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Abstract
 

In Part I, the theory of the normal modes of the Earth is investi

gated and used to build synthetic seismograms in order to solve source
 

and structural problems. After a study of the physical properties of
 

spheroidal modes leading to a rational classification, two specific
 

problems are addressed: the observability of deep isotropic seismic
 

sources and the investigation of the physical properties of the Earth
 

in the neighborhood of the Core-Mantle boundary, using SH waves
 

diffracted at the core's surface.
 

In Chapter 1, it is shown that five different families of spher

oidal modes can be isolated on the basis of their physical properties,
 

including group velocities, attenuation and excitation functions.
 

Except for a few hybrid modes, these families are arranged in "pseudo

overtone" branches, along which physical properties vary smoothly.
 

The simplified model of a spherical, non-gravitating Earth is used
 

to give a theoretical description of the properties of modes with
 

low angular orders. Their group velocity is shown to be consistent
 

with the physical concept of dispersion along a pseudo-overtone
 

branch, thereby justifying the use of asymptotic expansions along
 

them in generating synthetic seismograms. An interpretation of the
 

existence of the various families an terms of an increase in mode

coupling with angular order is presented. A formal classification of
 

the spheroidal modes into the five families is made, and a new
 

nomenclature reflecting the physical properties of the modes is
 

proposed.
 

In Chapter 2, the relative excitation of body and surface waves
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by isotropic and deviatoric sources is studied as a function of depth
 

and frequency. Since the fundamental Rayleigh wave excitation dies
 

off faster as a function of frequency and depth for isotropic than
 

for deviatoric sources, an ultra-long period record at Pasadena of
 

the Colombian deep shock of 1970 (for which a compressional precursor
 

was proposed), is studied and compared to synthetic seismograms
 

calculated for several source models. The best agreement is obtained
 

for a pure double-couple source. Linear combinations of synthetics
 

for deviatoric and isotropic sources are tested for a wide range of
 

relative amplitudes, showing the data to be little sensitive to
 

the presence of a reasonably large isotropic component.
 

In Chapter 3, profiles of seismic shear waves diffracted around
 

the core (Sd) for three deep events recorded at stations across North
 

America and the Atlantic Ocean are used to determine the properties
 

of the lower mantle in the vicinity of the core-mantle boundary. The
 

S wave velocity above the surface of the core is found to be 7.22
 

0.1 km/s, in agreement with gross Earth models, but higher than
 

previously reported values from direct measurements of Sd. No
 

evidence for a low-velocity zone in the lower mantle is found. Syn

thetic seismograms for Sd are easily generated through normal mode
 

summation. A comparison of the present data with a synthetic profile
 

for Earth model 1066A gives excellent agreement at periods greater
 

than 45 seconds. Synthetics for other models confirm the absence
 

of a strong low-velocity zone at the base of the mantle, and are
 

used to strongly constrain any possible rigidity of the uppermost
 

layers of the core.
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In Part II, data sets of seismic body and surface waves are used
 

in a search for possible deep lateral heterogeneities in the mantle.
 

In both cases, it is found that seismic data do notrequire structural
 

differences between oceans and continents to extend deeper than 250
 

km. In general, differences between oceans and continents are found
 

to be on the same order of magnitude as the intrinsic lateral hetero

geneity in the oceanic plate brought about by the aging of the oceanic 

lithosphere. A consistent similarity is inferred between stable
 

shields and the oldest parts of the oceans.
 

In Chapter 1, an analysis of records of multiply reflected ScS
 

phases from ten deep focus earthquakes yields near-vertical one-way
 

travel-time residuals ranging from -3.5 to +5.0 seconds. Continental
 

and oceanic residuals overlap, and both indicate large lateral
 

variations. Similar values are found for the older oceanic basins
 

(Western Pacific, Brazil Basin) and continental shields. Most, if
 

not all, of the variations can be attributed to differences in the
 

lithosphere and asthenosphere, down to a depth of 200 km, and the
 

present results are in good agreement with local models derived by
 

independent means. Oceanic islands are found to be anomalous with
 

respect to the neighboring ocean floor, the mantle beneath Hawaii,
 

Iceland and Trindade (South Atlantic) being exceptionally slow.
 

In Chapter 2, Rayleigh wave phase velocities at very long
 

periods (185 to 290 seconds) are investigated and regionalized, taking
 

into account the lateral heterogeneities in the oceanic plates
 

revealed by earlier studies at shorter periods. The two-station
 

method is applied to a few 'pure-age' oceanic paths, and is shown to
 



-viii

be compatible with an average gross Earth model below depths of 180
 

km. Under this assumed oceanic model, regionalized for age above
 

180 km, continental velocities are derived from a set of experimental
 

great-circle values, both new or taken from previously published
 

studies. The results basically agree with the earlier studies by
 

Kanamori or DzewonskL, and it is suggested that the assumption of
 

a uniform oceanic model may have been responsible for some scatter in
 

Kanamori's solution. The results of the present inversion are
 

uccessfully checked against a set of values derived by the two-station
 

method from a pure continental, tectonic, path. A recent event in
 

Indonesia is then used as a further independent check, in what is
 

believed to be the first experimental determination of Rayleigh wave
 

phase velocities over a pure shield path at very long periods. The
 

shield velocities fall within the range of variation of their oceanic
 

counterparts with the age of the plate, in agreement with the results
 

of Chapter 1. This makes velocities derived theoretically from models
 

involving deep continent vs. ocean lateral heterogeneities inconsistent
 

with the present set of experimental data. Finally, it is shown that
 

Dziewonski's model S2 reconciles all experimental seismic data
 

relative to shields without being significantly different from oceanic
 

models below 240 km.
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I. APPLICATION OF NORMAL MODE THEORY TO
 

SEISMIC SOURCE AND STRUCTURE PROBLEMS
 



INTRODUCTION
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In studying the propagation of a seismic disturbance through the
 

Earth, there exist two alternate approaches: In wave theory, one
 

considers mainly the local properties of the immediate neighborhood
 

of the wavefront, and how they affect the propagation, ignoring as
 

much as possible the finite size of the planet. In the other approach,
 

one focuses on the description of the instantaneous motion of the
 

Earth as a whole, ignoring as much as possible its regional deviations
 

from a satisfactory gross model. This latter approach makes use of
 

normal mode theory.
 

Like any other physical body of finite size, the Earth possesses
 

a discrete number of eigenmodes, which form a complete set upon which
 

the planet's response to any excitation can be expanded. Early
 

interest in the Earth's normal modes was purely theoretical (Lamb,
 

1882; Love, 1911), until their identification was claimed by Benioff
 

et al. (1954) following the great Kamchatka earthquake of November 4,
 

1952. The advent of high-speed computers at the end of the 1950's
 

allowed realistic calculations for different models and made feasible
 

the investigation of the excitation of the various modes by a given
 

seismic source. After a number of case studies (Alterman et al., 1959;
 

Jobert, 1962; Takeuchi et al., 1963), Saito (1967) presented general
 

expressions of the excitation of the planet's mode by any single
 

force, single couple or double couple. This now classic paper has
 

remained the basis for all later developments in mode theory, especially
 

in the domain of seismogram synthesis.
 

Extensive work has been done on the subject of ray-mode duality
 

(Brune, 1964; Ben-Menahem, 1964; Woodhouse, 1978). However, both
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theories retain their own advantages and drawbacks, their owndomains
 

of applicability and, above all, of efficiency. The present work
 

examines, a few areas in which normal mode theory can be used with
 

most proficiency.
 

The natural domain of normal mode theory is, of course, the
 

low-frequency end of the spectrum, where the eigenmodes of the Earth
 

are fewest and geometrically simplest. This range of frequencies
 

(v < 0.003 Hz) has been the subject of much recent interest since
 

Kanamori (1976, 1977a) has proposed that slow deformations and/or
 

aseismic creep make up a substantial part of the lithospheric sub

duction. Another domain where normal mode theory can be very helpful
 

is the investigation of diffraction phenomena, such as along the
 

core-mantle boundary, in violation of geometrical optics. Such
 

studies are directly linked to the structural properties of the deep
 

mantle of the Earth, which are of crucial importance in our under

standing of the core differentiation process, and therefore of the
 

formation of the Earth and other planets.
 

The present work consists of three chapters. In Chapter 1, we
 

investigate the physical properties of spheroidal modes and show that
 

they can be used to present a coherent classification of the modes
 

into five families, greatly simplifying the handling and use of a
 

large number of modes in synthetizing seismograms, and giving better
 

physical insight into some aspects of mode theory. In Chapter 2, we
 

study the influence of frequency and depth of source on the efficiency
 

of an isotropic seismic source. The results are applied to the deep-


Colombian earthquake of July 31, 1970 and it is concluded from a
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series of time- and frequency-domain analyses that the seismic data
 

do not warrant the existence of a slow compressional precursor to
 

the main shock. In Chapter 3, we use profiles of SH waves diffracted
 

around the core over a large distance (up to 550) to investigate the
 

properties of the deep mantle. The S-wave velocity at the core
 

mantle boundary is found to be in agreement with gross Earth models,
 

but incompatible with a proposed low-velocity zone extending over
 

100 km or more. Synthetic seismograms obtained by normal mode
 

summation confirm this result, and are used to strongly constrain any
 

possible rigidity of the uppermost layer of the core.
 

Most of the present results are in the process of being published:
 

Chapter 1 as Okal (1978a), Chapter 2 and 3 as Okal and Geller (1978
 

a, b).
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CHAPTER 1
 

A Physical Classification of the
 

Earth's Spheroidal Modes.
 



-7

1.0 Introduction
 

The purpose of this chapter is to disentangle the physical proper

ties of the spheroidal modes and to propose a classification and
 

possible new nomenclature for them. In the conventional nomenclature,
 

modes of similar angular order number X are sorted by increasing
 

frequencies. The physical properties of the modes (group velocity U,
 

attenuation factor Q, particle motion at the surface, excitation
 

functions) can vary dramatically with small changes in either X or the
 

overtone number n. It is shown that most of the spheroidal modes can
 

be classified into several families offering regular, although
 

different, trends in their physical properties. Specifically, one can
 

isolate the Inner Core and Stoneley modes; then, among the remaining
 

modes, for low P, or equivalently, at high phase velocities, there are
 

two completely different sets of spheroidal modes. The first is a
 

family of highly attenuated modes, for which the group velocity is
 

slow (usually < 5 km/s), and the main component of the displacement
 

colatitudinal. The eigenfunctions of these modes (and therefore, their
 

periods, group velocities, Q's and excitation functions) are strikingly
 

similar to those of torsional modes of the same angular order. The
 

second family consists of modes with higher Q's, whose group velocities
 

are higher (usually > 10 km/s), for which the displacement is mainly 

vertical, and whose physical properties are continuous with those of 

the so-called "radial" modes nSo. At high X (lower phase velocities),
 

total coupling occurs between the vertical and colatitudinal modes,
 

leading to a single family, whose physical properties are extremely
 

regular, and can directly be compared to Rayleigh waves. At
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intermediate £, coupling occurs irregularly and it is not possible to
 

define any strong trend in the physical properties.
 

Section 1.1 describes the irregular variations if the modes'
 

properties with small variations of either n or k, when the conventional
 

nomenclature is used. The empirical analysis of a set of computed data
 

introduces the idea of several families of spheroidal modes. In section
 

1.2, we adapt the results of Alterman et al. (1959) to the simplified
 

case of a homogeneous Earth and of total decoupling between radial
 

and horizontal displacements. We extend the results of Anderssen et
 

al. (1975) and of Gilbert (1975), to discuss the values of the group
 

velocities, inside the various families at low £. A comparison is
 

made with the values computed for a realistic Earth model. Section
 

1.3 formally presents the classification of spheroidal modes and
 

proposed new nomenclature.
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1.1 A Critical Review of Spheroidal Modes
 

The theoretical problem of the vibrations of an elastic sphere
 

dates back to Lamb (1882). A complete review of the literature on
 

this subject is beyond the scope of this work and we shall only sum

marize the following milestones in the development of mode theory:
 

Love (1911), and later Pekeras and Jarosch (1958) discussed the
 

eigenfunctions of a uniform, gravitating sphere; Alterman et al. (1959)
 

first calculated the excitation coefficients of the various spheroidal
 

oscillations of the Earth for a simple source; Satb and Usami (1962a,
 

b,c) and Landisman et al. (1970) extensively studied the problem of
 

the oscillations of a homogeneous sphere. Ray-mode duality was also
 

investigated by Brune (1964), Ben-Menahem (1964), and more recently
 

Woodhouse (1978).
 

Saito (1967) presented general results, applicable to any seismic 

source, and introduced a variational method of solving the differential 

equations. Kanamori and Cipar (1974) gave a smplified expression 

of the excitation of both T and S modes by any double-couple, and 

Kanamori and Stewart (1976) introduced asymptotic expansions, which 

help to avoid having to sum a forbidding number of modes at higher 

frequencies. Experimental identifications of the normal modes of the 

Earth were systematically carried out by Dziewonski and Gilbert (1972) 

and Gilbert and Dziewonski (1975). A theoretical investigation of the 

asymptotic behavior of nS , at constant k, was given by Anderssen 

et al. (1975) and by Gilbert (1975). However, these authors have 

limited their investigation to w - at constant k, thus neglecting 

the study of the modes' group velocity, which is of crucial importance 
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in the approach of Kanamori and Stewart, as the group velocity is the
 

quantity associated with the variation of physical properties with
 

wavenumber (or equivalently angular order).
 

1.1.1 The following briefly summarizes Saito's (1967) results in the
 

simplified version of Kanamori and Cipar (1974).
 

+ 

The displacement u at a point (r,e, ) in the Earth, generated
 

by an earthquake, can be expanded into a sum of the normal modes
 

Sm 
 of the Earth (t : angular order; m : azimuthal number; n
 

overtone number ), the amplitude of excitation of a given mode by a
 

particular source can be separated into radiation pattern factors
 

depending only on the mechanism of the earthquake, and
(PR' qR' sR) 


excitation coefficients (Ko, K1i, KZ; NO), depending only on the source
 

depth and on the particular mode considered. The notation will
 

always be that of Saito (1967) and Kanamori and Cipar (1974). However,
 

the angular order number will always be Z. Also, No is the excitation
 

coefficient for a purely compressional source, adapted from Takeuchi
 

and Saito (1972):
 

2Z+ 1 
N0 =- •1D(rs) , (1.1)

No n7 ( T1 + L2 T2 ) 

where 13(r ) ym(0 ,) = 6 ii Crrj*+C800 +e~ is the trace of the strain 

tensor or deformation:
 

4 ~ + y2rs) L2 2 ps 

2D(r) 4 Yl(rs) + s Y3(r). (1.2) 
(s+2s)rs Xs+2Vs ?s+211rs s
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Following Kanamori and Cipar (1974) and Kanamori and Stewart (1976),
 

we will always normalize yl(a) to unity and the excitation functions
 

wall always be computed assuming a double-couple moment of 102 7
 

dynes-cm (or a purely compressional moment of 1027 dynes-em for
 

each of the three equivalent dipoles in the case of a compressional
 

source).
 

The computed data set used in this study consists of some 5200
 

theoretical eigenfunctions for the Earth, computed by Buland and
 

Gilbert (1976) for model 1066A (Gilbert and Dziewonski, 1975). This
 

data set includes 1936 torsional and 3271 spheroidal modes, represent

ing all solutions with angular order less than 151 and perLods
 

greater than 45 seconds. For periods larger than 150 seconds, the
 

solutions for all torsional modes and most spheroidal ones were
 

checked against an independent recomputation by the author, using
 

model C2 (Anderson and Hart, 1976), and the program developed by
 

Kanamori and Abe (1968). The eigenfunctions were processed to
 

obtain the periods (T), phase velocities (C), group velocLties (U),
 

attenuation factors (Q), surface transverse displacements (y3 (a),
 

with yl(a)=1, to be abbreviated below as Yg). The excitatLon
 

functions No, K0 , K1 and K 2 (LI and L2 in the case of T modes) were
 

obtained for 23 standard focal depths between 0 and 750 km.
 

It should be noted that the group velocity U is computed here
 

as outlined by Jeffreys (1961):
 

U = ( 1 + J2/ k ) I J0 C , (1.3) 
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where k = (i4 )/a is the wavenumber, and the J's are energy integrals
 

involving the eigenfunction and its derivative with respect to r.
 

The concept of gtoup velocity assumes the existence of a set of modes
 

(generating a wave), whose physical properties vary smoothly enough
 

that they can be easily followed and considered as continuous with
 

frequency; despite the discrete layout of the modes. The group
 

velocity dm/dk is then used in the interpolation of physical
 

properties of the modes (Kanamori and Stewart, 1976). In the case
 

of spheroidal modes, this assumption might sometimes be inappropriate
 

along an overtone branch n = constant. We shall return to this point
 

below.
 

The values of Q were obtained both from the MM8 model of
 

Anderson et al. (1965), and from the more recent SL2 model described
 

by Anderson and Hart (1978). the primary difference between these
 

two models is the presence in model SL2 of a zone of low Q at the
 

base of the mantle, and of low values of Q in the inner core.
 

1.1.2 Diffihulties with the conventional nomenclature SY.
 

In the conventional nomenclature, modes of identical k are
 

assigned an overtone number by increasing frequency: the mode with 

the longest period is called 0S, the next one IS , and so on. 

(The first mode with £=1, oS, , which represents a rigid body 

translation of the whole Earth, and for which o'io=, is not usually 

included in any compilation of S modes, although it is tacitly part 

of the conventional nomenclature.) A similar method is used for 

torsional modes nT However-, the torsional nomenclature does not 
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study, as computed from model 1066A. Overtones are traced and labeled according to the
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usually include the inner core torsional oscillations, for which no
 

displacement can be transmitted through the liquid outer core, and
 

which therefore can be neither excited in the mantle nor observed at
 

the surface of the Earth. In the case of spheroidal modes the
 

following problems are encountered:
 

i) It is no longer true that the vertical eigenfunction,
 

yl(r), of nSP has n zero-crossings along the radius of the Earth.
 

This property, which holds for T modes, remains true in the case of
 

S modes only for n=C, for Z=O, and, locally, for other values of
 

n and Y..
 

ii) For £=O, the number of nSo modes over a given range of
 

frequencies is much smaller (roughly 2.5 times) than the corresponding 

number of their neighbors nSl or nS2 . For example, 20So has a 

period of 57.7 s, which is comparable to the period of 50S, : 56.4 s. 

Thus, one cannot link those so-called "radial" modes, nSo, with the 

other spheroidal modes, resulting in their being isolated (e.g. Pekeris 

and Jarosch (1958)), and often listed separately in different tables
 

(e.g. Anderson and Hart (1976, 1978)).
 

iii) Gilbert and Dziewonski (1975) have pointed out that the
 

conventional nomenclature for certain modes may depend upon the Earth
 

model used to compute their periods : For example, 26SI and
 

27SI are interchanged if one uses model 1066B instead of model
 

1066A (Anderssen et al., 1975).
 

Mv) Howeyer, the most important drawback of the conventional
 

nomenclature is the absence of continuity in.the physical properties
 

of the modes along overtone branches : Figure 1.1 is a plot of the
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Figure 1.2. A plot of several physical properties of spheroidal modes 
along conventional overtone branches: group velocities U (top) and ex
citation coefficients K0 (center) along 20 S0 , 2 1S, and 22S , and Q 
(bottom) along the lower overtones 0Sk to 5A,. This last pot is taken
 
from Anderson and Hart (1978).
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eigenfrequencmes of the spheroidal modes (computed from model 1066A)
 

used in this study, the overtones being traced and labeled as they
 

result from the conventional nomenclature: They clearly display a
 

very rugged behavior of the periods T along overtone branches.
 

Similarly, Figure 1.2 shows the variation of the group velocity Ui,and
 

of K0 (for a depth of 650 km), along the three branches 20SZ, 21St
 

and 2S., and of Q along the lower overtone branches OSP to 5S V
 

These curves are totally irregular, and no physical interpretation of
 

them is apparent. Such irregular behavior is not observed for
 

torsional modes, which exhibit smoothly varying properties at similar
 

periods and/or angular numbers.
 

v) Also, in some cases, the group velocity U computed from
 

Jeffreys' (1961) formula does not represent a correct approximation
 

to the dispersion dm/dk along an overtone branch n = constant.
 

As an example, in Table 1.1, we list the properties of four adjacent
 

modes (50S2, 50S3 , 51S2 , 51S3) and compare the theoretical group
 

velocities U (computed from Jeffreys' integrals) with "physical"
 

group velocities U , obtained by approximating the definition of
 

group velocity
 

U dw / dk (1.4) 

by U = a -( n - nWX ) along what is commonly called an overtone 

branch, that is a set of normal modes with constant n. The agreement 

is seen to be very poor. Also, the other physical properties (such 

as Q, y3(a), 1(0 ..... ) strongly vary along the overtone branches 

( n=50 or n-51 ). Again, this behavior is absent from torsional modes, 
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Table 1.1 

An Example of Discrepancies between Dispersion Group Velocities
 

U and Energy Integral Group Velocities U
 

Mode T (s) U (km/s) QSL2 Y3
 

S2 55.19 16.43 984 0.076
 

50s 3  54.96 0.38 258 -7.98
 

51S2 54.98 0.43 260 -4.48 

51S3 53.95 15.63 980 0.003 

Dispersion group velocities U
 

-50S2 50S3 3.04 km/s 51S2 - 51S3 : 13.90 km/s 

50S3-51S2 • 0.28 km/s 50S2-51S3 : 16.67 km/s. 
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for which the group velocity U = .i/C J0 (in Jeffreys' (1961)
 

notation) is always an excellent approximation to the dispersion
 

dt/dk along an overtone n = constant.
 

1.1.3 What should be called an overtone9
 

Going back to the example in Table 1.2, we achieve a much better
 

agreement between U and U by computing U along "diagonals" 

(50S2- 5 1S3 and 5 1S2-5 0S3). As Jeffreys' calculation is, itself,
 

based upon the physical concept of dispersion and uses equation (1.4)
 

as a start, this suggests that the concept of an "overtone branch"
 

as a set of modes sharing some physical property is, in the present
 

case, better applied diagonally than along lLnes of constant n.
 

Similarly, Brune (1964) has shown that the group velocity of a mode
 

can be interpreted in terms of the spatial variation of the phase
 

spectrum of body waves to which this mode contributes. His formalism,
 

however, involved taking derivatives of the phase along overtones
 

branches (I=constant in his notation), whose members may not contri

bute to the same continuous set of body waves in the classical
 

nomenclature.
 

By doing so, we also regroup modes having comparable values of
 

all physical properties, such as Q, and Y3 (see table 1.1). Also,
 

Figure 1.3 shows a plot of the excitation coefficients N0 , K0, KI, K2
 

as a function of depth for each of these four modes. It is evident
 

that there exists a strong correlation between the eigenfunctions
 

of 5 0S2 and 5 1S3 , as well as between those of 50S3 and 51S2, rather
 

than along the lines n=50 or n = 51. The modes with large Ko
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and No coefficients are those with larger group velocities, higher 

Q's and lower Y3 . The other two modes exhibit large K 's, have 

1Y3 larger than 1, and share low group velocities and low Q's. From 

this evidence, it is concluded that mode branches should be allowed 

to cross, if they are to carry a physical meaning. This point is
 

important, since both the concept of a wave, and the applicability
 

of asymptotic expansion techiliques are dependent upon the ability to
 

deal with a whole set of modes whose properties vary continuously with
 

wavenumber or frequency.
 

1.1.4 Empirical evidence for three different families of spheroidal
 

modes at low t.
 

Table 1.2 lists the physical properties (T,U,Q,y3 ) for all modes
 

nS, ( 7 < n < 62 ) and for a few nS5 modes. (The purpose of
 

incorporating the latter is to show that the trends defined by the
 

From these values,
nSI'S are indeed present for other values of z.) 


it is easy to identify three families, whose properties are summarized
 

in Table 1.3.
 

1st family :-K modes. These modes are characterized by : m) very 

large group velocities, usually in excess of 25 km/s; ii) a value of 

Q extremely dependent upon the mean Q at the core-mantle boundary 

(CMB) and the inner core (around 8000 when using MR8 ; 300 when using 

SL2); iii) a low value of 1 Y3 1 (on the order of 0.1) ; and iv) very 

low excitation coefficients for all depths down to 750 km. Items 

ii) and iv) clearly identify these modes as Inner Core modes (we 

use the letter K from the German "Kern") : The attenuation model 
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Table 1. 2 

Physical Properties of the Modes nS (n > 7 ) and of a few nS5 

MODE T U Q Y3 
(S) (KM/S) MM8 SL2 

7 S 1 449.2 6.82 378 336 5.964 
8 S 1 3t8.3 14.03 1633 1055 0.224 
9 S 1 312.3 0.67 356 304 -2.975 

10 S 1 292.2 25.83 7961 289 0.160 
11 S 1 271.3 15.18 1749 853 0.131 
12 5 1 232.4 0.80 371 290 22.809 
13 S 1 222.5 L4.36 1475 934 -0.113 
14 S 1 201.6 25.88 7746 296 -0.026 
15 S 1 188.9 16.83 1729 816 0.040 
10 S 1 186.6 0.69 333 264 26.257 
17 S 1 163.4 15.55 1732 978 -0.142 
18 S 1 156.1 1.18 351 275 8.275 
19 S 1 154.6 27.32 7837 307 0.466. 
20 S 1 143.9 15.74 1900 1000 0.010 
21 S 1 133.1 0.33 350 274 -8.145 
22 S 1 127.8 14.99 1864 1063 0.109 
23 S 1 125.9 28.07 9881 292 0.084 
24 S 1 116.6 0.34 319 251 -65.163 
25 S 1 115.5 14.22 1745 999 -0.043 
26 S 1 106.3 27.41 8023 315 0.044 
27 S 1 105.3 16.19 1782 831 0.078 
28 S 1 103.9 0.46 323 251 -27.557 
29 S 1 97.1 16.23 1643 970 -0.051 
30 S 1 93.4 0.35 329 255 12.392 
31 S 1 91.9 21.68 9120 299 0.011 
32 S 1 90.2 17.38 1768 888 -0.022 
33 S 1 85.0 0.42 329 255 -8.812 
34 S 1 83.8 15.86 1692 1027 0.150 
35 S 1 81.0 28.31 9936 304 0.028 
36 S 1 78.4 14.69 1767 1017 -0.065 
37 S 1 77.9 0.30 324 251 49.372 

38 S 1 73.4 15.55 1852 1010 0.044 
39 S 1 72.4 28.29 9878 297 0.117 
40 S 1 71.9 0.24 324 250 -45.602 
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Table 1.2 

(continued) 

41 S 1 69.1 15.96 1700 992 -0.028 
42 S 1 66.8 0.21 323 252 22.053 
43 S 1 65.6 20.42 2269 572 -0.0z4 
44 S i 65.4 25.47 4041 379 -0.026 
45 S 1 62.4 1.95 361 278 -2.987 
46 S 1 62.2 14.90 1102 735 0.380 
47 S 1 59.7 28.35 9674 297 -0.012 
48 S 1 59.2 15.34 1597 943 -0.037 
49 S 1 58.5 0.21 334 254 156.770 
50 S 1 56.4 14.96 1677 1024 0.033 
51 S 1 55.0 0.15 340 257 -41.330 
52 S 1 54.9 28.55 9940 303 -0.127 
53 S 1 53.9 15.16 1648 1007 -0.000 
54 S 1 51.9 0.15 335 256 22.677 
55 S 1 51.6 17.46 1778 962 -0.049 
56 S 1 50.8 28.52 9775 297 -0.033 
57 S 1 49.5 17.24 1653 992 -0.120 
58 S 1 49.2 0.35 337 256 9.843 
59 S 1 47.6 16.50 1710 966 -0.027 
03 S 1 47.3 28.65 9595 302 -0.047 
t1 S 1 46.8 0.16 349 259 -267.085 
62 S 1 45.7 15.03 1665 1033 0.030 

31 S 5 82.7 23.96 5645 310 0.089 
32 S 5 79.1 14.79 1737 921 0.018 
33 S 5 77.6 0.77 328 253 -1.559 
34 S 5 74.4 16.35 2051 667 0.028 
35 S 5 73.4 24.47 5174 338 0.035 
36 S 5 71.7 0.99 328 253 7.501 
37 S 5 69.7 14.83 1632 968 -0.038 
38 S 5 66.6 1.08 329 254 3.532 
39 S 5 66.4 24.85 6362 307 0.062 
40 S 5 66.0 15.90 1671 807 0.003 
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SL2 (Anderson and Hart, 1978) is characterized by a high-attenuation
 

layer at the base of the mantle and in the inner core. It can also
 

be proved that K modes are indeed the mostly unobserved "core" modes,
 

as defined by Gilbert and Dziewonski (1975).
 

2nd family_: C (Colatitudinal) modes. This is a family of highly 

attenuated modes, with low group velocities, and high values of 

I Y3 (a) I. 5 1S2 and 5 0 S3 , studied in the previous section, belong 

to this family. Furthermore, Figure 1.2 shows, in the case of these 

two modes, that at all depths the excitation function K, remains
 

very large, with K still substantial, and about 10 times as large
 

as K2 . This property, illustrated in the case of this particular
 

example, is indeed a common factor of the family. In view of the
 

expressions for the coefficients K (Kanamori and Cipar, 1974), this
 

is equivalent to the function yl(r) I remaining small with respect 

to Y3 (r) I at all depths. It is clear that the displacement in 

these modes is mainly colatitudinal, hence the "C".
 

3rd familjy: V (Vertical) modes.- This family has intermediate group 

velocities (10 to 18 km/s for nS1 ), high values of Q in both models 

MM8 (1000-4000) and SL2 (700-2000), and very small values of y3 (a) 

Furthermore, as shown on Figure 1.3, and confirmed by a further study,
 

these modes have large values of N0 and KQ, and very small K1 and
 

K2. All of this suggests that the displacement in these modes is 

mainly radial or "vertical", hence the "V". These properties are 

shared by the radial modes nSo, which are in the same number (20 modes 

from 200 s. down to 45 s.), and have, by definition, no colatitudinal
 

displacement or excitation functions K, and K2 . The radial modes
 



Table 1.3 

Physical Properties of the Different Families of Modes at Low £ 

Property K C V 

Group Velocity 

Q 

U (km/s) 20 to 30 

SL2 300 

MM8 : 4000-9000 

0.3 to 4 

200 to 400 

9 to 17 

700 to 2000 

M 

41 

Y3 Low ( down to 10  3 ) > 1 

Up to 100 Down 

< 

to 3x10- 3 

Excitation Coefficients All low 

K 0 

K1 substantial 

comparable to K 1 

KI, K2 low 

No, K0 substantial 
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are thus part of the V family. At this point, we have defined
 

empirically three different families of modes with low k, clearly
 

identified only for phase velocities larger than about 26 km/s.
 

There have been isolated cases, when the individual properties of
 

two modes may violate in some respect the general trends in their
 

families. Table 1.4 gives two examples. We will see later that
 

these are clear cases of coupling, due to a near coincidence in
 

eigenfrequencies. The fundamental point is that, in this region of
 

the (w,Z) plane (C> 26 km/s), these are isolated occurrences, which
 

do not represent any general physical trend.
 

Modes with larger values of £. 

For low values of the phase velocity (C< 16 km/s), Figure 1.1 

shows that spheroidal modes are arranged along well-defined, regular, 

overtone branches. As in the case of torsional modes, the physical 

properties of the modes vary smoothly along those branches, and 

regularly from one branch to the next. We will call this family of
 

modes "R" (Rayleigh) modes : The fundamental R modes do indeed
 

generate classical Rayleigh waves, and it can be shown that higher
 

overtones are similar to Rayleigh wave overtones, as described, for
 

example, by Harkrider (1964, 1970).
 

At values of A for which the phase velocity falls in the range
 

16-26 km/s, there is no such definite behavior. It would indeed be 

possible to try to define two groups of branches (as shown in the
 

upper part of Figure 1.4) and associate them with V or C modes, or to
 

allow large undulations along branches (as in the bottom of Figure
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Table 1.4 

Two Examples of Coupled Modes at low Z 

Mode 

S20 3 

21S3 

Period 

s 

129.8 

127.7 

U 
km/s 

19.45 

20.41 

QMM8 

1858 

2972 

QSL2 

458 

398 

Y3 

0.18 

0.11 

15S4 

16S4 

158.0 

152.3 

8.84 

7.55 

720 

494 

541 

390 

-0.28 

0 39 
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1.4), and make them R modes. However, neither of these approaches
 

is satisfactory, since in both of them, physical properties do not
 

remain constant along the branches. We will call these modes "H"
 

(Hybrid) modes.
 

The three families of modes K,C,V, isolated empirically at low
 

£ in this section, are indeed, the ones defined theoretically by
 

Anderssen et al. (1975) and Gilbert (1975). However, their theoretical
 

investigations were limited primarily to the periods T of the modes,
 

and to the general character (vertical, colatitudinal or core) of the
 

solution. Also, they only made use of the extreme limiting case
 

k = 0 (or 9 = 1 in the case of K and C modes) in their comparison with
 

actual computed or observed values, although the three families can
 

still be identified at higher values of Z. (Table 1.2 lists a few
 

modes with A = 5.) Anderssen et al. (1975) and Gilbert (1975) did not
 

study the group velocity of the modes, which is characteristic of
 

their variation with Y.,nor Q, nor the excitation functions. These
 

properties are of fundamental importance in any attempt to synthetize
 

seismograms by asymptotic mode theory. In the next section, we will
 

show that it is possible to derive the group velocity of the families
 

of low-k modes (K,C,V) and to extend most of the properties derived
 

by Anderssen et al. (1975) to non-zero values of k, under very
 

simple, if somewhat crude, assumptions.
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1.2 A Theoretical Approach to the Various Properties of Spheroidal
 

Modes of Low Z.
 

In order to show that most of the properties of the various
 

families of modes can be derived simply, we shall consider here the
 

normal modes of a homogeneous sphere (with only the possibility of
 

a fluid core), and we shall neglect the influence of gravity.
 

The theoretical problem of the spheroidal eigenvibrations of a
 

homogeneous sphere was studied by Love (1911) and Pekeris and Jarosch
 

(1958). Takeuchi and Saito (1972) gave the complete solution for the
 

eigenfunctions of a homogeneous sphere (pp. 243-244), where the
 

exact (and rather elaborate) expressions of the solution can be
 

found. Some of the theoretical results in the following section
 

were given by Anderssen et al. (1975) and Gilbert (1975) for constant
 

k (mostly t = 0 and £ = 1). Their extension to a variable k allows
 

a theoretical study of the group velocity of the modes.
 

Rather than start from the exact solutions and adapt the equations
 

to our particular cases of interest, we will try to simplify the
 

system of differential equations for spheroidal modes, before solving
 

it, by use of physical arguments, thus keeping a stronger physical
 

insight into the properties of the solutions. We start with Saito's
 

(1967) system, and we assume that we can neglect the influence of
 

gravity. The system then reduces to dy / dr = C y, with
 

SYS)T= (Y1, Y2, Y3, YO), and:
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Here again, Li = Z(Z+ 1). For 9 = 0, this matrix has an entire 

quadrant of zeroes, which means that the system breaks down into two 

completely independent systems of order two : one involving yl and 

y2, the other Y3 and Y4. We will now solve both of these simple
 

systems, and look at the case of small, but nonzero L2 .
 

1.2.1 Solutions with mainly radial displacement ("V" modes).
 

For 9= 0, the system is completely decoupled, and, as shown
 

by Gilbert (1975), the solution for a homogeneous sphere compatible
 

with the boundary conditions is a spherical Bessel function of order 1:
 

y= j ( cr/c ). (1.6) 

For high overtones 

pOW pna/a 	. (p integer) (1.7) 

The frequency spacing between the subsequent radial modes so
 

is therefore Af = a/2a. The average value of a in the Earth is
 

10.46 km/s (Jeffreys and Bullen, 1940). This yields Af = 8.21- 10-4Hz,
 

in 	excellent agreement with the average separation observed for nS0o
 

-
Af = 8.27. 10 4 Ez. These results are similar to those of Anderssen
 

et al. (1975).
 

For k small, but nonzero, it is no longer possible to ignore 

y3 and Y4 . The third column in matrix 1.5 will inevitably bring 

coupling between the vertical and horizontal motions. We will 

therefore simply assume that IY31 << 1, and that the corresponding 

modes are still basically irrotational, that is: 
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Figure 1.5. Frequency versus angular order plot of the V family
 
of modes. Pseudo-overtones are traced and labeled according to
 
the new proposed nomenclature Note the easy integration of the
 
radial modes into the family.
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crt u 0 (1.8)
 

Using (1.5), this yields,
 

Y3 = dy3/dr = - (Y3 -yl)/r = y1/r " (1.9) 

This shows that while Y3 might be negligible, its derivative y3 

should be kept in all equations. Then, from the third line of (1.5), 

Y4 = 2pyl/r, and eliminating Y2 from the first two lines yields: 

y'3 + 2 y, + I2_2_] y + [ 2 + ) ] y3/r
2 = 0. (1.10)2r I a2 r (A+2p) 2 

Given that IY31 <' IYj , and that for the actual Earth, either = 0 

(in the core), or p = A (in the mantle), we can approximate the last 

bracket by 2, and then, bearing in mind that (rYg)' = yl, we find 

that this equation is nothing but the derivative of the spherical
 

Bessel equation of order Z, written for the function (ry3). We
 

conclude that the solution for Yl is : 

y1(r) = j' (wr/a) (1.11) 

Note that this solution holds for k = 0, since j' - 3I- Using 

the well-known expressions (Abramowitz and Stegun, 1972 (p. 324)): 

(x) =v Tr/2x • J W(x) and : 

(1.12)
 

((x) = / 2/?rx cos (x - vr/2-w/4) for x >> 1, 

we find that the boundary condition Y2(a) = 0 defining the angular
 

eigenfrequencies of the V modes will rapidly require
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Table 1. 5
 

Comparison of Theoretical and Observed Values of Frequency Spacing
 

and Group Velocity in the three Families V, K, C
 

V K C 

4 - 3Af (Hz) computed 8.21x 10 - 1.43 x 10 1.07 x 10-3 

Af (Hz) observed
 

k = 0 8.27 x10- 4 

- 4 - 3 
k = 1 8.29x10 1.47x10 1.07x10- 3 

- 4 - 3 - 3
Y, = 5 8.32x 10 1.50x 1 1.06x10 

- 3 3
k = 9 8.41x i0- 4 1.54x10 1.05x10-

U (kml/s) computed 15.7 28.6 0
 

U (km/s) observed 15.82 27.56 0.50
 

z = 1 15.82 27.56 0.50
 

£ = 5 13.94 24.43 1.80
 

£ = 9 13.74 23.01 3.31
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=z a-7 [ p + 9,12 ].(1.13)p a
 

Here, p is a new "overtone" number inside the V family. We have thus 

derived the law of variation of the eigenfrequencies pwY of the V
 

modes, both with p and Z. This relation has two consequences
 

a. The frequency spacL_ngat a gLvenshould be independent of 2. 

This is checked against a realistic Earth model in Table 1.5
 

The frequency spacing varies less than 2% from k = 0 to k = 9, and
 

stays within 3% of the value computed on the basis of our rather crude
 

assumptions. This result was implicit from Gilbert's paper. However,
 

the numerical values had only been checked against the theory by
 

Anderssen et al. (1975) for £ = 0 and £ = 1.
 

b._ The dispersion group_velocity along a branch of V modes of constant 

p can be predicted. 

According to (1.13), we have
 

dj/ dk = a dw/ d = af/2 . (1.14) 

The group velocity of a V branch should be 7/2 times the average
 

Earth's P-wave velocity. Again, taking the latter as 10.46 km/s, we
 

obtain a figure of 16.43 km/s, in excellent agreement with the values
 

of U characteristic of V modes. This agreement between U and dw/dk
 

along a V branch confirms that a branch of V modes with constant p
 

is, indeed, a set of physically continuous modes. A further conse

quence is that the following relation holds :
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p+l £ = +2(1.15) 

This fact is confirmed in Table 1.6 and in the general layout of V
 

modes on Figure 1.5.
 

It is important to note that the radial modes pSo completely
 

share these properties, and can therefore be totally integrated into
 

the V family.
 

The physical property limiting the field of separation between
 

K, C and V modes in the (wZ)plane is the phase velocity C. Therefore,
 

for high overtones, one expects the characteristic properties of the
 

various families to hold even for relatively large values of £,
 

(P = 10-20), for which the asymptotic expansion of the Legendre
 

associated functions, as suggested by Kanamori and Stewart (1976), is
 

valid and justifies the use of asymptotic theory. It is therefore
 

fundamental to have establshed a theoretical proof of the validity 

of the group velocities U, computed from Jeffreys' formulas, as an
 

accurate representation of the physical dispersion along a V branch.
 

1.2.2 Solutions with mainly colatitudinal displacements (C modes).
 

For t = 0, there can be no physical solution, since they would
 

generate no displacement. However, this limiting case will be helpful
 

when L2 #0. Assuming that yl = y2 = 0, and following Gilbert (1975),
 

one finds that the solution y3 now involves both the Neumann and
 

Bessel spherical functions of order 0. The solution for w is rapidly
 

Gilbert's equation (8) :
 

WO = P a (1.16) 
p a-r c
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Table 1.6 

Example of the Law pak+2 = p+lnP for V and K 

Modes 

Mode in 
Conventional New Period (s) Error 

Nomenclature 

10SO 10V0 110.4 0.3 % 

25S2 9V2 110.8 0.9 % 

23S4 9V4 111.8 1 1 

21S6 7V6 113.0 2.8 % 

18S8 6V8 116.2 

38S15 14V15 56.2 0.6 % 

36S17 13V17 56.5 1.6 % 

34S2V11.09 57.3% 

32S21 1IV21 57.8 

39SI 10K1 72.4 0.4 % 

37S3 9K3 72.7 1.0 % 

35S5 8K5 73.42.3 % 

32S7 7K7 75.1 2.0 % 

30S9 6K9 76.6 
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in total similarity to the torsional case. This yields Af
 

-
0/2 (a-r ) = 1.07 .10 3 Hz, for an average S-wave velocity of 6.18 

km/s (Jeffreys and Bullen, 1940). 

For £ nonzero, it is no longer possible to assume yj = 0. 

Similarly to our study of V modes, we will assume that dv u = 0, 

and that IY11 << Y31. Then, we have, from (1.5) 

2
Y = L2 Y3 - 2 Yl/r LL Y3 , (1.17) 

and
 
L2

It + + 
Y3 + Y3t+[ - -7-]Yg=0. (1.18) 

Technically, this is a Bessel equation of order k. However, since r
 

is not allowed to become smaller than the radius of the core, re,
 

2
then L2/r remains smaller than L2/r 2 . As long as we have

C 

S2
 
>> r2 L2 , or roughly C >> 0 a/rc = 12 km/s, (1.19)
 

c
 

this new term will be negligible, and the solution (whose boundary
 

conditions are unchanged) will remain vjery similar to that for X = 0.
 

Also, as r never becomes zero, the coupling coefficients of order
 

L2/r, in the matrix (1.5) will remain very small, and ensure that y1
 

and Y2 are small. This is a fundamental difference which makes V
 

and C modes behave differently. In other words, since the wave
 

cannot propagate into the core, and as long as it has a high enough
 

frequency, it cannot "feel" the curvature of the Earth; therefore,
 

it is insensitive to the angular order number k, which characterizes
 

the variation with 0, and its eigenfrequencies are those of a plane
 

wave between two fluid boundaries. This is what is expressed by
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Figure 1.6. Frequency versus angular order plot of the C family of
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equation (1.20) :
 

ppt ==p0= O (_o )(1.20)(a-rc)
 

An entirely similar situation would arise with a torsional
 

system, and therefore, both T and C modes should be very similar
 

L2
to their common limit when + 0, and share the following properties: 

-
Af = 6/2(a-rc) = 1.07 .10 3 Hz, and a very small group velocity at 

low Z. Both of these properties are checked in Table 1.5 and on
 

Figure 1.6. As can be seen, the agreement extends for values of £
 

larger than 1. A complete similarity exists between solutions for C
 

and T modes (except for a different normalization of the eigenfunc

tions), holding for periods, group velocities, Q's, and excitation
 

functions, K,, K2, Li and L2 , although C modes also have substantial
 

KO coefficients, making a possible contribution to the seismic
 

displacements.
 

The identity between C and T modes is the mode-theory aspect of
 

the trivial identity between SH and SV waves at vertical incidence.
 

The absence of systematic coupling between C and V modes at high phase
 

velocities simply expresses the vanishing of all P-SV transmission
 

and,reflection coefficients at zero incidence.
 

1.2.3 Inner core (K) modes.
 

Equation (1.18) can be applied not only to the mantle, but also
 

to the solid inner core, although neglecting gravity certainly becomes
 

a much poorer approximation. However, the interest in core modes is,
 

at the present time, purely theoretical, as they are not significantly
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Figure 1.7. Frequency versus angular order plot of the K family of
 
modes. Pseudo-overtones are traced and labeled according to the new
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excited by any realistic seismic source. Boundary conditions ow
 

require y3(0) = 0, y4(r i) = 0, where rI is the radius of the inner
 

core (ri = 1215 km). The solution is simply
 

Y3 = 3(wr/8) , (1.21) 

which leads to eigenfrequencies
 

m = [p'+ £/2 + ] (1.22) 

This formula extends Gilbert's (1975) equation (9) by incorporating
 

variations of £. The frequency spacing between K modes should then
 

-
be Af = $/2r. = 1.43 .10 3 Hz, for an average shear velocity of 3.48
 
1 

km/s inside the inner core (Anderson and Hart, 1976), and the group 

velocity theoretically predicted at the surface of the Earth . U = 

Saw /2r = 28.6 km/s. These values are indeed characteristic of K 

modes, as is checked in Table 1.5. Also, K modes should follow the
 

law p Z+2 = p+i13, ; Table 1.6 and Figure 1.7 show that this relation
 

holds to within a few percent. The low value of y3 (a) associated
 

with K modes is simply a consequence of the inability of the outer
 

core to transmit transverse displacements: only the small vertical
 

component y1 can be transmitted through it to the mantle and surface
 

of the Earth.
 

Although the displacement in them is similar ( IY3 1 lYil), 

equations (1.20) and (1.22) shows that C and K modes behave totally 

differently with varying k, a fact which is not explicitly brought 

out in Gilbert's approach. When £ varies, K and V modes do indeed 

share a similar behavior, as their general layout shows on Figures 
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1.5 and 1.7. It can be said that they are the modes of a spherical
 

body. As shown in Section 2.2, the mantle's C modes, insensitive to P,
 

behave like plane waves: they are the modes of a shell, at a wave

length large with respect to its inner radius.
 

In summary, by assuming that the original system is entirely 

decoupled at low i, we have been able to derive most of the properties 

of the three families of modes, and their variation with £. Note 

that the various assumptions which were made on lY3/YIl, dvu, 

etc... can be a posteriori checked to hold : It is possible to do 

so by using an exact solution, such as the one in Takeuchi and Saito 

(1972, p. 243), and assuming (in their notation) y = 0; the upper 

sign in their equation (99) corresponds to V modes, the lower one to 

C modes. 

1.2.4 Coupling at larger Z.
 

We will not discuss the large-i limit of the differential system
 

(1.5), since the theoretical study of surface waves has been quite
 

extensive in the past decades. It can be shown very easily that,
 

at large Z, (1.5) reduces to the classical equations governing surface
 

waves (Takeuchi et al., 1962; Saito, 1967). However, we would learn
 

nothing about overtones from the -rude model we started with, since
 

at high frequencies, when the Earth's curvature can be neglected,
 

a homogeneous medium yields only the fundamental Rayleigh wave 0S9.
 

On the other hand, it can be useful to examine the coupling
 

between V and C modes as a function of Z as a particular case of
 

coupling between two dynamical systems. This is an extremely frequent
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phenomenon in physics, and in all fields (quantum mechanics, solid
 

state physics, oscillatory dynamics, electrodynamics ....), its basic
 

effects (spreading out the eigenfrequencies and hybridizing the
 

eigenfunctions) are essentially smilar. Examples can be found in
 

most textbooks (e.g. Rocard (1948), Kittel (1963)). In order to
 

analyze the different forms of coupling occurring at various ranges
 

of P, let us think of the Earth as a physical system having two linear
 

unperturbed dispersion relations : o = w c (C modes), and w = w0 + U.k c
 

(V modes), where k is the wavenumber around the surface of the Earth,
 

U is the group velocity of the corresponding V modes. Although we
 

have seen that the exact mathematical formulation of the problem is
 

more intricate, the physical problem can be schematized by allowing
 

the dispersion relation to become :
 

(W - We ) (w - w - U.k) = c2 (1.23) 

where c is some measure of the intensity of coupling. As shown on
 

Figure 1.8, the dispersion curves are hybridized into the two
 

branches of a hyperbola:
 

w = [to + U.k + t ] ± / (wo + U.k - wc )2 + 4 ez (1.24) 

It is clear from Figure 1.8 that the range Ak of wavenumbers over
 

which the hybridization takes place increases with e, and it can be
 

shown from equation (1.24) that
 

Ak = 1 s (1.25) 
/ U 

where A is some measure of the maximum allowed perturbation of a branch.
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Figure 1.8. A simplified model of coupling between two families of
 
modes. Units are arbitrary. Straight lines show the unperturbed dis
persion curves. The hyperbolas represent hybridized dispersion curves
 
for both weak and strong coupling. Dots identify individual modes for
 
a model with discrete wavenumbers. Weak coupling is barely noticed, and
 
results only in slightly irregular pseudo-overtone branches (dash-dot
 
lines). Strong coupling, extending over several angular orders, gener
ates hybridized branches.
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Now, in the present case of the Earth, the coupling terms in
 

equation (1.5) are proportional to L2 . However, the physical quanti

ties directly comparable are the displacements ur and ua
 

Ex fm SaY" Pm(8),
Expressiqns from Saito (1967) show that ur P, whle 

ui -y3 dP2m(8)/dO . Therefore, for X>> 1, luG/Ur =( + ) 

Iy3/yI, and the physical intensity of the coupling is really
 

proportional to Z. Furthermore, wavenumbers k can take only discrete
 

valueq : k (k + )/a, separated by 6k = I/a. Then
 

i) at low Z, the hybridization occurs over a very small range
 

Ak, smaller than the unit interval Sk, and coupling goes unnoticed.
 

Only in the unfavorable case when a discrete value of k falls in the
 

close vicinity of the crossing point of two branches, do we observe
 

any hybridization of the modes. These are the few anomalous modes
 

observed within the V and C families. It is also interesting to note
 

that slight departures from the properties of a family, as found in
 

Tables 1.2, 1.4 and 1.6 are an indication of such a circumstance.
 

This translates into a bump in the curves on both Figures 1.5 and
 

1.6. A similar situation arises between 10S2 and IIS2 and
(3V2 


3K2), leading to the possible excitation of the latter by an earth

quake, despite its nature as a core mode. The observation of this
 

occurrence, by Dziewonski and Gilbert (1973) proved the existence of
 

K modes, and demonstrated the solidity of the inner core.
 

ii) at intermediate k, Ak is on the order of a few sampling
 

units 6k, and the two hybridized branches can be continuously
 

identified: The properties of the modes along them vary continuously
 

from one type of family to the other. However, the coupling range
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Ak is still small enough that multiple coupling between more than
 

two overtone branches does not take place : This is the general
 

behavior of H modes.
 

iii) at large Y, Ak >> 6k, the hyperbola degenerates into two
 

parallel straight lines, and the modes are totally hybridized, over
 

the whole spectrum (in fact coupling involves more than two branches
 

at a time). This is of course the case of R modes, giving birth to
 

a surface wave in which vertical and horizontal displacements are
 

completely mixed (see Figure 1.9).
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Figure 1.9. Frequency versus angular order plot of the R family of modes. Pseudo
overtones are labeled according to the new proposed nomenclature.
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1.3. A Classification and Proposed New Nomenclature for Spheroidal
 

Modes.
 

In this section, we give a formal classification of all
 

spheroidal modes used in the present study, which is compatible with
 

their physical properties, as discussed in the previous sections.
 

This classification formally extends the one outlined in Anderssen
 

et al. (1975), by identifying R and H modes and by providing general,
 

although revisable, bounds on the various families. Modes were
 

computer-sorted by meeting the following requirements:
 

1) K Modes : C > 26 km/s and U > 21 km/s 

2) C Modes . C > 26 km/s , U < 8 km/s and QMM8 < 500. 

3) V 	Modes: C > 26 km/s, 8 < U < 21 km/s , and 

QMM8 	 > 500. 

4) R Modes . C < 16.5 km/s 

5) H Modes : 16.5 < C < 26 km/s. 

Except for H modes in general, and apart from a very restricted
 

number of isolated cases of V and C modes, it is found that, as
 

expected, this classification separates modes along "pseudo-overtone"
 

branches with smoothly varying properties. We use the term
 

"pseudo-overtone", or "pseudo-branch" with reference to the study
 

of a 	similar behavior in the problem of coupled air and sea waves
 

(Press and Harkrider, 1966; Harkrider and Press, 1967). In a few
 

cases, in which coupling is important between V and C modes, both of
 

the 	coupled modes would fall into a given family. A small violation
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of the above requirements was then allowed to bring the slightly
 

hybridized mode back into its original family. It was also decided
 

to incorporate the two branches of Stoneley modes with phase
 

velocities around 8.5 and 16 km/s into the K family, due to their
 

low excitation coefficients. This helps define the pseudo-overtone
 

branches of the R family. Due to the close coupling between the
 

modes IS and 2S (k < 15), these modes were included into the H 

family, 

We now introduce a new nomenclature for spheroidal modes which
 

identifies the family and pseudo-overtone branch to which a mode
 

belongs. This nomenclature will use the five letters K, C, V, H, R,
 

and two indices : p (pseudo-overtone index) and £ (angular order
 

index). The following paragraphs discuss the assignment of the
 

index p in the five families. Figures 1.4 to 1.7 and 1.9 are frequency
 

vs. angular order plots of the various families. Extensive tables,
 

giving the correspondence between the new nomenclature and the
 

conventional one (taken as resulting from the use of model 1066A
 

(Gilbert and Dziewonski, 1975)) have been prepared, and are available
 

from the author on request.
 

1.3.1 K Core and Stoneley modes. See Figure 1 7.
 

The two Stoneley branches at low 'hase velocity are labelled
 

Then, modes with given £ are sorted by increasing
,J, and K. 


frequency. These modes are not excited by any realistic seismic
 

source.
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1.3.2 C,. Colatitudinal modes. See Figure 1.6.
 

The various pseudo-overtone branches are labelled so as to realize
 

the identity between pC and pT modes, as Z - 0. In this way,
 

there does not exist a 1C branch. This point should not appear as
 

a drawback to the new nomenclature: it simply means that the
 

corresponding modes are not part of the C family. In fact, they are
 

H modes. Figure 1.6 shows that bumps do occur along C pseudobranches,
 

bringing in negative apparent group velocities. This fact results
 

from coupling with V modes, as discussed in section 1.2.4.
 

1.3.3 V Vertical Modes. See Figure 1.5.
 
p-i
 

Similarly, the various pseudobranches are labelled so as to let
 

pg0 and pV0 coincide. Again, except for 0 V0 , there are no 0V 

modes, and the maximum number for k at a given p is itself a function 

of p. This fact simply means that the missing modes are part of the 

H family. 

1.3.4 R Rayleigh Modes. See Figure 1.9.
 
p-iZ
 

The only basic difference in nomenclature between pR and
 

nS results from the removal of the Stoneley modes OKI
 

1.3.5 1H Hybrid Modes. See Figure 1.4.
 

These modes, which correspond to intermediate coupling, lie at
 

a crossing-point between two trends: the decoupled pseudo-branch of
 

V and C modes, and the coupled surface wave trend of R modes. Note
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that the distinction between H modes and V or C modes, or between H
 

modes and R modes is extremely subjective and depends entirely on the
 

amount of distortion one is willing to allow within the physical
 

properties of V, C, or R modes, in other words, upon the allowance
 

made for hybridization, a quantity similar to A in equation (1.25).
 

Ideally, equation (1.5) shows that, except for £ = 0, coupling between
 

radial and colatitudinal displacements is never totally absent from
 

any mode, and all modes could therefore be considered H modes. This
 

is the basis for the conventional nomenclature, which, however, leads
 

to a loss of most physical insight in the properties of spheroidal
 

modes. We believe that the adopted values (16.5 and 26.5 km/s) for
 

phase velocity bounds on H modes maintain a reasonable balance
 

between the two tendencies. Note that the pseudo-overtone number,
 

p, of no V, nor C nor R mode, is dependent on those bounds. Should
 

the bounds change, a given mode might be moved out of his family,
 

into another one, but it will retain its p index as long as it stays
 

inside a given family. Given this evidence, and in order to achieve
 

the same stability for H modes, it appears that the only reasonable
 

nomenclature for H modes is to retain the conventional overtone
 

number, that is to simply have nS relabeled nHP.
 

We can now check the effect of the new nomenclature on the
 

five major drawbacks mentioned in section 1.2:
 

a) Once the values of p are used for both vertical V
 

and colatatudtnal C modes, and in the absence of occasional
 

coupling, the eigenfunction (y1 for V modes, Y3 for C modes) has p
 

zero-crossings inside the Earth. In the case of the simple system
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described in Section 1.2, this follows from the properties of the
 

spherical Bessel functions. In the case of a radially heterogeneous
 

Earth, this result comes from the Sturm-Liouville nature of the
 

uncoupled differential system, either for V or C modes (Ince, 1956;
 

p. 233).
 

ii) We have already shown that the radial modes nSo are
 

totally integrated in the V family, and that their apparent scarcity
 

was an artifact of the conventional nomenclature.
 

iii) The physical nature and general properties of a mode can 

be immediately read from its name in the new proposed nomenclature. 

They will not depend on the model used for their computation. (Except, 

obviously, in the case of H modes). In the example chosen in Section
 

1..1 (2 6 Si and 27SI), one of the modes will remain a K mode, and
 

will always be called 7K1 , the other one will stay a V mode, always
 

called 7VI, regardless of the influence on their relative periods of
 

the Earth model being used in the computation.
 

iv) Figures 1.10 to 1.12 show the variations of some properties
 

of V, C, K, and R modes along pseudo-overtone branches p = cst, and
 

compare them to similar variations along conventional overtone
 

branches, taken from Figure 1.2. A considerable improvement in the
 

smoothness of these properties is achieved, which clearly permits
 

interpolation along the pseudo-overtone branches.
 

v) The discussion in Section 1.1.3 has shown on a particular
 

example that U was closely related to U along a p-branch better
 

than along an n-branch. This is indeed a general trend, which can be
 

checked all over the K, C, V and R families.
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Figure 1.10. A comparison of the variation of the modes' group
 
(top) and along pseudo-overtones
velocity along conventional overtones 


of the new proposed nomenclature. The top figure is reproduced from
 

Figure 1.2.
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Figure 1.11. A comparison of the variation of the excitation
 
(K0 at a depth of 650 km) along conventional overtones (top)
 
and pseudo-overtones of the new proposed nomenclature (bottom).
 
The top figure is reproduced from Figure 1.2.
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Figure 1.12. A comparison of the variation of the attenuation
 

factor Q along conventonal overtones (top) and pseudo-overtones
 

of the new proposed nomenclature. The top figure is reproduced from
 
Anderson and Hart (1978).
 



-57

1.4 Conclusion
 

We have shown that the differences in the physical properties,
 

including group velocity, Q, and excitation functions, of the various
 

spheroidal modes have a theoretical origin in the absence of coupling
 

at low angular order. We have also shown that, apart from Inner Core
 

and Stoneley modes, there exist four families of spheroidal modes,
 

corresponding to three different ranges of coupling :
 

i) Decoupled modes (both V and C families)
 

ii) Modes with intermediate coupling (H modes)
 

iii) Fully coupled modes (R modes).
 

In an (Z,u) plane, the first group of modes correspond to a
 

domain studied mostly by core waves; the second one is the domain of
 

mantle body waves; the third one of surface wave theory. However,
 

the application of mode theory (especially through a variational
 

approach) to any of the domains could bring insight into the physical
 

properties of the deep mantle. For this purpose, in order to apply
 

the interpolation scheme developed by Kanamori and Stewart (1976) to
 

higher modes, it is necessary to have a good understanding of the
 

physical properties of the modes over which the interpolation is made.
 

The proposed new nomenclature should help provide that physical
 

insight.
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CHAPTER 2
 

The Observability of Isotropic Seismic Sources:
 

Application to the 1970 Colombian Earthquake
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2.0 Introduction
 

The purpose of this chapter is to study the observability of
 

isotropic components of the source mechanism of earthquakes having
 

much larger deviatoric moments, in particular the 1970 Colombian
 

event, which was the largest deep shock in the past twenty years.
 

The mechanism of this earthquake has been the subject of considerable
 

controversy since Dziewonski and Gilbert (1974) reported that the
 

main earthquake source was preceded by a slow, isotropic precursor.
 

Isotropic components of earthquake source mechanisms, if
 

observable, have important geophysical and petrological implications.
 

Bridgman (1945) and Ringwood (1967) suggested a connection between
 

petrological phase changes and deep earthquakes. Vaignys and Pilbeam
 

(1976) outlined a petrological model which predicts seismically
 

observable phase changes, although Dennis and Walker (1965) had
 

earlier suggested that these may be unobservably slow.
 

However, it has generally been assumed that earthquakes in the
 

downgoing lithosphere do not have an isotropic component, principally
 

on the basis of the very well-constrained fault plane solutions
 

obtained when the source is assumed to be a shear dislocation (Sykes,
 

1968). The first solution for the P waves from an isotropic source
 

("center of dilation") in a homogeneous isotropic medium was given
 

by Love (1944, p. 187). Isotropic sources were among the possibilities
 

considered by Japanese seismologists studying focal mechanisms by
 

using first motions; their early efforts are summarized by Matuzawa
 

(1964). On the basis of strain records at Naa, Peru, Benioff (1964)
 

suggested a volume change of 3% as part of a possible mechanism for a
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deep Peruvian earthquake. Systematic efforts to use the amplitudes
 

of seismic waves to search for a possible volume change in deep earth

quakes were first made by Randall and Knopoff (1970), who reported
 

both explosive and implosive components to seismic sources. The
 

former could not be explained by the phase-change argument.
 

Mendiguren (1972, 1973) gave the first rigorous method for identi

fying free oscillation eigenperiods by using the excitation criterion.
 

As part of his studies, Mendaguren found that for the deep Colombian
 

earthquake (31 July 1970; h=65,1 km; 1.50 S, 72.60W, mb=7.1), the ampli

tude of fundamental modes between 150 and 1200 seconds were in agree

ment with a double-couple step function source However, since the
 

excitation of fundamental Rayleigh waves by a deep isotropic source
 

is very ineffmcient, Mendiguren's results do not totally preclude
 

the existence of an isotropic source. Later, Dziewonski and Gilbert
 

(1974) and Gilbert and Dziewonski (1975) studied essentially the same
 

WWSSN records as Mendiguren had studed earlier, but used almost all
 

modes with periods longer than 80 seconds to invert for the moment
 

tensor. They concluded that there had been a significant isotropic
 

component to the source mechanism of the Colombian earthquake, and,
 

further, that the isotropic source was precursory to the main source.
 

There were several comments on this result (Geller, 1974; Hart and
 

Kanamori, 1975,; Mendiguren, 1976), and, in turn, several replies
 

(e.g. Kennett and Simons, 1976), reflecting the important geophysical
 

consequences of, the proposed precursor.
 

In the present study, we first give a general discussion of the
 

excitationof seismic waves by isotropic sources, and then discuss
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the Colombian deep earthquake in detail. Since the primary questions
 

regarding this event concern the nature of the source function at very
 

long periods, we use an ultra-long period record (response peaked
 

around 160 seconds) of the Colombian earthquake obtained at Pasadena.
 

Synthetic seismograms obtained by normal mode summation are used to
 

investigate the various proposed source mechanisms.
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2.1 The Relative Excitation of the Earth's Normal Modes by Deviatoric
 

and Isotropic Sources.
 

The excitation of the Earth's normal modes by seismic sources
 

has been extensively studied. Following simple case studies in the
 

early 1960's, Saito (1967) and later Takeuchi and Saito (1972) found
 

general expressions for the excitation of any normal mode by any
 

combination of point forces, including double-couples and dipoles
 

without moment. Abe (1970) first applied Saito's results to the
 

analysis of the free oscillations excited by the 1963 Kurile Islands
 

earthquake. Kanamori and Cipar (1974) gave computationally convenient
 

versions of Saito's expressions for a double-couple of arbitrary
 

geometry. Other derivations of the excitation of normal modes were
 

given by Gilbert (1970) and Gilbert and Dziewonski (1975), and also
 

by Phinney and Burridge (1973).
 

The possibility of using an expansion of the Earth's motion on
 

the complete set of its normal modes in order to construct synthetic
 

seismograms was first applied by Y. Sat8 and his colleagues; their
 

efforts are summarized in Landisman et al. (1970). In order to derive
 

the optimal conditions under which isotropic sources can be observed,
 

we will first study the relative amplitudes of the fundamental mode
 

Rayleigh waves and of the P waves excited by dislocations with
 

different source geometries and by isotropic sources, both deep and
 

shallow. Although Douglas et al. (1971) and Gilbert (1973) did
 

compare the amplitudes of P and Rayleigh waves for very shallow
 

isotropic sources at high frequencies, they were primarily concerned
 

with the mb:M discriminant, and did not consider very long periods,
s
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or 	sources significantly below the Earth's surface. It is well known
 

that isotropic sources, especially at depth, are less efficient than
 

deviatoric ones in exciting Rayleigh waves, but we will examine this
 

phenomenon quantitatively.
 

2.1.1. Rayleigh Waves
 

In the notation of Kanamori and Cipar (1974), the amplitude of
 

the vertical component of the spheroidal mode nS (overtone number n
 

and angular order £), excited by a double-couple is:
 

U(r,t) = y4(r) cos nWlt (K0 sRPO - K qP1 + K 	 (2.1) 

where the excitation coefficients K0, K1, K2, depend only on the
 

eigenfunctions at the depth of the source and on the kinetic energy
 

of the mode; the source radiation pattern coefficients PR' qR' sR
 

depend only on the geometry of the source and the azimuth of the
 
m 

station; and P is the associated Legendre function of azimuthal
 

order m and angular order £. It follows from the expressions for the
 

source coefficients as a function of dip (6) and slip (A):
 

sR 	= sinX sand cos6
 

=
qR sinA cos 26 sin + cosX cos6 cos 	 (2.2)
 

PR 	= cosA sand sin 24 - sinX cosd sin6 cos 2@,
 

that K1 is the excitation coefficient characteristic of a vertical
 

dip-slip fault, and K2 that of a vertical strike-slip. The coefficient
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of K0, sR' is non-zero for any non-vertical fault having a dip-slip 

component. Expressions for K0, KI, K2 are given by Kanamori and 

Cipar (1974): 

= 2Z + I 2(3Xs+2pS) S rs S S 

s rK0 4u 21S I yl(rs) y2 (r+s 3L Y3(rs)) 
n tC. +L12 r s s s s+2s 

2Z +I
 
K1 = w2 [Is+ y(rrS)
r (2.3) 

L 2 
= (+i) 

2t + 1 
K2 = w2[ S 2 S r y(r.) 

n l+t1 2t r s 

the notation usedbeing that of Kanamori and Cipar (1974), except for
 

the angular order (k in the present study).
 

For an isotropic source (taken as positive in the case of an
 

explosion), the vertical displacement is obtained from Takeuchi and
 

Saito (1972): 

4 S 0(24 
ur(r,t) = yI(r) cos nWkt N0 P (2.4) 

with 

2£I+ 1 -41s +rs
 
= 4_____n_+-1 2 S ss
 

t ss12] s s s -s 
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N is proportional (Harkrider, 1964; Gilbert, 1970) to the radial 

factor of dilatation D(rs ) where: 

si1 rr 008 0 Y. 8C. =SE + +S = D(r) 0( ) (2.6) 

and can be rewritten in a simpler form:
 

No =-- R + ) D(r) (2.7) 
0 T 2 1S +L25 s 

nroPI +LI)P
 

For large values of £ (and for all £ at a distance e = 90 ) the
 

0 1 2
 
Legendre functions P P Pk in (2.1) can be replaced by their
 

asymptotic expansion:
 

P (0) = (-1) k -(2/T sinG) cos [(Z + ) - ](2.8) 

The approximate relative excitation of a given mode by various
 

types of seismic sources can therefore be studied through the four
 

sets of numbers: K0/YT- N /T, K1AT- and K 23/2. Figure 2.1 

shows the variation of these parameters for the fundamental spheroidal 

modes (Rayleigh waves) with angular order 2 (or with period T) for 

three different source depths: shallow, intermediate and deep. 

The excitation coefficients No, K0 , K1 and K2 are-computed using 

Gilbert and Dziewonski's model 1066A, and for a moment of 1027 dyn-cm 

For the shallow source, the isotropic excitation N0// decreases 

slightly with increasing frequency relative to the deviatoric one, 

but remains basically constant. The situation is quite different for 

, 
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Figure 2,1. Values of the various excitation coefficients t- N ,
 
Z, A , K2 of spheroidal modes as a function of angular order
 

(t=2-150). A few values of the corresponding periods are shown. The
 
source is shallow (top), intermediate (center) or deep (bottom).
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the intermediate and deep sources. At a depth of 75 km we find that 

N0/1 decreases for periods shorter than about 200 s, while the 

other coefficients are still increasing in value. The relative 

excitation for the isotropic source is even weaker for a deep (h = 

650 km) source. Two effects can clearly be seen. i) For all modes 

with 2> 15 the coefficient of the isotropic source is much smaller 

than any of those for the deviatoric sources; ii) The isotropic 

coefficient dies off to a negligible value for a much lower angular 

order number (Z = 70) than the deviatoric coefficients (k = 120). 

The physical reason for the decay of the isotropic coefficient
 

can be illustrated by using the simple case of a Rayleigh wave in a
 

homogeneous half-space. The decay of the wave's amplitude with
 

depth involves two characteristic depths h and h , one for the
 

compressional potential 0 and one for the shear potential i"
 

2 2 
i/h = l c ' i/ht= 1- S! (2.10) 

For the case of a Poisson solid (a = r ), i/h = 0.8475 w/c and
 

1/h = 0.3933 w/c. The decay of the total dilatation s (and 

therefore of N0 ) is proportional only to 4. The decay of any other 

displacement (y' Y3) or stress (y2 ' Y4) involves a sum of terms with 

the depth dependences of both 0 and p,but 4 decays much more rapidly 

with depth than ip. Thus, no combinations of displacements and 

stresses decays faster with depth than 6 (and N0), and the ratio 

N0/K i will eventually behave as: exp[(l/h - 1/h )w z/c] . At z = 

- 2
 - 8
 
650 km, this is on the order of 10 for T 100 s and 10
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for T = 30 s. Although these figures are clearly only approximations
 

for the case of a spherical, vertically heterogeneous, earth, this
 

example provides physical insight into the relative efficiency of
 

isotropic and dislocation sources. Jeffreys (1928) used a similar
 

argument to show that deep sources will excite much smaller Rayleigh
 

waves than shallow ones, although he did not distinguish between
 

isotropic and deviatoric sources. Jeffreys' argument was later used
 

by Stoneley (1931) to verify the existence of deep-focus earthquakes
 

on the basis of their small Rayleigh wave amplitudes.
 

Figure 2.2 shows the relative Rayleigh wave excitation in the 

form of spectral radiation patterns. From Kanamori and Stewart
 

(1976), the spectral amplitude of the vertical component of Rayleigh
 

waves for a shear dislocation of unit moment is:
 

Usn a . yS(a) IsR K0 R K - iqRKq 1 . (2.11) 

where w is the angular frequency (in rd/s), a is the earth's radius,
 

A is the epicentral distance, U is the group velocity and all other
 

variables are defined above. The corresponding expressions for an
 

explosion is
 

Ur(W)l n yS - 0N (2.12)a ,(a) 

Although this expression is derived from the asymptotic expansion
 

of the Legendre functions, it is quite accurate, even at very long
 

periods, away from the epicentral and antipodal areas. The spectral
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Figure 2.2. Radiation patterns of Rayleigh waves for both a surface
 
event and a deep earthquake are compared for various source geometries
 
at three different periods. The station distance is A=600 and a common
 
moment rate of 1027 dyn.em/s is assumed. The different scales are
 
common to the four figures on a given line, but vary from line to line.
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radiation patterns plotted on Figure 2.2 are for A = 60 and a moment
 

of 1027 dyne cm. For the shallow source, the radiation pattern ampli

tudes for three of the different mechanisms are roughly comparable
 

at all three periods shown. In contrast, the amplitudes for the
 

vertical dip-slip fault are negligible because the free surface is a
 

node for this mechanism.
 

By comparing the spectra for the shallow and deep sources, we
 

can study the frequency and depth dependence for Rayleigh wave
 

excitation. For T = 240 s, the amplitude ratio of the shallow/deep
 

sources is about 2; at T = 150 s the ratio is 10; and at T = 70 s
 

the ratio is 500. We can also see that the amplitudes for the deep
 

strike-slip fault are about one-half those for the other deep shear
 

dislocations at all three periods. On the other hand, the relative
 

amplitude for the deep isotropic source grows smaller at shorter
 

periods. The isotropic source amplitude is about 5 times smaller at
 

240 a, 8 times smaller at 150 s and 17 times smaller at 70 s. Thus
 

the absolute amplitude of fundamental mode Rayleigh waves excited by
 

a deep isotropic source decreases very rapidly as the period decreases.
 

Even at relatively long periods (70 s), it is extremely difficult to
 

resolve the presence of a deep isotropic source from fundamental
 

mode Rayleigh waves, when a deviatoric source with equal moment is
 

also present.
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2.1.2. Spheroidal Overtones
 

In the case of spheroidal overtones, the relative excitation
 

efficiency of earthquakes and explosions depends primarily on the
 

physical nature of the mode. Using the classification given in
 

Chapter 1, 'V' modes, which contribute mainly to PcP and PKP, are
 

found to be relatively sensitive to compressional sources, since
 

Ni s usually almost as large as K0 , while QK1 and k2K2 are consis

tently much smaller. In contrast, for 'C' modes, which contribute
 

primarily to ScSsv the excitation efficiency of an explosion (N0 )
, 


is considerably smaller than that of a vertical dip-slip fault (K I).
 

The intermediately coupled 'W' modes, which contribute mainly to P
 

waves, show no definite trend for isotropic sources to be either more
 

or less efficient. Therefore, it is much easier to use a body-wave
 

approach to study the relative excitation by deviatoric and isotropic
 

sources for the earliest part of the record.
 

2.1.3. P waves
 

Following Chung and Kanamori (1976) we write the displacement at
 

the earth's surface generated by a source at depth h and distance A
 

as
 
R
 h 

U(t) = 2 g(Ah) R@,h (t - t) (2.13) 
a 47 phv 

where g is the geometrical spreading factor
 

g(Oh h vh sin 'h 1 dmh ] (2.14)2
g(A,h) = [hho o h o dh
 
p v sin A cos i dA(

0 0 0
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Figure 2.3. Spectral radiation patterns of P waves 
for both a surtace event and a deep earthquake
 
are compared for various source geometries. The dip-slip and strike-slip faults are both vertical,
 
and the pure thrust dips at 450. The station distance is A=600, and a common step-function moment
 
of 1027 dynes-cm is assumed.
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a is the earth's radius, ph' vh and ih are the density, velocity and 

take-off angle at the hypocenter, i is the incidence angle at the 

station, M is the moment time function of the source; t f ds/v is 

the travel-time of the wave to the station, and the factor of 2 is an 

approximation to the effect of the free surface at the receiver. 

R ,h is the radiation pattern coefficient: R ,h = I for an explosion 

and 

-R ,h = SR(3 cos2 ) - qR sin 2 h - PR Sn2h(2.15) 

for a pure double-couple.
 

Figure 2.3 compares the P-wave radiation pattern (the Fourier

transform of equation (2.13)) of an explosion, and 3 double-couple
 

sources (vertical dip-slip, vertical strike-slip, and 450 dipping
 

thrust) at both h=0 and h=600 km, at a distance A = 600. A moment
 

of 1027 dynes-cm, with step-function time dependence is used. Free
 

surface reflections for the shallow source (Fukao, 1971; Langston
 

and Helmberger, 1975) are not included. Also, equation (2.13) does
 

not include various tunneling and diffraction phenomena, which may
 

become important at very long periods.
 

The scale in Figure 2.3 is about a factor of two larger for the
 

shallow sources. In all cases, the excitation of P waves by compres

sional and deviatoric sources is on the same order of magnitude,
 

reflecting the small dependence of U() on depth. These results for
 

the excitation efficiency of P waves by the various sources are, to
 

this level of approximation, totally independent of frequency. The
 

spectral amplitudes for Rayleigh waves at periods from 240 s to
 

http:Sn2h(2.15
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70 s (from Figure 2.2) are about 50 to 100 times greater than those
 

for the P waves from the shallow source For the deep sources however,
 

the Rayleigh waves are 50 times bigger at T=240 s, but the P waves are
 

5 times bigger at T=70 s.
 

The relative efficiency of an explosion with respect to a double

couple remains about constant (and on the order of 1) with both depth
 

and frequency for P waves, but decays very rapidly with increasing
 

depth Ahd frequency for Rayleigh waves. Thus, in order to resolve
 

a possible isotropic component of the seismic moment tensor, an
 

analysis of the body-wave part of the record is desirable. The body
 

waves can be studied directly by using the initial P waves. However,
 

the normal modes corresponding to 2 waves have low shear energy, and
 

therefore high Q's. Thus, by waiting until modes with lower Q (higher
 

shear energy) have been attenuated, one can study the high Q 'compres

sional' modes, which are roughly equivalent to P waves, and are most
 

sensitive to an isotropic source (Dratler et al., 1971). Also, an
 

investigation of surface waves at the longest possible periods
 

(throngh the use of ultra long period records) is useful.
 

Figures 2.4 and 2.5 show synthetics starting 7 min after the
 

origin time, and lasting 90 min, at a distance A = 900 for four
 

seismic sources at different depths, computed through summation of
 

spheroidal modes. Fukao and Abe (1971) presented similar synthetics
 

for torsionai modes. The geometry of the sources and receiver is
 

summarized in Table 2.1. Figure 2.4 uses the ultra-long period "33"
 

instrument at Pasadena: The response of this seismometer is peaked
 

around 160 s. Figure 2.5 uses the standard WWSSN "15-100" instrument,
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Table 2.1
 

Geometric parameters of the three double-couple sources used in
 

Figures 2.4 and 2.5
 

Parameter Symbol Dip-Slip Strike-Slip 45-Thrust
 

Dip angle 6 900 900 450
 

Slip angle x 900 00 900
 

Azimuth of station
 
with respect to fault 00 450 45
 

Distance of station A 900 900 900
 

PR 0 1 0
 

qR 
 -1 0 
 0
 

sR 0 0 0.5
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Figure 2.4. Vertical component synthetic seismograms for 4 different source geometries at 6 different
 
depths. All seismograms begin 7 minutes after origin time and last 90 minutes. The station distance
 

0
is A=90 , the step-function moment 1027 dyn.cm, and the instrument used, the ULP33 in all cases.
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Figure 2.5. Vertical component synthetic seismograms for 4 different source geometries at 6 different
 

depths. All seismograms begin 7 minutes after origin time, and last for 90 minutes. The station dis

tance is A=900 , the step-function moment 1027 dyn.cm, and the instrument used, the WWSSN 15-100 in all
 

cases.
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whose response is peaked around 20 a. The response curves of these
 

instruments are shown on Figure 2.6. The synthetics were obtained
 

by summation of all spheroidal normal modes with frequencies less
 

than 0.0125 Hz; all modes with higher frequencies (T< 80 s) were
 

filtered out, to duplicate the conditions of Gilbert and Dziewonski's
 

(1975) study. (The filter had zero phase shift and decayed linearly
 

from unit amplitude at T=120 s to zero at T=80 s, the same low-pass
 

filter is used for all of the data and synthetics in later sections.)
 

The attenuation of the Earth was included by using Anderson and
 

Hart's (1978) model SL2. The same Q model is used in later sections
 

of this chapter.
 

Figures 2.4 and 2.5 demonstrate three points:
 

i) The amplitudes of P waves are essentially constant in all
 

cases.
 

ii) The excitation of Rayleigh waves dies off more rapidly with
 

depth for an explosion than for a double-couple.
 

iii) The Rayleigh-wave decay with depth for a given source is 

faster at shorter periods.
 

Similar, although not totally identical results were obtained for the
 

colatitudanal (SV) component of the record.
 

Because of the larger isotropic excitation at long periods, we
 

will concentrate in the next Section on an ultra-long period (ULF)
 

record of the Colombian earthquake at Pasadena (PAS).
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'ULP33', and ultra-long period 'ULP38' Pasadena instruments.
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2.2 Application to the 1970 Colombian Earthquake
 

The Colombian earthquake of July 31, 1970 is certainly the
 

largest deep event to occur in recent times. Its hypocentral param

et6rs, as determined by the USCGS are: Origin time 17:08:05.4 GMT;
 

epicenter 1.50 S, 72.60W; depth 651 km; mb=7.1. The latter figure
 

was revised to mb=6.5 by the ISC. Figure 2.7 shows the original
 

record of the event on the vertical ultra-long period "38" seismometer
 

(Gilman, 1960) at Pasadena (PAS) (A=55.1° , 4=314.10). This instrument
 

(T0=35 s; Tg=270 s) has its response peaked at 160 seconds (see
 

Figure 2.6). The usable portion of the record, from 17:00:00 GMT
 

(about 17 minutes before the first arrival) to 20:56:00 GMT, was
 

digitized at 2-second (later smoothed to 5-second) intervals. The
 

long period drift of the instrument was removed (top trace of Figure
 

2.9) by substracting the 600-second running average, and the record
 

was then low-pass filtered (top trace of Figure 2.10). Multiple
 

Rayleigh waves (RI, R2, R3) are readily observable, and the 1R2
 

overtone (the first higher mode, returning to the epicenter after
 

it has passed the antipode) can be clearly identified (by its group
 

velocity of 5.8 km/s) around 18:45 GMT. This record is unique in
 

that it provides both early and later phases which are on-scale and
 

usable.
 

The focal mechanism of the 1970 Colombian deep shock was initially
 

studied by Mendiguren (1972) whose first-motion solution requires
 

normal faulting. His solution was later used by Furumoto and Fukao
 

(1976) to investigate the seismic moment of the earthquake through
 

the use of synthetic surface waves. They obtained a value of
 

http:4=314.10
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Figure 2.7. Original ultra-long period record of the Colombian
 

earthquake at Pasadena. For clarity, the record has been plotted
 

on four lines.
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M = 2.1x 1028 dyn-cm, and observed a slight rotation of the surface

wave radiation pattern with respect to the focal mechanism from the
 

body-wave first motions. This rotation had also been reported by
 

Gilbert and Dziewonski (1975).
 

The body waves from this event were studied by Furumoto (1977),
 

who used primary P waves from WWSSN stations to infer a complex series
 

of multiple events with a duration of about 60 s, and a total moment
 

of 2.4x 1028 dyn-cm. The excellent agreement of the surface-wave
 

moment (measured at about T=200 s) and the much higher-frequency
 

body-wave moment suggests that nearly all of the deviatoric strain
 

release at the source had a duration of only 60 s, and did not include
 

any significant slow slippage of much longer duration. Strelitz (1977)
 

also studied the multiple event mechanism using body waves.
 

Table 2.2 lists the deviatoric focal mechanisms of Mendiguren
 

(1973), as used by Furumoto and Fukao (1976), and of Gilbert and
 

Dziewonski (1975). Figure 2.8 shows the isotropic and both deviatoric
 

moment rate functions obtained from Gilbert and Dziewonski's study
 

by resolving the individual principal values of the moment tensor
 

(their Figure 27 p. 265) into their deviatoric and isotropic components.
 

They found that a slight rotation of the principal axes occurred
 

during the earthquake, but this should not have a significant effect
 

at very long periods. In the present study, this rotation was
 

neglected and the axes were treated as fixed in their average
 

position.
 

It is possible to decompose the principal values of the moment
 

tensor into an isotropic source and two mutually perpendicular
 



Table 2.2
 

Parameters of the deviatoric focal sources used in the synthetics
 

Source Tensional Compressional

Strike Dip Slip axes Moment Source
 

S2. ,,,6 function 


deg deg deg deg deg 102 8dyn-cm
 

Furumuto and Fukao (1976) ]
 

Mendiguren (1973) 148 58 -99 244,103 32,165 2.1 Step
 

Gilbert and Dziewonski (1975):
 

D1 : ist deviatoric source 167 68 -87 255,112 82,157 See Figure 2.8
 

D2 : 2nd deviatoric source 298 76 -19 346, 93 255,112 See Figure 2.8
 

00 
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Figure 2.8. Moment rate function of both deviatoric (D1 D2) and of 
the isotropic (I) moment rate tensor components obtaineA by Gilbert 
and Dziewdhski. Details of the geometry are listed in Table 2.2. D1 
is essentially equivalent to the double-couple sources of Nendiguren 
and Furumoto and Fukao. 
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double-couples, as shown on Figure 2.8; this way, the double-couple
 

moment-rate function D is essentially that for Mendiguren's and
 

Furumoto and Fukao's fault geometry, and the results can be directly
 

compared. D2 is the moment-rate function accounting for the remainder
 

of the deviatoric source.
 

The moment of each mechanism is obtained by integrating the
 

area under each of the curves on Figure 2.8 D1 has a static moment
 

of -1.43x 1028 dyn-cm; I (the isotropic component) a moment of
 

-8.2x 1027, and D2 a moment of only -2.8x 1027. This corresponds to
 

values of the three deviatoric principal moments of (-1.43, 1 15 and
 

0.27) x 1028 dyn-cm, in disagreement with Gilbert and Dziewonski's
 

28
 
(1975, Table (9) page 266) listed values of (-1.53, 0.92, 0.61) x 10 

This is probably because they obtained their deviatoric values by 

extrapolating the spectra from their last data point (about 500 s 

period) to zero frequency (DC) (Dziewonski, personal communication). 

Thus, if the whole area under the moment-rate curves is used,
 

the deviatoric mechanism of the Colombian earthquake is found to be
 

essentially a unique double-couple, with a negligible intermediate
 

component. On the other hand, by extrapolating the spectra to DC,
 

Gilbert and Dziewonski found a significant intermediate component
 

and concluded that the mechanism differed significantly from a double

couple.
 

Synthetic seismograms were then computed for the various source
 

models, using the mode summation technique. Figure 2.9 shows a com

parison of the observed trace (detrended by subtracting the running
 

average) (a) with these synthetics. The synthetic for Furumoto and
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Figure 2.9. (a) Detrended trace of the ULP38 record at Pasadena.
 
(b) Synthetic for Furumoto and Fukao's source, using a step-function
 
moment of 2.1x 1028 dyn.cm. (c) Synthetic for an isotropic step-func
tion source of the same moment as (b), drawn on the same scale.
 
(d) Synthetic for Gilbert and Dziewonski's deviatoric source. (e)Syn
thetic for Gilbert and Dziewonski's isotropic source. (f) Synthetic
 
for Gilbert and Dziewonski's entire source. (d), (e) and (f) are on
 

the same scale.
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Fukao's (1976) step function double-couple (with a moment of 2.1 x
 

1028 dyn-em) -shown in trace (b)- is in excellent agreement with the
 

data. In addition to the agreement of the wave shapes and dispersion
 

of the fundamental Rayleigh waves R1 , R 2, R3, and of the second
 

arrival of the first Rayleigh overtone 1R2 , the general amplitude of
 

the high frequency content of the later part of the record agrees
 

with the data. For purposes of comparison, trace (c) is the synthetic
 

for a step-function isotropic source, with the same moment as (b).
 

Note that the P - to - Rayleigh ratio for (c) is much higher than
 

allowed by the actual data. Traces (d), (e), (f) are synthetics for
 

Gilbert and Dziewonski's (1975) source. Trace (d) is for the entire
 

deviatoric part of their solution (both DI and D2); note that the
 

amplitude of the later, high-frequency, "noise" seems somewhat too
 

low. Trace (e), for Gilbert and Dziewonski's isotropic source I,
 

has much lower amplitude than the deviatoric synthetic. Trace (f),
 

the sum of (d) and (e), is very similar to (d), because of the latter's
 

larger amplitude.
 

The influence of an isotropic component on the seismogram can be
 

systematically investigated by constructing linear combinations of
 

synthetics (b) and (c) (and (d) and (e)), with various ratios between
 

isotropic and deviatoric moments. The results are shown in Figures
 

2.10 (Furumoto and Fukao's source) and 2.11 (Gilbert and Dziewonski's
 

source). In each of these figures, the upper trace is the original
 

data, low-pass filtered at 80 seconds, since Gilbert and Dziewonski
 

(1975; p 216) have indicated that their solution loses significance
 

at higher frequencies; however this filter hardly changes the
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Figure 2.10. Top: Original trace at PAS, filtered at T > 80 s. 

Bottom Synthetics for seismic sources ranging from pure implosion 

(+1) to pure explosion (-l), obtained by linearly combining (b) 

and (c) on Figure 2.9. The number at right is F (see text). The ar

row points to the phase R The scale is common to all 11 traces,
 

and the total moment is iept a constant.
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Figure 2.11. Top Original trace at PAS, filtered at T >- 80 s.
 

sources ranging from pure explosionBottom : Synthetics for seismc 
(-1) to pure implosion (+l), obtained by linearly combining (d) and 

(e) on Figure 2.9. The number at right is the fraction F (see text).
 

The scale is common to all 11 traces, and the total moment is kept
 

a constant.
 



-90

ultra-long period record. For each of the 11 other traces, the number
 

at the right gives the fraction F of pure compression included in the
 

source (ranging from I for a pure implosive source to -1 for a pure
 

explosion, through 0 for the pure deviatoric source)-


M I 

F = , (2.16) 

where MI is the moment of the isotropic source (positive for an
 

implosion), and M. that of the deviatoric. The shape of the signals
 

is very insensitive to even a substantial compressional component.
 

Gilbert and Dziewonski suggest F=0.3, since their isotropic source
 

was multiplied by 3.3 to make the isotropic and deviatoric moments
 

equal. Most of the waveforms in Figure 2.10 and 2.11 are very
 

similar to those for the purely deviatoric case. Note, however, that
 

the phase 2R2 (the second arrival of the second Rayleigh wave overtone),
 

identified by the vertical arrow on the top trace, is accurately fit
 

only by the pure deviatoric source (or at most 20% explosion), using
 

Furumoto and Fukao's model.
 

It is also clear from Figures 2.9 to 2 11 that Gilbert and
 

Dziewonski's source fails to yield the substantial amplitudes at the
 

shortest (although longer than 80 s) periods, present in the first
 

half of the ultra-long period reocrd. Although this might reflect
 

a loss of significance of their solution with increasing frequency,
 

it might also result from the fact that they were unable to use the
 

first one or two hours of data (generally off-scale on most WWSSN
 

instruments). Since the omission of the first hour of data attenuates
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the high-frequency part of the spectrum, a correction for Q is required.
 

Gilbert and Dziewonski used the Q model MM8 (Anderson et al. 1965),
 

which was designed to fit the Q's of the fundamental torsional and
 

spheroidal modes, but not overtone data. Any departure of the actual
 

Q from this model would have a strong effect on the higher frequency
 

content of the spectrum, especially for overtones such as the and
1R2 


2R2 phases.
 

The theoretical inadequacy of Rayleigh waves to resolve an iso

tropic component of the moment tensor is further confirmed by a
 

systematic cross-correlation of the observed trace (Figure 2.9a) with
 

linear combinations of traces (b,c) (or (d,e)), windowed between
 

17:27:00 and 17:48:20 (R1) and between 19:20:00 and 20:02:40 (R2).
 

The results are shown in Figure 2.12.
 

As we discussed above, the isotropic source does not excite
 

Rayleigh waves efficiently; if the isotropic source were to be
 

resolved by use of a single record, the P waves should be used. A
 

visual comparison of the synthetics suggests that there is very little
 

change in the body-wave traces for -0.4< F< 0.4. Therefore, it seems
 

very unlikely that an isotropic source of the size (F = 0.3) given
 

by Gilbert and Dziewonski could actually be resolved from the data at
 

a single station. Note also that, in general, the synthetics in
 

Figure 2.11 (Gilbert and Dziewonski's sources) seem significantly
 

lacking in high frequencies, while the frequency content of the
 

synthetics calculated using Furumoto and Fukao's step function source
 

seem much better in this regard.
 

These results, strongly suggesting that an isotropic component
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Figure 2.12. Variation of the cross-correlation between observed
 
signal and synthetic, as a function of the amount of compressional
 
source allowed in the synthetic. The traces on the left are for Gil
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the cross-correlation lower than 0.6 are not plotted.
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cannot be resolved from a single high-quality record, are in agreement
 

with the suggestion by Gilbert and Dziewonski (1975), that a stacking
 

and inversion procedure should be used to search for the isotropic
 

source. Figure 2.13 shows a synthetic obtained for a standard long

period WWSSN instrument, with the same station geometry as PAS, and
 

for Gilbert and Dziewonski's deviatoric sources (a) and implosive
 

source (b). Trace (c) is the total synthetic. The compressional
 

contribution to the WWSSN synthetic is close to negligible, especially
 

after one or two hours, and a single seismogram cannot be used to
 

resolve the isotropic source. This suggests the use of several
 

stations, and inversion procedures. We examine the implications of
 

such an approach in the next section.
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WWSSN 15-100 Gilbert & Dziewonski's source 
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(C) 

1 60 min -x 1500 

Figure 2.13. Synthetic seismograms obtained for Gilbert and Dziewon
ski's source, assuming a WWSSN instrument. (a) Deviatoric sources
 
D and D2 only. (b) Isotropic source (1) only. (c) Full source.
 
Thls type of record was used in Gilbert and Dziewonski's inversion.
 
The geometry of the station is that of Pasadena.
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2.3 Problems Associated with Least-Squares Inversion
 

2.3 1 Outline
 

The source mechanism determined by Gilbert and Dziewonski (1975)
 

for the Colombian earthquake was obtained through a least-squares
 

inversion for the source moment tensor (Gilbert, 1970), which describes
 

the most general equivalent body forces for a point source (Geller,
 

1976). As a standard byproduct of the least squares inversion (Hamil

ton, 1964), estimates of the variance-covariance matrix for the moment
 

tensor elements were obtained. Gilbert and Dzewonski's estimate
 

(a, = 6.9x 1026) of the standard deviation associated with the iso
1 2 

tropic component (MI -L (Mrr + M8 + i) = -6.0x 1027 dyn-cm at 

400 s) is their most compelling argument in support of the existence
 

of the compressional precursor.
 

However, this estimate of the standard deviation aI must be
 

treated with caution since its computation rests on several implicit
 

assumptions.
 

In the inversion procedure used by Gilbert and Dziewonsk, it
 

is tacitly understood that the Earth model is known exactly, and
 

errors in it are ignored. It is well known that under such circum

stances, estimates of variances can be unrealistically low: a classic
 

example is the case of earthquakes in central California, which
 

presumably occurred on the San Andreas Fault, but were consistently
 

located on a plane 1 km to the west of the fault. This error occurred
 

because the flat-layered model used to locate earthquakes did not
 

reflect the actual, laterally heterogeneous, earth structure (Healy
 

and Peake, 1975). Another well-known case is the way that measurements
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of fundamental physical constants, such as the speed of light, or
 

Avogadro's number, have frequently changed by several standard
 

deviations over previous measurements, as systematic biases were
 

eliminated (Particle Data Group, 1971; 1976).
 

In the present case, the following are possible causes of
 

systematic errors in the moment tensor inversion:
 

(i) Most gross earth models are in reasonably good agreement
 

at long periods. However, none of these models fit the observed
 

great-circle group velocities very well, suggesting that further
 

improvement may be needed. Also, the effects of lateral heterogeneity
 

are not included, despite significant fluctuation of phases velocities
 

along great-circles (Toksoz and Anderson, 1966; Kanamori, 1970;
 

Okal, 1977). e
 

(ii) The observed spectral data must be corrected for the
 

effects of Q. Any errors in the Q model, which, especially for over

tones, is very poorly constrained, probably cause systematic errors
 

in the resulting moment tensor.
 

(iii) Although there exist very accurate calibration procedures 

using random telegraph signals (e.g. Moore and Farrell, 1970), the 

WWSSN calibration is performed by exciting the instrument with a 

step-function. This causes large uncertainties in the calibration 

at long periods, where the instrument response is small and decays 

as T 3 . Systematic errors at long periods could also be caused by a 

poor knowledge of the phase response.
 

A comparison of individual values reported for the moment of the
 

Colombian earthquake is made in Table 2.3. The existing scatter
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Table 2.3 

Moment Values for the Colombian Earthquake
 

Reference Moment (dyn-cm)
 

11.6 x 1027Mendiguren (1972) 


2.1 x 102$
Furumoto and Fukao (1976) 


Furumoto (1977) 2.4 x1028
 

Gilbert and Dziewonski (1975) 15.3 x10 27
 

Moment value for the main deviatoric component D 1 , essential

ly on the same plane as Mendiguren's source.
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((1.80± 0.56)x 1028 dyn-cm) in these values, obtained through
 

different, although careful, studies of WWSSN data, suggests that
 

the above-listed causes of error may indeed strongly affect the
 

results of the least-squares inversion performed by Gilbert and
 

Dziewonski (1975).
 

Finally, Gilbert and Dziewonski neglected the covariances
 

between individual moment components in computing the standard
 

deviation associated with the isotropic component M I. We will show
 

that these non-zero terms have a significant contribution.
 

In the following paragraph, we carry out a numerical experiment,
 

investigating in detail the various causes of systematic error.
 

2.3.2 Numerical Experiment
 

In this section, we use Gilbert and Dziewonski's method to invert
 

some fictitious "data" obtained by calculating theoretical spectra,
 

which we allow to be perturbed, relative to the model used in the
 

inversion, in order to study the possible effects of such unknown
 

parameters as lateral heterogeneity or uncertain instrument response.
 

We use the matched filter technique of Gilbert and Buland (1976),
 

more elegant than, but essentially equivalent to, the one used by
 

Gilbert and Dziewonski. Gilbert and Buland give a general scheme for
 

inverting to find the moment tensor as a function of frequency, by
 

considering the excitation of the earth's normal modes. Inversion
 

methods for moment tensor determination from body waves have also
 

been developed by Stump (1976) and Strelitz (1978), methods for
 

surface waves have been given by, Mendiguren (1977) and Aki and Patton
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(1977) 

The procedure outlined by Gilbert and Buland works as follows:
 

assuming we observe the spectrum U(wd) at several (say Ns) stations,
 

we can write the spectrum as:
 

U(w ) = H ( ) (w ), (2.17)1 


where U is a (complex) N -element column vector, H is a N x 6 (complex)
s s 

matrix describing the earth's transfer function (assumed to be known
 

exactly in the inversion), and I = (MrrN m8' M4 ,Mr,ro' mr, 
M0 )
 

is the unknown moment-rate tensor. For greater stability we assume
 

that f is constant within a frequency band of K distinct frequencies,
 

and get a generalized version of equation (2.17),
 

U =Hf, (2.18) 

which we solve by standard least squares techniques:
 

(HT I HTH) - U. (2.19) 

In practice, Gilbert and Buland break up t, U and H into their real 
and imaginary parts and solve for each separately (Gilbert, 1977; 

personal communication). In that case, I has 12 elements, has 

2KNs, and H is a 2KN s x 12 matrix. 

From standard least-squares theory, the variance-covariance 

matrix is given by: 

2V = (HT H) - a , (2 20) 



-100

where a2 is the variance of an individual observation. Usually a 2
 

is unknown, and it is standard practice, which was followed by Gilbert
 
2
 

and Dziewonski, to estimate a from the residuals. One defines
 

R = U - Hf (2.21) 

and then 
2 T 

2 RR 
 (2.22)

2K N - 12 

s 

is an unbiased estimate of the variance, which can be used in (2.20).
 

Our numerical experiment is carried out in the following way:
 

From an assumed moment tensor fo, taken as identical to Mendiguren's
 

solution (see Table 2.3), we compute an observed spectrum U, allowing
 

for some perturbation, say Hp, of the Earth model H. We then invert
 

U assuming an unperturbed model, the result being
 

(H T I HT= H) r (2.23)
 

The difference between f and f represents ,the effect of neglecting
 

the departure of the actual Earth (Hp) from the model used in the
 

inversion (H). The details of the computation of the elements of the
 

matrix H can be found in Okal and Geller (1978a), and will not be
 

repeated.
 

We use a fictitious network of 10 stations, evenly spaced in
 

azimuth from 00 to 3600, at a common epicentral distance of 600 from
 

a deep (h = 650 km) event. Both vertical and azimuthal components
 

are used in the spectrum . It was found (Okal and Geller'1978a)
 

that the additional information in the azimuthal component reduces the
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error on the corresponding components (Mee and M0,) of M, without
 

2
 
affecting its trace MI, thereby increasing a2 with respect to
 

a2( 0) or r (M0). 

a. Unperturbed Model
 

As a first step, we investigate the standard deviation, for a
 

perfectly known earth model. Table 2.4 shows the matrix V (see
 

equation (2.20)), for the real components of the moment tensor, sampled
 

aroundw= 0.023 (actually for b = 0.021, 0.022 ...... , 0.025) rad/s
 

2
 
(T = 273 s), with a maximum variance, a, normalized to 1. All of
 

the covariance terms are zero, except for those relating M68 M@,
, 


and Mrr These must be included in finding the relative standard
 

variance of the isotropic moment:
 

S-[a2(M ) + a (M ) + o2(M ) +
9 rr 66 

(2.24)
 

2 cov(Mrr HO0) + 2 cov(M00, M ) + 2 cov(M Mrr) ].
, 


Evaluating this expression for the values in Table 2.4 (with a
 

maximumma~mmva~ncvariance maxI= 1), we get a = 0.597. If the covariance 

terms were omitted from (2.24) (as apparently done by Gilbert and 

DzLewonskl), we would get the lower value a2 (incomplete) = 0.289, 

which yields a standard deviation about t tmes too small. This 

may partly explain the favorable standard deviation claimed by Gilbert 

and Dziewonski (1975). 
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Table 2.4 

Variance-Covariance Matrix V at w = 0.023 rad/s 

Mrr Mee 6Mre Mr4 M 

Mrr 0.598 0.505 0.505 0 0 0 

M86 0.505 1.000 0.377 0 0 0 

M 0.505 0.377 1.000 0 0 0 

Mre 0 0 0 1.000 0 0 

M 0 0 0 0 1.000 0 

m 0 0 0 0 0 1.000 
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b. Lateral Heterogeneity
 

In order to investigate the effect of lateral heterogeneity on
 

the inversion procedure, the matrix H was perturbed to allow for a
 

fluctuation of the phase velocities (or equivalently of the modes'
 

frequencies) along the great-circles through the ten sampling stations.
 

As a first order approximation, it can be assumed that the eigen

functions (or equivalently the excitation coefficients No, K01 K1,
 

K2, L1, L2) remain unchanged (Geller and Stein, 1978). A maximum
 

variation of 1.5%, corresponding to the reported observed lateral
 

heterogeneity in surface wave phase velocities (see for example
 

Part II of this thesis) was allowed. Overtones were allowed a less
 

pronounced fluctuation, in order to model the disappearance of lateral
 

heterogeneity with depth (Okal, 1977). Several focal mechanisms were
 

studied, and among simple mechanisms, it was found that a 45°-dipping
 

thrust (or normal) fault was most sensitive to the presence of lateral
 

heterogeneity. Results for the mechanism of the 1970 Colombian deep
 

shock as proposed by Mendiguren (1973) (6 = 580; X = -990) are
 

shown on Figure 2.14. The real and imaginary parts of the moment rate
 

tensor M, as resulting from the inversion are shown as + symbols in
 

the frequency domain, superimposed on the actual components M . The
 

standard deviation estimate (aI (incomplete) in the isotropic
 

component) is shown in the third column. Finally, the fourth column
 

shows the time-domain variation of the components of the moment-rate
 

tensor. Although the solution keeps fairly intact the 6-function
 

character of the main components of M, a totally artificial isotropic
 

component is obtained, whose amplitude can reach 40% or more of the
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TABLE 2.5 

RESULTS OF INVERSION IN THE PRESENCE OF LATERAL HETEROGENEITY 

PERIOD Mrr Mae M Mro piMAG. m 

(s) REAL IMAG REAL IMAG REAL IMAG REAL IMAG REAL IMAG Rt4L [MAG 

ACTUAL MOMENT USED (MENDIGUREN, 1973) : 

-0.888 0.0 0.0 0.0 0.888 0.0 -0.083 0.0 0.433 0.0 U.t33 0.0 
H 

MOMENT FROM INVERSION U' 

1256.6 -0.953 0.031 -0.029 0.016 0.893 0.003 -0.084 0.001 0.436 0.003 0..L34 0.000 
628.3 -0.930-0.008 -0.048 0.005 0.936-0.002 -0.072 0.038 0.509 0.040 U.180 0.048 
418.9 -0.345 0.073 0.582 0.079 1.295 0.015 -0.048-0.010 0.214-0.086 u..J81 O.0U0 
314.2 -0.788 0.484 -0.488 1.199 -0.172 0.652 -0.050-0.008 0.155-0.046 U.L16-O.00? d 
251.3 0.154-0.474 1.153-0.887 1.410-0.868 -0.034-0.020 0.186 0.049 U.u08-0.002 -, 
209.4 -0.965 0.253 -0.133 0.544 0.467 0.591 -0.038-0.009 0.215-0.054 0.s08 0.023 
179.5 0.043 0.085 0.089 0.407 1.035 0.345 -0.060-0.006 0.346-0.045 0.90 0.028 d 
157.1 -0.389 0.054 0.290-0.262 0.875-0.091 -0.057-0.016 0.320-0.010 O.a65 0.026 
139.6 -0.172-0.198 0.061-0.157 0.518-0.271 -0.045-0.003 0.248-0.009 O.u81-O0040 
125.7 -1.016 0.148 -0.351 0.177 0.463 0.264 -0.052 0.001 0.315 0.072 o.i98 0.045 0 
114.2 -0.261-0.203 0.507-0.218 0.786-0.174 -0.076-0.011 0.310-0.087 0.J18 0.014 
104.7 -0.687 0.016 -0.638-0.154 0.349-0,270 -0.080-0.001 0.371 0.042 u..02-0.022 
96.7 -0.712 0.033 0.149-0.240 1.088-0.021 -0.060-0.014 0.380 0.047 U.u75-0.004 
89.8 -0.848-0.175 -0.010-0.124 0.466-0.087 -0.065-0.011 0.388-0.099 u.J46-0.012 
83.8 -0.599 0.224 -0.473 0.760 0.378 0.826 -0.070-0.010 0.307-0.074 .O89 0.027 
78.5 -0.745 0.002 0.315-0.740 0.828-0.535 -0.077-0.008 0.332 0.041 J.u37 0.041 



TABLE 2.5 
(CONTINUED) 

ISOTROPIC MOMENT (1/3)*TR(M) 

PERIOD M a 
(S) REAL, IMAG INCOMPLETE ICOMPLETE 

1256.6 -0.029 0.017 0.0132 0.0175 
628.3 -0.014-0.002 0.1576 0.1360 
418.9 0.510 0.056 0.0987 0.1213 
314.2 -0.483 0.778 0.1172 0.1754 
251.3 0.905-0.743 0.1910 0.3091 
209.4 -0.210 0.463 0.0819 0.1177 
179.5 0.389 0.279 0.094? 0.1544 
157.1 0.259-0.099 0.0847 0.1369 
139.6 0.135-0.209 0.0881 0.1410 
125.7 -0.301 0.196 0.1086 0.1420 
114.2 0.344-0.199 0.0909 0.1398 
104.7 -0.325-0.136 0.0939 0.1501 
96.7 0.175-0.076 0.1579 0.2648 
89.8 -0.130-0.129 0.0876 0.1372 
83.8 -0.231 0.604 0.1108 0.1589 
78.5 0.133-0.424 0.0768 0.1069 
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deviatoric moment. Individual values are listed in Table 2.5.
 

The static value of MI has no significance since the mode inver

sion procedure cannot be extended to zero-frequency. In the present
 

experiment, M(0) was arbitrarily set equal to M(WI), bl being the
 

first non-zero sampling frequency, (wi= 0.005 rad/s) (see Table 2.5).
 

A similar approach, used by Gilbert and Dziewonski (Dziewonski, 1977
 

personal communication) is to extrapolate the value of M around 500 s.
 

In any case, lateral heterogeneity cannot be expected to play a sub

stantial role at very long periods, and the important result from
 

this experiment remains the large artificial isotropic component
 

resulting from the inversion at periods of 300 s or below, in any case
 

much larger than the standard variations obtained by Gilbert and
 

Dziewonski through the incomplete procedure, making use only of the
 

first line in (2.24) (see Table 2.5).
 

c. Instrument Responses
 

A similar investigation was made of the effect of deviation from
 

the instruments' standard magnification. The matrix H was kept
 

unperturbed, except for a random fluctuation of ± 20% in the amplitude
 

of the spectra. Figure 2.15 shows that such a perturbation has only
 

a very small influence on the results of the inversion.
 

d. Uncertainties in Q
 

Little is known on the values of Q for higher modes and some
 

recent studies (Nakanishi,1977; Okal, unpublished results) have shown
 

that previous estimates of Q for fundamental Rayleigh-wave might be
 

regionally inaccurate. In order to investigate the effect of such
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errors in the model H on the result of the inversion, we allowed a
 

simplified perturbation of the Q model used.
 

As a first approximation, Nakanishi's (1977) suggestion that
 

lateral variations in Q may be substantial, was not retained. It was
 

decided to artificially increase the overtone Q's by 30% while keeping
 

the fundamentals unperturbed. Results are shown on Figure 2.16 and
 

show that, while this effect remains much smaller than that of lateral
 

heterogpneity, it may further contribute to the departure of the
 

computed solution I from the actual source 10.
 

e. Finally, Figure 2.17 shows the results of a test run including all
 

three effects (lateral heterogeneity, instrument response, Q). It
 

is concluded that a purely artificial isotropic component of the
 

moment tensor, several tames larger than the standard variation claimed
 

by Gilbert and Dziewonski, might be the result of a systematic error,
 

due to uncertainties in the Earth model used for the inversion.
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2 4 Discussion and Conclusion
 

In order to compare the present results to previous studies, we
 

will now review all arguments which have been proposed in favor of, or
 

against, a compressional component in the source function of the
 

Colombian earthquake.
 

The proposed evidence for a precursive, isotropic component of
 

the moment tensor rests mainly on Dziewonski and Gilbert's (1974)
 

and Gilbert and Dziewonski's (1975) inversions of WWSSN records.
 

Section 2.1 has pointed out several inherent problems of this method:
 

Fundamental Rayleigh waves on WWSSN records are not excited efficiently
 

by a compressional source, also, the initial portion of the record is
 

off-scale at nearly all of the WWSSN stations. The poor response
 

of the WWSSN instrument at low frequencies (w3 amplitude response)
 

further diminishes the overall sensitivity of the record to an iso

tropic source.
 

Also, the synthetics shown in Figure 2.10 and 2.11 of the present
 

study suggest that the entire record is best fit without any compres

sional component. The synthetics which match the relatively large
 

frequency content of IR2 suggest that if an isotropic source is present
 

at all, it is far more likely to be explosive rather than implosive.
 

Similarly, the phase 2R2 is synthetized correctly only for the case
 

of the pure deviatoric source (see arrow on Figure 2.10). (However
 

this phase is close to the limit of the noise level in our signal.)
 

Finally, Section 2.3 has shown that the extremely low standard
 

variation claimed by Gilbert and Dziewonski for their isotropic
 

component of the moment, (even when corrected to include the
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covarlance terms in equation (2.24)) fails to take into account system

atic sources of error such as the presence of lateral heterogeneity,
 

which, alone, can result in an artificial isotropic moment as large
 

as 40% of the deviatoric one at certain frequencies. This destroys
 

the statistical significance of their result.
 

A further report supporting the existence of the compressional 

precursor was presented by Kennett and Simons (1976), on the basis of 

the strain record at Naha, Peru Although Hart and Kanamori (1975) 

used this record as evidence against the existence of the precursor, 

Kennett and Simons reported a significant correlation between this 

record (once detrended) and synthetics which included the precursor. 

However, the &aha record is extremely noisy, and their conclusion 

seems uncertain. Furthermore, in order to reconcile their conclusion 

with the total absence of any visible precursors on the WWSSN stations 

-4 
in South America, Kennett and Simons had to propose an w dependence
 

of the isotropic displacement. They stated that "This would eliminate
 

all chance of detecting this precursor using conventional long-period
 

-4 
seismographs". It seems likely that the w frequency dependence
 

would then preclude the detection of the precursive implosion from the
 

entire records on WWSSN seismographs, including the surface waves
 

used by Gilbert and Dziewonski in their 1975 inversion.
 

Luh and Dziewonski (1975) were able to obtain fairly good agree

ment between 75 observed and synthetic seismograms at WWSSN stations
 

by using Gilbert and Dziewonski's source functions. However, they
 

do not discuss the sensitivity of their fits to the presence of the 

isotropic component. 
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Mendiguren (1972, 1973), Furumoto and Fukao (1976) and more
 

recently Furumoto (1977) all have been able to achieve excellent fits
 

to the data without precursive or isotropic components in the moment
 

rate tensor, using data almost entirely from WWSSN records. Although
 

Furumoto's study was concentrated at periods less than 60 s, i.e.
 

outside Gilbert and Dziewonski's working interval in frequency, it is
 

interesting to note that no good correlation exists between primary
 

P-wave traces at San Juan, Puerto Rico (SJG) and Natal, Brazil (NAT)
 

(Furumoto, 1977 Figure 7), two stations nodal for the deviatoric
 

source. Since an isotropic source would be most evident at these
 

nodal stations and would tend to produce correlated waveforms, the
 

poor fit suggests an absence of any compressional source at periods
 

shorter than 100 s.
 

Gilbert and Dziewonski (1975) noted the very different time
 

functions of the deviatoric and isotropic components of the moment
 

rate tensor They noted that the deviatoric components of the moment
 

tensor were coseismic, and that only the isotropic source was pre

cursory. A somewhat different conclusion can be reached from Figure
 

2.8, in which we present the time functions for particular combinations
 

of the principal components of the moment rate tensor given by Gilbert
 

and Dziewonski (1975, Figure 27). In Figure 2 8, I, the isotropic
 

moment rate function, is the average of the three principal components.
 

Di s the moment rate function for a double couple on a fault plane
 

which is essentially the same as that inferred by Furumoto and Fukao
 

(1976). Finally, D2 is the moment rate function for a double couple
 

on essentially the plane defined by the T and null axes of Furumoto
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and Fukao's source.
 

A remarkable difference between the overall time constants of I,
 

D and D2 emerges from Figure 2.8. D1 has a time constant of about
 

100 s, but since Gilbert and Dziewonski did not consider data at
 

periods below 80 s, this time function is essentially equivalent to
 

the step-like time function which Mendiguren (1973) and Furumoto
 

and Fukao (1976) also found for the double couple on this fault plane.
 

On the other hand, both I and D2 have very long rise times of about
 

300 s. Moreover, both I and D2 appear to be precursory, in contrast
 

to D1 which is clearly coseismic, and not precursory.
 

Since these results were derived from WWSSN instruments which
 

have very poor ultra long period response (Figure 2.6), it is very
 

tempting to conclude that i) the source function DI, which corresponds
 

to the fault plane found by other investigators, is correct and
 

confirmed by the study in Section 2.2. ii) the very large time for
 

I and D2 suggests that the energy for these source functions is con

centrated at long periods (about 300 s), for which the response of
 

the WWSSN instrument is extremely poor.
 

We therefore suggest that I and D2 are probably the result of
 

noisy data at very long periods, and of systematic errors, as illus

trated by the numerical experiment in Section 2.3.
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CHAPTER 3
 

Shear Wave Velocity at the Base of the Mantle
 

From Profiles of Diffracted SH Waves.
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3.0 Introduction
 

The seismic properties of the deepest parts of the mantle, in the
 

vicinity of the core-mantle boundary (CMB) have been the subject of
 

extensive, and at times controversial, studies. Individual observa

tions of a decrease in S wave velocity near the CMB (Cleary, 1969;
 

Bolt et al., 1970) and of an associated low-Q zone (Mikumo and Kurita,
 

1968) have been reported. Some data obtained from free oscillation
 

Q studies (Anderson and Hart, 1978) have supported these reports,
 

although gross earth models (Gilbert and Dziewonski, 1975; Anderson
 

and Hart, 1976) have usually failed to yield a low shear velocity
 

zone at the base of the mantle. Furthermore, recent data on the Q of
 

0S2 (Stein and Geller, 1978) argue against such a low Q zone and
 

leave this question unresolved. Also, an increase in S-wave velocity
 

above the CMB has been proposed by Mitchell and HeImberger (1973) on
 

the basis of ScS to S amplitude ratios.
 

The seismic properties just above the CMB have significant
 

geophysical implications. A low-Q, low S-velocity zone might be
 

related to efficient heat transfer across the boundary, and possibly,
 

also, to a difference in chemical content in the deepest shells of
 

the mantle In turn, the composition of the deepest mantle bears
 

directly on our understanding of the differentiation process in the
 

Earth and other planets (Jacobs, 1975).
 

Most of the seismic evidence for a low S-wave velocity zone at
 

the base of the mantle comes from the study of SH waves diffracted
 

along the CMB into the shadow zone for direct S waves, as sketched on
 

Figure 3.1. We will call this phase Sd. Cleary et al. (1967),
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900 

, 18000 

Figure 3.1. A sketch of the phase Sd, used in this Chapter. It is
 
diffracted along the core-mantle boundary and emerges in the shadow
 
zone. The relative sizes of the mantle and core are real.
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Cleary (1969), Bolt et al. (1970) and Hales and Roberts (1970)
 

reported values obtained from Sd studies of, respectively, 7.06, 6.8,
 

6.99 and 6.78 km/s for the S-wave velocity at the base of the base of
 

the mantle, c, as opposed to Jeffreys' 7.30, Anderson and Hart's
 

7.23, or Gilbert and Dzaewonski's 7.25. Mondt (1977), using the
 

techniques of Scholte (1956), Richards (1970) and Chapman and Phinney
 

(1972) suggested a value of 0e = 8.03 km/s from the amplitude decay
 

of Sd waves with distance, but did not include Q, nor investigate
 

the apparent velocity of the phase across a profile. Theoretical
 

calculations of Sd using exact ray theory (Richards, 1970, Chapman
 

and Phinney, 1972) are very complex because geometrical optics are
 

not applicable to this phase However, synthetic seismograms for Sd
 

can be obtained in a straightforward manner through the use of normal
 

mode summation techniques.
 

In this chapter we present a set of three profiles of high

quality Sd data, sampling the CHB in two different geographical
 

areas, which suggest an S-wave velocity a = 7.22± 0.1 km/s immediately
 

above the CMB. We then compare an observed profile with synthetic
 

seismograms obtained by summing normal modes, for Gilbert and
 

Dziewonski's (1975) model 1066A, with very good agreement. In contrast,
 

observed amplitudes for Sd at large distances (A> 120 ) are incon

sistent with models including a small but finite ($= 0.73 - 2 km/s)
 

rigidity in the core, in a layer extending 25 km or more below the
 

CMB.
 

The existence of Sd was mentioned by Gutenberg and Richter (1935),
 

but the first reported data are found in Lehmann (1953). Cleary et al.
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(1967) first measured the apparent slowness of the phase. Their value 

(p=8.61 s/deg) corresponds to 8C = 7.06 km/s for a radius of the 

core rc = 3485 km. Later, Cleary (1969) proposed 8c = 6.8 km/s. 

However, both of these studies used a single station (Canberra, 

Australia) and several earthquakes at various azimuths. Errors in 

the earthquakes' hypocentral parameters can cause large uncertainties 

in the final results. The opposite experiment (using a single event 

recorded along a profile of stations at the same azimuth) has the 

advantage of eliminating epicentral errors, and of providing a fairly 

uniform waveshape. Bolt et al. (1970) used such a profile of dif

fracted SH waves for the (shallow) August 31, 1968 Dasht-e-Bayaz 

(Iran) earthquake, and obtained Oc = 6.99± 0.1 km/s. However, Sd 

picks for a shallow event are complicated by the presence of much 

surface structure. Also, the focal mechanism of the 1968 event 

(strike-slip on a nearly vertical fault; ( gee Niazi , 1969)) was 

quite unfavorable to excitation of Sd, especially at the particular 

azimuths used by Bolt et al. In this study, we use high-quality 

Sd profiles for three deep earthquakes (Tonga, 1967 and 1969; Japan 

Sea, 1973). Using deep earthquakes eliminates possible problems 

caused by later phases. Also, the focal mechanism excites Sd
 

efficiently for the 1967 Tonga and 1973 Japan Sea events (for which
 

accurate focal mechanisms have been published). The mechanism is
 

apparently favorable for the 1969 Tonga event.
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Figure 3.2. A comparison of the observed trace at Tucson for event 
1, with a synthetic obtained by
 

mode summation. The center trace represents the data, 
filtered to remove all periods less than45 s.
 

The same filter is used in the synthetic.
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3.1 Sd Data Set and Data Processing
 

Table 3.1 gives the source parameters of the three events we
 

used for the Sd profiles. The focal mechanism of event 1 (9 Oct 1967)
 

is given by Isacks and Molnar (1971), and that of event 3 (29 Sep
 

1973) by Furumoto and Fukao (1976). Sasatani (1976) recently published
 

a very similar focal mechanism for event 1, and proposed a value of
 

its seismic moment M0 = 5.7x 1026 dynes-cm from a study of primary
 

body waves. Figure 3.2 shows a direct comparison of the record of
 

this event at Tucson (TUC) with a synthetic seismogram obtained by
 

mode summation, and suggests M = 7 x 1026 dynes-cm, in good agreement
o 

with Sasatani's value. No focal mechanism has been published for
 

event 2, and the P-wave first motions are insufficient to properly
 

constrain it. Table 3.2 lists the stations we used with their
 

distances, azimuths and back azimuths.
 

The theoretical expression for the amplitude of a ray leaving
 

the focal sphere is given by Chung and Kanamori (1976):
 

R =- qL cos ih PL sin ih. (3.1)
 

Here, qL and PL are the radiation-pattern coefficients used in normal
 

mode synthesis and defined by Kanamori and Cipar (1974). They depend
 

on fault dip and slip angles, and on the azimuth of the station from
 

the fault strike; is the take-off angle at the focal sphere. The
 

optimal fault geometry for Sd profiles (RSH=1) excited by a deep
 

earthquake (ih = 300) is a vertical fault with a slip angle of about
 

600 and stations at the azimuth of the fault strike. Such a mechanism
 



Table 3.1 

Seismic Events used in the Study of Sd 

Number Area Date Epicenter Depth Origin Time Focal Mechanism 

km GMT Strike Dip Slip Reference 

1 Tonga Islands 9 Oct 67 21.10S 179.3 0W 605 17:21 46.0 540 850 -830 a,b 

2 Tonga Islands 10 Feb 69 22.7 0S 178.80E 635 22:58:03.3 Unconstrained at present 

3 Japan Sea 29 Sep 73 41 90N 130.9 0E 575 00 44.00.8 1860 830 900 c 

References (a) Isacks and Molnar (1971) (b) Sasatani (1976) (c) Furumoto and Fukao (1976) 
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TONGA 9 Oct 1967 

Figure 3.3. Map of 
the profile used for event 1. This is a Mercator projection whose baseline
 
is the mean great circle linking the epicenter and stations. Also shown are the earthquake focal
 

4mechanism (shaded area compressional), the theoretical radiation pattern for Sd, and the portion

of core-mantle boundary sampled by the profile.
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Table 3.2
 

Seismic Records used in the Study of Sd
 

Distance 

(0) 


91.64 


102.18 


112.00 


115.00 


117.06 


122.72 


129.83 


151.86 


94.06 


104.04 


110.44 


114.42 


119.49 


132.27 


104.56 


118.12 


126.37 


Back
 
Azimuth Azimuth
 

(0) (0)
 

54.7 245.9
 

53.2 252.9
 

53.5 260.9
 

53.7 263.4
 

52.4 265.7
 

50.0 272.3
 

45.3 282.9
 

48.6 299.3
 

55.5 245.6
 

58.4 252.2
 

51.8 257.7
 

54.3 260.6
 

53.3 265.5
 

45.9 283 1
 

13.5 348.1
 

18.4 345.7
 

15.0 348.6
 

Code Station 


LUB Lubbock, Texas 


FLO Florissant, Missouri 


SCP State College, Penna. 


PAL Palisades, New York 


WES Weston, Massachusetts 


HAL Halifax, Nova Scotia 


STJ St. John's, Newfoundland 


PDA Ponta Delgada, Azores 


LUB Lubbock, Texas 


OXF Oxford, Mississippi 


AAM Ann Arbor, Michigan 


SCP State College, Penna. 


WES Weston, Massachusetts 


STJ St. John's, Newfoundland 


BEC Hamilton, Bermuda 


SJG San Juan, Puerto Rico 


TRN Trinidad, Trinidad & Tobago WWSSN 


Instrument 


Event 1
 

WWSSN 


WWSSN 


WWSSN 


Press-Ewing 


WWSSN 


Canadian 


Canadian 


WWSSN 


Event 2
 

WWSSN 


NWSSN 


WWSSN 


WWSSN 


WWSSN 


Canadian 


Event 3
 

WWSSN 


WWSSN 
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causes a large amount of shear energy to be radiated downward; the
 

Sd amplitude, to first order, can be considered as depending on the
 

value of RSH for grazing incidence on the CMB. Such large amplitudes
 

of downgoing S waves also lead to excellent multiple ScS phases.
 

The three earthquakes used here were previously used in multiple ScS
 

studies (Okal and Anderson, 1975; Yoshida and Tsujiura, 1975; Sipkin
 

and Jordan, 1976). Also, the 1967 Tonga event was used in a recent
 

SKS study (Kind and Mdller, 1977). The radiation pattern factors for
 

RSH 
the two events whose mechanisms are known are = 0.901 (event 1)
 

and RSH = 0.811 (event 3) at the azimuths of our profiles. Thus, the
 

quality of the data is considerably better than in previous studies
 

(For the Dasht-e-Bayaz event recorded at American stations, R
S H
 

0.08).
 

Records were rotated into SH polarization whenever the station's
 

back azimuth was more than 10 degrees away from natural polarization.
 

Records at Canadian stations and PAL were equalized to the amplitude
 

and phase response of the WWSSN instrument. We will concentrate on
 

event 1, because of the excellent quality of the data, and the well

determined focal mechanism, however, all of our results are confirmed
 

by events 2 and 3.
 

Figure 3.3 shows the profile for events 1 and 2. The data for
 

event lare shown on Figure 3.4. Sd has a very sharp onset at all
 

stations up to STJ. The identification of Sd at PDA is more difficult
 

on the unfiltered record, because of the smaller signal and larger
 

noise level of this island station, but Sd is clear on the filtered
 

record (Figure 3.5). The phase sSd is also present on all records.
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Figure 3.4. Observed data profile for event 1. The seismograms
 

have been equalized to a standard magnification of 1500, and
 
rotated into SH polarization. The oblique lines show the result of
 

alignment of the sharp onsets with a straight edge ( p = 8.44
 

s/deg ), and lines of constant slowness corresponding to veloci

ties of 6.8 and 7.6 km/s at the core-mantle boundary.
 

ORIGINAL PAGE IS
 
OF POOR QUALITY
 



-128-


OBSERVED FILTERED PROFILE 
Event I TONGA 9 Oct 1967 

1743GMT 47 49 51 53 55 57 59 01 03 05 07 
I I I I I I I I 

0 LUB 

05- A VV F-LO 

0 SCP 
PAL 

z ~WES 

Th 45 $ HPDL 

TIME (mam) 

Figure 3.5. Observed profile for event 1 (from Figure 3.4), filtered 
at T > 45 s. Note that Sd and sSd are detected all the way to FDA. 
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Given the sharpness of the onset, a visual alignment of the first
 

arrivals can be made using only a straight edge. The result, shown
 

on Figure 3.4, is po = 8.44 s/deg, or 8, = 7.21 km/s. Estimating
 

the error bar for this number is difficult, although-values of 6.8 and
 

7.6 km/s (also shown on Figure 3.4) clearly do not fit the data. A
 

second measurement of 6 was made by cross-correlation of the various
 

records. After the Sd phases were isolated and the signal energy
 

normalized to unity, we computed the cross-correlation functions
 

Y& y between the signals. If AI is the epicentral distance of
 

the i-th station, we then compute:
 

F = 	Z E y (t - p. A ) y (t - p. A) (3 2) 

for various values of the slowness p. It is easily seen that:
 

F = 	E E (y Iy) t ) , (3.3) 
ij i I Ij 

where the cross-correlation is taken for the lag: t = p.(A - A ) 

F is a measure of the quality of the fit between all 8 traces when 

time-lagged with a slowness p. Figure 3.6 shows the (smoothed) 

variation of F as a function of p. Its maximum is reached for
 

po = 8.41 s/deg, a value in very good agreement with recent gross
 

earth models (Gilbert and Dziewonski, 1975; Anderson and Hart, 1976).
 

F is 95% of its maximum for 8.38< p< 8.48 s/deg, and 90% for
 

8.37<p< 8.53 s/deg.
 

In principle, the theoretical shape of the diffracted pulse
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Figure 3.6. Variation of the cross-correlation function F as a function
 

of slowness p (or equivalent shear velocity at the CMB), for event 1.
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Figure 3.7. Experimental profile and variation of the cross-correlation
 

function F for event 2.
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should change with distance (Chapman and Phinney, 1972), possibly
 

leading to a bias in the cross-correlation. However, the amount
 

of distortion should be minimal for SH waves. Also, the excellent
 

agreement in our study between the values of p0 obtained at high
 

frequency (by aligning the sharp onsets) and at low frequency shows
 

that this effect is probably small.
 

Figures 3.7 and 3.9 show that similar values for p are obtained 

for evpts 2 (P0 = 8.39 s/deg) and 3 (po = 8.37 s/deg). (The 

geographical layout for event 3 is shown on Figure 3.8) However, 

the relatively lower quality of the data does not permit a direct 

measurement of dT/dA from the onset of the wave, especially in the 

case of event 3, whose source mechanism is very complex. Figure 3.10 

shows an average of the three cross-correlation curves from Figures
 

3.6, 3.7 and 3.9. This suggests a value of po = 8.40 s/deg. F is
 

within 90% of its maximum for 8.34< p< 8.53 s/deg. We will write
 

this as po = 8.40 68:s/deg, or simply Po = 8.43i 0.1 s/deg. 

The error estimate of 0.1 s/deg is somewhat arbitrary, since the 90%
 

level of the correlation function F cannot be directly related to
 

more conventional statistical error estimates. It should be inter

preted only in the context of Figure 3.10.
 



°°C 

JAPAN SEA, 29 Sep 1973 

Figure 3 8. Map of the profile used for event 3. This is a Mercator projection whose baseline
 

is the mean great circle linking epicenter and stations. Also shown are the focal mechanism of
 

the earthquake (shaded area compressional) and its theoretical radiation pattern for Sd.
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Figure 3.9. Experimental profile and variation of the 
ross-correlation function
 
F for event 3.
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Figure 3 10 A composite of the three curves on Figures 3 6, 3 7 and
 
3 9 Each curve is weighted according to the number of stations involved
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3.2 Interpretation
 

In the previous section, the slowness of Sd across three
 

profiles of stations was found to be dT/dA =P = 8.43 s/deg. 

Inferring the shear-wave velocity at the CMB, 8c, from this slowness
 

is not completely straightforward. If Sd is actually diffracted along
 

the core-mantle interface, then po = (7/180)• (rc/), where rc is
 

the radius of the core (3485 km). However, some models proposed
 

in the literature (Cleary et al., 1969; Mondt, 1977) have a low

velocity zone at the base of the mantle. This could lead to an SH
 

"pseudo-head wave", propagated above it. 
 The information contained
 

in p would then be a trade-off between the maximum S wave velocity
 

(max) and the thickness of the low-velocity layer, h

p = (7/180) • (r + h)/ max (3.4) 

Several problems arise if such models are applicable. First, treat

ing 5max from equation (3.4) as the exact shear-wave velocity at the
 

deepest point of the ray is only valid at infinite frequency. At a
 

finite frequency, the wave slowness will represent some average of
 

the shear velocity over a thickness on the order of one wavelength.
 

The value of p resulting from the cross-correlation should then be
 

frequency-dependent for a model with a velocity gradient. The
 

excellent agreement between the high-frequency values of p0 from the 

first arrivals (8.44 s/deg) and the broad-band values from cross

correlation (8.43± 0.1 s/deg) suggests that there is no appreciable
 

frequency dependence of po. To further investigate the possible
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Figure 3.11 Variation of the cross-correlatmon function F with
 
slowness and frequency, for event 1. The ranges of the band-pass

filters used are shown (in s) at the top of the-f~gure. The full
 
line is the result of aligning the sharp onsets. The vertical scale
 
is arbitrary, and the curves have been shifted along it to improve
 
clarity.
 



-138

frequency dependence, we ran the cross-correlation program after
 

band-pass filtering the data from event 1. An observable frequency
 

dependence of p should yield different peak values at different
 

frequencies. In fact, Figure 3.11 shows that p is essentially
 

frequency-independent. Although a second peak appears around p
 

7.95 s/deg for the higher frequency band (0.05 - 0.2 Hz), this is
 

an artifact of the calculation: a periodicity of 0.4 to 0.5 s/deg
 

is expected in F(p), because the average distance between couples of
 

stations is 210 and the predominant frequencies are 0 10 - 0.125 Hz.
 

(A similar indeterminacy occurs in the calculation of surface-wave
 

phase velocities by spectral analysis (ToksZz and Ben-Menahem, 1963)).
 

A second argument against the frequency dependence of p comes from
 

ray theory. Helmberger (1968, and personal communication) has shown
 

that the shape of a head wave is emergent in nature, the step-function
 

response of a head wave being a ramp function. The profile of sharp
 

onsets observed experimentally (Figure 3.12 is a close-up of the 

record at STJ, A 1300) is inconsistent with this model). 

Also, if p0 is interpreted in terms of refraction along a high

velocity layer, above the CMB, one obtains amax = 7.44 km/s for a 

=100 km-thick low-velocity zone, or max 7.64 km/s for 200 km.
 

(These thicknesses have been proposed by Mondt (1977).) These high
 

values of max are difficult to reconcile with other seismological
 

data (vertical ScS travel-time, free oscillation periods, etc.) and
 

would also have to be explained on geochemical grounds. Finally,
 

section 3.3 will show that synthetic seismograms obtained by mode
 

summation are incompatible with Oc = 6.8 km/s and suggest a very small
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Figure 3.12. A close-up of the phase Sd at STJ ( A = 129.850 ) for event 1. Note the 
sharp onset of the phase, which cannot be reconciled with the behavior of a head-type 
wave. 
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extent to any possible low-velocity zone.
 

We therefore consider that possible frequency-dependence of po
 

can be ruled out. a is considered as being essentially constant over
 

a 100 or 200 km thick layer, and having a value of 7.22± 0.1 km/s.
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3.3 Synthetics of Sd
 

We will investigate the velocity structure at the CMB by studying
 

the decay of the Sd amplitudes along the profile of event 1. At
 

periods greater than 45 s, to which our present synthetics are re

stricted, it is not possible to resolve the Q structure near the CMB,
 

since the effect of Q on Sd amplitudes is very small. Records
 

filtered at T> 45 s therefore provide a tool to investigate the purely
 

elastic decay of Sd with distance, involving only propagation effects,
 

and no attenuation. As an alternative to the full wave theory approach
 

to this problem, we calculate synthetic seismograms by summing all
 

the normal toroidal modes of the Earth, following the procedure
 

described by Kanamori and Cipar (1974), but including all overtone
 

branches. We first use a set of normal modes computed from model
 

1066A (Gilbert and Dziewonski, 1975) and no attenuation. All 2021
 

modes with periods greater than 45 seconds are included. A zero-phase
 

low-pass filter with linear amplitude response between 1/45 Hz and
 

1/70 Hz is used to compensate for the sharp cut-off at 45 s period in
 

the synthetics. A similar filter is also applied to the data.
 

Results are shown in Figure 3.13, and compared to the filtered trace
 

reproduced from Figure 3.5. The agreement between them is very good.
 

This figure shows that the synthesis of long-period body waves 

by summation of normal modes is practical and convenient for phases 

such as Sd, which violate geometrical optics. This point was first 

demonstrated by Yasuo Satd and his colleagues (e.g. Landisman et al. 

(1970)) 

Furthermore, it was observed that the modes with phase velocities
 



-142-


OBSERVED FILTERED PROFILE SYNTHETICS 

43 45 W 49 53 55 57 59 61 63 65 67 , 5 T lawC51 5 5 800 M 

LUB 

~PAL 

WES 

HAL 

T> 45 s 

PDA 

4 A bb bI bIA A 17,4345 47 49 k 53 55 57 18 02 
TIME (mn) TIME ,mirO 

Figure 3.13. A comparison of the observed filtered profile for event 1
 
(left; reproduced from Figure 3.5), with a synthetic profile (right)
 
obtained by mode summation, using model 1066A.
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smaller than 9 km/s contribute very little to any synthetic of Sd.
 

This should be expected since these modes correspond to rays bottommng
 

at least 1250 km above the CMB, and have an important contribution only 

to the later mantle phases, such as SS. In testing models correspond

ing to different structures, it was decided to restrict the synthetics 

to modes with C > 9 km/s. 

These synthetics provide an easy way to test alternate models.
 

At periods greater than 45 s, only a "strong" low-velocity zone above
 

the CMB can result in substantial variations in the Earth's structure
 

and normal modes. We therefore investigated only a model called
 

'LVZ' in which the S-velocity decreases linearly from 7.20 to 6.80
 

km/s over 200 km above the CMB. The value Oc = 6.80 km/s was the
 

one proposed by Cleary (1969).
 

Figure 3.14 shows the layout of the normal modes of model LVZ
 

superimposed on the overtone branches of the unperturbed model 1066A.
 

As expected, only modes with phase velocities around 13 km/s, corre

sponding to rays bottomming in the deep mantle, are perturbed and
 

this deviation increases with frequency, remaining very small for
 

T> 45 s As a result, synthetic seismograms are only slightly
 

perturbed However, a decrease in the phase velocity of the phase
 

Sd across the profile is observed. Figure 3.15 compares synthetics
 

with experimental data at the farthest station with a high-quality
 

record (STJ). Model LVZ is clearly too slow. It is important to
 

note that the time difference between the peaks of Sd for models
 

1066A and LVZ (about 17 s)reflects almost exactly the difference in
 

geometrical travel time along 320 of CMB:
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Figure 3 14 Frequency versus angular order plot of the modes with
 
phase velocity greater than 9 km/s, and period greater than 45 s, for
 
model LVZ, including a low-velocity zone at the base of the mantle
 
The + signs are the zndividual modes for model LVZ, the full lines the
 
regular overtones for the unperturbed,model 1066A
 



Sd STJ 9 OCT 67
 

DRTP 

LVZ 

17 43GMT 

L MIN 

Figure 3 15. A comparison of the filtered observed data at STJ (center)
 
with synthetics computed for both the unperturbed model 1066A (top) and
 
model LVZ (bottom). The vertical ticks, all aligned on the same two
 
lines, show the better agreement of the data with 1066A, rather than LVZ
 
The separation in time of the peaks of the 1066A and LVZ synthetics is
 
approximately 17 s.
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12 1I 


6t = L Tr ( - ) 8S_35
180 c 6.8 7.25 = 18 s. (3.5) 

This confirms the validity of interpreting the apparent slowness of 

the wave across the profile along the rules of geometrical optics 

in terms of the velocity at the CMB, ac, and rules out a low-velocity 

zone featuring a decrease of 0.4 km/s over 200 km. Figure 3.15 

further suggests that a possible low-velocity zone would have to be 

much less pronounced, in particular much thinner, to keep the synthetic
 

at 45 seconds unperturbed and in agreement with the data at STJ. It
 

is clear that synthetics including modes down to periods of about 15
 

seconds would further constrain the extent of any such possible
 

feature.
 

Another important problem which can be investigated using syn

thetics is the possibility of non-zero rigidity of the core immedi

ately below the CMB. This has been proposed from the amplitudes of 

S and ScS (Balakina and Vvedenskaya, 1962), of multiple ScS (Sato
 

and Espinosa (1967), and of P and PcP (Ibrahim, 1971). Ibrahim's argu

ments were criticized byfBuchbinder and Poupinet (1973), who proposed
 

instead a thin (4 km) liquid layer of light (p = 6 g/cm3 ) material
 

separating mantle and core. Such a liquid layer clearly does not
 

affect Sd and, therefore we have not investigated this model. On
 

the other hand, Anderson and Kovach (1964) proposed a maximum rigidity
 

p< 2x 1010 dynes/cm2 (or $< 0.5 km/s) on the basis of the relative
 

amplitude decay of multiple ScS. A finite rigidity (on the order
 

of M 5 - 2 x1011 dynes/cm 2) of the core would have to be reconciled
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Table 3.3 

Parameters of Models with a Rigid Layer at the Top of the Core
 

Model Rigidity Shear-wave Velocity Thickness
 

(dyn/cm2) (km/s) (km)
 

OC1 4.0xI011 2.00 50
 

C2 4.0x1011 2 00 200
 

C3 1.0xi0 I 1.00 35
 

KC4 5.3 x 1010 0.73 25
 



Shear velocity (km/s) 
0 5I I I I I 
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Figure 3 16 Sketches of the models used in the investigation of the
 
possible rigidity of the upper part of the core. All models are iden
tical to 1066A in the mantle and below a depth of 200 km, measured
 
from the core-mantle boundary.
 

10 
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with a large amount of apparently contradictory seismic data (vertical
 

ScS time; free oscillation eigenperiods, etc...). We chose to investi

gate if the existence of a layer of slightly rigid material just
 

below the CMB is compatible with Sd amplitudes.
 

For this purpose, we use four models, which are described in
 

Table 3.3, and sketched in Figure 3.16. We do not use models with
 

thinner rigid layers, since these must be investigated at higher
 

frequencies. The values of the rigidity used in these models are
 

in the range proposed by Balakina and Vvedenskaya (1962) and Ibrahim
 

(1971).
 

The layout of the normal modes of model OC1 is shown on Figure
 

3.17. As expected from mode-ray duality arguments the modes converge
 

back to the unperturbed overtones of model 1066A in the vicinity of 

C 110 km/s. However,the modes with large values of C (corresponding
 

to rays hitting the core at steep incidence) are arranged along
 

strongly perturbed branches, whose separation in frequency reflect
 

the longer vertical ScS travel time of model Cl (Gilbert, 1975;
 

Okal, 1978a). Similar layouts would be obtained for the other three
 

models.
 

Synthetics were computed for event 1, for which both excellent
 

data and an accurate focal mechanism are available. Figure 3.18
 

compares the various synthetics with the data. In all four models,
 

Sd disappears as a distinct seismic phase around 1150: in models
 

SCI and $02, the phase simply vanishes, while in models 803 and $C4, 

which have lower rigidities, the corresponding energy is smeared 

out, perhaps as a result of interference phenomena in the rigid layer. 
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Figure 3 17. Frequency versus angular order plot of the modes wth
 

phase velocity greater than 9 km/s, and period greater than 45s, for
 

model OCI. The + sgns are the indvdual modes for model BCl, the
 

full lnes the regular overtones for the unperturbed model 1066A.
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This faster amplitude decay is considered as being caused by s6ismic 

energy being trapped in the slightly rigid layer, perhaps as a kind 

of "upside-down Love wave" 

Among the models we have investigated, the only one compatible
 

with the data in the frequency range T> 45 s is the conventional
 

model 1066A. Thus, the present data suggest that the effect of CMB
 

structure on waves with T> 45 s is indistinguishable from a simple
 

solid-liquid interface with the maximum rigidity of the "liquid"
 

below the CMB being smaller than 5 x 1010 dynes/cm2 .
 

Further investigations of the structure of the CMB will require
 

the computation and use of a set of normal modes at periods on the
 

order of 10 to 20 s. Anelastic attenuation will have an important
 

effect on Sd at such high frequencies. The analysis of the elastic
 

decay of Sd (due to propagation effects) is quite straightforward,
 

and the study of Q will then be feasible.
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3.4 Conclusion
 

By studying several profiles of SH waves diffracted around the 

core (Sd), their average slowness is found to be po = 8.4± 0.1 s/deg. 

When this value is interpreted as being due to the S velocity just 

8
above the core-mantle boundary (0c), it implies c = 7.22± 0.1 km/s,
 

in contrast to previous models requiring a low S velocity zone just
 

above the CMB.
 

Synthetic seismograms computed by summing normal modes may be
 

used to study the effect of different CMB velocity structures on Sd
 

waveshapes. They confirm the absence of a low-velocity zone affecting
 

waves with T> 45 s and show that certain models with non-zero S
 

velocity below the CMB are inadmissible.
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II. SEISMIC INVESTIGATIONS OF UPPER-MANTLE
 

LATERAL HETEROGENEITY 
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INTRODUCTION
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Over the past 15 years, the theory of plate tectonics has given
 

a new dimension to our knowledge of the structure of the Earth and of
 

the mechanisms by which it evolves. J. Tuzo Wilson (1976) recently
 

summarized in the following terms the breadth of this theory:
 

"The acceptance of continental drift has transformed the earth
 

sciences from a group of rather unimagTnative studies based
 

upon pedestrian interpretations of natural phenomena into a
 

unified science that holds the promise of great intellectual
 

and practical advances."
 

One of the basic premises of plate tectonics is that relatively
 

thin plates are moving about over a partially molten asthenosphere
 

(Anderson, 1962, Anderson and Samms, 1970). Parameters of this
 

very simple model can be adjusted to allow for lateral heterogeneity,
 

notably for structural differences between oceans and continents, and
 

for intrinsic heterogeneities inside the oceanic plates.
 

Seismic evidence for structural differences between continents
 

and oceans was reported by Gutenberg, as early as 1924. Systematic
 

regionalization of seismic data (Anderson and Toks6z, 1963; Dziewonski,
 

1970, Kanamori, 1970) have indicated that the oceanic lithosphere is
 

faster than the continental one but that the oceanic asthenosphere,
 

being probably both thicker and structurally slower, is globally
 

slower than the continental one (if any) Furthermore, because of
 

the distribution of seismic stations and epicenters, most studies of
 

the structure of the Earth have a strong continental bias Free
 

oscillation results (Jordan and Anderson, 1974; Gilbert and fziewonski,
 

1975; Anderson and Hart, 1976) have suggested that the average Earth
 

has slower seismic velocities than determined from body-wave solutions.
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Recent studies (Liu et al. 1976, Kanamori and Anderson, 1977) have
 

shown that a substantial part of this discrepancy between body

and surface-wave results is due to neglecting the effect of attenuation
 

in surface-wave studies. On the other hand, it has been proposed
 

(Jordan 1975 a,b) to explain this apparent continent versus ocean
 

heterogeneity through models extending structural differences to much
 

greater depths (possibly as deep as 650 km), and involving complex
 

circulation and differentiation of material in the mantle. In view
 

of the limited depth resolution of surface waves (from which most of
 

the information regarding oceanic upper-mantle structure was obtained),
 

it appears necessary to test the basic plate tectonics premise through
 

independent means. One such possibility is offered by the study of
 

multiply reflected ScS phases, presented in Chapter I
 

Lateral heterogeneity within the oceanic plate has been exten

sively studied under many aspects bathymetry (e.g. Trehu et al.,
 

1976), heat flow (e.g. Parsons and Sclater, 1977), gravity (e.g.
 

Kono and Yoshil, 1975), analysis of volcanic patterns (Vogt, 1974
 

a, b), and, of course, seismic properties (e.g. Hart and Press,
 

1973; Kausel et al., 1974, Forsyth, 1975, Yoshii, 1975) Most of
 

the data is consistent with a general thickening of the oceanic
 

lithospheric plate with age, as described, for example, by Leeds et al.
 

(1974). An exact knowledge of the structural properties of the
 

oceanic plates is then a major asset in investigating lateral varia

tions in the deep structure of the mantle, particularly under conti

nents, whose smaller size restricts the data available for direct
 

investigations. The use of very long period Rayleigh waves (T = 200
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to 300 s) makes possible a sampling of the mantle to a depth of about
 

600 km. Such an investigation of the lateral heterogeneity of the
 

mantle in the light pf intrinsic oceanic inhomogeneities is the subject
 

of Chapter 2.
 

In both cases, it is concluded that the simple plate tectonics
 

model with only shallow lateral heterogeneity is sufficient to ade

quately model all observed seismic lateral variations.
 

The results in Chapter 1 have been published as Okal and Anderson
 

(1975), those in Chapter 2 as Okal (1977) and Okal (1978b).
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CHAPTER 1
 

Lateral Heterogeneities in the Upper Mantle
 

From Multiple ScS Travel-Time Residuals.
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1.0 Introduction
 

In this chapter, multiply reflected ScS travel-times are used in
 

an investigation of the lateral heterogeneity of the upper mantle.
 

Several arguments can be made in favor of using shear rather than
 

compressional waves: First, as they travel slower, the relative
 

residuals are expected to be larger, and therefore, more accurate
 

for shear waves than for compressional ones. Second, it is usually
 

assumed that the low velocity zone, which was suggested by Gutenberg
 

(1926, 1948), then identified by Dorman et al. (1960) under oceans,
 

and later studied under North America by York and Helmberger (1973),
 

represents a partially molten asthenosphere (Green, 1972) involving
 

high attenuation (Helmberger, 1973) and a higher Poisson ratio.
 

This last point is consistent with experimental observations of
 

upper mantle shear structure (Helmberger and Engen, 1974), and
 

contributes to making S wave travel-times even more sensitive to
 

lateral variations in the properties of the low velocity zone.
 

Finally, SH waves (and at, a steep incidence, because of favorable
 

reflection coefficients, SV-polarized shear waves), stay trapped
 

between atmosphere and liquid core and can sample the mantle through
 

multiple reflections more efficiently than their PcP counterparts,
 

whose energy leaks into the core and whose multiples are not regularly
 

observed.
 

Regional studies of S wave travel-time residuals have been
 

carried out, notably by Ibrahim and Nuttli (1967), Hales and Roberts
 

(1970) and Sengupta and Julian (1974). A global investigation of
 

lateral variations in shear wave travel-times was made by Sipkin
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and Jordan (1975), who studied lateral inhomogeneities of the upper
 

mantle by use of the phase ScS for a number of deep events. They
 

found a difference of 5 seconds between oceans (slow) and continents
 

(fast), and argued that continental and oceanic mantle must differ
 

to at least 400 km and possibly as deep as 600 km. However, in their
 

study, oceanic data rest entirely on the use of only 4 stations,
 

which they presume represent normal ocean: Kipapa, Hawaii (KIP);
 

Rarotonga, Cook Islands (RAR); Afiamalu, Western Samoa (AFI) and
 

Bermuda (BEC). All of these are on volcanic islands whose activity
 

is in no case older than 30 million years. It is questionable,
 

indeed, whether any island station can be taken as standing on typical
 

oceanic lithosphere. In order to investigate travel-time anomalies
 

in areas where no stations are available, we study travel-time
 

residuals for multiply-reflected ScS waves. The surface-reflection
 

points of many of these phases are at places which cannot be studied
 

by use of direct phases, such as S ot ScS, notably under oceans.
 

Figure 1.1 is a sketch of the ray path of these phases across the
 

mantle.
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ScS2 

EpicenterStio 

CORE
 

Figure 1.1. Sketch of the ray paths of S, ScS and ScS 2 through the
 

mantle from a deep earthquake. (For clarity, the size of the core
 
has been reduced.)
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1.1 Outline of the Method
 

The residual 6 (observed minus Jeffreys-Bullen (JB) times), say
 

for ScS2, may be written:
 

6SCS2 
 Aepic + Arefl + Are
c
 

Aepic , the anomaly at the epicenter, is due to possible mislocation,
 

uncertainty in the origin time, and structure around the epicenter;
 

Arefl is the contribution at the surface reflection point and Arec
 

the contribution at the receiver, due to local structure under the
 

station. In doing so, we clearly assume that no local anomalies
 

exist in the deep mantle, near the core reflection points of ScS.
 

Local heterogeneities in the deep mantle have been proposed on the
 

basis of teleseismic anomalies (Davies and Sheppard, 1972, Julian and
 

Sengupta, 1973; Kanasewich et al., 1973), but have been the subject
 

of controversy (Okal and Kuster, 1975; Wright, 1975, Powell, 1976).
 

Both seismic data (Doornbos, 1975) and gravimetric interpretation of
 

satellite navigation data (Lambeck, 1976) suggest that the scale of
 

-possiblelateral heterogeneities in the lower mantle is probably very
 

small. No feature extending over a characteristic length the size
 

of a continent has ever been reported. Although such models cannot
 

be excluded by the present analysis, our goal is to explain the
 

travel-time anomalies by simple models restricting them to the upper
 

mantle.
 

Because of the quasi-vertical incidence of any SoS path, the
 

anomalies A and A are approximately the same for ScS or any
 epic rec
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TUC 9 Oct 67 

4- 17 50 GMT 

0 CM 5 mm 

Figure 1.2. Example of a typical record of multiply-reflected ScS
 
phases.
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SCSn. Therefore, the difference in time residuals 6ScS2 - (ScS
 

clearly represents Arefl, which, in turn, because of the steep
 

incidence of any ScS n, is approximately equal to twice the one-way
 

anomaly to a vertical S, due to upper mantle structure under the
 

reflection point. In the case of a higher order ScSn, such anomalies
 

at the various reflections would clearly add up to

(1/2) •(o-c) s - (o-C) I (1 2) 
n 
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1.2 Data Set and Data Processing
 

For the present study, we used long-period records from ten deep
 

earthquakes, listed on Table 1.1. Figure 1.2 shows a typical trace of
 

ScS2 and ScS3, together with the surface-reflected sScS2 and sScS 3
 '
 

We chose not to use these surface-reflected phases, which, for the
 

most part, travel upwards in the slab in the vicinity of the source
 

A slight change in the ray parameter can result in a substantial 

difference in the paths travelled (Toks6z et al. 1971), and in an 

important term A epi (sScSn ) - Aepc SCSm). At distances larger 

than 700, the phase S was used rather than ScS and the time anomalies 

involved were (o-c)scs2- (0-c) S . It will be shown that this does not 

introduce any systematic bias in the results.
 

Records were digitized and cross-correlated to obtain o cs2

0 ScS Computed values, obtained from Jeffreys and Bullen's
. 


(1940) Tables were corrected for ellipticity, using Bullen's (1938)
 

tables for ScS. A further correction was needed to take into account
 

the topographical elevation at the surface-reflecting point, for
 

which a surface velocity of 3.36 km/s was used. The (two-way)
 

correction is then 0.595 second per km of altitude, or, in the case
 

of a sea-bottom reflection, -1.07 second per 1000 fathoms of depth.
 

We estimate that the resulting one way residuals are accurate to
 

±0.5 second
 

All of the cross-correlated phases were time-lagged and plotted
 

superimposed. A quality index was assigned, depending on the fit of
 

the superposition, varying from 3 (excellent) to 0 (bad). All data
 

with quality indices 0 and I were eliminated. Figure 1.3 shows a
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Table 1.1
 

Seismic Events used in the Multiple ScS Study
 

Event Date Origin Time Epicenter Depth mb
 

GMT ON 0E km
 

1 Fij;-Tonga 9 Oct 67 17:21.46 2 -21.10 ; -179.26 605 6.2
 

2 Argentina 8 Dec 62 21:27:20.0 -25.78 ; -63.13 582 * 

3 Fiji-Tonga 10 Feb 69 22-58-03.3 -22.75 , 178 76 635 6.0
 

4 Argentina 9 Sep 67 10"06"44.5 -27.62 , -63.15 577 5.9
 

5 Okhotsk Sea 29 Jan 71 21 58:03.2 51.69 , 150.97 515 6.0 

6 Okhotsk Sea 30 Aug 70 17:46 08.9 52.36 ; 151.64 643 6.5
 

7 Banda Sea 18 Oct 64 12"32 24.9 -7.17 , 123.86 585 5.8 

8 Peru-Brazil 15 Feb 67 16-11"11.8 -9.05 ; -71 34 598 6.1
 

9 Banda Sea 11 Feb 69 22 16:11.5 ; -6.76 , 126 74 425 6.0 

10 Peru-Brazil 3 Nov 65 01:39.03.2 -9.04 ; -71.32 587 5 9 

(*) No body-wave magnitude reported. M[PAL= 6 3/4
 

[PL
 

http:17:21.46
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BKS 
29 Jan 71 

WIN 
3 Nov 65 

5cm I min 

Quality '2' 

-S 
Quality '3' --- ScS 2 

---ScS2
 

Figure 1.3 Samples of 'Quality 3' and 'Quality 2' pairs of cross
correlated phases Distances are 59.6* for Berkeley (BKS) and 85.20
 
for Windhoek (WIN).
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sample of quality 3 and quality 2 records. This check was thought
 

necessary to achieve a high quality for the data set. It resulted in
 

the elimination of 24 pairs. A total of 77 ScS 2, 15 ScS 3 and 2 ScS4
 

phases were finally used. Results are presented in Table 1.2.
 

Additionally, we calculated a number of cross-correlations between
 

records of the same event at different stations, in order to compare
 

some residuals (at Kipapa, Poona, Akureyri, Kap Tobin and Windhoek)
 

with delays obtained on the North American continent by Hales and
 

Roberts (1970). These results are given in Table 1.3.
 

Figure 1.4 is a worldwide plot of our results* The Pacific Ocean
 

exhibits strong lateral variations: values averaging +0.9 s are found
 

along the line Fiji-Southwest U.S., whereas the Northern Pacific
 

averages -1.2 s. Strong positive anomalies are found in the Artic's
 

Eurasia Basin (+2.3 s), in the Philippine Sea (q3 s), in the Tasman
 

Sea (+3.9 s) and at the Mid-Pacific Mountains (,5 s). Values at the
 

trenches are largely scattered, (-1.1± 0.6 s at the Alaska trench,
 

0.4± 2 s off Guatemala), the reflection being undoubtedly affected by
 

the presence of the descending slab. South America also shows lateral
 

variations, and can be separated into two regions: the Andes, where
 

no substantial anomaly is found (relative to the Jeffreys-Bullen
 

Tables), and the Brazilian shield, averaging -2.15± 1 s. An inter

mediate zone, located along the slopes of the Andes, makes a smooth
 

transition and averages -1.2 s, as shown on Figure 1.5.
 

It is not possible to account for these data with Sipkin and
 

Jordan's (1975) hypothesis of a simple continent vs. ocean difference.
 

Th~ir model of a 5 s delay of oceanic travel-time would lead to a
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Table 1.2
 

Two--way Residuals obtained in this Study
 

Event, station Quality 02 -0 1 Ellipticity Altitude Two-way 

and phases used index correction correction residual 

(s) (s) (s) (s) 

1 AFI 2-1 2 936.5 1 0 -1.1 4.4 

1 MUN 2-1 2 827.5 0.3 0.3 2.1 

1 TAU 2-1 2 89z.5 0.1 -1 0 7.8 

1 ALQ 2-1* 3 753.5 3.1 -3.0 0.6 

1 TUC 2-1* 3 771.5 3.2 -2.9 3.9 

1 LUB 2-1* 3 745.5 3.1 -2.9 -1.9 

1 ALQ 3-2 2 845.5 1.0 -2.4 2.9 

1 FLO 3-2 3 822.0 0.9 -2 1 0.8 

1 COL 3-1* 2 1593 0 1.3 -6.6 0.6 

1 ALQ 4-2 3 1734.5 3.3 -5.1 7.8 

2 BHP 2-1 2 878.5 3.3 0 1 -2.1 

2 BEC 2-1 3 824.0 1.4 0.4 -3.5 

2 ARE 2-1 3 933.5 0.8 2.2 0.4 

2 CAR 2-1 2 881.0 1.3 0 -4.1 

2 LPB 2-1 2 936.0 0.8 2.5 0 8 

2 COR 2-1* 2 756.5 1.3 -2.0 4.8 

2 LPA 2-1 2 929.5 0.3 0 -2.9 

2 FLO 2-1 2 794.5 1.4 1.1 -4.3 

2 LPA 3-1 2 1865.0 0.7 0 -3.1 

2 CAR 3-1 2 1798,.5 2.5 0.1 -5.7 

2 LPB 3-1 2 1872.0 1.7 2.2 0.9 

2 DUG 2-1* 2+ 783.0 1.3 -1.5 -0.9 

2 WES 2-1* 2 840.0 1.3 0 -7.1 

3 KIP 2-1 2 851 0 1.4 -3.6 5.0 

3 ALQ 2-1* 3 750.5 1.3 -2.9 2.8 
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Table 1.2
 
(continued)
 

3 TUC 2-1* 2 759.0 1.4 -2.9 -0.2 

3 SHK 2-1* 3 825.0 1.4 -2.6 3.2 

3 LUB 2-1* 3 741.0 1.4 -2.9 -1.1 

3 TUC 3-2 3 847.5 1.0 -2.8 2.7 

3 ALQ 4-2 3 1723.0 2.0 -4.7 4.3 

4 NNA 2-1 3 921.0 0.9 0.5 0.9 

4 ARE 2-1 3 933.5 0.8 2.2 2.0 

4 SPA 2-1 2 809.5 -1.6 -2 4 0.3 

4 TUC 2-1 2 783.0 1.4 -1.4 0.7 

4 GEO 2-1 3 796.0 1.4 0 -5.9 

4 8JG 2-1 2 857.0 1.3 0 -3.6 

4 TRN 2-1 2 875 0 1.3 0 -4.6 

4 OXF 2-1 2+ 800.5 1.4 1.8 -5.3 

4 QUI 2-1 2 900.5 1.1 2.6 0.2 

4 ARE 3-1 2 1869.0 1.6 1 1 0.1 

4 NNA 3-1 3 1854.0 1.8 -2.9 -0.2 

4 DUG 2-i* 2- 775.0 1.3 -1.6 -3.3 

5 DAV 2-1 2 854.0 0.4 -2.3 6.0 

5 DUG 2-1 3 807.0 -1.5 0 -3.6 

5 PMG 2-1 2 815.5 0;9 -1.6 -1.8 

5 MAT 2-1 2 921.5 -0 6 0 -0.9 

5 MAN 2-1 2 869.5 0.1 c 5.5 

5 COL 2-1 2 890.5 -1.8 0 0.9 

5 CHG 2-1 2 843.0 -0.2 0 1.5 

5 COR 2-1 2 831.0 -1.5 0 -2.8 

5 AKU 2-1 2 813.0 -2.7 -2.2 4.5 
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Table 1.2 
(continued) 

5 BKS 2-1 3 815 0 -1.3 -2.2 -3.1 

5 NDI 2-1 2 822.0 -0.8 0.9 -3.4 

5 LON 2-1 3 834.0 -1.6 0 -1.3 

5 AFI 2-1 2 797.0 1.0 -1.6 10.0 

5 TAU 2-1* 2 737.5 1.5 -2.2 -5.8 

5 MUN 2-1* 2 752.0 1.4 -3.5 -2.5 

5 AAM 2-1- 2 810.0 -2.2 0.9 2.2 

5 MAN 3-1 2 1783.5 0.2 1.6 12.1 

5 MAT 3-1 2 1852.0 -1.2 0 -2.0 

5 DAV 3-1 2 1758.5 0.6 -3.8 7.6 

6 LON 2-1 3 834.5 -1.6 0 -1.5 

6 COR 2-1 2+ 833.0 -1.5 0 -1.5 

6 KIP 2-1 2+ 841.5 -0.3 -3.3 -3.1 

6 RAB 2-1 3 825.5 0.7 -3.3 -1.0 

6 HNR 2-1 2 813.0 0.9 -3.3 1.3 

6 FLO 2-1 2+ 783.0 -1.9 0.2 2.1 

6 MUN 2-1* 3 747.5 1.4 -3.5 -3 5 

6 ADE 2-1* 2+ 755.0 1.4 -2.2 -2.0 

6 FLO 3-1 2 1811 0 -3.6 0 0.8 

7 WEL 2-1 2 831.0 0.5 0.1 1.0 

7 SBA 2-1 2 779.5 -0.5 -2.9 1.3 

8 ALQ 2-1 3 835.0 1.1 0.4 0 

8 LPB 2-1 2 935.0 1.2 0.1 0 1 

8 MNT 2-1 2 834 5 1.0 0 0.5 

8 JCT 2-1 2 857.5 1.2 0 3.5 

8 AAM 2-1 2 842 0 1.0 -1.1 1.6 
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Table 1.2
 
(continued)
 

8 WES 2-1 3 843.0 1.0 -2.3 0.6
 

8 TUC 2-1 2 831.5 1.2 -1.6 0.7
 

8 WIN 2-11 2 790.5 0.8 0 23.6
 

8 SDB 2-1* 2 768.0 1 0 -3.2 -3 9 

8 GDH 2-1% 2 788 0 0 4 -3.0 2.0 

8 CMC 2-1* 3 775.0 0.6 0 0 3 

9 AFI 2-1 3 814.5 1.1 -1.2 -4.6
 

10 WIN 2-1* 2 790.0 0.8 0 22.9
 

10 SDB 2-1* 2 767.5 1.0 -3.2 -4.6
 

(*) 	Asterisk indicates the use of S in lieu of ScS at distances
 
greater than 700.
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Table 1.3
 

Direct Determination of a Few Station Anomalies
 

Observed Ellipticity O - c Station 

JB Topography residual 

stations used (s) (s) (s) (a) (s) (S) 

A. Base : ALQ = 1.1 s (Hales and Roberts, 1970) (ScS2)
 

COL 2.1
1 COL-ALQ 10.0 2.8 2.1 -0.2 9.1 


8 WIN-ALQ 184.5 163.4 0.1 -0.4 21.4 WIN -3.3
 

B. Base : COL = 2.1 s ( from above ) (SeS)
 

1 KIP-*COL 312.5 321.8 -1.5 7.8 KIP 9.9
 

3 KIP-*COL 315.0 324.2 -1.5 7.7 KIP 9.8
 

6 KIP-COL -108.5 -102.9 1.3 4.3 KIP 6.4
 

5 KIP-COL -104.5 -99.3 1.4 3.8 KIP 5.9
 

5 KTG-COL 158.0 160.3 -0.3 -2.0 KTG 0.1
 

5 PO0-COL 230.5 233 9 1.7 -5.1 PO0 -3.0
 

5 AKU-COL 196.5 194.6 -0.2 2.1 AKU 4.2
 

(*) Asterisk denotes use of S in lieu of ScS at distances greater
 

than 700.
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total delay of 20 s for ScS3 , and 30 s for ScS4 No such values are
 

obtained in the present study and such a discrepancy between ocean and
 

continent is not revealed by our data. Furthermore, the small anomaly
 

+1 s, only 250 km away from Bermuda, is inconsistent with their
 

assumption that station BEC ("3.5 a late) is representative of the
 

mean ocean floor.
 

On the other hand, Figure 1.6 shows that a good correlation
 

exists between the values of the anomalies and the age of the plate:
 

negative anomalies on the order of -1.5 s are found in the North

central Pacific, where the ocean floor is about 100 million years
 

old. On the opposite, the region of the Pacific between 125 and
 

1500W shows positive anomalies of about +1 s. Similarly, the
 

Brazilian shields exhibits anomalies of -2 to -3 seconds; ScS delays
 

at Poona, Tndaa (-3 s) and Windhoek, South West Africa (-3.3 s),
 

both stations on shield are also similar. Delays in the Brazil Basin
 

(-2.05± 0.5 s) do not differentiate substantially this old oceanic
 

floor from the adjoining Brazilian shield.
 

Finally, it is important to note (see Figure 1.7) that no
 

systematic dependence of the residuals on distance is present. Also,
 

this figure justifies a posteriori the use of the phase S in lieu of
 

ScS at distances greater than 700 ,which is seen to introduce no
 

systematic biasing in the method.
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1.3 Discussion
 

The similarity in travel-time between the older parts of the
 

ocean and old continental shield argues against deep structural
 

differences and suggests that both regions have poorly-developed low

velocity zones. It is worthwhile checking this important result with
 

other data. For this purpose, we compute one-way travel-times above
 

180 km, for a variety of structures. Leeds et al. (1974) and Kausel
 

et al. (1974) determined oceanic crustal and upper mantle structure
 

as a function of age from Rayleigh waves crossing the Pacific. They
 

found phase velocity increasing with age and attributed it to thick

ening of the lithosphere at the expense of the asthenosphere. Although
 

their models are not unique, they should yield roughly the right
 

average shear velocity for the upper mantle. They fixed the base of
 

their model at 180 km and it is therefore convenient to compare
 

average velocities above this level. The model for the oldest part
 

of the ocean was later revised by Leeds (1975).
 

Table 1.4 gives a comparison of Jeffreys-Bullen residuals for
 

the resulting Leeds et al. (LKK) models and a number of other models.
 

Residuals for LKK in the Pacific vary from -2.1 s for 150 million years
 

old crust to +1.3 s, for young crust, about 5 m.y. old. A value of
 

+1.9 s is extrapolated for the ridge, although this is clearly a
 

minimum value, since the mantle under the ridge is likely to be
 

slower than assumed in any theoretical model. A better estimate
 

(+3.6 sec) for the ridge can be obtained by modifying a structure
 

proposed by Francis (1969), for the region south of Iceland. Alter

nate estimates of +2.5 to 5.2 s are obtained from measured P-delays
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Table 1.4
 

Jeffreys-Bullen S Residuals for the Upper 180 km in a Variety of Models
 

Model Region Reference Residual (s)
 

Computed Observed
 

LKK (150 m.y.) Pacific Ocean f -2.1 -2.3
 

LKK (100 m.y.) Pacific Ocean a -1.2 -1.6
 

LKK (70 m.y.) Pacific Ocean a 0.0 +0.9 (5om.y.)
 

LKK (10 m.y.) Pacific Ocean a +1.3 

CANSD Canadian Shield b -1 3 -2.0 (Brazil) 

C2 Gross Earth c -0.7 

CITI1A Gross Earth d -0.6 

SHR14 North America e -0.2 

References - a Leeds et al. (1974)
 

b Brune and Dorman (1963)
 

c Anderson and Hart (1976)
 

d Anderson and Toksoz (1963)
 

e Helmberger and Engen (1974)
 

f Leeds (1975).
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in Iceland. These values are roughly consistent with those found in
 

this study for AKU (+4.8 s) by direct measure of S and ScS delays.
 

A value of +4.4 sec was also reported along the mid-Atlantic ridge
 

by Girardin and Poupinet (1974). The value obtained from Leeds
 

et al.'s structure for 100 m.y. old lithosphere (-1.6 s) agrees
 

almost exactly with the value (-1.5 s) found here for the oceanic
 

region of this age in the Northcentral Pacific.
 

The variation of shear velocity with depth tn the published
 

models (Jordan and Anderson, 1974; Anderson and Hart, 1976) considered
 

by Sipkin and Jordan (1975) also gives support to the idea that
 

variations in the ScS residuals are due primarily to variations in
 

the upper mantle For example, the spread of one-way vertical S 

travel-time for a variety of models, is 2.0 s to 50 km, increasing 

to 3.0 s to 200 km. Differences between models remain between 1.6 

to 3.2 s down to 700 km, indLcating that most of the variation is 

above 200 km. The present conclusions may be compared with those of 

Tryggvason (1961) who used a particularly favorable geometry of 

events to study both oceanic and continental structure. He concluded 

that at a depth less than 400 k, possibly at 140 km, the difference 

between oceanic and continental structure had disappeared. Our 

results also compare favorably with those of Hart and Press (1973) 

who used Sn velocities across the Atlantic to investigate the cooling 

of the lithosphere away from the ridges. They found a large simi

larity between continents and old oceanic floor. 

Since the present study was orLginally published in August, 1975,
 

the problem of continent versus ocean heterogeneities has continued
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receiving much attention. A similar study by Sipkin and Jordan
 

(1976) has yielded comparable results concerning the variation of
 

S-wave residuals with tectonic age across oceans. However, these
 

authors fail to observe a similarity between shields and the oldest
 

ocean floors, with minimum residuals in the oceans on the order of
 

-1 s. According to Sipkin and Jordan (1976), it is then necessary
 

to extend lateral heterogeneities between oceans and continents to
 

depths greater than 400 km to account for these data (Jordan, 1975 a,
 

b). We believe that the present data, whose quality was strictly
 

constrained by deleting all pairs with poor quality indices, represent
 

a more homogeneous set than Sipkin and Jordan's. The records at
 

Trieste, Italy of event 5 (29 Jan 1971) presented by Sipkin and Jordan
 

(1976) on their Figure 15 (p. 6317), for example, would have been
 

given a quality index of 1 at the most. Records of such poor
 

quality have not been used in the present study.
 

Consequently, we think that present reliable multiple-ScS travel

time data do not warrant substantial structural differences between
 

continents and oceans at depths greater than 200 km. This is also
 

in agreement with a study by Lambeck (1976) who used expansions of
 

the Earth's gravity field to study lateral density anomalies in the
 

Upper Mantle. Although this method becomes less sensitive at greater
 

depths, it suggests no long-wavelength correlations between possible
 

seismic and gravity anomalies.
 

Butler (1977) pointed out that travel-time differences obtained
 

by cross-correlation (as in the present study) may be systematically
 

biased toward longer values, due to the effect of the attenuation
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operator Q. For two waves with different travel-times, such as ScS
 

and ScS2, theoretical wave shapes will be different, resulting in a
 

value of oScs2- 0 ScS increased by roughly a few seconds. The magnitude
 

of this effect is dependent on the value of Q .
 

Estimates of Q for ScS waves in the mantle vary widely. Anderson
 

and Kovach (1964) and Kovach and Anderson (1964) proposed 0 = 600, on
 

the basis of South American data, in agreement with Press's (1956)
 

value of 500. Jordan and Sipkin (1977) proposed Q = 156± 13, using
 

a stacking of Western Pacific data. Best et al. (1974) proposed a
 

value of Q, = 300 for a vertical path under the Hawaii Islands. Sato
 

and Espinosa (1967) obtained Q = 580 for a path linking South and 

North America. Yoshida and Tsujiura (1975) used multiple ScS phases 

recorded in Japan from the Japan Sea deep earthquake of 1973 to 

propose Q = 290, but their results are rather scattered. Estimates 

obtained by other methods include Q = 380 (Choudhury and Dorel, 1972) 

under the Tasman Sea and Southeastern Indian Ocean and Q = 230 

(Kanamori, 1967) under Central America, both obtained from the compari

son of spectral contents of ScS and ScP. 

An attempt was made at using the present data set to solve for
 

Q in the mantle. However, the values obtained were too scattered
 

to warrant publication. The problem of body-wave attenuation in
 

the mantle remains open, and Q is only definitely constrained to the
 

range 100 to 500.
 

Figure 1.8 shows a pair of ScS phases for event 2 at BEC. When
 

compared to Butler's (1977) synthetic seismograms, the excellent
 

correlation between the two waveshapes argues in favor of very little
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Figure 1.8. Cross-correlated records of event 2 at Bermuda. Note
 
the quasi-identical waveshapes, arguing against any major effect
 
of the attenuation operator Q. The epicentral distance is 57.80.
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attenuation and a large value of Q0' in agreement with Sato and
 

Espinosa's (1967) proposed Q = 580 over a closely related path.
 

In any case, the effect of attenuation in biasing oScS2- 0ScS
 

is almost completely independent of distance, since this value is
 

always on the order of 700 to 900 seconds. Any bias in the regional
 

differences reported would therefore have to come from a regional
 

difference in Q. Such differences probably exist, (owing notably to
 

the existence of low velocity zones of variable extent under the
 

oceans and certain contmnents). However, since we have shown that
 

our earlier models (implicitly rejecting lateral variations of Q)
 

can fit our data without extending lateral heterogeneities below
 

200 km, it is certain than models allowing Q to vary only above a
 

depth of 200 km should provide an even better fit. Therefore,
 

in the absence of any evidence of definite lateral variations of
 

Q,1 Butler's suggestion, which introduces one more parameter previously
 

constrained, reinforces our statement that the present data does not
 

warrant lateral heterogeneities deeper than 200 km.
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1.4 Mantle Hotspots Under Hawaii and Trindade: Evidence from S Delays
 

As shown in Tables 1.2 and 1.3 and on Figure 1.4, strong positive
 

anomalies are found for rays propagating in the top section of pro

posed mantle hotspots: ScS at Kipapa, Hawaii, is delayed 6 s from
 

the Sea of Okhotsk, and 9.8 s from the Fiji-Tonga area. ScS2 recorded
 

at Windhoek from two deep Peruvian earthquakes of almost identical
 

epicenter both show a one-way anomaly of +11.5 s at their reflecting
 

point, located at the island of Trindade, in the Brazil Basin of the
 

South Atlantic Ocean. Rays from these events to SZ da Bandeira,
 

Angola, which miss the island and reflect in the Brazil Basin itself,
 

have an anomaly (-2 s) which agrees with the values predicted by model
 

LKK for this age of oceanic lithoshere.
 

Seismic observations of deep mantle anomalies below the Hawaiian
 

hotspot, and their interpretation in the frame of Wilson's (1963,
 

1965) and Morgan's (1971) proposed theories, have been the subject
 

of some controversy: while Kanasewich et al. (1973) have reported
 

teleseismic anomalies for rays bottomming in the deepest part of the
 

proposed upwelling column, Okal and Kuster (1975), using records of
 

Aleutian events in French Polynesia, have failed to confirm these
 

results. Studies by Capon (1974), Noponen (1974), Berteussen (1976)
 

and Vermeulen and Doornbos (1977) have shown that most teleseismic
 

slowness and azimuth anomalies at large networks could in fact be
 

explained by local geology under the receiving arrays. Powell
 

(1975, 1976) similarly confirmed the crucial importance of local
 

geology, although some of her results still suggest the possibility
 

of identifying teleseismic anomalies.
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The present study suggests that the top part of the upwelling
 

column has to be made of slow material, even if the total vertical
 

travel-time agrees with the Jeffreys-Bullen Tables (Best et al., 1974).
 

This requires a vertical heterogeneity in the column, with a higher
 

velocity at the bottom, although this higher velocity should be spread
 

over a large vertical extent, so as not to be detected by teleseismic
 

array studies. A possible model involving chemical differences was
 

proposed by Anderson (1975) and a recent experiment across the Yellow

stone area (Hadley et al., 1976) yielded results which could be
 

consistent with this general frame. Finally, the anisotropy observed
 

at Kipapa (6 seconds from the Sea of Okhotsk, 9.8 seconds from Fiji
 

Islands) could result from the horizontal distance (300 km) between
 

Kipapa (located on Oahu) and the presumed hotspot column, under the
 

island of Hawaii.
 

The volcanism of the island of Trindade, in the South Atlantic
 

Ocean, was studied by Cordani (1968), who used the K-Ar method to infer
 

ages between 1.50 and 2.90 million years b.p. These results were later
 

confirmed by Valencio and Mendia (1974), who obtained ages ranging
 

from 1.2± 1.0 to 6.4± 3.5 m.y.b.p. Oversby (1971) and Baker (1973)
 

have shown that this young island is unique among Atlantic islands in
 

its degree of undersaturation, suggesting origin from a hydrous mantle.
 

This is consistent with a greater degree of partial melting and
 

large S delays. The large contrast between S anomalies at Trindade
 

(+11.5 s) and in the nearby Brazil basin (-2.0 s) constrains this
 

partially molten region to a restricted geographical area (see Figure
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Figure 1.9. Map of the South Atlantic showing the rays from the Peru-

Brazil events to the Southern African stations. The thin traces are
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Trindade and Martin Vaz are shown.
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1.9), and strongly advocates for the existence of a hotspot under
 

Trindade, or its immediate neighborhood, as proposed in the model by
 

Minster et al. (1974). The implementation of a seismic station on the
 

island, contemplated in the early stages of the WWSSN project, and
 

now scheduled for the end of 1978 (Mendiguren, 1978; personal commu

nication), could help in further studying this possibility.
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1.5 Conclusion
 

Lateral variations of S travel-time residuals as reported in this
 

chapter occur over distances too short to let them be associated with
 

structures 400 km or deeper. Rather, they seem to correlate fairly
 

well with the general pattern of plate tectonics. Delays, in general,
 

decrease with the age of the plate and are largest for oceanic islands
 

and recently active continental areas. The older oceanic lithosphere
 

has residuals similar to continental shields. The residuals are
 

generally consistent with variations in the upper 200 km found by
 

independent means. The responsible structures should primarily be
 

sought in the lithosphere and asthenosphere. The following chapter
 

will present the results of a study of very long period Rayleigh
 

waves, aimed at gathering additional information on upper mantle
 

lateral heterogeneities.
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CHAPTER 2
 

The Effect of Intrinsic Oceanic Upper-Mantle
 

Heterogeneity on Regionalization of Long-Period
 

Rayleigh-Wave Phase Velocities.
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2.0 Introduction
 

In a series of recent papers, Jordan (1975 a,b) and Sipkin &
 

Jordan (1975, 1976) have proposed that lateral heterogeneities between
 

oceans and continents extend to depths of 400 km, and possibly 600 km.
 

Their conclusion is based on the study of ScS travel times, and on
 

the discrepancy between models inverted from body- and surface-wave
 

data. On the other hand, the results in Chapter 1, obtained from a
 

different set of ScS data, suggest that the travel-time differences
 

between oceans and continents can be accounted for by the upper 180 km
 

of crust and mantle. Furthermore, it has recently been shown (Liu,
 

Anderson & Kanamori 1976; Anderson et al. 1977; Hart, Anderson &
 

Kanamori 1976, 1977) that the discrepancy between inversions of body

and surface-wave data was due to anelasticity in the mantle. In view
 

of these controversies, it is important to investigate whether or not
 

a definite continent-ocean lateral heterogeneity is present in surface

wave phase velocities, at periods on the order of 200 to 300 s, whose
 

values are substantially dependent on seismic velocities down to 600
 

km. Models recently derived from regionalization of surface-wave phase
 

velocities (Toksdz & Anderson 1966; Dziewonski 1970; Kanamori 1970)
 

generally exhibit continent-ocean lateral heterogeneities. Furthermore,
 

Kanamori's results show a fairly large scatter in the differences
 

between Rayleigh-wave phase velocities for oceans and shields, at
 

200-300 s.
 

However, at shorter periods, recent investigations of oceanic
 

surface-wave phase velocities (Leeds et al. 1974; Kausel et al. 1974;
 

Leeds 1975) have yielded a model of the evolution of the oceanic
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lithosphere, which is basically consistent with theoretical models
 

derived from plate tectonics (Parker & Oldenburg 1973). This model
 

shows that considerable lateral heterogeneities exist within the
 

oceanic plates. This effect might be responsible for the scatter in
 

Kanamori's results, which were obtained on the assumption of a uniform
 

oceanic phase velocity, but from data sampling all ages of the oceanic
 

lithosphere. This warrants a reassessment of continental phase
 

velocities obtained from the pure-pathing method, as described by
 

Toks6z & Anderson (1966), Dziewonski (1970) and Kanamori (1970). The
 

object of the present chapter is to carry out such a regionalization
 

of Rayleigh-wave phase velocities, taking into account their variation
 

with age across oceanic plates. In a detailed study of surface waves
 

in the East Pacific, Forsyth (1975) recently confirmed the dependence
 

of the velocities with the age of the plate, and also claimed that
 

Love- and Rayleigh-wave data are inconsistent unless anisotropy is
 

introduced in the upper mantle. However, in view of the very limited
 

set of data available at long periods, and of the many different
 

models which can explain the observed anisotropy, we decided not to
 

take anisotropy into account in the present study.
 

In Section 2.1, we build up a table of theoretical Rayleigh-wave
 

oceanic phase velocities, for several values of the age of the litho

sphere, by assuming that the ocean below 180 km is similar to the
 

gross earth model C2, as described by Anderson & Hart (1976). We
 

then use a few 'pure-age' paths, in a two-station computation, to
 

check the overall agreement of this model with local data. In
 

Section 2.2, we then carry out a regionalization of dispersion curves,
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solving for pure-path continental values, and allowing for a variation
 

of oceanic velocities with age, in accordance with the results from
 

the first section. Again, we make sure that the results agree with
 

direct experimental values obtained from two pure continental paths
 

by the two-station method. In Section 2.3, we discuss the results
 

and compare them with the two models proposed by Jordan (1975a) for
 

continental and oceanic structure (with substantial differences down
 

to 650 kim). We prove the latter's incompatibil3ty with the data.
 

We also discuss Dziewonski's (1971) shield models with respect to the
 

recent vertical shear-wave data obtained from ScS studies.
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2.1 Rayleigh-Wave Phase Velocities From an Oceanic Model of Aging
 

Lithosphere
 

Studies of Rayleigh-wave phase velocities at shorter periods
 

(T< 150 s) have led Leeds and co-workers (Kausel et al. 1974; Leeds
 

et al. 1974; Leeds 1975) to a seismic model of the evolution of the
 

limthospheric plate with age in the Pacific Ocean. In the present
 

study, we will assume that lateral heterogeneity under the ocean is
 

confined to the upper 180 km, and that the remaining part of the
 

mantle is identical to the average earth model C2. This way, we
 

define eight different oceanic models (hereafter 'Ocean l'-'Ocean 8'),
 

corresponding to the eight regions defined in Leeds et al. (1974)
 

(respectively 150, 120, 100, 70, 50, 30, 15 and 5 Myr old), after
 

the three older regions have been corrected in accordance with Leeds'
 

later paper (1975). We compute theoretical phase velocities at
 

five standardized periods (T = 292.57, 256.00, 227.55, 204.80 and
 

186.18 s), which are harmonics of the main fundamental 2048-s window,
 

which will be used in all Fast-Fourier transform analyses in the
 

present paper. Results are shown in Table 2.1, and on Figure 2.1.
 

Differences in velocities between younger and older oceans are on the
 

order of 1.5 to 2%, which is at least as large as the continental

oceanic differences reported in previous studies (Kanamori 1970;
 

Dziewonski 1970).
 

Before proceeding any further, it is necessary to check these
 

results against experimental values. The use of waves with periods
 

in the range 200 to 300 seconds restricts the choice of the data to
 

a fairly small number of events, in which energy is present at such
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Table 2.1
 

Theoretical Rayleigh-Wave Phase Velocities for Oceanic Models
 

Ocean 1 - Ocean 8
 

Model Age Velocity (km/s) at Period (s)
 

m.y. 292.57 256.00 227.55 204.80 186.18
 

Ocean 1 150 5.260 4.989 4.788 4.642 4.535
 

Ocean 2 120 5.249 4.976 4.771 4.619 4.506
 

Ocean 3 100 5.242 4.968 4.761 4.607 4.492
 

Ocean 4 70 5.237 4.963 4.756 4.601 4.485
 

Ocean 5 50 5.234 4.960 4.753 4.599 4.482
 

Ocean 6 30 5.227 4.953 4.746 4.592 4.475
 

Ocean 7 15 5.208 4.934 4.728 4.575 4.458
 

Ocean 8 5 5.184 4.909 4.703 4.549 4.433
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Figure 2.1. Theoretical Rayleigh-wave phase velocities for models
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periods. These are listed in Table 2.2. Furthermore, these are
 

large earthquakes, for which, most of the time, no rupture mechanism
 

accurate enough to allow the use of a one-station method, is available.
 

A two-station investigation is therefore necessary. Among the earth

quakes listed in Table 2.2, the only two-station combination sampling
 

only young (respectively old) ocean and providing a strong signal at
 

the adequate periods, is: SOM-KIP (Hindu-Kush event) (respectively:
 

GUA-KIP (Colombia event)) - see Figure 2.2. Vertical WWSSN records
 

from these stations were digitized over 2048 s and Fourier analyzed.
 

The phase velocity was computed from the classical formula (Toksoz &
 

Ben-Menahem 1963):
 

- T  1 
 (2.1)
 

t 2 - t I + T. [(2-hi)/27T + (n/4) + N] 

Here, c is the phase velocity at period T, and the A's are the
 

distance travelled by the surface wave to stations 1 and 2, t1 and
 

t2 are the initial times of the windows used in the process, 41 and
 

2 are the observed spectral phases (in radians), at period T, n is
 

the total number of epicentral and antipodal crossings between
 

stations 1 and 2, and N is a suitable integer. The accuracy of the
 

data is on the order of twice the digitizing unit (2s) in tame, or
 

0.01 km/s for c. Results are shown in Table 2.3. Most of the SOM-KIP
 

trace samples the Chile rise separating the Antarctica and Nazca plates
 

(region 8), then the East Pacific Rise (regions 7 and 8), and finally
 

young lithosphere (mostly regions 6 and 5). The average would then
 

be expected to resemble models 'Ocean 6' or 'Ocean 7'. On the other
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Table 2.2
 

Coordinates and Magnitudes of Earthquakes used in Chapter 2
 

Number Name Epicenter (0N ;0E) Date M (*)w 

I Rat Island 51.3 ; 178.6 4 Feb 65 8.7 

2 Alaska 61.1 , -147.6 28 Mar 64 9.2 

3 Kurile 44.8 ; 149.5 13 Oct 63 8.5 

4 Niigata 38.7 ; 139.2 16 Jun 64 7-6 

5 Hindu-Kush 36.4 , 70.7 14 Mar 65 [7.5] 

6 Mindanao 6.5 , 126.2 2 Dec 72 [7.4] 

7 Mongolia 45.2 ; 99.2 4 Dec 57 8.1 

8 Assam 28.4 ; 96.7 15 Aug 50 8.6 

9 Moluccas -2.4 ; 126.0 24 Jan 65 [7 ] 

10 Chile -38.0 ; -73.5 22 May 60 9.5 

11 Colombia -1.5 ; -72.6 31 Jul 70 (2x1028) 

12 Auckland Isl. -49.1 ; 164.2 12 Sep 64 [7] 

13 Kamchatka 52.6 ; 160.3 4 Nov 52 9.0 

14 Peru-Brazil -13.8 ; -69.3 15 Aug 63 (7x1027) 

15 Indonesia -11.1 , 118.4 19 Aug 77 8.6 

(*) Mw as defined in Kanamori (1977b). For smaller events, only
 

M is given, in brackets. For deep events, only the seismic moment,
 

Mo is given, in parentheses.
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Table 2.3
 

Experimental Oceanic Phase Velocities from the Two-Station Method
 

Event Path 	 Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186 18
 

11 	 GUA-KIP * 4.983 4.784 4.618 4.484 

5 SOM-KIP * * 4.729 4.577 4.455 

(*) No substantial energy in the record at these periods.
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hand, the GUA-KIP path samples the older parts of the Pacific Ocean
 

(even possibly older than 150 Myr) (regions 1, 2, 3), and should then
 

resemble models 'Ocean 1' or 'Ocean 2'. As can be seen from Tables
 

2.1, 2.3 and Figure 2.1, the results agree with these expectations.
 

Thus, these experimental data give evidence that lateral heterogeneity
 

within the Pacific plate is important at periods of 200-300 s, and is
 

fairly well accounted for by models 'Ocean l'-'Ocean 8'. This suggests
 

that there is no need to extend the oceanic lateral heterogeneity
 

below 180 km. This indeed, is what most theories of plate tectonics
 

predict, and also agrees with our SeS results (Okal and Anderson,
 

1975; and Chapter 1): We were able to account for variations in
 

multiple-ScS travel-tmme residuals across oceanic lithosphere by
 

models whose heterogeneity was confined to the upper 180 km of the
 

Earth. This result also allows us to assume from now on in this
 

study that oceanic Rayleigh-wave phase velocities and their variation
 

with the age of the plate are known.
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2.2 Continental Velocities: Regionalization of Rayleigh-Wave Phase
 

Velocities Allowing for Lateral Heterogeneity in the Oceanic Lithosphere.
 

Unfortunately, at the time when this study was made, it was not
 

possible to isolate data to be processed by the two-station method
 

over a pure shield path. Apart from the general distribution of
 

stations and of the events listed in Table 2.2, one additional
 

reason may be the smaller size of the continents, relative to the
 

oceans, which makes both the numerator and the denominator in
 

equation (2.1) smaller, yielding very inaccurate values of c. Conse

quently, regionalization of great-circle phase velocities was then
 

necessary to obtain pure-path values of RayleLgh-wave phase velocities
 

at periods larger than 180 s. Later, however, the August 19, 1977
 

Indonesian earthquake provided pure-shield data across the Canadian
 

shield. In the present section, we carry out such a regionalization,
 

allowing for the observed lateral heterogeneity in the oceanic litho

sphere. We then use the recent Indonesian data as an independent
 

check of our results.
 

DATA SET
 

The data used in this section includes both new data and data
 

taken from previously published studies, which were interpolated to
 

our standard periods. Table 2.4 lists the new data set, obtained
 

from records analyzed in the present study. Records of the Kamchatka
 

earthquake at Pasadena, were from the north-south component of the
 

high-gain strain instrument. All other records were from vertical
 

long-period WWSSN instruments. In the case of the Rat Island
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Table 2.4
 

Experimental Rayleigh-Wave Phase Velocities for Great-Circle Paths
 

Obtained in the Present Study
 

Event, station and Velocity (km/s) at Period (s)
 
phases used
 

292.57 256.00 227.55 204.80 186.18
 

1 HLW R5-R9 5.235 4.952 4.753 4.603 * 

1 SOX R4-R6 5.237 4.953 4.754 4.602 4.482
 

1 CTA R5-R9 * 4.972 4.771 4.621 * 

2 SPA R3-R5 5.246 4.966 4.764 4.612 4.497
 

2 AFI R5-R7 5.234 4.945 4.750 4.604 4.498
 

2 RAB R5-R7 * 4.984 4.772 4.617 4.A99 

2 GUA R5-R7 * 4.967 4.761 4.615 4.504 

3 GUA R5-R7 5.221 4.929 4.687 4.550 4.461
 

4 GIE R2-R4 5.242 4.967 4.766 4.602 4.490
 

13 PAS R2-R4 5.227 4.959 4.757 4.616 4.488
 

(*) No substantial energy in the records at these periods.
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Table 2.5
 

Additional Data taken from the Literature
 
I 

Event, station Velocity (km/s) at Period (s)
 

and reference 292.57 256.00 227.55 204.80 186.18
 

2 PAS b 5.231 4.954 4.746 *A 

3 MDS c 5.243 4.962 4.760 4.604 4.487 

3 AAE dt 5.234 4.952 4.750 4.598 4.488 

3 ADE dt 5.246 4.975 4.774 4.613 4.499 

3 AFI dt 5.239 4.963 4.763 4.616 4.508 

3 HNR dt 5.240 4.972 4.767 4.612 4.500 

3 SHI dt 5.223 4.952 4.742 4.595 * 

3 TOL dt 5.238 4.969 4.766 4.615 4.501 

7 PAS et * 4.954 4.746 4.592 4.485 

8 PAS et 5.232 4.955 4.745 4.598 4.489 

9 PAS ft 5.246 4.952 4.751 4.604 4.492 

10 PAS gt 5.240 4.960 4.754 4.596 4.476 

12 PAS ft 5.238 4.956 4.746 4.592 4.479 

14 GDH h 5.223 4 955 4.754 4.607 4.491 

14 NUR h 5.232 4.959 4.754 4.604 4.491 

14 MAL h 5.239 4.967 4.763 4.611 4.497 

14 AFI h 5.241 4.964 4.757 4.604 4.491 

14 ALQ h 5.231 4.961 4.755 4.602 4.485 

14 AAM h 5.232 4.960 4 759 4.611 4.497 

(A) No data reported at these periods.
 

(t) Data used in Kanamori's (1970) solution.
 

a This study e Toksoz and Ben-Menahem (1963)
 

b Toksbz and Anderson (1966) f Ben-Menahem (1965)
 

Abe et al. (1970) g Anderson et al. (1965)
 

d Kanamori (1970) h Dzlewonski (1970).
 

c 
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earthquake (event 1), a strong aftershock interferes with most of the
 

records of R7. Therefore, R9 is used together with R5 at stations
 

CTA and HLW. Table 2.5 similarly lists the additional data obtained
 

from the literature.
 

REGIONALIZATION
 

Regionalization of the Earth was carried out by partitioning its 

surface into 248 cells: a 15-degree grid, both in latitude in 

longitude, was used, with special adjustments made in the polar 

regions. The areas of the various cells are not all equal, but the
 

present partitioning of the Earth was found to be most convenient
 

for rapid computer regionalization of great-circle paths. Only four
 

different oceanic regions were considered. They are labelled A, B,
 

C and D: A includes regions older than 135 Myr, and model A is taken
 

as identical to 'Ocean 1'. B ranges from 135 to 80 Myr, and model B
 

is an average of models 'Ocean 2 and 3'. C ranges from 80 to 30 Myr,
 

and model C is an average of models 'Ocean 3, 4, 5 and 6'. D ranges
 

from 30 Myr to 0, with model D averaging models 'Ocean 6, 7 and 8'.
 

An attempt was initially made, using a much finer grid, to resolve all
 

eight regions defined in Leeds' study. However, considering the
 

wavelengths used in the present study (all larger than 830 km), this
 

was found unnecessary. The grid is shown on Figure 2.2.
 

Continents were divided into shields (region S) and Phanerozoic
 

mountainous areas (region M). Trenches and marginal seas were kept
 

as a separate entity (region T). Ages of the oceanic lithosphere
 

were taken from the Map o6 the Age o4 the Ocean6 published by the
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Figure 2.2. Map of the regionalization grid of the Earth used in
 
Section 2.2. Labels A, B, C, D, N, S, T are explained in text. Also
 
shown are the paths used for the two-station experiments :GIJA-KIP,

KIP-SO and BUL-NAB.
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Table 2.6 

Percentage of Great Circle Paths Lying in Each of the Seven Regions
 

Event Station Ref. A B C D T M S 

1 HLW a 0 00 25.00 16.25 10.00 5 00 8 75 35.00 

1 S0M a 0.00 7 50 32.50 23 75 17.50 18.75 0.00 

1 CTA a 8.75 5.00 41.25 11 25 7.50 10.00 16.25 

2 PAS b 0.00 0.00 28.75 26.25 10.00 26.25 8.75 

2 SPA a 0.00 3.75 52.50 3.75 0 00 18.75 21.25 

2 AFI a 0.00 17.50 27.50 10.00 7.50 3.75 33.75 

2 RAB a 7 50 16.25 40.00 11.25 5.00 3 75 16.25 

2 GUA a 10.00 10.00 32.50 7.50 13.75 6.25 20.00 

3 GUA a 3.75 3.75 30.00 8.75 13 75 11.25 28.75 

3 MDS c 0.00 5.00 40.00 3.75 25.00 8.75 17.50 

3 AAE d 0.00 27.50 23.75 10 00 2.50 22.50 13.75 

3 ADE d 3.75 3.75 31.25 6.25 13 75 10.00 31 25 

3 AFI d 3.75 23.75 20.00 7.50 13.75 8 75 22.50 

3 PNR d 8.75 8.75 31.25 3.75 18.75 6.25 22.50 

3 SHI d 0.00 26.25 26.25 6 25 5.00 18.75 17.50 

3 TOL d 7.50 12.50 26 25 2 50 17 50 5 00 28.75 

4 GIE a 0.00 5.00 31 25 23.75 23 75 15.00 1.25 

7 PAS e 0.00 0.00 30.00 26.25 8 75 26.25 8 75 

8 PAS e 0 00 1 25 31.25 23.75 11.25 31.25 1.25 

9 PAS f 5.00 21 25 38.75 3 75 18.75 1.25 11 25 

10 PAS g 2.50 0.00 37 50 25.00 11.25 12 50 11 25 

12 PAS f 0.00 15.00 30.00 8.75 11.25 27.50 7 50 

13 PAS a 1.25 8.75 30.00 23.75 20.00 16 25 0 00 

14 GDH h 3.75 5.00 23.75 3.75 16 25 16.25 31.25 

14 NUR b 1 25 1 25 31.25 12.50 28.75 7.50 17.50 

14 MAL h 7.50 17.50 31.25 7.50 21.25 5 00 10.00 

14 AFI h 1.25 12.50 21.25 8.75 12.50 11.25 32.50 

14 ALQ h 0.00 6.25 32 50 15.00 8.75 12.50 25.00 

14 AAM h 0.00 11 25 17.50 3.75 15.00 20.00 32.50 

References : see Table 2.5. 
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Geological Society of America (1974). A computer program was
 

written, which samples any great-circle path at 500-km intervals,
 

and computes the percentage of its length falling into the seven
 

different regions. The results are listed in Table 2.6.
 

SOLVING FOR CONTINENTAL VELOCITIES
 

At each of the five standardized periods (T), we solve the system
 

of equations
 

Z x /v (T) = 1/c (T) (2.2)
 
J iJ J
 

for vs, vM and VT, using a least-square technique. Here j = A,B,C,D,
 

T,M,S is the index of the region; i is the index of the path; x.. is
 

the fraction of path i lying in region j, and ci(T) is the observed
 

phase velocity at period T along great-circle i. Rather than solving
 

for all seven v 's, we fix vA, vB, Vc, and vD to their known values
 

obtained in Section 2.1, listed in Table 2.7, and solve only for
 

Vs, VM, vT. This has the effect of reducing the number of unknowns,
 

in view of the relatively small amount of data available. In so
 

doing, we are ignoring the phase delays introduced along the path by
 

heterogeneities elsewhere in the Earth, as discussed by Madariaga &
 

Aki (1972). We are then seeking to explain the differences between
 

Kanamori's and Dziewonski's models merely in terms of pure-path phase
 

velocities.
 

Another objection to the use of equations (2.2) was Dahlen's
 

(1975) suggestion that deep lateral heterogeneities in the mantle
 

could cause variations as large as 0.2 % in the apparent great-circle
 



-210-


Table 2.7 

Phase Velocities used in Models A, B, C, D 

when solving for Models T, M, S 

Model 

A 

B 

C 

D 

292 57 

5.259 

5.246 

5.236 

5.206 

Velocity (km/s) at Period (s) 

256.00 227.55 204.80 

4.989 4.788 4.642 

4.972 4.766 4.613 

4.961 4.754 4 600 

4.932 4.726 4.572 

186 18 

4.535 

4.499 

4.483 

4.455 
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Table 2.8
 

Solution for Rayleigh-Wave Phase Velocities in Regions T, M, S
 

Phase Velocity (km/s) at Period (s)
Region 

292.57 256.00 227.55 204.80 186.18
 

T 5.279 4.989 4.804 4.644 4.522
 

M 5.202 4.941 4.712 4.575 4.466
 

S 5.223 4 948 4.742 4.598 4.499
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Figure 2.3. Regionalized phase velocities obtained for shields (EOS)
 
and mountainous areas (EOM) in the present study, as compared to ADS
 

(Dziewonski's shield values), HKS and HKO (Kanamori's shield and ocean
 

values) and TJO and TJC (Jordan's oceanic and continental models, un

corrected for Q).Also shown are models 'Ocean ' and 'Ocean 8', giving
 

the range of variation of oceanic velocities, and experimental data
 

from the 'pure' path BUL-NAI, obtained by the two-station method.
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path lengths. However, Dziewonski & Sailor (1976) and Dahlen (1976)
 

recently showed that this result was in error and agreed on a much
 

smaller value, on the order of only 1/150 of 1 %. This effect is
 

therefore totally negligible, given the accuracy of the present data.
 

The results of our solution are shown in Table 2.8 and on Figure
 

2.3. Root-mean square residuals are on the order of 0.5 %. The
 

immediate conclusions are:
 

(i) Shields and mountainous regions exhibit velocities generally
 

in agreement with Dziewonski's results.
 

(ii) The dispersion curve obtained for shields is much smoother
 

than Kanamori's.
 

iii) Velocities for continents fall into the range of oceanic
 

velocities: shield velocities are on the order of those of 30-Myr
 

old oceanic mantle at 292 s, and of 100-Myr old ocean around 200 s.
 

In order to check the results of this inversion, a convenient
 

alignment was used over a purely tectonic continental area: BUL-NAI
 

(Rat Island event), sampling the African Rift over a length of 3200
 

km. Rayleigh-wave phase velocities obtained from these records by
 

the two-station method are shown in Table 2.9. As the distance is
 

shorter between BUL and NAI than distances used in Section 2.1 for
 

oceanic paths, the precision is only about 0.02 km/s, but the agreement
 

with the velocities obtained from equations (2.2) for region M is
 

still excellent.
 

After the original study reported in this Section was completed
 

and published, the Indonesian earthquake of August 19, 1977 made
 

possible a direct independent check of the shield velocities obtained
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Table 2.9
 

Experimental Continental Rayleigh-Wave Phase Velocities from the
 

Two-Station Method
 

Event Path Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

BUL- NAI 5.199 4.940 4.690 4.591
 

(*) No substantial energy in the records at these periods.
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Table 2.10
 

Summary of Stations and Records used in the Indonesian Event
 

Independent Check
 

Epicentral 

Code Station Distance Azimuth Digitizing window 

Phase (km) (0) starts ends 

COL College, Alaska 11298.1 25.7
 

R3 09:56 10:16
 

R4 11'08 11.33
 

R5 13:00 13:25
 

R6 14:06 14.42
 

R7 16 11 16.35
 

SCP State College, Penna. 16353 7 23.1
 

R4 10:42 11:11
 

R5 13:17 13:46
 

R6 13.46 14:22
 

R7 16:24 16"54
 

R8 16.54 17:26
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at very long periods from our inversion. This very large event was
 

assigned an Ms of 8.0 at Pasadena, and Stewart (1978) estimated its
 

moment to be larger than 1)41029 dyn-cm. It created strong Rayleigh
 

at COL and SCP, these two stations being separated by only 2.60
 waves 


in azimuth. Figure 2.4 shows the geographical layout of the great
 

circle linking the two stations and the epicenter. Table 2.10 gives
 

the details of the seismic phases used in this study. A clock correc

tion of -500 ms was applied to the records at SCP. The calibration
 

pulses were digitized, filtered at T> 150 s, and checked to be
 

identical at both stations.
 

Seismograms were digitized at 2 s intervals and Fourier analyzed
 

at the five standard periods. For the wavetrains used (R4 to R8)
,
 

spectral amplitudes are usually peaked between 200 and 300 s. We
 

eliminated all spectral components whose amplitude was less than
 

one-half the maximum spectral amplitude in the corresponding record.
 

These components appear as asterisks (*) in Tables 2.11 and 2.12.
 

The phase velocities were then computed using equation (2.1). This
 

is believed to be the first direct two-station measurement of Rayleigh
 

wave velocities over shield at ultra-long periods.
 

Results are listed in Table 2.11 and plotted on Figure 2.5. The
 

error inherent to the method is on the order of twice the digitizing
 

unit (2 s) in the time domain, or 0.02 km/s for c. This figure is
 

larger than for the oceanic case reported in Section 2.1, because
 

of the shorter path between the two stations. The corresponding
 

error bars are shown as arrows on Figure 2.5. Figure 2.5 shows that
 

these experimental values are in good agreement with the dispersion
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Table 2.11
 

Shield Values of Rayleigh-Wave Phase Velocities obtained by the
 

Two-Station Method between COL and SCP
 

Phases used Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

R4 A * * * 4.496 

R5 * 5.005 4.777 4.649 * 

R6 5.226 4.983 4.726 4.561 4.546 

R7 * 4.906 4.779 A * 

Mean 5.226 4.965 4.761 4.605 4.521
 

Standard deviation 0.042 0.024 0.044 0.025
 

(*) No substantial energy in the records at these periods.
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Figure 2.5. Experimental Rayleigh wave phase velocities obtained over
 

the pure shield path COL-SCP. The big dots are the individual data
 

points (from Table 2.12), with the vertical arrows showing the error
 

bars. The thick trace across the figure is the resulting average expe

rimental shield velocity. Other curves are described in Figure 2.3.
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curves obtained through regionalization of great-circle data (Kanamori
 

1970; Dziewonski 1970; this study), given the uncertainty on the
 

present data (shown by the error bars) and the accuracy of least

squares regionalization (the values listed in Table 2.8 have a root
 

mean square residual on the order of 0.5 %).
 

Furthermore, comparison of the present data with the experimental
 

curves for the pure-age oceanic paths KIP-SOM and KIP-GUA (see Section
 

2.1 and Figure 2.1) brings an immediate experimental confirmation
 

of one of our main conclusions: the shield phase velocities lie
 

within the range of variation of oceanic velocities with age; in the
 

range 200 to 300 s, the average shield velocity (the thick trace on
 

Figure 2.5) is indeed very comparable to average oceanic velocities
 

at similar periods. Thus, any model of continent-ocean heterogeneity
 

predicting strong differences in phase velocities at very long periods
 

is incompatible with experimental data.
 

It is also possible to use the new data from the Indonesian
 

earthquake to check an independent set of experimental velocities
 

along a great-circle against values predicted by our inversion. We
 

computed great circle phase velocities, making use of the various
 

phases listed in Table 2.10, both at COL and SCP. Results are listed
 

in Table 2.12. This time, the error bars are on the order of 0.003
 

km/s, due to the much longer path travelled by the wave. Table 2.13
 

gives the theoretical values obtained from the models derived in the
 

inversion (and listed in Tables 2.7 and 2.8). Because of the slight
 

difference in azLmuth between COL and SCP, the two great circles
 

through these stations are not exactly identically regionalized into
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Table 2.12
 

Experimental Phase Velocities along the Great Circles Sumba-COL
 

and Sumba-SCP
 

Records used Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

COL R3- R5 5.227 4.953 4.756 4.600 * 

COL R5- R7 5.234 4.968 4.764 4.607 * 

COL R4- R6 * * 4.735 4.652 4.514 

SCP R4- R6 5.256 * 4.775 4.631 4.507 

SCP R5- R7 * 4.955 4.764 * * 

SCP R6-R8 5.251 4.964 4.770 4.620 * 

Mean 5.242 4.960 4.760 4.622 4.511
 

(*) No substantial energy in the records at these periods.
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Table 2.13
 

Theoretical Values obtained along the Great Circles Sumba-COL
 

and Sumba- SCP using Models derived in the Inversion
 

Great Circle Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

Sumba - COL 5.242 4 965 4.761 4.609 4.494
 

Sumba - SCP 5.241 4.964 4.760 4.608 4.494
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seven standard regions, and the theoretical values are very slightly
 

different. Nevertheless, the agreement between the average values
 

measured over the great circles and those expected from these models
 

is excellent and fits well within the standard error accompanying the
 

results of inversion.
 

Such a direct computational test by independent data is a very
 

desirable confirmation of any model obtained by an inversion technique:
 

In addition to providing a least-squares fit to the 29 records used
 

in the inversion, models T (trench areas), M (mountainous areas), and
 

S (shields) correctly predict the dispersion along this new great

circle path.
 

Another independent check recently came in a study by Aki and 

Patton (1978, personal communication), who used Rayleigh waves from 

a number of Central Asian earthquakes to investigate the Siberian 

shield and the adjoining mountainous areas, through the one-station 

method. Although their study involves mainly shorter periods ( < 

200 s ), they report basic agreement with the high-frequency end of
 

the present results.
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2.3 Discussion
 

Before discussing the results of the previous section with respect
 

to Dziewonski's and Kanamori's, it is worth noting the velocities
 

obtained for the trench areas (region T). These are definitely
 

larger than the corresponding average oceanic values. Again, for
 

lack of data over sufficiently long paths, we were unable to check
 

this observation by the two-station method. However, it is worth
 

noting that a surface wave at 200 to 300 s, travelling over the area
 

with a wavelength of 800 to 1500 km, will sample both the adjoining
 

lithosphere, which is the oldest and fastest part of the ocean, and, 

at depth, the downgoing slab. The latter has been shown, both 

expermentally (Utsu 1967; Katsumata 1970, Isacks & Molnar 1971) 

and theoretically (Toksbz et al. 1971) to be an area of higher seismic 

velocities. It may be that these effects dominate the low-velocity
 

areas of partial melting which accompany the slab.
 

We first want to compare our results with Dziewonski's and 

Kanamori's. Our shield and mountain velocities basically agree with 

Dziewonski's, and they exhibit a behavior somewhat different from 

those of Kanamori (see Figure 2.3). As both data sets were used in
 

the present inversion, these discrepancies require an explanation.
 

Table 2.6 shows that Kanamori's paths sample more ocean than
 

Dziewonski's (56 % of the paths versus 47 %). More importantly, the
 

distribution of these oceanic paths among regions A, B, C, D is far
 

from constant: for example, the Kurile-AFI great-circle path falls
 

27.5 % into the fast regions A and B, and 27.5 % into the slow regions
 

C and D. Meanwhile Alaska-PAS falls 0 % into A and B, and 55 % into
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C and D. Similarly, Mongolia-PAS falls 0% into A and B, and 56.2%
 

into C and D. Conversely, Dziewonski's paths are much more similar
 

to each other. In terms of the solution of the least-squares system
 

under the assumption of only one oceanic velocity at each period,
 

Kanamori's paths will be more unstable than Dziewonski's. We think
 

that the larger diversity of the oceanic paths in Kanamori's data
 

was responsible for the apparent scattering of his shield velocities,
 

and for the discrepancy which exists between his results and Dziewon

ski's, especially around 180 s.
 

This can be checked by solving equations (2.2), using only the
 

data used in Kanamori (1970) as identified in Table 2.5 by a dagger
 

(t). The results of this test are listed in Table 2.14. Although
 

the obtained shield values are somewhat higher than those from both
 

this study and Dziewonski's, their trend is much less dispersive than
 

Kanamori's (1970) solution. Values obtained for the mountainous
 

areas are also in good agreement with those from both the present
 

inversion - Table 2.8 - and the two-station investigation - Table
 

2.9 -. 

Having investigated a range of oceanic models and confirmed
 

Dziewonski's shield values in view of intrinsic oceanic heterogeneity,
 

we will now discuss the phase velocities obtained from the two models
 

propo'.cd by Jordan (1975a), for continental and oceanic mantles. These
 

two models differ to depths on the order of 650 km. Theoretical values
 

computed from Jordan's oceanic and continental models are listed in
 

Table 2.15. At this point, it should be noted that nowhere in the
 

present study has the effect of anelasticity - as pointed out by
 

http:propo'.cd
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Table 2.14
 

Solution for Rayleigh-Wave Phase Velocities using only data
 

used by Kanamori (1970) ( t in Table 2.5 )
 

Region Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

M 5.213 4.954 4.724 4.571 4.488
 

S 5.223 4.978 4.780 4.629 4.527
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Ltu et al. (1976) - been taken into account in the computation of 

surface-wave velocities. However, both Leeds' models and model C2 

were obtained from inversions of surface-wave data, which did not 

take this effect into account. Therefore direct comparison is 

possible, since the Q correction would have the same effect on both 

experimental and theoretical velocities. On the other hand, Jordan's 

models are primarily body-wave models, obtained to match discrepancies 

reported from travel-time analyses. Therefore, a correction for the 

frequency dependence of elastic moduli caused by Q should be included
 

before comparing Jordan's models to values obtained from surface-wave
 

data. Hart et al. (1977) recently reported that, at the periods
 

involved (180 to 300 s), the Q correction for spheroidal modes is
 

on the order of 1%, which means that phase velocities derived
 

uncorrected from surface-wave data are about 0.05 km/s slow. Con

versely, the correction to be applied to phase velocities derived
 

from body-wave models, such as Jordan's, in order to compare them to
 

velocities from the present study, is on the order of -0.05 km/s.
 

As shown in Table 2.15 and Figure 2.3, this correction makes Jordan's
 

continental model basically consistent with experimental shield
 

data, as obtained from this study, or Dziewonski's. However, a
 

similar correction will move the oceanic values (curve 'TJO' on Figure
 

2.3) still further away from the experimental data from any part of
 

the ocean. Although in Jordan's own words, the two models which he
 

describes are only tentative, the important point is the difference
 

between them, which he reports to be warranted by body-wave data. Such
 

a difference at a substantial depth (on the order of 600 km) will
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Table 2.15
 

Theoretical Rayleigh-Wave Phase Velocities for Jordan's Oceanic
 

and Continental Models
 

Model Velocity (km/s) at Period (s)
 

292.57 256.00 227.55 204.80 186.18
 

Oceanic model 5.148 4.874 4.673 4.526 4.417
 

Continental model 5.259 5.000 4.808 4.667 4.561
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always lead to large continent-ocean surface-wave phase-velocity
 

differences, regardless of the global average value.
 

In a recent paper, Sipkin & Jordan (1976) state that the 'base

line discrepancy' between continents and oceans can be explained in
 

terms of a different value of Q under oceans and continents. The
 

maximum possible lateral variation in Q would consist of a perfectly
 

elastic oceanic mantle (Q = -) and of an anelastic continental mantle.
 

(In fact, Kanamori (1970) reports no such definite behavior in the
 

attenuation of surface waves, and this model is just unrealistic.)
 

Even so, using this hypothetical model to correct continental
 

velocities, and keep oceanic ones uncorrected, Figure 2.3 shows that
 

we are left with an average difference between them of 0.07 km/s,
 

and we are unable to reconcile the two models with the experimental
 

data. Therefore, we conclude that the models of Jordan and Sipkin &
 

Jordan are incompatible with the present available Rayleigh-wave
 

phase velocity data in the range 200 to 300 s.
 

Finally, we want to discuss the models which were derived by
 

Dziewonski (1971) from his sets of oceanic and shield velocities,
 

with respect to the data available at shorter periods and from body

wave studies. We have first computed Rayleigh-wave phase velocities
 

for DziewonskL's (1971) shield models Si and S2, at periods of 60
 

and 100 s. Results are reported in Table 2.16. Models SI and S2
 

are totally compatible with the experimental data reported by Brune &
 

Dorman (1963) over Canadian shield, and by Noponen (1966) for Finnish
 

shield. The models also agree with Kanamori & Abe's (1968) recompu

tation of theoretical phase velocities from model CANSD, allowing for
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Table 2.16
 

Theoretical (T) and Experimental (E) Rayleigh-Wave Phase
 

Velocities at Shorter Periods
 

Model Reference Velocity (km/s) at
 

60 s 100 s
 

Sl Dziewonski (1971) (T) 4.151 4.208
 

S2 Dziewonski (1971) (T) 4.161 4.191
 

CANSD Kanamori and Abe (1968) (T) 4.161 4.230
 

Continental Jordan (1975a) (T) 4.129 4.221
 

CANSD Brune and Dorman (1963) (E) 4.155 4 202
 

Finnish Noponen (1966) (E) 4.18
 

(*) No data reported at this period
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the curvature of the Earth, and for gravity at T> 70 s. Jordan's
 

(1975a) continental model yields phase velocities substantially lower
 

at 60 s, higher at 100 s, thereby exhibiting a dispersion between
 

60 and 100 s not in agreement with either of the experimental sets
 

of shield data.
 

Although the term 'shield' is used in various studies with a
 

somewhat variable meaning - as pointed out by Dziewonski (1971) 

it is noteworthy to confirm the basic compatibility of Dziewonski's
 

models SI and S2 with data at shorter period.
 

Our results on multiple ScS travel-times (see Chapter 1), as well
 

as Sipkin and Jordan's (1976) ask for travel-time residuals for shield
 

on the order of -2 s, with respect to the Jeffreys-Bullen tables.
 

Okal & Anderson (1975) also report a +1 s residual for average (50 

70 Myr old) ocean. We have computed residuals with respect to
 

Jeffreys-Bullen for the top 620 km of Dziewonski's models 01 (+1.9 s),
 

SI (1.0 s) and S2 (-1.0 s). As explained earlier in this paper, a
 

correction for Q should be applied to these values, obtained from
 

surface-wave models, before comparing them with body-wave data, such
 

as the one derived from the Jeffreys-Bullen tables. This correction
 

is on the order of -1.1 s (Hart et al. 1977). We end up with the
 

following residuals: 01: +0.8 s; Si: -0.1 s; S2: -2.1 s.
 

Therefore, we conclude that Dziewonski's shield model S2 recon

ciles (a) body-wave travel-time residuals; (b) short-period Rayleigh

wave data, and (c) long-period surface-wave data. Model SI (which has
 

no low-velocity zone) provides an excellent fit to (b) and (c), but
 

stays somewhat slow in terms of body waves. Although a more accurate
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description of the oceanic mantle is given by Leeds' various models,
 

Dziewonski's model 01 is compatible with both average oceanic body-wave
 

data, and with long-period surface-wave data. Thus, it is possible,
 

through models 01 and S2, which differ insignificantly (less than 0.7%)
 

below 240 km, to fully account for all presently available seismic
 

data individualizing continents and oceans. These data do not warrant
 

strong lateral heterogeneities (on the order of 0.13 km/s or 2.7% in
 

Jordan's models), between oceans and continents at depths greater
 

than 250 km.
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2.4 Conclusion
 

Our results can be summarized as follows:
 

(i) Oceanic models at depths shallower than 180 km, developed
 

from the study of short-period Rayleigh-wave phase velocities, combined
 

with the average model C2 at greater depths, correctly predict longer
 

period (200 to 300 s) oceanic phase velocities, and their variations
 

with the age of the plate, which can be as high as 2.5%.
 

(ii) Such intrinsic oceanic inhomogeneities may create scatter
 

in the dispersion curves, if not taken into account when regionalizing
 

great-circle data for 'pure-path' phase velocities. When these hetero

geneities are taken into account, continental velocities are found to
 

be in agreement with Dzlewonski's values, obtained from paths sampling
 

the oceanic lithosphere fairly regularly.
 

(iii) Rayleigh-wave phase velocities for continental areas (both
 

shields and mountainous regions) fall within the range of oceanic
 

models, and the difference between average oceanic and continental
 

velocities is on the same order of magnitude as the variation within
 

the oceanic plate due to its age. This is incompatible with Jordan's
 

models of strong, deep lateral heterogeneities between oceans and
 

continents. Recent data from the Indonesian event give a direct
 

exp mentaL confirmation of this result. 

(iv) Dziewonski's (1971) shield model S2 reconciles all
 

presently available experimental data for shields (body-wave, short

and long-period surface wave) without any substantial structural
 

difference below 240 km with the average oceanic model 01.
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