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MATHEMATICAL AND COMPUTATIONAL STUDIES OF THE STABILITY
OF AXTSYMMETRIC ANNULAR CAPILIARY FREE SURFACES

by Norman Albright, Paul Concus, and Ilkka Karasalo

We present here the results of our mathematical and cogputational
studies of the stabilitj of a liquid in a rotationally symmetric
container subject to gravitational and surface forces. Of specific
interest is the case for which the  contact angle is zero, or nearly
zero. The application of primary éoncern is that of stabiiity in a
vertical right circular cyeclindrical container with a concave
spheroidal bottom, for the case in which the volume of liquid is
sufficiently small so that liquid lies only in an annular region of
the container. Numerical computations are presented for a container
used for the storage of liquid fuels in National Aeronautics and Space
Administration Centaur space vehieles, for which the axial ratio of
the container bottom is 0.724,

Our studies consist of several self-contained parts, which are
discussed independently in the appendices that follow. 'In Appendices I
and IT are derived the mathematical results on which our static-analysis
computations are based. These results are concerned with the conditions
for the contained liquid to be in stable equilibriwum. Of partiéular
interest is the case of zero contact angle, which has previously not
received adequate mathematical treatment in the literature.

A configuration is in stable equilibrium if ahd only if it
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strictly minimizes the sum of the surface and gravitational potential
energies, among all nearby configurations with the same liquid volume.
With a suitable choice of variables, the problem of-stability may be

approached as a variable-endpoint problem in the calculus of variations.



Using this approach conditions are obtained that distinguish
between stable and unstable cases in a satisfactory way; i
if.the contact angle is not zero. If the contact angle is zero, the
formal limits of the endpoint conditions depend crucially on whether
or not the curvatures of the equilibrium interface and the container
wall coincide at the three phase contact lines. 1If they do not, the
limiting endpoint conditions will be of the fixed type.

It is shown that for zero contact angle the stability
criteria based on the fixed end-point conditions apply if onily the
analytic continuation of the equilibrium liqﬁiduvapor interface does
not penetrate the container walls at the three-~phase contact lines.
If it does penetrate, then the configuration will be unstable regardiless
of the conditions on the second variation of the total potential
energy.

A computaticnal study based on the mathematical results in Appendices
I and ITI is carried out in Appendix III. The critical Bond number for
stability is calculated for the Gentaur space vehicle tank as a
function of the liquid volume for contact angles of 0°, 1°, 2°, and 4°.
For the zero-contact-angle case, the specially derived end-point condi-
tions are used, while for the latter three cases the usual variable
end-point conditions are used. The zero-contact angle results are

found to be consistent with the limiting ones for the nonzerc angles.



0f particular interest for the case of zero contact angle is the
appearance, for this problem, of a critical liquid volume marking a
qualitative change in the nature of the gsolution. For 1iquié volumes
iess than the eritical cne the stability limit is determined by the
fixed end-point conditipns, whereas for liquid volumes larger than the
critical one the stability liwmit is determined by the non-penetration
eriteria discussed above. This feature corresponds to the existence
of (unstable) equilibrium configurations for Bond numbers larger in
magnitude than the critical one only for the small volume case. The
critical liquid volume for the Centaur tank corresponds to a fill
height of 0.503l a, where a is the radius of the tank.

The numerical results presented in Appendix III have been found
to be consistent with preliminary experimental results obtained by
E. P. Symons at the WASA Lewis Research (Center,

In Appendiz IV small-amplitude;—perilodic slashing modes are
calculated for the container configuration studied in Appendix ITIL,
for zero comtact angle. As must be the case for a conservative
mechanical system, the critical Bond nuwmbers for stability obtained
from the dynamic analysis are found to agree with those calculated
from the static analysis. Agreement is slso found on the value of
the critical }iquid volume for which equilibrium configurations
can exist nearby the critically stable one.

Oscillation frequencies or growth rates are calculated for
several Bond numbers and liquid volumes, for normal modes having up

to sgix angular nodes. The computations indicate that for liquid



volumes smaller than the critical one, the sloshing modes without
fadial nodes generally become unstable before those with one or more
radial nodés, as‘the magnitude of the Bond number is increased. The
caI;uIations for ITdrgér liquid volumes indicate that all modes become
unstable togéther, in agreement with the cessation of existence of
a nearby equili@rium for this caée.

The above resulés a%e depicted graphically, and growth rates for
the &omin;nt unstaﬁle mode for a liquid volume corresPAnding to a

dimensionless mean fill height of 0.30 are given for three different

liquids.
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ABSTRACT

The stability, in terms of minimum static energy, of axisymmetric annular
liquid interfaces in axisymmetric containers is studied mathematically. The
sufficiency of stability conditions based on the Jacobi accessory minimization
problem with respect to volume conserving, "weak" perturbations is proved in
two cases: Firstly, sufficient conditions for stability in the general case
of nonzero liquid-wall contact angle are considered. Secondly, the formal
limit of these conditions, as the contact angle tends to zero is proved to be
correct, provided that the curvatures of the unperturbed liquid-vapor inter-

face and the container wall are not equal at their contact lines.




1. FORMULATION OF THE PROBLEM
In this paper we study mathematically the stability of certain configur-
ations of 1liquid contained in an axially symmetric tank in a gravitational -
field directed ail_ong the axis of symmetry. We require that the tank shape
and the liquid volume are such thai: the liquid-vapor interface is annular,

i.e. it does not intersect the axis of s&mmetry, cf., fig. 1:

Container
wall

PO OIS

XBL 766-3054

Figure 1: Example of permissible liquid-tank configuration
and the associated cylindrical coordinate system.

A configuration is one of stable equilibrium if and only if it



strictlﬁ minimizes the total static poteantial energy of the system, given

by

E = U(Af - cos Y Aw) + Eg . {1.1)
compared- to all nearby configurations with the same liquid volume V. Here

0 20 and 0 <y < 7 are constants determined by the physical properties of the
liquid and the wall, Af and Aw are the areas of_the liquid-vapor and liquid-
container interfaces, respectively, and Eg is the gravitational potential
energy of the liquid.

We shall study below the behavior of tﬁe energy (1.1) when the ligquid is
perturbed slightly (but not necessarily rotational symmetrically) from a
configuration of rotational symmetry. For our purposes, a parametric arc-
length, normal displacement representation of the surfaces (cf., e.g. Reynolds,
Saad, Satterlee [ 2 1) offers some advantage. Hence we let the unperturbed

surface be described by the .equations

)
]

R(s)

w
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=
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™
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(1.2)
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Z(s)
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in the polar co-ordinate system of figure 1 where the parameter & is the arc-
length along the curve of intersection between the liquid-vapor surface and any

plane ¢ = constant. Then the equations

R(s) - n(5,$)Z" (s)

H
0

0<¢<2m

we

(1.3)

.

N
i

Z(s) + n(s,R' () 5 s_(9)

A

s < sl(¢)

describe a surface obtained by-moving each pdint of the surface (1.2) the
distance n{s,¢) in the direction of the principal normal. In general, since
we want the-perturbed surface (1.3) to intersect the contaider walls, tﬂe
functions R and Z of (1.2) must be continued in the s-direction to some open
interval containing[so,sl], cf. fdigure 2. A convenient way of doing this,
which we will use in the sequel, is provided by the differential -equations

{1.11) below.
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Perturbed surface
[~

;)'/‘—— Unperturbed surface

s ()

i N

XBL 767-3072

Figure 2: The arc-length, normal displacement coordinates:
Intersection between the surfaces and some plane
¢ = constant.

Similarly, we let the container wall in some neighborhoods of the unper-

turbed contact lines (s = s, and s = sy in (1.2)) be given by

R(s) - w(s)Z'(s)

[
!

0<¢ < 2w, (1.4)
Z(s) + w{sIR'(s)

]
Il

((1.4) is not adequate if the contact angle, Y, between the unperturbed surface
and the wall is T/2. To avoid umnecessary detail we therefore assume y #* /2
in the following).

For any equilibrium configurations, the functions R and Z will be suffi-
ciently smooth for the perturbed surface (1.3) not to intersect itself when
Ints,®) |, Ins(s,¢)]”and |n¢(s,¢)| are small. (For this, it is sufficient that
R"(s) and Z"(s) are bounded in some open interval containing [so,sl], ef.

Concus, Crane, Satterlee {51, p. 4~6, while in fact it follows from the
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differential equations (1.11) below that R and Z may be continued analytically
to some open region containing [so,sl] in the complex s~plane). Then the
increments of the quantities appearing in (1.1} and of the volume may be

calculated in a straightforward way. One obtains

SE(m) = o - (SAf - cos Y * GAW) + SEg
21 s,(9)
=J' '{fA(ﬂ,s) - £,(0,8) + fg(_rl,s)} dsd¢
07s (@)

T .
—f f {cos Y - fA(_tg_,s) - fA(g,s) + fg(_t_v_,s)} dsdd (1.5)
0

Ad
T .81 (#) 2
0 "s (@& 0 YA¢

where we have put

1= n6s,0) = ((s,9)5 N (6,), My (s260)"
w = w(s) = (w(s),u'(s),0)" (1.7)
A = the interval (so(qJ),so)U(sl,sl(d)))

and, denoting R = R(s), Z = Z(g),

I

£,(m,8) = 0+ & - 1z’ + @+ n@®'Z' - 2D

+ 2@+ @'z - z'r7)) 22
-0 : (1.8)

" 1] <
£5(,8) = nil + %(R z' - Z"RI} R - 5Z")

= . n .
fg(ﬂ,S) = P8 (Z + 2 R") fv(ﬂ:s)
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where P, the liquid density, is assumed to be constant and g is the gravi-
tation constant with g > 0 if the gravitation force is directed towards the
negative z-axis., We note that when R > 0 all of the functions fA’ fv and
fg are smooth gin fact analytic) in the arguments_n, ng and n¢_in a neigh-
borhood of n = 0.

A first necessary condition for n'= 0 to be a local minimizer of 8E (We
shall need to make the meaning of "local" more precise below. For the moment
we may consider 511 N which are continuous and smooth in some open regiom
containing so(¢) <s < sl(¢), 0 <¢ <2m.) when 6V = 0 is that, for
some constant A all first-order n-terms in GE-ASV vanish. Using the notation
in (1.5) - (1.8) this necessary condition is expressed by the FEuler-Lagrange

equation

3fA Ef& 3fv ~
'W(Q,,S) t 5 (0,s) - 7\%—(9,3) =0

in Sy <s< 15 with the additional condition {* 1.9)
cos Y fAQg(si),si) - fA(Q,si) =0 ; i=0,1.
Putting Bo = pg/o, Ho = A/o, using (1.8) and the identity‘
R'(s)2 + 2'(s)? = 1 (1.10)
(1.9) becomes:
z' =R'"(B,Z - H - Z'/R)
R" = -2'(BZ - H =~ Z'/R)
3 (1.11)

with the boundary condition, that the curve
(R(s),Z(s)) intersects the container walls
at s = s0 and s = S1» under the contact

angle 7.
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(without loss of generality we have excluded the contact angles % - 7 also
allowed by (1.9)). | .

Assuming now that R and Z are such that (1.11) and, consequently, (1.9)
are satisfied, a second necessary condition will be that the terms of second
order in n, Ng and.n¢ will give a non-negative contribution to SE for all

N satisfying the volume constraint. When Yy > 0, we may formulate this condition

as follows:
2T 8

T -
_’; f a {fAm(_Q,S) + fgm(g,s) - ?\fvlm(g,s)}ﬂ dsdd

8
o

2% . .
+ f {eton(so,cb)z + aln(sl,¢)2 d¢}2 0
~0

for all n such that

(1.12)
AL
Vi
f f an ©.8) - n(s,$) dsdp = 0
0 s
c
Here we have put o,
= (-—12i . g—-{cos Y £,G(s),8) ~ £,(0,8) + £ (w(s),s) - AL (E(S)aS)}
tan™Y s - 8= A s=s,
1=0,1. (1.13)

Using (1.7) - (1.8), the second derivatives appearing in the first integral

in (1.12) are seen to be diagonal 3 X 3 matrices, and (1.12) reduces to
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2m ’s1
I I {A‘(s)n: + B(s)ng + C(s)nz}dsdd)
0 "s
o]
2m N
+ j .{.oaon(s.d,.tb)2 i.aln(sl—,¢)-2-}d¢ >0
0 (1.14)
for all n such that -
7T s,
S- A(s)n(s,¢) dsdp = 0 - , J
0 S,

where A(s) = oR(s), B(s) = o/R(s) and C(s) is smooth (analytic) in [So’s
see (5.1) below.

By standard results for symmetric, semibounded -quadratic forms in .Hilbert

Js

space (see e.g. Kato [1] p. 322 and pp. 352-353), (1.14) may be analyzed in
terms of the eigenvalues and eigenfunctions of an associated selfadjoint

differential generator:
T = - 3=(A(s)n,) - S=(B(s)n,) + C(s)n
ds ?s 90 b

in Sy <s < 815 0 <¢ <2m with the

boundary conditions, that 1 should be

periodic in ¢ with period 27 and (1.15)
= o1yt
- 3i=0,1.
T has a complete, orthogonal system of eigenfunctions of the form
(s) cos kelT ) sin kgl 6
{uik s) cos ¢}i=1,k=0 {pik(s sin ¢}i=1,k=1 (1.16)

with associated eigenvalues (in increasing order in the index i)

o

it 1=1,k=0
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determined from the boundary-value problems

- SaEW, ) + {K7B() + co)u, () = Ay, ()

As ! (s.) = (—l)ja,u. (s.) 3 3=0,1
3774k ] Jodk™ ] . (1.17).
We notice that all eigenfunctions (1.16) but those with k = 0 satisfy
the side condition in (1.14). Furthermore, since B(s) > 0 in s <s < Si’
we see from (1.17) that the eigenvalues kik are inecreasing functions of k.
It then follows that (1.14) holds for all n in the elass of continuous

functions in s <8 <s.,,0< ¢ < 2r which are periodic in ¢ with period

l’
27 and have square integrable first derivatives (see e.g. Kato [1], p. 323,

Cor. 2.3) if and only if

T P 2
A, = mln{slxlo + Byl lll} > 0 (1.18)
27 8
1 2 2
where, denoting (f,g%}= f(s.¢)g(s,p)dsdsp, Bl and 82 are the solutions
to 0 “s
o
2 2 2 2
(1.19)

2 2 B
Bl Gy gotyn)e F Ba(Hogatygdy = 2

(with 82 = (0 if the solutions are noﬁ;unique).

The purpose of the present paper is to provide a theoretical complement
to a computational study of this kind (Concus, Karasalo[f]). There the
necessary condition (1.18) is used to distinguish between stable and unstable
equilibrium surfaces in the limiting case ¥ = 0. We will therefore here

first show, that when v > 0, {1.18) with strict ‘inequality is a sufficient

condition for our constrained minimization problem, when N is allowed to
vary in a "weak" type of neighborhood (cf. e.g. Bolza [3], p. 68-70) of
N = 0. Then, as the main result (which may be new cf. Gillette [4], p. 23),

we will show that (1.18) with strict inequality and the eigenvalues computed

from (1.17) but the boundary condition
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P : 1...
“ik(SJJ =033=01; 5 (1.20)

is a sufficient condition for the constrained minimization problem (again,

in a "weak" sense [3]) when Y = 0 provided that thé curvatures of the unper-

turbed surface and the container wall are not equal at the unperturbed contact

lines. (This additional condition on the unperturbed surface in fact turns
out to be necessary (see (5.3) below) in order for. the boundary conditions

of (1.17) to converge formally to (i.20) as Yy + 0.)
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2., SOME NOTATTON AND LEMMAS
We denote by I the closed domain so(¢) <s < sl(¢), 0<¢ < 27 in the
(s,0)-plane. We requite that a permissible perturbing functiom

n=n{s,$) in (1.3) should have the following regularity properties:

a) n is continuous in I and periodic in ¢ with period 2m.

b) ns and nd are continuous in I except possibly at finitely many points
or finitely many plecewise smooth curves with finite length. In

particular, ns is piecewise continuous as function of s for all ¢.

c) da(m) = sup{n(s,d)|+ sup|n_(s,$)]+ sup[n¢(s,¢)| < (2.1)
where the supremum is taken over all points of I where ns and n¢ are

continuous.

d) The functions si(¢); i=0,1 are continuous, and such that si(¢) -8, i=0,1,
change sign at most finitely many times in 0 < ¢ < 2. si'{¢); i=0,1, are

continuous except possibly at finitely many points in 0 < ¢ < 27 and

1
4@ = Y (sup|s; ).~ s,| + sup|s, B} < = (2.2)

i=0

where the supremum is taken over all points of 0 < $ < 21 where so‘(¢)

and sl‘(¢) are continuous.

We notice, in particular, that conditions a), b) and c¢c) ensure that
N, Mg and n¢ are square integrable on I. We also require that the function
w for the container walls (1.4) is sufficiently smooth in some neighborhoods

of s = S, and s = s.,. We will further dencote the closed rectangle s, <s5<s

1 l’
0 < ¢ < 2T with Zo and use the notation
m s (6)
(f,g) = f f(s,d)g(s,9) dsdd (2.3)
0 Js_(¢) .
€12 = (£,6) (2.4)
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m Sl
(f,g)o = I fls,0)g(s,¢) dsd¢ (2.5)
0 Ys

o

2
el = (£,8) (2.6)

for real-valued functions f and g for which the integrals exist.
The following lemma will be useful in the ¥ > 0 case:

Lemma 2.1: Tet u(s,p) satisfy the requirements a) — c) above on the rec-
tangle %f Then there exists a constant B, depending only on s, and 8y
but not on W, such that for all r > 1,
T

futs_»0)% + uts;,0)%ap < 82 + dll?) 2.7)
0 .

Proof: For any continuous function y(x) with a square integrable first

derivative in a < x < b and any r > 1 it holds

b 5 b
2 2(b- 2 2 2
ly G E%J‘a y'(t) "dt + (mfa y(t)de

ina<x<b . (2.8)

((2.8) is the Sobolew inequality (see e.g. Agmon [6], p. 32) in a special case.
The constants appearing on the right may be derived by elementary methods
(Katé {1}, p. 192-193)). Hence, we obtain for any U(s,$) with the assumed

properties, any r > 1 and any 0 < ¢ < 2m,

2(s,-s ) 1 s
2 4 1 2
uis 0 24 uts,0f < | T w ) ias + S5 T us,0) e
o - r ] Sl SO
S =3
0 o

The lemma follows by integrating this inequality over 0 < ¢ < 27

Now denote the gquadratic form appearing in the first inequality in

(1.14) with Qo(g). We then have
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Gor 2.1: Let u(s,$) satisfy the requirements a) - ¢) in the rectangle EO
i > » > >

and assume that, in (1.14), Aﬂax > A(s) > Amin >0, Bmax > B(s) > Bmin 0,
C > |C(s)| holds in s < & < s_.
max -— o- -1
above. Then there exist positive constants KO, Kl’ 0® Ll,
S., A . s B . , B and C but not on |, such that
1’ "min’ "max’ min’® Tmax max

Let QOQE) be the quadratic form defined

L depending on So’

2 2 2 ' 2
KQ @ =Ll <liu I+ “11¢||0 < K Q @ + Ll (2.9

Proof: The statement follows by using the mean value theorem and (2.7) (with

a sufficiently laxge r to obtain the right inequality in (2.9)).

We remark, that the A(s), B(s} and C(s) in (1.14) will satisfy the above
assumptions in some closed interval containing [SO’Sl] in its interior, because
of (1.11) and the assumption that the unperturbed surface does not intersect
the z-axis,

Our sufficiency proofs will rely mainly on the following perturbation

result for the quadratic form QO(H):

Lemmag 2.2: Let A(s), B(s) and C(s) satisfy the requirements in Cor. 2:1, and
let 8A(s,d), O6B(s,¢) and 6C(s,$) be bounded and integrable in Eo' Further,

let 6&0(¢) and Sal(¢) be bounded and integrable in 0 < ¢ < 27, let € > 0 and let
® be the functional

® = (84, 88, &C, Sao, 6&1, £)

2T s .
1 2 2 2
inf J' ia + Smyu + (B + GB)]J¢ + (C + Sc)u”} dsd¢
0 8
(o]

yAI)

«f.

over all | satisfying conditions a) - ¢) above and such that

@, + Sao)u(so,cp)z + (g * Sul)u(slacb)z} dd)} (2.10)
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uuuo =1 (2.11)

[ | < ediul + full o+ 0l (2.12)

Let lI£ll  denote, as usual, the supremum of |f| over the domain of f and
assume that @0 = ¢(0,0,0,0,0,0,) > 0. Then there exists positive constants
K and 60 independent of 6A, 6B, 6C, 60:.0, 6&1, and £, such that

¢> ¢ ~-K 3§, (2.13)

holds true, if only

= Hoall,, + 6Bl + NIl + USa I + Hooll,, +€ <8, . (2.14)

Remark: X and 6 may depend on A, B, G, L al, 8, and Sy- A similar upper

bound also ex15ts, and the results apply, Wlth obvious modifications, also to
the case ‘I’o < 0.

Proof of Lemma 2.2: Let QO(E) be defined as in Cor. 2.1 and denote, similarly,
the quadratic form in (2.10) with (Qo + 6Qo) (). Then, by (2.7) and (2.9),
it holds for any | satisfying (2:11) and conditions a) - ¢) above,

(L-M -850 -8 38, <@ +8IW < A+Y *8)Q W+, "8
(2.15)

where Mo, Ml, No and Nl are positive constants, independent of 8A, 6B, 46C,

6&0, 6@1, and €. Since by (2.12) § is non—increasing as function of €,
we obtain from (2.15)

%< (il_ + Ml . _GA)CPO + Nl . 6A . (2.16)
Now let e.g. 4 A = 2; and assume that ju is any function satisfying
0
a) - ¢), (2.11) and (2.12) such that
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M N
(Q +6Q (W < (1 + ﬁo—)é)o + _M—c; (2.17)

Then by (2.15) and (2.9),

Ilusilcz, + ””da“i <M+ N, (2.18)

for some positive constants M2 and N2, independent of 8A, 8B, &C, 6&0,

6&1 and €. Obviously, then, when forming the infimum in (2.10), only the

subéet of | satisfying (2.18) need to be considered. Now put
f*(s,9) = (s - s) (s; = ) (2.19)

= Gl(u - sz*) (2.20)

where Cl and 02

e=0, i.e.:

are chosen so as to make §I satisfy (2.11) and (2.12) with

(A’u)o 1 (2.21)
C, = —=— : C, = 2.21
® 3 - *
2 {A,f )0 1 u 02f o

Notice that (A,f*), is a positive constant, dependent only on A, 5, and -

Sq- By (2.11), (2.12), (2.14), (2.18) and (2.21),

; %——31-0 (2.22)

lc.| < ¢
20 - 1

36A 46A

Here, and below, CK’ k= 3,4,5... will be some positive constants, independent
of §A, 6B, 6C, Suo, 6&1 and €. Now form,noting that £%(s,$) vanishes on

s=g and s = s
fo} 1’

Q1 = C,E%) - Q@

o 2m s
1 i )
= cgqocg*) - 202,‘2 j‘ {A(s)usfg- + c(s)uf*}dsdq) . (2.23)
0 So
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Using the mean value theorem and Schwartz inequality in the last term, we

obtain by (2.22) and (2.18)

Qggecgﬁ-i%@)£c§A+c§i (2.24)
We can now form
a-(%+6%nysqéﬁ-(%+ 8Q,) (W)
< clQ @ - CufH) — (L + 1,800 @ + .5, (2.25)
= co @ - €pf) - Q) + (& -1 -1 80 W + N5,

where we have used, in turn, the definition of @0 and (2.15). Then we use
(2.22), (2.24), (2.15) and (2.17) to obtain

S @ T RIW FK Gy (2.26)
. _ .1 1 . .
if only GA < 60, where e.g. 60 = mm{204’ ZMO} and X is some positive constant,

independent of 8A, 6B, 4C, Sab, 6&1, € and 4. The statement of Lemma 2.2
follows immediately from (2.26).

For the case v= 0 we will need a slightly modified version of the

above result:

Lemma 2.3: Let the assumptions of Lemma 2.2 hold and let & = &(8A, 8B, &C)
be defined as in (2.10), (2.11), (2.12) but under the additional condition:

His »9) = u(s;»¢) =0 , 0<¢<2m (2.27)

Put @0 = ${0,0,0). Then (2.13) holds true, where now

6, = Noal_ +IsBl_ + sl <5 - (2.28)
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Remark: The constants K, 60 may possibly be different from those applying to

the case of Lemma 2.2.

The proof of Lemma 2.3 is similar to that of Lemma 2.2 and is omitted.
We notice, though, that when the boundary terms are lacking in the qﬁadragic
form Qo and Q0 + GQS’ {2.15) is a simple consequence of the mean value
theorem and the strict positivity of A(s) and B(s), so that Lemma 2.7 is not

needed for the proof.
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3. SUFFICIENT CONDITIONS FOR THE CASE vy > 0
The following theorem specifies sufficient conditions for stability in

the general case Y > 0:
Theorem 3.1: Let v > 0 in (1.1) and assume that the perturbed surface

satisfies the Euler equations (1.11) with the associated boundary conditions.
Let further ko > 0 in (1.18) and let d(n) be defined as in (2.1). Then

there exists a constant d0 > 0, such that in (1.5)
SE(N) > O with equality iff n = 0 4n % (3.1)

holds for all n satisfying the volume constraint 6V(n) = 0 in (1.6), the

conditions a) - d) of Section 2 and

d(n) < d_ (3.2)

Proof: 'Denote again the quadratic form in (1.14) with Qo(ﬂ). Then by the
definitions (1.15) - (1.19) and by the representation theorem for quadratic
forms in Hilbert space (Kato [1], p. 322-323):

inf Q (W = A >0 (3.3)

where the infimum is taken over all y satisfying a) - d) of Section 2 and

il
=

lhat (3.4)

it
o

‘ (A,u)o (3.5)

Now consider the expressions (1.5) and (1.6) for SE(n) and 6V{(n). Firstly,
since R(s) is positive in some open interval containing [So’sl] there exists
by (2.2) some dl > 0 such that if d(Z) < dl, then R(s) > Ro >0 in Z. By
(1.8) then, when d(Z) < dl
functions fAﬁan), £ (n,s) and fv(n,s) are analytic in the arguments 7, N

there exists some constant d2 > 0, such that the

and N in the region [n] +[nS| + |n¢] < d, at all points of I. By (2.1) then
at all points of I where Ng and n¢ are continuous, we obtain by Taylor

expanding at n = 0:



of T‘

£,@0,8) - £,(0,8) = 5(0,8) + N+ @81+ B, (0,8

ro
I:S
I:,s

of
g'nﬁ'(_o_ss) *n+

It

N, @80 + b (1,5) (3.6)

fg(g,s) &

NS

va

=Y . T
fv(ﬂ’s) - an (2:5) n + _T_]_ :Evﬂ]l(_g_ss)n + hv_(ﬂ’g)

pf

where, for some positive constants C A Cg and CV’ independent of 7,

2

[hy(.s)| <€, - dm) (ni gt n)

A

hy 8| < ¢+ amm? 3.7

Iy, < ¢+ amn’

A

if only d(n) < d2.
wall intersect at 8 = s, (¢) ‘we have w(s, (¢)) n(s (¢),0), 0 < ¢ < 2w,
i=0,1. Hence, since by (1.11) w (Si) ( 1) tan Y # (0, we obtain by the

Secondly, since the perturbed surface and the container

inverse function theorem

_ (s (92,0

5@) - s 7+ b (n(s;(6),9)) (3.8)

1
w (Si

where, for some positive constants d_3 and Cs’ Ihs(n)]f Csn2 when !n[ < d3.
Now inserting the expression (3.6) for fy into (1.6) and‘using the volume

constraint §V(n) = 0 we get

2T S, (d))

f J (0 s)ndsd¢
(¢)
27

s, () -
T .
iy (0,s)n + h.v(ﬂ,s)} dsdd - J' j £,(w,8)dsdg.
{70ty _
I L <¢> - 0 Ja (3.9)
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Similarly inserting (3.6) for £, and fg into (1.5) and using (1.9) and (3.9)
gives

yx (¢)
6E(T]) I j' (d)) { An_r_L(g’S) -+ fgm(g,s) - Afvﬂu(_o_,s)}ﬂ+ h(g_,s)}dsdcp

+I0 J'A¢ {COS'YfA(EsS) - fA(Q,S) + fg(E,S) - J\fv(g,s)}dsdd) s (3.10)

where h(ns) = hA(B,s) + hg(n,s) - Athn,s) satisfies by (3.7),

()] < ¢ - amn? + ng + ) (3.11)

at all points of I where R and n¢ are continuous., Here again C is some
positive constant independent of n, and we have assumed d(n) < d2 as in

{3.7). Intreoduce for the second integrand in (3.10) for convenience

fR(s) = cos Y fA(E:S) - £,(0,8) + ig(g,s) - AfVQg,s) (3.12)

Then, by (1.7) - (1.9), fR(So) = fR(sl) = (0. Assuming w(s) to be sufficiently
smooth for fR to be twice continuously differentiable in some neighborhoods
of s = s and s = sy and using the definition (1.7) for Ad, Taylor's theorem

gives

1 !
J; fo(s)ds = Z ; £.'(s,) (s, (4) = si)2 + h, (¢) (3:13)
*¢ =

o]
I, (9] < ¢;ls; () - si|3, if only d(I) < d,. Using (3.8), (3.13) and

the notation in (1.13) and (1.14), (3.10) takes the form

where, for some positive constants d3, C. and Cl’ independent of 9,
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s, (9)
SEMm) j j‘ ; l{A(s)n +B(s)n¢+ C(s)n }-}-h(_n,s)‘dsd(p
s, (®)

27

+ j i{a + Sa (¢)}n(s @),0)° + fo + 8o @)fn(s (), } dp  (3.14)

where (3.11) and

|60, ()| < Gy - dm) ,  i=0,1 (3.15)

hold, if only d(n) + d(Z) < d4, where again CR and 64 are pogitive cons%ants
independent of n. Treating the last integral in (3.9) by Taylor expanding
the integrand in the same way as in (3.12) - (3.13) and using (3.8) the volume

constraint gives

290 8

Ij Slmgmmm
0

8
[0}

27 S1 2T )
z KVIJ' j n(s,$)2dsdp + szf {n(s_ ()02 + n(s, ®),9)7} ap 3-16)
0 S 0

if only d(n) + d(X) < d

5 for some positive n~independent constants KVl’KVZ
and d5.

In order to relate the above expressions for 8E(n) and 6V{n) to the condi-

tions (3.3) - (3.5)(which involve integrals over the rectangle Zo) we now perform
a transformation of wvariable in (3.14) and (3.186):

s = s(s8",¢) = 5, (¢) + (s (®) - s, (d)) (3.17)
1

n(s’,¢) = n(s(s,¢),9) | (3.18)
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We note, in particular, that p will satisfy the requirements a) - c¢) of

Section 2 if only d(Z) is sufficiently small to zpsure Isl(¢) - so(¢)| > 8 4o >0

in 0 € ¢ < 27, Furthérmore

s =s' + kl(S',cb)

e S ()

a(s",9)
(3.19)
n (s(s',0),¢) = (L +k,($u 1 (s",4)
Nyle(s’,9),0) = 1y (s,0) +ky(s",0) - U1 (s",0)
where, for some positive constants d6 and Cl independent of n,
sup {[ic; (s",0) [, [k, @) |5 [k 4(e", ) |} < 6) - a(®) (3.20)

at all 5, < s' <s. and all 0 < ¢ < 21 where sé(¢) and si(¢) are continuous, if

=71
only d(X) < d6.
Inserting (3.17) - (3.19) into (3.14) and (3.16) we get:

2T s

1
SE(n) =I j L {a+ ol + @+ SB)]J; + (¢ + 8c)u?}as'do
0 s
o

2

] Fle, + s 0)u,07 + @ + sy @)uls;,6) }ao (3.21)

and

T Sl
l_( J. (A + §'A)pds'ds]
o So

yAlY
< %BIIung + KVZI futs,. 0% + u(sl,cp)z}dq; ) (3.22)
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where, by (3.11), (3.19) and (3.20), 8A, 8B, 8C and 6'A are functions

of s' and ¢, integrable in Z_ and such that

sup{|6a(s’,¢)| + |6B(s',4)| + |6C(s",9)] + [8'A(s", )|} < C fdm + a(@} (3.23)

when d(n) + d(2) < d7 where C2 and d., are some positive constants, independent

of 1. The supremum in (3.23) is for;ed over all points of Zo where the functions
are continucus. WNote, in particular, that the argument in the functions A,
B and C in (3.21) and (3.22) is s', Whencé in obtaining (3.23) we have made
use of the fact that A, B and C of (3.14) (as defined in (1.14)) have a
bounded derivative in Z (they are in fact analytic functions of s), if only d(Z)
Is sufficiently small.

Using Lemma 2.1, (3.23) and the mean-value theérem in (3.22) gives in a

straightforward way
[ | < ey fam + a} dugh )+ lugll -+ lhull ) (3.24)

if only d(n) + d(Z) < d8, where C
independent of n.

Now using Lemma 2.2 on (3.21) and (3.24) (noting (3.15) and (3.23)) we
conclude by (3.3) that, e.g.,

3 and d8 are some positive constants,

Ao, ;2
SE() > il (3.25)

if only

d(m) + d(@) < d (3.26)

9

for some n—iqdependent constant dg. Since, however w(si(¢)) = n(si(¢),¢),
0 < ¢ <27, i=0,1, it holds

n¢(si(¢),¢)
'w'(si(¢)) - ns(si(¢),¢)

s£(¢) = (3.27)

at all points of. the boundary of I, where n¢ and n, are continuous. Since
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further W‘(si) = (-1):L+1 tan Y ¥ 0, it follows from (3.27) that

() < ¢am) (3.28)

if oPly da(n) < le’ where le and C4 are some positive, N-independent constants.
Hence, by (3.26) and (3.28), (3.25) holds true, if only d(n) < do’ where

do is some n-independent constant, and the first part of the statement (3.1)

- of Theorem 3.1 follows. Since, by (3.18), lInll = 0 if and only if ﬂu"o = 0,

the second part of the statement also follows from (3.25).
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4. SUFFICIENT CONDITIONS IN THE CASE v = 0

In this section we will show that the statement of Theorem 3.1 also holds

in the limit ¥ = 0 (defining the limit of the boundary. conditions in (1.17) as

|aj|+m, §=0,1 to be (1.20)), if the curvatures of the unperturbed surface and

the container 'wall are not equal at the unperturbed contact lines., The

statement is, in more precise terms, the following:

Theorem 4.1: Let Y = 0 in (1.1) and assume that the unperturbed surface
satisfies the Fuler equations (1.11) and the associated boundary conditions
at s =S and 5 = Sy Assume further that the function w{s) of (1.4)

satisfies

W"(si) < 0 s i=0,1 (4.1}

Let kg be defined as in (1.17 - 1.19), but with the boundary conditions
of (1.17) replaced by (1.20), and assume that Ao > 0. Let d(n) and d(Z)
be defined as: iq (2.1) and (2.2). Then there exists a constant do > 0, such
that in (1.5)

6E(n) > 0 with equality iff n =0 in 2 (4.2)

holds for all n satisfying the ﬁolume constraint Sv(n) = 0 in (1.6}, the

conditions a) - d) of Section 2 and the condition
am) + (@) < d - .3)

Remark: TIn the case Y = 0, both the energy (1.1) aﬁd the liquid volume of any
configuration are unchanged if the liquid-vapor -interface is continued by "wetting"
the "dry" container walls (and we will make use of this property of the "wetting"
perturbation in the proof below). With I in (4.2) (see also the beginning of
Section 2) for such "wetting" perturbations is meant a closed domain, con-

taining no interior points where the liquid-vapor interface coincides with the
container walls (i.e. possibly wetted portions of the container walls are

not included in the I). Note, further, that since by (1.11) W'(si) = 0, i=0,1,

and since w{(s) < 0 for 8, <8 <8, we must have w"(si) < 0, i=0,1. w"(si) = 0
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means by {1.4) that the curvatures of the unperturbed surface and the
wall coincide at the unperturbed contact’ line s = s {and is a limiting case
among all solurivns to (1.11) that correspond to permissible liquid-tank

configurations).

Proof of Theorem 4.1: Let again Qo(g) be tlie quadratic form in (1.14).
Then, as in (3.3)

inf Q (W =2 >0 (4.4)

where the infimum is taken over all py satisfying a) - d) of Section 2 and

the conditions:

| =1 (4.5)
(4w, =0 (4.6)
u(s_,9) = u(s;59) =0 , 0<¢ <27, (4.7)
Here we denote, for‘brevity,
fg(n,s) = £,(,8) - £,(0,8) + £,(N,8) - Ay (n,s) (4.8)

where fA’ fg and fv are the functions in (1.8). Then, as in (3.10), we have

since Y = 0,

u Sl(¢) 21T .
SE(M) = I fE(_’rl,s)dsdd: —j j' fE(E,s)dsdd) (4.9)
0 s () 0 “Ad

Now denote, for convenience in the following,

L, = complement of (ZﬂZo) Ww.r.t. 2

(4.10)
Z_ = complement of (ZﬁEo) w.r.t. Zo

.
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Let §j(s,p) be the function obtained by extending n(s,) by "wetting"
those parts of the container walls which were "dried" because of the pertur-

bation 1, i.e.:

n(s,$) in Z
fi(s,9) = (4.11)

w(g) in Z~
e

S
Put, further, ZUEO = I = E‘O UZ 4 s with the boundaries

EO(¢) = min{so(¢),so}
(4.12)

5, (@) = max{s., (§),s,f

Then it follows from (4.9) (and, more generally, from the remark after the

statement of Theorem 4.1), that

2m & ()

1 i
SE(M) =f J' fE(f]_,s)dsdd) —fz j fE(E,s)dsdd) - (4.13)
0 75 (4) _ o “K¢

where Ed} is defined from §0(¢) and El(tb) as in the last formula in (1.7) (in
other words, the domains of integration in (4.13) are P and I;, respectively).

Put further. -

0 in %
o
n*(s,$) = (4.14)
w(s) in'Z,
V(s,9) = R(s,d) ~ n*(s,d) in 2 (4.15)

Then, noting that fE(g,s) = 0, it follows from (4.13), that
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217 .El (9
SE(M) = {£o (" + v,8) - £.(n*,8)} dsd¢ (4.16)
0 75 _(0)
Similarly, we obtain by (1.6)
21 5, (9)
sV(n) = {fvcgf + Vv,8) - fV(n?,s)}dsd¢ (4.17)
0 “5_(9)

We note, in particular, that 1, n*, VvV and §i, i=0,1 will satisfy the require-
ments a) - d) of Section 2 and further that, since w(s) = w"(si)(s-si)z/Z + 0(5_51)3

in the neighbourhood of s = ;5 i=0,1, it holds
a(g) < (@)

d(n®) < € d(z)
(4.18)
afi) < c fam + af

dw) < ¢ {dm + a@}

if only d(n) + d(Z) < dl; whete Cl and‘di are sone nuiudepenaent constants.
Also, as in (3.6) the integrands in (4.16) and (4.17) are analytic in the
arguments 1, n:, ng and v, Vs v¢ in some region [n*]| + |v] < 4, where d,

is an N-independent constant. By (4.18) then, we may Taylor expand the
integrands in (4.16) and (4.17) at all points of % where Df and.v are contin-

uous, if only d(m) + d(Z) < d3, where d3 is some T-independent constant.

We obtain
£ ( + *
E i) _\_{,S) - fE(_H ,S)
(4.19)
= % T | l.T "
= ng(n »8) v+ TV fET_']_Tl('Q"S)E + hp (0%,9,8)
and
n . f, .
£, (0 + vi8) - £,(%,8) = 5(0,8) ¢V + By (0",V,8) . (#.20)
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Where, by (4.18) and noting from (1.9) that fEﬁ(g,s)'=xQ,

| (0*,v,8)] < CZ{.d(m +amp o2+ v$+ v?) (4.21)
Ihy@*.v.0) [ < Cyfam) + a@f (v | + vyl + VD (4.22)

if only d(n) + d(E) < d4, where d4 and C2 are some N-independent positive
constants.

Now, by (1.§), (1.9) and (4.8), the first term to the righf in
(4.19) is of the form

0din X
0

T
fEﬂ(E,s) -V

{Als) + Dy()}u" (8)v, + {C(s) + D (s)}wls)v in Ty (4.23)

where A(s)

OR(s) and C(s) are the functions introduced in (1.314) and where
2
o, )| + @) | 2 cyffwie) | + w' ()% (4.24)

if only d(%) < d,

Further, DA(S) is continuously différentiablg in the interior of I, if w'(s)

where ds‘and C3 are some positive, TN—independent constants.

is continuous.there.
Now consider the contribution of the terms in (4.23) to the energy
integral (4.16):

2T §1(¢) on -
j j fEﬂ(ﬂ*’S"T -V dsdg = I j fEﬂ(Ess)T . v dedd
0 §0(¢) 0o Y& o
27T
=f L {{ A(s) +.DA(S)}W' (s)v, + fc(s) + DC'(S)}W(S)\J}de(b .
0 Ko
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By partial integration of the first term over Ap = (§0(¢),So)u(sl,§1(¢)),
noting that w' (si) = 0, i=0,1, and that })(Ei((i)),d)) =0, 0 <¢ <27 by (4.15)

we get
(¢)
j. f fo (n 8)’ - v dsdd
{4.26)
27 )
= j- §~ {—%; {(A(s) + DA(S))WT (s)} + {C(s) + DC(S)}W(S)}\)ded) .
o “A¢
Note that it holds in E¢, if d(%) is sufficiently small,
A(s) = OR(s) > 30 >0
w(s) = T w(s (s - 5" + 06 - 57
V(s,9) > 0 (with strict inequality-in interior points) ,
(4.27)

§0(¢) < s, and 81 < §1(¢) s, "0<¢<2m,

The'last two formulaé follow from t4.15) and (4.12), respectively. Using
(4.27) and (4.24) we then see that since w'(s. ) < 0, 1—0 1, the last

1ntegrand in (4. 26) is non—negative in A¢ (with -A(s) - w"(s) - U(s,¢) as

the dominating term), if only d(X) is suff1c1ently small. Consequently,

J’ L fEn(ﬂ*,s)T . v dsd$ > 0  (4.28)
0 *Ad

if only d(Z). < d6 where d6 is some T-independent constant. (4.16) and (4.19)

then give, using the notation of (1.14)

2m s 1@
SE(n) > = {ae)v? + B(s)v?
5,4

ot c(s)v? + 2n, (n%,v,8) } dsd¢ (4.29)
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where V(s,9) satisfies the volume constraint §V = 0, which by (ﬁ.l?) and
(4.20) is of the form

2m 5,(9) 2 3 @)
j A(s) » vdsdp = -0 hv(ﬂ*,y_,s) dsd¢ (4.30)
0 75 (d) 0 s (9)
Again, the functions hE and hV of (4.29) and (4.30) will satisfy (4.21)
and (4.22), 1if only d(n) + 4(Z) < d7, vwhere d7 is some T-independent constant.
In order to relate (4.25) - (4.30) to the properties (4.4) - (4.7) of the

quadratic form Qo’ we proceed as in the proof .of Theorem 3.1 by introducing a

change of wvariable:

s' - s
_ " o~ O ,~ ~
s = s(s',$) = sorq;) +——51 — So(sl(dn) - so(d))) (4.31)

n(s',) = V(s(s',$),9) (4.32)

(4.31) takes T onto the rectangle ZD and the transformation satisfies (3.19)
(with N replaced by V) and (3.20). Furthermore, by (4.15) and (4.32),
U(s',9) will satisfy (4.7). Using, in addition, (4.21) and (4.22) we obtain
in the same way as for (3.21) and (3.24),

20 8
1

SE(n) = j j %—{(A + GA)uz, + (B + GB)udJ + (C + GC)uz}dsdcp . (&.32)
0 s

0

where SA(s',$), OB(s',$), 6C(s',p) are bounded and integrable on Zo with
[ | < cpfa) + a@iu il + lugl )+l (4.33)
lsall  + HsBll_ + llscll < C4{d(n) + d(o)} (4.34)

if d(n) + 4(8) < d8’ where 04 and dS are some positive constants, independent

of 7. We can then apply Lemma 2.3 to conclude by (4.4), that e.g.

A
SE() > -lll? (4.35)
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if only d(m) +:d(Z) < do’ where d0 is some N-independent, positive constant
Since, furthermore, by (4.11), (4.14) and (4.15) Vv = 0 in ¥ if and only if
N =0 in £ and since by (4.32) liMl_ = 0 if and only if v 2 0 in %, (4-35)

completes the proof of Theorem 4.1.
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5. EXPLICIT FORM OF THE JACOBI EQUATIONS. CONCLUDING REMARKS.
The functions A(s), B(s) and C(s) of (1.14) are found by straightforward
manipulations from (1.8) to be (we put R = R(s), Z = Z(s) for brevity):

A(s) = OR(s)
B(s) = o/R(s)
C(s) = -20R" + pg{RR' - 2Z' + ZR&R"Z' - 2'R")}
+-A{z' - R@R"Z' - Z"R")} (5.1)

Using (5.1) the JacobiAdifferential-equations (1.17) become (putting
Bo = pg/o and H0 = Mo as in (1.11)):

2
k
1t [ ] _ = _ " | B 1
RUY, + R'uL {R 2R" + BO{RR 27
et _ olipt 1 _ Nt _ olint
+ ZR(R"Z' - Z'R")} + H_{Z' - R(R"Z’ - Z"R )}}uik
= Ay , k= 0,1,2...
= 1,2,3...
8 <s <=8 s (5.2)
o - -1
with the boundary conditions
i T —_ ] 2 Mz t it 2 "
(-1)"tan v U (si) = {31n Y(R"Z' - Z'R') - cosTYw }s=s. . u(si)
i
i=0,1. (5.3)

Note that (5.3) tends formally to u(si) = 0asy~+0, if w'(s.) # 0, i=0,1,

which is the case covered by Theorem 4.1.
Finally we remark that the conditionsb) and d) of Section 2 may probably

be slightly relaxed by introducing concepts from the theory of Lebesque
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integrals. With regard to the physical background of the problem, however,
such extensions of the set of permissible perturbations do not seem very

meaningful.
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STABILITY OF AXTSYMMETRIC, ANNULAR FLUID INTERFACES

AT ZERO CONTACT ANGLE

Tlkka Karasalo

ABSTRACT

We study the stability, in terms of minimal total potential energy,
of liquid configurations in axisymmetric containers, such that the
liquid-~vapor interface is annular and meets the contalner walls at zero
contact angle. The proper limits of sufficient and necessary conditions
for stability, respectively, as the contact angle tends to zero, are
formulated in terms of the Jacobi accessory differential equations. The
stability 1s shown to depend crucially on whether the equilibrium liquid-
vapor interface stays inside the container or not when continued

analytically past the three-phase contact lines.
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1. INTRODUCTION

We shall study in thié paper the éfability of certain configura-
tions of liquid partizlly filling an éxially symmetric tank in a
wgravitational field directed along the axis of symmetry. We require,
that the tank shape and the liquid volume are such that the liquid-
vapor interface is annular, i.e. it does not intersect the axis of

symmetry, cf. figure 1:

SANNAN

Container
wall

L L

XBL 766-3054

Figure 1: Exaﬁple of permissible 1liquid-tank configuration
and associated coordinate system.
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A configuration is in stable equilibrium if and only if it strictly

minimizes the total statiec potential energy of the system,

E=0- (Af - ¢cos ¥ * Aw) + Eg (1.1)

among all nearby configurations with the same liquid volume V. Here
¢ > 0 (the liquid-vapor surface tension) and 0 < Y < 7 (the contact
angle between the liquid-vapor surface and the container wall) are
constants, Af and Aw are the areas of the liquid-vapor and the liquid-
wall interfaces, respectively, and Eg is the gravitational potential
energy of the liquid. This constrained minimization problem has
received much attention in the literature, see e.g. Huh [5] and
Gillette [4] for extenmsive lists of references. By a suitable choice
of variables, it may be viewed as a variable-endpoint problem of
variational calculus ([4] p. 21 and p. 145). When Y > 0, this approach
results in conditions which distinguish between stable and unstable
cases in a rather satisfactory way. There appear to be fewer rigorous
results, however, concerning to what‘extent these stability conditions
also apply to the limiting case Y = 0 (cf. [4], p. 23). The purpose
of this paper is to analyze this limiting case for axially symmetric
liquid configurations of the above kind. More specifically, we shall
look at necessary and sufficient conditions, respectively, for
minimum of E based on the Jacobi accessory minimization problem for
the second variation of E (see e.g:‘Akhiezer [1], p. 69), as ¥ =+ 0.
The formal limits, as Y + 0, of the boundary conditions associated

with the Jacobi accessory differential equations depend crucially on
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whether the curvatures of the equilibrium liquid-vapor interface and

the container wall coincide or not at the three-phase contact lines.

In the latter case these limiting boundary conditions will be of the
fixed end-point type (when using a parametric representation of the
surfaces, see further Section 2.1 below).

We will show, firstly (Theorems 3.1 and 3.2) that the stability

conditions (sufficient and necessary, respectively) based on the fixed

end-point boundary conditions in fact apply to (1.1) with v = 0 if

only the analytic continuation of the equilibrium liquid-vapor interface

does not penetrate the container walls at the three-phase contact lines.

Secondly (Theorem 3.3), we show that if the analytic continuation of

the equilibrium liquid-vapor interface does penetrate the wall at either

of the contact lines, the configuration will be unstable regardless of

the conditions on the second variation of E.
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2. NOTATION AND SOME PRELIMINARY RESULTS
2.1 The Euler-Lagrange and Jacobi Conditions

It will suffice to consider (1.l) at small perturbations from
axially symmetric configurations. We will use a parametric arc-length,
nornal displacement representation of’ the surfaces (see e.g. Reynolds,

Saad, Satterlee [8]). Thus the unperturbed liquid-vapor interface is

described by

R(s) s <s<s ’

(2.1)

P
N [ai
il n
o
(o]
Fal
-
N
o
=
)

Z(s)

in the polar co-ordinate system of figure 1, where s is the arec-length
along the curve of intersection between the interface and any plane

¢ = constant. Then the equations

R(s) - n(s,$)2' (s) s ($) <5 s (9)

P "

N [a

] I

A A
~

2.2)

2(s) + n(s,IR'(s)° 0 < <27

describe a surface obtained by moving each point of the surface (2.1)
the distance Nn(s,$) in the direct%on of the normal at (g,4). (In
general, since we want the perturbed surface (2.2) to intersect the
container walls, the functions R and Z of (2.1) must be continued to
some open interval containing [so,sl]. A convenient way of doing this,
which we will use in the sequel, is provided by the differential
equations (2.9) below). Similarly, in some neighborhood of the

unperturbed contact lines (s = s and s = Sl in (2.1)), the container
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wall will be given by

H
il

R(s) - w(s)Z'(s)
;0 <¢<oem (2.3)

Z(s) + w{s)R'(s)

N
I

Then, denoting by SE(n) and 6v(n) the increments of the energy (1.1)
and the liquid volume at the perturbation (2.2), we obtain in a

straightforward way

27 sl(¢)
SE(n) = {£4(n.8) = £,00,5) + £ (n,9)} dsdo
0 s ()
?ﬂ
-f f {cos Y - fA(E:S) - fA(g,s) + fg(ﬂ,s)} dsdg (2.4)
Ad
2T sl(¢) 21
Sv(n) =./‘ f fv(g,s)dsdd) -f fv(g,s)dsdd) (2.5)
0 so(¢) 0 Y Ad

where we have put

N = 0(s,0) = (n(s,8) 40, (5,0),my(5,6))"

f

w(s) = (w(s),w'(s),0)7T (2.6)

A

A@ = the interval (so(¢),SO)U(Sl,Sl(¢))

and, denoting R = R(s), Z = Z(s),
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£,(,9) = 0 - {@ - nzn% + (@ + n@'z" - 27r'N?)

+ ni(l @z - z'rr)) L2
fV(ﬂ,s) = n{l + DZ_(R"Z. _ Z"R')}(}R - %Z')
f(M,s) = Pg (2 + 3R+ £(0.9) 2.7)

Here p is the constant liquid demsity and g is the gravitation constant
with g > 0 if the gravitation force acts towards the negative z-axis
in figure 1.

The condition, that all first order n-terms in SE(n) should
vanish for all 1 such that 8V(n) = 0 then leads to

afA Ef& va
W(Q,S) + an (_Q,S) - }\gﬁ"(_g,s) =0

in S, <s < Sy» with the boundary conditions (2.8)

cos Y fA(E(si),si) - £,0,s,) =0 3 1=0,1,

where A is a constant (the Lagrange multiplier). Putting BD = pg/o,
2 _
Ho = A/G, using (2.6), (2.7) and the identity R'(s)2 + 2'(s)" = 1,(2.8)

becomes the Euler-Lagrange boundary value problem

*R" =-Z'(82Z2-H -~ 2Z'/R)
o o
2" =R'(BZ - H - Z'/R)
(2.9)
w(si) =0

i1 ; i=0,1.
w'(si) = (-1)1 tan Y
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(Without loss of generality we have excluded the contact angles
T - ¥ allowed by (2.8)).

Assuming now that (2.9) is satisfied, the condition, that all
second order N-terms should give a non-negative contribution to

‘(SE(T]) for all n such that &V(n) = 0, takes the form

2T 8
: 1 2 2 2
QS(H)' =f f {A(s)us + B(-s)u¢ + C(s)i }dsd¢
0 s ..
21 @
*—J(. {aou(so,¢)2 + alu(sl,¢)2} d¢ > 0 (2.10)
.0 «

for all u(s,¢) such that,

2m .S

1
f f R(s)u(s,d)dsdd = 0 . (2.11)

0 s
o

Here we have put

—

£ (08 + fgm<g,s) - Fypp @) = diagiC(s),A(s),B(s)} , (2.12)

t-tlz—)—— . ?E{cos Y fA(E(S),S) - fA(Q,S) + fg(_vg(s),s)'-— kfv(_‘i(s)’s)}s=s

an Y i

=a, , i=0,1. (2.13)
i

By (2.12) and (2.7), the A, B and C of (2.10) are

A(s)

OR(s)

i

B(s) = 0/R(s)
C(s) = -20R™ + pg{RR' - ZZ' + ZR(R"Z' - Z"R")}

+ 2z’ - R@R"Z" - Z"R")} (2.14)
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By (2.9), since R(s) > Rmin:>o in s, <s < $q> A, B and C will be

smooth (in fact analytic) in some .open interval containing [so,sl]

and A(s) >A ., >0, B(s) >B ., > 0 will hold there. By standard
- "min - "min

results for symmetric, semibounded quadratic forms in Hilbert space

{see e.g. Kato [7]}, p. 322 and 352-353), (2.10) may be analyzed in

terms of the eigenvalues and eigenfunctions of an associated selfadjoint

differential operator:

™= -2 e - %(B(s)uq)) + C(s)u

in s, <5< sl, 0< ¢ < 27, with the boundary conditions, that U

should be periodic in ¢ with period 27 and

AsDu_ts,,0) = (-D'ou(s,0) , 0<¢<om

T has a complete, orthogonal system of eigenfunctions of the form

co

{Pik(s) cos k¢}1=1,k=0 s {uik(s) sin k¢};;l,k=l

with associated eigenvalues { {ordered increasingly in the

co
Kidi=1,k=0

index i), determined from the boundary value problems

= LAy () + {1+ Bs) + CE Uy (e) = kg (8)

' = (3] . i . 2.15
A(Sj)”ik(sj) (-1) ajuik(sj) ; i ; ( )
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We notice, that all eigenfunctions but those with k = 0 satisfy the

constraint (2.11) and that, since B(s) > 0 in So <s < sl, the

eigenvalues K‘k are increasing functions of k. It then follows that
i .

(2.10) with the side-condition (2.11) holds for all Y in the class of
continuous functions in So <s < Sl’ 0 < )] < 27, which are periodic
in ¢ with period 2% and have square integrable first derivatives
(see e.g. Kato [7], p. 322-323, Cor. 2.3) if and only if

a2 2
K, = m1n{81K10‘+ BZKZO’KIIQ >0 (2.16)

2r s

1
where, denoting (f,g)o =f f f(s,9)e(s,$)dsdd, Bi and Bg are the
0 s

solutions to °

2 2 2 2

(2.17)
82(u~ u )+82(u L, N
1Y710°%10% T V2 H207 2070

with 82 = 0 if the solutions are non-unique.

(2.15) - (2.17) are(the equivalent of)the Jacobi accessory
boundary value problems for our constrained minimization problem. By

(2.13), (2.6) and (2.7), the boundary conditions are
(-1)"tan Y uik(sj)
= {Sinz Yy (R"Z' -~ 2Z"R") - cos? Y W"}s=s

. uik(sj) i=0,1.

We notice, that if w'"(s.) # 0, j=0,1, (2.18) converges formally to
]
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i=0,1 , (2.19)
as y + 0.
2.2 Permissible Perturbations. Two Lemmas.

By the contact lines of the liquid-vapor interface we mean the
two closed curves within the container wall, any open neighborhoods
of which Intersects the ;nteriors of both the liquid and the wvapor
ingide the container (cf. fig. 1). The contact lines determine
by (2.2) a closed region s_(¢) < s < 5;(4), 0 < ¢ < 2m in the
(s,$)-plane. We denote this region with I and require the following

regularity properites from I and the associated function n:
a) n is continwous in I and periodic in ¢ with period 2w.

B) ng and n¢ are continuous in % except possibly at finitely
many isolated points or finitely many piecewise smooth curves

with finite length. In particular, N_ is piecewise

S

continuous as fumction of s for all 0 < ¢ < 2.

c) d(n) = sup[n(s,$)| + sup|n (s,0)| + suplny(s,®)| <=, (2.20)

where the supremum is taken over all points of I where

ng and n¢ are continuous.

d) si(¢), i=0,1 are continuous and such that si(d)) - i=0,1,

54>

change sign at most finitely many times in 0 < ¢ < 2w,

s£(¢), i=0,1, are continuous except possibly at finitely
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many points in 0 < ¢ < 2T and

d(%) =Z (suplsi(cb) - sil + sup|s§_(¢)i) < w (2.21)

i=0

=

where the supremum is taken over all points of 0 < ¢ < 2w

where s;(¢) and Si(¢) are continuous.

Remark: The sufficient conditions to be considered below will
ensure the stability of the surface (2.1) with'respect to all pertur-
bations (2.2) which satisfy a) - d4) above and for which d(n} + d(Z)
is sufficiently small. Thus in terms of variational calculus (see
e.g. Bolza [2], p. 68-70) the extremum will be "weak'". The detailed
assumptions under b) and d) are introduced for simplicity in what
follows, and could be relaxed slightly by introducing more advanced
concepts from the theory of Lebesque integrals. ‘With regard to the

physical background, however, nothing essential is lost by the above.

We will denote the closed rectaﬁgle s, <s<s.,0<¢¢< 21 by

l,

Zo and use, for any f(s,¢) which is square integrable on Eo,

Ilfll2 = (£,£) (2.22)
s} s} N

where ( , )o is defined as in (2.17). Then the following result will

be. useful:

Lemma 2.1: ILet U(s,$) satisfy the requirements a)c) on %jandthefwnwﬁrfun
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s s0) = us;n9) =0,  0<¢<om (2.23)

Let @ () be defined as in (2.10) and assume that A > A(s) >4 ., >0,
o = max - - ‘min

> > > < i
Bmax > B(s) > Bmin 0 and [fo(s) < Cmax hold in s, <s< s, Then

there exist positive constants KE' Ki, Lb and Ll' depending on S ¢ S;r

a ., A . B . , B and C but not on |, such that
min max’ min’ max max

&, = Lul? < tu i+ hugh? < ko w + 1o (2.26)

(2.24) follows from the mean value theorem in a straightforward
way and the proof is omitted. (By use of a Sobolev-type inequality
(see e.g. Kato {7], p. 193), condition (2.23) could in fact be omitted,

and this stronger result could be used for a similar tredtment of the

case Y > 0, Karasalo [6]).
Before stating our second Lemma we need some further notation.

For any yu(s,¢) satisfying a) - c) on Zb and (2.23) we put, for clarity

QO(A!B,C’}_‘[) = Qo(l-_l_) (2.25)

where QO(H) is defined in (2.10). Further, if 8A(s,9), §B(s,d)
and 6C(s,$) are bounded and integrable on EO and € is a positive

constant, we put
® = $(6A,08,8C,€) = inf QO(A + 8A,B + 8B,C + SB,H) (2.26)

over all U satisfying a) - ¢) on Eo, (2.23) and the conditions

hat =1, (2.27)
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I(R,u)ol <edinll_ + gl + tull ). (2.28)

If f(s,$) is bounded on Eo’ we will let, as usual, Hfll  denote the

supremum of |f(s,$)| over (s,$) in XO. Then we have

Lemma 2.2: Iet A(s), B(s}) and C(s) satisfy the requirements in
Lemma 2.1 and let 8A(s,$), 8B(s,p) and 8C(s,$) be bounded and
integrakble on ZO. Let € > 0, define ¢ as in (2.25) - (2.28), denote

¢ = $(0,0,0,0) and put

§ = leali_ + Il + llscll  + € . (2.29)

Then there exist positive constants C and 60, independent of 84, 8B,

8¢ and €, such that

le-2[<c-8 (2.30)
holds true, if only § < 60.

Proof: Throughout this proof,"Mi, N, 8., 1=1,2,3,... will
denote positive constants, indepé?dent of 8A, 8B, 6C, £ and u. Let
U satisfy conditions a) - ¢) on Zd (2.23) and (2.27). With the nqtation
of (2.25), put for brevity, GQO(E) = QO(GA,SB,SC,E). (500 will be

well defined because of the assumptions.) Then there exist Ml, MZ’

Nl and NZ’ such that

(1 - 8)Q @ - N8 < Q W + 8o @

<1+ MIG)QO(_H) + N1<3 (2.31)
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because of Lemma Z.1 and the mean wvalue theorem. Noting by (2.26)
and (2.28), that & is a non~increasing function of € and that, by

(2.10) and (2.25), QQCA,B,C,H) is a linear function of A, B and C

we obtain from (2.31)

2 < (L+HUNE + N (2.32)

It follows, that we need only consider those U which satisfy, e.g., the
additional condition Qo{g} =3 5QO{E} < {1 +-2MI§)(éai + 2§16 when

forming the infimum in (2.26). By (2.31) and Lemma 2.1, however, for

all such U
!!ul!2+!fn!!2<b{!@f+ﬂ =M (2.33)
s o "0 - 20 2 3 )
if only, e.g., 6 < 61 = Eé— . Let tt be any function satisfying a) — c)
1

on Eo, (2.23), (2.27), (2.28) and (2.33). Put

£%(8,9) = (= ~ 5.)(s; ~ 8)

i

™~ - E

where C1 and 02 ére chosen so as to make |l satisfy (2.27) and (2.28);

i

_ . . * - *
with £ = 0, i.e. CZ m CR,H)Df(R,f )0, Cl 1/iu sz f_ . Noting

Q

that (R,f*)0 ig a positive constant, dependent only on S, 8y and

R(s), it follows from (2.27) - (2.29) and (2.33) that

1

c

{c,] <ms8 3
ol S ¥, §

> 1 - M8 (2.34)

i

Furthermore, since £* vanishes on.s = s, and 5 = 8y i1 satisfies (2.23).
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Then form

L

L - {o @ + s wh

2 2.2 *
(€ - QW + ciein (%) - 8o W)

2T s

2 1 * - *
- 2¢7C, f f {A(s)uf_ + C(sHuf™ | dsdo

0 s
o

Here we use Lemma 2.1, (2.31), (2.33), {(2.34), the mean value theorem
and the Schwartz inequality to find upper bounds for the terms to the

right. We obtain, that for some M, 52

QG ~ {o G + 6o ()} <M, - 6 (2.35)
holds true, if only ¢ < 62. Hence
 —-d<M -8 (2.36)

if § < 62. The statement of the lemma follows by combining (2.32) and

(2.36).
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3. STABILITY RESULTS AT v = 0.

Our first statement concerns sufficient conditions for stability

at zero contact angle:

Thecrem 3.1: et vy = 0 in (1.1} and assume that the unperturbed
surface gatisfies the E&lervzagrangé eguations with the associated
boundary conditions (2.9), and doeg not intersect the z-axis. Assume
further that the function w(s) of (2.3} is twice continuously

differentiable and that

w(s) < 0 in some open neighborhoods of § = s and 5 = sl - {3.1}

Let KO be defined as in (2.15}) - {2.17}) but with the boundary
conditions in (2.15) replaced by the fixed end-point conditions (2.18},
and assume that K, > 0. Let d{n) and 4{¥} be defined as in (2.20) and

{2.21). Then there exists a constant do > 0, such that in (2.4)

8E(n} > O with equality Iff 1 = 0 in X (3.2)

holds for all n satisfying the volume constraint 8v(n} = ¢ in (2.5},

the conditions a} - d4) of Section 2.2 and the condition

am) + d(x) ¢ 4. (3.3)

Remark: When v = 0, both the energy (1.1) and the liquid volume
remain unchanged if the liquidevapor interface is continued past the
contact lines by "wetting" dry parts of the container walls. Thus,

when ¥ = 0, any configuration is neutrally unstable with respect to
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such "wetting" perturbations. With our notation, however, the region
L 18 unchanged at "wetting'" (See the beginning of Sectiom 2.2),

and there is no ambiguity in (3.2) in this respect.

Proof of Theorem 3.1: Let QO be defined as in (2.10). Then,

by (2.15) - {2.17) and the representation theorem for quadratic forms

in Hilbert space (see e.g. Kato [7], p. 322-323):

inf Q (W) =k >0 (3.4)

where the infimum is taken over all U satisfying in Eo the conditions

a) - c) of Section 2.2, (2.11), (2.23) and (2.27).
Using the notation of (2.7) we put

fE(ﬂsS) = fA(_Tl’S) - fA(Q,S) + fg(ﬂss) - lfv(ﬂ_’s) (3-5)

where A is the constant in (2.8). Then, by (2.4) and (2.5),

2m Sl(¢)
SE(n) = £p(n,s) dsd¢
0 “s_(¢)
21
—ff fE(EsS) dsd¢ (3.6)
0 Y4

for all n satisfying the volume constraint SV(n) = 0. For convenience

-in the following we denote
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Z4 = complement of (EnEo) w.r.t. I,
I- = complement of (ZOEO) w.r.t. Zo and
r= EUZQ = EJJ3+ = TUZ_ (3.7)

and define a function N(s,$) on I by

nis,d) , (s,9) €L
N(s,9) = (3.8)

w(s) s (s, €Z_

(i.e. N is obtained by extending n by wetting those parts of the wall
which dried because of the perturbation n). By (2.6) and (3.7), I

has the boundaries

$.() = min{so(¢),so}
; 0 < <2m. (3.9
$;(9) = max{s_ (§),s}
Putting further
0, (s.dEI
n*(s,$) = (3.10)

ws) , (5,0 €I,

V(s,0) = Ti(s,0) = N (s,9) ., (s,0) €L, | (3.11)

we obtain by (3.6) and (2.5), noting that fE(Q,s) = 0 and fv(g,s) =0,
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2r 5, (9) o
SE(n) =f I fE(ﬁ,s) dsd¢ -f f £ (¥,8). dsdd
0 s (9 0 ‘s _
2m §1(¢)
=f A {fE(-Tl* +V, s) - fE(D.*sS)}de‘P , (3.12)
0 s (9

for all n satisfying the volume constraint

2m 8, (9)
8v(n) =f {fv(g* + V,s) - fv(p_*,s)}dsd¢ = 0. (3.13)
0 5,(9)

In rhe sequel Mi’ Ni and di’ i=1,2,3,..., will denote positive constants,
independent of U, N, %, s and ¢. By (3.8) - (3.11), fi, n*, v and
§i(¢) will satisfy the requirements a) - d) of Section 2.2. Furthermore,
since w(s) = 0(s - si)2 in the neighborhood of s = s , we may find some
Ml and dl’ such that
d(Z) + dM®) + d(@) + dv) < M {d(D) + a(m} (3.14)

if only d(Z) + d(n) < dl.

By (2.9) and since R(s) > 0 in s, <s < Sys the functions R and Z
can be continued analytically to some open interval containing [so,sl}
and it will hold R(s) > Rmin > 0 there. It then follows from (2.7),

(3.5) and (3.9) that there exist some d., and d3, such that fE(n,s)

2
and fV(E’S) are analytic functions of the arguments n, ns’ and n¢ in
the region |n| + }ns| + [n¢| < d, at all points of %, if only d(I) < dj.

Hence, putting in (3.12) and (3.13)
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* *
fE(_n + _'\2.,5‘) = fE(D' ,S?

= * T 1. T ®
= fg@hsY v+ 35y fEHﬂ(g.,s)z + hp(n*,v,s) (3.15)
and
* * 3fV x -
F (0 + ¥,8) ~ £,(1%,8) = 5= (0,8)V + hy(n%,V,5) (3.16)

there will exist some Mz and d4, such that

[hE(_T_]*s__\l,s)l i + \)2)

A

M, {d(n) + (D} (\)2 +v

A

Ihy@*,v,9)1 < M, + a@} (vl + vyl + [v]> (3.17)

holds at all points of I where n* and V are continuous, if only

d(n) + d(g) < d,.

We now observe, that since w(s) < 0 in some open neighborhoods of

5 = S, and s = s,, the first term to the right in (3.15) gives a
oL

non-negative contribution to SE(n). To see this, first note that

fEn(_U_*,s) =0idn I, by (3.10), (3.5), (2.7) and (2.8). Second,

when (s,¢) G\Z+ we have by (3.10), (2.12) and (2.14)

fED_(p_*,s)Tg = {oR(s) + Dp(e)f w'(s)v_ + {C(s) + Do)} wis)v  (3.18)

where, for some M3 and dS’

|DR(S)] + |DC(s)] < M3{!W(S)| + w'(s)z}
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if only d(Z) <d Furthermore, since w'(s) is continuous in Z;, D

5°

will be continuously differentiable there. Hence, after partial

R

integration of the first term in (3.18) noting that v(s,f)w'{s) = 0

on the boundaries of I,, we obtain

21 §1(¢)
T
f £gn(1¥,8)" + v dsdo
0 Y5 4
T
= f {—GR(s)w"(s) + D(s)}v dsdd (3.19)
0 Y&

where, for some d6’ MZ;’ [D(s)] < M[}Iw' (s)l if only d(Z) < d6. Now by
(3.1), since w(si) = yw' (si} = 0, i=0,1, w"(s) < 0 in some open
neighborhoods of s = s, and s = S;» whence the first factor of the
1ast integrand will be non-negative, if only d(Z) is sufficiently
small. Since further, by (_3.8) - (3.11), v(s,9) > 0 at interior
points of %, we can then find some d7, such that for all permissible
n for which &6v(n) = 0
2% §1(¢)
1 2 2 2 *
SE(n) > 0 {A(s)vs + B(s)\)¢ + C(s)v" + 2h (n ,g,s)}dsdqb ,

0 s, (4) (3.20)

if only d(n) + 4(¥) < d Furthermore, (3.20) holds with equality

7
if Iy is empty or if w(s) = 0 in Zj.
In (3.13) and (3.20) we introduce a change of variable by

putting
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' - g

. 8
s =s(s',9) =5 (9) + ;226G - 3_(¢)) (3.21)

1~ %

U(S's¢) = V(S(S',¢),¢) . (3.22)

(3.21) takes I onto the rectangle Zo in the (s',$)-plane. It-follows

by (3.17), €3.21), (3.22) and the smoothness propérties of A, B and

C that in the notation of (2.25)
SE(M) > %Qo (A + 8A,B + 8B,C + &C,u)

where SA(s',$), SB(s',¢) and 8C(s',$) are bounded and integrable

on Zo and such that for some HS and d8

“leall, + KBl + N&cl, < M fam) + a@)

if d(n) + d(Z) < d8. Similarly, by (3.13), (3.16), (3.17) and

(2.7), there exist H6 and d., such that

9

| R0 ] < Mdae) + a} g+ ugl + Tl }

if d(n) + 4(%) < dg. Furthermore, u(s',$) satisfies (2.23) and
requirements a) - ¢) of Section 2.2 on 20. We may then use (3.4)
and Lemma 2.2 to conclude that there exists some do such that, e.g.,

IC0 2
SE(M) > 5*'Hu”0

for all n satisfying the volume constraint, 1f only d(n) + d(I) < do.

Since, by (3.7) - (3.11) and (3.21) - (3.22). Iiul!0 = 0 if and only if
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n =0 in I, this completes the proof of Theorem 3.1.

The second statement of this section is concerned with necessary
conditions for stability at zero contact angle, based on the fixed
end-point conditions (2.19). As may be expected, these will apply

regardless of the additional .condition (3.1):

Theorem 3.2: Let ¥ = 0 and assume that the unperturbed surface
satisfies (2.9) and does not intersect the Z-axis. Let Ko be defined
as in (2.15) - (2.17) but with the boundary conditions (2.19) and
assume that Ko < 0. Then, for any do > 0 we may find a function n
satisfying a}) - d) of Section 2.2, the Volume constraint 8v(n) = 0

in (2.5) and the condition d{n) + d(I} < do, such that in (2.4)
SE(n) < 0 . (3.23)

Procf: We note that the infimum Ko in (3.4) under the conditions
stated there is attained for U = {{ where i is either “11 or 31“10 + 82u20
in the notation of (2.15) - (2.17). We can use {l to construct a function

N with the properties required in the theorem as follows: Let e.g.

S0 = 280/3 + 81/3,.310 = 50/3 + 251/3 and put
: (5= 8029 = 8) > 5o 38 5%
g(s) = (3.24)
0 otherwise .
Then put

n(s,d) = efi(s,d) + a(e)g(s) (3.25)
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where a(€) is chosen so as to make n(s,$) satisfy the volume constraint.
Using (2.5), the assumption (R,ﬁ)o = 0 and the contraction mapping
theorem it can be shown that a(e) is well defined when |€| is small
and that a(e) = o(e), € > 0. Since {i and g are zero on ¢ = S, and

s = s, Z+ as defined in (3.7) will be empty. Henée, by putting

0 (s,9) €EZ

-

n*(s,9) = (3.26)

w(s) - eli(s,¢) 5 (s,0) € T_
we obtain by (3.8)

2T s

1
SE(N) =-/- f fE(ag + _n_* + a(e)g,s) dsdd (3.27)
0 s
o]

if only € is small enough for .g(s) to be zero within IZ_, cf. (3.24),
{3.25). Noting that |n*(s,¢)| < Ieﬁ(s,¢)| in ¥_ and that the area

of ¥_ tends to zero as € + 0, we get from (3.27)

1
SE(M) = esz %ngE n(g,s)g dsdd + o(e?)

I
= 7, +0(1)) , e-=o0.

Since Ko < 0, the statement of Theorem 3.2 follows.

Finally, the following theorem states that if the analytic

continuation of the equilibrium liquid-vapor interface penetrates
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the container walls at either of the three-phase contact lines, the

configuration is unstable:

Theorem 3.3: Let Y = 0 and assume that the unperturbed surface

satisfies (2.9) and does not intersect the z~axis. Assume further, that
for i=0 or i=1 the function w(s) in (2.3) changes sign at s = s, and
that w''(s) is continuous and monotone in some open neighbourhood of
that point. Then, for .any do > 0, we may find a function n satisfying
a) - d) of Section 2.2, the volume constraint 6V(n) = 0 in (2.5) and
the condition d{n} + d(Z) < dO » Such that in (2.4)

8Ef{n) < 0 .

Proof: Assume e.g. i=1. Then, by the mean-value theorem, we may
find some s, > s, such that e.z.
lw' (s)} < (s—s )w' ' (s)

fw(s}l < (s-s1 )QW' '(s)

holds for s, £ s £ s, . Hence, noting the upper bound for {D(s)| in the

3 2
integrand in (3.19), for any given do > 0 there exists a k > 0 such that
k$3d, » (3.28)
1
max {Iw(s)l,lw'(s)l} < B de 5 S, £s8 s s, + k (3.29)
-0 R(s) w''(s) + D(s) <0 3 s, <s S8, +k . (3.30)

Now consider the set of axially symmetric perturbations n = n(s) for which,
et. (2.2), '

so(¢) =55 3 31(5) =s;/+k 3 0% ¢ < 2m .

Let v(s) be defined as in (3.7)-(3.11) and, keeping k fixed, let d(v)} » 0
{(i.e. let the perturbation tend t5 the unperturbed surface extended by
wetting the portion s, <s < s, +kof the container-wall). By (3.30) the
integral (3.19) will be negative and linear in V while by (3.12), (3.15)
and (3.17) other contributions to 8E(n) are of higher order in v. Hence,
proceeding as in the proof of Theorem 3.2 to satisfy the volume constraint,
for any given d, > 0 we may choose a function n(s) suitably to satisfy

8V(n) = 0 and
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a(v) = d; (3.31)
8E(n) <0 .

Since, by (3.28) and (3.29), using the definitions (2.20), (2.21) and
(3‘7)"(3-11)1

- 1
a(x¥) =k = T do
lm a(n) = sup Iw(s)l + sup I'(s)l = a5
ad(v)-0 s,%sss +k s,Ssss_ +k

1 1 1 1

the statement of the theorem follows by choosing d, in (3.31) sufficiently

small.

1

Remark: We note that the instability stated in.Theorem 3.3 is present

regardless of the stability conditions based on the second variation of {1.1).

The method of proof suggests that the instability should show by a thin layer
of liguid building up past the contact line s = s;. A verification of this
kind of instability by experiments would of course be virtually impossible
because of the several idealizing assumptions inherent in the model (cf.
however [3] where a series of low—gravity experiments performed at the NASA

Lewis Research Center are studied computationally).
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A NUMERICAL STUDY OF CAPILLARY STABILITY
IN A CIRCULAR CYLINDRICAL CONTAINER WITH A

CONCAVE SPHEROIDAL BOTTOM

P. Concus®
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ABSTRACT

We study computationally the stability, under gravitational and
surface forces, of a liquid in a circular cylindrical container with a
concave sphexroidal bottom, for the case 'in which the volume of liquid
is sufficiently small so that the bottom is not.covered entirely. We
assume the gravitational field to be directed along the axis of symmetry
of the container, and for a specific container shape we compute the
critical Bond number as a funétion of liquid volume for contact angles
vy = 0°, 1°, 2°, and 4°. For the case Y = 0° we present graphically
several critical equilibrium.configurations and corfe5ponding pertur-

bation modes.

* Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.

**Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720.
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1.  STATEMENT OF THE PROBLEM

In this paper we present the results of a computational study of
the stability of a liquid in a rotationally symmetric container subject
to gravitational and surface forces. We consider vertical right cir-
cular cylindrical containers with concave spheroidal bottoms, for the
case in which the volume of liquid is sufficiently small so that liquid
lies only in an aﬁnular region of the container (Fig, 1). We are
interested specifically in the case for which the contact angle vy is
zero, Or nearly zero, and our numerical results are obtained for a con-
tainer currently used for the storage of liquid fuels in Natiomnal
Aeronautics and Space Administration Centaur space vehicles, for which
the axial ratio of the bottom is b/a = 0.724.

A vertical section through the axis of the container is depicted
in Fig. 1, along with the associated cylindrical coordinate system.

The container may be in motion, but the net external gravitational

force is assumed to be uniform and directed paraliel to the axis of
symmetry. It is well known, that even if the gravitational force is
directed upward, liquid may be in stable equilibrium at the container
bottom because of the effect oé surface forces. For a given liquid
volume, stable configurations of this kind are possible only if the
magnitude of theﬂupward-directed gravitational force does not exceed a
certain critical value. This critical value depends on physical para-
meters such as the liquid-vapor surface tension coefficient, the differ-

ence in liquid and vapor densities, the liquid-container contact angle,
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XBL 773-583

Figure 1: The container and the associated cylindrical
coordinate system. The bottom has the shape
of an ellipsoid of revolution with axial ratio
b/a.




and geometrical parameters such as the container size and shape. The

combined effect of certain of these parameters may be represented by
the dimensionless Bond number (see (2.11) below), whose critical value
for our problem is a function only of the container shape, the

liquid volume, and the contact angle. In this study we determine

computationally the critical Bond number as a function of the liquid

volume for fixed contact angle and container shape.

Our approach is that of static analysis, i.e. we consider the

total potential energy of the liquid-container system (in a container-

fixed frame of reference), given by

E = c(Af - Aw cosy) + Eg (k1)

(cf. Reynolds and Satterlee [3], p. 394-396). Here o > 0 (the liquid-

vapor surface tension coefficient) and 0 < y <7 (the contact angle

between the liquid vapor interface and the container wall and bottom)

are constants determined by physical properties of the liquid and the

container, Af and Aw are the areas of the liquid-vapor and the liquid-
container interfaces, respectively, and Eg is the gravitational poten-
tial energy of the liquid. A configuration of liquid is in stable

equilibrium if and only if the total potential energy (1.1) is minimal

compared with that of any nearby configuration having the same liquid

volume. Thus the critical Bond number for a certain volume of liquid
is the one at which E in (1.1) ceases to have a strict local minimum
with respect to all perturbations that conserve the liquid volume. In
Section 2 below we give a summary of an analysis of this constrained

minimization problem using methods of variational calculus.
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The arc-length, normal-displacement coordinate system.
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continuation of the unperturbed surface to the left in Fig. 2.
(The continuation may be done in several ways, perhaps most corveniently
by using the fact that R({s) and Z(s) will be analytié'functions for
equilibrium configurations, cf. (2.9) below.)

In a way similar to (2.2), the container wall and bottom are

described by

1]

r = R(s) - w(s)Z'(s)

0<¢< 2w (2.3)

n

z = 2(5) + w(s)R'(s)
in some neighborhcods of the unperturbed contact lines s = Sy and s = Sy-
Then clearly w(sO) = w(sl) = 0. The function w(s) will depend on the
shape of the container wall and bottom and, implicitly, the shape of
the unperturbed liquid-vapor interface. The representation (2.3) is
convenient for the purpose of deriving the differential equations;
however, in the actual computations we must, of course, make use of the
known, configuration-independent shape of the container, cf. (3.4} and
{3.5) below.

The increments of the total potential eneigy E and the liquid
volume.V caused by the perturbation n(s,¢)} in (2.2) may then be computed.

We obtain in a straightforward way

SE‘ m =0 (GAf - GAW cosy) + GEg

. 2w 5, (¢

)
) f j {G(fA(D-’S) - £,(0,5)) +pg fg(n,s)} ds d¢
0 5,(0)

2T
- [ f {otcosy - £ - £,@5) +pg w5} ds dp
0 & (2.4)
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2m sl(¢) 27
SV(n) = f f f\l(B-’S) ds d¢p -~ ff fv(Es) ds d¢ ,
ERCY 0 A C(2.5)
where we have put
n =068 = M6, ngls.), ny(s,6)"
w=u(s) = ((s), w(s), 0) (2.6)
A¢ = the intexval (so(¢), so) v (sl, sl(¢)),
and where the functions fA(B,s), fvcﬂﬁs)’and'fgCst) are given by
(denoting R = R(s), Z = Z(s), and C = Z''R'-R''Z' for brevity)
£, = {®R-nz0%l + @ - 00h s npa -0’}
£,(n.s) = nfR - %(z' + RO + %zrcnz}
(2.7)

£,(n,s) = n{Rz + %(RR' - ZZ' - RZCO)n -

- %([RR' - ZZ13C + R'Z'In% + %R‘Z'Cns}

In (2.4) p, the liquid densi?y (or, more precisely, the difference

between the liquid and vapor densities), is assumed to be constant, and

g is the gravitational constant (which may assume any value) defined so

that g > 0 if the gravitational force pulls toward the negative z-axis.
The condition, that all first-oxrder n-terms in SE(n) as given by

(2.4) should vanish for all n such that é6V(n) = 0 in (2.5) is then

3fA Efg 3fv
o gﬁ'—(g,s) * Pg (0,s) - A g‘ﬁ”@_,s) =

|
o

in Sy <s < Sy > with the side-conditions 2.8)

1l
o
L]
e
"

cosy - fA(_\g(si),si) - fA(_Q,si) =0, 1
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where A is a constant (the Lagrange multiplier). Putting here
B = pg/o, H= l/q,and.using (2.7) and the identity
R'(s)? + 21 (s)2 = 1
(which holds because s is the arc-length) (2.8) becomes the Euler -

Lagrange boundary value problem for the equilibrium liquid-vapor

interface
R'' = -Z'(BZ - H - Z'/R)
Z'' = R'(BZ - H - Z'/R)
] (2.9)
w(so) = w(sl) = 0,
w‘(so) = ~tany, w'(sl) = tany

In general, the requirement that (2.9) should have a solution for a
given container shape will restrict the B, H, and V - values to some
two-dimensional subset of the (B,H,V) - space.

The equations (2.9) have the following invariance property: if

£ is any positive constant and if we put
= . _ 1 - 1 — 1
R(s) = EvR(Rs), Z(s) = E—Z(Zs), w(s) = E-w(ﬂs) {(2.10)

then R and Z will satisfy (2.9) with B replaced by B = g2 , H
replaced by H = Hf and w replaced by W . The transformation (2.10)
means simply that R , Z ,and ‘W describe a liguid-tank configuration
obtained by uniformly enlarging the original one by a factor 1/%.

Therefore, if we define dimensionless constants B0 and H0 by

B =B a®=2FPE H =Ha-= 2% (2.11)
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where a is the container radius, B, (the Bond number) and H, will be

invariant under uniform re-scalings of equilibrium liquid-tank config-

urations. We will therefore present the results of our computations
below in terms of the B0 in (2.11) in order to facilibate tﬁeir use for
arbitrary-sized containers.

We assume now that the liquid-vapor interface (2.1) satisfies the
Euler-Lagrange equations (2.9). Then the condition, that all second
order n-terms give a non-negative contribution to 6E(M) in (2.4) for
all n such that in (2.5) 6V(n) = 0, may be written as

2T S

1
ff {R(s)nz + "li%;)_ nz + A(s)nz} ds do
0 50 :
2m
- {Lagn(sg,9)” + ants; ) bas >0 (2.12)

0
for all n. = n{s,d) .such -that

2M s

1
ff . R(s) n(s,d) ds dé =0 (2.13)
0 s0

In (2.12) we have denoted
A(s) = =2R'' + B{RR' - ZZ' + ZR(R'"'Z' - Z"R')}
+ H{Z' - RARYV'ZY - Z"R‘)} (2.14)

i
o = G L cosy + £ (u(e),9) 50 + B -

tan™y ds

- va(_ni(s),s)g , i=0,1 (2.15)
s=s,
i
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It can be shown that if (2.12) (with the side-condition (2.13)) holds
with strict inequality for all nonzero functions n(s,¢$) then in fact

E will be locally minimal at n = 0, i.e. the configuration described by
the R(s) and Z(s) in (2.9) is a stable one. It can further be shown
that if (2.12) {(under (2.13)) does not hold for all n, then E cannot

be locally minimal at n = 0 and the configuration is an unstable one.

Thus the critical value of B will be the value at which the transition

between these two cases occurs .(provided that the corresponding solu-

tions R(s), Z(s) to (2.9) describe an equilibrium liquid-vapor interface
that 1is physically realizable, which may not always be the case - see
the end of this Section). When B is critical in this sense, (2.12)
still holds (under (2.13)) but there exists some non-zero n = 7(s,¢) for
which (2.12) holds with equality.

The inequality (2.12)-(2.13} may be analysed in terms of an

associated sequence of eigenfunctions of the form

co

{u.. (s) coskd } (2.16)
k j=1,k=0

=]

. . These are given by the solutions to the
i=1,k=0

with eigenvalues {lik}

eigenvalue problems

2
- é%‘iR(s)“ik(SJ} * {RES) * A(S)} B (8) = A5y ()
: - g . (2.17)
R(.Sj)u;i..k(Sj) ( 1) ajulk(sj) IJ( = g: %; 2; -
i=1, 2,3,
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where A(s), o_, and o, were introduced in (2.14)-(2.15). It can be shown

03
from (2.17) that the eigenvalues increase with the index k. It further
follows from (2.16) that all eigenfunctions but those with k=0 in (2.16)

satisfy trivially the condition (2.13). Then it follows, that (2.12)

under the side-condition (2.13) holds if and only if (assuming Xik to be

ordered increasingly with i)

[se]
min {2, 20 B N (2.18)
i=1

where, because of (2.13), {Bi}?=1 are solutions to:

o0
2
Minimize > B.A,, under the constraints

i=1

> o6 =1 and (2.19)
i=1

izglsi(uio,R) = 0

In (2.19) we have denoted

2 S,
(£,2) ff £(s,¢) g(s,9) ds d¢p ,
6 s

; to be normalized to (uiu,uin) =1, 1=1,2,3,...

and assumed {uio};;

In all the cases studied below it will in fact hold I(ulO,R)| >>
|(uiD,R)], i=2,5,... and (Ay5-2A;0) >> (Ay; -Ayg) > 0, so that the minimum

in (2.18) is attained at A Thus, the critical value of B is determined

11°

by the condition A11= 0 (with the above mentioned restriction concerning

non-realizable equilibrium configurations). By (2.14), (2.15), and
(2.17), we obtain that this condition is equivalent to

requiring that the Jacobi-lLegendre boundary value problem
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- Ru'™(s) - R'u'(s) +’{%-- 2R'" + B{RR' - ZZ' + ZR(R''Z' - Z''R")} +
+ H{Z' - RR"'Z' - Z"R')}} W(s) = 0, sy<s<s,
* (2.20)
(-1)7 tany-u'(s;) = {sin’y-(R"'Z' - Z''R") - cosPy-w''}  n(s,)
S=8.
1
i=20,1,

(2.21)

should have a non-trivial solution u{s).

We remark that the formulas (2.12) and (2.15) in the above dis-
cussion are meaningful only if the contact angle 7y is strictly positive.
However, one of our principal interests is .the limiting case y = 0.
Therefore a special analysis is needed in order to determine the proper
limiting form of the above conditions (2.19)-(2.20) when v >~ 0. It can

be shown (Karasalo®[4]) that if w''{s.) < 0, i = 0, 1, then the dif-

ferential equation (2.20) with the fixed end-point boundary conditions

u(sy) = uisy) = 0 (2.22)
is the correct one to use when Yy = 0. Furthermore it holds when vy = 0
that if in the set of solutions R{s), Z(s) to (2.9) obtained by keeping

the volume fixed and varying B (and H, cf. the comment after (2.9) above)

w''{(s ) or w''(s,)} change sign as functions of B at some value of B,

then this B-value is critical even if (2.20)-(2.22)lacks nontrivial

solutions. This is so because only solutions R{s}, Z(s} for which
-w"(so) < 0 and w"(sl) < 0 hold are permissiblé for ¥ = 0 due to the
constraints imposed by the container geometry. Our computations show,

in fact, for the Centaur space vehicle example, that small liquid
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volumes become unstable because of the conditions (2.20)-(2.22),

whereas the stability of large liquid volumes is decided by the con-

straint w''(s,) < 0. The transition between these two conditions occurs

at a certain well defined volume, cf. (3.6)-(3.7) below.

3. COMPUTATIONAL PROCEDURE

With a given liquid volume in a given container of the shape
shown in Fig. 1 we ;ssociate a dimensionless fill height, defined as
follows: let Zy be such that the given volume V coincides with the
volume bounded by the container wall and bottom and the plane z = Zy -

Then the fill height for the volume V in the container with

radius a is

WA RS
h, = zv/a = —( 2) . (3.1)

2\ ma
We shall compute the critical Bond number BOC {(cf.(2.11)) as a

function of hy. Obviously, by (2.10)-(2.11) and (3.1), these quamtities
are invariant under uniform re-scalings of the container, and we can
therefore restrict our computations to a container with a specific
radius, e.g. a = 1. We are interested only in the fill-height range
0 < hV < bfa, i.e. only in volumes that are smaller than that of the
annular crevice at the container bottom.

- Before describing our computational algorithm in detail we shall
give the explicit form of the boundary conditions (2.21) at s = 5, and
S = 55 respectively. In a neighborhood of s = S0 there holds by

(2.3), since the bottom is an ellispoid of revolution (cf. Figs.l and 2)


http:2.10)-(2.11
http:cf.(2.ll
http:2.20)-(2.22
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R(s) - w32 sNZ , (Z(s) + w(s)R' (s

1. (3.2)
a2 bz
Similarly, in a neighborhood of s = sy we have
R{(s} - w{s)Z'(s) = a (3.3)

By differentiating these expressions twice and using (2.9), (2.21)
becomes after some straightforward manipulations (we put Zi = Z(Si),

Ri = R(si), i =0, 1, for brevity)

2t 26
siny-u’(s,) = : + cosy (BZ; - H - —)p U(s,)
0 @422 . pir2y 372 0 ) 0
0 0 0
(3.4}

cosyY
a

siny-u‘(si) = -cosy*(BZ1 - H - b u(sl) . (3.5}

Our computations are carried out for the case b/a = 0.724 and
proceed in two principal steps. In the first of these (which requires
the main part of the computational effort} we determine successively
some S50-60 points on the curve BDC = BOCChV) at pon-equidistant values
of hy. Each of these points is obtained in the following manner:

a} We choose a fixed point R=a =1, Z = Z, at the cylindrical

1

container wall and "guess™ a corresponding pair of values for BO and

H, in a way to be specified below. '

0
b}’ We put R{sl} =a=1, Z(si) = Zl’ R‘(sl} = siny, Z’{sl} = COSY

to satisfy the boundary conditions at s = S1 in (2.9) (we may choose

arbitrarily, e.g. s, = 1), We further choose a pair of values

1 1
u'(sl), u(sl), not both zero, consistent with the boundary condition



90

(3.5) (except for the large hV cases for v = 0, cf. (3.6) below).

¢) We solve simultaneously the differential equations (2,9) and (2.20)
numerically, intégrating from s = Sy backwards with'é standard fourth—”
order Runge-Kutta scheme. The stepsize of the integration is kept
constant except for the last step which is adjusted (using a secant
method) so as to make the last computed point of the solution to (2.9)
lie on the container bottom profile (for the case y = 0 we adjust the
last step so as to make the normal of the computed solution to (2.9)
at s = S iﬁtersect the bottom profile at an angle of w/2). Thus we
have ensured w(so) =0 (w'(so) = 0.in the case vy = 0).

d) We compute the discrepancies in the boundary condition (3.4) and
the remaining boundary condition at s = S in (2.9). We adjust BO and
Hy (using eventually a Newton-type method to obtain the corrections) and
repeat from b) above until the corrections in BO and H0 are less than
a prescribed tolerance.

e} We make a final integration computing this time also the liquid
volume V, simply by adding the appropriate extra differential equation
to the others., Then the corresponding hv-value is obtained using
(3.1).

We repeat .the steps a)-e), using a set of some 50-60 regularly spaced

Zl—values. To obtain the initial Y"guesses" for BO and H, in a), we

0

extrapolate the functions B, = Boc(Zl) and HOc = HOC{Zl) to the next

Oc

Zl-value, fitting two quadratic polynomials in Z1 through the three

closest previously computed values of log[B,.| and log|H, |, respectively.
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The functions log|B0c(Zl)] and logIHOC(Zl)I turn out to be close to
linear in Zl, and the accuracy in the guessed values was found to be
very good (the "guesses"™ have in general 3-4 correct decimals when the
spacing of the Zl-values is 0.02a).

For all the contact angles studied, the computed points on

the curve By = By (h,) indicate that 1°g|BOc| is only mildly nonlinear

as a function of hV' The second main step of our computation is to

fit a cubic spline through the compited points on the curve 1og|B0cl_F

10g|BOC(hv)]. In this way we obtain a convenient and satisfactorily

accurate representation of the sought fiunction B, = BOc(hV) throughout

Oc
the entire hv—interval of interest.
We have studied the contact angle values vy = 4°, 2°, 1°, and 0°,

the last of these values being the case of main interest. In the case

Y = 0 we find that the above algorithm must be modified in the following

way: ihen, in step a) above, Z1 > Zi (corresponding to hV > hﬁ, where
Zi = 0.7014 and h@ = 0.5031 with four correct decimals), then the
condition

w''(sy) <0 (3.6)

(which expresses the condition that the equilibrium liquid-vapor
interface must lie inside the container for s < Sqs cf. the discussion
at the end of Section 2) places a more restrictive bound on BO than

the conditions under d) above. By (3.3), (3.6) is equivalent to

R''(s)) = =(ByZ; - Hy - 1) <0 (3.7)
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Hence, when Y = 0 and Z1 > Zi we solve, in steps b} and c¢) above, only

the differential equations (2.9) and adjust, in step d), B, and H, so as

0 0

to satisfy W(SO) = ¢ and Bozl - HO - 1 = 0 (using again a Newton-like

method to obtain the corrections).

4. NUMERICAL RESULTS

Table 1 shows the cubic spling approximations to the functions
Bye = BOC(hV) for the contact angle values y = 0°, 1°, 2°, and 4° (for
the case b/a = 0.724). The relative error in each entry shown is less
than 10_4, as estimated from repeated computations with different step-
sizes in the numerical integration and different spacings for the
Zl—values used in step a) in the computational algorithm (cf. Section 3).

Figures 3-6 show graphs of the functions in Table 1. For practical
reasons we use a logarithmic scale on the Boc—axis, for which the curves
are close to linear. Figure 7, showing all the graphs from Figures 3-6
simultaneously, illustrates the almost insignificant dependence on Yy in
this range.

In Figure 8 we show the equiiibrium surfaces at critical Bond
number for the fill heights hy = 0.2(0.1)0.7 for the case v = 0°. The
curves were plotted by numerical integration from starting points at
the cylindrical wall using the subroutine package GRAFPAC available at
LBL for graphical display of the results. The starting points for the
integrations were obtained using cubic spline fitting to the points on
the curve Zl = Zl(hv), which are known as a "by product" of the
BOc = Boc(hv) - calculation (cf. steps a) - e) of the algorithm described

in Section 3).
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The graphs of Figure 9 represent solutions to the Jacobi-legendre
equation (2.20) in the cases corresponding to the equilibrium configura-~
tions shown in Figure 8. The functions shown in Figure 9 are of the

form

v(s) = gy (4.1)

where (s} is a solution to (2.20) satisfying u(so}=i}. The function
v{s) depicts the radial dependence of the perturbation u(s) cos¢, but

in terms of vertical displacement (whereas u(s) is the radial pertur-

bation profile in terms of displacement normal to the unperturbed

surface, cf. (2.2)). The abscissa of the graphs in Figure 9 is R(s)
and the functions are normalized so that dv/dR = 1 at the left end

»

points. Theoretically, for hVI>h§ & (1,5031 (see (3.6)) the Ffunctions
v(s) defined in (4.1) have a singularity at s = 15 i.e., at R = 1,
while for hy < h; v{sl} is nonzero but finite. Hence the graph cor-
responding to hv = 0.5 in Figure 9 in fact intersects the line R = I,
whereas the two graphs above it do not.

Finally, in Figuies 10-15 we show the equilibrium ligquid-vapor
interfaces of Figure 8 (solid lines) together with the equilibrium
liquid-vapor interfaces superimposed by a small multiple of the cor-
responding v(s) as given by (4.1)}. These curves are of some interest
because, theoretically, when B

= Bﬁc and h,, < h§ the only possible

1 v

initial shape of an unstable perturbation is given by v(s) cos¢ (in
terms of vertical displacement). For hv > h§ it can in fact be shown

{Karasalo [5]) that the configurations are unstable at BO = B, for,
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e.g., perturbations that build up some suitably chosen, axially sym-
metric layer of liquid above the unperturbed contact line at the c¢ylin-
drical wall. Notice, however, that the dashed curves in Figures 14 and
15 do not show such a perturbation, but they are nevertheless included
here for completeness. These results on the initial perturbation shape
rely, of course, on several ideélizing assumptions, such as that (1.1)
holds exactly, that it represents all boundary constraints, that
viscosity effects need not be included, etc., and the conclusions from
Figures 10-15 should not be drawn too far.

The numerical results presented here have been found to be consist-
ent with preliminary experimental results obtained at the NASA Lewis

Research Center [6].
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Table 1. Critical Bond number, BOc’ as function of fill height, hV, at

vy = 0° 1°, 2°, and 4°.

‘ﬁv Y = 0° vy =1° Y = 2% Ty = 4°

0:200 -480.4283 ~480.3526 -480.1183 -479.1676
0.210 -412.6934 -412.6251 -412,4212 -411.5999
0.220 -356.8787 -356.8212 -356.6472 -355.9423
0.230 -310.4444 ~-310,3955 -310.2463 -309.6393
0.240 -271.5210 -271.4787 -271.3503 -270.8253
0.250 -238.6539 -238.6178 -238.5075 -238.0536
0.260 ~-210.7102 -210.6795 -210.5850 -210.1928
0.270 -186.8042 -186.7783 -186,6978 -186.3599
0.280 -166.2339 -166.2123 -166.1443 -165.8546
0.290 -148.4377 ~-148.,4200 -148.3635 -148.1170
0.300 -132.9638 -132.9499 -132.9038 -132.6967
0.310 -119.4456 -119.4352 -119.3990 -119.2230
0.320 ~-107.5834 -107.5765 -107.5497 -107.4123
0.330 -97.1310 -07.1274 -97.1098 -97.0041
0.340 ~-87.8844 -87.8843 -87.8757 -87.8004
0.350 -79.6741 -79.6776 - -79.6781 -79.6321
0.360 ~72.3581 ~72.3654 -72.3752 -72,3581
0.370 -65.8171 ~-65.8287 -65.8482 -65.8598
0.380 -59.9504 -59.9666 -59.9965 -60.0369
0.390 ~-54,6722 -54.,6937 -54.,7349 -54.8046
0.400 -49,9096 -49.9374 -49,9908 -50.0906
0.410 ~45.6000 -45.6353 -45.7024 -45,8332
0.420 -41.6896 -41.7341 -41.8166 -41.9796
0.430 ~-38.1320 -38.1879 -38.2878 -38.4843
0.440 -34.8869 -34,9574 -35.0769 -35.3082
0.450 -31.9190 -32.0084 -32.1502 -32.4173
0.460 -29.1976 -29.3120 -29.4786 -29.7822
0.470 -26.6956 ~-26.8433 ~27.0371 -27.3775
0.480 ~24.3887 -24.5813 -24,8043 -25.1807
0.490 ~22.2554 -22.5086 -22.7615 ~-23.1725
0.500 -20.2759 -20.6107 -20.8925 -21.3355
0.510 -18.4509 ~-18.8751 -19,1830 -19.6544
0.520 -16.8150 -17.2508 -17.6204 -18.1156
0.530 -15.3484 -15.8474 -16,1930 -16,7068
0.540 ~14.0314 ~14.5345 -14.8900 -15.4170
0.550 -12,8467 ~13,3417 -13.7013 -14.2359
0.560 -11.7792 -12.2587 -12.6174 -13.1545
0.570 -10.8157 -11.2756 -11.6291 -12.1641
0.580 ~9.9447 -10.3828 -10.7281 -11.2570
0.590 -9.1561 -9.5717 -9,9065 -10.4259



97

Table 1. -(cont.)

0,600 -8.4411 -8.8342 -9.1571 -9.6644
0.610 -7.7920 -8.1630 -8.4730 ~8.9662
0.620 -7.2017 -7.5517 ~7.8483 -8.3259
0.630 ~6.0644 -5.9942 -7.2773 -7.7384
0.640 -6.1746 -6.4854 -6.7551 -7.1990
0.650 -5.7276 -6.0204 -6.2770 -§,7035
0.660 ~-5.3192 -5,5851 -5.8380 -6,2481
0.670 -4.9456 ~5.2057 -5.4373 -5.8291
0.680 -4.,6035 ~-4.8487 ~5.0686 ~5.4435
0,690 -4.2898 -4, 5212 -4.7299 -5,0884
0.700 -4.0020 -4.2204 - -4.4185 -4.7610
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Dashed Curve: Solid curve superimposed with the corre-

sponding perturbant mode from Figure 9.
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Dashed Curve: Solid curve superimposed with the corre-

sponding perturbation mode from Figure 9.
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Sclid Curve: Equilibrium surface at critical Bond number
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Dashed Curve: Solid curve superimposed with the corre-

sponding perturbation mode from Figure 9.
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sponding perturbation mode from Figure 9.
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Solid Curve: Equilibrium surface at cyitical Bond number

for v = 0° and hV = 0.6.

Dashed Curve: Solid curve superimposed with the corre-

sponding perturbation mode from Figure 9.
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PRECEDING PAGE BCANK NOT FILMAB
ABSTRACT

In this paper we calculate the small-amplitude periodic sloshing
medes of a liquid in a vertical right circular cylinder with a concave
spheroidal bottom, for the case in which there is not sufficient liquid
to cover the bottom entirely. Equilibrium free surfaces of)the liquid
were calculated by the program CAPIL for the case in which the ratio
of the minor and major semi-axes of the spﬁeroidal bottom was 0.724.
Perturbations about these surfaces were calculated by the program
SLOSH. For the fill heights that were studied, and to the accuracy
of these calculations, we found the same critical Bond number, Bcrit ’
for instability of the free surface as was found in the static analysis
of P. Concus and I. Rarasalo for the same test problem. Furthermore, in
agreement with their calculation we also found no equilibrium surfaces
for this problem for fill heights greater than 0.503 and for Bond num-
bers B < BCrit <0 . Tor fill heights ranging from 0.20 to 0,45 we
found unstable equilibrium surfaces for a range of Bond numbers,

conv < B< Bcrit . Frequencies or growth rates were calculated for

numerous equilibrium surfaces. Growth rates of the maximally unstable

modes were calculated for £ill height 0.30 and various Bond numbers.
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1. Introduction

In this paper we calculate the small-amplitude, periodic sloshing
modes of a liquid in a rotationally symmetric cylindrical container
under the effect of surface and gravitational forces. We consider
a right circular cylinder, oriented vertically, with a concave spher-
oidal bottom, for the case in which there is not sufficient liquid to
cover the bottom entirely. This is the same configuration for which
a stability study was carried out in [1]. Numerical results are
obtained for a ¢ontainer currently used for the storage of liquid fuels
in National Aeronautics and Space Administration Centaur space vehicles,
for which the axial ratio of the bottom is b/a = 0.724 . A vertical
cross section of the cylinder and liquid is shown in Figure 1.

Equations describing the sloshing motion of liquids in rotation-
ally symmetric containers are derived in [2] using a surface-normal
polar coordinate system particularly suited to such problems. It is
assumed there that the fluid flow is irrotational and incompressible and
the free—surface boundary conditions ar; obtained from the time-
dependent ﬁernoulli equation and the kinematic equation. The dif~
ference in pressure across the free surface at any point, due to the
interfacial surface tension, is proportional to the mean curvature at
that point. The edges of the surface satisfy time—independent contact
angle conditions with the container bottom and the cylinder wall., We
follow the derivation in [2] for obtaining the equations of motion for
the case studied here, but we use a different technique for obtaining

the numerical solution.
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2. Scaled Variables

We consider a circular cylindrical coordinate system with the z
axis along the cylinder's axis of symmetry. It is convenient to
define scaled length and time variables. Leét symbols with a bar over

them denote the corresponding physical, unscaled variables. Let

r =T/a

z = z/a

t = T [+]B]) o/pa’]t/?
H=Ha

B = Kaz = pgazfc

ZHO = (pg—po) a/a

where a , the cylinder's radius, is the characteristic length used for
scaling, t dis the time, p 1is the difference in densities between the
liquid and gas phases, g is the‘acceleration due to gravity, consid-
ered positive when directed vertically downward, & dis the gas-liquid
surface'tension, Kk is the capillary constant, B is the Bond number,
H is-the mean curvature at a point on the free surface, considered
negative when‘the sg;face is concave upward, pg is the gas pressure,

and P’ is the liquid static pressure at the height z =0 .

The difference in pressure across the free surface satisfies the
equation

p~-p._ =-2H0/a .

g .

The liqﬁid static pressure is given by

P~ P, =~ pgza .
From these equations it feollows that the curvature H at any point on

the equilibrium free surface is related to H , B, and z by
0

2H=2H + Bz .
0
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3. Equilibrium Free Surface

We consider the vertical cross section through the axis of the
cylinder shown in Figure 2. The cross section of the liquid is
bounded b& three curves: the meridians along the free surface, the
cylinder wall, and the container bottom. Let s be the arc length
along this boundary, increasing clockwise. Let s = 0 be the inter-
section of the meridians on the free surface and the bottom, and let
8 = 5§ b€ the intersection of the meridians on the free surface and the
cylinder wall.

The equilibrium free surface is rotationally symmetric about the
axis of the cylinder. TIts height is a function of r only and not of
@ . Thus the equilibrium surface can be described parametrically by
the equations

r = R(s) and =z = Z(s)
for 0 s<8 and 0<0O<2n. Let ¥ be the angle in the cross~-
sectional plane between the tangent at a point on the free surface and
the horizontal. Let ¥ be positive when the surface slopes upward in
the direction of increasing s . Then

tan P = ZS/RS .
where the subseript s denotes d/ds . Let the spheroidal bottom be
described by

z = ZB(I)
for R(O) Sr<1 and 0<O<2m . Let X denote the angle in the
cross—sectional plane between the tangent at a point on the bottom and

the horizontal., Let ¥ be negative when the bottom slopes downward in
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the direction of increasing r , as it does in our case. Then
d
=.— 7
tan X ar B(r)
The equilibrium free surface is- the solution of the time indepen-

dent Bernoulli equation,

Yo = 28 + BZ - (sin /R, (3.1)
with

RS = cos . (3.2)

'ZS = gin 1, (3.3)

subject to the contact conditions,

Z(s) ZBFR(S)) at 8 = 0 (3.4)

R(s)

1. at s = § (3.5
(the scaled radius of the cylinder is 1), and subject to the contact
angle conditions,
p-x=vats=20 (3.6)
w2 -y ; Y at s =38, {(3.7)
where 7Yy is the contact angle. The volume of the liquid in the

cylinder is

S
V=21 J [Z(s) - ZB(R(S))]R(S) cos P(s) ds . (3.8)
0

This last equation determines implicitly the value of Ho of V is given,
Equations (3.1) — (3.8) are the equations for the equilibrium free

surface. The solution of these equations varies with the volume, the

Bond number, the contact angle, and the shape of the bottom of the

container. Depending on the values of these parameters, there may be



120

no, one, or more solutions of these equations [1]: If the equilibrium
surface exists, it may be stable or unstable to small perturbations.
These equations are solved by the program CAPIL [3]. Thi;‘;fééréﬁ“
uses PASVA2 [4], a general—purpose finite difference solver for non-
linear first-order systems of differential equatioms subject to two—
point boundary conditions. PASVA2 solves these equations by iterating
from an initial approximation to the surface. Either the user can
supply thé initial approximation, or the subroutine CYLCUR can generate
it. When making calculations with the same fill for a sequence of Bond
numbers, we let CYLCUR generate the initial approximation for the first
case and use the output of each case as the initial approximation for

the next case.
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4, Small-Amplitude Periodic Sloshing Modes of the Liquid

The sloshing motion is treated as potential flow in ap incompres-
sible fluid. The fluid velocity v at any point is the gradient of
a potential function 5

v =y .

Since the fluid is incompressible, Vev=0, so 5 satisfies Laplace's
equation

A =0 . (4.1)
The boundary condition on 6 along the cylinder wall and .the bottom
is
6 =0, (4.2)
where the subscript n denotes the outward normal derivative.

The displacement of the free surface from its equilibrium will be
described in surface polar normal coordinates s , © and n . The
coordinate s is the arc length along the equilibrium surface, and
the coordinate 17 1is the displacement normal to this surface [1]. The
perturbed surface is described by

n= ﬁ(s,@,t) .

The time—dependent Bernoulli eguation is linearized in the perturbation
ﬁ . Since ﬁt is the component of fluild velocity normal to the equi-
librium surface, ﬁ and $ are related by the kinematic equation on

the eqiulibrium surface

¢n = Ht . (4.3)

This is the boundary condition on 5 along the free surface; it depends

on the unknown function H .
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The sloshing motion will be analyzed in terms of normal modes

-1
(il

¢(r,z) cos(m®) cos(wt) ,

H(s) cos(mB) sin(ut) .

o
il

Equation (4.3) can be used to eliminate the function H from the
linearized time—depéndent Bernoulli equation. The result is
2
- (R§_)_ +RQ(s)d = w (1+|BDRY (4.4)
where

as) = B+ @/R)* - [ + 2 /)71 . (4.5)

The solution of differential equation (4.3) gives the boundary
condition on ¢ along the equilibrium surface. The boundary condition
is specified by the contact angle conditions at s =0 and s =8§ ,
which are assumed to be time independent. The perturbed surface and
the equilibrium surface must have the same -contact angle with the
cylinder wall and the bottom.

These conditions relate Hs s U,

5 2 and X, at s = 0 and

s =3 ., In terms of the function ¢ these conditions are

¢ sin v - ¢n (ws cos Y ~ X cos ¥} =0 at s =0 (4.6)

ns

¢ns sin vy + ¢n¢s cos Y=0 at s =28 . (4.7)

BEquations (4.1), (4.2), and (4.4) - (4.7) de£ermine the eigenfunctions
¢ and the corresponding eigenvalues w.

‘ It ﬁill be convenien£ to let 60, 61, 62 ,.... denote normal
modes having cos(mf) dependence with the vélues m=0, 1, 2,.0.,
respectively. We also shall let RO, Rl, R2, ... denote normal modes

having 0, 1, 2, ... radial nodes in the intexrval 0 < s < S (not

counting the nodes, if any, at the endpoints of the interval).
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5. Discrete Representation and the Solution of Laplace's Equation

The functions ¢ and ¢n' on the boundary of the wvertical cross
section of the liquid will be represented by their values at N + M
points

2= @(s)50(8,)s0ns $lsy )

and similarly for @n . These points are shown in Figure 3. The first
N of these points will be along the meridian of the free surface in the
cross—sectional plane. The remaining M will be on the meridians of the
cylinder wall and the bottom in the cross-sectional ﬁlane. None of the
Sj are corner points of the boundary.

We shall partition the vectors @ and @n into two parts: ®

1

includes values of ¢ at points on the free surface, and @2 includes

those on the cylinder wall and the bottom

¢ = (@1, @2)

& = (@(s1)s9(s,)5...,0(s5))

@2 = (¢(SN+1):"') ¢(SN+M))
The boundary condition on ¢ along the cylinder wall and the bottom,
Equation (4.2), becomes

an =0. (5.1)

Because ¢ satisfies Laplace's equation, Green's formula yields
an integral equation that relates ¢ and ¢n on the boundary of the
vertical cross section of the liquid. This can be approximated b} a .,
matrix equation of the form:

wWé =Co . (5.2)

n

The calculation of the matrices W and C is.described in [5].
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-
r

Figure 3. The discrete set of points on the boundary.
XBL 781-104
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6. Discrete Representation of the Boundary Condition on the Free

Surface

Using Equation {(4.4) and the contact angle conditions (4.6) and
(4.7}, we will derive a discrete set of equatious relating ¢ and
@n at the points 813893 e e Sy along the meridian of the free surface

in the cross-sectional plane. Let this meridian be divided into N

intervals. The jth interval has

<
tj %8 s tj‘{"l 3
; = - . . ,th
where tl = 0 and tory = 8 . Let sj be the midpoint of the j
interval.
We integrate Equation (4.4) over the jth interval
t.
. j+Hi
R(tja¢ns(tj) - R(tj+1)¢ns(tj+1) + Qe)R(s)¢ (s) ds
t-'r
S Es]
- w?@+{Bh R(s)o(s) ds . (6.1)
t
k|
The integrals are approximated by
Big1
8, s} R(s) das
ACRE NS
k!
and
11
ti)(sj) R(s) ds
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If t, is not an endpoint of the meridian, we approximate ¢ns(tj) by

o

¢_(s.) - ¢n(s. )
N . j-1
ﬁm(tj) 2l

5. — Sj_l

Substituting these approximations into Equation (6.1) gives

2
T, . . + T, s.,) + T, | S, =mwA,.b(s, 6.2
PP NCHEVE S U CRIE S AP N CI) 5506) » (6.2)
where tj+1
A,, = (1+|B]) R(s) ds
11
t.
J
Eit :
Pj = Q(s)R(s) ds ,
t.
]
Ty, g1 = R )/ (540078,)
and
T,, = - T, . =T, . + P,
id 1,3 js.itl h|
For t1 = 0 , the inner endpoint of the.meridian, we approximate
b ey ~ 0D T HE)
ns " 1 s, - ¢

1 1
To eliminate the unknown ¢n(tl) , we use the contact angle
condition (4.6)
b (e) simy =L ¢ ()
where
L, =9, (t)) cos v = x (t;) cos X

These give

Phs(ty) = K & (s)



where

1
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K, =L, /lsin v +-(sl-tlSLl 1.

Substituting this approximation into Equation (6.1) gives

2

Tibals) + Tip0, (8,0 = 6 Ay d(sp) s (6.3)
where

Tll = - le + KlR(tl) + Pl .

For tN+1 = § , the outer endpoint of the meridian, we approxi-
mate

b (e )~ ¢ (Eyq) = 0, (s)

ns = N+l tN+1 - Sy

To eliminate the unknown
(4.7)

(

tyep? SER Y = -

qbns
where

Ly = Yo (tygyy) cos ¥

These give

¢n(tN+1) » Wwe use the contact angle condition

L2 ¢n(tN+1) ?

¢ns(tN+l) T Kl ¢n(SN) ?

where

K

, =L, / Lsin v + (tN+l - sn)Lz]

Substituting this approximation into Equation (6.1) gives

TN—l,N ¢m(SN-1) + TNN¢n(SN) = MZANN¢(SN)a (6.4)

where

T..=-T + KZR(t

NN T . UN-1,N

Y+ P

N+1 N
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Equations (6.2) - (6.4) can be written in matrix form as

2
T@ln = w* A cpl (6.5)

This is the boundary condition on ¢ along the meridian on the free
surface. A is diagonal, and the diagonal elements are positive. T is
tridiagonal and symmetric, and the off-diagonal elements are negative.

The set of Equations (5.1), (5.3), and (6.5) is the discrete version
of the eigenvalue problem for the small-amplitude, periodic sloshing

modes of a liquid in a vertical, rotationally symmetric cylinder.
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7. HNumerical Solution of the Discretized Eigenvalue Problem

We write the matrices W and C of equation (5.3) in block form:
'Wil’ P Wzl"wzz’ and similarly for C. Subscript 1 denotes the rows
and columns corresponding to the N points along the free surface, and
subseript 2 denotes those corresponding to the M points along the.
cylinder wall and bottom. Since @QR is zero, Equation (5.3) can be

written

Wyp @ # W,y 8y =Gy By,

(7.1

Wog By H Wy 8y = 0oy &y -

The matrix A is diagonal, so Equation (6.5) is easy to solve for @1 s
which we can eliminate from Equations (7.1).
Define

Fii™W

I
=
>
]

F

i
=!
.
3
*

a1 = Wy (7.2)

Then Egquations (7.1} give

_ .2 -
On TG 8 m W50,

F11 %1

. 2 _
Fop ®n T 0 gy 0y ~ Wgply) 7.3)
Equations (7.35 can be written as single matrix equation for the

eigenvector (®1n,¢2)

F, 0\ [ ¢ - @

le 0 @2 C iW ¢ (7.4)
Equation 7.4 could be solved for the eigenvalues w2 ; however, M of

the eigenvectors have the eigenvalue mz =0, A linearly independent
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set of these eigenvectors is

8, =0 o, = e q=}f2,...m,

where t=_-.j is the vector with a one in the jth position and zeros else-
where. These eigenvectors correspond to no motion of the free surface,
since an is zero. A computer program that calculates all the eigen-—
values of a matrix, such as the IMSL routine EIGZF, will waste some time
computing these unwanted eigenvalues.

We can avoid calculating the zero eigenvalues by eliminating @2

from the pair of Equations (7.3). Define

_ -1,
D=0y Wyg Wyp Cpy s
E=F,, -W.Wr F. = (. -W.WErwg Al (7.5)
11 T"12 "2 f21 11~ "12 Y22 Y21 .

Then Equaticns (7.3) combine to give

ED, = w? D&, _ (7.6)

Eéuaﬁion {(7.6) can be solved for its eigenvalue by the IMSL routine
EIGZF, which uses a QZ algorithm to reduce E to upper Hessenberg form
and D to upper triangular form.

The solution of Equation (7.6) is performed by the program SLOSH.
The input to SLOSH is tﬁe set of points describing the equilibrium
free surface calculated by CAPIL and parameters that define the
cylinder wall and .spheroidal bottom. SLOSH then calculates the
matrices A, T, W, and C; uses the IMSL routine LINV1F to calculate
sz inverse; calculates the matrices D and E; and uses EIGZF to
calculate the eigenvalues. This method of solwing the eigenvalue

equation is not the most computationally efficient, but by using
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the existing dnd reliable IMSL routines it requires the least amount
of programming effortt -

For comparison, the routine EIGZF was used to solve both Equation
(7.6) and Equation (7.4) for a few cases. The numerical values of
corresponding eigenvalﬁes for thesg two methods were identical te the

four figures that were printed out in each case.
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8. Small-Amplitude Periodic Sloshing Modes of the Liquid between Two

Concentric Right Circular Cylindets

In this section we solve the eigenvalue ﬁéﬁblem for the small-
amplitude, periodic sloshing modes of the liquid contained between
two concentric, vertically oriented, right circular cylinders of radii
Ty and r; . A cross section is shown in Figure 4. The equilibrium
surface is a horizontal plane when the contact angle is 90°. The nor-
mal mode problem for this case has an analytic solution. We can use
this solution to test the accuracy of the program SLOSH.

Let P be the rectangular domain r0‘€ r< T, and 0 < z < zg -
Laplace's Equation for ¢ in the domain 7 is

2

+%¢r+¢zz—-‘f-z—¢=0- (8.1)

¢

rr

The boundary conditions are

¢r =0 at r = I, and Ty s
¢r =0 at z =0 .
Equation (4.4) for ¢ on the free surface, z = zy is
—Xep )+ Q@ = wP+ B (8.2)
r Trz'r z ’ '

where

Q(x) = B + (@/r)?
The contact angle conditions, Equations (4.6) and (4.7), become

i} =0 at (ra,zo) and (rl,z )]

rez 0

We solve these equations by separation of variables. Let

o(r,z) = X(r) U(z)
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Figure 4. Cross section of two concentric cylinders or radii ry

and r; , respectively. XBL 781-105
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then (8.1) gives the pair of equatiomns .
2

o= k2 U (8.3)
X" + % X'+ (K2 - mi/rHX =0, (8.4)

with boundary conditions

U'=0atz=20, (8.5)

r, and r (8.6)

1
X 0 1

0 atr

The contact angle conditions will be automatically satisfied if Equation
(8.6) is satisfied.

Equation (8.2) gives an .equation for the eigenvalue

2 @?+m U
@+ [B]) Uz

o
o)

The solution of (8.3) and (8.5) is
U= cogh (ké). .

Thus the eigenvalue is

\ _
w? = lzik+u+BB;' tanh (kz) (8.7)

The solution of (8.4) is

X(r) =c Jm(kr) + d Ym(kr) R

wheré Jm and Yin are Bessel functions of the first and second kind of

order m. Equation (8.6) requires

. i '
e Jm (kro) +d Ym {kro) 0,

]
o

A ] 1
c Jm (krl) + d Ym (krl)
These will have a nontrivial solution for ¢ and 4 if

Jm'(krl) Ym'(kro) - J'm(kro) Y‘m(krl) =0 . (8.8)
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Equation (8.8) gives the values of k for the normal modes. The first

few values for the case IO = 0.5 and r, - 1.0 are listed in Table

1

1 to the accuracy indicated.

Table 1. k values for m = 0, 1, and 2.

m=0 s m = 1 . m= 2
0.0 . 1.3547 2.6812
6.3932 . 6.5649 7.0626

12.6247 12.7064 12.9494

18.8889 18.9427 19.1032

25.1624 25.2045 25,3224

The solution m = 0, k = 0.0 corresponds to no movement of the

equilibrium surface or of the liquid.
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9. Comparison of the Analytically and Numerically Calculated Solutions

for the Normal Modes of the Liquid between Two Cylinders

Figure 4 shows the cross section of a liquid contained between two
concentric right circular cylinders, oriented vertically. Each of
the four sides of the cross section (the free surface, the bottom, and
the t?o cylinder walls) was divided into n intervals of equal length.
The velocity potential ¢ on the perimeter of the cross section was
represented by its values at the midpoints of theée 4n intervalsl
These 4n values of ¢ are related by Equations (5.1), (5.3), and
(6.5). MNumerical solutions of these equations were computed for the
case rb = 0.5, ry =.l.0, 2g = 0.9 , contact angle 900, and Bond
number O using the program SLOSH.

Numerically calculated squares of the frequencies for the modes
91RO, O1R1, and OIR2 using n = 5, 10, and 20 points are shown in Table
2. The corresponding analytic values for the squares of the frequen-—

cies, calculated from Equation (8.7) and the k values of Table 1, are

also shown.

Table 2, Squares of frequencies for wvarious normal modes

81R0 81R1 61R2
5 points 2.157 292.1 1965.
10 points 2.127 284 .8 2080.
20 points 2.118 280.7 2072,

analytic 2.087 282.9 2052.
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The relative errors of the numerically caleulated squares of the fre-
quencies [wz(n points) - wz(analytic)]/ m2 (analytic), are shown in

Table 3.

Table 3. Relative errors of the squares of frequencies,

81RO 81RL 61R2
5 points 0.034 0.033 ~0.042

10° points 0.019 0.007 0.014
20 points 0.015 -0.008 0.010

Note that the relative errors of the frequencies are approximately half

these values. The error decreases substantially between n = 5 and

n = 10, but less so between nn = 10 and n = 20, Even the errors for

il

n = 5 are quite small, considering that oanly five radial modes can be
represented by a 5-point approximation to the meridian on the free

* surface.

Numerically calculated squares of the frequencies for the‘modes

60RO, ©0RL, BOR2, 62RO, 62R1, and O62RZ using n = 10 points are shown

in Table 4., Corresponding analytic wvalues are shown also.

Table 4. 8Squares of frequencies for various normal modes.

80RO 80RL B0R2

10 points 0.7 10712 265.4 2038.
analytic 0.0  261.3 2012.
62R0 82RL 62R2

10 points 19.99 346.6 2201.

analytic 18.97 352.3 2171.
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The relative errors of these squares of frequencies are shown in Table
3.

Table 5. Relative Errors of the squares of frequéncies.

RO R1 R2
00 modes —_— 0.016 0.013
02 modes 0.054 -0.016 0.014

The relative errors of the squares of frequencies for n = 10 points,
as shown in Tables 3 and 5, are typically from 0.0L £o 0.02. These
results show the program SLOSH calculates with satisfactory accuracy
for our purposes‘the frequencies of the normal modes of a liquid con-

tained between two concentric right circular cylinders.
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10, Equilibrium Free Surfaces of a Liquid in a Vertical Right Circular

Cylinder with a Concave Spheroidal Bottom

With a given volume of liquid in the ecylindrical container we
associate a dimensionless fill height defined as follows: let the
given volume V equal the volume bounded by the containér wall and
bottom and the horizontal plane z = Z, Then the fill height hv

is z, divided by the container radius a.

h =32 fa.
A v

The axial ratio of the spheroidal bottom is b/a = 0.724 .

Equilibrium free surfaces, approximated by 21 points on the meri-
dian, were calculated by the program CAPIL for contact angle Y = 0°
and for the fill heights: 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.60, and 0.70. TFor each fill height equilibrium surfaces were
calculated for a sequence of increasingly negative Bond numbers. The
first surface for each £ill height was calculated for Bond number
B =0. The initial approximation to this surface was generated by the
subroutine CYLCUR. The equilibrium surface for each Bond number was
used as the initial approximation to the surface for the next Bond
number in that sequence.

The equilibrium surfaces that we have calculated are members of a
family with two parameters B and .hv . Let Beq denote the ecritical
value of the Bond number for the nonexistence of eguilibrium surfaces
of this family for a given £fill height. TLet Bcrit denote the criti-

cal value of the Bond number for the stability of equilibrium surfaces

of this family for a given fill height. Stable equilibrium surfaces
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exist for Bcritjs B , unstable equilibrium surfaces exist for

B SB<B ,
eq (0% o

it <0 if Beq # B

» and no equilibrium surfaces of

crit
this family exist for B < Beq . (Other equilibrium surfaces might
exist, such as multiple—valued surfaces or surfaces with shapes very

different” from those of this family.) Concus and Karasalo showed that

unstable equilibrium surfaces exist for B infinitesimally lower than

B _. and h_< h = 0.503 , but that no equilibrium surfaces of this
crit v v —
%
family exist for B<B . and h_=h [1]. Their result may be
erit v v
% %
restated as B < B . for h <h , but B =3B . for h = HhH .
. Teq erit v v eq erit v v

Our calculations agree with their result and provide an estimate of

B .
eq

For each fill height we found a Bond number Bd , depending on

iv
hv , for which the iteration for the equilibrium surface diverged.

The iteration using B was approached by a sequence of calculations

div
using small decreases in B . Let Bconv denote the Bond number imme-

in that sequence, B < B <0 . For

diately preceding Bd div cony

iv
B >:Bconv the equilibrium surface changed only slowly with B. The

equilibrium surface for each value of B was an excellent approximation
to that for the next value of B 1n the sequence. This indicates that

the divergence for the case B was caused not by the initial

div

approximation but by the nonexistence of an equilibrium surface for

this family. Thus B, is an approximation to B . Table.6 shows
div eq

B and B, as a function of h_. It also shows B . caleu-
Cconv div v crit

lated to four decimal places by Concus and Karasalo [1].
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Table 6. B , and B _,
er

it for various fill heights.

B..
conv’ div

hv _Béonv _Bdiv _Bcrit
0.20 1310. 1320, 480.4283
0.25 488. 492, 238.6539
0.30 216. 218. -132.9638
0.35 107. 108. 79,6741
0.40 58.0 58.2 49,9096
0.45 33.4 33.6 31.9190
0.50 20.2759 20.2760 20.2759
0.60 8.42 8.43 8.4411
0.70 3.98 3.99 4.0020

The data of Table 6 are shown in Figure 5. The solid: }ine is the

graph of B and the dashed line is that of B These lines

crit div

divide the Bond-number, fill-height parameter space into three regions:
one for which stable equilibrium surfaces exist, one for which unstable
equilibrigm surfaces exist, and one for which no equilibrium surfaces
exist. (Growth rates for perturbations of the unstable equilibrium
surfaces were calculated by the program SLOSH for various values of 3B
and hv . These will be discussed in the next section of this report.)
Figure 5 also shows data points from stability experiments carried
out at the NASA Lewis Zero Gravity Facility for the container shown in
Figure 1 [6]. The experiments used three containers with radii 7 cm ,

5.5 em, and 2 cm”, respectively. In the experiment the container had
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_approximately 2.5 sec of free fall followed by approximately 2.5 sec
of negative low-g fall. During the first 2.5 sec the liquid surface
adjusts from one g to zero g . During the next 2.5 sec instabil-
ities may be observed if they grow sufficiently rapidly. 8Solid data
points correspond to experimental parameter values for which the
surface was observed to be unstable. Open data points correspond to
parameter values for which the surface did not develop a noticeable
instability within the 2.5-sec time interval. The experimental data
and the numerically calculated curves agree quite well. All the
experiments in which the surface was observed to be unstable have Bond
numbers B < Bcrit <0 ..

Baiv is an approximation to Beq . The accuracy -of this approxi-
mation can be investigated by considering the cases hv = 0.60 and
0.70 . For hv = 0.60 CAPIL diverges for some Bond number in the range
(-8.42, -8.43) and- Beq = =8.4411 . The relative error in this case is
less than 0.003. For h = 0,70 CAPIL diverges for some Bond number
in the range (-3.98, -3.99) and Beq = -4,0020. The relative error in
this latter case is less than 0.005.

From this we infer that the correct value of Be for hv = 0,50

is slightly less than the value found here for the 21 point surfaces,

e

and that there is a small range of Bond numbers between Bcrit and

Beq for this- value of hv . This is supported by a calculation of
the frequencies of individual normal modes, which is discussed in the
next two sections. Based on an approximate calculation of the fre-

quencies, the R061 mode becomes marginally stable at B = -20,243 ,

while all the other modes approach instability as ‘B approaches -~20.276.
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.11. Frequencies of the Normal Modes of a Liquid in a Vertical Right

Circular Cvlinder with a Concave Spheroidal Bottom

The frequenciesvof the small-amplitude periedic sloshing modes of
a liquid in a vertical right eircular cylinder with a concave spheroidal
bottom were calculated by the program SLOSH for contact angle vy = 0° .
The axial ratio of the spheroidal bottom is b/a = 0.724 . The equi--
librium free surfaces were approximated by 21 points of the meridian,
as described in Section 10. These 21 points were the endpoints and
midpoints of 10 intervals on the meridian., The velocity potential
¢ for perturbations to these surfaces was represented by its value at
the 10 midpoints of these intervals, by its wvalue at 10 points on the
meridian on the cylinder wall, and at 10 points on the meridian on
the bottom. We shall refer to this as the 10-point approximation to
¢ . Surfaces corresponding to numerous values of hv and B were
used.

A few surfaces approximated by 41 points on the meridian were
used to check the accuracy of the frequencies calculated using the 21
point surfaces. For these cases ¢ was represented by its value at-
20 points each on the meridians on the free surface, the cylinder
wall, and the bottom. We shall refer to this as the 20-point approxi-
mation to ¢ .

The squares of frequencies for various normal modes and for vari-
ous values of hv and B calculated by SLOSH using the 10-point
approximation are shown in Tables A 1 through A 11. Typically the
values of wz in these tables have a relative error of 1-2% for

2
values of that are not too small and for Bond numbers that are not
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too near Bdiv + This will be discussed in more detail in Section 12.

These squares of frequencies are plotted as functions of B in
Figures 6-12 for hv = 0.20, 0,30, ...0,70 . Note that in Figures
16-12 ( hv = 0,50 - 0.70 ) a different scale for wz is used for each
mode that is plotted. The purpose is to show that all these modes have
a similar depeﬁdence of m2 on B . However, in Figures 6-9 ( hv =
0.20 - 0.40 ) all the RO wmodes ( ROB1, ROB2, ROE3, ... ) that are
plotted in a given figure use the same scale for w2 . Thig is ‘to show
for each value of B which mode is most mnegative.

We 'shall first describé the general features ‘of these figures,
and then consider numerical details for particular cases and discuss
the accuracy of the calculations.

Figure 6 shows graphs of m?(B) for the modes R0O81, R0OGZ, ROB3,
ROB4, ROB6H, and Rleb for hv = 0,20 . The mode R160 is plotted with
a scale 1000 times that of the other modes. (An accuracy check shows
‘the values for the R160 mode are about 10% too large. However, we
include it in Figure 6 for a 'rough comparison with the RO modes.j Note
that the Bond numbers for which the various RO modes become marginally
stable [for which wz(B) = 0] .1ie in a small range.

Figure 7 shows -this moré clearly. The order in which the modes
become unstable is as one would expect: First RO06L , then R062 ,
R0OB3 , ROB4 , and R696 . (R0B5 was mot ecalculated for hv = 0,20 .)
Note alsoc that because the higher 0 modes havé steeper slopes
(dwz/dB ), each mode, in turn, becomes the dominant unstable mode

(mbst negativé value of wz') for a short range of Bond numbers.
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Figure 6. wz(B) of various modes for hv = 0.20 .
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This same pattern for the RO modes is shown in Figure 8 for
hv = 0,30 . A new feature appears in this figure. It is that m2
for the R160 mode passes through a point of inflection and begins to
curve downward. The rate at ghich it approaches zero, the magnitude of
dwzld(B) , increases as B approaches Bdiv . The functions wz(B)
for the other Rl modes, R181 to R166 , have';imilar shapes and
differ from that of R180 by only a few percent, a; shown in Table
A 3., The functions mz(B) for the modes R280 to R206 have shapes
similar te those for the RL modes but magnitudes about five times
larger. All the Rl and R2 modes curve downward as B approaches
Bdiv ‘

Figure 9 shows that for hv = 0.4Q mz becomes negative between
Bcrit and Bconv only for'fouf modes: ROB1 , ROBZ , ROB3 , and
ROO4 . TFurthermore, only the first three modes become dominant insta-—
bilities in this ranég. The réte at which the R160 mode approaches
Zero, |dw2/dB| , becomes very great as B approaches Bdiv . Note
also that mz(B) for each of the RO modes passes through an infiec-
tion poin£ and curves_dowpﬁard as B approaches Bdiv .

Figures 10, 11, and 12 are for the Fases hv = (.50 , :0;60‘, and
0.70 , respectively.. In each case the functions wZ(B) for the vari-
ous modes have similar shapes. They all curve downward for B near
Bcrit » and the rate at which they approach zero becomes very great
as B approaches Bcrit . All godes apparently go to zero at ‘or near

. . 2 : . .t .
erit This behavior of w (B) i1is consistent with the nonexistence
%*

of an equilibrium free surface.nearby the critical one for ﬁv 2=hv

and. B < Bcrit‘<0 . It is im sharp contrast to the behavior seen in
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the cases hv = 0.20-0.40 , in which only a few RO modes were un-
stable for a range of Bond numbers beyond Bcrit .

For the case hV = 0,50 the ROOL mode becomes marginally stable
at a slightly higher Bond number than the other modes. In the 10-
point approximation it becomes marginally stable at B = -20.243 ,
while all the other modes approach instability as B approaches
-20.276 . It appears that for this case there exists a very small
ané Beq .

range of Bond numbers between B .
crit


http:0.20-0.40
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12. Frequéncies of the Normal Modes Continued —— Accuracy

The bulk of our data are values,of m2 calculated by the 10-point
approximation, Tables A 1 - A 11. Throughout this section we shall
investigate the accuracy of these data. The few values of w2 calcu-
lated by the 20—point approximation are used solely to estimate the

accuracy of these .data and how they can be improved. We shall refer

to these values as wio and wzo s respectively.
We are most interested in the accuracy of wz for the growing

10

RO modes. These negative values of w2 are small numbers, so a
small (absolute) error in them can be significant. We shall show that
the error in in(B) is approximately —(dwz/dB)AB* , where AB* is

a function of hv but not of the mode number, that is,
2 2 2, .
w (B) = mlO(B) 4+ (dw”/dBYAR* , (12.1)

or, equivalently,

2

) P
lO(B) . f12.2)

wZ (B-AB%) ~

Thus, a value of miO(B) from Tables A 1, A 2, or A 4 actually corres-
ponds to the Bond number B-AB¥* .
Five comparisons of calculated quantities support this description

of the approximate dependence of the error in w2

10 ©°n the parameters

hv » B , and mode number. The first comparison is between the values

of Bcrit calculated by the 10-point approximation, which we shall

dencte by B __, , and those calculated to four decimal places from
crit,10

a static analysis [1]. AB%* is defined as the difference in these

values.
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* = - .
AB Bcrit,lO Bcrit

These quantities are shown in Table 7. AB* is approximately 1 - 2%

of Borit -
Table 7. BCrit s Bcrit,lO , and AB* for three fill heights
- - %
b, Berit Berit,10 AB
0.20 480.43 468.2 12.2
0.30 132.96 130.73 2.23
0.40 49.91 49.35 0.56

The second comparison is between -the values of mz(B ) for the

crit
ROS1 mode calculated by the 10-point and 20-point approximations.
Since the correct value of m2 is zero in this case, these wvalues
are errors. They show that the error in the caleculated values of w2
depends as l/N2 on the number of points used teo approximate ¢ .

These values are shown in Table 8. ©Note that wz is approximately

20
1/4 of wz .
10
Table 8 2 and 2 at B for th R081 mod
€ 8- Wy and Uyg crit ¢ -
2 2
by ~®10 Tyg
0.20 0.00180 0.00045
0.30 0.00183 0.00046
0.40 0.00209 0.00053
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The third comparison is between w%ﬁ and wgﬂ for wvarious RO

modes, fill heights, and Bond numbers. Define Amz as

2.2 2
™ =ty = By
. . 2 . s . 2
Since the error in Wy 18 approximately 1/4 of the error im Wig »
it follows that sz is approximately -3/4 of the error in mio .

The valuesg of Amz are shown in Tahle 9. They vary greatly with

mode numher.

Table 9. sz for wvarious RO modes, £1ill heights, and Bond numbers,
hv -B ROBY . ROB2 _ROG3
.30 130. 0.00141 0.0055 g.0120

132,96 0.00137

140, 0.00127 0.0050 0.0108
0.40 45, 0.00193 0.0070

49,91 0.00156

50. 0.0059

Define AB as

AB = Aw?(dB/duw’)

The values of dmZ/dB can be calculated approximately by central
differences of the data iIn Tables A 2 and A 4, The resulting values of
AR are shown in Table 10. Note that for a given f£ill height, while
Aw™  varies greatly with mode mumber, AB does not., Our fourth com—
parison is between the wvalues of AR and AB* . Table 10 shows that

the values of AB ave approximately 3/4 of the corresponding values
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of AB* . Since sz is approximately -3/4 of the error din mio s

this implies that the error in mz is approximately 7(d@2/¢B)AB*

10.

for some range of Bond numbers containing BCr

it

Table 10. AB for various RO modes, fill heights, and Bond numbers.

by ~B ROO1 ROB2 RO63
0.30 130. 1.68 1.65 1.59

132.96 1.71 .

140. 1.74 1.71 1.66
0.40 45, 0.47 0.43

49.91 0.4k

50. 0.42

For a given fill heights, let Ben denote the Bond number for
which the ROOn mode becomes neutrally stable, that is, for which
wz(Ben) = (0 , Table 11 shows the values of the RBond numbers for the'
neutral stability of various modes as calculatéd by the 10-point

approximation to ¢ , which we shall dencote by Ben ig ° As B
>

increases the various modes become unstable in order of increasing

0 mode number, so B is B . We have already compared the

01 crit

‘accurate wvalues . with & o s i
lues of Bcrlt th the corresponding values of Bcrit,lO s

that is, with BBl,lO .
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Table 11, -B for various modes and £ill heights.
'en’ 10

hv ROOL ROG2 ROB3 ROB4 ROB5 ROB6
0.20 468.25 471,42 475,42 480.89 495.85
0.30 130.73 133,22 137.11 142,49 149,28 1537.60
0.40 49.35 51.28 54,19 57.1%9

Qur last comparison is between the values of Ben 10 and

B@n,20 . Define ABﬁn as

BB = Ban,i0 ~ Poni20 -

Table 12 shows values of ABsn for various modes and f£ill heights. It
shows that the values of ABem are approximately 3/4 of the correspond-
ing values of AB* ., For a given £ill height AB@n is approximately

the same for each mode. This implies that the error in wz

10

approximately —(dwzldB)AB* for some range of Bond numbers containing

is
these B
fn

Tabhle 12, éﬁen for various modes and f£ill heights.

hv ROB1 ROB2 ROB3
0.30 1.68 1.69 1.59°
0.40 0.42 0.42

When the values of Bﬁn given in Table 11 are adjusted by adding

AB* , the wvalues shown in Table 13 are obtained.
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Table 13: Adjusted values of -—Ben for various modes and £ill heights,

h, .| RoBL.  ROB2 ROO3 . ROB4 . ROBS ROO6
0.20 480.43  483.6 487.6 493.1 508.0
0.30 132.96  135.5 139.3 144.7 151.5 159.8
0.40 49.91 51.8 54.8 - 57.8

We consider finally the R1 modes. Table 14 shows the relative

difference in w2 calculated with the 10~point and 20-point approxi-

2
o

for the R1€1 mode with hv = 0.20 . It differed by 2.6 - 2.7%Z for the

mations, that is, - wio)/wio . The value of w? differed by 10%Z

R181 and R182 modes with hv = 0.40 for Bond number 55, which is
* near B . The value of w2 differed by only 1 - 2% for all the

div

Rl modes with hv = 0.30 or 0.40 and Bond numbers not near Bdiv .

Table 14. Range of szlwz for various modes and fill heights.

h~ range of -B "~ R161 R162 R163
0.20 450.-500. 0.100

0.30 130.-140. 0.015-0.016  0.015-0.016  0.015-0.016
0.40 45.~ 50. 0.015-0.019  0.014-0.019

0.40 55. 0.026 0.027
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13. Growth Rates and Accuracy for Fill Height = 0.30

Figure 8 and Table A 2 show mz(B) of the various RO modes for
hv = (0,30 . They show which is the maximally unstable mode for each
value of B ., The information for .the maximally unstable mode is
displayed in Tabié 15. The wvalues of B listed in this table have
been adjusted by AB¥* .

For example, the ROA1L mode is the maximally unstable one for .
~134.04 < B < -132.96 , the R082 mode for =-140.27 < B < ~134.04 ,
etc. The value of (dm2/dB)AB* is an estimate of the accuracy of wz
before adjustment by AB* . We feel the error remaining in wz after
this adjustment is less than (dmzde)AB* . In particular, we -feel
the errors remaining-in wz for the RO61 , R0H2. , and ROB3 modes

are 1/10 to 1/4 of (dw®/dB)AB® .

Table 15. mz(B) of the maximally unstable mode for hv'= 0.30.

-3 W Tiﬁii&ﬁif -(dwzldB)AB*

132.96 0.0

ROE1. 0.0017
134.04 0.0025

ROO2 0.007
-140.27 0..0218

RO63 0.014
149.99 0.0808

RO84 0.021
163.48 0.204 .

ROB5 ) 0.028
179.76 0.407 :

: ROB6 0.032

202.23 0.701
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The dimensionless growth rate T of the maximally unstable mode

is shown in Table 16. The corresponding growth period in seconds is

wl - 1. 7 1
T (e/t) =T l[pa3/0'(l+[B|)]/2
This is calculated for a cylinder of radius 7 cm for the three
liquids ethanol, freon, and FC78. The values of 'p/c used for these

were 0,03538, 0.08489, and 0.131 seczlcms , respectively., Ethanol has

the fastest growth rates and FC78 has the slowest. Bcrit is —132.96
for this case. At Bond number B = -150 the growth periods range
from 1.0 to 1.9 sec. At B = ~202 , which is 50% beyond Bcrit s they

range from 0.29 to 0.56 sec. It is not likely that growth would be
observed in these cases in an experiment with a negative-B phase of

only 2.5 sec, since only 2-8 growth periods would elapse.

Table 16. Maximal growth rates and growth periods for hv = 0.30 .

dimensionless values growth period (sec)

~B T ethanol _ freon ¥C78
132.96 c.0 co oo =
134.04 0.050 5.9 9.2 11.4
140,27 0.148 1.99 3.1 3.8
149.99 0.284 1.00 1.54 1.92
163.48 0.451 0.60 0.93 1.16
179.76 0.638 0.41 0.63 0.78
202.23 0.837 0.29 0.45 0.56

The errors in wz for the smaller values of w2 (the ROB1 ,
ROOZ , and ROO3 modes) have a greater percentage reduction from the

AB* adjustment than those for larger values of w2 . However, these
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-errors were initially larger fractions of their values of wz than
those for the larger values of w2 . As a result of these two effects,
the errors in m2 remaining after this adjustment probably lie in the
range 5 - 20%, the larger values of w2. being more accurate. The
corresponding errors in the growth rate probably lie in the range
2 - 10% . However, these are only the computational errors in T ;
they represent the accuracy with which the growth rates were calculated
from the assumed model of the Tigquid motion. The accuracy with which
they describe experimentally observed growth rates depends also on

the accuracy of that model. In this model the fluid motion was assumed
to be monviscous and irrotational, and the contact angle was assumed to
be time }ndependent. These assumptions could be tested by computing
the fluid motion with a complete hydrodynamics code that includes all

the relevant effects.
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14. Summary

In this paper we calculate the small-amplitude periodic sloshing
modes of a liquid in a vertical right circular cylinder with a concave
spheroidal bottom, for the case in which there is not sufficilent liquid
to cover the bottom entirely. Numerical results are obtained for a con-
tainer currently used for the storage of liquid fuels in the Centaur
space vehicles, for which the axial ratio of the bottom is b/fa =
0.724

We follow the derivation in [2] for obtaining the equations of
motion for the case studied here, but we use a different technique for
obtaining the numerical solution. The liquid is subject to surface
and gravitational forces. The equilibrium surface is the solution of
the time-independent Bernoulli equation subject to a contact-angle
condition,

It is assumed for the dynamical equations that the fluid flow is
irrotational and incompressible. The fluid velocity is the gradient of
a potential function that satisfies Laplace's equation. The velocity
potential and its gradient on the free surface are related by the
linearized time-dependent Bernoulli equation and the contact-angle
condition. The sloshing motion is analyzed in terms of normal modes.
The discrete form of these equations yields a generalized eigenvalue
problem for w2 , the square of the normal-mode frequency. This
problem was solved numericglly using the IMSL vroutine EIGZE.

The accuracy of this numerical procedure was tested by calculating
the eigenvalues and eigenvectors for the small-amplitude periodic

sloshing modes of a liquid contained between two concentric vertical
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circular cylinders for contact angle vy = 90° and comparing with the

known analytic solution for this case, The numerical values of mz
were correct typically to about 1 or 2%, a satisfactory accuracy for
our purposes.

Equilibrium surfaces of a liquid in a vertical circular cylinder
with a concave spheroidal bottom were calculated for contact angle
y = 0° , axial ratio of the spheroidal bottom b/a = 0.724 , fill
heights hv ranging from 0,20 to 0,70, and many values of the Bond
number. These equilibrium surfaces are members of a family with

parameters B and hv . BCrit was defined above as the critical

value of the Bond number for the stébility of surfaces of this family
for a given fill height. Beq was defined as the critical value of

the Bond number for the nonexistence of equilibrium surfaces of this

family. Stable equilibrium surfaces exist for Bcrit < B , unstable

equilibrium surfaces exist for Beq:S B<B s

¢ .
erit 0 if Beq 7 Bcrit

and no equilibrium surfaces exist for B < Beq .

For all the values of the fill height that were studied, stable
equilibrivm surfaces were found for a range of Bond numbers,

Bcrit <B<0. To the accuracy of these calculations, we found the

same value for Bc as was found in the static analysis of the same

rit
problem [1].
For fill heights ranging from 0.20 to 0.45, we found unstable
equilibrium surfaces for a range of Bond numbers 3B <B<B . ,
: conv erit
but no equilibrium surfaces of this family were found for

< . . i i to B .
B \'Bdiv < Bconv ( Bconv and Bdlv are approxlmatlons- 0 eq )
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For hv = (0,50 unstable equilibrium surfaces were found for a very
small range of Bond numbers. For hv = 0.60 and 0.70 no equilibrium

surfaces of this family were found for B < B To the accuracy

crit °
of these calculations, these results are consistent with [1], which

for hv > h* = 0,503 , but that Be < B

found that Be =3B v q crit

q crit

for h_< h® .

v v

The qualitative nature of the stability of the individual normal
modes differs for the two cases hv < h§ and hv > hi . For f£ill
heights hv = 0.20, 0,30, and 0.40 , the normal modes RO0H1, ROB2,
R0O83, ... become marginally stable at a sequence of Bond numbers
. B63 < B82 < B81 = Bcrit < 0., Each RO mode is the fastest
growing mode for a small range of Bond numbers. For £ill heights
hv = 0,60 and 0.70 all the modes that were studied approach
instability as the Bond number approaches Bcrit . For each mode the
function wz(B) curves toward the wz = (0 axis, approaching zero

with increasing rapidity as B approaches B . For hv = (.50 ,

crit
which is near the critical f£ill height h$ , the ROOL mode becomes
marginally stable at a slightly higher Bond number than the other
modes. The instability of all modes for hv = h$ and B < Bcrit
is consistent with the nonexistence of equilibrium surfaces nearby
the critical one for this range of parameters.

Most of the calculations of mz were made by approximating the
velccity potential on a meridian along the free surface by its value
at 10 points. It was possible to correct partially these calculated

values of wz by applying an adjustment based on a study of the

erroxrs.
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Growth rates of the maximally unstable mode were calculated for

the case hv = 0.30 using the adjusted values of m2 . Each of the

modes R0Q1, ROG2, ... ROH6 , in succession, 'was the maximally unstable

one for 'a small range of Bond numbers. The corresponding growth periods

in seconds were calculated for a cylinder of radius 7 cm for the
three liquids ethanol, freon, and FC78. Ethancl has the fastest

growth rates and FC78 has the slowest. Brit iz -132.96 for this

case. At Bond number B = ~150 the growth periods range from 1.0 to

1.9 sec. At B = -202 , which is 50% beyond ch s they range from

it
0.29 to 0.56 sec. It is not likely that growth would be observed in
these cases in an experiment with a negative-B phase of only 2.5 see,

since anly 2 to 8 growth periods would elapse.
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LIST OF SYMBOLS

Radius of cylindrical container and horizontal

semiaxis of spheroidal bottomn.

Diagonal matrix in the discretized time~dependent

Bernoulli equation.

Vertical semiaxis of spheroidal bottom.
= wa?

Bond number = xa” .

Critical Bond number for stability of equilibrium

surfaces.

Critical Bond number for the nonexistence of
equilibrium surfaces of the family considered

in this report.

Approximations to Beq

Critical Bond number for stability of the ROOm

mode.

Constants in a linear combination of Bessel

funetions.

Matrix in the discrete solution of the Laplace

equation.
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D, E, F Matrices.
D A rectangular domain.
. . .th .o
ej Vector with a one in the j  position and zeros
elsewhere.
g Acceleration due to gravity, considered positive

when directed vertically downward,

hv Dimensionless £ill height.
hﬁ Critical hv for existence of unstable equilibrium

surfaces of the family considered in this repoft.

These exist for h_ < h® and B _< B < B _,
v .-V eq crit

B Mean curvature at a point on the free surface,
considered negative when the surface is concave
upward.

H Scaled mean curvature = Ha .

HO 4 constant = (pg-po)a/ZU , interpreted as the
extrapolated value of H at the height z =0 .

H(s,0,t) Displacement. n of the free surface.-

H(s) A factor in the normal mode expression of the-
displacement of the free .surface.

J Bessel function of the first kind of order m .



subscript n

N

Q(s), Q(x)

Hl

subscript r
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The argument of the Bessel function is kr .
Terms representing the contact-angle conditions.
Number of angular nodes in the normal mode.

The meridians of the cylinder wall and spheroidal
bottoﬁ in the cross-sectional plane are divided

into M dintervals.

Each of the meridians of the free surface, cylinder
walls, and flat bottom in the cross-sectional plane
of two concentric cylinders is divided into n

intervals.

Outward normal derivative.

The meridian of the free surface in the cross-—

sectional plane is divided into N intervals.

Gas pressure:
Liquid static pressure/at the height =z =0 .
The dintegral of Q(s) R(s) over the jth interval.

A functional of the free surface appearing in the

linearized Bernoulli equation.
Radial coordinate.

Scaled radial coordinate = T/a .

d/dr .



subscript s

s, 8, n

Sl’ sz, e SN
t

t

subseript t

Bys Bon vee Ty

173

Radii of two concentric right circular cylinders.

Radius of the equilibrium free surface as a

function of the arc length along the meridian.
Hormal modes with 0, 1, 2, ..,

Arc length along the meridians of the free surface,
cylinder wall, and spheroidal bottom in the cross-
sectional plane: 0 < 5 <5 on the free surface,
d/ds .

Surface polar normal coordinates.

Midpoints of the N intervals on the meridian of

the free surface in the cross-sectional planes
Time coordinate.

Scaled time coordinate = E[(1+|B|)U/pa3]%
dfde .

Endpoints of the N intervals on the meridian of

the free surface in the cross-sectional plane.

Tridiagonal matrix in the discretized time-

dependent Bernoulli equation.

radial nodes in ¢, .
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T(z) A factor of the velocity potential iIn the liquid

contained between two comcentric cylinders.

v Fluid velocity.

v Volume of the liquid in the cylinder.

W Matrix in the discrete solution of the Laplace
Equaéion;

X(x) A factor of the velocity potential in the liquid

contained between two concentric cylinders.

Y Bessel function of the second kind of order m .

Vertical coordinate.

N

z Scaled vertical coordinate = z/a .

z, Height of ‘liquid contained between two concentric
cylinders.

Z{(s) Height of the equilibrium surface as a function of
the radius.

ZB(r) Height of the spheroidal bottom as a function of the
radius.

Y Contact angle.

T Dimensionless growth rate of maximally growing mode.

AB = Mo/ (dw?/dB) .
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%, = - i
AB Bcrit,lO Bcrit , where Bcrit,lO is the wvalue
of Bcriﬁ calculated by the 10-point approximation.
AB = - .
On B6n,10 BBn,ZO
sz = - w2 where wz and wo.  are the values
' 20 ~ %10 * 20 #¢ 1o vate
of. w? calculated by- the 20~ and 10-point approxi-
mations, respectively.
n Displacement normal to the equilibrium surface.
0 Aﬁgie around the cylinder axis.
60, 81, 682, ... Normal modes with O, 1, 2, ... angular nodes.
K Capillary constant = pg/o .
p Difference in densities between the liquid and
gas phases.
g Gas-liquid surface tension.
$¢(r,z,0,t) Potential function for the fluid velocity.
p(r,z) A factor in the normal mode expression of velocity
potential.
@1 Vector of values of ¢ at N points on the

meridian on the free surface,
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@2 Vector of values of ¢ at M points on the
meridians on the cylinder wall and bottom,

® Vector = (@l,@z)

X Angle in the cross—sectional plane between the
horizontal and the tangent to the meridian on the
bottom.

¥ Angle in the cross—sectional plane between the

horizontal and the tangent - to- the meridian on the

free surface.

w Frequency of the normal mode.
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Table A 1. wz(B)'for variops 9 modes; fill height = 0.20;
radial mode = RO. .
-~Bond 01 62 03 04 06
200. 0.0910 0.363 0.817 1.46 3.30
400. 0.01i6 0.0473 0.111 0.208 0.535
450. 0.0027 0.0121 0.032. 0.069 0.226
500. -0.0044 -0.0161 -0.031, -0.043 -0.020
550. -0.0101 —0.0395 ~0.083 ~0.1?4 -0.223
600. -0.0151 —-0.0585 —0.126 -0.210 -0.392
700. ~0.0227 -0.0889 ~0.194 -0.330 -0.657
800. -0.0285 -0.112 ~0.245 -0.420 ~0.856
900. -0.0330 ~0.1301. -0.285 -0.491 -1.01
1000. ~0.0366 —0.144 -0.3i7 ~0.547 -1.14
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Table A 2. mZ(B) for various 0 modes; f£ill height = 0.30;

radial mode = RO.

—Bond o1 02 03 04 05 06
50. 0.170 0.686 1.57 2.86 4.60 6.84
100. 0.0328 0,139‘ 0.339 0.666 1.16 1.86
110. 0.0202 0.0883 0.226 0.464 0.841 1.40
120. 0.0096 0.0460 0.131 0.295 0.576 1.01
130. 0.0006 0.0100 0.050 0.151 0.351 0.688
140. -0.0072  -0.0210  -0.020 0.027 0.157 0.407
150. "-0.0140  -0.0481  —-0.081 -0.081  -0.012  0.163
160. -0.0200  -0.0720  -0.135  -0.176  -0.160  -0.051
180. -0.0302  ~0.113 ~0.225  -0.336  -0.410  -0.411
200. ~0.0389  —0.147 0.301  -0.468  -0.612  -0.701
210. -0.0431  -0.163  -0.336  -0.527 - -0.70L  -0.826
216. ~0.0462  ~0.175 -0.358  -0.562  -0.750  -0.892
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Table A 3. MZCB) for ‘various 0 modes; fill height = 0.30;

radial mode = R1.

-Bond 80 82 84 66
50. 350. 352. 359. 370.
100. 153. 154, . 158. 163.
110. 135. 136. 139. 144,
120. A19. 120. 123. 127.
130, 105. 106. 109. 113.
140. 93.5 94.4 96.8 101.
150. 82.9 83.7 86.1- 89.8
160. 73.3 74.1 76.3 79.8
180. 56.1 56.9 58.9 62.1
200. 39.6 40.3 42.2 45.1
210. 30.1 30.7 32.5 35.2

216. 21.1 21.7 23.4 25.8
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Table A 4. wZ(B) for various 0 modes; fill height = 0.40;

radial mode = RO.

-Bond g1 02 83 04 06
20. 0.225 0.936 2.24 4.28 11.3
40. 0.0384 0.182 0.503 1.10 3.52
45. 0.0161 0.0920 0.298 0.724 2,59
50. ~0.0024 0.0172 0.127 0.411 1.81
55. -0.0193 —-0.0498 -0.025 - 0.133 1.09
56. -0.0229% ~{.0635 -0.055 0.077 0.938
57. -0.0268 ~0.0784 -0.088 0.017 0.768
58. -0.0329 -0.100 -0.134 ~0.069 0.497
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Table A 5. wZ(B) for various 6 modes; fill height = 0.40;

radial mode = Ri.

“Bond 50 62 64 06

20. 132: 135. 144, 158.

40. 49,2 50.8 55.4 62.8.
45. 38.2 39.7 43.8 50.2
50. 28.3 29.6- 33.2 38.9
55. 18.1 19.3 22.3 27.0
56. 15.8 16.8 19.7 24.2
57. 13.0 14.0 16.7 20.7

58. 8.07 8.89 11.1 14.3
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Table A 6. w>(B) for various 6 modes; £ill height = 0.50;.

radial mode = RO.

-Bond o1 - 82 63 . 04 g6
8. 0.359 1.56 3.93 7.88 22.1
16. 0.0821 0.407. 1.15 2.51 7.62
18. 0.0455 0.254 0.782 1.78 5.53
19. 0.0281 0.131 0.604 1.42 4.46
20. 0.0082 0.0993 0.398 0.989 3.09
20,1 0.0055 0.0882 0.369 0.926 2.88
20.2 0.0021 0.0743 0.333 0.845 2.61
20.25 -0.0003 . 0.0645 0.306 0.785 2.40

20.2759 -0.0027  0.0549 0.280 0.722 2.18
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Table A 7. "mZ(B) for various © modesi Fill height = 0.50;

radial mode = R1.

-Bond 80 2 04 66
8. 71.1 75.8 - 89.6 113.
16. 23.3 25.8 32.7 - 44.6
18. 16.1 18.1 ‘24,0 34.1
19. 12.4 14.2 19.4 28.4
20. 7.75 9.24 13.4 20.9
20.1 7.06 8.49 12.5 19.7
20.2 6.17 7.53 11.3 18.0
20.25 5.52 .6.80 10.4 16.8

20.2759 4.85 6.06 9.41 15.5




184

Table A 8. mZ(B) for various O modes; £ill height = 0.60;

radial mode = RO.

~Bond g1 g2 83 04 06
3.5 0.531 - 2,47 6.62 13.8 39.0

7.0 0.152 0.790 2.26 4.81 13.4

8.0 0.0849 0.487 1.44 3.06 8.16
8.2 0.0697 0.415 1.24 2.61 6.81
8.4 0.0483 0.308 0.917 1.88 4.59
8.41 0.0466 0.299 0.889 1.81 4.40

8.42 0.0443 0.286 0.847 1.72 4.11




Table A 9. wz(B) for wvarious 6 modes; fill height

radial mode = RI1.
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0.60;

~Bond 8o 82 04 66

3.5 44,3 51.5 73.7 117.

7.0 14,2 17.8 28.9 51.3
8.0 7.98 10.7 19.0 35.8
8.2 6.39 8.82 16.2 31.0
8.4 3.83 5.70 11.3 22.4
8.41 3.61 5.43 10.8 21.6
8.42 3.30 5.04 10.2 20.6
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Table A 10. mz(B) for various 6 modes; f£ill height = 0.70;
radial mode = RO.

-Bond 81 02 03 04 86
1.5 0.771 3.94 11.1 23.5 65.1
3.0 0.306 1.67 4.79 9.99 26.6
3.2 0.266 1.47 4.20 8.72 23.0
3.4 0.227 1.27 3.63 7.49 18.5
3.6 0.188 1.07 3.06 6.22 15.9
3.8 0.148 - 0.855 2.40 4.78 11.8
3.9 0.124 0.719 1.98 3.86 9.26
3.94 0.111 0.647 1.75 3.36 7.93
3.98 0.0945 0.543 1.42 2.65 6.07
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Table A 11. wz(B) for various 6 modes; fill height = 0.70;

" radial mode = RI.

~Bond 60 02 04 66
1.5 30.7 41.5 78.5 162.

3.0 12.2 18.1 38.6 85.7
3.2 10.4 15.8 34,5 77.6
3.4 8.67 13.6  30.5 69.2
3.6 6.91 11.2 26.2 59.8
3.8 4.96 8.59 21.1 48.3
3.9 3.75 6.89 17.7 40,7
3.94 3.14 6.02 15.9 36.6

3.98 2.30 4.79 13.3 30.9
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