
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



x3ewe

(NASA-CR-151812) 1AN-MACHINE INTERFACE
ANALYSIS OF THE FLIGHT DESIGN SYSTEM
(Science Applications, Inc.) 37 p
HC A03/CIF A01	 CSCL 05H

N78-29754

Unclas
63/54 28501

rr	 _



MAN-MACHINE INTERFACE ANALYSIS

OF THE
FLIGHT DESIGN SYSTF11

by

H. Rudy Ramsey
Michael E. Atwood
John K. Willoughby

Technical Report No,

SAI-78-089-DEN

30 June 1978

I

r`

Science Applications, Inc.
40 Denver Technological Center West. 7935 East Prentice Avenue, Englewood. Colorado 80111, 303/773.6900

Other SAI Offices: Albuquerque. Ann Arbor, Arlington. Atlanta, Boston, Chicago, 1luntsvilla, La Jails, Los Angeles. McLean. Palo Alto, Santa Barbara, Sunnyvale. and Tucson.

E



FOREWORD

This document is the final report of work performed in the

period 1 March 1978 - 30 June 1978 on Contract No. NAS9-15535 (SAI

Project No. 1-032-00-129), entitled, "Man-Machine Interface Analysis

of the Flight Design System." The purpose of this project was to con-

duct a brief, broad human factors analysis of the Flight Design System,

a system intended for use in shuttle-era flight design by the Mission

Planning and Analysis Division, NASA Johnson Space Center. The human

factors analysis was intended to provide specific recommendations whe y-

ever appropriate, and to identify potential problem areas involving

human factors issues.

3

z

.i

i

g



TABLE OF CONTENTS

PAGE

INTRODUCTION	 1

EVOLUTION OF THE FLIGHT DESIGN SYSTEM	 3

NATURE AND OBJECTIVES OF THE HUMAN FACTORS ANALYSIS	 4

SOME BASIC ISSUES	 6

FINDINGS	 10

Understanding the Analytical Process 11
Technician Users 13
Abstract Plans 14
Some General Comments on FDS Dialogue 16
Interface of Application Processor to

Interface Table 17
Application Processor Standards 18
Movement Among Subsystems 19
Command Language 20
Data Management 21
Comments and Automatic Abstracting 22
Editor Function 23
Error Messages 24
Dialogue Modes 25
Use of Storage-Tube Terminal 26
"Audit" Trail 28
Problem-Solving Aids 29
Subsystem Y Interface 30
Transition to FDS Planning 31
Evaluation of System Performance 32
Flight Design Team Structure 32
Automated Production of Planning Documents 33
Voice-Input Device Study 33

t	 i

fi-

F

s



INTRODUCTION

Flight design for the Shuttle flights of the Space Transportation

System (STS) imposes several new requirements on the Mission Planning and

Analysis Division (MPAD) of the NASA Johnson Space Center. The most

serious of these requirements is the high flight rate, which is projected

to reach approximately 50 flights a year by 1983 and is much greater than

that of previous manned spaceflight programs.

Currently, flight planning is accomplished with large, batch com-

puter systems. These systems, however, are not sufficient to support the

high flight rate of the Space Shuttle era. Clearly, a new approach to

flight design is required. This approach should be a production-oriented

system that provides the analyst with automated analytical tools and

allows for rapid, interactive flight design. In addition, this system

should provide an automated documentation process for the production of

standardized flight profiles and associated documents. This would free

the analyst from many documentation tasks, which require approximately

50-60% of the analyst's time under the current system, and would allow

the analyst to devote more time to actual flight design.

MPAD is currently developing such techniques and aids. The Fligi;t

Design System (FDS) is intended to provide a powerful, flexible system

for use in flight design. Experience at JSC during previous manned

space programs has amply demonstrated that the flight design process

requires the judgment and intervention of experienced flight planners.

Yet the level of effort required to support anticipated STS flight rate.:

using the flight design techniques of previous programs would be pro-

hibitive. Thus, the FDS must preserve the critical elements of human

participation while maximizing the computer's role in the flight design

process. This efficient combination of human skills and computer

capabilities requires that the human factors aspects of the FDS must be

-1-

I



rigorously evaluated and carefully designed based on established

principles of effective man-computer interaction.

-2-

--



EVOLUTION OF THE FLIGHT DESIGN SYSTEM

The Flight Design System concept has evolved from the basic com-

putational techniques already in use in the batch environment of pre-STS

flight planning. The functional prototype (FDS-1) which has been deve-

loped uses the basic system architecture of the FDS concept, but contains

application processors derived, for the most part, directly from existing

batch tools, especially in the trajectory area.

It is important to recognize that the purpose of FDS-1 is to

allow testing of the basic system architecture and functions. The proto-

type system provides a good, general-purpose capability, but possesses

only a limited set of computational aids. Furthermore, up to the present

time, little or no explicit attention has been given to human factors

issues. This was a conscious decision on the part of MPAD. It was

generally felt that resources should be concentrated on achievement of

a working basic system capable of providing an experimental testbed,

and only then should human factors consultation be sought. Because of

the very flexible nature of the FDS architecture, modification of fairly

significant functional aspects of FDS is still possible prior to com-

pletion of FDS-2, the first production version of the system. It is in

this context that the human factors analysis reported here was conducted.

-3-



NATURE AND OBJECTIVES OF THE HUMAN FACTORS ANALYSIS

Historically, the field of human factors has dealt heavily with

such areas as controls and displays, psychomotor tasks, and the appli-

cation of task analysis and similar job-analytic techniques. Even today,

many people associate the phrase "human factors" with activities of this

sort. While these activities are still relevant, the last decade has

seen a much greater emphasis on cognitive tasks, problem-solving aids,

and analysis of the problem-solving behavior of computer system users.

This has resulted in part from the increasing maturity of the study of

cognitive psychology and human information processing, and in part from

the rapidly increasing use of computers as aids for problem-solving

tasks, whereas earlier computers were used primarily to support clerical

tasks.

As a result of this shifting emphasis, human factors personnel

have begun to make significant contributions not only in the area of

"knobs and dials" -- the design of keyboards, formatting of displays,

etc. -- but also in the much more basic and significant areas con-

cerned with analysis of user information requirements, basic functional

design of the system, detailed dialogue design, and even the overall

problem-solving procedures of the user.of which the interactive tool

is only a part.

The objective of the current effort was to perform a broad

analysis of the human factors issues involved in the design of the

Flight Design System. The analysis was intended to include character-

istics of the system itself, such as:

- The basic structure and functional capabilities of FDS

- User backgrounds, capabilities, and possible modes of use

- FDS interactive dialogue, problem-solving aids

- System data management capabilities

11



E	 -

F

and to include, as well, such system-related matters as:

- Flight design team structure

- Roles of technicians

M	 - User training

- Methods of evaluating system performance

From the start, it was understood that the small size of this

effort would prevent the development of detailed recommendations in

many of these areas, but it was felt that a rapid, broad identification

of the issues would be the most cost-effective use of the available

resources. Wherever possible, specific recommendations have been made.

In other cases, we have identified the issues which seem most important

and, in some cases, have suggested additional analyses or experiments

which might provide resolution.

-5-

{



SOME BASIC ISSUES

There are several basic issues, pertaining to the design and use

of FDS, that are particularly important with re;^ect to a human factors

analysis. For convenience, we have organized these issues into six

basic categories. As will be seen, however, these categories are not

completely independent and consideration of an issue in one category

may well have implications for issues in other categories.

1. STS planning requirements can be satisfied only through a new approach

to the problem of flight design. In previous manned spaceflight programs,

planning was partitioned by mission phase (ascent, on-orbit, deorbit) and

each phase was considered individually. Such an approach requires effect-

ive interfaces among the personnel working on each phase. Such inter-

faces impose communication and sequencing problems and may tend to pro-

duce "bottlenecks" n the flight design process. Given the high flight

rate projected for the Space Shuttle era, such bottlenecks must be

avoided.

Under the FDS conce pt, planning tasks will be partitioned pri-

marily by expected planning difficulty rather than by mission phase.

This requires flight design analysts to employ a new approach to flight

design. A related issue is the use of a team concept. As planned, a

flight design team will consist of 6-9 personnel, possibly from differ-

ent disciplines, and will include a team leader who will function as

data base manager and have primary responsibility for approving flight

designs. less complex flights may be designed by teams of only one or

two members. This concept may require more user versatility than

previous approaches to flight design. In addition, the allocation of

tasks to team members, documentation, communication paths, etc. affect,

and are affected by, the structure, or organization, of the team. Some

structures would likely be more effective than others. These issues are

1

4

-6-



not only important in their own right, but have strong implications for

the basic properties and detailed design of FDS.

MEAD has no experience with the planning mode which will be re-

quired. If experience and performance date are required to validate,or

to develop further, the FDS concept, explicit experimentation will be

necessary.

2. The users of FDS will have highly varied backgrounds. Users will

range from highly skilled engineers to technicians. Even among the

skilled engineers, -6"here will be differences with respect to familiarity

with interactive systems and there may even be differences in the problem -

solving approaches that are applied to flight design. It is difficult

to assess the ii,,.Vact of technicians since the training, experience, and

abilities of technicians are not yet well known,

How technicians should be trained and used is a particularly im-

portant issue. This issue has implications for the overall planning

approach, the organization of flight design teams, and the design of

FDS. It is important to consider not only the abilities and training

of technicians, but also the acceptance of the technician role by

engineers.

The training of technicians is of primary importance. Technicians

must be taught the fundamentals of flight design,but the associated

physics, mathematics, etc., must be highly simplified. In effect,

technicians must be presented with an abstract view of flight design.

Care must be taken to ensure that all relevant aspects are included

in this abstraction and only inessential aspects are excluded.

3. Satisfactory planning results, in a high flight rate environment,

will depend on the development of appropriate planning interfaces wih

f ` 	̀
-7-



related planning tasks. These tasks include utilization planning, crew

activities planning, flight simulation, etc. Developing effective inter-

faces may have implications f.,_ the design of FDS.

Frequently, the conversion to interactive aids, shorter span-

time, and less labor-intensive planning -- beneficial though the trans-

ition may be -- is accompanied by a more iterative approach to planning.

This may be because iterations are easier to accomplish, or simply be-

cause errors may easily persist into a later part of the planning cycle

before detection. Whatever the cause, this phenomenon can spell disaster

if the interfaces among the various stages of the planning cycle are

cumbersome.

4. The current FDS concept relies heavily on an assumed independence

among the analytical steps, which are applied in a sequential, linear

manner. Such linear planning may be, in some cases, incompatible with

the normal problem-solving behavior of the users. In many kinds of

planning tasks, problem solving proceeds in a hierarchic, rather than

linear, manner. Such considerations have implications for the design

of the FDS dialogue and also for the interfaces between application pro-

cessors.

5. The success of FDS may well depend on the degree to which it aids

the analyst in retrieving and recognizing problem-relevant information.

Such retrieval and recognition often relies on episodic me )ory and other

cues that are difficult to reproduce or replace in an automated system.

Examples of episodic memory are recalling that the document you need is

"the one with coffee stains" or that the necessar y formulas are "in the

book with the green cover." Other relevant cues include abstract

labelling. The information, by itself is not recoQn

rather, the problem solver recognizes the abstract

associated with thet information. The success of F^ F

A



development and use of appro priate aids for data labelling, abstractions,

retrieval, etc.

6. Satisfactory performance of planning tasks involving FOS will depend

heavily on the nature of the relationship between the user and the system.

Of primary importance is the issue of user accep^ance. In addition to the

usual aspects, this may also involve overcoming any perceived threat (loss

of prestige, job security, etc.) on the part of flight design personnel.

This is best addressed by an appropriate transition from current prac-

tices to training program to operational use of FOS.

The success of FOS also depends on an appropriate match between

FOS functional capabilities, dialogue, etc. and the background and ex-

periences of FOS users. For example, if different users have basically

different approaches to problem solving, require different types of

dialogue support, etc., FOS must accommodate these differences.

The functional capabilities and dialogue of FOS must also match

the possibly diverse requirements of the various problem-solving tasks

involved in planning. For example, if ascent, time-line scheduling,

reentry, etc., are perceived by users as being different types of problem-

solving tasks, this has implications for the design of FOS.

-9-



FINDINGS

As currently planned, FDS is potentially very effective as a

basic computational aid. Its general-purpose structure is quite power-

ful and flexible. Although we have a number of recommendations for

changes in the dialogue, and other properties of the system, very few

of them are in any way incompatible with the current basic structure.

It would appear, however, that the currently-planned FDS system may be

difficult for computer-naive users to operate. This situation appears

to be significantly improvable by the incorporation of some relatively

inexpensive dialogue improvements, as suggested below. Wherever possi-

ble, we have tried to provide those solutions which appear to give the

most bang for the buck," since they have the greatest probability of

being accepted and incorporatQd.

In addition to simple dialogue changes, more basic improvements,

such as problem-solving aids and tutors, appear quite promising. How-

ever, the small current effort did not permit a sufficiently detailed

analysis to develop them in any detail. In most cases, the design of

such aids requires a more detailed understanding of the users' problem-

solving practices than naw exists for the flight design community, and

further, study of that problem-solving behavior appears to be the most

effective next step. In any event, such aids are unlikely to conflict

with the basic design of the system.

-10-



Understanding the Analytical Process

Understanding the problem-solving behavior of the users is basic

to the formulation and evaluation of appropriate design aids. We were

able to conduct a number of interviews of flight designers in several

specialty areas (ascent, trajectories in general, attitudes, consumables).

The designers were asked to describe flight design problems and proced-

ures, tools (including even hand calculators), experience with inter-

active systems as well as batch systems, and their experience, if any,

with FDS-1 in particular. The "critica; incident technique" was also

employed in an informal way. In this method, personnel are asked to

identify instances of outstanding success or failure (we addressed only

the latter) of the process (flight design) in which they are involved.

Inquiries of this sort often help to identify particularly weak elements

of the process which might be improved through automated aids, better

,rocedures, etc. Most of the interviewed designers responded quite

^eadily to such questions, and some of the responses have a direct

bearing on FDS design. For example, a Gemini problem was identified

which appeared to be due to a failure to update early planning data as

more exact information became available. An automated aid, such as

FDS, might assist with such a problem by mans of data dating and auto-

matic flagging of old data.

While these techniques were informative, they are entirely inade-

quate for the formation of a detailed understanding of the flight design

process. Particularly in an abstract area like flight design, few peo-

ple are able to describe in detail the way in which they solve problems,

even though they may be quite expert at solving them. Furthermore,

actual practices and performance often differ from the individual's

perception of what he does. To achieve more exact knowledge of flight

design behavior, it will be necessary to conduct simulations and ob-

servation of actual flight planning behavior. We believe that the



benefits of such simulations would far outweigh their costs, parti-

cularly if they are conducted earl y enough to impact the tutorial

and problem-solvfng aids incorporated in FDS-2. One of the major

recommendations of the current study is that MPAD conduct such simula-

tions.

At first glance, the use of FDS-1 as a computational aid in

such simulations seems quite reasonable. However, it should be noted

that FDS-1 lacks a comprehensive set of computational aids, and concen-

trates primarily in the trajectory area. A more basic difficulty is

the fact that FDS does not support the early, abstract portion of the

planning process at all (see later section on "Abstract Plans"). This

may, or may not, be a deficiency in terms of automated support of the

flight design process, but is does make FOS a potentially inappropriate

tool for gathering data about the whole process. It would appear pre-

ferable to conduct at least the early simulations using current manual

(batch-aided) planning methods, and extend the simulations to involve

FDS only when that step is clearly justified.

Another type of data-gathering effort is also desirable. Re-

sponses to the critical-incident quesions used in the interviews

indicate that this may be a source of useful information. Applied in

the form of a survey, rather than face-to-face interviews, this approach

could be inexpensively applied to the entire user community. With an

appropriately designed questionnaire, this could be a very cost-effective

source of information.

e	
-12-

N

r
IL



Technician Users

The role in which technicians will be used in STS-era flight

design is not yet clear, and may vary from a simple clerical aide to

complete end-to-end planning of simple missions, under engineering

supervision. Appropriate FDS properties, as well as design procedures,

depend somewhat on this determination, which depends in turn on a

determination of technician capabilities, acceptance of technicians by

engineers, etc.

At the very least, it is clear that technician users will re-

quire a more tutorial dialogue than will the experienced engineer. It

is important to recognize that the technician is new to both flight

design and the use of interactive computer aids. Thus, the FDS dia-

logue must not only be sufficiently tutorial to allow mechanical

operation of the system by relatively inexperienced system users -- a

provision appropriate even for the engineer users,many of whom are ex-

perienced only with batch tools -- but must also provide flight design

information in a form comprehensible to users who are relatively inex-

perienced in the entire area of manned space flight. A system which

provides extensive guidance with respect to interactive dialogue, but

little assistance in understanding the meaning of maneuvers, flight

planning operations, etc., might be usable to engineer users but in-

adequate for technicians.

More extensive problem-solving aids might be particularly

effective for the technician user, who will presumably be performing

most of his work in accordance with planning procedures which will be

known and fairly well structured. The difficulty is that they are not

presently known and well structured. A basic issue here is the select-

ion of an appropriate problem abstraction for use by the technician.

Clearly, it will be necessary to provide the technician with a more

-13-

t_



simplified view of the problem than that possessed by the engineer,

and yet avoid omission of critical elements. For example, the use of

a graphical analogue, in which the technician relies primarily on

graphical portrayals of trajectory and attitude information, is under

consideration. While this may very well prove to be an effective

approach, its implementation requires more knowledge of the technician

user class than we now have.

MPAD has proposed to conduct an experimental investigation of

the use of technicians in flight design. This study would involve the

formulation and trial of various approaches to problem abstraction,

training, etc., with a small number of technicians. We believe that

this study is a very important source of information which will impact

not only FDS design (at least as regards tutorial and problem-solving

aids), but also flight design procedures, team structure, etc. We

would encourage MPAD to proceed with such a study as soon as possible.

Abstract Plans

In many kinds of planning behavior, the planner begins with the

development of an abstract plan which is at a relatively high level

(e.g., "launch, then orbital entry, then ...") and contains little, if

any, of the detail found in the final concrete plan ("..., then per-

form 3 fps delta-V maneuver, then ..."). Development from the most

abstract form may be quite direct, or may involve many steps, each of

which represents a slightly more concrete statement of one of the

elements of the hierarchic plan. In flight design, for example, an

intermediate planning step might be "perform maneuvers to attain geo-

synchronous orbit," which is subsequently broken down into a series of

specific maneuvers.



It is important to recognize that FOS currently does not allow

the formulation, storage, or refinement of an abstract plan. The

computations with which FOS is concerned are the most concrete elements

of the hierarchic plan. The relationshipsof these concrete elements to

the abstract plan are not explicitly represented in FOS. Furthermore,

it is possible for FOS application pror:ssors to cross stage boundaries,

further complicating the recognition of these relationships.

The absence of abstract plan information in FOS is probably not

a problem for the experienced engineer. In the case of this user, the

concrete plan is a familiar representation, and its ties to abstract

plans are "overlearned" and obvious. In the case of the technician, or

even a new engineer with no specific flight design experience, this may

be a much greater problem. This user is already overloaded with new

information, and the meaning of "GPMP DELV10," not to mention the re-

lationship of this specific computation to the overall flight plan,

is likely to be less than obvious. Furthermore, experience with plan-

ning processes of this sort would suggest that the technician user may

be able to perform satisfactorily in a "schema plus corrections" mode --

in which an existing basic plan is selected and modified only in those

details necessary to make it applicable to a specific mission -- but

that success with this planning mode requires comprehension of the en-

tire plan and all its elements, abstract and concrete.

At present, we do not have sufficient data concerning the

problem-solving behavior of either experienced engineers or technicians

to determine whether -- or how -- abstract planning information should

be incorporated into FOS. At a very specific level, though, it appears

likely that comments placed directly in the sequence table might assist

considerably in those instances in which the user must comprehend the

function of the table. Comments and related features will be discussed

in more detail in a later section.



Some General Comments on FDS Dialogue

M
It is in the area of interactive dialogue that the current study

has produced its most specific recommendations. The next few sections

of this report deal with various aspects of FDS dialogue, but will be

prefaced with a few general comments which do not clearly fit into the

later, more specific discussions.

First, the existing (FDS-1) system requires the transmission,

from the terminal, of a blank followed by a carriage return to identify

a null input. The requirement for a blank character is an extremely

error-prone feature. Users generally consider the blank to have no

significance, and it is not displayed. Even though modification of the

21MX terminal handler may be required, it is our recommendation that

this problem be corrected so that a simple carriage return is consist-

ently recognized as a null input.

In general, a null input should cause only nondestructuve actions,

and should usually cause that action which is the most probable need

of the user (subject to the constraint that the overall pattern of de-

fault actions must be clear and consistent). There are a few instances

in the current dialogue in which improvements in default behavior appear

possible. We would suggest that a link analysis of the dialogue is the

best basis for decisions concerning the dialogue default structure. A

link analysis is a simple tabulation of the frequency with which users

select each option available at each decision point in the dialogue.

Such an analysis is relatively inexpensive and can result in noticeable

improvements in dialogue usability, especially for experienced users.

In general, destructive actions (such as deletion of the user's

temporary files) should require at least one explicit user action, and

preferably two actions, one of which is explicit. In the current FDS

-16-



design, a user who has built a temporary file with an editor may type

"X" to return to the FDS executive module. Although no explicit per-

mission has been given by the user, this action results in immediate

deletion of the file. In other cases, "X" is a normal, nondestructive

method of returning to the executive. Unexpected destruction of files

can be costly and extremely irritating to the user. We would suggest

that, whenever such implicit file deletion is about to occur, an ex-

plicit inquiry be made of the user (e.g., "FILE HAS BEEN MODIFIED. OK

TO DELETE?'), and that an affirmative response be required ("Y" or "YES")

before such deletion proceeds. The cost in extra terminal operations is

small and infrequent, but the avoidance of an inadvertent deletion of

an extensively modified file can be a significant savings. Of course,

this procedure should be used only if there is a modified file which

is about to be lost.

Interface of Application Processor to Interface Table

In the current FDS design, resolution of all interface table

values must be accomplished before the corresponding application pro-

cessor is called. This has resulted in the frequent adoption of an

array format for those interface tables for which a variety of variables

may be required depending on the option selected (e.g., the General-

Purpose Maneuver Processor). This is an undesirable practice, since the

array name is not an adequate prompt for the required variable(s), and

extended prompts are precluded by this practice. It would appear that

the most appropriate solution to this problem is a change in the "bind-

ing time" of interface table values, so that interface table variables

are only required at the time they are requested by the application

processor. This would allow the use of explicit variable names, and

extended prompts, in the interface table, without necessitating that

values be provided for variables which are irrelevant for the processor

option(s) selected.



The current FDS design does not allow the user a convenient

mechanism for ascertaining the relationships between application

processors and interface tables. It would appear desirable that ab-

stracts be provided for both of these elements, and that the user

be able to ascertain the answers to both of the following questions:

"What application processor is this interface table associated with?"

and "What interface tables do I have which are associated with this

application processor?"

,Application Processor Standards

The usability of a system as complex as FDS is strongly affected

by the consistency of the conventions used throughout the system. At

present, most application processors operate in a manner similar to

batch programs, with the interactive aspects of the dialogue controlled

almost entirely by the FDS executive and execution processors. As the

conversion to FDS occurs, however, it is evitable that more interaction

with the user will occur at the application processor level. This is,

in fact, the best way to achieve a highly interactive dialogue, where

it is needed, within the confines of FDS. At present, no standards

exist which will control the nature or consistency of these interactive

aspects of application processors. We recommend that such standards

be established, to include at least the following aspects of application

processor function: (1) informative comments, (2) error messages,

(3) basic interactive dialogue conventions, and (4) disposition of inter-

mediate results. The latter concern stems from an instance observed

in FDS-1, in which an intermediate result was displayed on the terminal,

but not otherwise saved, even though it was needed for later pro-

cessing.

F

-13-



FDS has several system-level modules (executive, execution

processor, editors, etc.). These modules are related to one another

by means of the system's access structure. That structure is strictly

hierarchic, with the executive controlling access to all other modules.

Thus, a user who wishes to access the interface table editor from the

execution processor must first return to the executive. It is important

that such a system access structure satisfy two criteria. First, it

must be sufficiently simple and natural that the user can form a usable

"mental model" of the system. The current FDS structure appears entirely

satisfactory on the basis of this criterion. Second, it must be func-

tionally adequate and usable from the viewpoint of the specific tasks

which the user mast perform.

While the FDS structure is functionally adequate, it may be in-

convenient in some situations. In particular, the user who is execut-

ing a sequence table in the semi-automatic mode cannot conveniently

invoke the interface table editor to preview a table. If data are

missing from the interface table, the interface table editor is invoked,

as if it were a subroutine, with automatic return to the calling environ-

ment upon completion. To accomplish the same function for the purpose of

a preview, the user must perform four separate access operations (exe-

cutive, editor, executive, execution processor) and must recreate the

original environment by providing a sequence table line number. MPAD

should perhaps consider the adoption of a call-and-return approach to

editor invocations in general.

The use of single, special characters to change system modules,

and as prompt characters for the modules, involves a tradeoff. Such

abbreviation can be very helpful to the highly experienced user, but

is usually undesirable because its arbitrary conventions are difficult

-19-



to learn, In the present case, however, the system structure is simple

and the use of such special characters appears to us to be acceptable.

Rather than eliminating them, we would suggest the provision of a

"wordy" mode (see later discussion of "Dialogue Modes") as an appro-

priate antidote to the difficulty which the new user has with such a

scheme.

Command Language

For those few commands which involve the specification of more

than one parameter (e.g., "SEQEDIT TABLEX, TABLEY"), FOS uses a posi-

tional notation in which the significance of a particular parameter

value is derived from its position in the parameter list. Positional

notations are very natural from the viewpoint of the computer proces-

sing required in their interpretation, but constitute a significant

source of transposition errors by the user. (Which is the old table

in the above command, and which the new?) Positional notation is

minimal in the current FOS design, and is not particularly objection-

able in those specific instances in which it occurs. It is suggested,

however, that any tendency for such notation to proliferate, as the

system command language grows, should be carefully considered or avoide.

altogether.

It is desirable that the particular verbs used in any command

language be easily discriminable. Ideally, they should be discrimin-

able both alphabetically (so that commands can be specified by the

experienced user with the fewest possible characters) and semantically

(in the sense that Lie user readily associates each command with the

function which it performs, rather than confusing two or more commands).

The FOS command set would benefit from an analysis intended to increase

discriminability of commands. As an example, the commands "RESTORE"

and "RECALL" appear to violate both criteria. Complete elimination of

-20-



such confusability is difficult, And may prove impossible to attain, but

considerable improvement should be achievable over the current command

set.

When commands have been made maximally discrimina' 7.e in an al-

phabetic sense, it is possible to provide the ePerienced 6ser with a

highly abbreviated mechanism for command input. An appropriate mecha-

nism might, for example, be a multiword, first-k-character matching

algorithm for command recognition. Such an algorithm might allow

SEQUENCE EDITOR

to be activated with any of the following abbreviated commands

S
SE
SEQ
SED
SEQEDIT
SEQUENCE

With appropriate use of space and comma terminators, it may also be

possible to stack commands.

Data Management

I.. .. ...c.,r that the recognition, retrieval, and purging of data

is potentially a major problem. Two simple mechanisms seem to hold

promise for helping with very limited aspects of this problem. First,

data dating, along with automated mechanisms for Vie detection of out-

of-date data, may help to prevent inadvertent use of preliminary plan-

ning data for final mission planning. Second, automated generation of

abstracts for data elements (see next section) may help to insure that

these elements are later identifiable. More basic solutions are un-

doubtedly needed, but will require more analysis, and more experience

with FDS, than has been accumulated at present.

-L1-



Comments and Automatic Abstracting

For several reasons, already identified in earlier sections, the

provision of sequence table comments appears desirable. Such comments

might serve at least three purposes. First, if used appropriately,

they might greatly improve the comprehensibility of the sequence table

itself. They might indicate the mission for which the sequence table

was built, indicate basic mission phases (the abstract plan) and indi-

cate more clearly the function of individual application processor in-

vocations. These comments should perhaps be of explicitly different

types, with an indentation scheme used to discriminate comments asso-

ciated with single sequence table entries from those associated with

mission phases.

A second use for sequence table comments is in the generation

of appropriate user feedback during sequence table execution in auto-

matic and semiautomatic modes. Combined with application-processor-

generated comments, these comments might provide considerable informa-

tion to the user if an appropriate "wordy" mode is selected. As the

system is currently configured, the automatic mode user may be asked

to supply a parameter value for, let us say, the General-Purpose

Maneuver processor without any information about which of a series of

maneuvers is involved.

A third use for sequence table comments is in the automated

generation of abstracts for data elements. Since these files are

system-generated, they will be identifiable only if the system or

the user explicitly adds identifying information. An automatically

generated abstract might contain such information as the following:

FLIGHT (taken from flight comment in sequence table)

DATE (provided by system)

USER (provided by system)

-22-

-



MISSION PHASE (taken from miscion phase comment in
sequencff tail i )

SPECIFIC MISSION STATE (e.ci, "STATE AFTER lO FPS

DELTA-V MANEUVER" -- obtained by com-

bination of "STATE AFTFR" with specific

application-processor-execution, comment

in sequence table).

This example alsc illustrates the fact that the system may

make special ized use of multiple, explicit comment types in the

sequence table.

Editor Function

Several specific recommendations appear warranted with respect

to editor functions. The default mode of operation for the interface

table editor is a "fill in the blanks" mode in which the editor auto-

matically jumps to the first unresolved variable in the table and

prompts the user for its value. This is probably the appropriate de-

fault made for automatic execution of this editor to obtain missing
values during sequence table executin g . It probably is not the appro-

priate made if the user overtly Y;ique:,ts the editor, perhaps for the

purpose of looking over thQ table. in fact, the existing scheme is

highly error-prone. The user who inters the editor and attempts to

iist the table is likely to find (or even not realize) that he has

typed the value "LIST" for a previously unresolved variable. A similar

result is obtained by attempting to escape the "fill in the
i

mode by a null input. The blank symbol currently required to iad :ate

a null input is entered as the variable value. These difficulties ilaay

be re ;r•lvable by use of a noriv:l editor c'efault (pointer at top of

file, prepared to accept list command or explicit variable value sub-

stitution). It should be noted that an editor po;nt.er, with the

-23-



capability to list only a few lines of. the table, may be required by

F	 the larger interface tables which will result from the use of explicit

variable values. In the "fill in the blanks" node, a blank input

should probably be disallowed unless quotation marks are used, and a

similar treatment of "LIST" may be warranted.

A very common sequence of user actions involves replacement of

a variable value followed immediately by the printing of the same line.

The provision of an automatic "Verify" mode, in which altered lines are

immediately redisplayed, would not only reduce the number of user

actions required, but might also increase the probability of detection

of erroneous entries.

As discussed in a previous section, file deletion on exit from

the editor should probably require an explicit user action.

Error Messages

In general, any error message should implicitly or explicitly

convey to the user the following information;

Source of Message (Executive, application processor, etc.)

Nature of Error

Severity of Error and/or System Action Taken

User Action Required to Correct th Error

Thus, a reasonable message might say

GPMP; NEGATIVE START TIME WAS SPECIFIED. GPMP TERMINATED.

This message explicitly contains the first three cateCories of informa-

tion, and specifies the nature of the error in sufficient detail to

clearly indicate the required corrective action. Few, if any, existing

FDS error messagessatisfy these criteria, and some messages fail to

satisfy any of the four. The adoption of appropriate error message

standards, based on the above criteria, is recommended.

-24-



A second concern with the existing error messages is the pre-

sence of unnecessary encoded information in the text of the messages

(e.g., "XCO2"). While such information may be ignored by the experi-

enced user, it can be quite confusing to the novice. If such informa-

tion is needed by system developers, it should be made available via

a "Debug" mode, or an extended message replay capability.

Dialogue Modes

Several dialogue mode possibilities should be considered. Dia-

logue nodes allow a one-time-per-session or even one-time-per-user

selection of options which continue to control the dialogue thereafter

until the user's election is changed.

A "wordy" mode appears to be strongly desirable, and might even

involve multiple levels. When the wordy mode is selected, the user

is given extensive feedback concerning system function including

comments generated from sequence tables and by application processors,

automatic use of extended prompts, etc. This mode is intended primarily

for use by novice system users, but may be of continuing utility to

technician users.

Several tutorial modes are possible, including:

A general computer-initiated mode in which all user inputs

are responses to specific queries by the system.

An argument query mode in which explicit prompts are made

for the value of each parameter required or allowed with

a command (the user must first type the command).

An abbreviate mode in which the system shows the user the

most abbreviated way in which he might have specified

the command he has input. Most systems fail to make

any provision for teaching the novice user the "tricks"

available for rapid use.

IS

-25-



An expand-and-verify mode in which the system responds to each

command with a fully expanded statement of the command,

including default values, and awaits user verification that

the command represents the desired action. 	 This node

provides a painless way for the novice to try out his

expert-user skills.

A "Debug" mode is the appropriate mechanism for obtaining extended

error messages, trace information, etc., which is of use only to the

system developer.

The use of an editor "Verify" mode has already been discussed.

User mode profiles, which allow semipermanent selection of all

desired modes by the user, are a considerable convenience in systems

with widely varying user preferences or experience. Such profiles

might be made hierarchic, so that the user may independently select

modes or may simply specify the "Beginner" pattern, for example,

The tutorial information provided by the system should not only

be made more extensive, but should probably also be made more context-

specific.

Use of Storage-Tube Terminal

The selection of a storage-tube terminal for FDS imposes severe

constraints on the interactive dialogue which the system can support.

Computer-initiated command construction (as by menu-selection) is too

slow to provide a viable option, and displayed information must be

accumulated, rather than replaced, whenever update rates are faster

than a few per minute. These constraints may force revision of the

existing application processor display philosophy to reduce the amount



of information routinely displayed.

Determination of the specific way in which this terminal should

be used (dialogue, display formatting, etc.) requires a detailed anal-

ysis which is beyond the scope of the current effort. A few specific

suggestions can be made, however. First, it will be necessary to have

the system keep track of the state of each terminal, in the sense of

the amount of information currently displayed. The system should stop

transmitting to the terminal when its display is full, and await a "go

ahead" command from the user. It should then issue a page clear com-

mand, redisplay the most recent information, and continue. Although

the user can manually clear the display, any information transmitted

during that operation (which takes 1-2 seconds) is lost.

Display windowing, in which the display is divided into several

distinct areas, is probably the most appropriate general approach to

display formatting in this situation. In particular, it is suggested

that the "run log" information -- in which successive lines typically

represent successive computational steps -- be physically separated

from the application processor displays, which are typically multiline

displays. This should reduce confusion of "temporal" and "nontemporal"

cues.

Finally, the possibility of locally buffered write-through dis-

plays to enhance the dialogue, should be considered. This feature

should not be purchased without a detailed understanding of its in-

tended use, however, as it alleviates only a few of the constraints

outlined above.

I

-27-



It is highly desirable that the system maintain a record of user-

system interaction at each session. This record should be replayable, and

thus should be sufficiently detailed to permit a complete regeneration of

the session. With the simplifying assumption that the system need not be

concerned with the initial state of permanent data bases, complete regen-

eration of the session requires only a record of the user's inputs, which

are not ordinarily voluminous. On replay, the system should allow mode

changes (as in turning on "Debug"), single-step execution, restart from an

intermediate point, etc.

There are several reasons for our belief that this feature is needed.

The most basic involves improved communication between the technician and

the supervising engineer. In the event that the technician attempts to

carry out the engineer's instructions, and the result is unsatisfactory,

the fault may lie with the instructions, the technician's execution of the

instructions, or the system. In many cases, literal regeneration of the

session by the technician will be impossible. If the difficulty is to

be assessed and corrected with minimum thrashing, session regeneration by

the system is the indicated mechanism. The engineer can simply step through

the session with the technician, hopefully recognizing and correcting the

error.

A system replay capability is also needed to assist in evaluating user

complaints. Often, the user encounters an apparent system malfunction, but

cannot regenerate the error. Often, it is impossible for system developers

to even determine whether a system or user error is involved, and actual

isolation and elimination of the system error usually requires that it

occur in the presence of system personnel. The ability to replay the

session, especially with trace and extended error message facilities turned

on, can be quite advantageous. The replay capability can also be useful

in debugging user programs.

-28-



Finally, the replay capability can be of immediate use to the user

who has a "Where am I?" problem, or who needs to return to a previous com-

putational state in which no "checkpoint" or "save for later use" operation

was performed.

Problem-Solving Aids

In addition to dialogue aids (tutorial features, etc.), which assist

the user with the mechanical operation of the system, FDS might be made to

provide guidance with respect to the comprehension or solution of the planning

problem itself. These aids may range from very simple aids (e.g., the use of

comments in sequence tables, as already discussed) to very complex and powerful

decision aids.

Aside from comments, another simple mechanism which might assist with

the representation of abstract plans in the system is the appropriate use of

hierarchic sequence table structure, in which one sequence table is allowed

to execute another. This feature might allow an overall mission sequence

table to refer to separate tables for mission phases, etc. This capability

appears especially desirable if greater provision is made for utility functions

(initialization, etc.) in FDS-2, as appears to be planned. It is desirable to

avoid a dominance of the sequence table by commands which are not logically

important to the understanding of the flight design.

sufficiently capable that they

construction, aids for this task

be useful even for experienced

involves construction of the

)e of launch do you want, which

If technician users are found to be

become actively involved in sequence table

will probably be needed, and such aids may

engineers. A simple approach to such aids

sequence table by menu selection (which tyi

type of entry, maneuvering, etc.?)



More powerful problem-solving aids are undoubtedly possible, and

may be desirable, but their design should be based on the results of the

recommended simulation study, the technician study, and more extensive

experience with the use of FDS-1. Tutorial dialogues could be useful both

in aiding the skilled analyst in the use of FDS and in aiding the less

skilled analyst in the flight design process itself. A related issue is

the use of "critics" or "pre-condition checkers." Precondition checkers

are used to ensure that the appropriate preconditions for the action the

user is currently initiating are satisfied. These preconditions may

include data structures, interface tables, previous actions that are

required, etc. Critics are special purpose aids that are intended to either

correct or bring to the user's attention errors that frequently occur in the

flight design process.

The users of FDS will differ with respect to abilities and previous

experience. While the highly skilled user may be expected to recognize

the need for help, either in the use of FDS or in the flight design process,

this should not be expected of the less skilled (especially the technician)

user. Techniques that monitor user actions, recognize when the user is in

trouble, and offer appropriate help could be useful. This may, in part,

be accomplished by providing for an "audit trail" that records user ana-

lytical actions and responses (as discussed in a previous section). An

audit trail would also be useful for determining what information users

want to retain from one iteration of a problem to the next and, independ-

ently of problem-solving aids, would provide information essential to

evaluating the use of FDS.

Subsystem Y Interface

It may be necessary to make the subsystem X - subsystem Y interface

bidirectional, in the sense that data can be passed in either direction and

used for normal computation in the receiving system. This would allow

-30-



iterative solutions involving both systems, which may or may not be

desirable or necessary. It has not yet been demonstrated conclusively that

such iteration is unnecessary. At a more mundane level, though, the

ability to pass data from subsystem Y to subsystem X is probably required

to support the automated production of planning documents. To the degree

that merging of data from both systems into a single page is required, the

present concept requires that the merging be performed by FDS (subsystem X).

Failure to provide a bidirectional interface would require this operation

to be done manually.

Transition to FDS Planning

If MPAD is to fully realize the advantage gained through imple-

mentation of the FDS-1 prototype system, it is necessary that FDS-1 be

exercised broadly and formally. An approach which merely makes FDS-1

available to those who are inclined to play with it is probably inadequate,

since the personnel who will elect to try it out are not representative

of the eventual user population. There are both advantages and disadvan-

tages to an early involvement of those users least experienced with

interactive aids. Obviously such involvement can result in the recogni-

tion of system deficiencies which might not otherwise be discovered early

enough for correction in the normal FDS-2 development effort. On the

other hand, FDS-1 has intentionally omitted many of the features(tutor-

ial dialogues, etc.) which might make the system easy for these users to

learn and operate. Probably a small number of such users should be

carefully briefed and invited to use the system. In any event, it is

highly desirable that the evolution toward use of FDS for real production

planning begin now, in those areas in which FDS-1 provides adequate com-

putational support.

-31-



Evaluation of System Performance

A proper approach to the evaluation of FDS-aided planning perform-

ance requires the development of: (1) appropriate problem scenarios,

(2) good performance criteria, and (3) a performance baseline, probably

based on manual solution of the same problems. The simulation study

already recommended for the detailed study of flight designer problem-

solving behavior would involve development of these materials and data.

It should, therefore, provide an appropriate basis for performance-based

evaluations of FDS. It is also appropriate to obtain subjective evaluations

by the users, using appropriate psychological scaling techniques.

Flight Design Team Structure

This is a very complex issue which was not explicitly made a part

of the statement of work performed here. It must be recognized, however,

that the structure and role allocation associated with the use of flight

design teams have implications for the design of the system itself. For

example, the use of a team approach implies that a given individual may

be working on several missions in parallel. This in turn suggests the

possibility that automated planning status displays might be a useful

adjunct to FDS planning. The use of large teams for relatively difficult

missions may allow engineers to continue to work in a fairly compartment-

alized way, while small teams require an ability to use automated planning

tools outside the user's accustomed area. This has clear implications for

the system's tutorial and performance feedback features, application pro-

cessor interfaces, etc.

Clearly, decisions concerning team structure should be based on an

understanding of the planning methods employed by flight designers, and

of the role of technicians in STS flight design, both of which are the

subjects of possible future studies. These decisions should be deferred,

-32-



then, but it is also important for MPAD to begin obtaining experience

with the use of FDS-1 for team problem-solving. This may be a source of

useful insights with respect to both team structure and FOS design.

Automated Production of Planning Documents

The prototype approach which has been developed looks basically

very good. Two specific features may warrant consideration. First, the

placement of variable names or labels directly in the master text, rather

than the use of serial association, would reduce the maintenance effort

necessary when the text is modified, and might make the master text more

readable. On the other hand, this feature presents some difficulty with

arrays and inverted arrays, and renders the spacing of the original text

different from the final text. Second, the elimination of a requirement

for exact spacing information in the original text (e.g., this field is

7 characters long) might also reduce maintenance, assuming that FDS can

appropriately format the information as it produces the finished document.

This feature, too, renders the spacing of the original text different from

the final document.

Voice-Input Device Study

By agreement between SAI and MPAD, this issue was not explicitly

investigated. We did become aware, however, that a similar study is

currently underway at NASA Ames.

-33-


	GeneralDisclaimer.pdf
	0036A02.pdf
	0036A03.pdf
	0036A04.pdf
	0036A05.pdf
	0036A06.pdf
	0036A07.pdf
	0036A08.pdf
	0036A09.pdf
	0036A10.pdf
	0036A11.pdf
	0036A12.pdf
	0036A13.pdf
	0036A14.pdf
	0036B01.pdf
	0036B02.pdf
	0036B03.pdf
	0036B04.pdf
	0036B05.pdf
	0036B06.pdf
	0036B07.pdf
	0036B08.pdf
	0036B09.pdf
	0036B10.pdf
	0036B11.pdf
	0036B12.pdf
	0036B13.pdf
	0036B14.pdf
	0036C01.pdf
	0036C02.pdf
	0036C03.pdf
	0036C04.pdf
	0036C05.pdf
	0036C06.pdf
	0036C07.pdf
	0036C08.pdf
	0036C09.pdf
	0036C10.pdf

