cumulative statistics and site diversity. At OSU radiometers were coaligned
 

with the beacon receivers at the site diversity measurement sites, while at
 

COMSAT Laboratories they were mounted on the same antennas as the 20 and
 

30 GHz receivers. At COMSAT (Ref 4.2-2) their 20 and 30 GHz sky temperature
 

measurements were correlated, when possible, with the beacon signal strengths
 

Typical results are shown in Figure 4.2-3 at 30 GHz This data includes
 

about 25 to 30 hours of data from August 1974 to August 1975 taken at
 

Clarksburg, MD. The results are bracketed reasonably well with the empirical
 

relation for Tm = 290 and 2500K, however a better numerical fit was obtained
 

A3 0.569 (shown dashed in Figure 4.2-3).
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4.3 RADAR
 

Radar systems have been utilized and are continuing to be applied to
 

the correlation of the attenuation along a ground station - satellite path with
 

ground base measurements and to study the rain cell morphologies in order to
 
determine where the cell attenuations are most significant. In addition, the
 

radars have been utilized in a bistatic mode to identify how much energy is
 
scattered out of the media into other ground station receiver systems thus
 

causing interference. In summary, radar systems are being applied to a wide
 

variety of applications in support of propagation research
 

4.3.1 Rain Scatter and Absorption Effects
 

For correlation with ground based measurements, it is essential that
 
the radar return signal be accurately calibrated to the rain rate. A standard
 

empirical relation for the radar reflectivity and the rain rate R has frequently
 
1.6 6 3 

been utilized. Namely, Z = 200R ,where Z is in mm /m and R is in mm/hr
 

(Ref 4.3-1). This standard relation has certain disadvantages (Ref 4.3-2) 

1) The variance between the predicted R and measured R is large, 

a result due not only to averages taken over different systems 

and locations but also due to the inherent variability in the 

quantity Z being measured. 

2) Z is a function of the back-scattering cross-section which isa 

function of frequency, i.e., the Z-R relation changes with 

frequency. 

3) Z is obscured by the signal attenuation along the path. 

By accounting for these effects and observing with radars at 3 GHz (non­

attenuating) and 8.75 GHz (attenuating) and comparing the results, itwas
 

observed that the two radar measurements could be made to agree quite closely
 

as shown in Figure 4.3-1. By utilizing the rain rates measured by rain gauges
 

in the first 300m from the radar, the attenuation along the path was computed
 

and the measurements altered. For rain rates above 10 mm/hr the improvement
 

was significant enough to justify the increase in the necessary computational
 

time (Ref 4.3-2).
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Investigators at Ohio State University (Ref 4.3-3) are continuing to
 
investigate techniques for calibrating radar systems. They correlate their
 

radar reflectivities with radiometry data, thus providing an independent measure­

ment of the medium throughout the same region "seen" by the radar. The accuracy
 

of this calibration technique has not been reported to date.
 

The above measurement techniques are currently being utilized with
 
ATS-6 and CTS. Earlier, several of these constraints on the use of radar for
 

measurement of rain properties were identified (but not resolved) in the late
 

1960's and early 70's by NASA as part of their Radio Frequency Interference and
 

Propagation Program (RIPP). To remedy the deficiencies for estimation of
 

terrestrial coordination distance and interference probability between ground
 

stations, especially that arising from rain scatter interference, NASA was
 

requested by the Office of Telecommunications Policy to study the problem,
 

with the support of the Federal Communications Commission. The results were
 

available for the 1971 World Administrative Radio Conference for Space Tele­

communications.
 

The rain coordination procedure devised as part of RIPP is based upon
 

statistical estimates of the surface rainfall rate, produced by the Institute
 

of Telecommunication Sciences and upon an approximate description of the rain
 

scatter process. The rain scatter process predictions utilized the bistatic
 

radar equation and the Rayleigh scatter and incoherent scattering theories.
 
Below 5 GHz polarization and attenuation effects were ignored, but above 5 GHz
 

the effect of attenuation along the path and in the common scattering volume
 

(Ref 4.3-4) were included to agree with the monostatic and bistatic (4.5 GHz)
 

radar experimental results. These two radar systems observed the same scattering
 

volume (rain) and demonstrated that on the average the bistatic-Rayleigh
 

scattering is accurate, but that individual scattering events showed more
 

fluctuations than expected. These fluctuations appeared to arise because of
 

differences in the cell-by-cell structure and because some measurements were
 

made for heights above the freezing level. A comparison of the measured and
 

the calculated transmission loss between two ground stations (Ref 4.3-5) is
 

given in Figure 4.3-2. The data presented are for conditions where clear lines
 

of sight existed between the antennas, the scattering volume ranged inheight
 

from 3 to 11 km and scattering angles between 150 and 1650 during a two-week
 

period in July 1970 in New England.
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4.3.2 Radar Predictions of Rain Attenuation
 

The calibration of radar reflectivity and rain attenuation has been
 

developed to sufficient accuracy that the radar results may be utilized to
 

obtain cumulative attenuation statistics and site diversity information. This
 

correlation has been demonstrated by the Applied Physics Laboratory (APL)
 

experiments using the COMSAT ATS-6 (Ref 4.3-6). APL's experimental configuration,
 

shown in Figure 4.3-3, employed a S-band, 2.84 GHz, radar at the Wallops Island,
 

VA SPANDAR Facility. The radar's calibration has a standard deviation of 2 dB
 

and was supplemented by 13 and 18 GHz transmitters (uplink), disdrometers for
 

measurement of the drop size distributions and rain gauges APL investigators
 

found that attenuation above the melting layer ("bright band") should be
 

neglected even through the radar reflectivity is high. However, melting layers
 

were most frequently observed when the rains were widespread, the rain rates
 

were small (less than 10 mm/hr) and the measured fades at 18 GHz were less than
 

several dB.
 

A summary of the APL results (Ref 4.3-6) with ATS-6 is given in Table
 

4.3-1 and an example of the 18 GHz data is shown in Figure 4.3-4. Inthe taDle the rms
 
difference for three drop size distributions is shown. The APL distribution is
 

that measured by the disdrometers, MP is the Marshall-Palmer distribution
 

(Ref 4.3-7) and Joss is the thunderstorm activity distribution measured in
 

Locarno, Switzerland (Ref 4.3-8). It is interesting to note that the MP rms
 

difference is quite close to the measured APL data. This experiment and others
 

have shown that radar is capable of permitting the prediction of rain attenuation.
 

Utilizing the proper modeling procedures attenuation and space diversity
 

statistics may be compiled for variable elevation angles, frequencies and site
 

diversity spacings.
 

APL has employed earlier radar results at Wallops Island to calculate
 

the attenuation and site diversity characteristics at 13 and 18 GHz (Ref 4.3-9).
 

Their diversity gain versus site separation distance results were within 1 dB
 

of the Ohio State University measurements for fades up to 6 dB and within 2 dB
 

at a fade depth of 10 dB. Thus using radar reflectivity data, which covers a
 
much wider area than the line from ground station to satellite, APL found that
 

a 15 km separation distance resulted in a near optimum diversity gain and that
 

the diversity gain is minimally influenced by frequency.
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TABLE 4.3-1. COMPARISON OF THE MEASURED AND PREDICTED FADE LEVELS
 

f = 18GHz 

Peak ms difference 

Day 
N of Events 

Sampled > I dB 

Instantaneous 
Measured Fade 

(dB) APL 

(dB) 

MP Joss 

(812/74)
(814/74)
(8/23/174)
(9j7J74)
(3/12/75)
(4/18/75) 

241 
216 
235 
250 

71 
108 

16 
10 
48 
28 
12 
37 

30 
33 

153 
50 
31 
21 

13 
04 
16 
17 
05 
04 

04 
1 2 
20 
23 
1 1 
07 

08 
18 
2.7 
28 
18 
11 

Total 151 1 3 16 2.1 

f= 13 GHz 

(9I7/74)
(3112/75) 

250 
71 

28 
9 

51 
18 

15 
05 

I 8 
08 

2.1 
11 

Total 37 13 16 19 

4-20
 



APL has also observed (Ref 4.3-10) that by utilizing the measured median
 

reflectivity factor versus height profiles as measured with radar and point
 

rainfall rate data, they can predict slant path attenuation statistics at
 

other locations, frequencies and elevation angles (greater than 200). They
 

assume that the reflectivity-height profiles are the same at other locations,
 

but this appears to be the case for convective rains for heights below 6 km
 

in the U.S. Their results were quite close to experimental measurements in
 

Texas, Maryland and England. For higher rain rates (greater than 30 mm/hr) they
 

suggest use of two frequency fade distributions (Ref. 4.3-10) for extrapolation.
 

However, because only a few sets of dual frequency fade statistics at a fixed
 

elevation angle are available this extrapolation method has not been tested
 

fully. Hopefully the COMSTAR 19 and 28 GHz statistics will provide data bases
 

to test the proposed extrapolation procedure.
 

4.3.3 Radar-Derived Rain Cell Morphology
 

Radar reflectivity contours have been observed for rain cells to
 
determine their general shape, i.e., circular or elliptical. Ifelliptical,
 

in what direction is their semi-major axis oriented. This information would
 

be useful in determining the optimum orientation for site diversity sta­

tions and to establish to what degree the satellite orbit locations influence
 

the fading statistics. APL at Wallops Island, VA (Ref 4 3-11) investigated this
 

question by separating path azimuths into NW-SE and NE-SW quadrants in their
 

radar data for June, July and August 1973 convective rain storms. They found
 

that the cell size statistics varied as shown in Figure 4.3-5. From these results
 

one would expect that the diversity gain would be a maximum for stations oriented
 
in the NW-SE direction. This has been observed experimentally at Ohio State
 

University as mention inSection 3.2. The average cell size was 2 km larger
 

for the NE-SW orientation compared to the NW-SE orientation. The cumulative
 

probability statistics for a single site are also different depending on azimuth
 

to the satellite as shown in Figure 4.3-6. The wind directions were measured
 

during the rain events and found to come from the SW. This direction correlates
 

well with the larger attenuation cell size, enhanced fade depths, and reduced
 

diversity gain in the NE-SW sectors.
 

NASA Rosman also measured the morphology of the rain cells (Ref 4.3-12)
 

as they passed through the ATS-6 20 and 30 GHz beams. The result for one rain
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event at 3 and 8.75 GHz are shown in Figures 4.3-7 and -8where the radar
 

reflectivity (indicated by 1 to 5, see Table A.3-2) is plotted every 20 seconds
 

for ranges from 300 meters to 5.2 km. The accompanying 20 and 30 GHz signal
 

attenuations are also shown at each time event when the receivers recorded data
 

The data shows significant spatial and temporal variations. The most intense
 

precipitation (No.'s 3,4, and 5) is measured in the close-in range bins, prob­

ably due to the high elevation angle. Also the intense rain cells are only on
 

the order of 200 to 1000 meters thick, thus their contribution to the cumulative
 

fade statistics is small.
 

TABLE A 3-2
 

DEFINITION OF CONTOUR NUMBERS FOR FIGS. 4.3-7 AND -8
 

Rain Rate
 
Interval 

Contour Number dBZ Interval (MM/Hr) 

1 34 to 44 5-20 

2 44 to 50 20-48.6 

3 50 to 55 . 48.6-100 

4 55 to 60 100-205 

5 60 or greater >205 

4.3.4 Multi-Frequency Radar Measurements of Drop Size Distributions
 

Multi-frequency radar systems have been analyzed and operated primarily
 

to determine the raindrop size distributions along a satellite path. The
 

Applied Physics Laboratory (APL) analyzed various combinations of multiple wave­

length radars for this purpose (Ref. 4.3-13). Their analysis was directed
 

toward.
 

1) establishing the uncertainties in the estimated spectra due
 

to a given system error,
 

2) range - averaging constraints, and
 

3) requirements of measuring a sufficient number of independent
 

samples.
 

4-23
 



AANGF IN KIL0IETFAS
0cCC¢C000Cn000co000o000000 00o0000o000C00cCC0c¢0c0 

CIHZ C. J0G z C. 

OCC 00001IIIIt1111 2422222222 33.333333334444 4444 5 

V I. ................ ........ .... 4.0s..,*....... ........... **4.4 .***5 
A 

19 141 
19201 
142021 

a 
*3 

I -~q I ;.;101001 

20 
3'23~I 5 

;;4 

* 

0 it 
.0,1 

0~0..9 

'51 
4.., 
0.),
1.43 

1 214 
I921 i 

222222 

1a10 11.1 0.10.1 

t92321 
102101 I 

It 1:5 

I . c; 
0.*OSS9 
0.i 

lq2.01 
I0?2I 
t092.1 
112301 
15221 

4 

* 

0.SI 
0.35 
0.J 
0 19 
0.21 

0.?6 
0.43 

43 
0.21 
0.16 

1.240C1 
142d 
1'?1 
1)2 

0.6 
, 07 
n.27 
.0.3 

0 56 
0. 2 
0.2S 
0.75 

19021 1.004"1 

IO'R2I 24 

1929Cl 
192121 
1OZ1a1 
193001 
19301 
19)0i 

40.23 

4 

II 
II 

Itt 
II 

It 

II 

II.11 
lillll~lI 
1111H, "I 

5 

* 
* , 

I3 I 
.19 
1 

I A, 
15 

3itl34 

0.4 
0.5 
1.32 
3.52 
0.60 
0.6. 
0 '6 

I4 

91311 
2932. 
122 1 

1 
silll 

1 II 
II II II 

1 
II 

13 
lIlt 
111 

.. 
.* . 

4 
,..*s 

... ,.... 
I.."1.40 

1 19!24101 
1S3241 

Sil-1111 
911 

II1it 
II 

lilt 
II 

II 111111111111 
111111 II 4.I0 

*050 t01 

1933.1 
1301 
192:21 
I93~ti193501 
10)621 

lIbat1 
193401 
193423 
lq)'41193701 

13 
7 2 1 

1 37'l 

10Z21 

-1111 Is lilt 
*1111 Is 1122333311111111ll 
:1:ll II Il1111111111222222111111111 
11111 l1 11I11111t33333311il11*t11I1133311122I1111iil11122331 1111111 II 

*221 111333111111l1t111111 I2233331i12211111111i 1111111 

*22221133111111li112222J311211111111 
41113113311222211 22 2221111111111111 II 
.22111133 i131111t112222221i11IIIi11 
.22111121111111111111112222221111 111111111111111 13 I*11111t331 111111131222211334441 111111111111111111111111 Io 
*221111 112222222211311222222111111111i32211 111111311*2222 134411111l1111111 12'221 111113111111111111111 
*..2 2.3311IhII1IIItI 11222211111 1222I1112211111111* 

*5!5 

S 

5 

0.75 
1 '9 
3 10 
1.529* 
2iii19*16 

*1.3 
1.)5
P.56 
2 55
3.01 
143I 3 
.31 

1.51 
1.75 
2.09 
3.25 

4.&04.43 

5.16 
* 63 
4.)S 
5.54 

6.')
' 1 
5.I. 

I3IA41 i2111l221111111111ll tll 221111lll1lll122 222222222?222233332222222211 13 )1 Is16 

1.2V21 
3919.1 
t.00cl 
I--2I 
104041 
1101
19.12i 

1941111 .Jo 
104221 
1-41 
1913C1 
1"4321 
1i4141 
354301i 
104421 

*4444444t6522 3333332l33222 223I11111111111111 l122333333332233)32222222222 211 5 
54444663333442333333442!5313344 33133131334434442121121 1 11 1 1 %1 1 1 1&2 333333332222222222222 222222221 1 
4554444U633333322222233335555"33221II2222333322II13 111t 222222222222222222t 1122. 
*65444458333333222z22 13344442?222222221111111111111111113 12211111 22132211222211tt222222221122* 
!54433.52233332222?23333444442222222222222222222? 22222 1 1111122131122221 32 1111222222222222222222-
*2Z33336f133344'33333 3335555533332 2 2a2222?? 2 z2 111I1122222222111113 221122222222222222222224 4444 1J4 4443 3 3224 44453333 2 ?2 2 2 ??22?22 22222222222222222221 222 ;222 2222222 2 22 322222 -
*22 1 11133 1:112222222222224414444222 22222 2222 22222222222221 11 111 122222222111t 12222 222222333 Z33222222.°.22i232i 21$1t 224444222222 ill;iP2222P~liliikilltIJ22222211222222222222 2 22 . 
* I'll3211112213IJ2222224444442'222211311122221111 11111111 2222222222222211222,22222;2 22222222111 
'3131 22111111 I 11122224444442222111111112211222 11222222'222222222222222221222222222222222 2211 S 
-11 13 tIl tlllllll34444222211111111111 112211?22222?22222222222222211111 222222222222' 

1111 It 11112e22221 1111111i 11 lll222222222222?2222222222222111111221t1131111 222222k 
411 II IIIl 1222222222222211 112222222222211222 221222 111 
* II 22111111222222222222211I 111 11I111 11222222222 
-It Ii 111 11222222221111 II' 

21 '1 1q.10
1 . 3 Iq.lq 
3%04 6.*5 
11.23 IS7 
12.Ll 1i S" 
11. ) 131. 
)1I.2 016 

$34.........11 -1, lli~ 
R.62 ....... 
1.4 ......... 
4 Iq ........ 
9o", *........ 
0 311, . 
11 451 S 

' .4*4t4*SS 

FIGURE 4.3-7. DAY 66 (1919Z to 2011Z) 3 GHz DBZ CONTOUR 



RANGE IN IL3MEIFPS r 20GPZ Cw 30GH C, 
GCCCC00000000 00 00000000000C 000000000000000000000 

CC000i 111It11122222222223133333 33AAAA 44AIn5
 

.
 
I "1s#.
19s03 4 0.43 1.54
~ 
11231 a*
1 3. 
 0.39
 

1Q20C3 4 0.59 1.3 
12043 * * 1.70 7.20 

IQ2tfl * A 1.55 0 70
 

0231 5* 
 1.15 0.63
1 .3g 33 1 7? 0.63
 
I02373 * S 5 15 0.4"
922) 
 4 4.15 0.59
1022z3 
 .11 0.47
 
19203 t n0 i 0.47
 
192323 I 1 40.V
 
13?1 3 *l1 4 1423 0.S1
 
1S21C3 4 
 S 3*39 0.51 

I1 l423 
 .30 0.39
 

1 0.
!42:23 44 

392R23 1.451 " 0.5
 

152923 * 13.3 0.402 CC 
 5 11 0.62
 . 30 5
 
19243 * . 0 


II 39 4 

13 44
IQ?'03 * 1,37 1.36
 
392.23 514 1.35 0.??
s2C333 I* 35 0.44

Q.1
 
044 3 


p~ I~fll .33 * 1.39 .3 
34'I'3211.55 
 00.1
144} l ll l 4II~ '.2' 0.5? 
193003 II1111111 11 1 *l 3.30 1.48* 13' 14
 

*320 
 4 .47

393303 Sl l l~ l 2 l l l l l 1131111 1111 I II*4S4 4 * 1 

l4J23 -11 11 ll.*lI 
 9.30

43'I.
A O.1I 3.46
 

I1 IlCl3 IIIIIII IIIit.4' 1.5'
 

193 C3 1111113t2222L113311 llIllIllllll lilt) 4., 
i.'t A r ,

I2241 l'1111 *3' 1(511 1 24114(11111 1111111 .11, 1 
15 3- .3 *21 1M 1V 111 1 1111 1l l3l ill3,l1 46 

3 93A '11311222211 teIIIlI3111305 3.'3 

1 3121 422111,1 I 11111111111111311 lilt 
3103 *1;1111 11113111 1111 22223 111 1 11111111113101111 11 764 

l3 0 3 3 '7211lllllll2211.2 222 11111311 11 1113111liI1111311111112113 1 21l11211111111 5 1.i1
4222113311313,1 11 6.5
A 2'16Nl3lC3 43322431113311111111111111 * 30
 
s3 23 ' Z,4 11 ) '44M,1
3I 211111111111 Il 4.31
.3 1.2?21111 

143P4 *2211212 2I1331111II11122222222222222222233222222111111111111I1
I0q3d3 *544232432)*132)222 III 0.50 I*70II3I)1311222222222222211I11111111 
 It 13 23 3.? 

343 .S!54444441112333322I112222I33111111l 1 IIIIII A 35 791 t1 Il2222?2211?222l~3I11111 oi 4 ­
1S0103 * 4444!33344443333223 2222221 212I 1111113122222?2222221 1II[ 1111: ?0' 54 1.412.41 10.19


1403
*54433332*222223333232212l1311111111111l11111:1 

3440?3 *54444333344332222 22223331 11331131331111311 III111IIa 1111111314, 1-4
1111221322111313131 MIIIIII 30.6
:94043 '65443 323 2222722 121221111 i I' I0 76
 
01941, 64433443344444444333322332 2233??222222,227?Il '11111311113111 22221 131111111131:1122222213111222211114 32.34 1S "6
1041.' '44444444444443 21 3I3223.14
11 11.10
 
s.1.3 *221331 Z 222 11 11112.112222113111 1222221 2,l


314'01 
 72 33322221*14414* * 
304)221122'22?2'22SI 311333 22 23 111131111111313131122222 31131311 22??2?222?2221 111311 a].14 .
 

1044)11 110331 P111112 1111 22211222?22f23 I34
,2 22222*2231111111i121 I?2??2222I S.......
 
10430 1 .122 i'11111 l2222222Z22222221 ! 12234Il
l11 22......11 1331'10313113 

104143I 1312?222131311111311111213133112221 222 . 50........ 
5 1111111131222222222211131 I i 1111 31113111131:111:11111 * I . *SSSlbi44 

1 4443 * 11222222111111 1111131111131 331 9.3. . . . 
194 11111111i3111111111111 1111113122111111131111113t!2222222. 11.5........... 

FIGURE 4.3-8. DAY 66 (1919Z TO 2011Z) 8.75 GHz DBZ CONTOUR
 

'
 

V11 


W9}
 

http:3I3223.14


They analyzed 1, 3 and 10 cm wavelength radars and assumed the Marshall-Palmer
 

(Ref 4.3-7) distribution function for the drop sizes. APL found that to
 
determine the drop size distribution function
 

1) the combined system errors for both radars must be less than 

than 1 dB, 

2) the range interval for averaging must be about 1 km (acondition 

not often observed for intense rains), and 

3) of the order of 104 independent measurement samples are required 

to obtain average powers resulting in high confidence levels. 

APL also concluded that the 10 and 1 cm combination of two radars was least
 

sensitive to system errors, but that the 1 cm system has short range through
 

rain.
 

To demonstrate the flexibility of dual-frequency radar systems and to
 

experimentally verify the above analytic predictions, NASA at Rosman, NC
 
installed a 3 GHz (10 cm) and 8.75 GHz (3cm) multi-frequency radar system
 

(Ref 4.3-12). Inaddition Rosman also correlated the radar reflectivity with
 

the rain gauge measurements inorder to evaluate the Marshall-Palmer distribution
 

parameters (Ref. 4.3-14). This method has the disadvantage that rain gauges must
 

be located under the path and that drop velocity must be assumed to correlate the
 

temporal effects. The Rosman results fo both techniques were highly variable
 

and did not cross-correlate between measurement methods. Itappeared that
 
determining an accurate calibration for the 8.75 GHz radar over a uniform rain
 

rate range was a limiting factor. A technique for taking the rain rate non­

uniformities into account was developed by Goddard Space Flight Center (Ref 4.3-15)
 
but this was not applied to the Rosman results until later. However, considering
 

the present state-of-the-art of radar systems, their constraints preclude the
 

use of multi-wavelength and single wavelength-rain gauge systems to determine
 

drop size distributions along the ground station-satellite path.
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4.4 RAIN GAUGE MEASUREMENTS
 

Rain gauges provide a simple, continuous monitor of surface rain
 

rates which have been accumulated by the National Weather Service over a period
 

of years at many locations. Consequently, efforts have been made to extrapolate
 

these results to cumulative fade distributions statistics. Initially, NASA­

sponsored work was done for the Radio Frequency Interference and Propagation
 

Program (RIPP) by the Department of Meteorology of the Massachusetts Institute
 

of Technology (Reference 4.4-1). These investigators found that intensity
 

distributions of the rainfall rates for 30 second periods varied significantly
 

compared with the one minute to one hour resolution average rates for thunder­

storms and non-thunderstorms. They concluded that hourly or daily precipitation
 

amounts do not add information on very short-period rainfall rates beyond that
 

contained in the annual amounts of thunderstorm and non-thunderstorm rain. It
 

was not resolved if the half-minute rainfall rates, corresponding to spatial
 

lengths of 0.5 to 1.0 km, provide enough detail for assessing the communication
 

problems of link attenuation and scatter.
 

Later work by COMSAT with the ATS-6 millimeter wave experiment
 

Ref. 4.4-2) showed that the inconsistency between rain gauge measurements and
 

link attenuation could be greatly reduced if the falling speed of the rain drops,
 

i.e., two to nine m/sec for drop sizes of 0.05 to 0.7 cm, is taken into account.
 

With these adjustments in time and drop size spectrum a network of six rain
 

gauges extending 7.4 km below the 20 GHz ATS-6 beacon showed the correlation of
 

measured to predicted attenuation shown in Figure 4.4-1. It is expected that if
 

wind effects, evaporation, condensation, etc., were also included an improved
 

correlation would be realized.
 

In addition, it is necessary to consider the positions of the rain
 

gauges with reference to the height of the rain cloud and the characteristic
 

size of the rain cells; both are dependent upon the rain type and other meteor­

ological conditions. As a general rule, in order to avoid the discrepancy
 

between the precipitation rate determined by attenuation and the precipitation
 

rate derived from the rain gauge fields, the rain gauges should be placed so
 

that the evaluation of the rain rate, is at a height lower than the boundary
 

of the rain cloud and so that the distance between rain gauges issmaller
 

than the characteristic size of the rain cells (Ref. 4.4-2).
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Ohio State University has analyzed the ability of rain gagues at
 

two or three closely space sites to determine the effective rain cell dimen­

sions and orientation (Ref. 4.4-3) Two rain cell models were considered:
 

the circular cell and the elliptical cell. In both models it is assumed that
 

the rain rate is constant throughout the cell, that all cell locations are equally
 

likely, and that the cell dimensions depend on the rain rate. By spacing the
 

gauges about km apart, the model allows one to deduce the effective cell
 

dimensions and orientation of the semi-major axis for elliptical cells. The
 

analysis has not been reduced to practice, but it is simple and relatively
 

inexpensive to do so in order to test the analysis.
 

All of the above factors are extremely complicated because of their
 

dependence on meteorological conditions. Therefore, efforts to incorporate
 

surface rain measurements into precipitation attenuation studies have only
 

been moderately successful. Additional work is still required, not only within
 

localized areas, but extrapolation techniques to other regions of the globe
 

remain highly unreliable.
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V. CONCLUSIONS AND ONGOING ACTIVITIES
 

The understanding of millimeter wave Earth-space propagation effects
 

has made tremendous progress in the last decade. Studies and experiments
 

sponsored by NASA, in the frequency range above 10 GHz have yielded signifi­

cant data bases for the design of advanced communications systems, such as
 

the Tracking and Data Relay Satellite System, Intelsat V, and Satellite Busi­

ness Systems, and ongoing programs with the CTS and COMSTAR satellites are
 

developing even more extensive data bases in those areas not yet resolved.
 

It appears that the following propagation topics in the frequency
 

range from 10 to 30 GHz, are now understood to such a level that they can be
 

utilized by system design engineers:
 

o cumulative fade statistics for the eastern and mid-west US
 

o site diversity gain and station separation
 

o bandwidth coherence limitations
 

a calibration of radiometers versus path attenuations up to 10 dB
 

o frequency scaling or rain attenuation
 

o radar backscatter for a wide variety of rain cell structures
 

In contrast, the following areas are of interest to system designers
 

and remain unresolved to sufficient depth to yield system designs. These
 

include
 

o low angle scintillation and fading
 

o depolarization from both rain and ice
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o 	 angle-of-arrival variations in the signal
 

o 	 use of low frequency radars for the prediction of attenuation
 

at other frequencies.
 

o 	 correlation of instantaneous rain gauge measurements with link
 

attenuation
 

o 	 theoretical modeling in support of all the above topics
 

NASA is continuing to support research programs in the above areas
 

and expects that significant results for minimum additional investment will
 

be obtained. Examples of several of these ongoing programs and some of their
 

anticipated near-term results are now summarized.
 

At the University of Texas at Austin continuous measurements of the
 

attenuation and cross-polarization isolation of the 11.7 GHz CTS beacon are
 

being made. Inexcess of 11,000 hours of statistics will be acquired by the
 

end of 1977. The data obtained so far indicates that the cross-polarization
 

isolation (CPI) can be related to the attenuation (A)during rainstorms by a
 

relation
 

CPI(dB) 37.5 - 16.5 loglo A(dB)
 

and that ice crystals reduce the CPI below 30 dB about 17% of the time in
 

Austin, Texas.
 

The Virginia Polytechnic Institute and State University group are
 

conducting attenuation and depolarization measurements at 11.7, 19 and 28 GHz
 

using both CTS and COMSTAR. They have developed software systems to provide
 

over 50 different plot types for each rain event to assist in cross-correlation
 

of data.
 

Ohio State's experimenters are continuing to study the angle-of-arrival
 

and attenuation data from the CTS beacon. Their angle-of-arrival results are
 

yielding a model for the prediction of the average antenna gain degradation as
 

a function of frequency, antenna aperture and elevation angle. The high reso­

lution radar and radiometer facility at Ohio is determining the statistics of
 

rain cell dimensions based on radar calibration technique combining radio­

meters and radars developed at Ohio State.
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The Applied Physics Laboratory of Johns Hopkins University iscon­
tinuing to refine their previous work on predicting satellite link attenuations
 
with S-band radar backscatter measurements. They are also continuing to check
 
their method of predicting absolute rain fade distributions at other worldwide
 
geographic locations. Eight comparisons at frequencies up to 37 GHz have been
 
completed and the results are very promising. Rain drop size distribution
 
effects are also being studied using independent instrumentation.
 

At NASA's GSFC and Rosman stations measurements of the degradation
 

of video channels during rain events are continuing. Preliminary color bar
 
test results indicate that significant fades (10 dB) are possible on the CTS
 
12-and 14-GHz links with minimal color video signal degradation. Additional
 
statistics are now being acquired during fade periods.
 

NASA is currently planning additional propagation experiments with
 
the Space Shuttle and the Public Services Communication Satellite (PSCS). The
 

Shuttle Millimeter Wave Communications Experiment will operate in low Shuttle
 
orbits with orbital periods of approximately 90 minutes and spend a significant
 
percentage of time at low elevation angles from an individual ground station.
 
Measurements (two-way) of the propagation effects on frequency re-use, wideband
 

analog and digital techniques and multibeam communications are planned during 
passes over the ground stations. Aboard the PSCS, a "multi-beacon experiment" 
isbeing proposed having frequencies near 11.7, 20, 30, 43, 85 and 101 GHz. 
These frequencies would yield propagation data for the fixed satellite, broad­

cast satellite, aeronautical and maritime satellite services. Inaddition, an 
"adaptive polarization experiment," to evaluate electronically adaptive antenna 

techniques which could re-orient the received signal polarizations to maintain
 
maximum isolation during a depolarization event, is being proposed for PSCS.
 

Thus, it appears that the next several years will yield a significant
 
improvement in our understanding of the propagation data being measured. Three
 
satellites are available to users and radars and radiometers are being used
 

far more extensively. Persons requiring answers to unresolved propagation
 
problems are encouraged to review the papers being presented at the URSI meet­

ings. NASA is encouraging its personnel and contractors to make their results
 
available at these meetings. Questions may also be addressed to the Communica­

tions and Navigation Division, Code 950, NASA Goddard Space Flight Center,
 
Greenbelt, MD 20771.
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