


MATHEMATICAL AND COMPUTATIONAL SWDIES OF THE STABILITY 
OF AXISYMMETRIC ANNULAR CAPILLABY FREE SURFACES 

by Norman Albright, Paul Concus, and Ilkka Karasalo 

We present here the results of our mathematical and computational 

studies of the stability of a liquid in a rotationally symmetric 

container subject to gravitational and surface forces. Of specific 

interest is the case for which the'contact angle is zero, or nearly 

zero. The application of primary concern is that of stability in a 

vertical right circular cyclindrical container with a concave 

spheroidal bottom, for the case in which the volume of liquid is 

sufficiently small so that liquid lies only in an annular region of 

the container. Numerical computations are presented for a container 

used for the storage of liquid fuels in National Aeronautics and Space 

Administration Centaur space vehicles, for which the axial ratio of 

the container bottom is 0.724. 

Our studies consist of several self~contained parts, which are 

discussed independently in the appendices that follow. 'In Appendices I 

and II are derived the mathematical results on which our static-analysis 

computations are based. These results are concerned with the conditions 

for the contained liquid to be in stable equilibrium. Of particular 

interest is the case of zero contact angle, which has previously not 

received adequate mathematical treatment in the literature. 

A'configuration is in stable equilibrium if and only if it 

strictly minimizes the sum of the surface and gravitational potential 

energies, among all nearby configurations with the same liquid volume. 

With a suitable choice of variables, the problem of,stability may be 

approached as a variable-endpoint problem in the calculus of variations. 
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Using this approach conditions are obtained that distinguish 

between ",table aIld uns.table cases in. a satisfactory way·, 

if.the contact angle is not zero. If the contact angle is zero, the 

formal limits of the endpoint conditions depend crucially on whether 

or not the curvatures of the equilibrium interface and the container 

wall coincide at the three phase contact lines. If they do not, the 

limiting endpoint conditions will be of the fixed type. 

It is shown that for. zero contact angle the stability 

criteria based on the fixed end-point conditions apply if only the 

analytic continuation of the equilibrium liquid-vapor interface does 

not penetrate the container walls at the three-phase contact lines. 

If it does penetrate, then the configuration will be unstable regardless 

of the conditions on the second variation of the total potential 

energy. 

A computational study based on the mathematical results in Appendices 

and II is carried out in Appendix III. The critical Bond number for 

stability is calculated for the Centaur space vehicle tank as a 

function of the liquid volume for contact angles of 0°, 1°, 2°, and 4°. 

For the zero-contact-angle case, the specially derived end-point condi­

tions are used, while for the latter three cases the usual variable 

end-point condi tions are used. The zero-contact angle results are 

found to be consistent with the limiting ones for the nonzero angles. 
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Of particular interest for the case of zero contact angle is the 

appearance, for this problem, of a critical liquid volume marking a 

qualitative change in the nature of the solution. For liquid volumes 

-
less than the critical one the stability limit is determined by the 

fixed end-point conditions, whereas for liquid volumes larger than the 

critical one the stability limit is determined by the non-pe?etration 

criteria discussed above. This feature corresponds to the existence 

of (unstable) equilibrium configurations for Bond numbers larger in 

magnitude than the critical one only for the small volume case. The 

critical liquid volume for the-Centaur tank corresponds to a fill 

height of 0.5031 a, where a is the radius of the tank. 

The numerical results presented in Appendix III have been found 

to he consistent .with preliminary experimental results obtained by 

E. P. Symons at the NASA Lewis Research Center_ 

In Appendix IV small-amplitude,-periodic sloshing modes are 

calculated for the container configuration studied in Appendix III, 

for zero contact angle. As must be the cas'l:. for a conservative 

mechanical system, the critical Bond numbers for stability obtained 

from the dynamic analysis are found to agree with those calculated 

from the static analysis. Agreement is also found on the value of 

the critical liquid volume for which equilibrium configurations 

can exist nearby the critically stable one. 

Oscillation frequencies or growth rates are calcnlated for 

several Bond numbers and liquid volumes, for normal modes having up 

to six angular nodes. The computations indicate that for liquid 
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volumes smaller than the critical one, the sloshing modes without 

radial nodes generally become unstable before those with one or more 

radial nodes, as the magnitude of the Bond number is increased. The 

calculations Ior Targer liquid volumes indicate that' ali modes become 

unstable together, in agreement'with the cessation of existence of 

a nearby equilibrium for. this case. 

The above results are depicted graphically, and growth rates for 

the dominant unstable mode for a liquid volume corresponding to a 

dimensionless mean fill height of 0.30 are given for three different 

liquids. 
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ABSTRACT 

The stability, in terms of minimum static energy, of axisymmetric annular 

liquid interfaces in axisymmetric containers is studied mathematically. The 

sufficiency of stability conditions based on the Jacobi accessory minimization 

problem with respect to volume conserving, "weak" perturbations is proved in 

two cases: Firstly, sufficient conditions' for stability in the general case 

of nonzero liquid-wall contact angle are considered. Secondly, the formal 

limit of these conditions, as the contact angle tends to zero is proved to be 

correct, provided that the curvatures of the unperturbed liquid-vapor inter­

face and the container wall are not equal at their contact lines • 

..:!:.~~receding page ,blank ,~U.t4~ 
-- I 
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1. FORMULATION OF THE PROBLEM 

In this paper we study mathematically the stability of certain configur­

ations of liquid contained in an axially symmetr~c tank in a ,gravitational ' 

field directed along the axis of symmetry. We require that the tank shape 

and'the liquid volume are such that the liquid-vapor interface is annular, 

i.e. it does not intersect the axis of symmetry, cf., fig. 1: 

z 

Vapor Vapor 
Container 

wall 

r 

XBL 766-3054 

Figure 1, Example of permissible liquid-tank configuration 
and the associated cylindrical coordinate system. 

A configuration is one of stable equilibrium if and only if it 
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strictly minimizes the total static potential energy of the system, given 

by 

E = cr(A - cos Y A ) + E , (1.1)f w g 

compared, to all nearby configurations with the same liquid volume V. Here 

a : 0 and 0 2 y < ~ are constants determined by the physical properties of the 

liquid and the wall, Af and Aware the areas of the liquid-vapor and liquid­

container interfaces, respectively, and E is the gravitational potential
g 

energy of the liquid. 

We shall study below the behavior of the energy ,(1.1) when the liquid is 

perturbed slightly (but not necessarily rotational symmetrically) from a 

configuration of rotational symmetry. For our purposes, a parametric arc­

length, normal displacement representation of the surfaces (cf., e.g. Reynolds, 

Saad, Satterlee [2]) offers some advantage. Hence we let the unperturbed 

surface be described by the ,equations 

O<</><2~,"1 r = R(S') 
(1.2) 

z = Z (s) s <S<Sl o ­

in the polar co-ordinate system of figure 1 where the' parameter s is' the' arc­

length along the curve of intersection between the liquid-vapor surface and any 

plane </> = constant. Then the equations 

r = R(s) - n(s,</»Z' (s) 0 < </> < 2~ 

(1.3)

1z = z (s) + n(s,</»R' (s) ; So (</» 2 s ::: sl (</» 

describe a surface obtained by'moving each point of the surface (1.2) the' 

distance n(s,</» in the direction of the principal normal. In general, since 

we want the'perturbed surface (1.3) to intersect the container walls, the 

functions Rand Z of (1.2) must be continued in the s-direction to some open 

interval containing [so,sl]' cf. figure 2. A 'convenient way of doing this, 

which we will use in the sequel, is provided by the differential ,equations 

(1.11) below. 
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z 

vPerturbed surface 

, ""...-- Un perturbed su rface 

.....0-\ 
5, (4)> 

'-------'~ r 

XBL 767-3072 

Figure 2: 	 The arc-length, normal displacement coordinates: 
Intersection between the surfaces and some plane 
cjJ = constant. 

Similarly, we let the container wall in some neighborhoods of the unper­

turbed contact lines (s = So and s = sl in (1. 2») be given by 

Ir = R(s) - w(s)Z'(s) 

(1.4)

Iz = Z(s) + w(s)R'(s) 

«1.4) is not adequate if the contact angle, y, between the unpert~rbed surface 

and the wall is w/2. To avoid unnecessary detail we therefore assume y * w/2 

in the following). 
For any equilibrium configurations, the functions Rand Z will be suffi ­

ciently smooth for the perturbed surface (1.3) not to intersect itself when 

In(s,</» I, I·n (s,cjJ) I_and IncjJ (8,cjJ) I are small. (For this, it is sufficient that
il 

R"(s) and Z"(s) are bounded in some open interval containing [so,sl], cf. 

Concus, Crane, Satterlee [5], p. 4-6, while in fact it follows from the 
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differential ~quations (1.11) below that Rand Z may be. continued analytically 

to some open region containing [so,sl] in the complex s-plane). Then the 

increments of the quantities appearing in (1.1) and of the volume may be 

calculated in a straightforward way. One obtains 

oE(n) = cr • (oAf - cos Y . oAw) + OEg 

21f sl (<I» 

=f f {fA(n,s) - fA (Q,s) + fg(.!J.,s)} dsdq, 
o So (q,) 

(1.5) 

(1.6) 

where we have put 

T 
w = w(s) = (w(s) ,w' (s) ,0) (1. 7) 

and, denoting R = R(s), Z = Z(s), 

(1.8) 

fV(.!J.,s) = njl + i (R"Z' - Z"R')/ (R - iZ') 
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where p, the liquid density, is assumed to be constant and g is the gravi­

tation constant with g >, 0 if the gravitation force is directed towards the 

negative z-axis. We note that when R > 0 all of the functions fA' fV and 

fg are smooth ~in fact analytic) in the arguments ,n, ns and n$' in a neigh­

borhood of n = Q. 
A first necessary condition for n'= 0 to be a local minimizer of oE (We 

shall need to make the meaning of "local" more precise below. For the moment 

we may consider all n which are continuous and smooth in some open region 

containing so($) : s : sl($), 0: $: 2~.) when oV = 0 is that, for 

some constant A all first-order n-terms in oE-AoV vanish. Using the notation 

in (1.5) - (1.8) this necessary condition is expressed by the Euler-Lagrange 

equation 

afA af 
-,-CO,s) + ~(O,s)on - on ­

(1.9)
in s < s : sl' with the additional condition o ­

cos Y fA(w(s.),s.) - fA(O,s.) = 0 i= 0,1. 
- 1 1 - ]. 

Putting B = pg/cr, H = A/cr, using (1.8) and the identity
o 0 

R'(s)2 + Z'(s)2 _ 1 (1.10) 

(1. 9) becomes: 

Z" = R' (B Z - H - Z, /R)
o 0 

R" = -Z'(B Z - H - Z'/R)
o 0 

(1.11) 
with the boundary condition, that the curve 

(R(s),Z(s)) intersects the container walls 

at s = So and s = sl' under the contact 

angle y. 
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(witho~t loss of generality we have excluded the contact. angles ~ - 7 also 

allowed by (1.9)). 

Assuming now that R and Z are such that (1.11) and, consequently, (1.9) 

are satisfied, a second necessary condition will ~e that the terms of .second 

order in n, ns and-n¢ will give a non-negative contribution to oE for all 

n satisfying the volume constraint. When y > 0, we may formulate this condition 

as follows: 
27T 	 S 

f 	f 1 nT{fA (O,s) + f (O,s) - AfV (O,s)}Tl dsd¢ - :!l!l - g.!I!l - nn - ­o 	 s ­
o 

:l- f	2~ {0:0n(so,¢)2 + 0:1n(sl'¢)2 d¢}~ 0 


o 


for 	all n such that (1.1.2) 

• n (s ,¢) dsd¢ o 

Here we have put 0:. 
1. 

(_l)i d { 	 }
= 2' ds cos Y fA (w(s) ,s) - fA (O,s) + f (w(s) ,s) - AfV~(s) ,s) 

tan Y g s=s. 
~ 

i=O,1. (1.13) 

Using (1.7) - (1.8), the second derivatives appearing in the first integral 

in (1.12) are seen to be diagonal 3 X 3 matrices, and (1.12) reduces to 
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f1 2 
{A(S)n! :I- B(S)n: + C(S)n }dsdcj> 

s 
o 


271 


± S{a n (so·,·cj»2 ± .a1n (slA).2}dcj> >-0.o
o (1.14) 

for all n such that 

(71 Sl


1 1 A(s)n(s,cj» dsdcj> = 0 


o So 

where A(s) = aR(s),· B(s) = a/Res) and C(s) is smooth (analytic) in [so,sl]' 

see (5.1) below. 

By standard results for symmetric, semibounded ·quadratic forms in .Hilbert 

space (see e.g. Kato [1] p. 322 and pp. 352-353), (1.14) may be analyzed in 

terms of the eigenvalues and eigenfunctions of an associated selfadjoint 

differential generator: 

in So ::: s :::: sl' 0 :::: cj> :::: 271, with the 

boundary conditions, that n should b~ 
(1.15)periodic in cj> with period 271 and 

iA(s.)n (s. ,cj» = (-1) a.n(s. ,cj» , 0 < cj> <_ 271,
181 ]. 1. ­

. i=O ,1. 

T has a complete, orthogonal system of eigenfunctions of the form 

(1.16) 

with associated eigenvalues (in increasing order in the index i) 

00 

{Aikli=l,k=O 



determined from the boundary-value problems 

{~=O,l,?: •• 
~=1,2,3 .••

j=O,l 
(1:17), 

We notice that all eigenfu~ctions (1.16) but those with ~ = 0 satisfy 

the side condition in (1.14). Furthermore, since B(s) > ,0 in s < s < s " 
o - - 1 

we see from (1.1'1) that the eigenvalues Aik are increasing functions of k. 

It then follows that (1.14) holds for all n in the class of continuous 

functions in So S s S8 1 , 0 S <jl S 2'1r which are periodic in <jl with period 

2'11' and have square integrable first derivatives (see e.g. Kato [1], p. 323, 

Cor. 2.3) if and only if 

(1.18) 


2'1r sl 
2

where, denoting (f,g)o = f i f(s,<jl)g(s,<jl)dsd<jl, tl and 8 are the solutions
1 2 

to o s 
0 

2 2 2 2
131 (IlIO,A)'o - 82 (1l20 ,A) 0 = 0 

(1.19) 
2 2 1t\ (lllO ' IllO) 0 + S2(1l20 ,1l20)o 

(with 82 = 0 if the solutions are non-unique). 

The purpose of the present paper is to provide a theoretical complement 

to a computational study of this kind (Concus, Karasalo[i]). There the 

necessary condition (1.18) is used to distinguish between stable and' unstable 

equilibrium surfaces in the limiting case y = O. We will therefore here 

first show, that when y > 0, (1.18) with strict 'inequality iS,a sufficient 

condition for our constrained minimization problem, when n is allowed to 

vary in a "weak" type of neighborhood (cL e.g. Bolza [3], p. 68-70) of 

n = O. Then, as the main result (which may be new cf. Gillette [4], p. 23), 

we will show that (1.18) with strict inequality and the eigenvalues computed 

from (1.17) but the boundary condition 
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k"O,l •••j " 0,1 (1.20)
;i=1,2 ... 

;is a suff;ic;ient cond;ition for the constrained minimization problem (again, 

'in a "weak" sense [3]) 'when y = 0 provided that the curvatures of the unper­

turbed surface and the container wall are not equal at the unperturbed contact 

lines. (This additional condition on the unperturbed surface in fact turns 

out to be necessary (see (5.3) below) in order for· the boundary conditions 

of (1.17) to converge formally to (1.20) as y + 0.) 
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2. SOME NOTATION AND LEMMAS 

We denote by E the closed domain so($) ~ s ~ sl ($), 0 ~ $ ~ 2n in the 

(s,$)-plane. We require that a permissible perturbing function 

n= n(s,$) in (1.3) should have the following regularity properties: 

a) 	 n is continuous 'in E and p,eriodic in $ with period 2n. 

b) 	 ns and nd are continuous in E except possibly at finitely many points 

or finitely many piece~~se smooth curves with finite length. In 

particular, n is piecewise continuous as function of s for all $. 
s 

c) 	 den) = supln(s,$)I+ suplns(s,$)I+ sup!n$(s,$)I < '" (2.1) 

where the supremum is taken over all points of E where ns and n~ are 

continuous. 

d) 	 The functions s.(~); i=O,l are continuous, and such that s.(q,) - s., i=O,l, 
~ 0/ 	 1 1 

change sign at most finitely many times in 0 <' $ < 2n. s.' ,($); i=O,l, are 
-	 - 1. 

continuous except possibly at finitely many points in 0 < q, < 2n and 

1 

deE) =:2: (supls.($),- s.1 + supls.'($)I) < '" (2.2)
1. 1. 1. 

i=O 

where the supremum is taken over all points of 0 < q, < 2n where s '(q,)
o 


and sl'($) are continuous. 


We notice, in particular, that conditions a), b) and c) ensure that 

n, ns and n$ are square integrable on E. We also require that the function 

w for the container walls (1.4) is sufficiently smooth in some neighborhoods 

of s = sand s = sl' We will further denote the closed rectangle So S s S sl' o 
o < 	$ < 2n with E and use the notation 

o 

(f,g) = fn ('1 ($) f(s,$)g(s,q,.) 	 (2.3)dsd$Jo 	JS ($)
o 

II fll2 = (f,f) 	 (2.4) 
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= (0 SSSl f(s,<1»g(s,<1» dsd<1> (2.5)(f ,g) 0 J" 
o 

2IIf1l ", (f,f)
o 0 (2.6) 

for real-valued functions f and g for which the integrals exist. 

The following lemma will be useful in the y > 0 case: 

Lemma 2.1: Let ~(s,<1» satisfy the requirements a) - c) above on the rec­

tangle lb. Then there exi",ts a constant 13, depending only on So and sl 

but not on~, such that for all r ~ 1, 

(2.7) 

Proof: For any continuous function y(x) with a square integrable first 


derivative in a < x < b and any r > 1 it holds 


b 
2 2r2 22(b-a) f y'(t) 2dt fb

iy(x) i < 2r+1 + (b-a)(2r-1) y (t) dt 
a a 

ina<:x<b. (2.8) 

«2.8) is the Sobo1e~ inequality (see e.g. Agmon [6], p. 32) in a special case. 


The constants appearing on the right may be derived by elementary methods 


(Kato [1], p. 192-193». Hence, we obtain for any ~(s,<1» with the assumed 


properties, any r ~ 1 and any 0 ~ <1> ~ 211, 


f s 
4r 1 ~(s,<1» 

2
ds 

s -s
los 

o 

The lemma follows by integrating this inequality over 0 < <1> < 211 

Now denote the quadratic form appearing in the first inequality in 

(1.14) with Q (n). We then have 
0­



19 


Cor 2.1: Let p(s,~) satisfy the requireme~ts a) - c) in the rectangle E 
o 

and assume that, in (1.14), A > A(S) > A. > 0, B > B(s) > B. > 0,max - - ml.n max - - nun 
C > IC(s)1 holds in s < s < sl' Let Q (p) be the quadratic form defined max- 0- - 0­

above. Then there exist positive constants Ko' Kl , Lo' Ll , 
depending on s ,

o 
on p, such that 

(2.9) 

Proof: The statement follows by using the mean value theorem and (2.7)(with 

a sufficiently large r to obtain the right inequality in (2.9». 

We remark, that the A(s), B(s) and C(s) in (1.14) will satisfy the above 

assumptions in some closed interval containing [so,sll in its interior, because 

of (1.11) and the assumption that the unperturbed surface does not intersect 

the z-axis. 

Our sufficiency proofs will rely mainly on the following perturbation' 

result for the quadratic form Q (p):
0-

Lemma 2.2: Let A(s), B(s) and C(s) satisfy the requirements in Cor. 2;1, and 

let OA(s,~), OB(s,~) and OC(s,~) be bounded and integrable in E. Further, 
o 

let OCXo (~) and OCX (<P) be bounded and integrable in 0 < ~ < 2"1[., let ·8 > 0 and let
l 

~ be the functional 

{(CX (2.10)+fo
211 

o + OCXo)p(so,~)2 + (CXl + OCX1)\l(sl,~)2} d~} 

over all \l satisfying conditions a) - c) above and such that 
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(2.11) 

(2.12) 

Let IIfll denote, as usual, the supremum of If I over the domain of f and 
00 

assume that W = W(O,O,O,O,O,O,) > O. Then there exists positive constants 
o 

K and a independent of aA, aB, aC, aa ,001' and E, such that o 0 

(2.13) 

holds true, if only 

(2.14) 

Remark: K and a may depend on A, B, C, a ' a
1

, So and sl. A similar upperoo 
bound also exists, and the results apply, with obvious modifications, also to 

the case W < O. 
o 

Proof of Lemma 2.2: Let Q (V) be defined as in Gor. 2.1 and denote, similarly,
0­

the quadratic form in (2.10) with (Qo + aQo)(V). Then, by (2.7) and (2.9), 

it holds for any V satisfying (2;11) and conditions a) - c) above, 

(2.15) 

where Mo' M1 , No and N1 are positive constants, independent of aA, aB, aC, 

aao' aa , and E. Since by (2.12) <p is non-increasing as function of E,1
we obtain from (2.15) 

(2.16) 


Now let e.g. ~ 2M1 and assume that )l is any function satisfyingaA o 
a) - c), (2.11) and (2.12) such that 
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(2.17) 


Then by (2.15) and (2.9), 

(2.18) 

for some positive constants M2 and N2 , independent of oA, oB, oC, oU ' 
o 

OU , and E. Obviously, then, when forming the infimum in (2.10), only the
1

subset of ]1 satisfying (2.'18) need to be considered. Now put 

(2.19) 

\I = C1 (]1 - C2f*) (2.20) 

where C
1 

and C
2 

are chosen 	so as to make \I satisfy (2.11) and (2.12) with 

e: 	 = 0, i. e. : 

(A,]1)o 
(2.21)

(A,f*) 
o 

.Notice that (A,f*)o is a positive constant, dependent only on A, s and 
o 

sl' By (2.11), (2.12), (2.14), (2.18) and (2.21), 

~> 	 (2.22)
C ­

1 

Here, and below, CK' k = 3,4,5 ••. will be some positive constants, independent 

of oA, OB, oC, oUo' oU and E. Now form,noting that f*(s,$) vanishes onl 
s = So and s = sl ' 

+ C(s)jlf * }dsd$ . (2.23) 
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Using the mean value theorem and Schwartz inequality in the last term, we 

obtain by (2.22) and (2.18) 

~2.24) 

We can now form 

W - (Q + oQ )(~) < Q (~) - (Q + 0Q )(~)
000--0 0 0­

(2.25) 

where we have used, in turn, the definition of Wand (2.15). Then we use 
o 


(2.22), (2.24), (2.15) and (2.17) to obtain 


(2.26) 

if only 0A S 0 , where e.g. 0 = min{2~4' ~o} and K is some positive constant,
0 0 

independent of cA, OB, .cC, oa ' Oct
1 

, e: and~. The statement of Lemma 2.2 
o 

follows immediately from (2.26). 

For the case y= 0 we will need a slightly modified version of the 

above result: 

Lemma 2.3: Let the assumptions of Lemma 2.2 hold and let W= W(oA, oB, oC) 

be defined as in (2.10), (2.11), (2.12) but under the additional condition: 

, o < </> < 2rr (2.27) 

Put q; = HO,O,O). Then (2.13) holds true, where now 
o 

(2.28) 
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Remark: The constants K, 0 may possibly be different from those applying to 
o 

the case of Lemma 2.2. 

The proof of Lemma 2.3 is similar to that of Lemma 2.2 and is omitted. 

W~ notice, though, that when the boundary terms are lacking in the quadratic 

form Q and Q + oQ', (2.15) is a simple consequence of the mean value 
o 0 0 

theorem and the strict positivity of A(s) and B(s), so that Lemma 2.7 is not 

needed for the proof. 
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3. SUFFICIENT CONDITIONS FOR THE CASE Y > 0 

The following theorem speci~ies sufficient conditions for stability in 

the general case y > 0: 
Theorem 3.1: Let y > 0 in (!.l) and assume that the perturbed sgrf?ce 

satisfies the Euler equations (1.11) with the associated boundary conditions. 

Let further A > 0 in (1.18) and let den) be defined as in (2.1). Then 
o 

there exists a constant d > 0, such that in (1.5)
o 

oE(n) > 0 with equality iff n = 0 in l: (3.1) 

holds for all n satisfying the volume constraint oVen) = 0 in (1.6), the 

conditions a) - d) of Section 2 and 

den) < d (3.2)
o 

Proof: 'Denote again the quadratic form in (1.14) with Q
0-

(n). Then by the­

definitions (1.15) - (1.19) and by the representation theorem for quadratic 

forms in Hilbert space (Kato [1], p. 322-323): 

inf Q (~) ; A > 0 (3.3)
0- 0 

where the infimum is taken over all ~ satisfying a) - d) of Section 2 and 

(3.4) 


(3.5) 


Now consider the expressions (1.5) and (1.6) for oE(n) and oVen). Firstly, 

since R(s) is positive in some open interval containing [so,sl] there exists 

by (2.2) some d ::: 0 such that if del:) -::: d
l 

, then R(s) > R > 0 in l:. By
l - 0 

(1.8) then, when del:) ::: d there exists some constant d2 > 0, such that the
l 

functions fAGn,s), f (n,s) and fV(n,s) are analytic in the arguments n, n 
~ g- - s 

and n$ in the region Inl +Insl + In$1 ::: d2 at all points of l:. By (2.1) then 

at all points of l: where ns and n$ are continuous, we obtain by Taylor 

expanding at:Il.; Q: 
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ilfA 

= -(0 s) ·n+
an -' 

ilf 
fg(n,s) = ~(O s) (3.6)iln -' 

1 T• n + - n fv (O,s)n + hvtn,s)2- nn- - '-!.!. 

where, for some positive constants CA, Cg and CV' independent of n, 

2 2 2
IhA (.!l,s) I < 

-
C

A 
• d(n)(ns + ncp + n ) 

..Ihg(.!l,s) I <- C g d(n)n2 (3.7) 

Ihv(n,s) I :: Cv • d(n)n2 

if only d(n) :: d • Secondly, since the perturbed surface and the container2
wall intersect at s = s.(CP), we have w(s.(cp» = n(s.(CP),CP), 0 < cP < 2n, 

1. 1. '+1 1. - ­
i=O,l. Hence, since by (1.11) w'(s.) = (_1)1. tan y *0, we obtain by the 

1. 

inverse function theorem 

(3.8) 

where, for some positive constants d3 and C ' Ihs(n)l~ c~n2 when Inl ~ d3• s 
Now inserting the expression (3.6) for fV into (1.6) and using the volume 

constraint oV(n) = 0 we get 

fV(W,s)dsd<j> • 

(3.9) 
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Similarly inserting (3.6) for fA and fg into (1.5) and using (1.9) and (3.9) 

gives 

, (3.10) 

2 2 2
Ih(n,s)1 < C • d(n)(n + n~ + n ) (3.11)s 

at all points of E where ns and n~ are continuous. Here again C is some 

positive constant independent of n, and we have assumed den) ~ d2 as in 

(3.7). Introduce for the second integrand in (3.10) for convenience 

(3.12) 

Then, by (1.7) - (1.9), fR(so) = f R(sl) = O. Assuming w(s) to be sufficiently 

smooth for fR to be twice continuously differentiable in some neighborhoods 

of s = So and s = sl and using the definition (1.7) for ~~, Taylor's theorem 

gives 

[ fR(s)ds = - s.)
2 
+h.(~) (3~13)'k 

1 

1. 1. 
1.=0Jll~ 

where, for some positive constants d3, Co and C1 ' independent of ~, 

Ih.(~)1 < c.ls.(~) - s.1 3 , if Qn1y d(r) < d3• USi~g (3.8), (3.13) and 
]. -].]. 1. ­

the notation in (1.13) and (1.14), (3.10) takes the form 
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1{2 22" A(s)n + B(S)nq, + s 

21T , 

(3.14)+ t fa l{U + Ou (q,)}n(so(q,),</»2 + {U1 + OUI (q,)}n(sl,Cq,),q,)2 f dq,o o

where (3.11) and 

i=O,l (3.1S) 

hold, if only den) + deE) ~ d , where again CR and d4 are positive constants
4

indepenpent of n. Treating the last integral in (3.9) by Taylor expanding 

the integrand in the same way as in (3.12) - (3.13) and' using" (3.8) the volume 

constraint gives 

21T sl
I} J A(s)ndsdq, I 

° s o 


(3.16 ) 

if only den) + deE) ~ d ' for some positive n-independent constants RV1,KV2S
 
and d •


S
In order to relate the above expressions for oE(n) and oVEn) to the condi­

tions (3.3) - (3.S) (which involve integrals over the rectangle E ) we now perform
o 


a transformation of variable in (3.14) and (3.16): 


s' - s 
(3.17)s = s(s',q,) = s9(q,) +-s-1---0,,-01(sl(q,) - s (q,»s o 

(3.18)]1(s,',q,) = n(s(s',q,),q,) 
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We note, in particular, that p will satisfy the· requirements a) - c) of 

Section 2 if only dCE) is sufficiently small to ensure ISl(~) - so(~)1 ~ s. > 0 
m~n 

in 0 ~ ~ ~ 2w. Furthermore 

d(S,~) = 1 + k2(~)
a(s' ,~) 

(3.19) 

where, for some positive constants d6 and C independent of n,1 

(3.20) 

at all So ~ s' ~sl and all 0 ~ ~ ~ 2w where s~(~) and si(~) are continuous, if 

only deE) ~ d6• 

Inserting (3.17) - (3.19) into (3.14) and (3.16) we get: 

(3.21) 

and 

I(OW fsS1In (A + o'A)pds'd~1 


o 


~ ~3I1plI~ + ~2 f	2w 

{p(so,~)2 + P(sl,~)2}d~ (3.22) 

o 
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where, by (3.11), (3.19) and (3.20), oA, oB, oC and o'A are functions 

of s' and $, integrable in E and such that 
o 

sup{IOA(S' ,$) I + IOB(s' ,$) I + loc(s' ,$) I + lo'A(s' ,$) I} ~ C2{d(n) + deE)} (3.23) 

when den) + deE) ~ d where C and d are some positive constants, independent
7 2 7 

of n. The supremum in (3.23) is formed over all points of E where the functions 
o 

are continuous. Note, in particular, that the argument in the functions A, 

Band C in (3.21) and (3.22) is s', whence in obtaining (3.23) we have made 

use of the fact that A, Band C of (3.14) (as defined in (1.14» have a 

bounded derivative in E (they are in fact analytic functions of s),. if only deE) 

is sufficiently small. 

Using Lemma 2.1, (3.23) and the mean-value theorem in (3.22) gives in a 

straightforward way 

(3.24) 

if only den) + deE) ~ dS' where C and dS are some positive constants,3 
independent of n. 

Now using Lemma 2.2 on (3.21) and (3.24) (noting (3.15) and (3.23» we 

conclude by (3.3) that, e.g., 

(3.25) 

if only 

den) + deE) < d (3.26)
9 

for some n-independent constant d • Since, however w(s.($» = n(s.($),$),9 ~ ~ 

o ~ $ ~ 21f, i=O,l, it holds 

S~($) (3.27) 

at all points of· the boundary of E, where n$ and ns are continuous. Since 
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further w'(s.) = (_l)i+l tan y * 0, it follows from (3.27) that 
1. 

(3.28) 

if o~ly d(n) ~ d ' where d and C
4 

are some positive, n-independent constants.lO lO 

Hence, by (3.26) and (3.28), (3.25) holds true, if only d(n) < d , where 


- 0 

d is some n-independent constant, and the first part of the statement (3.1)o ­
. of Theorem 3.1 follows. Since, by (3.18), IInll = 0 if and only if IIllll = 0,

o 

the second part of the statement also follows from (3.25). 
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4. SUFFICIENT CONDITIONS IN THE' CASE Y =, 0 

In this section we will show that the statement of Theorem 3.1 also holds 

in the limit y = 0 (defining the limit of the boundary. conditions in (1.,17) as 

la.I~, j=O,l to be (1.20)), if the curvatures of the unperturbed surface and 
J 

the container 'wall,- are not equal at the unperturbed- contact lines. The 

statement is, in more precise terms, the following: 

Theorem 4.1: Let y = 0 in (1.1) and assume that the unperturbed surface 

satisfies the Euler equations (1.11) and the associated boundary conditions 

at s '" ·so and s = sl" Assume further that the function w(s)' of (1.4) 

satisfies 

w" (s.) < 0 i=O,l (4.1) 
~ 

Let A be defined as in (1.17 - 1.19), but with the boundary conditions 
o 

of (1.17) replaced by (1.20), and assume that A > O. Let den) and deE) 
o 

be defined aS'in (2.1) and (2.2). Then there exists a constant d > 0, such 
o 

that in (1. 5) 

oE(n) > 0 with equality iff n = 0 in E (4.2) 

holds for all n satisfying the volume constraint oVen) = 0 in (1.6), the 

conditions a) - d) of Section 2 and the condition 

den) + dCE) < d (4.• 3) 
o 

Remark: In the case y = 0, both the energy (1.1) and the liquid volume of any 

configuration are unchanged if the liquid-vapor 'interface is continued by "wetting" 

the "dry" container walls (and we will make use of this property of the "wetting" 

perturbation in the proof below). With E in (4.2) (see also the beginning of 

Section 2) for such "wetting" perturbations is meant a closed domain, con­

taining no interior points where the liquid-vapor interface coincides with the 

container walls (i.e. possibly wetted portions of the container walls are 

not included in the E). Note, further, that since by' (1.11) w' (s.) = 0, i=O,l, 
~ 

and since w(s) < 0 for s < s < sl' we must have w" (s.) < 0, i=O, 1. w" (s.) = 0 o 1. - 1. 
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meanS by (1.4) that the curvatures o~'the unperturbed sur~ace and the 

wall coincide at the unperturbed contact'line s = s. (and is a limiting case 
1. 

among all sulutibns to {I. 11) that correspond to permissible liquid-tank 

~oAfigurations). 

Proof of Theorem 4.1: Let again Q en) be the quadratic ~orm,in (1.14).
0-

Then, as in (3.3) 

in~ Q (~) = A > 0 (4.4)
0- 0 

where the infimum is taken over all ~ satisfying a) - d) of Section 2 and 

the conditions: 

II~II = 1 (4.5)
o 

(4.6) 

, o < cp < 21f • (4.7) 

Here we denote, for brevity, 

(4.8) 

where fA' fg and fv are the functions in (1.8). Then, as in (3.10), we have 

since y = 0, 

(4.9) 

Now denote~ for convenience in the following, 

E+ = complement of (EnE) w.r.t. E 
o 

(4.10) 

E_ = complement of (EnE) w.r.t. E 
o ,-0 
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Let n(s,cj» be the function obtained by extending n (s,cj» by "wetting" 

those parts of the container walls which. were "dried" because of the pertur­

bation n, i. e. : 

n(s,cj» in L 

n(s,cj» = (4.11) 

w(s) in L- • 

\-
,... 

Put, further, Lt::JL = l:uL.: = L~UL+ ' with the boundaries a 

(4.12)o < cj> < 21f • 

Then it follows from (4.9) (and, more generally, from the remark after the 

statement of Theorem 4.1), that, 

(4.13) 

where bcj> is defined from 8 (cj» and 8 (cj» as in the 1as~ formula in (1.7) (in
0 1 

other words, the domains of integration in (4.13) are E ~nd E+, respectively). 

Put further,' 

l
Oin La 

n*(s,cj» (4.14) 

w(s) in'L+ 

V(s,cj» = n(s,cj» - n*(s,cj» in L (4.15) 

Then, noting that fE(Q,s) = 0, it follows from (4.13), that 
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(4.16) 

.Similarly., we obtain by (1. 6). 

21f "I (q,) 

oVen) =f f {fv(n* + V,s) - fv(n*,s)} dsdq, (4.17) 

o "o(q,) 

We note, in particular, that n, n*, V and "., i=O,l will satisfy the require­
1 

ments a) - d) of Section 2 and further that, since' w(s) = w"(s.)(s-s.)2/2 + 0(s-s.)3
1 1 1 

in the neighbourhood of s = s., i = 0,1, it holds 
1 

deL:) < deL:) 

(4.18) 

if only den) + deL:) :s d1, where C and' di are some n-independent constants.
l 

Also, as in (3.6) the integrands in (4.16) and (4.17) are analytic in the 

arguments n*, n~, n; and V, V ' Vq, in some region In*1 + Ivi :s d2 where d2s 
is an n-independent·constant. By (4.18) then, we may Taylor expand the 

integrands in (4.16) and (4.17) at all points of Ewhere n* and.V are contin­

uous, if only den) + deL:) :s d3 , where d3 is some n-independent constant. . 

We obtain 

= f (n* s)TEv - , 

(4.19) 


and 

afv 
= -(0 s) • V + hv(n*,V,s) . (4-.20)an -' 
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Where, by (4.18) and noting from (1.9) that fEn(O,s) '=',Q, 

(4.21) 

(4.22) 

if only den) + deE) ~ d
4

, where d
4 

and C2 are some n-independent positive 

constants. 

Now, by (1.8), (1.9) and (4.8), the first term to the right in 

(4.19) is of the form 

o in E 
o 

(4.23) 


where A(s) = OR(s) and C(s) are the functions introduced in (1.14) and where 

if only d(E~ ~ d
5

, where d 'and C3 are some positive, n-independent constants.5
Further, DA(s) is continuously differentiable in the interior of E+ if w"(s) 

is continuous there. 

Now consider the contribution of the terms in (4.23)' to the energy 

int~gra1 (4.16): 

2~ 8 ($) 2~ ,
1J . t fEn (]l* ,s')'T • ~ dsd$ = f S­

o so($) 0 M (4.25) 
2~ 

= 1t {l Ms) +,DA(s)}w' (s)v + lC(s) + DC(S)}W(S)V}dsd$ • s 
o M 
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By partial integration of· the first term over ~$ = (8 ($),s )u(sl,8 ($)),o 0 l . 

noting that w'(si) = 0, i=O,l, and that Y(8 i ($),$) = 0, ° : $ < 2~ by (4.15) 

we get 

~. dsd$ 

.(4.26) 


Note that it holds in ~$, if deL) is sufficiently small, 

A(s) = OR(s) > R > ° 
·0 

1 2 3w(s) = w" (8.) (s - s.) + °(s - s.)
2 l. l. .l. 

\>(s,$) > ° (with strict inequality· in ·interior points) 

(4.27) 

.°< $ < 2~ 

The last two formulas follow from (4.15) and (4.12), respectively. Using 

(4.27) and (4.24) we then see that since w"(s.) < 0, i=O,l, the last 
. . " _ 1 . 

integrand in (4.26) is non-negative in M (with -A(s) • W"(S) • .V(s,$) as 

the dominating term), if only deL) is sufficiently small. Consequently, 

V dsd$ > ° (4.28) 

if only deL) . .5 d6 where d is some n-independent constant. (4.16) and (4.19)
6 

then give, using the notation of (1.14) 

(4.29) 
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where v(s.~) satisfies the volume constraint eV = 0, which by (4.17) and 

(4.20), is of the form 

BI (~) 21f SOl(~) 

A(s) • Vdsd~ = -(5 • f C hv(n*, v,s) dsd~ (4.30)f	 
o 

o Js 
o 
(~)S (~) 

Again, the functions hE and ~ of ~4.29) and (4.30) will satisfy (4.21) 

and (4.22), if only den) + deE) ~ d7, where d is some n-independent constant.
7 

In order to relate (4.29) - (4.30) to the properties (i>.4) - (4.7) of the 

quadratic form Q , we proceed as in the proof .of Theorem 3.1 by introducing a 
o 

change of variable: 

S 1 - S 

s = s(s' ,~) = so (~) + sO(sl (~) - so (~» 	 (4.31) 
o sl - 0 o 

Il(s 1',~) = V(s (s 1,~) ,~) 	 (4.32)I
(4.31) takes b onto the rectangle E and the transformation satisfies (3.19)

o 
(with n replaced by v) and (3.20). Furthermore, by (4.15) and (4.32), 

Il(S',~) will satisfy (4.7). Using, in addition, (4.21) and (4.22) we obtain 

in the same way as for (3.21) and (3.24), 

(4.32) 

where eA(s',~), eB(s',~), ec(s',~) are bounded and integrable on E with 
o 

I(A,Il) I < C4
J d(n) + d(E)}{1I1l ,II + 1I1l",!1 + 1M }, 	 (4.33)

0- 1 	 so 'f0 0 

(4.34) 

if den) + deE) ~ dS' where C4 and dS are some positive constants, independent 


of n. We can then apply Lemma 2.3 to conclude by (4.4), that e.g. 


A 
eE(n) ~ -f!M ~ 	 (4.35) 
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if only d(n) +-d(E) < d , where d is some n-independent, positive constant 
- 0 0 

Since, furthermore, by (4.11), (4.14) and (4.15) V =0 in E if and only if 

n =0 in E and since by (4.32) 11]111 ; 0 if and only if V =0 in E, (4.35)o 
completes the proof of Theorem 4.1. 
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E. EXPLICIT FORM' OF THE JACOBI 	 EQUATIONS. CONCLUDING REMARKS. 

The functions A(s), B(s) and C(s) of (1.14) are found by straightforward 

manipulations from (1. 8) to be (we put R = R(s), Z = Z(s) for brevity)': 

A(s) = OR(s) 

B(s) = a/Res) 

C(s) = -2OR" + pgj RR' - Zz' + ZR(R"Z' - Z"R')} 

+·Ajz' - R(R"Z' - Z"R')} (5.1) 

Using (5.1) the Jacobi·differential equations (1.17) become (putting 

B = pg/a and H = A/a as in (1.11»:
o 	 0 


2 

u,," + R'''' - {1... - 2R" + Bo{RR' - ZZ'.""ik t-'ik R 

+ ZR(R"Z' - Z"R')} + H {Z' - R(R"Z' - Z"R')}}\1
o 	 ik 

k = 0,1,2 ••• 
; 

i = 1,2,3••. 

(5.2)So ::: s ::: sl 

with the boundary conditions 

cos2yw"} . 
s=s

i 

i=O,1. (5.3) 

Note that (5.3) tends formally to \1(s.) '" 0 as y ->- 0, if w"Cs.) *- 0, i=O,l,
1 	 1 

which is the case covered by Theorem 4.1. 

Finally we remark that the conditions b) and d) of Section 2 may probably 

be slightly relaxed by introducing concepts from the theory of Lebesque 
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integrals. With regard to .the physical background of the prob~em, however, 

such extensions of the set of permissible perturbations do not seem very 

meaningful. 
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STABILITY OFAXISYMMETRI~, ANNULAR FLUID I~TERFACES 


AT ZERO CONTACT ANGLE 


Ilkka Karasalo 

ABSTRACT 

We study the stability, in terms of minimal total potential energy, 

of liquid configurations in axisymmetric containers, such that the 

liquid-vapor interface is annular and meets the container walls at zero 

-contact angle. The proper limits of sufficient and necessary conditions 

for stability, respectively, as the contact angle tends to zero, are 

formulated in terms of the Jacobi accessory differential equations. The 

stability is shown to depend crucially on whether the equilibrium liquid­

vapor interface stays inside the container or not when continued 

analytically past the three-phase contact lines. 
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1. INTRODUCTION 

We shall study in this paper the stability of certain configura­

tions of liquid partially filling an axially symmetric tank in a 

..	gravitational .field directed along the axis of symmetry. We require, 

that the tank shape and the liquid volume are such that the liquid­

vapor interface is annular,"i.e. it does not intersect the axis of 

symmetry, cf. figure 1: 

z 

Vapor 	 'Vapor 
Container
" wall 

r 

XBL 766-3054 

Figure 1: Example of permissible liquid-tank configuration 
and associated coordinate system. 
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A configuration is in stable equilibrium if and only if it strictly 

minimizes the total static potential energy of the system, 

E = a . (Af - cos Y • A ) + E (1.1)w g 

among all nearby configurations with the same liquid volume V. Here 

a > 0 (the liquid-vapor surface tension) and 0 S Y S ~ (the contact 

angle between the liquid-vapor surface and the container wall) are 

constants, Af and Aware the areas of the liquid-vapor and the liquid­

wall interfaces, respectively, and E is the gravitational potential
g 

energy of the liquid. This constrained minimization problem has 

received much attention in the literature, see e.g. Huh [5] and 

Gillette [4] for extensive lists of references. By a suitable choice 

of variables, it may be viewed as a variable-endpoint problem of 

variational calculus ,([4] p. 21 and p. 145). When Y > 0, this approach 

results in conditions which distinguish between stable and unstable 

cases in a rather satisfactory way. There appear to'be fewer rigorous 

results, however, concerning to what extent these stability conditions 

also apply to the limiting case y = 0 (cf. [4], p. 23). Th~ purpose 

of this paper is to analyze this limiting case for axially symmetric 

liquid configurations of the above kind. More specifically, we shall 

look at necessary and sufficient conditions, respectively, for 

minimum of E based on the Jacobi accessory minimization problem for 

the second variation of E (see e.g. 
, . Akhiezer [1], p. 69), as y 4 O. 

The formal limits, as y 4 0, of the boundary conditions associated 

with the Jacobi accessory differential equations depend crucially on 
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whether the curvatures of the equilibrium liquid-vapor interface and 

the c~o~nt~a~iner :wall~ ~coincide _or no~t at the three-phase contact lines. 

In the latter case these limiting~boundary conditions will be of the 

fixed end-point type (when using a parametric representation of the 

surfaces, see further Bection 2.~ below). 

We will show, firstly (Theorems 3.1 and 3.2) that the stability ~ 

conditions (sufficient and necessary, respectively) based on the fixed 

end-point boundary conditions in fact apply to (l.l) with y = 0 if 

only the analytic continuation of the equilibrium liquid-vapor interface 

does not penetrate the container walls at the three-phase contact lines. 

Secondly (Theorem 3.3), we show that if the analytic continuation of 

the equilibrium liquid-vapor interface does penetrate the wall at either 

of the contact lines, the configuration will be unstable regardless of 

the conditions on the second variation of E. 
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2. NOTATION AND SOME PRELIMINARY RESULTS 

2.1 The Euler-Lagrange and Jacobi Conditions 

It will suffice to consider (1.1) at small perturbations from 

axially symmetric configurations. We will use a parametric arc-length, 

normal displacement representation of' the surfaces (see e.g. Reyn~lds, 

Saad, Satterlee [8]). Thus the unperturbed liquid-vapor interface' is 

described by 

s < s < s 
r ~_ R(s) o - 1 

(2.1){ 
z Z(s) o < cj> < 21f 

in the polar co-ordinate system of figure 1. where s is the arc-length 

along the curve of intersection between the interface and any plane 

cj> = constant. Then the equations 

r =__ R(s) - T](s,cj»Z' (s) 

(2.2){ 
z Z(s) + T](s,cj»R' (s) . o < cj> < 21f 

describe a surface obtained by moving each po~nt of the surface (2.1) 

the distance T](s,cj» in the direction of the normal at (s,cj». (In
\ 

general, since we want the perturbed surface (2.2)·to intersect the 

container walls, the functions Rand Z of (2.'1) must be continued to 

some open interval containing [so,sIJ. A convenient way of doing this, 

which we will use in the sequel, is provided by the differential 

equations (2.9) below). Similarly, in some neighborhood of the 

unperturbed contact lines (s = sand s s in (2.1», the container 
o 1 
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wall will be given by 

r = R(s) - w(s)Z' (s) 

(2.3) 

z = Z(s) + w(s)R'(s) 

Then, denoting by oE(n) and oV(n) the increments of the energy (1.1) 

and the liquid volume at the perturbation (2.2), we obtain in a 

straightforward way 

(2.4) 

(2.5) 

where we have put 

T 
~ = n(s,~) = (n(s,~),ns(s,~),n~(s,~» 

~ = w(s) = (w(s) ,w' (s) ,O)T (2.6) 

and, denoting R = R(s), Z = Z(s), 
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(2.7) 

Here p is the constant liquid ~ensity and g is the gravitation constant 

with g > 0 if the gravitation force acts towards the negative z-axis 

in figure 1. 

The condition, that all first order n-terms in oE(n) should 

vanish for all n such that oVen) = 0 then leads to 

of afv 
+ ."...£(O,s) A-,-CO,s) = 0 an - an ­

(2.8)in So ~ s ~ sl' with the boundary conditions 

cos y fA(w(s.),s.) - fA(O,s.) = 0 i=O,l
-1. 1. -1. 

wher~ A is a constant (the Lagrange multiplier). Putting B = pg/a,
o 

H = A/a, using (2.6), (2.7) and the identity R'(s)2 + 2'(s)2 =1,(2.8) 
o 

becomes the Euler-Lagrange boundary value problem 

• R" = -Z' (B Z - H - Z, /R)
o 0 


Z" = R' (B Z - H - Z' /R)

o 0 

(2.9) 

w(si) = 0 
i=O,1. ,

i+1w' (s.) = (-1) tan y
1 
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(Without loss of generality we have excluded the contact angles 

7T - '¥. allowed by (2 • .8» .. 
Assuming now that (2.9) is satisfied, the condition, that all 

second order n-terms should give a non-negative contribution to 

oE(n) for all n such that OVen) = 0, takes the form 

(2.10) 

for all ~(s,$) such that 

27T S 

R(s)~(s,$)dsd$ 0. (2.11)f f 1 

° s o 

Here we have put 

fA (O,s) + f (O,s) - fV (O,s) diagJC(s) ,A(s) ,B(s)}, (2.12)
nn -: gm - nn ­. .. 

(_l)i 
2tan y 

= Ct. i=O,l. (2.13) 
1 

By (2.12) and (2.7), the A, Band C of (2.10) are 

A(s) = aRCs) 


B(s) = a/Res) 


C(s) = -2aR" + pgJRR' - Zz' + ZR(R"Z' - Z"R')} 


+ Alz' - R(R"Z'· - Z"R')} (2.14) 



53 


By (2.9), since R{s)' > R . > 0 in 5 < S < sl' A, Band C will be - ml.n 0­

smooth (in fact analytic) in some .open interval containing [so,sl] 

and A(s) > A. > 0, B(s) > B. > 0 will hold there. By standard 
- ml.n - ml.n 

results for symmetric, semibounded quadratic forms in Hilbert space 

(see e.g. Kato [7], p. 322 and 352-353), (2.10) may be analyzed in 

terms of the eigenvalues and eigenfunctions of an associated selfadjoint 

differential operator: 

in So ~ s ~ sl' 0 ~ $ ~ 2~, with the boundary conditions, that ~ 

should be periodic in $ with period 2~ and 

A(s.)~ ts.,$) = (-1) i 
a.~(s.,$) , o < $ ~ 2~ 

~ s ~ ~ ~ 

i = 0,1 

T has a complete, orthogonal system of eigenfunctions of the form 

with associated eigenvalues {Kikl;=l,k=O (ordered increasingly in the 

index i), determined from the boundary value problems 

j=O,l (2.15) 
i=1,2,3,. ... ; 
k=O,1,2, .•• 
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We notice, that all eigenfunctions but those with k = 0 satisfy the 

constraint (2.11) and that, since B(s) > 0 in s < s < s , the 
o - - 1 

eigenvalues Kik are increasing functions of k. It then follows that 

(2.10) with the side-condition (2.11) holds for all V in the class of 

continuous functions in So ~ s ~ sl' 0 ~ $ ~ 2~, which are periodic 

in $ with period 2~ and have square integrable first derivatives 

(see e.g. Kato [7], p. 322-323, Cor. 2.3) if and only if 

(2.16) 


f(s,$)g(s,$)dsd$, B21 and B22 are thewhere, denoting (f,g)o 

solutions to 

(2.17) 


with B2 = 0 if the solutions are non-unique. 

(2.15) - (2.17) are (the ·equivalent of)the Jacobi accessory 

boundary value problems for our constrained minimization problem. By 

(2.13), (2.6) and (2.7), the boundary conditions are 

(2.18) 

= {sin2 y (R"Z' - Z"R') - cos2 Y wit} j=O,l.
8=S. 

J 

We notice, that if w"(s.) '" 0, j=O,l, (2.18) converges formally to 
J 
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(2. ;1.9) 


as y 	.... O. 

2.2 Permissible Perturbations. Two Lemmas. 

By the contact lines of the liquid-vapor interface we mean the 

two closed curves within the container wall, any open neighborhoods 

of which intersects the interiors of both the liquid and the vapor 

inside ,the container (cf. fig. 1). The contact lines determine 

by (2.2) a closed region so($) < s 2 sl($), 02 $ 2 2~ in the 

'(s,$)-plane. We denote this region with E and require the following 

regularity properites from E and the associated function n: 

a) 	 n is continuous in E and periodic in $ with period 2~. 

b) 	 ns and n$ are continuous in E except possibly at finitely 

many isolated points or finitely many piecewise smooth curves 

with finite length. In particular, ns is piecewise 

continuous as function of s for all 0 < $ < 2~. 

where the supremum is taken over all points of E where 

ns and n$ are continuous. 

d) 	 si($), i=O,l are continuous and such that si($) - si' i=O,l, 

change sign at most finitely many times in 0 2 $ 2 2~. 

s~($), i=O,l, are continuous except possibly at finitely 
~ 
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many points in 0 < $ < 2~ and 

1­

d (E) =L: (supls.($) - s.1 + supls~(~)I) < 00 (2.21) 
~ ~ ~ 

i=O 

where the supremum is taken over all points of 0 < $ < 2n 

where s~($) and si($) are continuous. 

Remark: The SUfficient conditions to be considered below will 

ensure the stability of the surface (2.1) with respect to all pertur­

bations (2.2) which satisfy a) - d) above and for which den) + deE) 

is sufficiently small. Thus in terms of variational calculus (see 

e.g. Bolza [2], p. 68-70) the e><;tremum will be "weak". The detailed 

assumptions under b) and d) are introduced for simplicity in what 

follows, and could be relaxed slightly by introducing more advanced 

concepts from the theory of Lebesque integrals. With regard to the 

phYSical background, however, nothing essential is lost by the above. 

We will denote the closed rectangle So ~ s ~ sl' 0 ~ ~ ~ 2~ by 

E and use, for any f(s,~) which is square integrable on E , 
o 0 

IIfll2 = (f,f) (2.22)
o 0 

where ( ,) is defined as in (2.17). Then the following result will 
o 

be· useful: 

Lemma 2.1: Let ]J (5 ,(~) satisfy the requirements a)-c) on ): and the r.ondi ti on o 
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o < 4> < 21T. (2.23) 

Let Q (Jl) be defined as in .(2.10) and assume that A > A(sj > A > 0,
0- max - min 

B > B(s) > B . > 0 and /C(sY <_ C hold in s < s < s Then 
max- - mIn max 0- - 1. 

there exist positive constants K , K , Land L , depending on s , s 
o 1 0 1 0 l' 

A . , A , B . , Band C but not on Il, such that 
mrn max nun max max 

(2.24) 

(2.24) follows from the mean value theorem in a straightforward 

way and the proof is omitted. (By use of a Sobolev-type inequality 

(see e.g. Kato [71, p. 193), condition (2.23) could in fact be omitted, 

and this stronger result could be used for a similar treatment of the 

case y > 0, Karasalo [6]). 

Before stating our second Lemma we need some further notation. 

For any ll(s,4» satisfying a) - c) on E, and (2.23) we put, for clarity
o 

(2.25) 

where Q (Il) is defined in (2.10). Further, if oA(s,4», oB(s,4»
0­

and oC(s,4» are bounded and integrable on E and E is a positive
o. 


constant, we put 


$ = $(oA,oB,oC,E) = inf Q (A + oA,B + oB,C + oB,Il) (2.26)
o ­

over all Il satisfying a) - c) on E , (2.23) and the conditions 
o 

(2.27) 
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I (R'].!)ol < E(II].! II + II].!,,)I + IIllll ). (2.28)
S 0 't' 0 0 

If f(s,</l) is bound",d on l: , we will let, as usual, II fll denote the o 00 

supremum of If(s,<jl)I over (s,<jl) in l:. Then we have 
o 

Lemma 2.2: Let A{s), B{s) and C{s) satisfy the requirements in 

Lemma 2.1 and let OA{s,<jl), OB{s,<jl) and OC{s,<jl) be bounded and 

integrable on l:. Let E > 0, define ~ as in (2.25) - (2.28), denote 
o 

~ = ~(O,O,O,O) and put
o 

a = II Mil + II oBil + II ocll + E • (2.29)
00 00 00 

Then there exist positive constants C and a , independent of OA, 'OB, 
o 

oC and E, such that 

I~ - ~ I < c . a (2.30)
o 

holds true, if only a < 0 . 
o 

Proof: Throughout this proof,'Mi , Ni , ai' i=I,2,3, .•• will 

denote positive constants, independent of, cA, cB, cC, E and ll. Let 

].! satisfy conditions a) - c) on l: • (2.23) and (2.27). With the notation o 

of (2.25), put for brevity, cQ (]J) = Q (CA,CB,oC,]J). (OQ will be 
0- 0 - o 

well uefined because of the assumptions.) Then there exist M
I 

, M2 , 

NI and N2 , such that 

(1 - M10)Qo(.!:!.) - Nlc ~ Qo(.!:!.) + cQo(.!:!.) 

~ (1 + M C)Qo(.!:!.) + N 0 (2.31)
1 1 
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because of Lemma Z.l and the mean value theorem. Noting by (Z.Z6) 

and (Z.28), that ~ is a non-increasing function of E and that, by 

(Z.10) and (2.25), Q (A,B,C,~) is a linear function of A, Band C 
o ­

~e obtain from (Z.3l) 

(Z.32) 

It follows, that we need only consider those U which satisfy, e.g., the 

additional condition Qo(~) + OQo(~) ~ (1 + 2MkO)I~01 + ZNlo .when 

forming the infimum in (Z.26). By (2.31) and Lemma 2.1, however, for 

all such 11 

(Z.33) 

1if only, e.g., 0 ~ 0 = ZM • Let U be any function satisfying a) - c)1 1 
on E , (2.23), (Z.Z7), (2.28) and (2.33). Put 

o 

where C and Cz are chosen so as to make Usatisfy (2.27) and (2.28)
1 

with E = 0, i.e. C2 = (R,ll)o/(R,f*)o' = l/llll - CZf*lI ' NotingC1 o 

that (R,f*) is a positive constant, depe~dent only on s , sl and 
o 0 


R(s), it follows from (2.27) - (2.29) and (2.33) that 


; (2.34) 

Furthermore, since f* vanishes on.S = So and s = sl' Usatisfies (2.23). 



60 


Then form 

dsdCP 

Here we use Lemma 2.1, (2.31), (2.33), (2.34), the mean value theorem 

and the Schwartz inequality to find upper bounds for the terms to the 

right. We obtain, that for some M6, 02 

(2.35) 

holds true, if only °< 02. Hence 

(2.36) 

if °~ 02. The statement of the lemma follows by combining (2.32) and 

(2.36). 
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3. STABILITY RESULTS AT Y = O. 

Our first statement concerns sufficient conditions for stability 

at zero contact angle: 

Theorem 3.1: Let y = 0 in (1.1) and asSume that ,the unperturbed 

surface satisfies the Euler-Lagrange equations with the associated 

boundary conditions (2.9), and does not intersect the z-axis. Assume 

further that the function w(s) of (2.3) is twice continuously 

differentiable and that 

w(s) < 0 in some open neighborhoods of s = s and s = s • ,(3.1) 
o 1 

Let K be defined as in (2.15) - (2.17) but with the boundary
o 

conditions in (2.15) replaced by the fixed end-point conditions (2.19), 

and assume that K > O. Let den) and deE} he defined as in (2.20) and 
o 

(2.21) • Then there exists a constant d > 0, such that in (2.4)
o 

aE(D) > 0 with equality iff n = 0 in E (3.2) 

holds for all n satisfying the volume constraint oVen) = 0 in (2.5), 

the conditions a) - d) of Section 2.2 and the condition 

d (n) + d (E) < d • (3.3) 
o 

Remark: When y = 0, both the energy (1.1) and the liquid volume 

remain unchanged if the liquid-vapor interface is continued past the 

contact lines by "wetting" dry parts of the container walls. Thus. 

when y = 0, any configuration is neutrally unstable with respect to 
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such "wetting" perturbations. With our notation, however, the region 

-r -is unchanged at "we-tt-fng"" (see -the beginning of Beet-ion 2.2), 

and there is no ambiguity in (3.2) in this respect. 

Proof of Theorem 3.1: Let Q be defined as in (2.10). Then,
o 

by (2.15) - (2.17) and the representation theorem for quadratic forms 

in Hilbert space (see e.g. Kato [7], ,po 322-323): 

inf Q (~) = K > 0 (3.4)
0- 0 

where the infimum is taken over all ~ satisfying in r the conditions 
o 

a) - c) of Section 2.2, (2.11), (2.23) and (2.27). 

Using the notation of (2.7) we put 

(3.5) 

where A is the constant in (2.8). Then, by (2.4) and (2.5), 

(3.6) 


for all n satisfying the volume constraint oV(n) = O. For convenience 

-in the following we denote 
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4= complement of (EnE ) w.r.t •. E,
0 

E_ = complement of (EnE) w.r.t. E and 
0 0 

E = l:UE = E uE = EuE_ (3.7)
e;> 0 + 

and define a function n(s,~) on t by 

(s,~) E E 

(3.8) 

w(s) , 

(i.e. n is obtained by extending n by wetting those parts of the wall 

which dried because of the perturbation n). By (2.6) and (3.7), E 

has the boundaries 

s (~) = min{s (~),s }
000 

o ::: ~ < 21T. (3.9) 

Putting further 

o (s,~) E E 
o 

(3.10) 

w(s) , 

-- *)v(s,~) = n(s,~) - n (s,~ (s,CP) E E (3.11) 

we obtain by (3.6) and (2.5), noting that fE(Q,s) = 0 and fV(Q,s) = 0, 
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(3.12) 

for all n satisfying the volume constraint 

(3.13) 

In the sequel Mi , Ni and di , i=1,2,3, ••• , will denote positive constants, 

independent of p, n, E, sand $. By (3.8) - (3.11), n, n*, v and 

5 ($) will satisfy the requirements a) - d) of Section 2.2. Furthermore,
i 

since w(s) = O(s - s.)2 in the neighborhood of s = s., we may find some 
~ ~ 

~ and d
l 

, such that 

(3.14) 

if only d(E) + d(n) ~ d •l 

By (2.9) and since R(s) > 0 in So ~ s ~ sl' the functions Rand Z 

can be continued analytically to some open interval containing [so,sl] 

and it will hold R(s) > R. > 0 there. It then follows from (2.7),
- ml.n 

(3.5) and (3.9) that there exist some d2 and d 3, such that fE(~'s) 

and fV(~'s) are analytic functions of the arguments n, n ' and n$ in s 

the region Inl + Insl + In$1 ~ d2 at all points of E, if only d(E) < d3• 

Hence, putting in (3.12) and (3.13) 
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and 

(3.15) 

(3.16) 

there will exist some M2 and d
4

, such that 

(3.17) 

holds at all points of ~ where·~* and V are continuous, if only 

We now observe, that since w(s) < 0 in some open neighborhoods of 

s = s and s - sl' the first term to the right in (3.15) gives a' '.
--0 

non-negative contribution to OE(n). To see this, first note that 

fEn(~*'s) = 0 in Eo' by (3.10), (3.5), (2.7) and (2.8). Second, 

when (s,$) E.E+ we have by (3.10), (2.12) and (2.14) 

(3.18) 

where, for some M3 and d5, 
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if only d(~) ~ d • Furthermore, since w"(s) is continuous in ~+, DRS

will be continuously differentiable the,e. Hence, after part~a1 

integration of the first term in (3.18) noting,that v(s,~)w'(s) = 0 

on the boundaries of ~+, we obtain 

= {-crR(S)w" (s) + D(s)} V dsd~ (3.19) 

where, for some d6 , M4, !D(s)! ~ M4 !w'(s)! if only d(~) ~ d6• Now by 

(3.1), since w(si) = w' (si) = 0, i=O,l, w" (s) ~ 0 in some open 

neighborhoods of s = So and s = sl' whence the first factor of the 

last integrand will be non-negative, if only d(~) is sufficiently 

small. Since further, by (3.8) - (3.11), v(s,~) > 0 at interior 

points of ~, we can then find some d
7

, such that for all permissible 

n for which oVen) = 0 

if only den) + d(~) ~ d • Furthermore, (3.20) holds with equality
7

if L+ is empty or if w(s) =0 in L+. 

In (3.13) and (3.20) we introduce a change of variable by 

putting 
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(3.21) 

u(s',$} = V(s(s',$},$} (3.22) 

(3.21) takes'E onto the rectangle E in the (s·,$}-plane. It ,follows
o 

by (3.17), (3.21), (3.22) and the smoothness properties of A, Band 

C that in the notation of (2.25) 

where aA(s',$), aB(s',$} and aC(s' ,$} are bounded and integrable 

on Eo and such that for some M5 and d ' S 

if den} + deE} ~ dS' Similarly, by (3.13), (3.16), (3.17) and 

(2.7), there exist M6 and dg , such that 

!(R,U) ! < M6 jd(n} + d(E)}jllu II + lIu",1I +-lIull}
0- so ,+,0 0 

if den} + deE} ~ dg• Furthermore, U(s',$} satisfies (2.23) and 

requirements a} - c} of Section 2.2 on E. We may then use (3.4)
o 

and Lemma 2.2 to conclude that there exists some d such that, e.g.,
o 

for all n satisfying the volume constraint, if only den} + deE} < d • 
- 0 

Since, by (3.7) - (3.11) and (3.21) - (3.22},lIuli = 0 if and only if 
o 
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n - 0 in r, this completes the proof of Theorem 3.1. 

The second statement of this section is concerned with necessary 

conditions for stability at zero contact angle, based on the fixed 

end-point conditions (2.19). As may be expected, these will apply 

regardless of the additional;condition (3.1): 

Theorem 3.2: Let y = 0 and assume that the unperturbed surface 

satisfies (2.9) and does not intersect the z-axis. Let K be defined 
o 

as in (2.lS) - (2.l7) but with the boundary conditions (2.l9) and 

assume that K < O. Then, for any d > 0 we may find a function n 
o 0 

satisfying a} - d) of Section 2.2, the volume constraint OVen} = 0 

in (2.S) and the condition den} + d(r} < d , such that in (2.4)
o 

OE(n) < 0 . (3.23) 

Proof: We note that the infimum K in (3.4) under the conditions 
o 

stated there is attained for ~ = 0 where 0 is either ~11 or SI~lO + S2~20 

in the notation of (2.15) - (2.17). We can use 0 to construct a function 

n with the properties required in the theorem as follows: Let e.g. 

(s - sao) (slO - s) s . < S < 'i
00 - 10 

g(s) = 0.24) 

o otherwise • 

Then put 

n(s,~) = cO(s,~) + a(c)g(s) (3.25) 
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where a{£) is chosen so as to make n{s,$) satisfy the volume constraint. 

Using (2.5), the assumption (R,O) = 0 and the contraction mapping
o 

theorem it can be shown that a{£) is well defined when 1£1 is small 

and that a{£) = o{£), £ ~ o. Since 0 and g are zero on s = sand 
o 

s = sl' L+ as defined in (3.7) will be empty. Hence, by putting 

o (s,$) E L 

n*{s,$) = (3.26) 

w{s) - £\1{S,$) 

we obtain by (3.6) 

OE(n) (3.27) 

if only £ is small enough for .g{s) to be zero within L_, cf. (3.24), 

(3.25). Noting that In*(s,$)1 < I£O(s,$)I in L_ and that the area 

of L_ tends to zero as £ ~ 0, we get from (3.27) 

£2 

= -(K + 0(1» £ + o.
2 0 

Since K < 0, the statement of Theorem 3.2 follows. 
o 

Finally, the following theorem states that if the analytic 

continuation of the equilibrium liquid-vapor interface penetrates 
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the container walls at either of the three-phase contact lines, the 

configuration is unstable: 

Theorem 3.3: Let y = 0 and asswne that the unpertu:t'bed surface 

·satisfies '(-2".'9-1" and 'does ·not· "intersect ·the z-axis. Asswne' fu:t'ther, that 

for i=O 01' i=1 the function w(s) in (2.3) changes sign at s =si and 

that w" (s) is continuous and monotone in some open neighbourhood of 

that point. Then, for ,any do > 0, we may find a function n satisfying 

a) - d) of Section 2.2, the voZwne constraint oV(n) =0 in (2.5) and 

the aondition den) + deE) ~ dO ' such that in (2.4) 

oE(n) < 0 • 

Proof: Assume e.g. i=1. Then, by the mean-value theorem, we may 

find some s2 > 51 such that e.g. 

Iw'(s)1 ::; (s-s1)w"(s) 


2
Iw(s)1 ::; (s-s1) w"(s) 

holds for 51 S s ::; s2 • Hence, noting the upper bound for ID(s)1 in the 

integrand in (3.19), for any given dO > 0 there exists a k > 0 such that 

k ::; ! 
1 

dO ' (3.28) 

max {lw(s)I,lw'(s)1} , (3.29) 

-0 Res) w"(s) + Des) < 0 s1 < s ::; s1 + k (3.30) 

Now consider the set of axially symmetric perturbations n = n(s) for which, 

cf. (2.2), 

; o s q, $ 2rr 

Let v(s) be defined as in (3.7)-(3.11) and, keeping k fixed, let d(V) ~ 0 

(i.e. let the perturbation tend to the unperturbed surface extended by 

wetting the portion s1 < s ~ s1 + k of the container-wall). By (3.30) the 

integral (3.19) will be negative and linear in v while by (3.12), (3.15) 

dIld (3 • .17), other contributions to OE(n) are .of higher order in v. Hence, 

proceeding as in the proof of Theorem 3.2 to satisfy the volume constraint, 

for any given d1 > 0 we may choose a function n(s) suitably to satisfy 

oVen) = 0 and 

http:3.7)-(3.11
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, (3.31) 


Since, by (3.28) and (3.29), using the de~initions (2.20), (2.21) and 

(3.7)-(3.11 ), 

lim d( 11) = sup Iw(s) 1 + sup IW1(s) 1 , 

d('J)-->O sl,"s,"sl+k sl~s~sl+k 


the statement o~ the theorem ~ollows by choosing d1 in .(3.31) su~~iciently 
small. 

Remark: We note that the instability stated in. Theorem 3.3 is present 

regardless o~ the stability conditions based on the second variation o~ (1.1). 
The method o~ proo~ suggests that the instability should show by a thin layer 

o~ li~uid building up past the contact line s = si. A veri~ication o~ this 

kind o~ instability by experiments would o~ course be virtually impossible 

because o~ the several idealizing assumptions inherent in the model (c~. 

however [3] where a series o~ low-gravity experiments per~ormed at the NASA 

Lewis Research Center are studied computationally). 
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ABSTRACT 

~e study computationally the stability, under gravitational and 

surface forces, of a liquid in a circular cylindrical container with a 

concave spheroidal bottom, for the case 'in which the volume of liquid 

is sufficiently small so that the bottom is not·covered entirely. We 

assume the gravitational field to be directed along the axis of symmetry 

of the container, and for a specific container shape we compute the 

critical Bond' number as a function of Hquid volume for contact angles 

y = 0°, 1°, 2°, and 4°. For the case y = 0° we present graphically 

several critical equil'ibrium·configurations and corresponding pertur­

bation modes. 

* 	Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720. 
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1. STATEMENT OF THE PROBLEM 

In this paper we present the results of a computational study of 

the stability of a liquid in a rotationally symmetric container subject 

to gravitational and surface forces. We <:onsider vertical right cir ­

cular cylindrical containers with concave spheroidal bottoms, for the 

case in which the volume of liquid is sufficiently small so that liquid 

lies only in an annular region of the container (Fig. 1). We are 

interested specifically in the case for which the contact angle y is 

zero, or nearly zero, and our numerical results are obtained for a con­

tainer currently used for the storage of liquid fuels in National 

Aeronautics and Space Administration Centaur space vehicles, for which 

the axial ratio of the bottom is b/a = 0.724. 

A vertical section through the axis of the container is depicted 

in Fig. 1, along with the associated cylindrical coordinate system. 

The container may be in motion, but the net external gravitational 

force is assumed to be uniform and directed parallel to the axis of 

symmetry. It is well known, that even- ~f the gravitational force is 

directed upward, liquid may~e in stable equilibrium at the container 

bottom because of the effect of surface forces. For a given liquid 

volume, stable configurations of this kind are possible only if the 

magnitude of the upward-directed gravitational force does' not exceed a 

certain critical value. This critical value depends on physical para­

meters such as the liquid-vapor surface tension coefficient, the differ­

ence in liquid and vapor densities, the liquid-container contact angle, 
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Figure 1: 	 The container and the associated cylindrical 

coordinate system. The bottom has the shape 

of an ellipsoid of revolution with axial ratio 

bfa. 
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and geometrical parameters such as the container size and shape. The 

combined effect of certain of these parameters may be represented by 

the dimensionless Bond number (see (2.11) below), whose critical value 

for our problem is a function only of the container shape, the 

liquid volume, and the contact angle. In this study we determine 

computationally the critical Bond number as a function of the liquid 

volume for fixed contact angle and container shape. 

Our approach is that of static analysis, i.e. we consider the 

total potential energy of the liquid-container system (in a container­

fixed frame of reference), given by 

E = cr(Af - Aw cosy) + Eg (1.1) 

(cf. Reynolds and Satterlee [3], p. 394-396). Here cr > 0 (the liquid­

vapor surface tension coefficient) and 0 ~ Y ~ ~ (the contact angle 

between the liquid vapor interface and the container wall and bottom) 

are constants determined by physical properties of the liquid and the 

container, Af and Aware the areas of the liquid-vapor and the liquid­

container interfaces, respectively, and E is the gravitational poten­
g 

tial energy of the liquid. A configuration of liquid is in stable 

equilibrium if and only if the total potential energy (1.1) is minimal 

compared with that of any nearby configuration having the same liquid 

volume. Thus the critical Bond number for a certain volume of liquid 

is the one at which E in (1.1) ceases to have a strict local minimum 

with respect to all perturbations that conserve the liquid volume. In 

Section 2 below we give a summary of an analysis of this constrained 

minimization problem using methods of variational calculus. 
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continuation of the unperturbed surface to the left in Fig. 2. 

(The continuation may be done in several ways, perhaps most conv.eniently 

by using the fact that Res) and Z(s) will be analytic-functions for 

equilibrium configurations, cf. (2.9) below.) 

In a way similar to (2.2), the container wall and bottom are 

described by 

(2.3) 
{ :: :~:~ + :~:~:: ~:~ 

in some neighborhoods of the unperturbed contact lines s = ~o and s = sl' 

Then clearly w(sO) = w(sl) = O. The function w(s) will depend on the 

shape of the container wall and bottom and, implicitly, the shape of 

the unperturbed liquid-vapor interface. The representation (2.-3) is 

convenient for the purpose of deriving the differential equations; 

however,in the actual computations w~ must, of course, make use of the 

known, configuration-independent shape of the container, cf. (3.4) and 

(3.5) below. 

The increments of the total potential energy E and the liquid 

volume V caused by the perturbation n(s,~) in (2.2) may then be computed. 

We obtain in a straightforward way 

oE (n) =0' (OAf - ISAw cosy) + ISEg 

_ 2'IT s (~) 


= 
 f J {O'(fA(n,s) 

o sO(~) 

2'IT

f f {O'(cosy fA(~'s) - fA(Q,s)) + pg fgCW,S)} ds d~ 
o A~ (2.4) 
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211 


oVCn) 
 ff 
o 1I<j> 	 C2.S) 

where we have put 

!l = !lCs,q;) = CnCs,<j>), nsCs,<j>), nq,cs'<p))T , 

w = wCs) = CwCs), w' Cs), 0)T C2.6) 

1I<j> = the interval CsOC<j>), sO) U Cs l ' sl C<j») , 

and where the functions fACn,s), fVCn,s), and f Cn,s) are given by
- - g-


Cdenoting R = R C s), Z = Z C s), and C = Z" R' - R" Z' for brevity) 

1 

2 2 2 ':i 
- nC) ) + n<j>Cl - nC) } 

fVC!l,s) = n{R - }CZ' + RC)n + iz,cn2} 

(2.7) 

fg(!l,s) 	= n{RZ + } (RR' - ZZ' - RZC)n ­

2
-i ((RR' - ZZ')C + R'Z ')n + iR' z'Cn3 
} 

In (2.4) p, the liquid density (or, more precisely, the difference 

between the liquid and vapor densities), is assumed to be constan~ and 

g is the gravitational constant (which may assume any value) defined so 

that g > 0 if the gravitational force pulls toward the negative z-axis. 

The condition, that all first-order n-terms in oE(n) as given by 

(2.4) should vanish for all n such that oVen) = 0 in (2.S) is then 

dfA df dfV 
(J-~-(O,s) + pg artcQ.,s) - A -~-CO,s) = 0on -	 on ­

in So < ~ < s1 ' with the side-conditions 	 (2.8) 

cosy· fAlli.(s.),s.) - fACO,s.) = 0, i = 0, 1,
1 1 - 1 



83 


where A is a constant (the Lagrange multiplier). Putting here 

B = pg/a, H = Ala, and using (2.7) and the identity 

R' (s)·2 + Z' (s)2 = 1 

(which holds because s is the arc-length) (2.8) becomes the Euler -

Lagrange boundary value problem for the equilibrium liquid-vapor 

interface 

R" = - Z' (BZ - H - Z' /R) 

Z" = R' (BZ - H - Z' /R) 
(2.9) 

= = 0, 

= = tany 

In general, the requirement that (2.9) should have a solution for a 

given container shape will restrict the B, H, and V - values to some 

two-dimensional subset of the (B,H,V) - space. 

The equations (2.9) have the following invariance property: if 

JI, is any positive constant .and if we put 

1 1 1R(s) = 1" R(JI,s) , 2(s) = 1" Z(JI,s) , w(s) = 1" w(JI,s) (2.10) 

then Rand Z will satisfy (2.9) with B replaced by B = ]l'JI,2 , H 

replaced by H = HJI, and w replaced by w The transformation (2.10) 

means simply that R , Z ,and ~ describe a liquid-tank configuration 

obtained by uniformly enlarging the original one by a factor l/JI,. 

Therefore, if we define dimensionless constants BO and HO by 

aA (2.11)HO = H a = (J 
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where a is the container radius, Be (the Bond number) and He will be 

invariant under uniform re-scalings of equilibrium liquid-tank config­

urations. We will therefore present the results of our computations 

below in _terms of the BO in (2.11) in order to facilitate their use for 

arbitrary-sized containers. 

We assume now that the liquid-vapor interface (2.1) satisfies the 

Euler-Lagrange equations (2.9). Then the condition, that all second 

order n-terms give a non-negative contribution to SEen) in (2.4) for 

all n such that in (2.5) SV (n) = 0, may be written as 

27f s 
2 1 2 2lffl { 

R(s)ns + R(s) n.p + A(s)n j ds d.p 
o -So 

;;. 0 (2.12) 

o 
for all n· = n(s,$) _such-that 

27f slJf R(s) n (s,$) ds dq, = 0 	 (2.13) 

o So 

In 	(2.12) we have denoted 

A(s) = ~2R" + B{RR' - ZZI + ZR(R"Z' - Z"R')} 

+ H{Z 1 - R(R 1 1 Z'I - Z1 1 R I) } (2.14) 

and 

27f 

+ f { 

i = 0., 1 	 (2.15) 
s=s. 

~ 
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It can be shown that if (2.12) (with the side-condition (2.13)) holds 

with strict inequality for all nonzero functions n(s,$) then in fact 

E will be locally minimal at n = 0, i.e. the configuration described by 

the R(s) and Z(s) in (2.9) is a stable one. It can further be shown 

that if (2.12) (under (2.13)) does not hold for all n, then E' cannot 

be locally minimal at n = 0 and the configuration is an unstable one. 

Thus the critical value of B will be the value at which the transition 

between these two cases occurs ,(provided that the corresponding solu­

tions R(s), Z(s) to (2.9) describe an equilibrium liquid-vapor interface 

that is physically realizable, which may not always be the case - see 

the end of this Section). When B is critical in this sense, (2.12) 

still holds (under (2.13)) but there exists some non-zero n = n(s,$) for 

which (2.12) holds with equality. 

The inequality (2.12)-(2.13) may be analysed in terms of an 

associated sequence of eigenfunctions of the form 

{]lik (s) cosk$} (2.16) 
i=l,k=O 

0) 

with eigenvalues {Aik}i=l k=O These are given by the solutions to the , 
eigenvalue problems 

(2.17)j = 0, 1 
k=0,1,2, 
i = 1, 2, 3, 

http:2.12)-(2.13
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where A(s), a , and a were introduced in (2.14)-(2.15). It can be shown o 1 

from (2.17) that the eigenvalues increase with the index k. It further 

follows from (2.16) that all eigenfunctions but those with k = 0 in (2.16) 

satisfy trivially the condition (2.13). Then it follows, that (2.12) 

under the side-condition (2.13) holds if and only if (assuming Aik to be 

ordered increasingly with i) 

(2.18) 


A 00 

where', because of (2.13), {f\}i=l are solutions to: 

'" 2 
Minimize S.A, under the constraints2: 1- 10.

i=l 

E 
00 

f3~ = 1 and (2.19)
1

i=l 
00 

L: Si (]lio,R) = 0 
i=l 

In (2.19) we have denoted 
211 S1 

(f,g) = f(s,$) g(s,$) ds d$ f f 
o So 

and assumed {]liO}:=l to be normalized to (]lio,]lio) = 1, i = 1,2,3, ... 

In all the cases studied below it will in fact hold I (]llO,R)I » 

I (]liO,R) I, i =,2,3, ... and » (All - AlO) > 0, so' that the minimum(A20 - AlO) 

in (2.18) is attained at All' Thus, the critical value of B is determined 

by the condition All = 0 (with the above mentioned restriction concerning 

non-realizable equilibrium configurations). By (2.14), (2.15), and 

(2.17), we obtain that this condition is equivalent to 

requiring that the Jacobi-Legendre boundary value problem 

http:2.14)-(2.15
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- R]1'" (s) - R']1' (s) +,{~ - 2R" +B{RR' - ZZ' +ZR(R' 'Z' _ Z' 'R')} + 
+ H{Z' - R(R' 'Z' - Z' 'R')}} ]1(s) = 0, 

(2.20) 

(_l)i tany.]1' (s.) = {sin2y. (R' 'Z' _ Z' 'R') _ cos 2y·w' ,}
1 

i = 0, 1, 
(2.21) 

should have a non-trivial solution ]1(s). 

We'remark that the formulas (2.12) and (2.15) in the above dis­

cussion are meaningful only if the contact angle y is strictly positive. 

However, one of our principal interests is ,the limiting case y = o. 

Therefore a special analysis is needed in order to determine the proper 

limiting form of the above conditions (2.19)-(2.20) when y + O. It can 

be shown (Karasalo"[4l) that if w"(s.) < 0, i = 0, 1, then the dif­
~ 

ferential equation (2.20) with the fixed end-point boundary conditions 

(2.22) 


is the correct one to use when y = O. Furthermore it holds when y = 0 

that if in the set of solutions R(s), Z(s) to (2.9) obtained by keeping 

the volume fixed and varying B (and H, cf. the comment after (2.9) above) 

w"(Sg) or w"(sl) change sign as functions of B at some value of B, 

then this B-value is critical even if (2.20)-(2.22)lacks nontrivial 

solutions. This is so because only solutions R(s), Z(s) for which 

,w"(sO) < 0 and w"(sl) < 0 hold are permissible for y = 0 due to the 

constraints imposed by the container geometry. Our computations show, 

in fact, for the Centaur space vehicle example, that small liquid 

http:2.19)-(2.20
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volumes become unstable because of the conditions (2.20)-(2.22), 

whereas the stability of large liquid volumes is decided by the con­

straint w"(sl) < O. The transition between these two condltrons'occurs 

at a certain well defined volume, cf. (3.6)-(3.7) below. 

3. COMPUTATIONAL PROCEDURE 

With a given liquid volume in a given container of the shape 

shown in Fig. 1 we associate a dimensionless fill height, defined as 

follows: let Zy be such that the given volume Y coincides with the 

volume bounded by the container wall and bottom and the plane Z = Zy 

Then the fill height for ~he volume Y in the container with 

radius a is 

)1/3 
1 3b2V ' (3.1)

= "it ( '/fa2 . 

We shall compute the critical Bond number BOc (cf.(2.ll)) as a 

function of hy • Obviously, by (2.10)-(2.11) and (3.1), these quantities 

are invariant under uniform re-scalings of the container, and we can 

therefore restrict our computations to a container with a specific 

radius, e.g. a = 1. We are interested only in the fill-height range 

o < hy < bfa, i.e. only in volumes that are $ma1ler than that of the 

annular crevice at the container bottom. 

Before describing our computational algorithm in detail we shall 

give the explicit form of the boundary conditions (2.21) at s = So and 

s = sl' respectively. In a neighborhood of s = So there hOlds by 

(2.3), since the bottom is an ellispoid of revolution (cf. Figs.l and 2) 

http:2.10)-(2.11
http:cf.(2.ll
http:2.20)-(2.22
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(R(s) - W(S)ZI (S))2 (Z(s) + w(s)R' (s)) 2 
+ = 1 . (3.2)2 a 

Similarly, in a neighborhood of 5 =sl we have 

R(s) - w(s)Z'(s) = a (3.3) 

By differentiating these expressions twice and using (2.9), (2.21) 

becomes after some straightforward manipulations (we put 2. = Z(s.),
1 1 

R. = Res.), i =0, 1, for brevity)
1 1 

Z' }
+ cosy' (BZ - H - ...Q.)

o R 
o 

sinv.p 1(5 ) = -cosy' (BZ - H - cos y) P (5 ) (3.5)'1 1 a 1 

Our computations are carried out for the case b/a = 0.724 and 

proceed in two principal steps. In the first of these (which requires 

the main part of the computational effort) we determine successively 

some 50-60 points on the curve ROc = BOc(hV) at non-equidistant values 

of hy. Each of these points is ,obtained in the fOllowing manner: 

a} We choose a fixed point R = a = 1, 2 = 21 at the cylindrica~ 

container wall and "guess" a corresponding pair of values for EO and 

Ho in a way to be specified below. 

b)'We put Res1) = a = 1, Z(si) = Zl' R'(sl) = siny, Z'(sl) = cosy 

to satisfy the boundary conditions at s = sl in (2.9) (we may choose 

51 arbitrarily, e.g. sl = 1). We further choose a pair of values 

11 1 (sl)' P(sl)' not both zero, consistent with the boundary condition 
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(3.5) (except for the large hy cases for y = 0, cf. (3.6) below). 

c) We solve simultaneously the differential equations (2.9) and (2.20) 

numerically, integrating from s = sl backwards with a standard fourth­

order Runge-Kutta scheme. The stepsize of the integration is kept 

constant except for the last step which is adjusted (using a secant 

method) so as to make the last computed, point of the solution to (2.9) 

lie on the container bottom profile (for the case y = 0 we adjust the 

last step so as to make the normal of the computed solution to (2.9) 

at s = So intersect the bottom profile at an angle of 1T/2). Thus iqe 

have ensured w(sO) = 0 (w'(sO) = O.in the case y = 0). 

d) We compute the discrepancies in the boundary condition (3.4) and 

the remaining boundary condition at s = So in (2.9). We adjust BO and 

HO (using eventually a Newton-type method to obtain the corrections) and 

repeat from b) above until the corrections in BO and HO are less than 

a prescribed tolerance. 

e) We make a final integration computing this time also the liquid 

volume V, simply by adding the appropriate extra differential equation 

to the others. Then the corresponding hV-value is obtained using 

(3.1). 

We repeat.the steps a)-e), using a set of some 50-60 regularly spaced 

zl-values. To obtain the initial "guesses" for BO and HO in a), we 

extrapolate the functions BOc = BOc (Zl) and HOc = HOc'(Zl) to the next 

Zl-value, fitting two quadratic polynomials in Zl through the three 

closest previously computed values of log!BOc! and 10g!Hoc !' respectively. 
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linear in Zl' and the accuracy in the guessed values was found to be 

very good (the "guesses" have in general 3-4 correct decimals when the 

spacing of the Zl-values is 0.02a). 

For all the contact angles studied, the computed points on 

the curve BOc = BOc(hV) indicate that loglBoc l is only mildly nonlinear 

as a function of~. The second main step of our computation is to 

fit a cubic spline through the computed points on the curve logIBoc1-= 

logIBOC(hy)I· In this way we obtain a convenient and satisfactorily 

accurate representation of the sought fUnction BO~ = BOc(hV) throughout 

the entire hV-interval of interest. 

We have studied the contact angle values y = 4°, 2°, 1°, and 0°, 

the last of these values being the case of main interest. In the case 

y = 0 we find that the above algorithm must be modified in the following 

way: When, in step a:) above, Zl > Zi (corresponding to hy > h\T, where 

Zi = 0.7014 and h\T = 0.5031 with four correct decimals), then the 

condition 

(3.6) 


(which expresses the condition that the equilibrium liquid-vapor 

interface must lie inside the container for s < sl' cf. the discussion 

at the end of Section 2) places a more restrictive bound on BO th~n 

the conditions under d) above. By (3.3), (3.6) is equivalent to 

R" (s ) = -(B Z - H - 1) < 0 (3.7)
1 0 1 0 
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Hence, when y = 0 and Zl > Zi we solve, in steps b) and c) above, only 

_the _differential equations (2_._9J and adJust, in s_t_ep d), BO- and HO s_o as 

to satisfy w(sO) = 0 and BOZI - HO - 1 = 0 (using again a Newton-like 

method to obtain the corrections). 

4. NUMERICAL RESULTS 

Table 1 shows the cubic spline approximations to the functions 

BOC = BOc(hV} for the contact angle values y = 0°, 1°, 2°, and 4° (for 

the case b/a = 0.724). The relative error in each entry shown is less 

-4than 10 , as estimated from repeated computations with different step­

sizes in the numerical integration and different spacings for the 

Zl-values used in step a) in the computational algorithm (cf. Section 3). 

Figures 3-6 show graphs of the functions in Table 1. For practical 

reasons we use a logarithmic scale on the BO -axis, for which the curves c ­

are close to linear. Figure 7, showing all the graphs from Figures 3-6 

simultaneously, illustrates the almost insignificant dependence on y in 

this range. 

In Figure 8 we show the equilibrium surfaces at critical Bond 

number for the fill heights hV = 0.2(0.1)0.7 for the case y = 0°. The 

curves were plotted by numerical integration from starting points at 

the cylindrical wall using the subroutine package GRAFPAC available at 

LBL for graphical display of the results. The starting points for the 

integrations were obtained using cubic spline fitting to the points on 

the curve Zl = Zl (hV)' which are known as a "by product" of the 

BOc = BOc(hV) - calculation (cf. steps a) - e) of the algorithm described 

in Section 3). 
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The graphs of Figure 9 represent solutions to the Jacobi-Legendre 

equation (2.20) in the cases corresponding to the equilibrium configura­

tions shown in Figure 8. The functions shown in Figure 9 are of the 

form 

v(s) ; pes) 
R' (s) 

(4.1) 

where pes) is a solution to (2.20) satisfying pesO) ; O. The function 

v{s) depicts the radial dependence of the perturbation pes) cos$, but 

in terms of vertical displacement (whereas pes) is the radial pertur­

bation profile in terms of displacement normal to the unperturbed 

surface, cf. (2.2)). The abscissa of the graphs in Figure 9 is R(s) 

and the functions are normalized so that dv/dR ~ 1 at the left end 

points. Theoretically, for hV>hy ~ 0.5031 (see (3.6)) the functions 

v(s) defined in (4.1) have a singularity at s ; sl' i.e., at R; 1, 

while for hV < hy v(sl) is nonzero but finite. Hence the graph cor­

responding to hV ; 0.5 in Figure 9 in fact intersects the line R ; 1, 

whereas the two graphs above it do not. 

Finally, in Figures 10-15 we show the equilibrium liquid-vapor 

interfaces of Figure 8.(solid lines) together with the equilibrium 

liquid-vapor interfaces superimposed by a small multiple of the cor­

responding v(s) as given by (4.1). These curves are of some interest 

because, theoretically, ..hen BO ; Boc and hV < hV the only possible 

initial shape of an unstable perturbation is given by v(s) cos$ (in 

terms of vertical displacement). For hv > hy it can in fact be shown 

(Karasalo [5]) that the configurations are unstable at Bo ; Bo~ for, 



94 


e.g., perturbations that build up some suitably chosen, axially sym­

metric layer of liquid above the unperturbed contact line at the cylin­

drical wall. Notice, however, that the dashed curves in Figures 14 and 

15 do not show such a perturbation, but they are nevertheless included 

here for completeness. These results on the initial perturbation shape 

rely, of course, on several idealizing assumptions, such as that (1.1) 

holds exactly, that it represents all boundary constraints, that 

viscosity effects need not be included, etc., and the conclusions from 

Figures 10-15 should not be drawn too far. 

The numerical results presented here have been found to be consist ­

ent with preliminary experimental results obtained at the NASA Lewis 

Research Center [6]. 
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Table 1. 	 Critical Bond number, BOc' as function of fill height, hV' at 

y = 0°, 1° , 2° , and 4°. 

Ii
¥. Y = 0° y = 1° Y = 2°- Y= lIo 

0;200 -480.4283 -480.3526 -480.1183 -479.1676 
0.210 -412.6934 -412.6251 -412.4212 -411.5999 
0.220 -356.8787 -356.8212 -356.6472 -355.9423 
0.230 -310.4444 -310.3955 -310.2463 -309.6393 
0.240 -271. 5210 -271.4787 -271. 3503 -270.8253 
0.250 -2380<6539 -238.6178 -238.5075 -238.0536 
0.260 -210.7102 -210.6795 -210.5850 -210.'1928 
0.270 -186.8042 -186.7783 -186.6978 -186.3599 
0.280 -166.2339 -166.2123 -166.1443 -165.8546 
0.290 -148.4377 -148.4200 -148.3635 -148.1170 

0.300 -132.9638 -132.9499 -132.9038 -132.6967 
0.310 -119.4456 -119.4352 -119.3990 -119.2280 
0.320 -107.5834 -107.5765 -107.5497 -107.4123 
0.330 -97.1310 -97.1274 -97.1098 -97.0041 
0.340 -87.8844 -87.8843 -87.8757 -87.8004 
0.350 -79.6741 -79.6776 -79.6781 -79.6321 
0.360 -72.3581 -72.3654 -72.3752 -72.3581 
0.370 -65.8171 -65.8287 -65.8482 -65.8598 
0.380 -59.9504 -59.9666 -59.9965 -60.0369 
0.390 -54.6722 -54.6937 -54.7349 -54.8046 

0.400 -49.9096 -49.9374 -49.9908 -50.0906 
0.410 -45.6000 -45.6353 -45.7024 -45.8332 
0.420 -41. 6896 -41. 7341 -41.8166 -41.9796 
0.430 -38.1320 -38.1879 -38.2878 -38.4843 
0.440 -34.8869 -34.9574 -35.0769 -35.3082 
0.450 -31. 9190 -32.0084 -32.1502 -32.4173 
0.460 -29.1976 -29.3120 -29.4786 -29.7822 
0.470 -26.6956 -26.8433 -27.0371 -27.3775 
0.480 -24.3887 -24.5813 -24.8043 -25.1807 
0.490 -22.2554 -22.5086 -22.7615 -23.1725 

0.500 -20.2759 -20.6107 -20.8925 -21.3355 
0.510 -18.4509 -18.8751 -19.1830 -19.6544 
0.520 -16.8150 -17.2908 -17.6204 -18.1156 
0.530 -15.3484 -15.8474 -16.1930 -16.7068 
0.540 -14.0314 -14.5345 -14.8900 -15.4170 
0.550 -12.8467 -13.3417 -13.7013 -14.2359 
0.560 -11.7792 -12.2587 -12.6174 -13.1545 
0.570 -10.8157 -11.2756 -11.6291 -12.1641 
0.580 -9.9447 -10.3828 -10.7281 -11.2570 
0.590 -9.1561 -9.5717 -9.9065 -10.4259 
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Table l. . (cont.) 

0.600 -8.4411 -8.8342 -9.1571 -9.6644 
0.610 -7.7920 -8.1630 -8.4730 -8.9662 
0.620 -7.2017 -7.5517 -7.8483 -8.3259 
0.630 -6.6644 -6.9942 -7.2773 -7.7384 
0.640 -6.1746 -6.4854 -6.7551 -7.1990 
0.650 -5.7276 -6.0204 -6.2770 -6.7035 
0.660 -5.3192 -5.5951 -5.8390 -6.2481 
0.670 -4.9456 -5.2057 -5.4373 -5.8291 
0.680 -4.6035 -4.8487 -5.068(:; -5.4435 
0.690 -4.2898 -4.5212 -4.7299 -5.0884 
0.700 -4.. 0020 -4.2204 - -4.4185 -4.7610 
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Figure 4: as a function of hV for y = 1°.BOc 
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Dashed Curve: Solid curve superimposed with the corre­
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Figure 11: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0.0 and hV = 0.3. 

Dashed Curve: Solid curve superimposed with.the corre­

sponding perturbation mode from Figure 9. 
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Figure 12: Solid Curve: Equilibrium surface at critical Bond number 

for y = 0° and hV = 0.4. 

Dashed Curve: Solid curve superimposed with the corre­

sponding perturbation mode from Figure 9. 
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Figure 13: Solid'Curve: Equilibrium surface at critical Bond number 

for y = 0° and hV = 0.5. 


Dashed Curve: Solid curve superimposed with the corre­


sponding perturbation mode from Figure 9. 
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ABSTRACT 

In this paper we calculate the small-amplitude periodic sloshing 

modes of a liquid in a vertical right circular cylinder with a concave 

spheroidal bottom, for the case in which there is not sufficient liquid 

to cover the bottom entirely. Equilibrium free surfaces of the liquid 

were calculated by the program CAPIL for the case in which the ratio 

of the minor and major semi-axes of the spheroidal bottom was 0.724. 

Perturbations about these surfaces were calculated by the program 

SLOSH. For the fill heights that were studied, and to the accuracy 

of these calculations, we found the same critical Bond number, B • , 
cr~t 

for instability of the free surface as was found in the static analysis 

of P. Caucus and I. Karasalo for the same test problem. Furthermore, in 

agreement with their calculation we also found no equiliBrium sur'faces 

for this problem for fill heights greater than 0.503 and for Bond num­

bers B<B. <0. For fill heights ranging from 0.20 to 0.45 we
erl.t 

found unstable equilibrium surfaces for a range of Bond numbers, 

B .;;; B < B . Frequencies or growth rates were calculated for conv crl.t 

numerous equilibrium surfaces. Growth rates of the maximally unstable 

modes were calculated for fill height 0.30 and various Bond numbers. 
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1. Introduction 

In this paper we calculate the small-amplitude, periodic sloshing 

modes of a liquid in a rotationally symmetric cylindrical container 

under the effect of surface and gravitational forces. We consider 

a right circular cylinder, oriented vertically, with a concave spher­

oidal bottom, Jor the case in which there is not sufficient liquid to 

cover the bottom entirely. This is the same configuration for which 

a stability study was carried out in [1]. Numerical results are 

obtained for a container currently used for the storage of liquid fuels 

in National Aeronautics and Space Administration Centaur space vehicles, 

for which the axial ratio of the bottom is b/a = 0.724 . A vertical 

cross section of the cylinder and liquid is shown in Figure 1. 

Equations describing the sloshing motion of liquids in rotation­

ally symmetric containers are derived in [2] using a surface-normal 

polar coordinate system particularly suited to such problems. It is 

assumed there that the fluid flow is irrotational and incompressible and 

the free-surface boundary conditions are obtained from the time­

dependent Bernoulli equation and the kinematic equation. The dif ­

ference in pressure across the free surface at any point, due to the 

interfacial surface tension, is proportional to the mean curvature at 

that point. The edges of the surface satisfy time-independent contact 

angle conditions with the container bottom and the cylinder wall. We 

follow the derivation in 12] for obtaining the equations of motion for 

the case studied here, but we use a different technique for obtaining 

the numerical solution. 
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2. Scaled Variables 

We consider a circular cylindrical coordinate system with the z 

axis along the cylinder's axis of symmetry. It is convenient to 

define scaled- lengtli and- tiine var:i:alHes. Let sym~ols "':i:Eh a bar---over­

them denote the corresponding physical, unsealed variables. Let 

r ria 

z = z/a 

t = t [(HIBI) a/pa3i/2 


H = H a 


2 2
B = Ka = pga /a 

2H (p -p ) a/a
o g 0 

where a, the cylinder's radius, is the characteristic length used for 

scaling, t is the time, p is the difference in densities between the 

liquid and gas phases, -g is the acceleration due to gravity, consid­

ered positive when directed vertically downward, a is the gas-liquid 

surface tension, K is the capillary constant, B is the Bond number, 

H is the mean curvature at a point on the free surface, considered 

negative when the surface is concave upl,ard, P is the gas pressure,
g 

and p; is the liquid static pressure at the height z = 0 . 
o 

The difference in pressure-across the free surface satisfies the 

equation 

P - P = - 2H a/a • 
g -

The liquid static pressure is given by 

p - p = - pgza
o 

From these equations it follows that the curvature H at any point on 

the equilibrium free surface is related to H B,andzby
o 


2H = 2H + Bz • 

o 
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3. 	 Equilibrium Free Surface 

We consider the vertical cross section through the axis of the 

cylinder shown in Figure 2. The cross section of the liquid is 

bounded by three curves: the meridians along the free surface, the 

cylinder wall, and the container bottom. Let s be the arc length 

along this boundary, increasing clockwise. Let s = 0 be the inter­

section of the meridians on the free surface and the bottom, and let 

s ; 	 S be the intersection of the meridians on the free surface and the 

cylinder wall. 

The equilibrium free surface is rotationally symmetric about the 

axis of the cylinder. It$ height is a function of r only and not of 

e. Thus the equilibrium surface can be described parametrically by 

the equations 

r ; 	 R(s) and z = Z (s) 

for 0';; s .;; Sand 0';; e < 211 Let W be the angle in the cross­

sectional plane between the tangent at a point on the free surface and 

the horizontal. Let W be positive when the surface slopes upward in 

the direction of increasing s. Then 

tan 	W ; Z /R ,
s s 

where the subscript s denotes d/ds. Let the spheroidal bottom be 

described by 

z = ZB(r) 

for R(O)';; r .;; 1 and o .;; e .;; 211. Let X denote the angle in the 

cross-sectional plane between the tangent at a point on the bottom and 

the horizontal. Let X be negative when the bottom slopes downward in 



118 


~ 
Z I~ 	 Cylinder s=S 

axis 
I 

Free surface 
./'I 


I ~~ 

s=~ 	 Cylinder 

wall 

Bottom 

r 

Figure 2. Vertical cross section of the liquid showing coordinates. 

XBL 781-102 



119 

the direction of increasing r, as it does in our case. Then 

d 
tan X ="dr ZB (r) 

The equilibrium free surface is" the solution of the time indepen­

-dent Bernoulli equation, 

w = 2H + BZ - (sin W)/R , (3.1)s 0 

with 

R = cos W (3.2)
s 

Z = sin W, (3.3)s 

subject to the contact conditions, 

Z(s) = ZB(R(s)) at s = 0 (3.4) 

R(s) = 1 . at s = S (3.5) 

(the scaled radius of the cylinder is 1), and subject to the contact 

angle conditions, 

w- X = Y at s = 0 (3.6) 

~/2 - W= y at s = S , (3.7) 

where y is the contact angle. The volume of the liquid in the 

cylinder is 

s 
v 2~ [Z(s) - ZB(R(S))]R(s) cos W(s) ds. (3.8)J o 

This last equation determines implicitly the value of H of V is given.
o 

Equations (3.1) - (3.8) are the equations for the equilibrium free 

surface. The solution of these equations varies with the volume, the 

Bond number, the contact angle, and the shape of the bottom of the 

container. Depending on the values of these parameters,"there may be 
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no, one, or more solutions of these equations [1]; If the equilibrium 

surface exists, it may be stable or unstable to small perturbations. 

These equations are solved by the program CAPIL [3]. This program 

uses PASVA2 [4], a general-purpose finite difference solver for non­

linear first-order systems of differential equations subject to two­

point boundary conditions. PASVA2 solves these equations by iterating 

from an initial approximation to the surface. Either the user can 

supply the initial approximation, or the subroutine CYLCUR can generate 

it. When making calculations with the same fill for a sequence of Bond 

numbers, we let CYLCUR generate the initial approximation for the first 

case and use the output of each case as the initial approximation for 

the next case. 
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4. Small-Amplitude Periodic Sloshing Modes of the Liquid 

The sloshing motion is treated as potential flow in an incompres­

sible fluid. The fluid velocity v at any point is the gradient of 

a potential function ~ 

v = 11~ 

Since the fluid is incompressible, l1·v = 0 ,so ~ satisfies Laplace's 

equation 

~~ = 0 . (4.1) 

-The boundary condition on ~ along the cylinder wall and ,the bottom 

is 

~n = 0 , (4.2) 

where the subscript n denotes the outward normal derivative. 

The displacement of the free surface from its equilibrium wi~l be 

described in surface polar normal coordinates s, G and n. The 

coordinate s is the arc length along the equilibrium surface, and 

the coordinate n is the displacement normal to this surface [1]. The 

perturbed surface is described by 

n = H(s,G,t) 

The time-dependent Bernoulli equation is linearized in the perturbation 

H. Since H is the component of fluid velocity normal to the equi­
t 

-librium surface, H and ~ are related by the kinematic equation on 

the eqiulibrium surface 

~ = H • (4.3)
n t 

This is the boundary condition on ~ along the free surface; it depends 

on the unknown function H. 
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The sloshing motion will be analyzed in terms of normal modes 

-
$ = $(r,z) cos(m8) cos(wt) 

H = H(s) cos(m8) sin(Ult) ._ 

Equation (4.3) can be used to eliminate the function H from the 

linearized time-dependent Bernoulli equation. The result is 

2
(R$ ) + RQ(s)$ = W (1+IBI)R$ (4.4)-ns s n 

where 

Q(s) = BR + (m/R)2 _ [~ 2 + (Z /R)2] (4.5)s s s 

The solution of differential equation (4.3) gives the boundary 

condttion on $ along the equilibrium surface. The boundary condition 

is specif-ied by the contact angle conditions at s = 0 and s = S , 

which are assumed to be time independent. The perturbed surface and 

the equilibrium surface must have the same 'contact angle with the 

cylinder wall and the bottom. 

These conditions relate H and at s = 0 and 
s 

s = S. In terms of the function $ these conditions are 

~ sin y - ~ ('" cos y Xr cos X) = 0 at s = 0 (4.6)"'ns "'n "'s 


~ sin y + $ ,1, cos Y = 0 at s = S • (4.7)
"'ns n"'s 

Equations (4.1), (4.2), and (4.4) - (4.7) determine the eigenfunctions 

$ and the corresponding eigenvalues w. 

It will be convenient to let 80, 81, 82 , •••• denote normal 

modes having cos (m8) dependence with the values m = 0, 1, 2, ... , 

respectively. We also shall let RO, Rl, R2, ••• denote normal modes 

having 0, 1, 2, ••• radial nodes in the intervai 0 < s < S (not 

counting the nodes, if any, at the endpoints of the interval). 
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5. 	 Discrete Representation and the Solution of Laplace's Equation 

The functions ~ and ~ - on the boundary of the vertical cross 
n 

section of the liquid will be represented by their values at N + M 

points 

and 	similarly for 4> These points are shown in Figure 3. The first 
n 

N of these points will be along the meridian of the free surface in the 

cross-sectional plane. The remaining M will be on the meridians of the 

cylinder wall and the bottom in the cross-sectional plane. None of the 

Sj are corner points of the boundary. 

We shall partition the vectors 4> and 4> into two parts:
n 

includes values of ~ at points on the free surface, and 4>2 includes 

those on the cylinder wall and the bottom 

4> = 	 (4)1' 4>2) 

4>1 = 	 (~(sl),~(s2),···,~(sN)) 

4>2 = 	(~(sN+l)"'" ~(sN+M)) 

The boundary condition on ~ along the cylinder wall and the bottom, 

Equation (4.2), becomes 

4> = 0 (5.1)2n 

Because ~ satisfies Laplace's equation, Green's formula yields 

an integral equation that relates ~ and ~n on the boundary of the 

vertical- cross section of the liquid. This can be approximated by a 

matrix equation of the form: 

W4> = 	 CiP (5.2) 
n 

The calculation of the matrices Wand C is-described in [?]. 
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6. 	 Discrete Representation of the Boundary Condition on the Free 

Surface 

Using Equation (4.4) and the contact angle conditions (4.6) and 

(4.7), we will derive ~ discrete set of equations relating $ and 

$n at the points sl,sZ, ••• sN' along the meridian of the free surface 

in the cross-sectional plane. Let this meridian be divided into N 

intervals. The jth interval has 

be 	the midpoint of the jthwhere t = 0 and tNt-I = S • Let
1 

interval. 

We integrate Equation (4.4) over the jth interval 

I
tj+l 

R(tJ)$ns (tj ) - R(tj+l)$ns (tj +1) :I- Q(s)R(s)$n (s) ds 

t., 

(6.1) 

The 	integrals are approximated by 

Q(s) 	R(s) ds 

and 

ds 
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If t . is' not an endpoint of the meridian, we approximate ~ (t.) by
J ns J 

~ Ct.J ns J 

Substituting these approximations into Equation (6.1) gives 

Tj _ 1 ,j ~n(Sj_l) + Tjj~n(Sj) + Tj,j+1~n(Sj+1) = (lAjj~(Sj)' (6.2) 

where t

Ij+1 

A•• = (1+IBI) R(s) ds 
JJ 

t. 
J 


.
t j +1 
Q(s)R(s) ds ,

J
tj 

and 

For tl = 0 , the inner endpoint of the.meridian, we approximate 

To eliminate the unknown ~n(tl) , we use the contact angle 

condition (4.6) 

where 

These give 
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where 

Substituting this approximation into Equation (6.1) gives 

Tn<Pri(sl) + T12<Pn(sZ) = W 
2 

All <P(sl>-.'· (6.3 ) 

where 

For tN+~ = S , the outer endpoint of the meridian, we approxi­

mate 

To eliminate the unknown <Pn(tN+l ) , we use the contact angle condition 

(4.7) 

'" (t )"'ns N+l sin y 

where 

These give 

= ­

where 

Substituting this approximation into Equation (6.1) gives 

Z 
TN-l,N <Pm(sN_l) + TNN<Pn(sN) = W~<P(sN)' (6.4) 

where 
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Equations (6.2) - (6.4) can be written in matrix form as 


T<Ii = w'll A <Ii (6.5)

1n 1 

This is the boundary condition on $ along the meridian on the free 

surface. A is diagonal, ,and the diagonal elements are positive. T is 

tridiagonal and symmetric, and the off-diagonal elements are negative. 

The set of Equations (5.1), (5.3), and' (6.5) is the discrete versi'on 

of the eigenvalue problem for the small-amplitude, periodic sloshing 

modes of a liquid in a vertical, rotationally symmetric cylinder. 
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7. 	 Numerical Solution of the Discretized Eigenvalue Problem 


We write the matrices Wand C of equation (5.3) in block form: 


.W
Il

, W
12

, W
21

,. W
22

, and similarly for C. Subscript 1 denotes the rows 

and columns corresponding to the N points along tqe free. surface, and 

subscript 2 denotes those corresponding to the M points along the. 

cylinder wall an&bottom. Since ~2n is zero, Equation (5.3) can be 

written 

(7.1) 


The matrix A is diagonal, so Equation (6.5) is easy to solve for ~l' 

which we can eliminate from Equations (7.1). 

Define 

-1 
Fll 	= W Tll A 

-1 
FZl 	= W T. (7.2)2l A 

Then Equations (7.1) give 

2 
Fn 	~ln = III (Cn<Pln - W12~2)' 

Z (7.3)FZI 	<PIn = W (CZl<Pln - W2Z~2) 

Equations (7.3) can be written as single matrix equation for the 

= 
(7.4) 

2Equation 7.4 could be solved for the eigenvalues W ; however,. M of 

the eigenvectors have the eigenvalue ooZ = O. A linearly independent 
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set of these eigenvectors is 

iJ>2 = e. j=1,2, •••M, 
J 

. h . h . h . th .. d 1wereh e. 1S t e vector W1t a one 1n t e J pos1t1on an zeros e se-
J 

where. These eigenvectors correspond to no motion of the free surface, 

since iJ>ln is zero. A computer program that calculates all the eigen­

values of a matrix, such as the IMSL routine EIGZF, will waste some time 

computing these unwanted eigenvalues. 

We can avoid calculating the zero eigenvalues by' eliminating iJ>2 

from the pair of Equations (7.3). Define 

-1
-W Wn 22 

(7.5) 

Then Equations (7.3) combine to give 

(7.6) 

Equa~ion (7.6) can be solved for its eigenvalue by the IMSL routine 

EIGZF, which uses a QZ algorithm to reduce E to upper Hessenberg form 

and D to upper triangular form. 

The solution of Equation (7.6) is performed by the program SLOSH. 

The input to SLOSH is the set of points describing the equilibrium 

free surface calculated by CAPIL and parameters that define the 

cylinder wall and ,spheroidal bottom. SLOSH then calculates the 

matrices A, T, W, and C; uses the IMSL routine LINVlF to calculate 

W22 inverse; calculates the matrices D and E; and uses EIGZF to 

calculate the eigenvalues. This method of solving the eigenvalue 

equation is not the most computationally efficient, but by using 
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the existing and reliable IMSL routines it requires the least amount 

of programming effort. 

For comparison, the routine EIGZF was used to solve both Equation 

(7.6) and Equation (7.4) for a few case~. The numerical values of 

corresponding eigenvalues for these two methods were identical to the 

four figures that were printed out in each case. 
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8. Small-Amplitude Periodic Sloshing Modes of the Liquid between Two 

Concentric Right Circular Cylinders 

In this section we solve the eigenvalue problem for the small­

amplitude, periodic sloshing modes of the liquid contained between 

two concentric, verticaily or:i:ented, right circular cylinders of radii 

and A cross' section is shown in Figure 4. The equilibrium 

surface is a horizontal plane when the contact angle is 900 
• The nor­

mal mode problem for this case has an analytic solution. We can use 

this solution to test the accuracy of the program SLOSH. 

Let V be the rectangular domain r ~ r ~ r and O::;:;;;z<zo 1 o 
Laplace's Equation for $ in the domain V is 

o . (8.1) 

The boundary conditions are 

$ = 0 at z = 0 • 
r 

Equation (4.4) for $ on the free surface, z = zo ' is 

(8.2) 

where 

Q(r) = B + (m/r)2 

The contact angle conditions, Equations (4.6) and (4.7), become 

$ = 0rz 

We solve these equations by separation of variables. Let 

$(r,z) = X(r) U(z) 
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then (8.1) 	gives the pair of equations. 

2
U" = k U 	 (8.3) 

1 "2"22
X" + - X' + (k - m /r )X = 0 , 	 (8.4)

r 

with 	boundary conditions 

u' = 0 at z = 0 , (8.5) 

X' = 0 at r = rO and (8.6)r l 

The contact angle conditions will be automatically satisfied if Equation 

(8.6) 	is satisfied. 

Equation (8.2) gives an .equation for the eigenvalue 

The solution of (8.~) and (8.5)" is 

U = cosh (kz) 

Thus the, eigenvalue is 

2
2 k(k + 	B) : w -	 (8.7)

- (1 	+·1 BI) 

The solution of (8.4) is 

X(r) = c J (kr) + d Y (kr) , . m m 

where J and Yare Bessel functions of the first and second kind of m m 

order m. Equation (8.6) requires 
. . 


c Jm'(kr ) + d Ym'(kr ) = 0

O O


c j~'(krl) + d Ym'(krl ) = 0 


These will 	have a nontrivial solution for c and d if 

(8.8) 
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Equation (8.8) gives the values of k for the normal modes. The first 

few values for the caSe ro = 0.5 and r - 1.0 are listed in Table1 

1 to the accuracy indicated. 

Table 1. k values for m = 0, 1, and 2. 

m = 0 m = 1 m = 2 

0.0 1.3547 2.6812 

6.3932 6.5649 7.0626 

12.6247 12.7064 12.9494 

18.8889 18.9427 19.1032 

25.1624 25.2045 25.3224 

The solution m = 0, k = 0'.0 corresponds to no movement of the 

equilibrium surface or of the liquid. 
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9. 	 Comparison of the Analytically and Numerically Calculated Solutions 

for the Normal Modes of the Liquid between Two Cylinders 

Figure 4 shows the cross section of a liq~id contained between two 

concentric right circular cylinders, oriented vertically. Each of 

the four sides of the cross section (the free surface, the bottom, and 

the two cylinder walls) was divided into n intervals of equal length. 

The velocity potential $ on the perimeter of the cross section was 

represented by its values at the midpoints of these 4n intervals. 

These 4n values of $ are related by Equations (5.1), (5.3),. and 

(6.5). Numerical solutions of these equations were computed for the 

o case rO =.0.5, = 1.0, Zo = 0.9 , contact angle 90 , and Bondr l 

number 0 using the program SLOSH. 

Numerically calculated squares of the frequencies for the modes 

8lRO, 8lR1, and 8lR2 using n = 5, 10, and 20 points are shol.u in Table 

2. The corresponding analytic values' for the squares of the frequen­

cies, calculated from Equation (8.7) and the k values of Table 1, are 

also shown. 

Table 2. Squares of frequencies for various normal modes 

8lRO 8lRl 8lR2 

5 points 2.157 292.1 1965. 

10 points 2.127 284.8 2080. 

20 points 2.118 280.7 2072. 

analytic 2.087 282.9 2052. 
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The relative errors of the numerically calculated squares ,of the fre­

2quencies [oo2 (n points) - oo2 (ana1ytic)]/ 00 (analytic), are shown in 

Table 3. 

Table 3. Relative errors of the squares of frequencies. 

SlRO SlR1 SlR2 

5 points 0 ..034 0.033 -0.042 

10'points 0.019 0.007 0.014 

20 points 0.015 -0.008 0.010 

Note that the relative errors of the frequencies are approximately half 

these values. The error decreases substantially between n = 5 and 

n = 10, but less so between n = 10 and n = 20. Even the errors for 

n = 5 are quite small, considering that only five radial modes can be 

represented by a 5-point approximation to the meridian on the free 

surface. 

Numerically calculated squares of the frequencies for the modes 

SORO, SOR1, SOR2, S2RO, S2Rl, and S2R2 using n = 10 points are shown 

in Table 4. Corresponding analytic values are shown also. 

Table 4. Squares of frequencies for various normal mo~es. 

SORO SORl SOR2 

10-1210 points 0.7 265.4 2038. 

analytic 0.0 261.3 2012. 

S2RO S2R1 S2R2 


10 points 19.99 346.6 2201. 

analytic 18.97 352.3 2171. 
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The relative errors of these squares of frequencies are shown in Table 

5. 

Table 5. Relative Errors of the squares of frequencies. 

RO Rl R2 

80 modes 0.016 0.013 

82 modes 0.054 -0.016 0.014 

The relative errors of the squares of frequencies for n = 10 points, 

as shown in Tables 3 and 5, are typically from 0.01 to 0,.02. These 

results show the program SLOSH calculates with satisfactory accuracy 

for our purposes the frequencies of the normal modes of a liquid con­

tained between two concentric right circular cylinders. 
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10. 	 Equilibrium Free Surfaces of a Liquid in a Vertical Right Circular 

Cylinder with a Concave Spheroidal Bottom 

With a given volume of liquid in the cylindrical container we 

associate a dimensionless fill height defined as follows: let the 

given volume V equal the volume bounded by the container wall and 

bottom and the horizontal plane z = z Then the fill height h 
v 	 v 

is 	 z divided by the container radius a. 
v 


h = z /a • 

v v 

The axial ratio of the spheroidal bottom is b/a = 0.724 • 

Equilibrium free surfaces, approximated by 21 points on the meri­

dian, were calcurated by the program CAPlL for contact angle y = 0
0 

and for the fill heights: 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 

0.60, and 0.70. For each fill height equilibrium surfaces were 

calculated for a sequence of increasingly negative Bond numbers. The 

first surface for each £ill height was calculated for Bond number 

B = O. The initial approximation to this surface was generated by the 

subroutine CYLCUR. The equilibrium surface for each Bond number was 

used as the initial approximation to the surface for the next Bond 

number in that sequence. 

The equilibrium surfaces that we.have calculated are members of a 

family with two parameters Band h • Let B denote the critical 
v eq 

value of the Bond number for the nonexistence of equilibrium surfaces 

of this family for a given fill height. Let B denote the criti ­crit 

cal value of the Bond number for the stability of equilibrium surfaces 

of this family for a given fill height. Stable equilibrium surfaces 



140 

exist for B . < B , unstable equilibrium surfaces exist for
crlt 

Beg < B < B . < 0 eq . if B <f B .'" and no equilibrium surfaces ofcrlt crlt _, 

this' family exisB for B < B (Other equilibrium surfaces might
eq 

exist, such as multiple-valued surfaces or surfaces with shapes very 

different' from those of this family.) Concus and Karasalo showed that 

unstable equilibrium surfaces exist for B infinitesimally lower than 

B . and h < h* 0.503 but that no equilibrium surfaces of thiscrlt v v 

family exist for B < B and h ;;'h* [1]. Their result may be
crit v v 

restated as B < B for h < h* , but B = B for h ;;. h* 
eq crit v v eq crit v v 

Our calculations agree with their result and provide an estimate of 

B . eq 

For each fill height we found a Bond number B ' depending ondiv 

hv ' for which the iteration for the equilibrium surface diverged. 

The iteration using B was approached' by a sequence of calculationsdiv 

using small decreases in B Let B denote the Bond number imme­
conv 

diately preceding in that sequence, Bdiv < Bconv < O. ForBdiv 

B ;;. B the equilibrium surface changed only slowly with B. The 
conv 

equilibrium surface for each value of B was an excellent approximation 

to that for the next value of B in the sequence. This indicates that 

the divergence for the case B was caused not by the initialdiv 

approximation but by the nonexistence of an equilibrium surface for 

this family. Thus B is an approximation to B Table,6 shows
div eq 

Band B as a function of h It also shows calcu­
conv div v Bcrl't 

lated to four decimal places by Concus and Karasalo [1]. 
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Table 6. B B
d 

. , and B . for various fill heights.
conv' 1V crlt 

h -B -Bd · -B . v conv ~v cr~t 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.60 

0.70 

1310. 

488. 

216. 

107. 

58.0 

33.4 

20.2759 

8.42 

3.98 

1320. 

492. 

218. 

108. 

58.2 

33'.6 

20.2760 

8.43 

3.99 

480.4283 

238.6539 

'132.9638 

79.6741 

49.9096 

31.9190 

20.2759 

8.'4411 

4.0020 

The data of Table 6 are shown in Figure 5. The soli& line is the 

graph of and the dashed line is that of These lines 

divide the Bond-number, fill-height parameter space into three regions: 

one for which stable equilibrium surfaces exist, one for which unstable 

equilibrium surfaces exist, and one for which no equilibrium surfaces 

exist. (Growth rates for perturbations of the unstable equilibrium 

surfaces were calculated by the program SLOSH for various values of B 

These will be discussed in the next section of this report.) 

Figure 5 also shows data points from stability experiments carried 

out at the NASA Lewis Zero Gravity Facility for the container shown in 

Figure 1 [6]. The experiments used three containers with radii 7 cm , 

5.5 cm', and 2 cm', respectively. In the experiment the container had 
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approximately 2.S sec.of free fall followed by approximately 2.S sec 

of negative low~g fall. During the first 2.S sec the liquid surface 

adjusts from one g to zero g During the next 2.S sec instabil ­

ities may be observed if they grow sufficiently rapidly. Solid data 

points correspond to experimental parameter values for which the 

surface was observed to be unstable. Open data points correspond to 

parameter values for which the surface did not develop a noticeable 

instability within the 2.S-sec time interval. The experimental data 

and the numerically calculated curves agree quite well. All·the 

experiments in which the surface was observed to be unstable have Bond 

numbers B· < B • <. 0 •crlt . 

B is an approximation to B The accuracy.of this approxi­div eq 

mation can be investigated by considering the cases h ~ 0.60 and 
v 

0.70. For h ~ 0.60 CAPIL diverges for some Bond number in the rangev 

(-8.42, -8.43) and· B ~ -8.4411. The relative error in this case is eq 

less than 0.003. For h ~ 0.70 CAPIL diverges for some Bond number 

in the range (-3.98, -3.99) and B ~ -4.0020. The relat~ve error in eq 

this latter case is less than O.OOS. 

From this we infer that the correct value of B for h ~ O.SO 
eq v 

is slightly less than the value found here for the 21 point surfaces, 
. " .. 

and that there is a small range of Bond numbers between B and
crit 

B for this, value of h This is supported by a calculation of eq v 

the frequencies of individual normal modes, which is discussed in the 

llext two sections. Based on an approximate calculation of the fre­

quencies, the ROel mode becomes marginally stable at B ~ -20.243 

while all the other modes approach instability as 'B approaches -20.276. 

http:accuracy.of
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11. Frequencies of the Normal Modes of a Liquid in a Vertical Right 

Circular Cylinder with a Concave Spheroidal Bottom 

The frequencies of the small-amplitude periodic sloshing modes of 

a liquid in a vertical right circular cylinder with a concave spheroidal 

bottom were calculated by the program SLOSH for contact angle y = 0° 

The axial ratio of the spheroidal bottom is b/a = 0.724. The equi­

librium free surfaces were approximated by 21 points of the meridian, 

as described in Section 10. These 21 points were the endpoints and 

midpoints of 10 intervals on the meridian. The velocity potential 

$ for perturbations to these surfaces was represented by its value at 

the 10 midpoints of these intervals, by its value at 10 points on the 

meridian on the cylinder wall, and at 10 points on the meridian on 

the bottom. We shall refer to this as the 10-point approximation to 

$. Surfaces corresponding to numerous values of hv and B were 

used. 

A few surfaces approximated by 41 points on the meridian were 

used to check the accuracy of the frequencies calculated using the 21 

point surfaces. For these cases $ was represented by its value at 

20 points each on the meridians on the free surface, the cylinder 

wall, and the bottom. We shall refer to this as the 20-point approxi­

mation to $. 

The squares of frequencies for various normal modes and for vari ­

ous values of hand B calculated by SLOSH using the 10-pointv 

approximation are shown in Tab+es A 1 through A 11. Typically the 

2values of w in these tables have a relative error of 1-2% for 

2
values of w that are not too small and for Bond numbers that are not 
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too near B ' This will be discussed in more detail in Section 12.div 

These squares of frequencies are plotted as functions of B in 

Figures 6-12 for h = 0.20, 0.30, ••• 0.70 • Note 	that in Figures
v 

210-12 (h = 0.50 - 0.70 ) a different scale for w is used for each 
v 

mode that is plotted·. The purpose is to show that all these modes have 

2 a similar dependence of w on B However" in Figures 6-9 (h = v 

0.20 	- 0.40 ) all the RO modes ( R08l, ~082, R083, ••• ) that are 

2plotted in a given figure use the same scale for w ThiS ,is 'to show 

for each value of B which mode is most negative. 

We 'shall first describe the general features 'of these figures, 

and then consider numerical details for particuiar cases, and discuss 

the accuracy of the calculations. 

2 .
Figure 6 'shows graphs of w, (B) for the modes .ROBl:, R082, ROB3, 

R084, R086, and Rl80 for h = 0 ..20 . The mode R180 is plotted with v 

a scale 1000 times that of the other modes. (An accuracy check shows 

the values for'the R180 mode are about 10% too large. However, we 

include it in Figure 6 for a 'rough comparison,with the RO modes.) Note 

that the Bond numbers for which the various RO modes become marginally 

9table [for which W2 (B) = 0] ,lie in a small range. 

Figure 7 shows.this more clearly. The order in which the modes 

become unstable is as one would expect: First ROBl, then R082 , 

R083 , R084., and R086. (R085 was not calculated for hv = 0.20 .) 

Note' also that because the higher '8 modes have steeper slopes 

2(dW /dB ), each mode, in turn, becomes the dominant unstable mode 

(most negative value of w 2· ) for a short range of Bond numbers. 
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This same pattern for the RO modes is shown in Figure 8 for 

2 
hv = 0.30 A new-feature appears in this figure. It is that 00 

for the RleO mode passes through a point of inflection and begins to 

curve downward,. The rate at which it approaches zero, the magnitude of 

dw2/d(B) , increases as B approaches ' The functions w (B)Bdiv 
2

for the other Rl modes, Rl6l to R1e6 , have -simi-1ar shapes and 

differ from that of R180 by only a few percent, as shown in Table 

A~. The functions 00
2 (B) for the modes R2eO to R2e6 have shapes 

similar to those for the R1 modes but magnitudes about five times 

larger. All the Rl and R2 modes curve downward as B approaches 

Figure 9 shows that for h = 0.40 becomes negative between 
v 

, ­
and B only for four modes: R081 , Roe2 , Roe3 , and 

conv 

R064. Furthermore, only the first three modes become dominant insta­

bi1ities in this range. The rate at which the RleO mode approaches 

zero, Idw2/dBI , becomes very great as B approaches Bd · • Note
1V 

also that 00
2 (B) for each of the RO modes passes through an inf1ec­

tion point and curves do~ward as B approaches 'Bdiv 

Figures 10, 11, and 12 are for the cases hv = 0.50, '0.60', and 

~.70 , respective1y._ In each case the functions 00
2 (B) for the vari ­

ous modes have similar shapes. They all curve downward for B near 

B . , and the rate at which they approach zero becomes very greatcr1t 

as B approaches B ' All modes apparently go to zero at'or nearcrit 

B • This behavior of 00
2 (B) is consistent with the nonexistencecr1t 

of an equilibrium free surface.nearby the critical one for Ii :;,h* v po v 

and, -B < B . < 0 It is in sharp contrast to the behavior seen incr1t 
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the" cases h = 0.20-0.40 , in which only a few RO modes were un­
v 

stable for a range of Bond numbers beyond B .
crlt 

For the case hv = 0.50 the R06l mode becomes marginally stable 

at a slightly higher Bond number than the other modes. In the 10­

point approximation it becomes marginally stable at B = -20.243 , 

while all the other modes approach instability as B approaches 

-20.276. It appears that for this case there exists a very small 

range of Bond numbers between B . and B 
cr~t eq 

http:0.20-0.40
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12. Frequencies of the Normal Modes Continued -- Accuracy 

2The bulk of our data are values. of w calculated by the 10-point 

approximation, Tables A 1 A 11. Throughout this section we shall 

2investigate the accuracy of these data. The few values of W calcu­

lated by the 20-point approximation are used solely to estimate the 

accuracy of these.data and how they can be improved. We shall refer 

to these values as and w
2 

' respectively.20 

We are most interested in the accuracy of for the growing 

2RO modes. These negative values of w are small numbers, so a 

small (absolute) error in them can be significant. We shall show that 

the error in is approximately -(dw2 /dB)bB* , where is 

a function of h but not of the mode number, that is,
v 

(12.1) 

or, equivalently, 

2 2W (B-bB*) ~ w (B) (12.2)10 

2Thus, a value of wlO(B) from Tables A 1, A 2, or A 4 actually corres­

ponds to the Bond number B-bB*. 

Five comparisons of calculated quantities support this description 

of the approximate dependence of the error in on the parameters 

hv B, and mode number. The first comparison is between the values 

of B . calculated by the lO-point approximation, which we shall
crl.t 

denote by B and those calculated to four decimal places fromcrit,10 ' 

a static analysis [1]. bB* is defined as the difference in these 

values. 
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lIB* = B. - B . •cn.t,lO cr~t 

These quantities ar.e shown in .Table 7. 

of B .
crlt 

Table 7. Bcr<t' B , and lIB* for three fill heights
~ crit,lO 

h -B . 	 lIB* 
cr~t 

-Bcrit,lOv 

0.20 480.43 

0.30 132.96 

0.40 49.91 

468.2 

130.73 

49.35 

12.2 

2.23 

0.56 

The second comparison is between ·the values of for the 

Roel mode calculated by the 	10-point and 20-point approximations. 

2Since the correct value of w is zero in this case, these values 

2 are errors. They show that the error in the calculated values of w

depends as 1/N2 on the number of points used to approximate $ . 
. 2 

These values are shown in Table 8. Note that w
20 

is approximately 

1/4 of 

Table 8. and at B . for the Roel mode. 
cr~t 

h 
v 

0.20 0.00180 0.00045· 

0.30 0.00183 0.00046 

0.40 0.00209 0.00053 



157 


RO .The third comparison is between for various 

modes, fill heights, and Bond numbers. asDefine 

Since the error in w~o is approximately 1/4 of the error in wio ' 

it follows that bw2 is approximately -3/4 of the error in wio 

The values of bw2 are shown in Table 9. They vary greatly with 

mode number. 

Table 9. nw2 for various RO modes, fill heights, and Bond numbers. 

-B ROSI . ROEl2 ROEl3 

0.30 130. 0.00141 0.0055 0.0120 

132.96 0.00137 

140. 0.00127 0.0050 0.0108 

0.40 45. 0.00193 0.0070 

49.91 0.00156 

50. Q.0059 

Define nB as 

The values of dw2/dB can be calculated approximately by central 

differences of the data in Tables A 2 and A 4. The resulting values of 

nB are shown in Table 10. Note that for a given fill height, while 

nw2 varies greatly with mode number, nB does not. Our fourth com­

parison is between the values of nB and nB*. Table 10 shows that 

the values of nB are approximately 3/4 of the corresponding values 
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of ~B*. Since ~w2 is approximately -3/4 of ,the error in wio ' 

this implies that the error in, wio, is approximately -(dw2/dB)~B* 

for some range of Bond numbers containing Bcrit • 

Table 10. ~B for various RO modes, fill heights, and Bond numbers. 

ROel ROe2 ROe3-B 

0.30 130. 1.68 1.65 1.59 

132.96 1.71 

140. 1. 74 1.71 1.66 

0.40 45. 0.47 0.43 

49.91 0.'44 

50. 0.42 

For 'a given fill heights, let Ben denote the Bond number for 

which the ROen mode becomes neutrally stable, that is, for which 

2
W (Ben) = O. Table 11 shows the values of the Bond numbers for the 

neutral stability of various modes as calculated by the 10-point 

approximation to $, which we shall denote by Ben,lO • As B 

increases the various modes become unstable in order of increasing 

e mo~e number, so Bel is B . We have already compared the 
cr~t 

'accurate values of B . with the corresponding values of 
cr~t Bcrit,lO ' 

that is, with Bel,lO 
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Table 11. for various modes a~d fill heights.-B,Sn,lO 

h ROSI ROe2 ROe3 Roe4 Roe 5 Roe6 v 

0.20 468.25 471.42 475.42 480.89 495.85 

0.30 130.73 133.22 137.11 142.49 149.28 157.60 

0.40 49.35 51.28 54.19 57.19 

Our last comparison is between the values of B and
en,lO 

Ben,20' Define ~Ben as 

~B = B - B ' en en,lO en,20 

Table ,12 shows values of ~Ben for various modes and fill heights. It 

shows that the values of ~Ben are approximately 3/4 of the correspond­

ing values of ~B*. For a given fill height ~Ben is approximately 

the same for each mode. This implies that the error in W2 islO 

approximately -(dw2/dB)~B* for some range of Bond numbers containing 

these 

Table 12. lIBen for various modes and firl heights. 

h 
v 

0.30 

0.40 

Roel 'Roez Roe3 

1.68 1.69 1.59 ' 

0.42 0.42 

When the values of Ben given in Table 11 are adjusted by adding 

lIB* , the values shown in Table 13 are obtained. 
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Table 13: Adjusted values of -B for various modes and fill heights.en 

.h_ .Ro.e.l.. ROeZ. ROe3 Roe4 - ROeS Roe 6 
v 

o.zo 480.43 483.6 487.6 493.1 508.0 

0.30 13Z.96 135:5 139.3 144.7 151.5 159.8 

0.40 49.91 51.8 54.8 . 57.8 

We consider finally the Rl modes. Table 14 shows the relative 

Zdifference in w calculated with the 10-point and ZO-point approxi-

Z
mations, that is, The value of w differed by 10% 

for the Riel mode with h = O.ZO. It differed by Z.6 - Z.7% for the v 

RIel and RIez modes with h = 0.40 for Bond number 55, which is 
v 

Z 
near The value of w differed by only 1 - Z% for all the 

Rl modes with hv = 0.30 or 0.40 and Bond numbers not near Bdiv 

Table 14. Range of 6wZ/wZ for various modes and fill heights. 

h range of -B 
v 

O.ZO 450.-500. 

0.30 130.-140. 

0.40 45.- 50. 

0.40 55. 

RIel Rlez Rle3 

0.100 

0.015-0.016 0.015-0.016 0.015-0.016 

0.015-0.019 0.014-0.019 

0.OZ6 0.OZ7 
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13. Growth Rates and Accuracy for Fill Height = 0.30 

Figure 8 and Table 'A 2 show 00
2 (B) of the various RO modes for 

h = 0.30 They show which is the maximally unstable mode for each 
v 

value of B The information for ,the maxima1'ly unstable mode is 

,disp.1ayed in Table 15. The values of B listed in this table have 

been adjusted by ~B* 

,For example, the R08l mode is the maximally unstable one for, 

-134.04 < B < -132.96 , the R082 mode for -140.27 < B < -134.04 , 

etc. The value of (doo2/dB)~B* is an estimate of the accuracy of 00 
2 

2before adjustment by ~B*. We feel the error remaining in 00 after 

this adjustment is less than (doo2/dB)~B*. In particular, we,fee1 

2the errors remaining' in 00 for the R08l, R082" and R083 modes 

are 1/10 to 1/4 of (doo2/dB)~B*. 

Table 15. of the maximally unstable mode for h ,= 0.30. 
v 

-B 

132.96 

134.04 

'140.27 

149.99 

163.48 

179.76 

202.23 

2 
00 

0.0 

0.0025 

0'.,0218 

0.0808 

0.204 

0.407 

0.701 

maximally 
unstable 

R081 

R082 

R083 

R084 

R08s 

R086 

0.0017 

0.007 

0.014 

0.021 

0.028 

0.032 
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The dimensionless growth rate r o£ the maximally unstable ,mode 

is shown in Table 16. The corresponding growth, period in second's is 

-1 - -1 3 I I J;'f(t/t) ~ r Epa /a(l+ B ) 

This is calculated for a cylinder of radius 7 cm for the three 

liquids ethanol, freon, and FC78. The values of p/a used for these 

2were 0.03538, 0.08489, and 0.131 sec /cm3 , respectively. Ethanol has 

the fastest growth rates and FC78 has the slowest. B . is -132.96 
cn.t 

for this case. At Bond number B ~ -150 ·the growth periods range 

from 1.0 to 1.9 sec. At B ~ -202 , which i's 50% 	 beyond B. ,they
cr~t 

range from 0.29 to 0.56 sec. ~t is not likely that growth would be 

observed in these cases in an experiment with a negative-B phase of 

only 2.5 sec,·since only 2-8 growth periods would elapse. 

Table 16. Maximal growth rates and growth periods for h ~ 0.30 . 
v 

dimensionless values 

-B r 

132.96 0.0 

134.04 0.050 

IlIO.27 Q.148 

149.99 0.284 

163.48 0.451 

179.76 0.638 

202.23 0.837 

g"owth period (sec) 


ethanol freon FC78 


00 00 

5.9 9.2 

1.99 3.1 

1.00 1.54 

0.60 0.93 

0.41 0.63 

0.29 0.45 

00 

11.4 

3.8 

1.92 

1.16 

0.78 

0.56 

2 	 2The errors in w for the smaller values of w	 (the ROel, 

ROe2 , and ROe3 modes) have a greater percentage 	reduction from the 

2M* adjustment than those for larger values of w However, these 
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2 
-errors were initially larger fractions of their values of w than 

those for the larger va1u~s of w2 As a result of these two effects, 

2the errors in w remaining after this adjustment probably lie in the 


2
 range 5 - 20%, the larger values of w . being more accurate. The 

corresponding errors in the growth rate probably lie in the range 

2 - 10%. However, these are only the computational errors in r 

they represent the accuracy with which the growth rates were calculated 

from the assumed model of the liquid motion. The accuracy with which 

they describe experimentally observed growth rates depends also on 

the accuracy of that model. In this model the fluid motion was assumed 

to be nonviscous and irrotational, and the contact angle was assumed to 

be time independent. These assumptions could be tested by computing 

the fluid motion with a complete hydrodynamics code that includes all 

the relevant effects. 
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14. Summary 

In this paper we calculate the small-amplitude periodic sloshing 

modes of a liquid in a vertical right circular cylinder with a concave 

spheroidal bottom, for the case in which there is not sufficient liquid 

to cover the bottom entirely. Numerical results are obtained for a con­

tainer currently used for the storage of liquid fuels in the Centaur 

space vehicles, for which the axial ratio of the bottom is b/a ~ 

0.724 

We follow the derivation in [2] for obtaining the equations of 

motion for the case studied here, but we use a different technique for 

obtaining the numerical solution. The liquid is subject to surface 

and gravitational forces. The equilibrium surface is the solution of 

the. time-independent Bernoulli equation subject to a contact-angle 

condition. 

It is assumed for the dynamical equations that the fluid flow is 

irrotational and incompressible. The fluid velocity is the gradient of 

a potential function that satisfies Laplace1s equation. The velocity 

potential and its gradient on the free surface are related by the 

linearized time-dependent Bernoulli equation and the contact-angle 

condition. The sloshing motion is analyzed in terms of normal modes. 

The discrete form of these equations yields a generalized eigenvalue 

problem for w 2 , the square of the normal-mode frequency. This 

problem was solved numerically using the IMSL routine EIGZF.• 

The accuracy of this numerical procedure was tested by calculating 

the eigenvalues and eigenvectors for the small-amplitude periodic 

sloshing modes of a liquid contained between two concentric vertical 
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circular cylinders for contact angle y = 90· and comparing with the 

known analytic solution for this case. The numerical values of w 

were correct typically to about 1 or 2%, a satisfactory accuracy for 

our purposes. 

Equilibrium surfaces of a liquid in a vertical circular cylinder 

with a concave spheroidal bottom were calculated for contact angle 

y ~ 0° , axial ratio of the spheroidal,bottom b/a = 0.724 , fill 

heights h ranging from 0.20 to 0,70, and'many values of the Bond 
v 

number. These equilibrium surfaces are members of a family with 

parameters B and h B 't was defined above as the critical 
v cr~ 

value of the Bond number for the stability of surfaces of this family 

for a given fill he~ght. B was defined as the critical value of eq 

the Bond number for the nonexistence of equilibrium surfaces of this 

family. Stable equilibrium surfaces exist for B 't < B , unstable 
cr~ 

equilibrium surfaces exist for B < B < B . < 0 if eq cr~t 

and no equilibrium surfaces exist for B < B eq 

For all the varues of the fill height that were studied, stable 

equilibrium surfaces were found for a range of Bond numbers, 

B 't < B < O. To the accuracy of these calculations, we found the 
cr~ 

same value for Bcrit as was found in the static analysis of the same 

problem [1]. 

For fill heights ranging from 0.20 to 0.45, we found unstable 

equi~ibrium surfaces for a range of Bond-numbers B ~'B < B 
conv crit ' 

but no equilibrium surfaces of this family were found for 

( Band Bd<v are approximations to B .)conv ~ eq 
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For h = 0.50 unstable equilibrium surfaces were found for a very
v 

small range of Bond numbers. For hv = 0.60 and 0.70 no equilibrtum 

surfaces of this family were found for B < B To the accuracy
crit 

of these calculations, these results are consistent with [1], which 

found that B = B . for h > h* = 0.503 , but that eq crlt v v 

for h < h* 
v v 

The qualitative nature of the stability of the individual normal 

modes differs for the two cases h < h* and h > h* For fill 
v v v v 

heights h = O.ZO, 0.30, and 0.40 , the normal modes Roel, ROeZ,
v 

Roe3, ••. become marginally stable at a sequence of Bond numbers 

••• Be3 < Bez < Bel = Bcrit < O. Each RO mode is the fastest 

growing mode for a small range of Bond numbers. For fill heights 

h = 0.60 and 0.70 all the modes that were studied approach
v 

instability as the Bond number approaches B • For each mode thecrit 
2function ooZ(B) curves toward the 00 = 0 axis, approaching zero 

with increasing rapidity as B approaches For h = 0.50 ,Bcrit v 

which is near the critical fill height h* , the Roel mode becomes 
v 

marginally stable at a slightly higher Bond number than the other 

modes. The instability of all modes for h > h* and 
v v B < Bcrit 

is consistent with the nonexistence of equilibrium surfaces nearby 

the critical one for this range of parameters. 

ZMost of the calculations of oo were made by approximating the 

velocity potential on a meridian along the free surface by its value 

at 10 points. It was possible to correct partially these calculated 

2values of 00 by applying an adjustment based on a study of the 

errors. 
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Growth rates of the maximally unstable mode were calculated for 

the case h = 0.30 using the adjust~d values of w2 Each of the 
v 

modes ROel, R062, .,. R066 , in succession,"was the maximally unstable 

one for "a smal~ range of Bond numbers. The corresponding growth periods 

in ~econds were calculated for a cylinder of radius 7 cm for the 

three liquids ethanol, freon, and FC78. Ethanol has the fastest 

growth rates and FC78 has the slowest. B "t is -132.96 for this 
cr~ 

case. At Bond number B = -150 the growth periods range from 1.0 to 

1.9 sec. At B = -202 , which is 50% beyond B ' they range fromcrit 

0.29 to 0.56 sec. It is not likely that growth would be observed in 

these cases in an experiment with a negative-B phase of only 2.5 sec, 

since only 2 to 8 growth periods would elapse. 
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LIST OF SYMBOLS 

Radius of cylindrical container and horizontal 

semiaxis of spheroidal bottom. 

Diagonal matrix in the discretized time-dependent 

Bernoulli equation. 

Vertical semiaxis of spheroidal bottom. 

Bond number = Ka2 

Critical Bond number for stability of equilibrium 

surfaces. 

Critical Bond number for the nonexistence of 

equilibrium surfaces of the family considered 

in this report. 

Approximations to B eq 

Critical Bond number for stability of the R08m 

mode. 

Constants in a linear combination of Bessel 

functions. 

Matrix in the discrete solution of the Laplace 

equation. 

C 



D, E, F 

v 

e. 
J 

g 

h 
v 

h* v 

it 

R 

R(s,B,t) 

R(s) 

J 
m 
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Matrices. 


A rectangular domain. 


Vector with a one in the jth position and zeros 


elsewhere. 


Acceleration due to gravity, considered positive 


when directed vertically downward. 


Dimensionless eill height. 


Critical h for existence of unstable equilibrium

v 

surfaces of the family considered in this report. 

These exist for h < h* and B ,,;;; B < B . v v eq cr~t 

Mean curvature at a point on the free surface, 

considered negative when the sureace is concave 

upward. 

Scaled mean curvature ~ ita 

A constant ~ (Pg-PO)a/2cr , interpreted as the 

extrapolated value of R at the height z ~ 0 

Displacement n of the free surface •. 

A factor in the normal mode expression of the' 

displacement of the eree .surface. 

Bessel function oe the first kind oe order m. 
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k 

K, L 

m 

M 

n 

subscript n 

N 

Pg 

PO 

P
j 

Q(s), Q(r) 

r 

r 

subscript r 

The argument of the Bessel function is kr. 


Terms representing the contact-angle conditions. 


Number of angular nodes in the normal mode. 


The meridians of the cylinder wall and spheroidal 


bottom in the cross-sectional plane are divided 


into M intervals. 

Each of the meridians of the free surface, cylinder 

walls, and flat bottom in the cross-s~ct1Q~~1 Rlane 

of two concentric c~linders is divided into n 

intervals. 

Outward normal derivative. 


The meridian of the free surface in the cross­


sectional ,plane is divided into N intervals. 


Gas pressure. 


Liquid static pressure at the height z = 0 • 


The ,integral of Q(s) R(s) over the jth interval. 


A functional of the free surface appearing in the 


linearized Bernoulli equation. 


Radial coordinate. 


Scaled radial coordinate = ria . 


d/dr • 




R(s) 

RO, RI, RZ, •.• 

s 

subscript s 

s, e, n 

t 

t 

subscript t 

T 

Radii of two concentric right circular cylinders. 


Radius of the equilibrium free surface as a 


function of the arc length along the meridian. 


Normal modes with O. I, 2, •.• radial nodes in <1>.. 


Arc length along the meridians of the free surface, 


cylinder wall, and spheroidal bottom in the cross­


sectional plane: °~ s ~ S on the free surface. 


d/ds • 


Surface polar normal coordinates. 


Midpoints of the N intervals on the meridian of 


the free surface in the cross-sectional plane. 


Time coordinate. 


Scaled time coordinate = t[(I+IBI)a/pa3]~ 


d/dt • 


Endpoints of the N intervals on the meridian of 


the free surface in the'cross-sectional plane. 

Tridiagonal matrix in the discretized time­

dependent BernQulli equation. 
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U(z) A factor of the velocity potential in the liquid 

contained between two concentric cylinders. 

v Fluid velocity. 

v Volume of the liquid in the cylinder. 

w Matrix in the discrete solution of the Laplace 

equation. 

X(r) A factor of the velocity potential in the liquid 

contained between two conCent.ic cylingers, 

y 
m 

-z 

Bessel function of the second kind of order 

Vertical coordinate. 

m. 

z Scaled vertical coordinate = z/a • 

Height of-liquid contained between two 

cylinders. 

concentric 

Z(s) Height of the equilibrium surface as 

the radius. 

a function of 

Height of the spheroidal bottom as 

radius. 

a function of the 

y Contact angle. 

r Dimensionless growth rate of maximally growing mode. 
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2 
/',00, 

n 

6 

60, 61, 62, .,. 

K 

p 

a 

$(r,z,6, t) 

$(r,z) 

q,1 

~ B 't 10 - B , ,where B , 10 is the value 
cr~ ,cr~t cr~t, 

of B 't' calculated by the la-point approximation.. crl. .. 

and are the values 

2of, 00, calculated by, the, 20- and la-point approxi­

mations, respectively. 


~isp1acement normal to th~ equilibrium surface. 


~gie around the cylinder axis. 


Normal modes with 0, 1, 2, ," angular nodes. 


Capillary constant ~ pg/a • 


Difference in densities between the liquid and 


gas phases. 


Gas-liquid surface tension. 


Potential function for the fluid velocity, 


A factor in the normal mode expression of velocity 


potential. 


Vector of values of $ at N points on the 


meridian on the free surface. 
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Vector of values of ~ at M points on the 

meridians on the c~lin~er ~all and_bot~o~, 

Vector 

x Angle in the cross-sectional plane between the 

horizontal and the tangent to the meridian on the 

bottom. 

Angle in the cross-sectional plane between the 

norizontal and ~he tangent-to- the-meridian- orr the 

free surface. 

w Frequency of the normal mode. 
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Table A 1. W
2

(B) for various 8 modes; fi1~ height = 0.20; 

radial mode = RO. 

-Bond 81 82 83 84 86 

200. 0.0910 0.363 0.817 1.46 3.30 

400. 0.0116 0.0473 0.111 0.208 0.535 

450. 0.0027 0.0121 0.032 0.069 0.226 

500. -0.0044 -0.0161 -0.031 -0.043 -0.020 

550. -0.0101 -0.0392 -0.083 -0.134 -0.223 

600. -0.0151 -0.0585 -0.126 -0.210 -0.392 

700. -0.0227 -0.0889 -0.194 -0.330 -0.657 

800. -0.0285 -0.112 -0.245 -0.420 -0.856 

900. -0.0330 -0.130 - -0.285 -0.491 -1.01 

1000. -0.0366 -0.144 -0.317 -0.547 -1.14 
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Table A 2. W 
2 (B) for various 8 mode~;--fi11 height = 0.30; 

radial mode = RO. 

-Bond 81 82 83 84 85 86 

50. 0.170 0.686 1.57 2.86 4.60 6.84 

100. 0.0328 _0_.139 0_. 3_~9 0.666 1.16 1.86 

110. 0.0202 0.0883 0.226 0.464 0.841 1.40 

120. 0.0096 0.0460 0.i31 0.295 0.576 1.01 

130. 0.0006 0.0100 0.050 0.151 0.351 0.688 

140. -0.0072 -0.0210 -0.020 0.027 0.157 0.407 

150. -0.0140 -0.0481 -0.081 -0.081 -0.012 0.163 

160. -0.0200 -0.0720 -0.135 -0.176 -0.160 -0.051 

-
180. -0.0302 -0.113 -0.225 -0.336 -0.410 -0.411 

200. -0.0389 -0.147 -0.301 -0.468 -0.612 -0.701 

210. -0.0431 -0.163 -0.336 -0.527 - -0.701 -0.826 

216. -0.0462 -0.175 -0.358 -0.562 -0.750 -0.892 
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2Table A 3. W (B) for 'various 8 modes; fill height = 0.30; 

radial mode = RI. 

-Bond 80 82 84 86 

50. 350. 352. 359. 370. 

100. 153. 154•. 158. 163. 

110. 135. 136. 139. 144. 

120. ,119. 120. 123. 127. 

130. 105. 106. 109. 113. 

140. 93.5 94.4 96.8 101. 

150. 82.9 83.7 86.1' 89.8 

160. 7-3.3 74.1 76.3 79.8 

180. 56.1 56.9 58.9 62.1 

200. 39.6 40.3 42.2 45.1 

210. 30.1 30.7 32.5 35.2 

216. 21.1 21. 7 23.4 25.8 
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Table A 4. W
2 (B) for various 8 modes; fill height = 0.40; 

radial mode = RO. 

-Bond 81 82 83 84 86 


20. 0.225 0.936 2.24 4.28 11.3 

40. 0.0384 0.182 0.503 1.10 3.52 

45. 0.0161 0.0920 0.298 0.724 .2.59 


50. -0.0024 0.0172 0.127 0.411 1.81 

55. -0.0193 -0.0498 -0.025 0.133 1.09 

56. -0.0229 _-0.0635 -0.055 0.077 0.938 

57. -0.0268 -0.0784 -0.088 0.017 0.768 

58. -0.0329 -0.100 -0.134 -0.069 0.497 
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Table A 5. W
2(B) for various 8 modes; fill height = 0.40; 

radial mode = Rl. 

-Bond 80 82 84 86 

20. 132. 135. 144. 158. 

40. 49.2 50.8 55.4 62.8, 

45. 38.2 39.7 43.8 50.2 

50. 28.3 29.6, 33.2 38.9 

55. 18.1 19.3 22.3 27.0 

56. 15.8 16.8 19.7 24.2 

57. 13.0 14.0 16.7 20.7 

58. 8.07 8.89 11.1 14.3 
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Table A 6. W
2(B) for various 6 modes; fill height = 0.50;. 

radial mode = RO. 

-Bond 61 62 63 . 64 66 

8. 0.359 1.56 3.93 7.88 22.1 

16. 0.0821 0.407. 1.15 2.51 7.62 

18. 0.0455 0.254 0.782 1. 78 5.53 

19. 0.0281 0.181 0.604 1.42 4.46 

20. 0.0082 0.0993 0.398 0.989 3.09 

20.1 0.0055 0.0882. 0.369 0.926 2.88 

20.2 0.0021 0.0743 0.333 0.845 2.61 

20.25 -0.0003 0.0645 0.306 0.785 2.40 

20.2759 -0.0027 0.0549 0.280 0.722 2.18 
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Table A 7,. ·("l'(B) for various 8 modes;' £ill 'height = 0.50; 

radial mode = Rl. 

-Bond 80 82 84 86 

8. 71.1 75.8 . 89.6 113. 

16. 23.3 '25.8 32.7 44.6 

18. 16.1 ;L8.1 ' 24.0 34.1 

19. ;L2.4 14.2 19.4 28.4 

20. 7.75 9.24 13.4 20.9 

20.1 7.06 8.49 12.5 19.7 

20.2 6.17 7.53 11.3 18.0 

20.25 5.52 6,.8Q 10.4 16.8 

20.2759 4.85 6.06 9.41 15.5 
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2
Table A 8. 	 W (B) for various 6 modes; fill height = 0.60; 

radial mode = RO. 

-Bond 61 62 63 64 66 


3.5 0.531 2.47 6.62 13.8 39.0 

7.0 0.152 0.790 2.26 4.81 13.4 

8.0 0.0849 0.487 1.44 3.06 8.16 

8.2 0.0697 0.415 1.24 2.61 6.81 

8.4 0.0483 0.308 0.917 1.88 4.59 

8.41 0.0466 0.299 0.889 1.81 4.40 

8.42 0.0443 0.286 0.847 1.72 4.11 
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2Table A 9. 	 w (B) for various 6 modes; fill height = 0.60; 

radial mode = Rl. 

-Bond 60 82 64 66 

3.5 44.3 51.5 73.7 117. 

7.0 14.2 17.8 28.9 51.3 

8.0 7.98 10.7 19.0 35.8 

8.2 6.39 8.82 16.2 31.0 

8.4 3.83 5.70 11.3 22.4 

8.41 3.61 5.43 10.8 21.6 

8.42 3.30 5.04 10.2 20.6 
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Table A 10. W
2(B) for various 6 modes; fill height = 0.70; 

radial mode = RO. 

-Bond 61 62 63 64 66 

1.5 0.771 3.94 11.1 23.5 65.1 

3.0 0.306 1.67 4.79 9.99 26.6 

3.2 0.266 1.47 4.20 8.72 23.0 

3.4 0.227 1.27 3.63 7.49 19.5 

3.6 0.188 1.07 3.06 6.22 15.9 

3.8 0.148 0.855 2.40 4.78 11.8 

3.9 0.124 0.719 1.98 3.86 9.26 

3.94 0.111 0.647 1. 75 3.36 7.93 

3.98 0.0945 0.543 1.42 2.65 6.07 
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2Table A 11. 	 w (B) for various 8 modes;, fi+l height = 0.70; 

radial mode = RI. 

-Bond 80 82 84 86 

1.5 30.7 41.5 78.5 162. 

3.0 12.2 18.1 38.6 85.7 

3.2 10.4 15.8 34.5 77 .6 

3.4 8.6'7 13.6 30.5 69.2 

3.6 6.91 11.2 26.2 59.8 

3.8 4.96 8.59 21.1 48.3 

3.9 3.75 6.~9 17.7 40.7 

3.94 3.14 6.02 15.9 36.6 

3.98 2.30 4.79 13.3 30'.9 
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