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SUMMARY 

The Cullen College of Engineering at the University
 

of Houston has been actively developing its educational
 

and research capability in applications of digital/hybrid
 

computation in solving engineering and scientific problems.
 

The Grant NGL-44-005-084 from National Aeronautics and
 

Space Administration provided the funds for computer time
 

and personnel required for research projects applying new
 

methods in hybrid and digital computation.
 

(Continued)
 



The accomplishments of this program may be summarized
 

as follows:
 

1. The grant supported application of hybrid/digital
 

computation-of 84 research projects in the following
 

aerospace related disciplines,
 

Departments
 

Chemical Engineering
 

Civil Engineering
 

Electrical Engineering
 

Industrial Engineering
 

Mechanical Engineering
 

Psychology
 

Interdisciplinary Programs
 

Acoustics,
 

Aerospace Engineering
 

Energy Sciences & Engineering
 

Environmental Engineering
 

Systems Engineering
 

There are altogether 21 faculty members and 68
 

graduate students participated in the programs. The
 

latter include 36 Ph.D. students and 32 M.S. students.
 

The departments, names of faculty members and number of
 

graduate Students of the above 84 projects are given in
 

Appendix A. The project abstracts and publications of
 

these 84 projects are given in the following chapters;
 



2. Under the sponsorship of this grant, a new course in
 

hibrid computation (EGR 630) has been offered to
 

graduate students in engineering. Typical laboratory/
 

homework assignments of EGR 630 are included in Appen­

dix B,
 

3. The Engineering Systems Simulation Laboratory of the
 

College of Engineering is the focal point providing
 

assistance to the ahove educational and research pro­

grams, The deacription of the Engineering Systems
 

Simulation Laboratory is given in Appendix C.
 

The College of Engineering of the University of
 

Houston gratefully acknowledges the NASA support which
 

made the above Accomplishments possible, -Building upon
 

the progresses made under this grant, the College of
 

Engineering at the 'University of Houston will continue
 

to-make a stride-in developing new techniques in hybrid
 

and digital 6omputati6n for aero-space related research.
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The operation of converting a continued fraction into,
 

a rational transfer function of two polynomials is tedious.
 

By the use of state-space techniques and Routh's algorithm,
 

a new method is established for performing the continued
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Continued Fraction Inversion by Routh's Algorithm 
CHIH-FAN CHEN, SENIOR MEMBER, IEEE, AND 

Abstract-The operation of converting a continued fraction into 
a rational transfer function of two polynomials is tedious. By the 
use of state-space techniques and Routh's algorithm, a new method 
is established for performing the continued fraction inversion, 

INTRODUCTION 

E XPANDING a rational transfer function into a 

continued fraction and inverting a continued frac-
tion to a transfer function are two fundamentally 

important operations in network synthesis, control system 
analysis, etc. Theoretically the two operations are trivial. 
One involves many divisions and the other is related to 
many multiplications. Practically speaking, however, when 
the order is high, the heavy labor of doing the multiplica­
tions and" divisions is unavoidable. Facing the tedious 
work, we naturally think of an algorithmic approach to 

the problem in order that we can use th6 digital computer 
to free us from drudgery, 

Routh's algorithm and continued fractions were first 

associated by Wall [1] in 1945. Frank [2]: extended and 
modified his work further in 1946. However, they applied 
Routh's algorithm only to the expansion aspect, not to the 
inversion problem. It is known that the latter is much 
more difficult and tedious than the former. 

This paper attempts to develop an algorithmic method 
for solving the inversion problem. In other words, how do 
we convert a continued fraction into a rational fraction of 
two polynomials in the easiest way. 

E 	 Ftwo
Thxuz FORMS OF CONTINUED FRACTIONS 

Consider the following rational function: 

g2(8) 	 _ A. + + A 4 + A23 +2 

g(s) A. + + A, 4 ? + A, 3 ? + A,,s + A,() 

(1) 
where A,- are constants. 

We can expand (1) into several continued fraction 
forms. There are, however, three most important ones in 
engineering applications. 

1) The Stielijes Form [8]: 

g2(s) 	 _1 

g(s) as + b, + 	 1 

a2s + b2 + (2) 
aas + b + 

Manuscnipt received May 15, 1968; revised Aupust 15, 1968, 
and September 11, 1968. This work was supported m part by the 
National Aeronautics and Space Administration under GrantNGL.-44.005084. 

The authors are with the Department of Electrical Engineering, 
University of Houston, Houston, Tex. 

LEANG-SAN SHIEH, STUDENT MEMBER, IEEE 

Wall developed a technique to expand (1) into (2) by 
using Routh's algorithm. Frank extended this work to 

complex coefficient systems. Their main application is to 
stability theory and the proof of Routh's criterion. 
Dudnikov [4] also used this form for identifying system 
coefficients. 

2) The CaierFirst Form [8]: 

M,-s) 	 1 
gM(s) as +1 

(3) 
a2 	 + 1 

a3s + 

It is well known that this form is used to synthesize ladder 

network driving-point impedances. We are, however, 
particularly interested in the third form. 

3) The Cauer Second Form: 

Ms) I 
-- 1()1 

h, + h 1 
s + (4) 

ha + h, 1 
s + 

This form can be obtained from (1) by first arranging the 
polynomials into the ascending order: 

gM(s) A21 + A2s + A2382 + ... + A2..," (la)
As 	 + + A..s+ A1s + 

and then expanding it into (4).

is The second Cauer form on which we will concentrate
 
is not only important in RC network synthesis but also
 
plays a significant role in control systems analysis [5].
 

EXPANSION BY ROUrH'S ALGORITHM 
It is known that Routh's array can be expressed by the 

following double subscript notation [6]: 

A,, A12 A1 .. 
A21 A2 A23 ." 

A3, A32. ... 	 (5) 
A41 

and the elements of the third, fourth, and subsequent 
rows can be evaluated from the following relation (6]: 

Af, 	 = A 1_2,,+1 -- A _'A-. 

j=3,4,...,n+1; k =1,2,... (6) 



-- 
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Equatibn (6) is also'known-as the Routh algorithm. 
Now, performing long division on (la), we have 

g,(s) ­
gM() +(A'Aj - AIAI) 


Al+A 2 

AT" A1+ A228s + 


in which 

A21
and 
AIIA23(A2 Ad-

A21 

where A,and As2, respectively,
can be written as As, 

and As, are defined in (6).,. 
Therefore, we have 

g(8) 	 1 

g, - A, + Asia + A,,? + "" 

A21 A., + A,,s + A23? + .... 

Dividing again, we obtain 

A,, + 1 

A21 (A22A31 A- 2A 21 ,)3 + 

A + A, + A428 + ... 

or 

(8)

A,1,

lis + A2, ._As + A,e+ .. 
A, As, + As s+ ""Values 

Finally, we have the expansion 

1 


T21, + , (9)

A,, 8_______ 

+
+
As--
 A,'-


This can be written in the form:360 

-h.-1 1 	
(10)

1 

h3 + h,+ 

8 


where A.4, 

h. p = 1,2,,2, h,O. (11) 
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1
 
(AA,3 - AIIAs3 +\ 	 (7) 

+ 	 A21
 
A, 3s + - + A2,..-


Clearly, the elements of continued fraction (10), h,, can be 
obtained by the quotients of members of^the first column 
in Routh's array [7]. 

As an illustration, consider the following transfer fun­
tion.
 

360 + 171s + Ws( 

A continued -fraction expansion like (10) is desired. 
Write the first and second rows of the Routh's array by 
copying the coefficients of the denominator and the 
numerator, respectively, and then use (6) to generate the 
lower rows: 

720 702 71 1
 

360 171 10
 

360 51 1
 

120 9 	 (13)

24 


1
 

4
 

h, are then found from (13) by taking the ratio of 
the-neighboring terms of the first column: 

720 702 .71 1
 

360-­
7i20- 2( 

360 1 360 171 10
360 1< 

3601360
 
51 1
 

120
 
120 9
 

'h,= - 5
24
 
24- 24 1
 

hs 24 6/
 

4
 

1
 

17
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Fig. 1. A typical feedback system. Fig. 2. Feedback and feedforward controls. 

Fig. 3.1[ Block diagram corresponds to continued fraction expansion. 

from which the continued fraction is written immediately: forward loop, as shown in Fig. 2, the corresponding over­

all transfer function is thenF~)=1 1= 0 0, +F-

2+ 1 1 1+ (G, + F,)H (17) 

1 (14)This can be rewritten as a continued fraction: 

+ 1 

BLOCK DIAGRAM REPRESENTATION 

It is known that (10) in general or (14) in particular 
can be interpreted as the driving-point impedance func-
tion of an RC ladder network. However, we rather inter- 
pret it as the transfer function of a general feedback 
systemfe 

Consider a typical feedback system shown in Fig. 1. 
The closed loop or overall transfer function is 

S GH (15) 
ii 1 + OH 

Dividing the numerator and denominator by G, we obtain 

o 1 (6
1 (16)

H + G 

Equation (16) can be considered as the simplest continued 
fraction. If we have a feedback system with a minor feed-

1 (18) 
H + F +0± 

If the subsystem G, is expanded again, we finallyget the 

following general form: 
& 1 
R = 1 (19) 

h, + 

h3 + 

which is exactly (10). Therefore, continued fraction form 
(10) can always be interpreted as the block diagram shown 

in Fig. 3. 

STATE-SPACE FommTATioN 
In Fig. 3, after each integrator, if we assign a name as a 

state variable, the state matrix equation and the output 
equation can be easily written as 
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[i] = [HJ[z] + [Djr (20) It can easily be proven that the two forms are related by 

= KQjI[] (21) the following linear transformation. 

where [z] = [P] [X] (31) 

"h~h, hAh hAh ..." h.h, 

h~h, h4(h, +A-) ho(h +A..) h2.(hlI + h) 

[H]= ­ h2h, h4(h, + ) hoIt,+ h+ ) .. h2.(hl h ­+ h+ ) (22) 

.h2h, h4(h + 3) h6(hl + ha + h) h2.(h, + h + + h2.-,) 

I 

[D] = (23) 

and 
QI = [ h4ho, ...h,]. (24) 

It is seen that the elements in the state matrix (22) are 
simple combinations of the quotients obtained from the 
continued fraction expression. 

Next we would like to find the relationship between this 
state formulation and the phase variable form. 

[t] = [A][x] + [B]r 

a [C][x]C 

where [x] is the phase variable vector, and 
0 10is

L27)
[A] = 

0 0 1 

-

-A,,l -A2 -A 1 -Aj 

0-

0 

[B] = 0 

[C] = [A 2,A, 2 A,,.] 

(25) 

(26) 

(27) 

(28) 

(29) 

if the original transfer function is normalized as follows. 
A2 S- + A2._-18n- + ""+ 

F(s) = A -C+ A +
) " + AS + A,.." + 

A2, + A.,s + + A 2 .. 
A,, + A,2s + "'"+ A,, .-ls 

A228+ All 
+ A += 

+ A,,s + A,, 

+ A2. 
+ A,.,s + e 

where 

Al A,2 Aa A,,._, A,.. 

0 A,, A,2 A,,-2 A4..-, 

[P] = 0 0 A71 A,2 A,.,_ (32) 

A2n-,.I
 

0 0 0 An+1.1 

It is believed that the construction of (32) is new. The 
proof of the similarity transformation (31) can be done 
by using the Krylov transform matrix t8] with an input 
constraint. 

The matrix [P] is an n X n upper triangular matrix. 

The elements in the triangle are copied directly from the 
elements of the Routh array. The elements of the third 
row in Routh's array is that of the first row of the [P] 

matrix. In general, the (2n + 1)th row of Routh's ariay 
the nth row of the [P] matrix. 

ExAME FOR OBTAINING THE [HI] MATRIX 

Consider (12) again: 

C(s) _ 360 + 171s + !0s' (12) 

R(s) 720 + 702s + 71s2 + s(2 

The second Cauer state form is required. The phase vari­
able form of (12) is 

x3 -720 -702 -71zx + 1 

[360, 171, 10
 

From these state and output equations, we formulate 

(30) the Routh array: 
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720 702 71 1 Laplace transforming gives
 
360 171 10 s[Z(s)] - [Z(0)] = [H] [Z(s)] + [D] R(s). (37)
 
360 51 1 The determinant of the system matrix will give the char­
120 9 acteristic equation [9] 

24E 1 IsI] - [HI = 0. (38) 
4 The coefficients of this equation are the elkments of the 

first row of the required Routh's array. 

The next step is to let h, and A equal to zero, and weI have a reduced system whose state matrix is
 
and then use the third, fifth, and seventh row to form the
 

[P] matrix. -h 4 h. ... hh ] 
- k .. - h2 Xk3 + it) (

[3 0 iHi[P] 0 24 1- (33)2 ::cr~ 
3 

0nt and4h +~ Sr (1> thnino; d nhsz + (39) 

Substituting this [F] matrix into (31) and then into (25) The corresponding characteristic equation of this system 

and (26), we obtain is-found by ,[9] 

= [P][A][P]-[z] '+[P][Blr (34) 1sl] - [H1] = 0, (40) 

= [H][z] + [Dir (34a) which gives the elements of the third row of the Routh'sarray. 

a= [C][P]-[z] (35) Following a similar reasoning, we find the fifth row, 

= [Q][z]. (35a) seventh row, or (2n - 1)th row by evaluating [9] 

For this problem, numerically we have js[1] - [H]51= 0 (41) 

210 - [W171 = (42)"',[111] 0,[EJ
z 25 20 z2 + r (34b) respectively, where [H]5, [H]., etc. are defined by [H], I h, 

z h, 0-+ kt,h,, h,, h5, h - 0 .., h - , [ R]Ih1, 

]2 44 z. Once the values of the elements of the odd rows have 

been found, the [P] matrix is determined. 
The values of the even rows can be evaluated from 

S= [1, 5,4] (35b) the output equation (35). 

_ZZ:"I EXAMPLE FOR INVERSION 
where A continued fraction is given as follows: 

[/t] -5 - F(s) =1(43) 
-2 -2 4 1-J 

0 8
-2 - 25 . + 21
 

THE INVERSION PROCESS 2 +3
 

We restate the inversion problem here. If the elements 1-I--i
 
5of a continued fraction are given, or h,are known, what is 

the corresponding rational function. -

Based on the block diagram (Fig. 3), we can write the Find the corresponding rational function. 
state equations immediately. First we form the [H] matrix using (22): 

-hi ... -kin 

L i 
-h4(h,+ hL-h, 
3) -.h.(h, + ha)..+ hIi-,)Izj L( 
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-4 	 -3 -5] Therefore, the required rational function is obtained from 

-9 -15 (44) (45) and (49) as[H] 	= 
= 	 120 +r99s +]12?2-	 -9 20F(s) 3120 129s + 33s -+s 

from which the characteristic equation is evaluated by CONCLUSIONS 
substituting (44) into (38): Based on the state-space formulation, an algorithmic 

3Is[1] - [H] = 120 + 129s + 33ss2 s . (45) method for inverting a continued fraction to a rational 
fraction of two polynomials is established. This completes

The third row is found by Wall's, Frank's, and Fryer's work on the application of 

[ eh -6 -10] Routh's algorithm to continued fractions. It is believed 
[H13 - hJ ah j = - - 0 that the results are very useful in circuit theory and system 

h4h3 h(h + h -15] analysis.

and this gives 

= 	g.(s).Is[1] - [M]l = 30 + 21s + ,s 

Similarly, the fifth row is found as 

[Ie = -[hh.] = [-5] 

and 

Is[1] 	 - [H]5j = 5 + s = ga(a). 

The linear transformation matrix [P] is then 

21 	 1efficients 
[F] 

5and 

0simplification," 

The elements of the second row, g2(s), are found from the 
output equation (21) and (31), or 

1 
[h., h,, ha][P] = [4, 3, 5] 0 21,5 1 

100 
= [120, 99, 12]. (49) 

Two digital computer programs (one for expansion and 
one for-inversion) have been written and can be obtained 

(46) 	 from the authors.
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Analysis of Irrational 
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Systems 
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Abstract 

This paper is intended as an exposition of some approximation tech-

niques on irrational transfer functions which are frequently encoun-

tered in control systems. Two algorithms for continued fraction expan. 

stn and inversion are established. 
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Control engineers often encounter a large number of 
control systems which involve distributed parameters. 

Thermal processes, hole diffusion of transistors and elec­
tromagnetic devices are typical examples [1]-[3]. Cor­

in therespondingly, the mathematical descriptions 
Laplace transform domain for these elements usually con­

tain the operator "S"under the radical sign. To analyze 
or synthesize an isolated irrational transfer function is not 
particularly difficult; however, when the dement in ques­
tion is represented by an irrational function'in aclosed 
loop system, the problem becomes very complicated. 

Historically, the first irrational transfer function in engi­
neering was noticed by Heaviside [4]. He observed that 

the impedance of an infinite RC cable is I/V1S. Subse­

quently, many kinds of irrational functions have been 
derived from mathematical models. Some typical ones are 

listed as follows [5]: 

1 1 
- VS _x/lt 

-- -­

2) 
1 

er (Vt) 

-1 
3) J0(t),./S2 +-1 

If any one of these functions is contained in a closed 
loop system, the analysis is indeed quite tedious. For 
overcoming this difficulty, several methods have been 
developed, The historical developments will be reviewed 
first., 

The Method Based on the Logarithmic Potential 

Lerner [6] used a method for constructing the broad­
band impedance which is similar to potential analog ap­
proximation methods. He found that an.infinite array of 
alternating poles and zeros placed along the negative real 
axis inthe complex frequency plane produces a good 
approximation. 

The Method Based on a Regular Newton's Process 

The main contributors are Carlson and Halijak [7]. 
Their approximation is to predistort the algebraic expres­
sion f(S)= S- a=0.The resulting approximation in real 
variables has the unique property of preserving upper 
and lower approximations to the nth root of the real num­
ber-"a" By using this regular Newton's process, they gen­
erate rational.functions for the approximation. 

The Method Based on Substitution 

Kilomeitseva and Netushil [8] conceived a novel ap­
proach to this problem. They substituted -VS by p. An 

irrational transfer function of S then becomes a rational 
one of p. The regular Heaviside expansion is performed 
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on the new transfer function, and the inverse process is are well known: 
taken by using certain typical irrational function tables. 

In reviewing the methods mentioned above, one finds 2) /S+ (2) 
that the first is for driving point impedance approxima- 3) VS + I 
tion only, while the second method is limited to fractional 4) S- + 1. 

capacitors. The third method required predetermination 
of the roots and many necessary graphs for computing These functions can be considered is special forms of 
the behavior of the system Therefore, the applications v/S+-. If we want to approximate this function by a 
are limited to very special cases and procedures involved continued fraction, a simpler technique can be applied. 
are rather complicated Let 

V+ a = B (3) 
II. The Continued Fraction Approach 

or
 
This paper attempts to use the continued fraction
 

= B2.expansion to approximate the irrational function first, S + a 

then truncate the unimportant parts under a reasonable Adding B to both sides, we have 
error tolerance, and finally perform the inverse process to 

S + a + B = B(I + B).change the truncated continued fraction into a ratio of 
two polynomials Rewriting gives 

There are several problems involved in this approach. S + + B 

1) Why should we use the continued fraction expan- B =
 
sion? There are many forms of continued fraction 1 + B(
 
expansions. Which one do we have to use? 1 + B + S + (a - 1)
 

2) Either the expansion or the inversion is tedious, if I + B
 
more terms are desired. What technique should we
 
develop, such that the methods become practical. In or
 
other words, the method must be computer oriented. , + (a - 1) 

VS +- B (5)According to Lerner's theory, we can answer the first 
question immediately. If the poles and zeros are alter­
natel' distributed, a good approximation can be achieved. Continually substituting (4) into (5), we obtain 

The following continued fraction usually gives a satisfac- S + (a - 1) 
tory solution. VS- = -­1++a 

b+ 8 (1)=1+b± S±8+(a I - (a1) B 

__(1) _-(6) = 1 


b3 + S 2 S + (a - 1)8 2+­
8+ (a-i)22+ 

The accuracy of an approximation depends on where 
we truncate the function, of course. In general, if more If a=0, (6) becomes 

terms are taken, a better result can be obtained. In view S - I 
of the availability of high speed, large capacity digital /S = 1 + 
computers, one can take as many elements as desired. 2 +-1 

However, two new problems arise: 2+ 8-1 (7) 

1) expanding an irrational function becomes increas- 2 - 1 
2­ingly tedious; 


2) the inversion process becomes very laborious.
 

These two fundamental problems must be solved. This If a=1, (6) is reduced to 
paper will develop a new approach to solving these prob­
lems, one by one. /S + 1= 1 

2+-

IIh. Continued Fraction Expansion 2+ S (8) 

In control system studies, some particular irrational 
functions are usually of interest. The following examples 
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A/q. 



The third function of (2) is easily seen to be 

S-1 
2 + (9) 

S-1 
2 + 

Replacing S by S2 in (6) and letting a= 1, we have 

.\/82S + 1 1 + 
/S2+ 1 = 1 +- 2-

2+ 	 (10) 
,22+-


It is seen that to expand an irrational function into a 
standard continued fraction form (1) is relatively easy 
and the technique is simpler than the existing methods, 
for example, Auslander's differentiation method [9]. 

Comparing (7), (8), and (10) with (1), we see that b1 -, 
and b2=b3=b4 ... =2. This regularity helps in develop-
ing an algorithm for the inversion process. 

IV. Continued Fraction Inversion 

Inverting the continued'fraction (1) into a ratio of two 
polynomials, we would like to take the advantage of the 
fact that b1=I and b2=bs=b4 . =..2. We modify (1) 
into the following form by adding a unit to each side and 
taking the reciprocals: 

I - = I 
AS8) + 1 -- .S 

b- 8(11) 
b+ S 


b +
 

b=2 in this case. 
If we truncate (11) and only keep two b's, we have 

1 1 (1 

rS)+ I b+(S/b) (12)
b". 

b2 +S (12a) 
• 


Keeping three b's gives 

1 - 1 

fAS) + 1 b-	 (13) 

bP + ,S 
Pbs2 

++S2bS (13a) 

ItI general, the function l/[J(S)+I] can be approx-
imated by a ratio of two polynomials 

i "P(b,8) 

S) + 1 Q(b, S) 

where P and Q are polynomials of S,-and the coeffidients 
are in terms of b. 

If the order of the continued fraction is high, particular 
consideration should be given in finding the correspond­
ing polynomials, which means solvingthe inverse problem. 

For performing the inversion process, Table I is estab­
lished from which we can read the coefficients of the two 
polynomials directly. The table is constructed in the fol­
lowing way. 

1) the elements in -the "0" row are (S+a-1)',
(S+a-1), (S+a-l)1, --- as indices, or B(0, k) 

=(S+a-1), k=1,2, - n.­

2) 	the elements in the "0" column are b1, 1b2, •- - as 
indices, or B(j, 0)=btj=1,2, - - •2n. 

3) the element B(j, k)=a[B(j-1, k-1)]/(k)Ob, 
j= 2, 3, - - •2n, k= 1,2, - • •n, j>k. 

4) 	the element B(j,k)=0, j= 1,2, • - •2n, k = 1,2, 
n, j<k where B(j, k) is an element at j row and K 
column. 

The result obtained after the differentiations have been 
performed is shown inTable II. 

The table is ready to be used as an aid in the inversion 
process. We take the following example for an illustra­
tion: find several rational transfer function approxima­
tions for the irrational function VS+a. 

1) Expand /S+3a into continued fraction (6) or 

- - . S + (a - 1)

VF+ a + 2. + ,-. + (a, 1)_ - (4
 

2+ S + a-1!) (14)2+ 

2) Because the first quotient of (14) is I, instead, of 2, 
modify (14) into the standard form in order to use the 
table: 

-VS+a+1-- S+ a- 1)
2-"+ "-- +(a- 1)> (i5) 

2+. S + (a 1) 

.2+ 

3) Truncate (15) by keeping two quotients, 

1 1 

(16a)
S+a+ 1 2 + [S+ (a- 1)/2] 

2 
4 + [S +.(a - 1)] 
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TABLE I 

k 
(s +a - l)' (S+a- I)' ( + a - 1)1 (S+a- I)' ... 

b' 

b
2 

0 

(1) 
a-
ab 

0 

0 

0 

0 

0.. 

0 ... 

b6 a-
ob 2!0b2 

0 0 

b4 

' 

'* 

"N, 

(-,ab 

(b0) 

0-
. " 

2Wb 

a2(bZ) 

2!b2 
. N 

MY~b 

=b ) 

-3!8b3 
. __, 

00"'" 

W""0(bl) 

4! b4 

"_. 

TABLE II 

(S+a-_)I (S+a-1)
2 (S+a-1), (S+a-1)4 

bi 0 0 0 0 .. 

b2 1 0 0 0 ... 

Y' 2b 0 0 0 ... 

M' 3b2 1 0 0 .. 

b6 43 3b 0 0 ... 

6 5b4 6b2 1 0 . . . 

When we use the table, the coefficients of (16b) can be 4) If we truncate (15) by keeping.six quotients, 
read directly from row I and 2, or 1 

SS + a + 1 ORIGINAL PAGE IS 
(S+a - OF POOR QUALITY 

Xk 1 

S + (a-i)b1 0 - Istrow 2+ 

___ __________ S (a--1) (17)
2+ (a ­

b2 1 -- 2ndrow 2 + (a
2 ± S+(a- 1) 

2+ (
Therefore, where b=2 we have 

2 
b 2 

b2 + [S + (a - 1)] 4 + [S + (a - 1)] Inversing (17) gives 
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v'8+a+t11.
-Va b5+4bs(S+a1).3b(S+a1)2 

(17a) 

b +5b6(S+a- 1)+6b2(Sa- 1)2+(s+a-l ) 

By substituting b= 2 into (17a) we have 
1 

32+32(8+a-1)+6(S+a-1) 2 (17b) 

64+80(S+a- 1)+24(S+a- 1)2+ (s+a-1) 

Then ,+-a can be easily obtained .by using (17b): 

N/8+a 
'32+48(S+a-)-}18(S-}a-l)'+(S+a-)I ' (18) 

32+32(S+a- l)+6(S+a- 1)2 

In general, ifj quotients are taken, then 

-VS+a 

tpolynomial at jth row-polynomial at (j- 1)th row 

nolynomial at ("-)th row (19) 

2,3, 2n. 

V. Applications 

We consider the error function l/(Sv'SI+l) as the first 
application. From (8) we have the expression,. 

1 i 

S\/S + I S S 
+ 
2-+ 2+ S (20) 

If Table II is used, we simply substitute a= I, b -2 into 
Table II and obtain 

Standard
7Curve
 

n-3
 

.-4
 

0 0.5 1 2 3 

Fig. 1. Response curve of 1/(sV/s--) (even number quotients being 
taken). 

Ifj= 4, we have
 

1 "4S+ 8 1
 

v +I S2+88'+8 jS
 
4S+8
 

-S + 8S2 + 8S
 

If]-6; the result is
 
1 6S 2 +328+32 1
 

SV- I S + 18S 2 + 48S + 32 S 

682 + 32S + 32 
18S 3 +48S2+ 32S 

The corresponding time curves are indicated by n=3 and 
n = 4, respectively. Of course, we obtain a better result if 
higher quotients are taken. The comparison of data is 
shown in Table III. 

Fig. 2 shows the different approximation when an 
odd number of quotients are taken. In other words, if 

I polynoial at (j- 1)th row I 

SVS/+1 polynomial at (j)th row-polynomial-at (j- 1)th.row S 

whenj quotients are taken. 
Letj= 2 as a special case in the approximationj then 

1 2 1 
- I .--

S.VS + 1 S+2 S (21) 
2 

S+sW3 
The time domain [10] curve of (21) is shown in Fig 1 (the 
curve marked by n=--2). We see that even though j=2, it 
is a very good approximation to the original curve, 

;=3, 5; 7, 9, 1, the corresponding time curves are indi" 
cated by n=2, 3, 4, 5, 6 -.. . 

For an automatic control systefi which, in addition to 
components with. lumped parameters, contains one or 
more elements with distributed parameters, the transfer 
function is written in the following form: 

= 1F (22)
1 + WIW 2 

where W, is a transfer function containing distributed 
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TABLE III 

ApproximationsExacterr (Nv/) n=2 n=3 n=4 n= 5 nz=6 

0 0 0 0 0 0 0 0 
0.02 0.0004 0.0226 . 0.0008 0.0016 0.0024 0.0032 0.0039 
0;04 0.0016 0.0451 0.0032 0.0064 0.0095 0.0126 0.0156 
0.06 0.0036 0.0676 " " 0.0072 0.0142 0.0211 0.0277 0.0339 
0.08 0.0064 0.0901 0.0127 0.0251 0.0369 0.0478 0.0576 
0.1 0.01 0.1125 -0.0198 0.0388 0.0564 0.0719 0.0851 
0.2 0.04 0.2227 0.0769 0.1424 0.1895 0.2172 0.2295 
0.3 0.09 0.3286 0.1647 0.2796 0.3319 0.3426 0.3377 
0.4 0.16 0.4284 0.2739 0.4178 0.4466 0.4374 0.4292 
0.5 0.25 0.5205 0.3935 0.5363 0.5349 0.5215 0.5185 
0.6 0.36 0.6039 0.5132 0.6293 0.6096 0.6016 0.6024 
0.7 0.49 0.6778 0.6247 0.7007 0.6775 0.6756 0.6775 
0.8 0.64 0.7421 0.7218 0.7575 0.7394 0.7409 0.7423 
0.9 0.81 - 0.7969 0.8021 0.8045 0.7941 0.7967 0.7972 
1.0 1.0 0.8427 0.8647 0.8445 0.8408 0.8429 0.8428 
1.2 1.44 0.9103 0.9439 0.9074 0.9101 0.9105 0.9103 
1.3 1.69 0.9340 0.9659 0.9310 0.9341 , 0.9341 0.9339 
1.4 1.96 0.9523 0.9802 0.9497 0.9526 0.9523 0.9523 
1.5 2.25 0.9661 0.9889 0.9642 0.9664 0.9661 0.9661 
2 4 0.9953 0.9996 0.9954 0.9953 0.9953 0.9953 
3 9 0.9999 1.0000 0.9999 0.9999 0.9999 0.9999 

Fig. 2. Response curve of 1/(sN/s-+1) (odd number quotients being Then 
taken). 100 

.f0 (1"+ 8) 1+ 0.63. ', 

. o" W
T =100 

llO~giS) 

n-3 (101 + .S)gi(S) + 0.63(1 + S)g2(8) 
.n 

and when a unit step input is applied, we easily obtain 
n=6 •the output
 

10082 + 10008 + 500 

0.5 1 2 3 C(S)= 4.15S 4 + 120.45S3 + 1021.93S2 + 505.638 
If 

parameters and W2 is the element involving lumped 9 5S2 + 108 + 1g2(S) 

V= -­parameters. s 


Now we study the given feedback system of (22). The g(S) + 10S + 5 

transfer functions are defined as The corresponding time curve is shown in Fig. 3 by n= 4 
100 If a better approximation is used, or letting

3W =1 +0.63 2g (S).9S4+848+1268'+36S+1 

1+ .,// s- - c . . .. 

++ 36S3 + 12682 + 848 + 9
the gl(S) _

1
2 = 
1+,S the corresponding output will be 

10QS4 + 3600S + 1260082 + 8400S + 900
 

6.6786 + 195.595 + 3894,3,4 + 12912.06S3 + 8516.3182 + 909.638
 

Assume that we can approximate VS by VI. Conclusion 

A method for approximating irrational transfer func­
,/, g2(8) tions by rational ones through continued fraction expan­v' sions and inversions is established. Compared with theq(S) 
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This paper presents a new procedure for the general mdtrtr Heaviside expansion. 
The transfer matrix to be expanded can have many eigenvalues, each of which can 
have any multiplicity. The derivations of the formulas are based on Krylov's matrix ­

and 	Vandermonde's transformation, and take advantage of using the particular 
nature of the inverse Jordan matrix. The results are extremely simple. 

1. 	 Introduction 
The general' formulation and solution of state' equations in dynamical 

systems analysis is based on the following two postulates: 

(1) 	 The method ofanalysis and form for an n-degree system of any complexity 
is the same as for a 1-degree system of the same general type, provided 
each quantity is replaced by an appropriate matrix. 

(2) 	A matrix equation true in-one reference frame remains invariant in-form 
upon transformation to a new reference frame of the same type. 

These two-generalization postulates (Kron 1939, Bewley 1961) in fact, were 
introduced by Eron for the tensor method more than 30 years ago. 

Heaviside's expansion (Van Valkenburg 1964) is a fundamental operation in 
transfer function analysis. It should be extended and applied to a transfer 
matrix without any theoretical difficulty. With a proper interpretation, 
Sylvester's expansion formula (Qantmacher 1959), can be considered as the 
matrix Heaviside expansion for the distinct eigenvalue case. For the general 
case, Chen and Parker (-1966) have generalized the Heaviside expansion by using 
complex algebra, which can be considered as an extension of Goldstone's tech­
nique (Kuo 1966) from thescalar function to the matrix function. However, 
it is well known that Goldstone's approach'is not very suitable for digital compu­
tation. Recently, Rao and Ahmed (1968) developed a recursive formula for 
solving the multiple eigenvalue problem. Unfortunately, their recursive 
formula is only good for the transfer matrix with one high-order eigenvalue. 
Therefore, there is alack of a computer method for solving the matrix Heaviside 
expansion of a transfer matrix with several multiple eigenvalues. In other 

t Communicated -byProfessor Chen. 
J.Permanent address: Electrical Engineering-Department, University of Houston,

Houston, Texas. 
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words, the matrix Heaviside expansion problem in general has not yet been 
completely solved. 

This paper, based on Kron's two generalization postulates, develops a 
procedure for the general matrix Heaviside expansion. The transfer matrix to 
be expanded can have many eigenvalues, each of which can have any multi­
plicity. The derivations of the useful- formulas- are-straightforward and the 
results are particularly simple and especially suitable for digital computation. 

2. 	 Derivation of transfer matrix 
Transfer matrices come from many formulations in systems analysis. In 

the state space approach, usually, a transfer matrix comes from the Laplace 
transform of a transition matrix.
 

Consider a set of-state equations in the matrix form:
 

[.]= [A] [x],(1) 

where [A] is an n x n constant matrix. Laplace transform (1) and then solve, 
for [X(s)]: 

[X(s)]= [sI-A]1-[x(O)] 
= -(2)~ 

where [%D,(s)] is an n x n matrix, each element of which is a transfer function 
the ratio of two polynomials of s. The inverse Laplace transform of [(Dr(s)] or 
[# 	(t)] is usually called the transition matrix-of (1):

To take the inverse Laplacetransform of'this n x n transfer function is very
laborious. We would like to develop a new approach to solve 'the matrix 
Heaviside problem. The ifiveise transform problem then can be solved readily. 
We will use,[(4,(s)] as a vehicle to develop the method of expansion; of course, 
the matrix Heaviside expansion technique can be applied to other transfer 
matrices as well. It is readily seen that 

[ID(s)]=[si-A]-' 

Adj (sf-A) 	 (3) 
det(sI-A)' 

where Adj means the adjoint matrix, and 

det (si-A)=sf+asfn - 1 +a2 sn- 2+ ... +an_,s+a,. (4) 

If the characteristic equation of [D,(s)] involves distinct roots, only, the 
regular Heaviside expansion technique can be applied: 

..... Adj (sf-A) n( Wo,]1 

det (sI-A) ,=,(s-A9' 
where 

-idt(sl -A) 	 (6) 

Hence 

-1=1e. 

This extension is clearly explained in Chen and Parker's (1966) paper. 
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When multiple roots are involved in the characteristic equation, the regular
Heaviside function differentiation technique can be extended; however, it is 
very cumbersome. We will use two similarity transformations to find the 
equivalent primitive systems in the Kron first and then evaluate thesense 
transfer matrix by expansion. 

Our problem, therefore, is to expand the transfer matrix, [(I)(s)], into 
partial fraction matrix; or let 

"
 [ID (s)] =_ I + Q --V 

Adj [sI-A] 

- _ l)k(8 _ -(7)2)q." ., 

where [Kk] and [Qq] are n x n constant matrices which are to be determined. 

3. 	 Krylov's transformation 
The first similaity transformation we want to perform on (1) is Krylov's 

transformation. 
Krylov's transformation is a particular matrix which can transform a 

general matrix [A] into a standard form. Kron's second postulate justifies 
this transformation.
 

Krylov's transformation is as follows:
 

[H][x] =-[y], 	 (8) 

where [H] is formed by a set of chain vectors: 

j [A] 
[H]= J-- (9) 

in which I is any row vector such that the determinant of [H] is not equal to zero. 
Substituting (8) into (1), we obtain: 

S[H] [A'][H]-[y]= [a][y], 	 (10) 
where [a] is a standard form or the companion matrix. Then (10) becomes: 

0 1 0 	 0 Yi 1 

O 0 1 0 . 0 Y2,
 

-a - . ,- . 
eqato LI'n-K is---lai.y.
PE-A_ -­

in which the elements of the last row of [a] correspond to the characteristic 
equation coefficients of [A] respectively. 

The [H] matrix was first proposed by Krylov (1931); Gantmacher (1959)modified it and used it to find the characteristic equation of a general matrix. 

25A 
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The same matrix with an input constraint then was rediscovered and extended 
by Wonham and Johnson (1963, 1964). 

Krylov's transformation not only simplifies the computation of the coefficients 
of the characteristic equation but also offers a link connecting a general system 
and a primitive system in the Kron sense. 

It is very easy to prove that the .[H]matrix does indeed transforma-general 
matrix into its companion form in the following manner. 

Start with the Cayley-Hamilton theorem which is that any matrix [A] 
satisfies its characteristic equation: 

s-asn-l-... --an_1s--a =O , (12) 
i.e. 

[A]+a,[A]n- a2[A ]n-,+ ...-l--a_,[A]a[]= O. (13) 

Both sides of (13) are multiplied by a row vector [1]: 

Z[A ]nla[A ]-'+a2 [A ]n-2+ ... +an_1l[A] +al[I]= 0. (14) 

Rearranging: 

We also write some trivial identities: 

lCI][A]=[A],
Z[A][A]=I[A]2, 

(16) 

I[Ajn-2[A]=I[A~n - 1. 

Writing (16) and (15) together into a matrix form, we have: 

Ir] 1 0 0 -.0 01 l[] ­[ A] [A..1 0 10 01 [A] 
[A]= L 0 0 0 [ (i7-) 

kl[]'-lJ L -a. -a,-, -a2 -a,,_ L[A]n- I 

which is: 
[H][A][H]-=[a]. (18) 

Therefore, we have proven the Krylov transformation. 

4. Vandermonde's transformation 
Once the system described by a general matrix differential eqn. (1)has been 

changed to the companion-matrix form (10) by using Krylov's transformation 
matrix, -we can diagonalize (10) immediately by the well-known Vandermonde 
transformation. 

-et
 

fy]= [V][z], (19) 

#.24 

L 
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where 

A, .A2 A, 
2 2 A 2A1 A2 

IV] = , (20) 

LAin-' A2 "-' 

if the system has only distinct roots. 
Or, let 

[y]= [W][z], (21) 
where 

1 0 0 0 1 

A2
A (A2) I 0 

~a 2 ( 2iW=~ _)a, II=i) 

1('-)L 1 -A (A,~ 2! a m-i•(-) t a
A,n- e(rn ("-' 

(22) 

if the characteristic equation in question has a multiple root A, of multiplicity M 
and a root A2 of multiplicity 1. This is a typical example from which there is 
no loss of generality in writing [W]. 

Then the system is described in z coordinate as follows: 

[i]= [V]-[a][V][z]= [A][z] (23) 

for the distinct case, and 

[]= [W] 1 [a][W][z]= [J][z] (24) 

for the multiple case, where [A] and [J] are: 

A2 

A3 
[A] (23 a) 

21­
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and 

A 1 

[J]= (24a) 

A2 

respectively. 
In Kron's terminology, eqn. (23) is called the corresponding primitive 

,system. Putting a general system into this form not only helps us solve the 
equation easily, but also gives us much insight. 

It is very interesting to note that the Vandermonde matrix [V] and the 
modified Vandermonde matrix [W] can be derived from Krylov's matrix. 
Here we only derive the [I] matrix from the [H] matrix. 

Consider z coordinates as a special case ofx coordinates. From (23) we have: 

[V] [A] [V] - ' = [a]. (25) 

Comparing (10) and (25), we see that the [V] matrix is only a special case 
of [H]. 

Let us assume in (25) that 

A1 

A2
 

[A]= 

Then 
2 

A2 
2 

[A]'=­

and 
Ai 

[nl= 
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The [H] matrix is formed accordingly: 

I 
1[A] 
I[A]2 

[H]= 

437 

(9) 

and let 

we have arrived at: 

1 1 1 . 1 

[H]=A 1
2 2 A'3 

2 

which is exactly the Vandermonde matrix. 

If a similar reasoning is followed, the [ W] matrix can also be derived from the 

[H] matrix. 

5. General Heaviside expansion 

Because the Krylov matrix and the Vandermonde matrix are so easy to form 

and to use, we would take the advantages to perform the similarity transfor­

mations on a general system in order that we will naturally obtain a simple 

procedure for the general Heaviside expansion. 

Consider the general system again: 

[i] = [A] [x], (1) 

whose transfer matrix is: -

[41.(s)] = [sIf- A] , (2a) 

as we derived before. 
Now, we use the following two similarity transformations: 

[x] ­

to change (1) into a primitive system finally: 

[i]= [W]- t[H] [A ] [Ht]-' W] [z] (26) 

or 
(26a) 

ORIGINAL PAGE IS
 

OF pOOR QUALITY
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where 

A1 1 

A1 1 

A kxk 

[j] = (27) 

A2 1 

A2 1 

A2 qxq 

Laplace transforming (26a)'and solving for the transfer matrix defined in z 
coordinates: 

[0D(s)]= [sI - J]-. (28) 

The inverse of (28) can be directly written: 
1 1 1 1 

1 )3(s-I) (s-A 1)2 (s- (s- A) 4 

1 1 1 

(s-A 1 ) (s-A) 2 (s-A 1)
3 

1 1 

(s-A,) (s-A1 )2 kxk 

1 

(s- A1 ) 

[(](29) 

1 1 

(s -A2) (s -A2)2 

1 
(s -A2) qx q 

/ Baq 

The simplicity of (29) helps us solve the general Heaviside expansion problem. 
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When changing [(t,(s)] back to [(D,(&)] by use of (8) and (21), we easily find 

that they are related by: 

(30)(4).(s)]= [H]-1[W][(D(s)][WI-l[H]. 

Equation (30) is our basic formula for the expansion. 

Substituting (7) and (29) into (30) we obtain: 

OF POOR QUAL1T%[ ]k 1 (8[J(] ORIGINAL PAGE IS[14] 
11 

- 1 1 1 " 

1 1 kxk 
2


(-A 1 ) (s-A 1) "x 

= [H]-'[W] 1 "[W]-'[H]"
 
(s-A1 ) '____
 

(31) 

It is noted that both [H] and [W] and their inverses are all constant matrices
 

while [K] and [Q.] are to be determined.
 
We multiply both sides of (31) by a scalar (s-Ai)k, then letting s=A1 , [K] is
 

determined:
 

0 0 0. . 0
 

0 00.. 0 ol
 
00 o . . o 0 kxk 

........................
......
......................................... 


qxq
00 

0 

0 

x [W]-'[II]. (32) 
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Only the element at the first row and kth column has a value of unity; all other 
elements are equal to zero. Similarly: 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 kxk 

[K1] = [H]-I[W .......0 0 0 0 0 0 1! [W]- ' [H]. (33) 

In eqn. (33) only the elements on the diagonal of the first Jordan block have 
values of unity; alr other 6lements are equal to zero. 

Next, we find [K 21: 

0 1 0 0
 
0 0. 1 0 0 

0 .0 1 0 .kxk 

[K2= [H]-I)[W] 0 [W]-'[H]. (34)............
...........
..•............-.. 


.......... ..... ........
 

Only the elements just above the main diagonal of the first block are unity; all 
other elements. are equal to zero.

The matrix coefficients from [K 1) to [4K] are determined by the above 
simple procedure. It is interesting to note how suitable this procedure is for 
digital computer programming. 

Following the same process, we find: 

Jkxk 

0 1 

[QJ=[H]-[W] 0 0 0 0 0 1 [Wfy [H]. (35) 

0 0- 0 o l qxq 

0 0 0 0
 

Only the element at the right upper corner of the second Jordan block equals
unity. Al!other elements equal zero. 



--

Similarly: 
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ORIGINAL PAGE -ISJkxk OF POOR QUALITY, 

[Qj = [H]-'[W] 1 [W]-[H], (36) 

qxq 

1.
 

etc. 
Therefore, all [Kk][Q,]... have been evaluated by simply changing appro­

priate elements into unity or zero. These simple results are believed to be new. 
If we degenerate the problem into the distinct eigenvalue ease, the formula 

is simpler. , Expanding (30) for this case, we have: 
[RI] + [Bg] + [B3]+ 

8-A1 8-A2 8-23 

1 

1 
-2 

= [HI-[V] 8-A3 [V]-'[H]. (37) 

1 

The unknown constant matrices are: 
1f 0 ,0 . . . 0 1 
0 0 0 . . . 0] 

[B1? [H]-[VI[ o 7 1 7] [Vo-1 /], (38) 

0 0 . . . . 0 " 
0 1 0 . . . 0 

[B21[]E]-1V[] 0 0 [V]-[H], (39)7o 

0 0 0 ... 0
 

etc. 

e1.3.
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It should be noted that we have two by-products in the approach; first, in 

the use of the [H] matrix for performing the similarity transformation we auto­

matically find the characteristic equation. This way is simpler than Newton's 

formula (Chen and Haas 1968) or Faddeev's method (Chen and Haas 1968). 

Secondly, it is easily shown that the product of [H]-'[V] is the modal matrix, 

each column of which is an eigenvector. Therefore, this is an easy way to find 

eigehvectors. -The arbitrary constants in the regular apprdach to 'the eigen­

value problem become an arbitrary vector [I].. 

6. 	 Conclusions 
A procedure for the general matrix Heaviside expansion is established. It, 

is particularly suitable for digital computation in state variable analysis.. 

Historically, researchers in the control engineering field have long been 
matrix andinvestigating the relationship between the inverse Vandermonde 

the residues of the regular Heaviside expansion. Tou (1964), Brule (1964) and 

Reis (1967) have presented their results. However, they always restrict them­

selves to the distinct eigenvalue case. No general or multiple eigenvalue case 

On the other hand, in the areas from the companion matrixhas been given. 

formulation to the controllability and observability tests (Kalman et al. 1963)
 

we 	have neverwe have long been interested in Kryfov's matrix; however, 

obtained a united picture. This paper presents.the general view and points out
 
the essential applications and their relations.
 

h'.q
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C 
C 
C N a DIMENSION OF TRANSFER F.UNCTION MATRIX 
C A - N X N MATRIX OF GENERAL FORM CXDOT) - (A)(X) 
C VECTRL - ANY ROW VECTOR SUCH THAT THE INVERSE OF THE KRYLOV 
C TRANSFORMATION MATRIX (H) EXISTS 
C PHIZ - SIMPLIFIED PHIZ(S) MATRIX ALL ELEMENTS UNITY OR ZERO 
C W - GENERAL VANDERMONDE MATRIX 
C 
C 
C SUBROUTINES 
C 
C MATX(N.AJB,C) RETURNS (C) = (AT(B) ALL N X N
 
C MINV = LIBRARY DOUBLE PRECISION MATRIX INVERSE SUBROUTINE
 
C 
C 
C 
C 

DOUBLE PRECISION UAtWH,P2T,PIHIVVIH#DPHIZ
 
DIMENSION Pl(4o4),LLC4,4),M(4,4)
 
DIMENSION VECTRL14),A( ,4),W*4)1P2C4,4),,(4s4)#HV(44),VIH(44)
 
I .N(4'4)PHIZ(4,4)
 

10 FORMATC4FIO,0)
 
11 FORMAT(4E16,7)
 
13 FORMAT (13)
 

READ (5,3)N
 
READ (SIlO)(VECTRL(I),I=IN)
 
READ (5,10) (( A(lIJ)aJIsN)JI1,N)
 
READ (5,10) ((W(IJ),JJINIIN)
 
WRITE (6,205)

.05 FORIAT(/,/,'CENERAL STATE EQN (XDOT) * 
WRITE (6,11) (1AAI,4),J=IsN)sI=1.N) 
DO 27 1 - 1,N
 
00 27 J =1,N
27 P2(ZJ) - A(IJ)
 

06 24 1 - ljN
 
24 H(IuIl =VECTRL(I)
 

DO 28 1 - 2,N
 
DO 25 J -1,N
 
H(Ini) = 0.
 
0O 25 K zIjN
 

25 H(IaJ) VECTRL(K)*P(KjJ) + HCIJ)
 
CALL MATXCN,PEAJT)
 
DO 28 11 = IPN
 
DO 28 JJJ =14N
 

28 P2c11Ijj) T(IIJJJ)
 
WRITE (6,206)
 

206 FORtAT(i//,IH MATRIX TO TRANSFORM (A) TO 

WRITE (6,11) ((H(IsJ),J=1,N),I=IN) 
DO 29 i - 1,N 
DO 29 J*,=lN 

29 Pl(IJ) = H(IJ)
 
CALL MINV(PIN,DLL,1l)
 
CALL MATX(N,P1,WHIV)
 
CALL tlATX(N.API.P2)
 
CALL MATX(N,HP2*T)'
 
WRITE (6,208)
 

ROB FORKAT(///,'CYDOT) - (ALFA)CY) WHERE 
WRITE(6,11) (CCTIsJ)sJtiN) IloN) 
DO 33 1 * tsN 
DO 33 J =IN 

33 PICI.J) - W([aJ)
 

(A)(X)I//)
 

(ALFA)'.//)
 

CALFA) COMPANION FORMt,//)
 

ORIGINAL PAGE IS
 
OF POOR QUALITY
 

http:tlATX(N.API.P2
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WRITE (6,212)
 
212 FORMAT(///,'GENERAL VANDERNONDE tIATRIXI,//)
 

WRITE (6*1)(( W(IJ),J=lN),IIJlN)
 
CALL FINV(eILNSD*LLiH)
 
CALL NATX(NWHPRJVI4)
 
CALL MATY(NPITA)
 
CALL tiATX(NAJWPI)
 
WRITE (6,2 0)
 

210 	FORMAT (/// ,JORDAN OR DIAGONAL FORH,//)
 
WRITE (6,11) ((p(Id),JfJN)iI=1tN)
 
DO 800 KK -1,N
 
READ (5 0) C(PHIZ(IJ),Jr±,N),I=,N)
 
CALL ATX(NHIVPHIZAA)
 
CALL NATX(NSAJVIHP2)
 

802 CONTINUE
 
WRITE (6,803) KCKK
 

803 FORMAT(///-tK(sI3') MATRIX FOR ROOT(',X3,0')'/)
 

800 WRITE (6,11) ((P2CIJ) ,J=1,N),1~1,N)
 
STOP
 
END
 

SUBROUTINE HATX(N,A,B,C) 
DOUBLE PRECISION A, ,C 
DIMENSION A(NAN),B(NN)pC(NN) 
DO 10 I =ruN 
Do 10 1 .10N 
C(IsJ) 0o 
D0 10 K -lN 

10 C(IpJ) ACI, K)*B(KJ) + C(I1J)
 
RETURN
 
END
 

M

PRO RA END
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Appendix 

The method is best illustrated by the following example. 
Consider a given system: 

[A I (A 1)[x[], 

where 

0 -4 0 (A2)-3 2 -4 -I 

-3 2 0 -4 

We use the similarity transformation: 

[y]= [l] [z], (A 3) 

where 

Z[A] 11 -11 2 ­
[H] =jI [-- (A4) 

HA] 2 82 -48 16 24 

L_[A] 3 -530 436 -64 -112 

to transform (A 1) into y coordinates: 

[ = [H][A]rH]-I[y]= [a][y] (A 5) 

inwbich 

0 101 
0 0 1 0 

1 (60 0 0 
-320 -304 -108 -17 

Performing another similarity transformation, or letting 

[W][z] =[y, (A7) 

where [W] was defined in (22), we obtain: 

[ l]=[W-1[H][A][H]-1[W][z] 

= [:J][z], (A 8) 

in which [J] is the Jordan matrix. For this example which has a multiple root, 
- 4, with multiplicity 3 and a root, - 5, with multiplicity 1. The corresponding 
Jordan matrix is: 

[JI-[ 0 -4 1 (A9)f. 
[] 0 0 -4 0 (9 

0 0 0 -5 

,A.3 7 
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The Laplace transform of the transition matrix in z coordinates is readily seen: 

0 01-'s+4 -1 

0

L 
-10 s+4 

0 0 s+4 0 
- 0 0 0 8+5­

1 1 1 

(8+4) (8+4)2 (s+4) o 

1 1
0 0 

(S+4) (F+4)2 (A) 

1 
0 0 ,0 

10 
0 _- 0 (a+5) 

We return to the x coordinates and have: 

1- 1 1 
___ 0

(s+4) (8+4)2 (+ 4)3 o 

0" 0
 

= [H]4[W] 
 [W]-'[H]. (All) 

0 0 1 0(a+4) 
1 ­

0 0 0 
(L+5) 

Assuming constant matrices [K1], [K 2], [K.] and [Q,], we obtain: 

[Ka] 5) (A12).[K,]+ (8+[K 2]" (s+4)3 (8+[Q,](vs)J 


Equating (A 11) and (A 12) gives: 

[K,] [Kz] [K3] [Qi] 
(s+4) (s+4)2 (s+4)3 (s+5)
 

1 1 1
 0 
(8+4) (s+4)2 (8+4)3 

o -1 F8+4)2*1(+4 
= [H]-'[W] 0 [W]-I[H]. (A13) 

1 
0 0 0(s+4) 

1 
(a+5) 
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Now, to evaluate the constant matrices of (A 13), multiply both sides by (s + 5)
and.then let = -5. We have [Q1]: 

0000-2 01 

[Qi]=[H]-[W][ 0 0 0 6 -12 0 01 

Similarly, we multiply both sides of (A 13) by (s+ 4)3, and letting s 4:-

0 0 1 01 0 0 0 01[Ks]=t]_I0[0W] o = [ 0 0001 I. 
[0 0 0 0 [W]0[] o 40 0 

0 0 0 0 0 0 0 0 

Similarly, [K 2] and [K1] can be obtained by inspection. Thus, we have: 

001 0 0 0 0 

0 0 0 0 -4 0 0 

By similar reasoning, we obtain: 

W] 0 1'0 0 001 W]0[] 2 0 
1 

0 
o 

010 0 10 

0 0 0 0 -3 6 0 1 

Once the matrix coefficients have been determined, the transition matrix can be 
directly written as follows: 

[0(t)]= [K1] exp (- 4t) + [K jt exp (- 4t) 
+ [K1(t2/2) exp (- 4t) + [Q1] exp (- 5t.) 

A digital computer programme for the general Heaviside expansion is included. 
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The only difficulty involved in the Newton-Raphson method is how to make the 
initial, guess. This paper presents a two-transformation technique which enables us 
to make the initial guess unnecessary. Several characteristic equations are tested. 

1. 	 Introduction 
The scalar Newton-Raphson method for solving a high-order algebraic 

equation: 

f(8) = ,+aS-l 	 +a2s0-2+... +an = 0 (1) 

is written as: 

8,+l = s-f'(s,)- f(8). 	 (2) 

If we make the right guess for s0, after the ith iteration, we will obtain one 
of the roots, s+,. However, if the guess is not good, we may never obtain a 
solution. There is no systematic method to use as a guide line to make the 
initial guess. 

2. 	 The multidimensional Newton-Raphson method 
If there is a set of simultaneous' algebraic equations: 

f(s) = 0 	 (3) 

or 

f2(811 S2... s,,) = 	0, 
: .: (4) 

M(s1,82, ... , ) 	 0.j 

and it is desired to find s,, s2, ... and s,, we can use the general multidimensiolial 
Newton-Raphson method (Bellman and Kalaha 1965 or Childs 1967): 

si+= si+-f } 't 	 (5) 

TCommunicated by Professor Chen.Permanent.address: University of Houston; Houston, Texas. 
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where s is a vector and 

A 
af Of2 DfA 9f2 

s = 81 55 583 
&A Ofs 

"'" (6) 

8a 882 Of3 

which is usually called the Jacobian. 

3. 	 Equivalent equations 
Instead of solving the characteristic eqn (1) by using (2), we would rather 

look at the problem from a different angle. 
First, 	the equation: 

f(s) = .Sn+aln-+a2 s- 2+...+a, = 0 

can always be decomposed into a set of equivalent equations: 
ci+l-+y+.... =a, 

: 	 (7)
+y....=~ 

where - a, - , -y ... are the required roots. Therefore, finding the solution 
of (7) is equivalent to finding the roots of (1). We can use (5), or the multi­
dimensional Newton-Raphson formula to obtain the values of a, ,, ... , etc. 
This new viewpoint is similar to that of changing a high-order differential 
equation into a set of first-order state equations. Because of this change, new 
light is shed on the problem. 

4. 	 First transformation 
The roots of the characteristic eqn. (1) are distributed in the s-plane. If we 

consider-that each root is a unit mass, the s-plane must have a centre ofgravity. 
From Evans' root-locus method (Chen and Haas 1968), the centre is determined 
by the arithmetic mean- of the roots, or 

e.g. 	= ,+f+,+... =lk. (8) 

If we move the origin of the s-plane to the centre of gravity, we would have a 
more balanced picture. 

It is well known that the centre of gravity can also be determined by the 
second coefficient of the characteristic equation. Therefore, we perform the 
first transformation by letting: 

y = s-k. 	 (9) 

Substituting (9) into (1) yields: 

yn+ 2yn- 2+b 3yn- 3 + ... +b, - 0. 	 (10) 
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It is noted that the second term is missing from the y equation. 
Let us use an example for illustration: 

a3+.1382+26s+ 12 = 0. (11) 

The value of k is found by: 

k- = 4.33. (12) 

Letting: 

y = s-4.33 (13) 

and substituting into (11) gives: 

ya_ 3033y-+-62.07 = 0. (14) 

The root distributions in the s plane and in the y plane are shown in fig. 1. 

Fig. 1 
a3+13s2+26s+12 Is 
(s+lO.67) (s+l.65) Cs+. 682) 2.5 

s-plane
 

-2.5
 

y
3
-30.33y+62.07 
 n


2
(y6C.33) ( - .6O ) (-

3.65) 2.5 

y-plane
 

-2.S5 2.5t RZ5 

-2.5
 

-.93t 93z+i.O r 2.5 
(:4l.60) (z-.68) (z-.92) 

s-plane 

-* Re 

-2.5 

5. Second transformation 
The first transformation is a general practice for solving equations. It 

coincides with the technique used in the cubic equation formula and in the 
quadratic equation formula. 

http:y3-30.33y+62.07
http:3033y-+-62.07
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The geometrical interpretation of the first transformation, of course, is to 
relocate the origin at the centre of gravity. 

However, after the first transformation, the root distribution is still not 
very uniform. Some roots in the y plane are too far away' from the origin 
while others are too close. We ean change this by using another transformation 
and letting 

y= /(b,)z. 	 (15) 

In 	 our example we use: 

y - /(62.07) z. 	 (16) 

Equation (15) can -becalled the geometrical mean transformation. The charac­
teristic equation of our example becomes: 

(4/(62-07) z)3 - 30-3. (f/(62.07)) .z + 62.07 = 0 

or 

z3-193z+l =0 	 (17) 

and, in general, 

,z-+...+l=O.. (18) 
For eqn. (18), we can always make'the initial guess by simply omitting the 

middle terms. in other words, the first guesses for the roots are: 

z= (-1), = - 6 	 (19) 

Because we have used the geometrical mean to normalize the last term and 
make the roots redistributed more uniformly around the unit circle, we call 
our approach a normalized multidimensional Newton-Raphson method. 

For this exampletproblem, fig. 1 shows the root distributions in the s plane, 
y plane and z plane. 

6. 	 A fifth-order example 
For the equation: 

f(s) = s 5+ 162S4+ 97"25s +359'6s2+ 72'7&s+ 17 (20) 

we 	use the new method to find the solution. 
First, take the following linear transformation: 

16-2 

Then we have: 
5 8 4 7 y	 _7 7 3 yS+ 94.57y2 - .8 3 y+ 1676-88 = 0. (21) 

Performing the second transformation by letting: 

y = 54(1676'88)z 

we have: 
-zs	 0.396z3+ 1.099z2- 2.23z + 1 = 0. (22) 

http:f/(62.07
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Now we can solve for the roots of (22). -The initial guess is the following 
vector:
 

Z2 3600i 
z 3 =/_ fori = O,-1, 2,3,-4, 
Z4
 

Z5
 

or 

z= -0.30901+jO95106, z2 = -1.0000, z3 =-0.30902-j.95105, 

'z4 =0.80901-j58779 and z5 =0.80902+j.58778. 

Fig. 2 

4 3
sS+lG.2 .97.25s 359.6s2+72.7a+1 7 0 Ta 

c-plane 

]t 51Re 

-5-5 

2
 
yS-?.?3,3+94.57y _47.3y+1676.88 C-5
 

(y+6.76) (y.-.24-j5) (y-3.14±3.2) 
y-plano 

€-5
 

5
J -0.396z3+1.09922.2 +lO 
(z-1.53) (z-.054tjl.13)

3 
(z,.711t5 .045) 1 

Figure 2 shows the root distributions, in the q plane, y plane, and z plane. 
It is evident that our five values of the first guess are uniformly distributed 
on the unit circle in'the z plane. They approach the actual' roots by several 
iterations as shown in fig. 3. 

http:z-.054tjl.13
http:47.3y+1676.88
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Fig. 3 
4 3 2
 

s5-16.2s +97.25s +359.6a +72.7s+17.0 initial -0.31±jO.95 
5 3 2 Guess -1.0
z -o.396z +lO9918z-2.23206..a 	 O.8ltJ0.59
 

First 0.21ij1.01
 
.0 Iteration -1.75
 

0.67± 0.33
 

Second 	0.05Z1.14
 
Iteration -1.54
 

0.72-+j0.13
 

Third 0.OS±jl.13
 
.0 fReIteration -1.53
 

I- 0.71j0.07
 

Fourth 0.05*jl.13
 
Iteration -1.53
 

0.71±)0. 05
 

1. 	 Final 0.051±1.13
Value 	 -1.53
 
0.71tj0.05
 

7. Computer program 
The normalized multi-dimensional Newton-Raphson method was conceived 

by the first author and the computer experiments were performed by the 
second author on the SDS Sigma 7 computer. The programme was written 
using double-precision complex variables to allow accurate processing of 
complex roots. 

The necessary inputs to the programme include the order of the equation, 
the tolerance for solution and the coefficients of all terms of the equation. The 
coefficients are read in as real numbers and divided by a. to normalize the 
highest-order term. 

The first transformation is performed by using eqn. (9) and then solving 
for the new coefficients in the y plane. The second transformation is performed 
by using eqn. (15) and then solving for the new coefficients in the z plane. 
The initial estimate for the roots is made by using cqnI (19). This leaves the 
first guess for the roots uniformly distributed around the unit circle. 

The iteration technique of eqn. (5) is used to converge to the actual roots 
of the equation in the z plane. The process is stopped when each of the 
equations of (7), after subtracting a1 from the ith equation, is close enough to 
zero to be within the tolerance specified for solution. 

8. 	 Other examples 
- The method was tested for a tenth-order equation: 

s10+ 12s 9 + 68.75s8 + 249-5s 7 + 637s6+ 1187'5s5 

+ 1613-75a+ 1553s3+ 994-582+ 373s + 60 = 0 
with roots at: 

S -+j1, s, = 0.5+j3.75, ss,6 =-2+jl,2 =,


S7 -- 5, s,=-1 88=-1"5 810=---2. , , 

http:0.5+j3.75
http:0.71tj0.05
http:0.051�1.13
http:0.05*jl.13
http:0.71j0.07
http:0.OS�jl.13
http:0.72-+j0.13
http:0.05Z1.14
http:0.21ij1.01
http:8ltJ0.59
http:0.31�jO.95
http:s5-16.2s
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The following roots were calculated with our method:
 

s =,, - 099997 +j099998, s,4 = -049999±j!.93649,
 

- 5.6 - -199977 +jl.00027, 87 -0.50000;
 

s8=-1-00005, s=- -49904, slo -200145. 

An equation with repeated roots." 

85 + 5.4s4+ 11"64s3 + 12-52s2 + 6-72s + 144 = 0 

was also tested. The actual roots were: 

81,2,3 = - 1, 84,5 =-1.2. 

The following roots were calculated with the normalized method:
 

81,2 l-00633±j0.01398, s8 = -0-98671,
 

84,5 = - l20032 ±j0.00809.
 
It is interesting to note that the method is so good for a repeated root case. 

9. 	 Conclusions 
A normalized multi-dimensional Newton-Raphson method is established. 

After two transformations, we solve the normalized equation and then perform 
the inverse transforms to obtain the solution. The initial guess which is 
the most difficult part of the original Newton-Raphson method becomes 
unnecessary: 
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A decomposing method is derived for identifying linear system transfer functions if 

response data in either the frequency domain or time domain are known. The method 
fraction ex­is based on the application of the second Cauer form or continued 

pansiom The dominant factors of an unknown system can be systematically identified. 

1. Introduction 
In 	 1965 Chen and Philip, suggested a method for transfer function fitting 

data and in 1968 Chen and Knox' extended thefrom th'e frequency response 
idea to the time domain. Their methods are based mainly on Bush and 

Caldwell's (1945) transfer function decomposition. 
This paper based on the second Caner form continued fraction expansion 

proposestwo methods; one in the~frequency domain and the other in,the time 

domain, for constant coefficient linear system identification. 

Consider . system transfer function of the form: 

C(8) A 2,Sn-z+' +A 2 3 s2 +A 22s+A 21  ' "(1)
,.-(s) - Al,cn +l)s + .. .+Aas+Als+A 

where B(S) 'is an input, C(s) is an output and Ail are -constants. Rearrange 

the numerator and denominator polynomials.of -eqn. (1) into ascending order: 

C(s), A 21 +A 22 s+A 2 s 2 +...+A2,,8-1 	 (Ia) 
Aj + A128s+ Aj38s2+... + A ,(n+,)s- =) 


then using synthetic division on eqn. (1 a) we have: 

C(s) . , 

NOs) s[/4 21A 12 .'A1Ass (An A13  A A2 \ s 1 -."
 Al1 1  1i 'A'21 " /k A21 
n - 1 

2,+. A 2 1+A 2 2 s+A 2 i8 2 + ...+A, s 

1 s 

_+A32s8+...)" 	 (lb)- An+ s(A_ 	 " 
-1
...- FA2,nsnT2 +2A21+A2s+A20s2 

tCommunicated by Associate Dean of Faculties, Dr. 0. J. Huang. 
TPermanent address: Electrical Engineering Department, -University of Houston, 

Houston, Texas 77004. 

http:polynomials.of
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in which: 

A3 A1 2 -Au A22 A 1 
A 

2 1 

A 32 - A 21 A1i- A 1 A23 . 
A21 

Dividing repeatedly, we have: 

R(S) C(S2) 1A (2) 

A21  A 21 + 

A31 AI 1 s 

where 
Ak = AA k 1 2-,IA 1 ,+ 

A____A__, 3,4,..., 1, (2 a)_ -

An alternate form of eqn. (2) can be written in the form: 

C(s) 1 
1 h (3) 

a 1 

T+ 
8 

8 
where 

A, 

T1h-A(,±l)l ,2 ,...,2n, h#0. 

Equation (3) is the second Cauer form. 
Based on this form, Chen and Shieh (1968) constructed a linear model 

simplification technique. This revealed the fact that a transfer function is 
dominated by the first several quotients of h.. Indeed the high-order transfer 
function can be reduced to a low-order model by simply taking the first several 
quotients of the continued fraction expansion. Later Towill and Mehdi (1970) 
compared this method (Chen and Shieh 1968) with several commonly used 
low-order models and investigated their sensitivity problems. 

2. Identification based on frequency response data 
For illustration and no loss of generality we consider a second-order system 

with its transfer function as follows: 

C(s) b1s+b 2
 
R(s) =s+as+a2 ' (4)
 

where a,, b, are constants. 

e.B 
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The continued fraction expansion of the second Oauer form for eqn. (4) is: 

1 (5)C(s)B(s) 1 

sh1s 

A_
4
 
8 

The block diagram representation for eqn. (5) is shown in fig. 1. The rational 

function for the continued fraction inversion of eqn. (5) is: 

C(s) (h2 +sh4)8+h h 4 (5 a) 

N) - S2+ (hh 2 +hh 4 +h h4)s+lAh2hA 4 

Fig. 1 

Synthesis of transfer function. 

Comparing eqns. (5 a) and (4) we have: 

al = hlh2+hlh 4 + hAh 4, 

= 3 h4h hA (5b)a2 2 

b, = h 2+h 4, 

= hah 4. 

Our goal is to identify the unknown quotieits hi, h2, hs aid hA The procedures 

b2 2 

4 . 

are shown by the following'steps. 

(1) Identifying A1 

Suppose an unknown system which can be decomposed into a continued 
fraction of the form of eqn. (5) is put in the solid line block as shown in fig. 2. 

Fig. 2 

Unknown system to be Identified 

C1(S)Ris+F ++ 

L--------- .._,
 

Identifying h1. 
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The unknown quotients h,, h2,h and h4 are to be identified. We-add a positive 
feedback gain h,' to the unknown system; the block diagram of the modified 
unknown system is shown in.fig. 2. The corresponding mathematic equation 
can be written as: 

R1(s) - +CI(S) (i~ki,) 1 (6) 

R ()h .9 1+ 

The rational transfer function of eqn. (6) is: 

01() (h2+ h4)s+h 2 h3 (7 
R,(8) s 2+[(h-hl')h+(h-h,')h 4 +h3 h4 s+(h,-h,')A2 h . (7) 

Equation (7) is a particular system in which its denominator has all coefficients 
if hl-h'9#0. It is similar to the type '0' system in the feedback system
terminology. We simply call eqn. (7).type '0' system. The frequency response 
data in the low-frequency region on the Bode plot shows the 0-slope response; 
however, if h,-h 1' = 0, eqn. (7) can be simplified as: 

Cl(S)"= (h2+h 4)o+ 2kh1,3At4
.R1 (s) 3 h4)s(s+hA (8) 

Equation (8) is a type I system. The frequency response in the low-frequency
region on the Bode plot shows the - 1 slope character. Due to the fact that 
the factor ]11sf is more affected in the lower frequency region than the other 
factors in eqn. 8, the change of a system from a type 0 to a type -1will show 
the eminent difference on the Bode plot. This peculiarity easily lets us judge
the accurate value of hl. In other words, in the lower-frequency region, we 
adjust hi' until the frequency-responsl data of the modified system changes 
,its slope from 0 to - 1. Then we have the-accurate h value. Therefore, the 
h value is-unique. 

(2) Identifying h 2 

From step (1), if h - hl' = 0, the corresponding transfer, function of the 
modified system an,be written as: 

.C,(s) A2 1l" 
1(a) 8 h3 + ' (9) 

S 

We add an integrator on the fee&forward link with negative gain h.' to the 
modified system of fig. 2. The block diagram of the new modified system is 
shown in fig. 3. The-transfer function is: 

2() h 2-h'+ 1 (10) 

A2(s) hs v (10) 
A3+ 
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The rational transfer function becomes: 

0 2(s) [(h2- h2') +h4s + (h2-h2')h131 (11) 
R2(s) s(8 + h3h4) 

Fig. -3 

system to be Identifie
IUnknown 


+ + cn stwe adjust+ h+, 

S L ..... -. ...--


.,,Identilfying h,.
h3(s --- (2151 


ors frequency response in he 
low-frequency region ofthe Bode plot has the - I slope feature; however, whefi 
Equation (12) is a type 0system ifh2n. The 

we adjust h. such that h2-h2 = 0, then eqn. (11) changes to:' ' 

02(8) hA ( 2 

X 2(8) = +hah4. 

Equation (12) is a type 0 system again. Of course the frequency responsemi 

the low-frequency region of the Bode plot.'shows 0 slope peculiarity. Therefore 

by adjusting h2'we transfer the modified type isystem of eqn. (9) to a type 0 

system of eqn. (12). -'When the 0 slope appears in thie low-frquency region on 

a Bode plot, we have the correct h2 value. 

(3) Identifying h3 

From step 2 we obtain a correct h2 value, and the transfer function of fig. 3 
becomes: 

X(s) 1 
.Rh(s) h1+K ., (13) 

_. 8 

114 
8+11314' 

Equation (13) is a type 0 system again. Following step 1 we add a positive 

feedback gain to the system of fig. 3. The block diagram of the new modified 

system is shown in fig. 4. The transfer function is: 

0(s) = h4 - (14) 
B3(s) s+(h3-h3)h4( 

ORIGINAL PAGE IS
 
OF POOR QUALITY1
 



1032 L. S. Shiek et a!. 

Using the same procedure as step 1, we can identify the h, value correctly.
The final system can be written as: 

Ce(s) 

R3(8 -) 

h4 
. (15)


Fig. 4 ORIGINAL PAGE IS
j OF POOR QUALITY 

Unknown system to be Identified 

R34(S) -+i4. + C 3CS)+AuIZ~ 

Identifying h3. 
(4) Identifying h4 

Equation (15) is a type I system. Again, we add a feed-forward link with 
a negative gain h4' to the system- of fig. 4. The block diagram of the new 
modified system is shown in fig. 5. Then the corresponding transfer function 
becomes: 

4(8) = h4 - A4 ' (16) 
14(s) s (

In the low-frequency region, if we choose the correct A4' then the 0-slope
feature of frequency response will appear on the Bode plot.

Since for any value of h4-h4 ' :#O we have a straight line with slope -1
which passes through the crossover frequency at h4- A4'. For the case 

Fig. 5 

Unknown systm tobe Identified 

R4 (S) +Id iig
JE -f J+r. C4S 

4 

Identifying h,. 

jr2­
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h4 - h4' = 0 the amplitude of the frequency response on the Bode plot is,0 dB. 

Then the process of identification is completed. 
Finally, we. have all quotients h1, 2, h3 The required transferhA and h4. 

function is: 
O(s) (h2+h4) s + h2h3 h4 h5 

(---)82+ (h, h2 + h, A4 + ha 7&)8+ h, h2 hs h4'" 

Examle 1 

Consider the following transfer function which has a pair of complex poles 

to be identified: 
C(s) -2s+6 (18) 

N- = T2±48+ 6 

Assume eqn. (18) can be expanded into the following continued fraction 

expansion: 
C(s) = 1 (18 a)

1
B( ) A + h 1 

8h3+-
A4 
S 

where h are unknown quotients to be identified. 
Following step 1 and comparing the frequency response data of fig. 6 we 

Fig.6 

40 

20. 

20 

cl(J }r
 

0,.o1 O.1k 1.0 

Frequency response obtained from.step 1. 

-20 
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find that with a slight change of the exact A, value wc have a very clear eminent
 
difference of the amplitude 
on a Bode plot. In other words, on the Bode plot

if h1' is 0.9 or 1-1 
we have a type 0 system which shows the 0 slope character.
 
But if h1' = 1, then we have a frequency response data which shows - 1 slope

feature on thd Bode plot. 
 Of course the system has been changed to a type 1
 
system, therefore h, = 1 is the required value.
 

Following step 2 and comparing the frequency response data of Fig. 7 
we
 
can easily obtain t2. Since in low-frequency region if h2' is 0.9 or 1.1 the two
 
curves in fig. 7 almost coincide; however, if h2' is 1 then we obtain a type 0
 
system with its 0 slope character on a Bode plot. Therefore the required h2 is 1.
 

Using the same procedures as step 3 and comparing the frequency response
 
curves as shown in fig. 8 we 
can easily figure out h3 -2. 

Fig. 7 ORIGINAL PAGE 1_ 
C2 )OF POOR QUA 

dB
 

20 

0h_ 
 = Radans/se.
 

\,h 2 = 1.0 

-20
 

-40
 

0.01 0.1 1.0 

Frequency response obtained from step 2. 

Following step 4 and comparing the frequency response curves of fig. 9, we 
obtain the required h4 = -3. Based on fig. 9 we observe that when h4 = -3 
the magnitude in dB on a Bode plot is zero but if h4 -A 4'#O a straight line 
with slope - 1 passes through the crossover frequency at h - h4'. Then we 
have completed the identifying process. 
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- CPO 
Fig. 8 

so 

dD 

40 

20 

-20 

.-20 1 . 1.00.1a.01 
Frequency response obtained from step 3. -

The required unknown system is: 

C(s) 
- ( ) + 

1±1 

1 

8 1 
-2+­

-2s+6 (19) 
s2+4s-6( 

3. 	 Identification based on time-response data 

Suppose we have an unknown system which can be decomposed into 
continued fraction expansion as eqn. (5) and the bldck diagram is shown in 

fig. 1. The rational function corresponding to eqn. (5) is 

C(s) (h2+ h4)s + h hsA 4  (20) 
h (2B(s-) + (hIh2 + ht h4+ h' h4)s + hI h2 3 

Our problem is'to identify all these A's in the time domain. We have the 
following steps: 
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Fig. 9 
C4(3.) 

40 

20 

h4 = -3. 

-20 

0.01 0.1 1.0 

Frequency response obtained from step 4. 

(1) Identifying h1 
A unit step function is applied to the unknown system or eqn. (20). The 

output equation can be written as: 

I (h2 ±h4)8s+h 2 h3h4C(s) = (s2+(hihk+h, h4 + h, 74 ) s-+ 1 (20 a) 

Apply the final value theorem to eqn. (20 a) to find the steady-state value of 
C(t),., or:, 

C(t)'.s = lim S. C(s) 

=lims.(h 2 +h4)s+h 2 h3 h4 
s-e-o e[s 

2+(hih +hih4 +A3 h4)S+hlh2k3 h4] 
1 

(21) 

From eqn. (21) we find that the first feedback gain A1 can be obtained by 
taking the reciprocal value of the final values of the unit step response, and 
adding a positive feedback gain h, to the unknown system. The block diagram 
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is shown in fig. 2. The corresponding modified transfer function is: 

R1(8) = A 3 + (22)Ri(s) 8 13 

A4 
8
 

h2 h4
= S++ •
 

(2) Identifying h2 
Taking the unit impulse function as an input and applying it to this 

modified system which is shown in fig. 2 the resulting transfer function becomes: 

Ci(s) = kts 1 
A8+ 

8
 

or: 

A2 h4= .+ s+h 4 " (23) 

and the final value is measured.- It is evident that the second term in eqn. (23) 

cannot contribute to the final value of the impulse response of eqn. (23). Only 
the first term decides the final value of the response. From the final value, 
we obtain the h.value. We then add an integrator with negative gain h2 on 
the feed forward link as shown in fig. 3. The resulting transfer function becomes: 

Q (o) =_ 1 

-R2(s) h1 

h 4 
8
 

or: 

-h 4=s+hsh4" (24) 

(3) Identifying h3 
A unit step input is applied to the modified,system which is shown in fig. 3 

or the corresponding eqn. (24) and the final value is measured. We then have: 

F4rom the final value, we calculate its reciprocal value and get hA. Again, 
following step 2, a positive feedback gain 7A is adde& to the system of fig. 3. 
The corresponding new system is shown in fig. 4 and the resulting transfer 
function is: 

C(s) h4 (25) 
R3(8) S 
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(4) Identifying h4 
Following step 2, applying unit impulse function to the modified system of 

fig. 4, the final value is the required h4. Again, adding an integrator with 
negative gain A4 to the system we will, at last, obtain a horizontal line only.

All h. are determined. After substituting these values into eqn. (20) we get
the desired transfer function of the unknown system. 

Examle 2 
Consider the same example as shown in example 1. Rewrite eqns. (18): 

C(s) -2s+6 
= s2 + 4+ 6 (26) 

(26 a)
17+A 

8 1 

8 

Assume that eqn. (26) is the unknown system to be identified. Following 
steps 1, 2, 3 and 4 we have the time response data shown in fig. 10. From the 
final valu6 we can easily obtain the required unknown quotients of hi ='1, 
h2 - 1, hA3 -2, h4 -3. 

Fig. 10 

tto 

-3.0 

-It 

-2.0 -


-3.0 

S pte 14h
Ti m e 

Time responses obtained from steps 1-4. 
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Substituting all of these h values inte eqn. (26 b)we have: 

C(s) 	 1 

1 7 1 (27) 
-2+ 

-3
 

or: 
-2s8+ 6 	 (28) 

s+4s+6 

4. 	 Discussion 
So far the examples we have discussed are only the second-order system 

with four imknown quotients; however, we can apply the same procedures 

for high-order systems. Theoretically, we can find all the h values of an 

unknown system. After all b.factors have been found a method (Chen and 

Shieh 1969) of continued fraction inversion'can be used to convert the continued 
fraction into a rational function. 

To illustrate the above processes in a convenient way the response data, in 

the frequency and in the time domain of the above two examples, are obtained 
by calculations from the digital computer. Several assumptions were made to 

get the exact solution; for instance, in example 2, we have assumed that we 

can set up an ideal unit step function and unit impulse function as inputs and 

also that we should have prior knowledge that the linear system is constant 
coefficient and stable. 

5. 	 Conclusion 
Based on the second Cauer form continued fraction expansion, two methods 

for identifying a transfer function are discussed. No prior knowledge of the 
order of the numerator and- denominator is necessary. No complex pole 
problem is involved., It evaluates the parameters of the system from the 
frequency response data as well as that of time. Integrators are mainly used 
instead of differentiators. Due to the fact that the most important quotients 
can be identified first; these methods give us a satisfactory accuracy. 
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(A) 	Project Title: Analysis and Design of Multivariable Systems
 

via the Krylov Transformation
 

(B) 	Project Abstract:
 

The analysis and design of automatic control systems
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The determination of transfer function coefficients of a
On Identifying Transfer linear system from the system impulse response was 

shown by Kekre [1]. Bellman, Kagiwada and Kalaba [2]
Functions and State applied a method ofLegendre-Gauss quadrature approx­

imation to identify linear systems from observed samplesEquations for Linear the input andoutput. Later, Cook, Denman, and Carr [3] 
proposed an alternate method by usingLaguerre-Gauss

Systems quadrature approximation for the same problem. These 
methods lead one to the idea that the Laplace transform 

L.S.SHIEH, Member, IEEE 	 is applicable not only to certain classes of explicit time 

C. .CHEN, Senior Member, IEEE 	 functions, but also to sampled time response data which 
C.J. HUANG are obtained from Laplace transformable implicit time 
University of Houston functions. This paper proposes two methods: one for 
Houston, Tex. 77004 identifying transfer functions in "s" from the input­

output time response data, the other for identifying state 
equations in the time domain from the zero input time 
response data. 

Abstract 
I1.Identifying Transfer Functions
 

Two methods are established for identifying constant- from Time Response Data
 
C2coefficient C';-t pe noise-free linear systems if the time Consider a constant-coefficient, -type noise-free 

response data of the input-outputor of all states are known, linear system whose transfer function is 
2n response data are required to identifyan nth-order trans­
fer function or state equation for an unknown linear sys-	 bsn + b2s-2 + + %- n­tem. The order of the unknown system can be identified by X(s) = s-I-a l s-.'-+as2

2+ -+ ab (1) 

checking a sequence of determinants. The Z transform and
 
its inversion are mainly used. An alternate way to represent (1)is
 

x" + aIx" ' + a2x' 2 + -.+ ax=0 (2) 

with a set of initial conditions 

x(0)
 

x'(O) 

(3) 

x"- (0)3 

where a,b,, i - 1,2, ,nare constants. 
Differentiate (2) n - I times and the resulting equa­

tions become 

n­x"''+ axn+ a 2 x ' +"+ anx'=0 

X.+2 _1_atXn+ 1 + a2xn + .. + anxe = 0 

Manuscript received July 28, 1970; Released for publication June 15, 	 ORIGINAL PAGE-IS 
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Rearrange (2)and (4)into a matrix form: 

[x] = (- 1) [X1] [a] (5) 

where 

' 

" " 

x"+ 1 

[x]=I 

"jlincar 

x2n- t 

and 

at 

a2 

f'a] = •known 

S. 

aj 

x "- I x" 2 x'x 

x" x= 

(6)[x]= 

x2n-
2 x 

2 n-3 ... xne- I 

Both sides of (5)are premultiplied by the inverse matrix 
[X] of(6); then the n x I constant vector [a] can be eval-
uated as follows: 

2b2 

a, 
an 

X I .. X'X -1 xX"-2 * 

... XthatXn n- Xff' 

(- 1) 

-
Lx 2,-2 x 2n-3 . J L"-x n 1I 

(7) 

Iateeemn and [x] in (7)at specific time are 
known, then the denominator coefficient of a transfer 
function can be immediately obtained. 

The order ofthe unknown system can be determined by 
checking the determinants of patitioned matrices from 
[X] in (6); in other words, j x j,j = 2, 3, ..., n square 

matrices can be sequently partitioned from [X] by taking 
from the upper right-hand corner of [X] in (6). If one of 
thesej x j square matrices is the largest matrix such that 

its determinant is nonzero, then the order of this un­
system isj. This is because ajth-order differential 

equation withj terms' unknown coefficients requires only 
independent equations. 

Stanley [4] linked the relationship between both coeffi­
dents of the denominator and numerator of a transfer 

function with a set of initial conditions. The relation is 

1 0 ... 0- x(0)bl 

b I I .. 0 x'(0) 

a2 a, 1"O . (8) 

J L -I ... a1 1 x-(O) 

We expand (8)and rearrange it into the following form: 

bi :x(O) 0 0 1 

x'(0) x(0) ""0 a, 

(9) 

... 0.1-1.Lb. j Lx"- '(0) x'(0)x(0)J 

Substituting (7)into (9), we obtain the complete transfer 
function. 

In the above description an assumption has been made 
we can differentiate the given response curve 2n - 1 

times such that 2n values at a specific time. can be ob­
tained. By using these values we can formulate (7) and (9); 
then the required transfer function can be constructed. 
However, any numerical differentiation will generate 
errors, and the result will be inaccurate. In other words, if 
we can obtain all the information from this given re­
sponse curve without any numerical modification, we 

will get the correct solutions. Thd Z transform and its 
inversion are used to achieve this goal. 
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-Consider a response curve x(t)'is given; a sample fune- Applying the E operator n 1times to (14), we have 
tion with sampling period T is added to the response 
curve. The sampled function x(t) can be written as'x*(t). x(t + n + 1T) + d~x(t + nT) + d2x(t + n - 1T) 
Then, 

- T)
x(0)(t) + x(T)6(t=x*(t) 

+ x(2T)6 (t - 2T)+ ". (10) x(t +n + 2T) + dx(t + n + IT) + ,x(t + T) 

+.+ e~x(t + 27')
Performing the Laplace transform on (10), we have 

X*(s) = x(O)e* + x(T)e- T + x(2T)e- 2 7s + ". x(t + 2n - 1T) + dlx(i + 2n - 2T) 
(10a) 

+ d2x(t + 2n - 3T) 

Following the definition of the Z transform by letting 
+1..+dx(t+n- 1T)=0. (151 

rs = 1 Inz or e = z, (10b) We then rearrange (13) and (15) into a matrix form, and 
T set t = 0, which yields 

and substituting(10b) into (10a), we have di 

X*Q Inz) = X(z) = x(O)z° + x(T)z- 1 d2 

- (-1) 

- 2 (" - 1) ++ x(2T)z + + x(n - 'T)z- (l1) 

d. 
Equation (11) can.be considered as the result of the long
 
division of two polynomials, or
 

--z(elze + e2Z 2 + ... + e,() 
-"X(z) = z" + dlz"-_ + d2 z 2 ± + d (2 

x(n - T) . x(n-2T.)_ x(T). x(0) 

where di and-ei, i = 1,2, -- , n are unknown constants to 

bedetermined. Equation (12) can be represented by a dif- x(nT) x(n - IT) ...x(2T) x(T) 

ference equation as follows: 

x(t + nT),.+ d'x(t + n - IT) + d 2x(t + n - 2T) 

+ + dx(t) = 0 (13) 

with a set of discrete points 
x(2n 2T) x(2n- 3T) "" x(nT) x(n -I T 

x (n T).:O) 

x(T) x(n + 17) 

(14) 

x(2n -1 T) 

(16)x(n--1T) 
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Thecompact form will,read 

[d] = (-) [X]-' [x.] (17) 

where . 
[Xz] ORIGINAL PAGE IS 

OF po10% QU AL M' 
x(T) x(0)

IT) .:x(2T)x(n -

x(nT) x(3T) x(2T) x(T) 

x(4T) x(3T) x(2T) . - - - -X(s) 

x(2n - 2T) (n± 1T) x(nT) x(n - IT 

The coefficients of the numerator of(12)can be obtained 

by the Chen and Shieh [5] algorithm, or 

• 

el x(O) 0 "" 0 1 

e. x(T) X(0) .. 

* x(2T) x(T) .... 

e,, x(n - IT) x(T) x(O) d,_ 

(19)' 

Again, the order of this unknown system can be obtained 
by checking the. determinants of the square matrices 

which are taken from the upper right-hand corner of [X] 
of (18). Finally, we have the required pulse transfer func-
tion 

- - 2z(elz _ +re 2 + + e.) (20) 

X(z) - z + dlz2 ±-d2 z_ 2 + ...+ d." 

Since we have prior knowledge that the system is a C2,-
type noise-free system, the required transfer function in 
"s" can be obtained by the Z transform andits inverse 
transform [6]. One of the most commonly used transform 
pairs is 

Ciz Cc (21)z- A,' 
s-


Taking the partial fraction expansion of(20)yields
C z C_z Cflz (22), 

+ +
X(z) = A + z - 2 z 2 

where the A,, i= 1,2.:".n are the eigenvalues of the char­
acteristic equation of (20), and Ci are the residues corres­
ponding to poles A,. Apply the transform pair of (21) to 
(22); the required transfer function then is 

1 + + 4
1 +-

;3 In2l
- 11 s- n)nS s - 7-InA, 

bjs" 1 +,b 2 s"-' + - + b '23' 
n - a2

sn - 2 + " n ""-J+ a.
a Is + s 

Example 1 

A sin wLt function with o = 1 is applied as an input to 
an unknown:system. The time response data with sam­
pling period T =-i/-2-are recorded as follows:* 

x(t =16(f) + 05 -- + 16(t - 7) 

= ) 

±d26( 37r) + 16(t -274±+06 1 - 5n 

+1h8(t-3i)+:". (24) 

The transfer function in "s" of this unknown system is 
required. 

The followiig steps are followed. 
1)Write the discrete equation for (24), 

-X(z) = x(O)z0 + x(T)z ' + x(2T)z - 2 

3 +. + 3c(3T)z ­

= lz +Oz-' + Iz- 2 + 2z-3 

- 4
+ 1z + 0z- + _ (25) 

where the sampling period T= 7r/2. 
2) Construct the [Xj matrix and check the order of 

this transfer function. The [Xj matrix is 

x(3T) x(2T) x(T) x(O) 

x(4T), x(3T) x(2T) x(T) 

[X] = x(5T) x(4T) x(3T). x(2T) (26) 
--........ - ---


x(6T) x(5T) x(4T) x(3T, 
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Checking the determinants ofj x jj = 2, 3, .. , n square 4) Transform (27) from the z plane to the s plane by 
matrices which are taken from the upper right-hand cor- performing (21). The required output function is 
ner of [X,] of (26), ifj = 2, 1 	 $2 

det x(2T) x(T) -- : 	 = 2 _S+ 1) + 1 (28)det ,X(s) 	 s(s (8 

and ifj= 3, 
(i(s	 2 + 1), the required transfer function for this un­

Jx(3T)det x(2T) x(T) de 2 1 0 0. known system is 

x(4T) x(3T) x(2T)j dt[ 2 k 

Whenj is higher than 3,and all the determinants obtained X(s) = S (29)
 
from the upper right-hand corner of [X.] in (26) are zero,
 
we conclude that the order of this transfer function is 3or
 
n =3.
 

3) Substitute 2n.discrete values of x*(t) into (16) and III. Identifying Zero-Input State Equations
 
(19),giving from Time Response Data.
 

J 
l F 2T x() I The same methods mentioned above can be extended 

to a system whose zero input response data, at each state, 
d2 = (- 1) x(3T) x(2T) x(r) is known. By observing the time response data, the state 

F, 
equation in the time domain can be identified.
 

d3 lx(4T) x(3T) x(2T) Considerasystemwhosestateequationis
 

[i2 = [A] [x] 	 (30) 

[x(3T)] where 

[x(T)J 	 X, 

[i] = , [-x]l= 

1 0 21]-• 	 • 

=(-1) 2 1I= [ 	 • 
•1 2 1 	 . ,x 

and 	 and

1 [4~0) 0~[ 	 E1 
e2 = 	 x(T) x(0) 0 aI a,, a12 .. ai,,
 

x(2T) x(T) x(0) 
 a2 J2, 	 " 2,,022 

S1 0 l= E 
10 	 1 1 

The pulse-output function is 	 a., a.2 - a. 

z(ez)2 + e2z + e3) z(z2 z + 2)(I	 ­
X(z) - z + de,z2+ 2 z+ d3 = z -z2 + z - ' Differentiate (30) n - 1times and rearrangeintoamatrix 

(27) form. We then have 
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aa O'" X ± xl(k + iT) din" x1(kT)12  d1l d12 

a 2 1 a22 a 2. X2 ;2 .. 42- 1 

x2(k+ iT) d21 122" d 2 . x 2(kT) 

x (k + IT) d.l d.2 ...
d . x (kT)
(35)91 XI " Xl"* 

:tzX2" X2" Apply the E operator on (35) n - Itimes, then 

2T) di .= (32) xl(k + d11 d12  ... 

x2(k + 2T) d21 d22  - d2. 
n
 

LnX.' X 

The unknown coefficient mditrix [A] can be obtained by 
rearranging (32), giving 

all ...ala12  . 

Oil a2 xn(k + 2T) dj d.2 ---d. 

x1 (k + iT) 

x2(k + IT) 

an an2 a .
 

-

il x " xl" OX r t "'"xi 1 -I 

.t2 X2" " ±2 X"-2X2 X2 

(33) x,(k + IT) 

x; x. '. x - j1 x (k+.nT)" dil d12 III.U, x" ±n 

Irallx,-valuesi= I,...,n,j = 0,1,-..,ncanbeevaluated, x 2(k + nT) d21 d22 ...d2n 
then the unknown constant coefficient matrix [A] can be 
obtained. But we are interested in using the given infor­
mation xI(t), i = 1,..., n only. Again, the Z transform and 
its inversetransform [6] can be applied. 

Based on the given xf(t), i = 1, ..,n curves we can ex­
press this system by the following discrete state equation: 

x(k + nT) d., d.2 . d,.,[x(k + IT)] = [D] [x(kT)] (34) 

or 
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xj(k + n - IT)' Rewrite(34): 

x2 (k + n - IT) 

(36) 

x,(k + n -

Rearranging(35)and(36), wehave 

1T) 

d. 1 d.2 ... d... 

x1 (k + I1T) xi( 2T) .. xldk + nT) 

x 2(k + IT) x 2 (k + 2T) ...x2(k + nT) 

x.(k + 1iT)l x.(k + 2T) ... x.(k + n T) 
X1 (k T) xl(k + IT) xlk +n-1T) 

x2(kT) X2(k ± IT) .. x 2(k ± n - IT) 

x,(kT) x,(k + iT) . x(k + n iT) 
(37-) 

[DJ can be obtained by substituting the sampled values 

ofXi*(t),i = 1,",n into(37). 

SHIEH ETAL : IDENTIFYING LINEAR SYSTEMS 

[x(k + IT)] = [D] [x(kT]. (38) 

This time we take the Ztransform on (38), which yields 
z[ X(z) - x(O)] = [D] [X(z)] 

or 

[X(z)] = z[zI ± D]-' [x(O)]. (39) 

Evaluating z[zI - D]-', the resulting matrix can be 

shown as follows: 
-z[zI - D] ' 

~ " b 

bz, Iz -_, b2,i b, 

-z (40) 

-bnij .. "Z _ 

where 2, is an eigenvalue of JzI - DI, which can be dis­
tinct or repeated. bij located at the ith row and Ith column 
of the [zI - D-' matrix is aresidue corresponding to 

pole 2 j. Again, using (21), the resulting matrix yields 

XI(s)I 
X2(S) 

( __ _ _ _ .. bI1.j 

S - -jn.Z, S - . 

_b2 1i112 

j=I s - -jfljj S - YA 

t b1 , -b ,__ 
sjn-nj jl S ­

xz(O)] 
1x2()I
j. . (41) 

Lx.(o)J 

- 817 



The compact form of(41) is 	 The required state equation is 

[X(s)] = [sI - A]-'[x(0)] (42) 	 [i] = [A]I[x]. (49) 

where [A]. is the required system constant matrix such 
that 
 Example 2 ORIGINAL PAGE IS 

[i [A] [4] (43) OF POOR QUALIYf
A set of initial conditions 

Comparing (41) with (42), the transition matrix [D(l)] of. 	 x(0) 

(43) can be written as[X 	 (j1
X2(0)


[D(t)] = 	L'[sl A]-' 
is added to an unknown system to generate the zero input 

b jje(/ " l2' b--je recorde abfollowsresponse.The response data with sarmipling period Tis
'


j = i =1 recorded as follows: 

b2 VTI-j 2,e( n~~ jx,(T)] 	
[.= 3e - T - 2e

-2T1	 
2(T) 

3e T + 4e 2 T 1E.x
3eT +4 41x(2T) 1 

1= 
3r-

(50) 
3e-2T -	 2 e-4T ] 

e( r x['2(2 T)
)rI j 	 .Jv )1 j

b l e{V 
i= The constant coefficient matrix [A] and the transition 

(4) 	matrix [0(t)] in (49) are required. 
First, follow (37) to obtain the [D]matrix,

The solution of(43) is 


e 3e3 e-T
-
 + 4 e3 ±42 T 
2 

[x! = [4(t)] [x(0)]. (45) [D 

3 T - 2 e-T 3e - 2e- 4 
From (43) and (45),we can easily find that 

- .	 " l 3e-T' + 4e"-r.T-I[A] =[(t][t) (46) 

I 3eT- 2e-2T 
At this point, we can make the following observation: 


The [A] matrix can be directly formulated from equation
 - 2T
- 2
 - 2e- T 
(40), by using the Z transform and its inverse transform 2e T - e-T 2 e 

(51)table [6], or by performing the transform pair 	 = 
-

. 
bz b 	 - r- + e - e- + 2e­

2
z - Aj Tlnt. (47) 

Then, following (40),
"
 

The required [A] matrix 

Sbj,11n2* bj~ b1 lnlj­

2b1 1%b	 2 ,InZ, T (2e- T - eT) _-2(e 2 -I e-f) 1-
T ~ 	 T L -2 e 

. -2 	 - eT e2 e 7 
[A] 


1 2 -22 

+


T b 	 -e-2T + z- e e-2 - ' 

j=1 	 j=z 
(48) 	 -2 - - - 2- -C IT +-t- T zIe - T2T+ z-"-e-Te--


(52)
Recall that Tis a sampling period. 
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The required [A] matrix can be obtained by using (46) [ 	 l(Ti 1.2415'T4or (48). The result is 	 'Tj 7.XI(T)] 5 7%5 

[A] 

[xI2T)1 2.275911ne27T 	 2'T 

X2(2T)] 46.383JF21jei 	 tV2..1Y~~) 


--(e- +-Y (e- Y e-]in(e-2)+
and I-Il- 54Ixj(3T)1 [33092I 
(54 

3 -2 	 x(3) L35.183 

Following the procedures mentioned above, we obtain 

The state equation is the required state equation as follows: 

3 2.x,1 (53) -0.00087 0.99997691 x, 

'2 X - 106.53339 -6.669595 X2 (5 

By using (44)and (52), the transition matrix is 

The original generating equation is2ee-2e-2[-e-1 
- -u ++ 2e-tI_e e-Ot]21+ e-1 _ 2

IV.Discussion 


So far the methods we have discussed involve a mul­
tiple-valued logarithmic function. Unless the branch cut 
of this function can be determined, many solutions can be 
obtained. How to choose a suitable sampling period Tso 
that the principal values of this multiple-valued function 
can be used is a very complicated problem. In sampled 
data systems many people attacked this. problem; for 
example, Mitchell and McDaniel's [7] adaptive sampling 
technique and Taits [8] sampling criteria, etc. 

For the following numerical example, T= 0.02 is used. 
Given: 

x 
 ] . (54) 
x2(0) [ 66.7 

SHIEN ErAl.: IDENTIFYING LINEAR SYSTEMS 

=. 	 (6 

:1 6.67:x2 106.5 - X2 

Compared with (56), the answer is quite satisfactory. 

V. Conclusion 

Two methods, one for fitting transfer functions, the 
other for estimating state equations, are discussed 
through the use of the Z transform and its inversion. 
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A state space procedure for the formulation and solution of the mixed boundary value 
problems is established. It is a natural extension of the method used in the initial 
value problems ; however, certain special theorems and rules should be developed. 
The scope of the applications of the approach includes the beam, arch, axisymmetrical 
shell problems in structural analysis, boundary layer problems in fluid mechanics and 
eigenvalus problems for deformable bodius, etc. Many claasical methods in these 
fields developed by, for example, Holzer, Prohl, Alyklestad, Thomson, LoveMeissner, 
etc. can be either simplied or unified under new light shed by the state variable 
approach. A beam problem is included as an illustration. 

1. Introduction 

The state space formulation for a one-dimensional linear system can be
 
expressed as follows (Chen and Haas 1968) :
 

[i] = [A(x)][z] + [B(x)], (1) 

[Z(b)] =[k], (2)
 

where
 
[z] = state vector,
 

[A(x)] = property matrix of the system,
 
[B(x)] =input vector,
 

[kt] = state vector evaluated at the boundary. 

The solution of eqns. (1) and (2), when [B(x)] = 0, represents zero input res­

ponse, and-it is-given as follows:
 

E(x)1[#~(X) .. rn#ln(X)1 

or simply 

[z] = [0M][A, (3 a) 

where [(z)] is called the transition matrix and [c] is a vector denoting the n
 
arbitrary constants.
 

t Communicated by the Authors. 
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For [B(x)]:# [0], the response appears to be 
x 

[z(x)] = [#(x)][C] + [4(x)][#(r) 1 [B(r)] r (4)
0 

in which the last term is the matrix form of a convolution integral. 
For 

_[A(x)]= [A], (5) 

where [A] is a constant property matrix, we have the following relationship 

for [O(r)] 
[#(&)- = [#(_)]. 	 (6) 

Then (4) is rewritten as follows: 

fz(x) = [(x)][c] + [u(x)], 	 (7) 
where 

.[ux)] = [#(x)] S[()]-[B(r)]dr. 	 (8)
S0 

2. 	 Partition 
By partitioning eqn. (7), we obtain. 

0 *,... #1, r+1 .. #ifl 61 U, 

Zr --. orl#r, r+1 ... 0" - U" 

-.-	 + (9) 

zr~l4+1 1 	 .. OI#rr+n +i..	 r+i 1 .#+i r+1 

or briefly, we can write eqn. (9) as 

IL6;J~9;1(10)Z~ I ~2'2 

At the boundaries, eqn. (10) can be written as, for x=a 

[ i 	 (11).i=[:----I H +L--

and for x=P 

CI Ul' 
-

LDL 	 U2'1 

where ( )' and ( )f designate the value of the appropriate matrix or vector ( 
at x = a and x= f respectively. 
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Eliminating from eqns. (11) and (12), we obtain either 
-Zip[C.1 ~ 2 (I) 	 1 ORIGINAL PAGE IS 

Z~~fi+ I92 	 +)7p ( POOR QUAL IM 
or 

(14)
2 " 	AL"ZU22 Dt 	 + 

in which two of the matrices [Z{], [Z4'], [Z 1P] and [Z/l] are prescribed. 

3. 	 Classification and solution 
Three cases in general can be classified. 

Case1. [Zi] and [Z4] are known or [Z 1f] and [Z 2P] are given, the problem 
is degenerated to an initial value problem. 

Case 1I. [Zi] and [Z2 P] are known; a cantilever beam is a typical 

example. Then-[Z1"] is interpretated as the displacement and slope of the beam 
at fixed end a and [Z 2 9] is the bending moment and shear at free end fi. 

Case 11. [Z 1 ] and [Z1 P] are known. A simply supported beam is a 
typical example. We can consider that [Z1"] and [Zif] are the displacement 

and bending moment of the.beam at a and fg respectively. Both Case II and 

Case III are classified as the mixed boundary value problems. 
Because .Case I is the initial value problem, the solution is readily seen as 

1F ]r z-1 = - .- -	 -- (15) 

2 222J L211 (D22J (D12i LK 2-U 2 . LU 
K
 

[1], the given boundary conditions.where [ k]-

Then we consider Case I.
 
When [Z 1'] and [Z2P] are given and equal to [K] and [IK] respectively, the
 

corresponding solution can be derived from (10)-(13). The result is 

T 2 .Wl1ijfii 	 -1][ A-U" 

-Z 0211422 0 00 2-2
0 	° 

- + [ ---.], (16) 
LT1"iF22 K27 U2j U 2 ] 

+ - -- - 1)... 
where the [TF] matrix is defined as 'follows: 

oil0 1 ['lI~2i\ 	 'F12Lu.. I- 1 (17)
]IJ 1 

3 ICON. 
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Case III is with the following conditions. 

[Z] = [K.] and [Zf] = [K21] which are known. 

Matrices [Z 2"] and [Z 24] should be evaluated first. This can be done by the
 
combination of (11), (12) and [K1] and [K 2]. We have
ir ,- I, 

. ...... ......----.-.--.-.---.-8I
 

0- Us<
a 

0- U26 

Substituting (18) into (11) and (12) we find C, and C2 and then use (10) to
 
obtain the solution.
 

4. Illustrative example 
The state equation, eqn. (1), for a cantilever beam subjected to a lateral
 

pressure loading, p(x), is as follows:
 

[ ]= [A][z] + [b], (1)
 
where
 

[, [A]- o[ El [b] 
-100 0 1z3Z4 V0 0 L((1 

and El denotes the bending stiffness. The state variable W, 0, .I, V are 
displacement, slope, bending moment and shear respectively (Timoshenko and 
MacQullough 1940). 

Taking the Laplace transform, we obtain, 

(20)-8[Z(s)]([] -[A]) ([0] [B(8)])
or 

g 3 82 s 

:[Z(s08 ([] +[B(s)]), (21) 

8 30 8 2 

0 0 83 

The inverse Laplace transform of eqn. (21) yields the following: 

[z(O)]= [C(x)][0] + [u(r)], (22) 
where 

'[u(x)=-0(x)] f14(r)]-[b(r)] dr (23). 
0 

/2, 
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1 X X3and 

lowl 01~ El X 2 

0 1 
-00 0 1_J
 

For constant [A] and uniform pressure p. eqn. (23) yields 

[u()] [k(x)] 6E.A 

2
 

The boundary conditions for a cantilever beam can be expressed as 

[z1(O)] [Ke]s[a], 
L22(O)J 

()] fLZ 

Thus [21K]=[U1 ="[U2 1] =[0], [W =P' 

-lare as follows:The submatrices-of '[(x)] 

['p22] = [ll = T[12] = .± xj '21] = 0], 

By eqns. (26), (27) and (28), the solution (eqn. (16)) yields 

L.. ..-.,22 f + 

tZ2 2-D U2 U2 

where X2 

2. 

3 1 
l [ X1 

[02 EX X2 D2iJ 1 

[U 2"]=P0 LI F 22AN{0 17l 

(24(24) 

OIG a PGE I 

o po=Ro(u5)
 

(26) 

(27) 

(28) 

(29) 

(30) 

31 
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Upon substitution we obtain 

F -12 x2 1X3 

z1z 

2 1z +XX 

-PO. +Pe I 

z - -l 
22 

Ix 2 

LZ4 	 I X 

which is the solution of a cantilever beam. 

5. 	 Conclusions 

In general, the mixed boundary value problems are less amenable to 
numerical computation. It is seen that our systematic procedure established 
as well as simple formulae derived make the modern powerful tool of engineering 
-digital computers-imore suitable for analysing this class of problems. 
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A 	new formulation of the Hermite criterion 

C. 	F: CHEN t 

The Routh algorithm is used to generate the parameters of the Hermit criterion. 
The new formulation is simpler than the original. The relationship amongthe Hermite, 
the symmetrical Hurwitz, the Kalman-Bertram, and the Routh critoria is naturally 
established. 

1. 	 Introduction 

The Hermite matrix (1854) is formulated in terms of the coefficients of a­
characteristic polynomial. The parameters of the form are determined by an 
algorithm which is not very convenient, and the matrix itself appears very 
complicated. 

Since Parks (1962) rediscovered Hermite's matrix and Ralston (1962) 
independently established the symmetrical Hurwitz criterion, the Hermite 
criterion has played an increasingly important role in system analysis. 
Recently, Jury and Anderson (1972) discussed the simplified stability criteria 
and Anderson (1972) also developed the reduced Hermite form. They, 
however, have not overcome the basic difficulty : the elements generated by 
the algorithm are too complicated for general use. 

This paper will give a new form and anew derivation of the Herinite criterion. 
The form is simple and the derivation is ffnified, 

2. 	 Canonical forms and canonical ransformations 

It is known that a general linear system 

*=Ax 	 (1) 

can be changed into a companion form by the use of Krylov's transformation 
(Gantmacher 1959) 

Kx=y (2) 

where K= q'A 	 (3) 

in which q' is any row vector such that K is not singular. The prime means 
transposition. We then have 

9- KAK-ly A ot" (4) 

(5)where a= 0 0 0 

L--an -4n-1 	 -a2 a,_ 

Received 30 April 1973.
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The characteristic equation can be directly obtained from (5) 

An+ a,- . +a,, A+a,= 0 (6) 

Based on (6) we now write the Routh array 

[ a2 a 4 . c 612 O1 
a, 622 C23a3 5 621  

ai 2 -a 313 

a, (7) 

on, I 

a. r,+,, . 

The right-hand side of the verticle line of (7) is the corresponding double 
script notation of the Routh array. By the use of the convenient notation the 
Routh algorithm (Chen and Haas 1968) is simply as follows: 

cjAA =1-2,k+1 -C-2, 1cj-1, k+1 (7a)
0]-1,1
 

Then we perform another linear transform by letting 

Ly=z (R) 
where 

1 0 .................................. 0 0
 

0 

3,,
 

L= rn-3,sa 1 0 0 o (9) 

o-0 1 0 0 

0 0 1 0 
631 

. . 6. 0 0 1 
621 021 

This transformation was found hy CThen and CThu (1966). For convenience, we
IC
call (9) the Chen-Ohu transformation. Then the system becomes 

i=LaL-'z (10) 
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.01 

! o 

631 (1)where p _ 

641 0 1 

r26
 

C31 C21 

611 ol 

Form (10) is the Schwarz form (1956). The fact that its elements in (11) 

are in terms of the Routh elements is due to Chen and Chu (1966). Schwarz 
originally used computer techniques to search this matrix. Bellman (1970), 
Kalman (1960) and others followed him. 

We perform one more transformation, letting 

Mz=w (12) 

(cllc2l) ­

where M= (13) 
(c 141) 

where p is the row number index of M. 

Then we have 
S= MPM-lw (14) 
Ayw 

21 C/C31°1611 

011cV V91 I 641 

where y C1(1) 

0 . i-.. 
log 6.1+l1'" n~ 1 1 ' 
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Form (15) was first found by Puri and Weygandt (1963) and M was dis­
covered by Power (1969). The fact that all the elements are in terms of the 
Routh array is:due to the author. 

Let us summarize the transformations as follows,: 	 ORIGINAL PAGE IS 
*=yw 	 (Puri-Weygandt coordinates) OF POOR QUALITY 
±= M-1yMz (Schwarz cobrdinates)
S=L-K-1yMLy (phase variable coordinates) 
SK-1L-1M-yMLKx (general coordinates) 	 (16) 

where 
K is the Kyrlov transformation 
L is the Chen-Chu transformation 
M 	is the Power transformation 

It. was very unfortunate that Pur and Weygandt formulated (ML)- 1 as one
 
matrix and that matrix is in terms of the characteristic coefficients; therefore
 
they made the formulation very complicated : Butchart (1965), on the other
 
hand, formed (L-1) first, and the elements are expressed by Hurwitz determi­
nants ; he, therefore, made the transformation unnecessarily complex. If we
 
form M and L first and write their terms by the Routh array parameters as
 
we did,, the whole process is much simplified:
 

3. 	 Liapunov functions 
In the Puri-Weygandt coordinates, we .ynthesize a Liapunov function 

vW =w'Iw 	 (17) 

where I is the identity matrix. 
In the Schwarz coordinates, the function is 

v_-z'M'IMz 	 (18) 

Az'Gz 

C . 1(,4-, 
where G=M'IM= C31C41 (19) 

c21631 - j 
(19) was discovered by Kalman and Bertramt; Chen and Chu (1966) express 
the elements by the Routh array parameters while Kalman and Bertram 
(1960) used Schwarz's elements. 

In the phase variable-coordinates, the same function becomes 

vy = y'L'M'IMLy 

=y'Hy. 	 (20) 
where H=L'M'IML 	 (21) 

t Kalman and Bertram (1960) used Schwarz parameters to form (19) ; their 
matrix is somewhat complicated than the present form. For details, see Chen and 
Chu (1966). 
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The elements of the matrix H are in terms of the Routh parameters; 
when we convert them into characteristic coefficients, the matrix H is identical 
with the Hermite criterion. Therefore, Hermite's criterion can be considered' 
as a Liapunov function' in the phase variable coordinate. Parks recognized 
this fact and Anderson used this fact to prove the reduced Hermite criterion. 
However, each of them failed to express it by the Routh parameters; and 
therefore they kept the Hermite criterion as complicated as it was. Now, 
not.only-do -we have-a simpler-form but also we see the links among Routh's, 
Kalman and Bertram's and Hermite's criteria. 

4. 	 A new form of Hermite criterion 
For illustration, let us consider a fourth-order system 

2 [.0 0 1 0 Y2 
4] L- 4 -a. - a2 - 1a Y4 

Performing the-Chen-Ohu transformation - ­

Ly-z 

where 

1 0 0 0 

0 1 0 0 

L= 032 0 1 0 	 (23) 

0 L22 0 1 
021 

in which ca- are evaluated from the Routh array, or ' 

i a 2- a 4 r 612 is 

C21 022a1 a 3 

aja2- a3 

-a	 631 C321 a4 

(4a2-a3 a - . ) 	 (24)" 

a l a2 - a
 

a,
 

a4 	 .051. 

1.4o 
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The Liapunov function in the Schwarz coordinates is 

VY = y'L'M'IMLy 

= y'L'GLy 

1l 0 -0 0 041051 	 1 0 0 0
C31 

0 1 0 22 	 0 1 0 
21 31 41 

=y' 	 y (25) 

0 0 1 0 	 C21031 -L3 0 1 0 

0 0 0 1 011 21 0 	 -- 2 0 1 
021 j 

- 041051+ 0 0 032621 0
 
C31C3022011
*
 

=YI 0* C31641+ - C21 0 0
22ell y (25 a)

021 

021C32 0 C21631 0 

0 C11622 0 011021 

The matrix (25 a) is the new Hermitc. form for the fourth-order system which 
is neater than the original Hermite fornultion. Insteiud of using the 
coefficients a, of the characteristic equation, we describe all the elements in 
terms of the Routh parameters. However, the expansion 'form of (25 a) 
that is (25) is even simpler; the core matrix appears as a combination of three 
matrices. We, therefore, claim that the product of three matrices in (25) is 
a new form of Hermite's criterion. From this special form, we generalize to 
the Hermite criterion for the nth-order systenm as follows 

1 0 n- 1,2 C 1
 
en-l,1
 

1 0 	 0 1 

vy=y, 022 	 n,2 1 y (26) 

C21 	 an- " 

02163 102..1.. 	 ­

l0021 	 *0 *1 
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Examining (26) we see that it is a product of three simple matrices : namely, 
the transpose of the Chen-Chu matrix ; the modified Kalman-Bertram matrix; 
and the Chen-Chu matrix. 

5. Derivatives of Liapunov functions 

Assurhe 	that for the system 
*- yw (14) 

we have a Liapunov function 

v,-=w'Iw 	 (17) 

Substituting (15) into the derivative function of (17) gives 

2- 0 o 0. 
ell
 

0 0 0 .0 

W 0 . 0 w 	 (27) 

0 00 0 

This semidefinite function can be described in the Schwarz coordinates 

i = z'M'(y + yT )Mz 

=z' 0 0 	 z (28).00 00 -22 

Function (27) was used by Purl aid Weygandt, while function (28) Wvsfre­
quently applied by Kalman and Bertram and Parks., Of course, they used 
Schwarz's elements to express them. 

In the phase variable coordinate, the derivative of the Liapunov function 
is easily found " 

0 0 0 0 

0 0 -20211 

-2C22' OY0 -222C21 Y 	 (29) 

0 222021 0 - 2C212. 

Inspecting either (27), (28) or (29) we see that they are.always negative semi­
defined if 21 is not zero. The definition of c21 is a, which is indeed a positive 
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real number. Therefore, when we use Hermite's criterion, as a Liapunov 
function in (29), we never worry about the definiteness of its derivative. It 
is also evident that the central matrix of (26) which is Kalman and Bertram's 
matrix is positive definite, if and only if xe, are all positive. Obviously, this 
statement is simply the Routh criterion. 

6.' Conclusions 
For Hermite's criterion of stability, we derived a new form (25) which is 

less complicated than its original formulation. The deriVation is simple and 
new. The relationship among Hermite's criterion, Kalman and Bertram's 
criterion and the Routh criterion is naturally shown by the use of canonical 
forms of companion, Sehwarz, and -Puri and Weygandt through the applica­
tidns of canonical transformations developed by Krylov, Chen and Chu, and 
Power. It should be emphasized that this new development is based on the 
repeated applications of Routh's elements instead of using characteristic 
coefficients or Hurwitz determinants. 
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The analytic methods for evaluating the time response of irrational transfer functions 
are incomplete. The graphical approaches for solving the problem are inaccurate. 
This paper attempts to attack the general inverse Laplace transform problem under 
the new -light shed by the Fast Fourier transform. An algorithm for the inverse 
Laplace transform is developed. Several typical but difficult cases are studied and 
the results are extraordinarily satisfactory. 

1. 	 Introduction 
A large number of circuits, processes or systems have distributed para­

meters and/or delay elements. (1) Thermal processes, (2) hole' diffusion of 
transistors, (3) electromagnetic devices, and (4) transmission lines are typical 
e.\amplcs.(Truxal 1055, Campbell .1958, and Bohn 1963). The -nathemntical 
models ini the Laplace- transform domain for these elements contain either 
the operators s junder the radical sign or other irrational or transcendental 
functions. To find the inverse Laplace transforms of these functions is an 
extremely important topic in analysis and a very difficult problem in general. 

For solving the problem, the methods so far developed can be summarized 
into.three schools: 

(1) 	Approximation methods 
Let a rational transfer function approximate an irrational or transcendental 

transfer function. The main contributions include Pade's approximation 
developed by Stewart (1960), Carlson and Haljak's approach (Carlson nd 
Haljak 1964) to use a regular Newton's process generating rational functions, 
Lerner's work (Lerner 1965) on potential analogue approximation, and Chen 
and Slieh's exhaustively calculating the- approximate high order rational 
transfer functions (Ohen and Shich 1967) for typical irrational and transcen­
dental functions by using a digital computer approach. 

(2) Analytic methods 
Among the available analytic methods, the 'most notable one is developed 

byx Netushil bnd Kilomeitseva (1965). They use special functions to make the 
transform teble-serving the particular purpose. 

(3) 	 Graphical.methods 
Convert the irrational transfer function in the Laplace domain 'into the 

frequency domain, then use Laguerre polynomials or Chbbyshev Polynomials 

t Communicated by Professor C F. Chen.
: Dr. R. F. Cli is now with the International Communications Corporation,

Miami, Florida. 
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to calculate the inverse function numerically. -Chen's Inverse Laplace trans­

form formula in terms of Laguerre polynomials is a typical method (Chen 

1966) in this area. 
The approximation approaches in the first school are lacking accuracy, 

while the analytic method is not complete. (For example, Kilomeitseva and 
The third school is a practicalNetushil cannot treat the repeated root case.) 

method. However, if we convert it into a computer-aided approach, we wiII 

face either speed or storage problems. 
This paper solves the problem by using the Fast Fourier transformn 

techniques. 

2. 	 Difficulties in analytic approach 

lomeitseva and Netushil's (1965) theory can be summarized below in 

order 	to examine the difficulties involved. 
An irrational transfer function is usually given as follows 

a0sm + alsm-I +""+ a,,(2
W(e) =bVs,2n+1 + bl s n+... b2 .+1	 ( 

Let v's=z; eqn. (1) becomes d ratidnal transfer-function of z; or 

2W(Z): 	 a= (m-l)+ a,, (2)a2m~a z +. 
bzn++ bZ2+ --±... + b2'nm1 


or simplify. 

-i
b2 +
y, )
i=0
 
21I+1() 

i=O 

This rational fraction, may be expanded into partial fractions 

2n+(4)w)= z --. 	 ___} 

=1Z-Zi
 

If there 'isno repeated root in the characteristic equation of (2), the inverse 

Laplace transform of the typical term. ,(4)' with -aunit step as input can be 
derived 'by using the well known pair: 

.1(t) 	 F(s)
b 2-	 a2 ..2t ).. 


exp (a2t)[b - a erf (aVt)) - b exp:(b t) erfe (b/t)(s-a 2 )(b - ) 

and letting a = 0 to get the reduced form 

b-b exp (b2 ) erfe (bl/t) s(Vs+b 	 (5) 

This 	inverse formula finally can be written as follows: 

L- + ='[] -exp (a2t) erfc (aVt). (6 

18 	 +OR a Qa 
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If complex roots are involved,, pair (5) cannot be directly applied. 
Kilomeitseva 'and Netushil's approach is to reform the pair into a new 
function. 

For example, assume the complex conjugato roots are zk. and zA 1. 

A, .- Ak 1 + /) (7) 
Z-Zk(z (zzkl) (z-zk)(z--k " 

The inverse Laplace transform will be 

L-1 Wi(z)= B I +D [Arn(PAt, 0)] (8) 

where p and 0 are defined by zk =p exp (j), and m and mi are-given by veryo 


special graphical forms in terms of very complicated special functions and 
their approximations. 

The difficulties involved in their approach are as follows: 
(1) If there is a repeated root appearing in the transfer function, no 

corresponding inverse formula is available. 
(2) 11 there is a pair of complex roots involved, the inverse formula cannot 

be evaluated without a particular table or curves. 
(3) Even all roots are real ; because the inverse formula is not in terms of 

elementary functions, it does not reveal too much information without plotting 
the corresponding curves again. 

3. Difficulties in graphical methods 

We start with a general transfer function which could involve irrational 
elements and/or 'transcendental elements. 

y(s, Vs,ex 1 (- Ts)). (9) 

The stability of the system is examined first. It can be easily done by one 
of the existing methods ; for example, Brim's &4proach.After knowing the 
system is asymptotically stable, we can substitute 's ' by 'jw'. (We note 
that when the system is not asymptotically stable, we can make it to be 
asymptotically stable by choosing a suitable positive number c and substituting 
swith a + r, and time the final result by exp (ct).) 

Then we have 
Y[jw, Vjw,exp (- Tw)]: (10) 

The magnitude and phase versus frequency curves can be drawn.. Based 
on those curves, one can obtain the time curve numerically. The well­
known method along this line are Floyd's method (Brown and Campbell 
1948), Guilleman's method (Truxal 1955) and Chen's method (Chen 1966). 
The basic formula they used is 

y(t) - R(w) cos tw dw 

where R(w) isthe real part of Y(w). 
Because those three methods are, basically .graphical, it is difficult to 

obtain accurate- answers. 

.7
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4. Principle of the new approach 

We rather look at this inverse problem from a different angle. Consider 
the given fiequency response as in fig. 1. -First, we take K points in the 
frequency axis as shown in fig. 1. It is noted that in the negative frequency 

Fig. I 
Y(21Vf) 

-N kAf N 

part, we truncate at (N/2)Aj, while in the positive frequency part, we trun­
cate at [(N/2)-1]Af. We divide the intervals in this way, because N has 
to be even in the Fast 'Fourier transform. When N is large, this kind of 
dividing is justified. 

Then (Nv12) -1 1 
Y(W Y(2inAj)Al exp (j2nrAjt), 0 t< . (11) 

It can be written into two parts-; 

y(= Y(2nAf)Af exp (j2nwAjt)
 
(NI2)-l­+ E "Y(2raA/)AI exp (j2rnAt).. (12) 

4=0
 

Let n'=K+n 
n=n'-. 

The first term of (12) becomes 
7-i 

- = X Y[2(&- rAjAfexp[j21 (n'-1V) Aft]..
n'=(N'12) 

We change the dummy variable n' back to n 

N-I
 
= ' Y[2(n-'N)VrA/]Af exp [j2ir(n-N)Aft] 

or 

(17I2)-i 

y(t),= 
n=0 

Y(2rnAJ)Aj.exp (j2nrAlt) 

+ " Y[2(n-NKAj]Afexp [j2(n-.N)wAt], (13) 
n = (72) 
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when 
t=- k 

k= 1, 2,...,N- I 

A.-\ 	 ORIGINAL PAGE 18 
y Y(2rnAf)Aox, .J	 OF POOR QUALITy2 ,,Af 


YI2i(n-N)A/.IA / exp Ij2(n-N)-A/ I 

(N/2) -1 

= Y(2irnAj)A/exp [j(2nkr/N)] 
n=O 

N-I 
+ Y[2w(n- N)A]Ajexp [j(2nkr/N)]. (14) 

Let 

2
S.= Y(2irA)AI, 

NY[2r(n-N)AlAf, -< n<N 

and 

Then we finally have 

K-I 

0), 	 1,2,...
A k Z S. exp (j2nk=/ k= , Nr- 1. (15) 

Equation (15) is the standard form on which the Fast Fourier transform is 
based. 

5. 	 Proof of the fundamental formula 
The fundamental fornula of our approach is (11). Its proof is shown as 

follows: 
Let the inverse Laplace transform of the transfer functions Y(s, V/, 

exp (- r8)) be y(t). If it is asymptotically stable, we can write 

y(t)= -+co Y(2-1)e.xp (j27it) cdl. 

Define 
+4s 

Y(2aA)Af8(f-nJA/)y*(2 i)= E 
and 

y*(t)= J Y*(21) exj, (j2ijt)(1f, 

http:YI2i(n-N)A/.IA
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then 

Y*(2 f)= E Y(2irAf)AS(f-nAf 

= Y(2rj)Af 8(/-nA) 

=Y(2/)A , S exp (j2nl/&J) 

- Y(2rj) exp (j2nrf/A) 

and 

y*(M ++= Y(2rj) exp (j2n7 i/AI)] exp (j2irt)dl 

- E Y(27r) exp ([j21 (t+ (n/Al))] dj 
fl=-x -cc9 

If 	y(t) is 0 or negligible when t<0 and t_>(1/Aj), then y*(t)=y(t) when 
0< t < (I/AI)., 

Because most control systems are low-pass filters, Y(2ir) can be neglected 
when [/j is very large. Let us truncate Y(2vrj) at /=[(N/2)-1]Aj on the 
left hand and at (-N/2)AI on the right hand side, then Y*(2vr) becomes 

n = (N12) -1 

*(2i) . Y(2rnA/)A/(/-nAj) 

and +c 	 ,t=(N(/2)-1 

y*(t)= , Z Y(27mnA])A/8(/-nA/) eip,(j2,,ft).d/, 
-cc n=(-N2) 

or 
n =(,V/2)-1 

y(t) Y(2-nAj)Aj exp [j2ir(nAf)t], 

when 0 t< (1/A/). 
Therefore, (11) is proved: 

6. 	 Irrational transfer function evaluation 
Based on (15), a computer programme. for evaluating general transfer 

functions is written asshown in the appendix. 
-The example shown in fig. 2 has been tested., 
In the example, there is an irrational funetion element in the open loop 

transfer function. 

U(S) = 10 +( 	9()=(
+ 1)(0.63A/s + I)­
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Fig. 2 

063AS+10 S+_1 
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The corresponding closed loop transfer function is 

( 100
R (s + 1)(0."63V/s+ 1) + 100* 

The computer programme evaluates the impulse response first by taking 
212=4096 points from the frequency response as the first step and then cal­
culating Ak by (15). If the unit step response is desired, we simply perform 
numerical integration on the unit impulse response. The resultant curve is 
shown in fig. 3. This example was taken from Kilomeitseva and Netushil, 
and we found that their answer had a slight error. 

Fig. 3 

1'0
 

00 0132 a3 04 t 

7. Repeat root case 
Theoretically, there is no analytic formula available for evaluating a 

system which has repeated root, for example, the transfer function 

1 

.(8-exp [j(v/3)]j)19v- exp [- j(w/3)1]) 

is a difficult case for Kilomeitseva and Netushil's method. However, if we 
use our new approach, we don't face any particular difficulties at all. We 
take 213=8192 points from the frequency response and then obtain the 
answer as shown in fig. 4. 

r. 
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Fig. 4 
c(t) 	 t _-LI1 
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8. 	 Transcendental transfer function 
If a delay element is either in the feedforward loop (fig. 5 a), or in the 

feedback loop (fig. 6 a), and their responses are desired, the problem is very 
difficult. However, with our approach to solve, it is still routine. We 
take 21= 8192- points, the results are shown in fig. 5 b and 6 b respectively. 

Fig. 5 

c(t)
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Fig. 6 
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00 20 40 60 so 

(b) 

9. 	 Conclusion 
The Fast Fourier transform technique was originated by mathematicians 

for evaluating Fourier coefficients and has been extended by communication 
engineers for application in spectra analysis and design. This paper estab­
lishes a technique for performing the inverse Laplace transform of irrational 
and transcendental transfer functions via the Fast Fourier transform. 
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Appendix 
C 	 A COMPUTER PROGRAM FOR COMPUTING THE INVERSE, -LAPLASE TRANSFbRM 

COMPLEX A,T1,DES,CFUN,EA,EB,S 
DIMENSION A(8200) 
READ(5,1) M,T 

1 	FORMAT(I1O,F15.5)
 
WRITE(6,2)


2 FORMAT(1OX,'TIME',IOX,'SQRT(T)',IOX,'X(T)')
 
N=2**M
 
DET=T/N
DES=(O.,1.)*2,*3.1416/T
 

NH=N/2

DO 100 I=1,N
 
NA=I-1
 
NN=O
 
DO 200 J=1,M
 
NN=NN*2
 
NB=NA-NA/2*2
 
NA=NA/2
 

200 NN=NN+NB
 
IF(I-NH) 250,250,260
 

250 A(NN+1)=GFUN((I-1)*DES)

• GO TO 100
 

260 A(NN4-1)=CFUN((NnI-1)*DES)
 
100 CONTINUE
 

'DO 300 I=l,M
 
IA=2**(M-I)
 
L=2**(I-1)
 
Do 4oo J=l,IA
 
DO 4oo K=1,L
 
T1=A(2*(J-1)*L+L+K)*CEXP((O., 1.)*2,3.1416*(K-1)/(2**I))
 
A(2*(J-1)*L+L+K)=A(2*(J-1)*L+K)-T1


400 A(2*(J-1)*L+K)=A(2*(J-I)*L+K)+T1
 
300 CONTINUE
 

NHH=(N-I)/2
 
AL=O
 
DO 500 I=I,NHH
 
TM=2.*I*DET
 
TR=SQRT(TM)
 
AL=AL+(REAL(A(2*I-1))+4.*REAL(A(2*I))+REAL(A(2*I+1)))/(3.*N)
 

500 WRITE(6,501) TM,TR,AL
 
501 FORMAT(1OX,3F16.6)
 

STOP
 
END
 

COMPLEX FUNCTION CFUN(S)
 
COM1PLEX S,EA,EB
 
EA--(0.i)*2*3.1416/360.-*70.
 
EB=EA
 
CFUN=CSQRT(S)/('(CSQRT(S)-CEXP(EA))*(CSQRT(S)-CEXP(EB)))
 
RETURN
 
END
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In non-linear systems analysis, multiple dimensional Laplace transform is often 
applied in solving the volterra model. The special technique for the inverse Laplace 
transform solutioh is called the association of variables. Three new theorems are 
developed for the theory of association. Compared with the inspection method of 
Brilliant, the pair listing method of Lubbock, the new approach is much simpler 
and easier and more systematic. Several illustrative examples are included. 

1. 	 Introduction
 
- Suppose we 
have a function F(s1, 82 ..... s ); its n-dimensional inverse 

Laplace transform can be found by 

I a1 +3w .. +J­
-01 ... exp4 

-(8a,82 ... , 8,) 	 1H &. (1) 
t=l 

Formula (1) is a general one. In certain types of analysis, particularly in 
Volterra series applications (Vblterra 1930, Wiener 1942) on non-linear 
systems (Brilliant 1958, Barrett 1963) we are only interested in the special 
case: tj ... =-tt. We denote this time function of the special case 
by g(t), or 

MA01t2, ;--..,=f 	 (2) 
In single-dimensional Laplace transform, there must' b a corresponding 

Laplace transform of g(t), G(s). Then we have the correspondence 

C(s)=L[g(t)]. 	 (3) 

Our problems in the special case can be restated as follows -
For given F(s1 , 82,', . sJ, find j(t, t, t, ... , t). There are two ways to 

accomplish this purpose: 

1. Using (1) to find /(t1 ,'t2 , ..., t) first and then substitute t, t2, ... , ta 
by t. 

2. 	 From F(s1 , 82, ..., sn) to find G(s) first and then evaluate the single 
dimensional inverse, Laplace transform g(t) which is the answer. 

td'0 
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The second approach is called association of variables. The function G(s) 
is called the associated transform. 

The following table can easily illustrate the relationship. 
-


L

multple
F(8 1 , 82, ... I sh) f(t1 , t2. t) 

j t. 	 {4,...=1 ORIGINAL PAGE IS 
alngse 1" 	 OF POOR QUALAT'! 
-G(s) 	 g(t) 

where A. means the association process for finding G(s) form F(s1 s82 .... )' 
Before developing the associate variable theory, let us familiarize ourselves 
with the inversion process by using the-direct inversion formula (1). 

Example 1 

Given - ­

- F(81,e2)= 
(81 + 1)(82+ 382+ 2). 

find, (4) 
"f(t or J1 £2) 11=4.=, g(t) 

By 	(1) 

1 =,jo a,+co exp (si£ +82t) d81 kd2o 

(2vj2 : - .__(81+ 1) (82~+2+ +2)3 co 

(1 :z: exp(si0ds)(1 - jexp (s8t)des ( 

a,-3c 82 + 382+ 2' 

,Each one is a single-dimensional inverse Laplace transform. Therefore
 
the inversions can be evaluated individually and we obtain
 

=[exp (-t)]. [exp (-t)-exp (-2t)] =exp (-2t)-exp (-3t)=g(t). (6) 

For this simple example, we did not encounter difficulties, however, for more
 
complicated problems, the direct inversion method becomes laboribus.
 

2. 	 Theorems of association of variables
 

To find G(s) from F(81, 82 ..... s.) directly-is by no means easy as We have
 
seen in the previous example. Originally, George (1958, 1959) used-the method
 
of inspection which is not a systematic method at all. Flake (1962) followed
 
George and still used the inspection method to do the work. 'Recently,
 
Lubbock and, Bansal (1969) developed a set of pairs td show the association
 
correspondence. However, Lubbock and Bansal's method is by no means
 
general. Particularly, in all their- association pairs, there, is no one with 
numerator dynamics. In other words,- they cannot solve the problems 

.involving initial conditions. 
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In this paper, we shall develop the basic theorems for the associate vari­
ables. Once the fundamental theorems have been established, we can
produce as many associate pairs as we want, and use them flexibly. 

3. 	 Complex translation theorem
 
If F(s,, s, 
 .-. , s.) can be written in the following factorial form 

F(S.8 ...,IS) =_-I__ - 2......Sk-1, 8k+, s), (7) 

and ff 

F(s 1 , 82 *... sk-1, 8 k+1, 8, ) - G(s), (8) 

we have the theorem as follows: 

F( 1 ,, ... S,s 3) -- G(s) = Gl(s +a) (9) 

Proof 
By eqns. (1) and (2), we have 

g(t) =/(',, t2l.... InW14-t.= ...=tn=t 

(2,j)- .S. 5 "" 1 * 18))... p 8s) 
1= i=1 

e rnm o sexp (skt) d k 

1 	 .,+j.O aL+jm n-j. 

... (1~ 8 k kl, 8k+1(j fl j n5f f5 ..." 8n) 

expq S't I jdoi=exp (-at)g(t). (10)
k tvi} 

Laplace transforming both sides of (10) yields 

G(8)=L[exp (-at)g(t)]=G1(8+a). 

Theorem is proven. 

Example 2 
Let us consider the previous example again, but use the association vai­

ables-to solve it. 
Given 

_F(81, S2)ssi)= ((1 + )(s 21
2 +3 22)2 ±+2)" 	 (11) 
1. 

$. (eof 
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find ORIGINAL PAGE IS 
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Let 

F1(S2)=s2+I-3a2" (121(12) 

Association transforming yields 

S+ 3,+22(13) 

which is identical to (12), because there is only one variable involved. 
We then rewrite (11) as fillows: 

(811 ) 1 1 
s +1 *(822- 282 + 2) 

(1481+11l8) 

This is the standard form for applying the domplex translation theor6m. 
Performing the association process gives: 

A. 1 
- (s+1)2+3(s4+1)+2" 

Simplifying 

1 

s8+58+6: (15) 

This, is -a single inverse Laplace transform 'problem, the answer is easily 
obtained as follows: 

g(t)=exp (-2t)-exp (-St), 

which is also the answer-of our problem. 

Example 3 
Find the inverse Laplace transform of 

-1 

F(sl, 82, s) = (81+1)(82 +382+2)(sa+2)' (16) 

if 
tl=t 2 =ta=t 

Again, we use the association of variables by writing (16) in two.parts:
 

1 1
2(81,.s2, 83)= (s!+ 1)(8 2-+3s2+2) . S+2 - (17) 

http:2(81,.s2
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or 
1 

= FI(s1 , S2) 

Based on the results obtained in the previous example, we know 

s+ 1s +
F1(s1, 82) A 

then 

1 
F(81,82, 83)=s3+2 F1 (81, 82), 

A. 1 

(s+2)2+5(8+2)+ 6 

=8a+9a+20 
(18) 

The single-dimensional inverse Laplace transform of (18) can be easily obtained 
even by inspection. 

4. Complex convolution theorem 

Suppose the function F(8 1, 82....'s)can be factored,out into the following 
form, 

8
F( 81, S2, *., 8.)=1 1 (8 1, 82 . Sm) . -F2 (8m+l m+2' ....a8). (19) 

The complex convolution theorem states that 

G(8)'= G1(s) G2(8), (20) 

where G0 (8) and G2(s) are defined as 

A. A 

F(, 1, 82, -.... I GI(8) ... , s.) - O8(a), (21)sm) F2(8m+, 

and ® means complex convolution 

1 c+jco 

G2(8) - l(s-'w)G2(W) din, 

with a suitable c. 

Proof 
I,)t=.=.=.t
9(t)=Ni t .... 

By definition 
1 C=j+JCO" - +Jco-(''a 

(jy - 1 5 F(s1 , 2, .) exn E rl id 

k.iio 
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Substituting the F function by its product form, we get ORIGINAL PAGE S 

OF1OG ALGI 

L l --. , IF2(8a+ex... Q8A)F "" 

x exp Sit) =gl(t). y2(t). (22) 

Laplace transforming both sides of (22), we obtain the result 

G(s) = GC(s) @G2(8). 

The theorem is proven. 

Example 2
 
1 Use the Complex Convolution Theorem to take the inverse Laplace trans­

form of the previous example
 

82S= (3+ 1) (82 + 82 + 2) 

under the special condition, '1 = t2 = t. 

F(s )2)- 1 

Writing into the product form 

1 1 

Fs-(si *(s2 + 3s 2 +2) 

Defining 

= F 1(81) - F 2(02), (23) 

where 

1 .i 1 
11(81) =+- =a() (24) 

and 

1 A, 1 
+1)(82+2)1( (s+l)(,+ 2 )=a 2 ( 25) 
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Applying the complex convolution theorem
 

1 C+)O
 

C(s) =j ; j Qs - w)G,(w) dw 
e -). 

1 c+jco 1 1 
2
1T3 t-j s8-w+I (w+l)(w+2 )dw. 

Using the standard residue method yields 

~2,( I2± + 1)(26) 

1 
G(s) + fi+ 6)' (27) 

g(t) = exp (-2t)- exp (- 3t). 

Example 5 
Use the complex convolution theorem to find the associated transform of 

the following: 

1 
-F(s1, s2, 8) = (s8+1)(s22+3s2+2)(s3+2)" 

We define 

Fi(sI,82) A.)-1~) (28) 
(81±1)(822±382+2) 

1 A, 1 
F(8 s2 + 2 ()' (29)2 

Applying the theorem, we have 

G(s) = G1(6) ® G2(). 

From the previous example, we found that 

=(,q+ 2)(8 + 3)"'o 
GI~s =1(30) 

Convoluting G2(s) with.eqn. (30), we obtain 

1+ o 1 1 
'E()7- T-w+ 2 (w+2)(w +3) 

Using the residue method again, we -finally have 

S ++ 1 (31) 

1/2­
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5. 	 Real convolution theorem OF POOR QUALIT 
If a given function F(S, 82. S) has the following particular structure : 

F(s1 82, s.... 8) = H(s 1 + -. + (a, .... 80)n)+-81	 (32) 

and 

-FI(81 82, .... 18.) 
A. Gl(S), 	 (33) 

the real convolution theorem states that 

F(s1 82, ... , .A ) G(s)=H(s)G(s). 	 (34) 

Proof 

In multiple Laplace transformation theory it can be shown that (Chin 1971) 

H(s +8S2 ++ s0) 1 (sI, 2'..... e8) 

-- I s) t, .... t.) fi dt, (35)
0 0 i-i / 2' 

where 

min(%, t., .... Cn) 

I(t 1, 4 ..., tIW= I h(r)i(t1 - , t2 - .. ;, tn- T) dr, (36) 
0 

and h(t), 1 (th, t .... t.) are the inverse Laplace transforms of H(s) and F1 s1 , 82, 

8), respectively. 
Based on the inversion formula (1), we have 

(2in "±+j'o ' ( ,= as),ac+j 

10 	 t2, ... =5 exp 8t,) 

zt= 

min (t,, t.in) 

---- 5 l(r)j1(t-r t2-r ... , t, - ) dr. (37) 
0 

By 	definition 

g() 	 =j(t1 , 't2 ... -- ,)--,-t,=.... 

=j(t, t. t)=-f h(r 1(t- T, t- . t-,r) d7 
0 

= h('r)0 (t-r)d. (38) 
0 

By 	the theory of convolution, we have 

G(s) =L[g(t)]=L[h(t)] . L[01 (t)] =t(s)01 (s). 	 (39) 

hi/s 
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Example 6 

Find the associated transform of 

where 

1 
(81+82)2+2(81+82)+l 

1 
' (81+1)(822+382+2) 

=-H(s1 +s 2)F­1 (a1 , 82), (40) 

and 

F!(81 (82) =(S+ 

•
H(81+ 82) = (,Rl + 

1)(822+ 382 -2)Y 

1 
2)2 + 2(l + 82) + 1 

We have found 01(a) in Example 4 as, 

F(s1 , 82) A, a(8)- (s+2(83) (41) 

Applying the real convolution theorem, we have 

A, 1 1 
F(s1, 82) A. 1 GI(s) = 182+ 2s+1I (8+ 1)2( + 2)(a+ 3)" (42) 

Example 7 
Find the associated transform of 

F(e 1 , 82' 83') =1F(818,8) =(8"1 + s2 + s3)2 + 4(81+ 82 +{s.)+ 3 

where 

1 

(81+ 1)(822+ 382 + 2)(83 + 2) 

=H(81±s28± 3) F1 ( 1 , 82' 83), (43) 

F1(s1, 82, )823=(81 +1 )(822+ 
1
38 + 2)( s + 2)' 

1-
H (( ++ 82 +(3)= I ) 

(81+82+s3)2+4(s1+82+s3)+3* 

We found in Example 5 that 

F3(81 ' 82, 83)O G()A(.) 4(5) (44) 
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By 	applying the real convolution theorem, we have ORIGINAL PAGE ISOF POOR QUALIT 
A, 1 1 1
 

F(8 1, 82, 83)- 243 G1 (8)= ( _+

(8+1)((+3)*(a+4)(8+5) 

(45)±(8+4)(8+5)"
(8+1)(s+3) 

6. 	 Conclusions 
The three theorems established in the previous sections are rigorous and 

powerful in performing the inverse Laplace transform under the special
conditions. Because they consist of a systematic approach to the problem,
the guess work, inspection work and tedious tables can be eliminated. For 
the user's convenience, we still derive some pairs as an appendix which are 
mainly derived by using the three theorems. 

To apply the technique is not a difficult matter, once we grasp the idea 
and flexibly use the theorems.. Several simple as well as complicated examples 
are included. 



Appendix 

Multiple dimensional Laplace transform 

(1) 	 K 

(s1 ±a)(s2+b) 


(2) 	 K 

a(81+a )2+ b(s1±+s)+ 


(3) 	 K 

[0(81j+s 2)2 + d(s.t82)+ e](8, +a)(82 +b) 


(4) 	 , K 


(81 a)( 1 b)(8a2 + a)(82-+b) 


(5) 	 K 1 
[(el±S2) 

2+d(s+s 2)-+e] (s+a)(s,+b)(s2 +ad)(8 2 +b) 

(6) ~ a1 +)(s2i-o)K 

(6) K(1+cI82+0 ~ 

(s8jba)(sj~b)(s2 a)(s2 b) 

(7) 	 K(s+c)(s2 +c) 1 
d(s1 -i- 2 )2 t *(s1 'ia)(s1+b)(s 2+a)(s2 b) 

(8) 	 K 

a(s1 + S2 + 83)2 + b(s 1 + 2 + 3 ) +0 


(9) K 
(s1+a)(s+b)(sa+c) 

Associated transform 

K 
(s+a-+b) 

K 
2 + b +6c 

K 
(c2+ds+e)(s+a+b) 

2K 

(s+a+ b)(s + 2a)(s+ 2b) 

2K 
(cs2+ds+c)(s+a+b)(s+2a)(s+2b) 

2F~-a) 2(c-a)(c-b) (c-b)2] 
(b--a)2 Ls+2a s+a+b + e+ j-2b 

K 1 F(o-a)2 2(c-a)(c-b)+ (c-b)2] 
(b-a)'ds82ee±1 La+2a e+2b j*a--b 

K 
as2 + bs +c 

K
 
-is+a+b+c
 



Multiple dimensional Laplace transform. 

(10) 	 K 1 

[d(81+8 2) 2+e(8 1 +8 2)+f] (i 1+a)(82 +b)(8 3+c) ,d(s+)
 

(11) 	 K 
[h(sl+s2±+8 1±82 +s 3) + q]3)2±TP(8

1 

[d(si+s2 )2+e( 1 i+s.2 )+/](81 +a)(S2+b)( 3 +c) 

(12) K 
1 

(13)_______ 

* (s+a)(si+b) 
(14) 	 K. 

[(ai+8a-8s) 2 +d(sl+s 2 + 3 )+el][ a )' ' 
IA si+a)( j+b)/ 

(l 5 ), + K 3 s+ c 
[d(8++)(+e(8 )] +a)(s+b) 

(16) K 

(s+ a)2(S +a)2(8, + j) 

Associated transform 

K
 
2+e(8+C)+1](8+a+b+c)
 

K 
(k82+ps+q)[d(s+c)+e(a~c)+/](s~a~b+o) 

K /i 3 3 1
 
- 3b
(4-b) -s+2a+b 3a)+s+a+2b s 

K _(a-o)3 3(a-c)(b-) 3(a-c)(b-c) 2 (o-b)] 

(d-b) L s-i-a s+2a+b 8+a+2b s+Sb
 
K 1 1. 3 3 1
 

(a12 b)3 2+ds+ ( +3 s+2a+b+8+a+2b ±-3a
 

K 1 [-a-c) 3(a-c)2(b-c)
(a-b) 'dZ2 ±+e±L-+-3"a s+2a+b 

+ 3(a-o)(b-c)2 (c-b)31 
+ +a+26 s+Bb J 

6K 

(a+a)' 

C/I 
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(17) 	 K(s,+b)(8sla28a)8,a2K2 +b)(8 3 +b) 

(18) 	 K 1 
[b(si+8±s)2 +(s 1 ±+s2 +bh3) d 2+S2+83++d ] f (s8ja)

(19) 	 K )
 
K___(_b
[C(81 +82+-3)2 +d(j,82 + 83) ] X 

'I (8s+a)2 

N (20) K 
[c(s1 +s2 )+d( 1 -s 2)+e] l -

H,spba 4b 

(21) 	 K~ 
[I(s2 s2 +" 3 )2 +#(s 1+S2+s)-Ah] ,,q 

C11 

3 
e[c(s 1+ 2)2 +d(s1 +s)2 Y+ fl (s,-a)(sj+b) 

Associated transform 

3KF1 	+1-(+3(a-b) +6(a-b)2 6'b' 4 

L8~s(s ( 3a)2 (8+ 3 (a+b)3 

6K 

(bs 2+c +e)(S+a)4 

K1. 3(a-b) 6(a-b)2 6 a- )-j
c +-+ a+ j( 3)2 (8+ a _ 

3+ (s+a +3a) @+3 

2K 1 
-b [c T b)2+d(s+b)+e](m+2a+b)(q+a+2b)(s+3b) 

[c(s+a)2+d('+a)+e](s+3a)(8+2a+b)(a+a±2b)] 

2K [
 
a-b1
 

2 g-+hi [6(s4-b)2+d(s'4qb)±e]
 

1 
(s+2a+b)(8+a+2b)(.+3b) 

[c(s+a)2+d(s+a)+e](e+3a)(s+'2a+b)(s8a+2b) 
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A general frequency stability criterion for multi-input-output, 
lumped and distributed-parameter feedback systems 

C.F. CHENt and Y. T. TSAYt 

The original Nyquist criterion is based on the comparison of the encirclement of the 
frequency plot of the return ratio function with the number of poles and the number 
of zeros of the same function to determine the closed-loop stability of a feedback 
system. The extensions of the return ratio idea to the stability study of multi­
variable feedback systems have used the same terminology and followed a similar 
course. For the multi-input-output case, the use of the Nyquist criterion or its 
extension is by no means a simple matter. This paper establishes a new frequency
stability criterion which converts the Nyquist criterion from a return ratio oriented 
approach to a return difference oriented one. Instead of examining the encircle­
ment of the return ratio function to a critical point, we examine the phase change 
of the positive frequency of the return difference function, and the number of zeros 
of the positive frequency of the return difference function. This result simplifies 
the stability study of multi-input-output lumped systems tremendously, and covers
multi-input-output distributed-parameters systems naturally. For illustration, 
several typical examples-single-input-output feedback systems with minimum 
phase or non-minimum phase - open-loop transfer functions, multi-input-output 
feedback systems with stable or unstable open-loop transfer matrices, multi-input­
output feedback systems with irrational or transcendental type distributed-parameter 
open-loop transfer matrices-are included. 

1. 	 Introduction 
Since Chen (1968) and Hsu and Chen (1968) generalized the scalar return 

difference formula to a matrix form, much light has been shed on the analysis
of multivariable feedback systems. Indeed, the return difference idea is 
fundamental for all feedback theories, serving as a quantitative measure of 
the various consequences of the use of feedback (Truxal 1955).

Historically, Bode (1945) originated the return difference idea. -Kalman 
(1964) showed that the return difference gives the simplest' presentation of 
the optimal condition. Chen and Tsang (1965, 1967) established a stability 
criterion for a single-input-output feedback system based on- the return 
difference. It is known that Nyquist's original.work is based on the return 
ratio, and not on the return difference. For the single-input-output case, the 
differentiation between using the return ratio or using the. return difference is 
trivial and insignificant. Researchers and engineers, therefore, -have followed 
Nyquist's derivation, terminology and formulation closely and faithfully. 
For several decades, the return ratio has always been used and the return 
difference has only been mentioned. For the study of multivariable feedback 
systems, it has been the same tradition. Rosenbrock's (1969) investigation 
of the Nyquist method, which starts with the return difference but ends with 
the return ratio, is a typical example. MacFarlane's (1970) paper on the 
return difference, which is entitled the return difference but essentially uses 

Received 27 June 1976.
 
t Electrical 'Engineering Department, University of Houston, Houston, Texas
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return ratio, is another. However, to extend the return difference from the 
single-input-output case to the multi-input-output case is natural but to 
generalize the return ratio is artificiaL Although Chen's establishment of 
the matrix return difference formula gives a fresh starting point, there is no 
proper development for investigating the stability of multivariable feedback 
systems. Because of this, Pontryagin's stability criterion for time-delay 
feedback systems cannot be generalized to multivariable systems. Desoer's 
stability theorem (1975) has limited applications, Brin's (1962) stability 
criterion is applicable only to a very special class. In the meantime,practical 
engineers badly need a unified stability criterion for a general multi-input­
output feedbadk system. 

This paper establishes a frequency stability criterion which uses the 
comparison of the number of poles of the open-loop transfer matrix with the 
phase change of the return difference. The criterion is. applicable to (1) single 
classical feedback systems, (2) multi-input-output feedback systems, (3) feed­
back systems with non-minimum open-loop transfer matrices or with minimum 
ones, (4) feedback systems with irrational transfer elements and/or trans­
cendental transfer elements. In all, it-is a general frequency stability criterion 
for lumped and distributed-parameter multi-input-output feedback systems. 

2. 	 Stability criterion based on return difference 
Consider the typical-feedback system shown in Fig. 1 in which g(s) is the 

feedforward transfer function; h(s) the feedback transfer function. The 
product g()hs)Aq(s) (1) 

is called the return ratio and - ­

P(s)= 1 + Y(s) 	 (2) 

is called the return difference. 

+ b(S) 

*h(s) 

Figure 1. A typical single-input-output feedback system. 

The differences between (1) and (2) aretrivial indeed for the single-input­
output Oise. 

Assume that a(s) 

.((s) 

where a(s) and b( )-are relative prime polynomials.
ThenP(s) =a(s)+ b(s) (4) 

b(s) 

f/23 
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The closed-loop transfer function is given by 

g(s)
f(s) 1 +g(s)h(s) 

g(s)b(s) 

a(s)+ b(s) (6) 

If there is no common factor between the denominator g(s) and the numerator 

of h(s), then g(s)b(s) is a polynomial. Therefore b(s) is the open-loop charac­

teristic polynomial, or the open-loop characteristic function in general ; and 

the closed-loop polynomial, or the closed-loop characteristica(s)+b(s) is 
function in general. The return difference is then 

p(s) =a(s)+b(s) closed-loop characteristic function (7) 
b(s) open-loop characteristic function 

The multi-input-output case is shown in Fig. 2. 

Figure 2. A typical multi-input-output feedback system. 

Chen (1968) published and then proved (Hsfi -and Chen 1968)'the classical 

formula which states that the return 'difference of 'a multi-inpul-Loutput 
system is 

T(s) =-det {-I+ CH} = closed-loop dharacteristic function (8)
open-loop characteristic function 

where G(s) and H(s),are forward and feedback traisfer matrices respectiyely. 
If the return ratio of the multi-input-output system -is defined from an 

extension of the simple-input-output case, we have 

q(s) = det [GH] (9) 

We see that the relationship between the return difference and the return 
ratio for the multi-input-output system is not as trivial as that for the single­
input-output system. 

Therefore, when we analyse a multi-input-output system by using the 
Nyquist criterion, it will make a 'great difference whether we use the return 
difference or the return ratio. Unfortunately, Rosenbrock and MacFarlane 
although extending the return difference formula to design, they really used 
a return ratio approach. Desoer established a-theorem to use the return 
difference in the stability study to a rather larger class ; however, he still 
maps the whole imaginary axis and semicircles as Nyquist did and also limits 
the scope of applications. Apparently all these deviations are .caused by the 
long-time influence of Nyquist's way of thinking. 
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3. 	 Modified Nyquist stability criterion 

We would like to modify the original Nyquist criterion first: the funda­
mental change is that instead of using the return ratio, we use the return 
difference; instead of mapping the whole imaginary axis and semicircles, 
we map the positive frequency segments. 

Chen and Tsang (1965, 1967) derived a frequency stability criterion for a 
single-input-output system based on the return difference. Here we rigor­
ously generalize the criterion for both single-input-output and multi-input­
output cases. The modified Nyquist criterion is mapping the straight line 
along the jfiaxis for w -0+ to w = o and then count the total phase change 
of the corresponding mapping as shown in Fig. 4. Because the original 
Nyquist criterion is known to map the whole imaginary axis and the right­
half plane circle as shown in Fig: 3, the modified criterion is much simpler, 
even from the very beginning. 

J j
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Figure 3. Nyquist criterion uses the whole imaginary axis nd right-half circle. 

Figure 4. New criterion uses the positive imaginary axis only. 

w4(2) 

(_1)
 

W(-2)
 

- Figure 5. Definition of open segment. 
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Definition I 
The open segment on the jw axis from w= w. to w = w,+ is the open

interval (j3w, Jwi+,) on the jw axis (see Fig. 5). If there is a fi0-ple zero of 
b(s) at the origin and fi-ple zero at wi for i = + 1,-Cf2...,+p, then the 
mapping segments are (0, jwl), (3wl,3w2 ), (jo 2, 3w) ...(jwp,io). 

Definition 2 
The phase angle change of the mapping of an open segment 1(i)= (jw, 

Jwi+l) on the jw axis by a certain complex function 1(8) is defined by 

AGZU= 8[3(wi+ 1 j]- [W,+) (10) 
where 

(jw,._)= lim G[j(wi+1-E)], (jwj+)= lim [jen~±)] 

and 8(jw) is the phase angle of the complex function )(8) -for.s=jw. 

Definition 3 
If the open segments are 0e, 3WI'), (w', 1w 2 ) ...(jW, w]i+l) ...(Pw, 3j),

the total phase change of the mapping of all these open segments on the 
positive jw axis by a certain complex function of (s) is defined by 

8=1
 

where A8I(,) is the phase angle change due to the ith open segment mapping.
Let the return difference of the system have the following properties 

[d] p(jw) is finite and non-zero. 
[2] There are fP poles, of p(8) on the jw axis, and y poles, of P(S) in the 

rright-half plane, where P and y are finite integers, and fP = ,[3] i*(s) =p(8*)where * means complex conjugate. =-P 

For deriving the modified Nyquist criterion, let us start with the corres­
ponding Nyquist contour of Fig. 5 as shown in Fig. 6. 

From the principle df argument, it is known that the total phase change
of P(s) along the contour P is given by 

A~r 2r(M - y) (12) 

C(2)S I(S) r 

10) 

C(O) 

c(- 1) 

(-2) 

C(- 2) 

1(-3 

"Figure 6. Nyquist's original contour. 
CON. .
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where M is the number of closed-loop characteristic roots with positive real 
parts, V is the number of open-loop characteristic roots with positive real 
parts. In detail, the total phase change of P(8) along the contour F is 
evaluated by the summation ),of individual phase changes .along 1(j i= 
1,+2,...,semicircles c(i), i=0, + 1, +2, ..., +p and c..
 
In other words,
 

/+1 	 pA ~ =A t + ~ ( , + .Y '( + e ( 1 3) 

since .p(jw) is non-zero finite, therefore 0(.) =0. 
Assume that 

P(jW) = U(W)+ 3 V(w) (14) 

where U(w) and V(w),are real functiofns of w. ORIGINAL PAGE IS 
From property [3], we have OF POOR QUALITY 

P*(jw) = U(W)-jV(O) 	 (15) 

=P(-jW) 

= U(-w)+j V(-w) 	 (16) 

The phase angle of P(jw) is given by
6(w tair-=	1 ) 

17((w)tan-- (17)) 

and ,that of 	P( - j).is given, by 

6(jw)-tai (-a 	 (18) 
- U(-W) 

However, from eqn. (15) and (16), wehave 

U() =U(- W) (19)
ad 

,V(,)=.-V(-,) (20) 
Therefore, 

0() =-(-jW) (21) 

Now we consider the.phase anglechange due to 1(j) 

A0ot )=o(j-w-_) - o(W.+) (22) 
and that along l(-): 

A0(A) = 0(- 0j+) (23)(- jWi+-) 

Combining with (21), we can rewrite (23) .as follows: 

A0j(_ , = 0(jwJ 1-)- Gjw+) (24) 
then we have
 

A0Oj = A~j(-jo (25) 

Substituting eqn. (25) and the relation A60c )=Ointo eqn. (13) yields 
1 


p+ p 
AOr2= E A01(j)+ E AO0 () '(26) 

i=1 i=P 

Next, we consider the phase angle change due to semicircles c(i). Assume 
that there is flpoles of jp(s) at w)=w1 . Then 

AO (j)-- iv .	 (27) 

t/,7
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Then 
'Z 1-- Z fi 	 . (28) 

From property (2), eqn. (28) becomes 

P 
PZ A6O(o=-Pv 	 (29) 

Then combining eqns. (29), (12) and (26) we have 
p+l
 

*X m)=1 [-2(M- )+(] 	 (30) 

[P+2(y-M)] 	 (31) 

Now we obtain the modified Nyquist stability criterion. 

Criterion 
If -the return difference of a general feedback system, single-input-output 

or multi-input-output has the properties [1] to [3], the system is stable if 
and only if the total phase. -angle change along open segments (jO, jei 1),
(Jw1, gco2 ) ... (joWP, joo) is equal to (wr/2)(fi+2y) where P and,r are the number 
of open-loop poles -on the imaginary-axis and in the right-half plane respec­
tively. 

It is easy to prove the criterion by substituting M= 0 into (31), because 
the system is stable if and only if the closed-loop characteristic polynomial
has no roots in -the.right-half plane. 

Therefore, we have 

Ao= (P+2y) 	 (32) 

4. 	 General case 
- Let us then considerthe -general case, which means that 

P(jco)=O, P(-Joo)=O or P(jr)=cn and P(-jco)=oo 

In this case 0,(, 0 0: Assume that 

lim P(s)= Erm a-k 

where a is non-zero, and 7k'is real. This means that the phase angle-of P(Jco) 
as W-o is equal to ,[-.kr/2]: Then the previous case in which p(j o) and 
P(-.jco) is-non-zero finite becomes a special case: k=O. 

For this general case thephaseangle change along the semicircle-of infinite 
radius c(oo) is 

Ma.O() 0( (- ioo) -'O(j oo) 

2 (_2) 

=kVT (34) 

3D2 
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Equation (13) should be rewritten for this gen6ral case as 
1p+ 

A8r=-2 A8(j)-fir+kr 	 (35)
i= 1 

Therefore, from eqns. (12) and (35), we have 

A8Z(,)=- [-k+2(y-M)] 	 (36) 

Thus we state the modified Nyquist criterion for the general case as follows. 
If the return difference p(s) of a single-input-butput or multi-input-output 

system has the following properties: 

[1] 	 the numbers of poles of P(s) on the 3w axis and in the right-half plane 

are P and y respectively;
[2] 	 P*(s)=P(s*]; 
[3] 	 P(jw)#O for finite co. 

The system is stable if and only if the total phase angle change along the 
segments (0, j3a1), (W 1, w 2 ) ... (jwp, j o) is equal to6 (i/2)(P -k + 2 y) where 

k=- [(3co)] 	 (37) 
VT -

It is easy to prove this criteria : simply substituting MA= 0 into (36) yields 
1

p+ 

AO= A0()=.(-k+2v) 	 (38) 

The most importantfeature.of this criterion is, that we never bother with 
the number of roots of the numerator of the openrloop transfer function 

while the original Nyquist criterion has to examine it all the time. This 
feature makes the stability determination of a class of infinite dimensional 
multi-input-output feedback systems possible. 

5. 	 Application to lumped-parameter feedback systems 

5.J1. Single-input-outputsystem with non-minimum open-loop transferfunction 

'Consider a feedback system with thefollowing open-loop transfer function: 

1)(s+ 4) 	 (39)gl(s)h(s) = -(s-	 (39)2) 
(s+2)2 

which is a non-minimum phase. Investigate the stability of the system. 
If we use the original Nyquist criterion to study this problem, we have to 

start with the return ratio (39) and count the right-half plane roots of the 
numerator. 

If the new stability criterion is used, we start with the return difference 
function : 

- a+8 
P(s) =1 +g(s)h(S) = (+. (40) 

http:importantfeature.of
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Then plot the phase angle bf the return difference 

tP(jw)=tan- ' tan-' j (41)
8 2
 

as shown in Fig. 7.
 

N1101 1W 

0* 

e 

- Wh..
 

g ( -)S 4)
 

(S-2)
 

-60* 

80 

--1o0
 

Figure 7. Phase change of the return difference function of a single-input-output 
system with non-minimum open-loop transfer function. 

Examining the open-loop polynomial or the denominator of (39), we find 
that there are no roots on the imaginary axis or in the right-half plane. Then 
we have 

f#=O and y=O 
Also, 

limP(s)= lim 

Therefore k= 1. 
The criterion for stability is 

Ao=; (P+2-k)= 

From Fig. 7 we see that at wv= 0+ the phase angle is zero degree while at 
= oo the phase angle is negative 900. The phase angle change is therefore 

- 7AO= 
2 

we then conclude that the system is stable. 

j.(3o 
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It is'interesting to note that we never count the number of right-half 
plane roots of the numerator of the return ratio function. This is a great
advantage of the new criterion. This problem cannot be solved by DeSoer's 
criteria since infI P(s) = 0 for Re s> 0. 

5.2. Single-input-output systems with oscillatingopen-loop transferjunction 
If the open-loop transfer function of a feedback system is as follows,: 

g(s)h(8) = 2(s + 1)2(8 + 2) (42)
82(82+1) 

we are then interested in the stability of the system. The return ratio func­
tion has two roots at the origin and two roots on the imaginary axis respectively.

For applying the new criterion, we find the return difference function 
first :
 

P(s) 1+ g(s)N.() = 0 + 2s3 + 9s2 + 10s +4 (3s2(s2+1)' (43) 

Inspecting (43), :we have f=4, y=O, and :k=0. Therefore tle'stability 
2criterion is A0 = w. 

We then plot the phase curve of the return difference function as shown 
in Fig. 8. We have the following observation:. 

0+ 
 -1800 

°
1- -63-4 
1+ -243-40 

00 0? 

The phase change is found as follows: 

AO= 01G()=[-63;4°-(-180°)]+[0°+'243.40] 

-3600 

Based. on our new criterion, we conclude that the system is stable. 
The interesting part of this example.is the discontinuity of the phase curve 

at w= 1. 'Even with this discontinuity, the total phase change still meets 
the stability criterion. 

This case has been excluded by Chen and Tsang when they established 
their criterion. In this sense, the new criterion has a larger scope of applica­
tion, although the criterion for the special case is the same criterion derived 
by Chen afid Tsang in 1965. 

http:example.is
http:G()=[-63;4�-(-180�)]+[0�+'243.40
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- 1 1 o9wt 0 

Where 

gfs)h(s)- 2(5 -19(52)
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Figure 8. Phase change of the return difference function of a single-input-output 
system with oscillating open-loop transfer function. 

5.3. Multi-input-outputfeedback system with peculiarreturn difference /unction 

Consider the following multi-input-output system with 

[-a 

G(s) =(44) 

and 
H(s)= 1 

Let us examine the return difference first: 

P(s)= det (1+ G(s)H(8)} 

=- (45) 
There is no phase angle change at all' or the phase change is equal to zero. 

According to the stability criterion, however, the system is stable if and 
only if AB=(ir/2)(fl+2y)=n, because fP=O, y=l. We therefore conclude 
that the system is unstable. 

The problem is taken from C. T. Cheri's book (1968) where he warned that 
the return difference function sometimes does not offer stability information 
and his remedy was to pose more restrictions or conditions on this peculiar 
situation. 

Our new criterion, on the other hand, works fine and need not pose any, 
new restrictions. 
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5.4. Multi-input-output feedback system with unstable open-loop transfer matrix 

Consider the following multi-input-output feedback system:

[-... 2+8+i 11 

G 1(s)i (s-i)) 
1 1 (6 

(s+1)(s-1) (8-1)
and H(s)=1 (47) 

First, we find the return difference function: 
FP(s) = dot [1+ G(s)]PAEI( s)] 1 ORIGINAL PAGE IS

(8(l)=vtF POOR QUALITY (48) 

from which we have j = 0, y = I and 

G(jon)=-, lim tan-' =- (49) 

Therefore k =1. 
Substituting these data into (38) we obtain 

2 
(2-1+0)=(50) 

I I~l llI I Itlillli I I IIIL lIlto I I Ill1 ll I I I t l l 

01 ID0- 100 10 

10 G(SI (S- W1)-) (S-1) 

-12e 

Figure 9. Phase change of the return difference function of a multi-input-output 
system with unstable open-loop transfer matrix. 

P./3 
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Then we draw the phasb plot of the return difference function (48). The 
phase angle change is ir/ 2. Therefore we claim that the system is stable. 
This example is also posed by Chen in his text ; he warned that (48) should 
be carefully examined, otherwise we could easily arrive at a wrong conclusion. 
To use our new criterion; however, this example is simply a routine exercise­
there are no particular difficulties. 

It is known that DeSoer's recent work is also based on the return difference. 
But for this simple example, his criterion isnot applicable, -becauseof-the-fact 
in' IP()=0. 

Ries 0 

6. 	 Application to distributed-parameter 'systems 
The stability criterion given in § 3 and § 4 can be extended to the study 

of the stability of feedback systems with distributed parameters as far as P 
and v of the system is finite; there isno restriction on the return difference 
being a rational function of s in the proof of the criterion. Of course, the 
mapping of the return difference along the jw axis should be taken in the 
principle sheet of Riemann surfaces. 

6.1. 	 Multi-input-output feedback systems involving exp (T-rs)
 
Consider the,multi-input-output system with
 

exp (-s1 I()[T-- ".(51) 

2exp(-2s) . 

[ s+2 
and' 

H(s)= 1 	 (52) 

First of all, we find the return difference function: 

.P(s)=det [1 + G(s)] t 

exp(-)(s + 2)+2(s- 1)exi (-2s) + 2 exp (-e) 
+0.5(s-1)(s+2) 

=(a- !)(s+2) 	 , 

The open-loop characteristic, function is the denominator of (53), therefore,
 
we have fP=0, v=,1 .
 

Then we find
 
'lim P(s) = 0-53'o
 

Therefore k=0. The total phase change should be 

A-(fl-k+2y) 

(0-0+2)=v 	 (54 a)' 

if we expect its stability. 

.t ' ­
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Figure 10. Phase change of the retum difference function of a multi-input-output 
feedback system with exp (- rs). 

When we plot the phase angle of the return difference function, we have 
the graph shown inFig. 10. It is very interesting to note that when =0 +, 

the phase is 180' ; when w= oo, the phase is 00. There are many oscillatory 
types of various starts with w=2 and beyond. Based on our new criterion, 
we are only interested in the phase angle change between the two ends. 
That is 

AO= 00 - 1800= -1800 	 (54 b) 

From a comparison of (14 a) and (54 b), e teonclude that the system is un­
stable. 

While Pontryagin's technique for a'time-delay system has not been extended 
to multi-input-output systems and Desoer's criterion for this type of time­
delay system does not work (because there is an unstable pole in the open­
loop characteristic function), by using our new criterion, the problem is 
easily solved. 

6.2. 	 An equivalent system 
There is, a very important theorem on block diagram equivalence for 

negative feedback systems, The, theorem states (Chen 1974) : as far -as the 
input-output properties are concerned, the block diagrams shown in' Fig. 11 
are equivalent: 
It 	 is,easy to prove the equivalency as fonlbws. 

The closed-lQop transfer matrices, of the left system,is 

F(s)= [1 + G(s)H(e)]-tG(s) 	 (55) 
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If the inverses of 	G(s) and H(s) exist, we have
 

F(s)= [G(s)H()(H-1(s)G-(s)+ 1)-'G(s)
 

= [1 +H-(s)G-(s)]-[G(s)H(s)]-G(s) 

- [1 +H-l(s)C-(s)]-H-1 (s) 	 (56) 

Comparing (55) with (56), we have the proof of the equivalence.
 
As far as the stability of Fig. 11 (a) is concerned, we can test the stability
 

of (b).
 

+ G()+ H1(S 

(s(b)
 

Figure 11. Equivalent systems. 

This equivalent block diagram makes the following fact obvious. The
 
inverse Nyquist plot is an unnecessary complication and so is Rosenbrock's
 
inverse Nyquist arrays. We use the equivalent block diagrams of Fig. 11
 
to deal with a class of problems in the next section.
 

6.3. Feedback systems involving Vs 
Consider the following system: 

g~)=(0.63,V s 'F 1)(s+ 1) 	 (7(7100)
 

h(s) = 1 	 (58) 

This problem has been studied by .Chen and Chiu (1973) by the fast Fourier 
transfer form, and we know that it is stable. We would like to use the new 
criterion to reach that answer.. 

Since there is -Is in the denominator of the open-loop transfer function, 
it is not easy to count the number of open-loop poles. 

Instead of dealing with this problem directly, we can determine the 
stability of an equivalent system with the following: 

g(s)=I " (59) 

U1(s) = (063Vs+ 1)(s+ 1) (60) 

100 

Then we examine 	the return difference of the equivalent system: 

P(s) -- - (0'63s-+1)(s+1) 	 (61)
100 
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We find that 
fP=O and y=O 

because there is only a constant in the denominator of (60) and 

lir P(s)= irn 0.006383/2 

from which we have 
k= -j (62) 

Therefore, the stability criterion is given by 

Ao=j (f-k+2y) 

°=;(+)=135	 (63) 

When we plot the phase angle function of (61), we see that the phase change
° is 135 as shown in Fig. 12. Therefore the, equivalent feedback system is 

stable; so is the original system. 

I 10 	 10 

4e 

.oP 

-20 

Figure 12. Phase change of the return difference function of a qingle-input-output 
feedback system with Vs. 

6.4. 	Feedback systems involving exp (- V/s) 
Consider the feedback system with the following element: 

5(s+0.3) exp (--\Is) (64)g(s) =s2 + 40(a + 0.3) exp (--V s) 
and 

A(s) = 100(s+ 01)(+ 02) (65)
(s+ 30)(8+ 20) 

;./37 
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When we use our new criterion, we need to count the number of poles of the 
open-loop characteristic function in the right-half plane and on the imaginary 
axis. In other words, we have first to know the root numbers of the 
denominator of (64) in the right-half plane. There is no direct way to know 
the root situation of the equation 

s 2+40(s+0-3)exp (-VIs)=O (66) 

However, we can set up an auxilliary system with a return difference function 
as follows: 

4 03) exp (-Vs)(67) 
S2
 

That means the open-loop transfer function is 

40(s+ 0"3) exp (--VS) 
2
 
8
 

Examining the auxilliary system we find 

fP=2, y=O and k=O 

Substituting these values into (36), we have 

AO=W (2-0+2(0-X)) 

AO
 
M= .G1 (68) 

001 01 " W 10 10 

00
 A=­zO4(S*03)e
S 

Figure 13. Phase change of the return difference function of an auxiliary feedback 
system for problem shown in § 6.4. 

0 
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The phase curve of (67) is then plotted as shown in Fig. 13. By inspection, 
the phase change is AO=- 180'; substituting this AO into (68), we have 
M = 2. This means there are two roots of the original g(s), in the right-half 
plane. 

Now we deal with the original system shown in (64) and, (65). The return 
difference function is 

1 g(.)h(e) = 1+ 500(s+ 0-l)(s+ 02)(s+ 03) exp (- v,1) (69)
(s +20)(s + 30)[s2+ 40(q + 0-3) xp (-\Vs) ( 

From (68) we know there are two roots of the open-loop characteristic function, 
or the denominator of (49), in the right-half plane. The phase curve of (69) 
is then plotted as shown in Fig. 14. The phase change is 2i. The stability 
criterion is obtained by .using/f = 0, k = 0, and y = 2 and we get 

AO= (0O+ + 2 x 2)= 2r 	 '(70) 

Therefore, the system is stable. 

1 	 j I, II I I I l l - I.,,l p ,tzI p ] 1 5 

01 .0' 	 100 I0 

00 

.- 60 Whr.1 

5240(S' 0)rV5)gh(s). (SM2S30 S 

° -120 

-300" 

Figure 14. Phase change of problem § 6.4. 

7. 	 ,Conclusions 

A new frequency *stability criterion for feedback systems, single-input­
output or multi-input-output, is established. The criterion is applicable to 
lumped-parameter systems as well as to distributed-parameter systems. The 
procedure is to compare the number of non-left-half plane open-loop poles 
with the phase change of the return difference phase plot. 
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Compared with the original Nyquist criterion, the new criterion uses the 
return difference instead of using the return ratio of Nyquist. This allows 
an extension to multi-input-output system as a routine exercise. 

Compared with the Pontryagin stability criterion, the new criterion is not 
only applicable to systems with time delays but also to systems with irrational 
functions. 

Compared with the Brin stability criterion, the new criterion is for a 
general system while Brin's criterion is for a very-special narrow class. Because 
Brin's criterion is an extension of Mikhailov's criterion, therefore the new 
criterion is naturally better than Mikhailov's. 

Compared with the Desoer stability criterion, the scope of application is
much larger. Examples in §§ (5.1), (5.4), (6.1) and (6.4) cannot be solved by 
Desoer's criterion. 

The only restriction to our criterion is that the unstable open-loop poles 
must be finite, or reducible to finite. 
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Walsh series analysis in optimal control 

0. 	F. CHENt and C. H. HSIAOt 

This paper is concerned with the determination of suboptimal feedback laws for the 
linear systems with quadratic performance criteria. The time-varying gains are 
approximated by the piecewise constant gains which are naturally determined by
using Walsh functions. An increase of the number of intervals of Walsh functions 
enables us to approximate the true optimal control more closely; and a decrease of 
the number of intervals makes the implementation easier. Therefore the proposed
method is simple in theory and flexible in practice. The beginning part of the paper,
being tutorial in nature, is on Walsh functions, the middle part developes an opera­
tional method for solving state equations and the final part is concentrated on the 
Walsh functions approach to the solution of piecewise constant gains of optimal 
control. 

1. 	 Introduction 
'The control of a linear system with respect to quadratic performance 

criteria often involves time-varying gain design. In theory, the methods are 
well established and documented. In implementation, however, it is still a 
difficult task. Kleinman et al. (1968), Kleinman and Athans (1968) and 
Fortmann (1967) proposed a very elegant approach to the problem by taking
practical engineering constraints into consideration: It was done by pre­
specifying the structural form of time-varying feedback gains, while leaving
various free parameters to be chosen in an optimal fashion. Regarding the 
theoretical investigation, their thinking showed certain similarities with the 
direct method of Ritz in the calculus of variation. 

This paper presents a new approach to the optimal problem by using the 
Walsh functions (Proceedings 1970-1972, Harmuth 1969, Corrington 1973).
The approach should be classified as a direct method but is more powerful 
than the direct methods of Ritz and Euler (Elsgolc 1961) or Gelerkin (Schechter
1967) on the one hand and is much simpler than the procedure proposed by 
Kleinman and Athans (1968) on the other. The piecewise constant gains so 
obtained by the new approach are naturally formed, equally distributed and 
therefore can be easily implemented. 

We shall start with the introduction of Walsh functions. 

2. 	 Fourier series and Walsh series 
In the direct methods of the calculus of variation, we often- use Fourier 

series, power series, etc. with coefficients to be determined as the initial step. 
Our new approach starts with Walsh series. 

It is well known that a function which is periodic may be expanded into 
Fourier series. Analogously speaking, a function, 1(t), which is absolutely 
integrable in [0, 1) may be expanded into Walsh series 

j(0.=c0 0(t) + c 10 1 t) + o2 2(t) +... + o.$.(t) +... (1) 
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where 
1 

,=-5 #0(t)I(t)dt 
0 

(2) 

are determined in the following sense 

lim S )- c.0) dt= 0 (3) 

The functions 00(t), 01(t) ...,..(t) are a set of square waves which are ortho­
normal. 0 to 0,5 We call 0(t), i =0, 1, ... setare shown in Fig. 1. ,n, th 
of Walsh functions in the dyadic order. 

However, the regularity of the set of Walsh functions in the dyadic order 
is not very easily seen. It is usual to decompose each Walsh function into 
more elementary square waves, or Rademacher (1922)' functions. 

Rademacher function, rk(t), are a set of square waves of unit height with 
-k)
periods equal to 1, , , *,...,2(> . Alternatively, we can state that the 

number of cycles of the square waves of rk(t)'is 2 k-1. The first five waves of 
Rademacher are shown in Fig. 2. It is seen'that 

00(t) =ro() 

03(t)= ()
 

04(t) =(rs(t))1(r2 (t))(r ) ()) 

05(t) =( t)~lt) 006(t) (r,(t))'(r2(t))0 (r1(t)) (4) 

07(t) = (r,(i))b(r..l(r,(bk-.(r(t))b.... 

where 
k = [logi]+ 1()
 

where [ •] means taking the greatest integer of ' ', and bk, bk-, ... , b, is the 
binary number expression of i. 

. To draw the wave form of any Walsh function is a trivial matter by using 

the above-mentioned decomposition techniques. 
Let us then return to the Walsh coefficient evaluation of a Walsh series 

for a function. 
Consider a given function 1(t)=t. It is desired to expand it into Walsh 

series. 

f./Wi 
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Substituting 1(t) = tinto (2), we have 
ORIGINAL PAGE IS 

4=0 OF POOR QUALITY 

-j, q=l 

1 -L ,?b=2 (6a) 
c= f to.(t) dt= 

0 0, u=3 

- , .=4 

or 

1() = t-1€0()- 1i#(t)- W€2(t) - A&#4(t) - 0#8(t)- _k61 (0)... (6 b) 

The original curve j(t) = tand its Walsh series approximations are shown in 
Fig. 3. They are stairwise waves. The most crude representation is obtained 
by taking one term of the Walsh series, or J00 ; the second one consists of 
.two terms W.-Jol. The figure shows up to the four-term approximation 
which is 

/(t)t ioO - 101- W€2- *04 (6 c)= 


Froth the coefficient determination process, we see that the similarities 
between Fourier series and Walsh series are obvious. 

f(t)
 

f(t)=t 

.... -I..
 

1/2 

1/2 

Figure S. 

3. Discrete formula 
When we deal with the Fourier theory, if the given function is not in its 

analytic form but in tabulated data or in its graphical form and its Fourier 
series is desired, we would use a set of discrete formula. Similarly, we can 



885 Walsh series analysis in optimal control 

derive a corresponding set of discrete formula for Walsh series. They are 
tn­

ik= X 'kn,, k= 0, 1, 2, ( - 1) (7 a) 
ii=0 

On= mE t .- .- n 0,1, 2, (m - 1) (7b) 

where I. is the average value of the function in question in the kath sub-interval 
and nAnthe value of the nth Walsh function in the kth sub-interval and m is 
the total number of sub-intervals from 0 to 1. It can be shown that Vbk =.€k. 

For illustration, consider the given data shown in Fig. 4 or 

k _ 0 11 2 3 

Its Walsh series coefficients are required. 

fit) 

f3 

f,

I/8-s f
 

Ito i 

1/4 1/2 3/4 I 

Figure 4. 

Equation (7 b) can be written in a matrix form, once m is assigned. For 
example, for mi=4, (7 b) becomes 

r0o 00 #01 #62 003- /0_ 

C1 010 011 #12 #13 hI 

.4 (8) 
02 #20 #21 022 #23 /2 

03_ 030 #31 #32 033 _/3­
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where /,, are the given data in Fig. 4 ; . 0k can' be defined'clearly by using 
Fig. 2. For example, if we- divide 0 (t) from 0 to 1 into, four sub-intervals, 
we can describe 4o(t) by 1, 1, 1, 1. Similarly, 0,(t) is described by 1, 1, - 1, - 1, 
etc. 

The coefficients co, cj, c and c. can be evaluated by substitutions011 
62 1 1 1 -1 'ft -f, 

_6. A -1 1 .j- '0 

This means 
1(N) =t €o- 41- i€ 

It is seen that the Walsh series coefficients evaluated from (2) analytically 
or from (9) numerically are the same. 

Equation (7) can be written into matrix form 

c=Df. lm (10) 
where 4 is called tie Walsh"matrix and' can be easily drived from the Walsh 
wave configuration as shown in Fig. 5. 

-o 
 I" I I' I 

' IJ 

02 nI'h II I-I: 

1 ElEl , :l -I I ­• h => 
I Ir L : " .i -I -I I 

Figure 5. 

Similarly we can write (7 a).into matrix form 

Apparently 

4 - = T(12) 

Once cD is -defined from the basic definition of Walsh functions, T follows. 
Equation (12) is one of the nice properties of Walsh functions. Formulae 
(10) and (11) are comparable to the discrete formula of Fourier series. 

4. Integration and operational matrix 
Through using (10), the evaluation Walsh coefficients can be obtained by 

multiplying a constant matrix by the discrete samples, and vice versa. In 

./Y-7 
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this section we derive a meth6d by which we can perform any integration by 
multiplying a constant matrix also. 

Let us take 00, #1, ... , 07 and integrate them, we then have various 
triangular waves as shown in Fig. 6. If we evaluate the Walsh coefficients 
for these triangular waves, we will easily arrive at the following: 

# 1 dt I o- 0 -0 0 0­

... ...... 0...........
-
f12 dt . 0 ~0 0 0 0 0..# 

#42dt 0 0 0 0 0 0 0 4 
03o d 0 0 0 0 0 0ir 0 

.4 Sdt 0 0- 0 0 0 0 0 #4 

f 05 dt 0 0 0 0 0 0 0 0 #7 

_ 6dtJI o 0 0 0 0 0 o0 " € 

or 

J(5)dt =P(s8.s() (13 b) 

The.subscript means the dimension taken. It is preferable to take 21 , where 
L is an integer; as a dimension number. 

It is noted that 
S 0 dt =t 

therefore the Walsh coefficients of 1 0 dt are found in (6 b) which is simply 
the first row of (13 a) times the-c(t) vector. -

Equation (18) is for m= 8 ; a general formula P(mxm) can be written, as 
follows : 

i /i2I----......-......1 

.............. i....... . . . . . .
-I- - I~m4 

-----------. - .1 (14). . 
I(m14) 1(.14) 

...... ........ . . -. . ­

""- 'rnl2 

It is interesting to note that if we partition (14) into four parts as shown, the 
left upper part of P(.x) is identical to 'p(l2xmI2), and the-left upper-corndr of 
P(,nI2xm/2), P6(m/4 ,mI4) Therefore, this regularity of the structure- of the P 
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t
 

f# (x)dx 

OF -pOOR QUAITYI'
t 

j >-t(xdx OWIA PAGE IS 

0 f#2cod
 

#3 
f 0 # dx
 

pt#4 

-f	 0
1#xdx 

Pr,

Figure 6. 

matrix enables us to write the reduced 5th enlarged matrices to any dimension, 

as far as the dimension number is equal to 2n,where fi is an integer number. 

5. 	 State equation solution by the Kronecker product formula 

Consider the following state equation : 

- *=Ax+Bu 
(15) 

x(O) =x0 

where x is a state vector of it components, u is an input vector of 1components. 

A and B are ii x it and it x 1matrices respectively. We would like to establish 

a procedure. to solve the state equations via the Walsh series. 
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First of all, we approximate the rate variable vector * by a set of m-term
 
Walsh series whose n x m coefficients are to be determined. Let
 

X 610 C11 612 "" 6 1(m -i) #0 

X2 620 O21 c22 ... 01 
(16 a) 

.3 630 631 632 ... : 02 

, t,2,O ,I ... Cn(m-l) J.n 

or simply written as 

k C2 -ACnmc()(16b) 

where ' ' means transposition. 
It should be noted that this initial step is quite different from that of 

the regular procedure of a series solution of a differential equation. We 
assume the rate variable * as an undetermined vector series, instead of 
assuming the state vector itself. 

The state variable x may be obtained by integration, 

x(t)=C 5 (A)dA+xo (17) 
0 

The integration can be performed approximately by using the P matrix: 
I 

f 4(4A) dA--"P¢(t) (18)
0 

The input vector can also be expressed by the Walsh series: 

[A10  A11 A12 ... hic(m 1)1 
u= k.' h21 h22 ... h2(m_1) j (19 a) 

jL'" 7 11 1,1 ... h,(mi)j
or­

uAHc (19 b) 

where H is a constant matrix, the determination of which can be achieved 
by the techniques illustrated in § 2. 

Substituting (16 b), (17), (18) and (19 b) into (15), yields 

C = A{CP¢ + x,} + BH4, (20) 

Ax. can be written as a form of vector, or 

Axe =Axo0 0 = [Ax., 0, 0, ... , o]F= G$ (21) 

(m- I) column 

/ir6 
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Finally we have ORIGINAL PAGE IS, 
C=ACP+G+BH OF POOR QUALIMt 

The last two terms on the right-hand side are given and can be combined 
into one term, by letting 

G+BH=K
 
Then
 

C=,ACP+K 
 (22)
 
It can be shown that
 

[i]PA [c] I+kll <23) 

where P'®Ais a Kronecker product defined as 

a 1 P' al2P' .:. a1 .P' 1 
pl~®AA 21P' 2 P'... a 2nF' 	 (24) 

' _a-,,P a.2p' a.aP'j
 
The solution of C comes from (23) dirdetly,­

[C.2 k'2(25)'@A] 

Once C has been decided, the rate variable Walsh series representation is 
determined. The state variable vector is then found by substitution: 

x=C (t)+X 0 	 (26) 
A high-order differential equation with constant coefficients can always

be written as a state equation. Therefore eqns. (25) and (26) enable us to 
solve linear time-invariant systems elegantly and completely. Of course, the 
answer is in terms of Walsh functions. 

6. 	 State equation example 
A gate function shown in Fig. 7 (b) is applied to a circuit shown in Fig.

7 (a). Find the response of the circuit. 
The parameters of the circuit are 

B=50f92, G=5MLF 

and the initial condition is 

v(0) = I volt 

$./.r 1 
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e(t) 

(a) 0.290.5 I msec 
(b) 

---- Exact rsolution 

\ ______ Sixteen simterval 
Walsh solution 

0 
0I mec 

(c)
 

Figure 7. 

The governing equation of the system is 

dvfdt= -4x 10sv+ 4 x 103e (27 a) 

First we would like to normalize the equation by using 

= 1000t 

Then the governing equation is changed to 

dvldr=-4v + 4e (27 b) 
Let us assume that 

) = 040 + G10 + 's+05 = CA) (28) 

where both c and ( are vectors with 16 components. 
The input function e(i) can be decomposed into a Walsh series 

*(=t ,t , -t - , o, ..., o] 4 (2 9 ) 

12 zeros
=H4
 

The G matrix is written as 

G= [Av(O), 0,... ,O] 

,15 zeros 

=[-4, 0, ... , 0] 

1,/Irt­
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and the K matrix becomes 

K=BH+G 
=[-3, 1, - 1, -1, 0,0,...,O ] ORIGINAL PAGE IS 

OF POOR QUAL1TY 
12 zeros 

=k'
 

The coefficient vector c is determined by 

c=P'@Ac+ k (30) 
where 

-2 -2 -0 6 -0 o o o -3 
1 0 0-- 0-j 0 0 +1 I 

0 0 0 0 0- 0 -1 
0 -

* 0 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

-
01 

-I( ) 
0 

0 00 0 0 0 0 01 0 
0 0 0 0 0 0 0 01 0 

0 
0 
0 

E O(8) 0 I
 
0 
0 

i 0 

The answer is obtained from solving (30) for c first. 

- 0.9022495­
- 0-4476435 
- 1-3779225 
-0-7389225 
-0-2220921 

0-1092045 
-- 0"3391808 

c= -0'1818889 (31) 
-0.1127811 

0-0554554 
- 0-1722403 
-0-0923653 

0'0136505 
-0-0423976 
- 0-0227360 

.1/5
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The required v(r) is obtained by substituting c into (26) 

v(r) =c'P4() 
= 0'47014070o+ 0.141755201+ 0.086199602- 0.069708903 

+ 0055523004- 0.02730115+ 0'084795106+ 00454721#7 

+ 0-0281952#8 - 0.013838009 + 0-043060001o+ 0.023090301 

+ 0'0069403012- 0.00341260'13+ 0'0105994014 + 000568015 

The comparison between the Walsh series solution and the actual result is 
shown in Fig. 7 (c). 

7. 	 Optimal problem with constraint 

The optimal control of a linear time-invariant system 

=Ax+Bu (32) 

with quadratic performance index 

1t 
8=j 5 (x'Qx+u'Ru) dt (33) 

is well known to be 
u*=R-B'p(t) (34) 

where p(t) satisfies the following canonical equation: 

[*]=[A BR:H] [](35) 
and 

p(Of) = 0 (36) 

x(o)=X0 (37) 

Equation (36) is the transversality condition. 
It is more convenient to change the independent variable by defining 

=t- t 
Then (34) becomesEQ)i r -A -BRIB'l x( ) x()7

I-I A...Mj 

(38) 

(39) 
IP()- =[-Q A' JLP()J p()() 

The transition matrix of (39) is. 

exp (-M)= I ) 	 (40) 

L7121(7) 1922(7T)J 
Since p(r=0) =0, the solution of (39) can be written as 

x(r) = 7 11()x(r = 0) 	 (41,a) 

p(r) = ?21()x(r= 0) 	 (42) 

j./r 
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From (41), we have 
x(r-=o)= -(r)x(r-) (41 b) 

Substituting (41 a) into (42), yields 

p(-) = 

Then u*(t) =R-'B'7121(tf - i),-1(tf - t)x(tt - t) 

A g(tf-t)x(tf-t) (42) 

where g(r) is the optimal feedback gain matrix. 

8. Walsh series solution to the problem 
Because the Walsh series is defined from the 0 to 1 interval, we normalize 

the problem first by using 
7 

A T (43) 

Then (39) becomes 

1 x(A) 1[ A(A) tM 

tf 

OA<1 (44)O -- jx(A)],(,)JL p(A)J 

Next, assume *(A) and P(A) to be expanded into a Walsh series whose coefficients 
are to be determined: 

[N*(A) I11 

where ci and 4) are vectors with m components. 
Then use (18) 

J *(v) dV--P4(A) (18) 
0 

to perform integration on (45)[x(A)jA +Fx(A=O)1 (6 

g(A)] OJL 

Substituting (46) and (45) into (44) gives 

4C2'j (A tfM C2 12x, .02 1 
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Defining 

02, ,02. 

(m-1)columns 

-tM O ... P2 	 (48) 

Then (47) is simplified into 

[cl1 [I'1 
C2 J =El +tfP®M]- fP2f 	 (476b) 

[ 2 J 	 [P2,.1 

Solving (47 b)for ci, we obtain the Walsh coefficients of the rate variable 
k(A) and the rate co-stable variable O(A). Then substitute them into (46). 
The answers to x(A) and p(A) in terms of the Walsh functions are finally 
found. 

9. 	 Example-of feedback gain determination 
Consider the system­

with 

F1 
[10J 

x(tf) unspecified (50) 
The performance index is 

J 	 i. '(x'Qx + u'Ru) dt . (51)
-0 

:0where 

Q=[ ] R=1 

the terminal time t. is v12. 
The canonical equation for the system is then 

0 0 -v/ 2 0 

[ *(A) 1 w1r2 0 orx(A) (52
.0 

v/ 2(A)J 0 0 0 p(A)J 

0. -r/2 0 0 
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Express * and Ij with the Walsh series of 16 terms whose coefficients are to be
 
determined: -010 11 ... 1, 15- " 

20 C621 ... 02,.15 01[C() 
00" 

10(;) C30 631 ... C3, 15 

0C40 . . c4, 15_ €15r 4 

using, (53), (18) t6, find C from (47 b). Then *(A) and A(A) are determined by 
(45); so are, x(A) and p(A) by (46). Finally, we have 'the optimal feedback 
gains as follows: 

A- g012
 
-2
1/32 0-2011657 x 10-6 0-9639859 x 10 

3/32 0"3784919 x 10-9 0"04818776 ORIGINAL PAGE IS 
5/32 0.0189553 0.1251763 
7/32 0.05276887 0.2400212 OF POOR QUAMTY 
9/32. 0.1122418 0-3909498 

1-1/32 0'202'8542 0•5740402
 
13132 0.3275995 0.7822832
 
-15/32 0.4855795 1.005100
 
17132 0-6710423 1.228877
 
19/32 0.8735645 14387991 

21/32 1-079055 , 1.621599
 
23/32 1"275569 1-768292
 
25/32 1"450156 1"875617'
 
27/32 1-596604 1"945752
 
29/32 1'712762 1'984705
 
31/32 1-800200 2-000170
 

The analytic solution of this problem is 

01= [sinh.(w - 2t) - sin (wr- 2t)]/[cosh2 t;- + 00 t 

2
92= [cosh (w- 2t) - cos ( 7 m-2)]/[cosh2 (Tt) +0cog 

The comparison of the analytical solution and the Walsh sdlution is shown 
in Fig. 8. 

10. Conclusion 
The Walsh funbtion method for determining the optimal piecewise constant 

gains for-a linear system is established. The basidjformula is (47 b). Com­
pared with the method of Kleinman et al. (1968), the proposed approach is 
much simpler in analysis and easier in implementation. It is believed that 
this is the first time in using the Walsh series to approach the most interest­
ing and ,highly important problem in optimal control. 
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q~t) 

ta 

v,/a 

Figure 8. 
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Design of Piecewise Constant Gains for
 
Optimal Control via Walsh Functions
 

CHIH-FAN CHEN, SENIOR MEMBER, IEEE, AND CHI-HUANG HSIAO, STUDENT MEMBER, IEEE 

Abtract-Tls paper presents a technique for determlnating time-
varying feedback gains of linear systems with quadratic performance
criteria. The gains are approximated by the piecewise constants which are 
naturally determined by Walsh functions. After introd ci Walsh func­
tIons In the begnning we deve!op an operaional matrix for soling state 
equations. Then using the operatlonij matrix we solve thi piecewise 
constant gains problem. 

I. INTRODUCTION 

JT IS known that the control of a linear system with 
respect to quadratic performance criteria often involves 

time varying gain design. Kleinman, Fortma nn, and 
Athans proposed a very elegant approach [I]-[31 to the 
problem by taking practical engineering constraints into 
consideration: it was done by prespecifying the structural 
form of time varying feedback gains, while leaving various 
free parameters to be chosen in an optimal fashion. Re-
.garding the theoretical investigation, their thinking 
showed certain similarities between their approach and 
the direct method of Ritz in calculus of variation.

This paper presents a new approach to the optimal 
problem by using the Walsh functions [4]-[6]. The 
approach should be classified as a direct method, but is 
more powerful than the direct methods of Ritz [7], Euler 
[7], or Gelerkin [8] on the one hand and is simpler than 
the procedure proposed by Kleinman, Fortmann, and 
Athans on the other. The piecewise constant gains
obtained by the approach are naturally formed, equally
distributed and therefore can be easily implemented. 

As a start, we will briefly introduce Walsh.functions.- -

II. FOURIER SERIES AND WALSH SERIES 

In direct methods of calculus of variation, we often.use 
Fourier series, power series, etc., with coefficients to be 
determined as the initial step. Our new approach starts 
with Walsh series. 

It is well known that a function vhich is periodic may 
be expanded into Fourier series. Analogously speaking, a 
function, f(t), which is absolutely integrable in (9,1] may
be expanded into Walsh series, 

Manuscript received August 30, 1974; revised January 29, 1975. Paper
recommended by D. L.Kleinman, Chairman of the IEEE S-CS Optimal
systems Committee. 
.C-F.
Chen is with the Department of Electrical Engineering, Univer-sityof Houston, Houston, Tex. 77004. 
C.-H. Hsiao was with the Department of Electrical Engineering,

University of Houston, Houston, Tex. 77004. He is now with ChengKung University, Taiwan, China. ­

fA)=CoApo(t)+Ciq(t)+c 20 2(t) +...+ 

(I) 

where 

(t)f (t)dt
=fo (2)
 

are determined such that the following integral square 
error is minimized: 

E= f.­
0 n-O 

The Walsh functions Po(t), 4l(t),... , n(t) are a set of 
square waves which are .orthonormal. Fig. 1.shows the 
Walsh functions from §o to *i in the dyadic order. 
However, the regularity of the set of Walsh functions in 
the dyadic order is not very easily seen. Each Walsh 
function can be decomposed into more elementary square
waved,
or Radmmalherfunations [10].
 

Rademacher functions, rk(t), are a set of square waves 
of unit height with periods equal to I, ' , _L,.. ,20-k).
Alternatively, we can state that the number of cycles of 

- .
the square waves of rk(t) is 2k The first six waves of 
Rademacher are shown in Fig, 2. It is seen that 
-

00(t)= ro(t)
 
*1 (t) = r1(t) 

(4) 

t (rk(!))b(rk-(t))b'(rk-2(t))b"-''
 

where 

k=[log2i] + I (5) 

where [e]. means taking the integer part of "e" and 
bk,bk- ,.-,b 1 is the binary number expression of i. 

To draw the wave form of any Walsh function becomes a trivial matter if we-use the above mentioned decomposi­
tion technique.


Let us then return to the Walsh coefficient evaluationfor a function. Consider a given function f(t)= t. It is 
desired to expand it into Walsh series. Substituting f(t)= t 

Copyrght @1975 byThe Institute of Electrical and Electronks iApsnes, Inc. 
t1116 ~Pintedlnu.S.A. AnnsNo. 510AC002 
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. . . . . . I.. 0"rt" 
 1 
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F1 Qnneasily 
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A0 U U .UU 

Fig. 1. Dyadic ordered Walsh functions. 

into (2), we have 

f(t)=t=2o(t)-140(t) 812t) 
)IL0 01 63 ( 6 t 

- - 6 4 (t)- .t 8 (t)-'- 1 6 (t)"...(6) 
The original curveJ(t) =I and its Walsh series approxina-

tions are shown in Fig. 3.They are stairwise waves. The 
crudest representation is obtained 'by taking one term of 
the Walsh series, or 1@; the second one consists of two 
terms ±)o-041. The figure shows up to a four term 

approximation which is 

i (6a)f(t)=t=2 - 4)0 4 P2 

From the coefficient evaluation process, we easily see 
that the similarities between 'Fourier 'eries and Walsh 
series are obvious. 

III. INTEGRATION AND OPERATIONAL MAxTx 

In this section we will derive a method by which we can 
perform any integration by multiplying a constant matrix. 

Fig. 2. Rademacher functions. 

Let us take 10,4, "."07 and integrate them; we will 
various triangular waves [6]. If we evaluate the 

Walsh coefficients for these triangular waves, we will 
arrive at the following formula for approximation: 

ORIGINAL PAGE IS 
f@odt OF POOR QUALM 

p2dt 

f02d1@'
 

@fldt 

:_1 4 
4-1 O0 0 
"0 1 0 

, 1" 
-j- 0 
0 10 0 

0. 
0 
-1 

0 
0 
0 

01 
02 

(6) -0 W-81j]4 00 100i 00 'r.0 16 " 0 3@@ 

0 0 0 0 0 - 0 0 0 4 

0 1 0- 0 0 0 0 0 4s 
0 0 J6 0 0 0 0 0 46 
0 0 0 L 0 0 0 0 07 

or 

f0s)d=P(8x 8)0(). (7a) 

The subscript means thd dimensipn taken. Itispreferable

to take 2, where f is an integer, as a dimension number. 
Making this choice will enable us to obtain simpler results 

and to have a much.easier calculation. 
It is noted that 

4/-odt
= t;
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Fig. 3. Expanding a ramp function into Walsh functions. 

therefore the Walsh coefficients of f4pOdt is found in (6a) 
which is simply the first row of (7) times the 0(t) vector, 

Equation (7) is for m = 8, a general formula P(m,, ) can-
be written as follows: 

P(mxm,) 

1_ I - 1 1x(t)=Cfoe(s)ds+
I -2 ) Iw(m "-

= - - ­:-*-i 
1-./8" 02S ---- 42 -the'n2-m-mt8- -m~-8--aS 

1 (.1 ./4 ) 

It is interesting to note that if (8) is partitioned into four 

parts as shown, the upper left part of P(,,m) is identical to 
P(Q'/'xl×2), and the tipper left corner of P -×- is 

(P/4xm14y2 atheore egulrit isuethi ofthe(;7/-2,xm/2)
P(wl4.4). Therefore, this regularity of the structure of 
the P matrix enables us to write the rth enlarged matrix 
to any dimension, if the dimension number is restricted to 
20 where 2 is an integer number. 

IV. STATE EQUATION SOLUTION BY KRONECKER 

PRODucT FORMULA 

Consider the following state equation: 

.*=Ax+Bu, x(0)=x 0 (9) 

where x is a state vector of n components and u is an 
input vector of I components. A and B are nx n and n X 
matrices, respectively. We would like to establish a pro­
cedure for solving the state equations via Walsh series. 

First of all, we assume the rate variable vector k to be a 
set of m-term Walsh series whose n X m coefficients are to 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ocron 1975 

be determined. Let 

1 C10 Cl C12  "" I(m-l) 

22 C22 ... C2(m 1) 01.C 20  C2 1 

CIO c Il C,2 ... cn(,m-1) (, -I) 

(10)We write each column as a vector and define the rect­

matrix as C. Then (10) becomes 

x o,= j[ec, t,""",C. -_I (10a) 

It should be noted that this initial step is quite different 
than that of the regular procedure of the series solution of 
a differential equation. We assume the rate variable .t as 
an undetermined vector series, instead of assuming the 
state variable itself. 

The state variable x may be obtained by integration: 

xo.  (11) 
C/4) 

The integration can be performed approximately by using 
P matrix. 

0 (s)dv = Pj(t). (7a) 

Also the input vector can also be expressed by Walsh 
series: 

u= H@ (12) 

where H-is a I X in matrix; the determination of which can 
be achieved by the techniques illustrated in Sdetion II. 

Substituting (10a), (11), (7a), and (12) into (9)yields 

oC=A(CPO#+x.)+BHO. (13) 

Ax. can be written as the product of a matrix G and the 
vector 0. 

Ax 0 =Ax 0 jo = [AXo, .,O] G4. (14) 

(Mn- 1)columns 

Finally we have 

C=ACP+G+BH. (15) 

The last two terms of (15) can be combined by letting 
G 

Then 

C=ACP+ K. (15a) 
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If we rearrange the nX m matrix C as an nm-vector c by and the boundary conditions are specified as 
changing its first column into the first n components of 
the vector; the second column, the second n comp9nents x(0) = X0 (25) 
of the vector, etc.; and rearrange K in the same manner; p16)=O. ORIGINAL A E IS 
we finally obtain an even simpler form in terms of a OF POOR QUlITY 
Kronecker product for (15a; Equation (26) is the transversality condition. 

c= [AGP']c+k 	 (17) 

where A P is a Kronecker product defined as[ ] 
p1 A p 1 A ... p,n1 A 

AopA P124 2A pm2A (18) 
Pl A2 A ....P p.A 

and P' is the transposition of P. 
The solution of c comes from (17) directly, 

= [I-A®P']-'k. (19) 

Once c has been decided, the Walsh series representation 
for the rate variable is determined. The state variable 
vector is then found by substitution. 

x = CPO+ xo.  (20) 

It is more convenient to change the independent vari­
able by defining 

"=- t;(27) 

then (24) becomes 

i:(r) = -A -BR-B' x(T) -M x(T) 
. I.P - Q A' P(') p(- ) 

(28) 

The transition matrix of (28) is 

M,= 11(T) i,12( ) (
I() q22 (T) ( 

Since p(r=0)=0, the solution of (28) can be written as 
x(r)= 1 1(r)x(r = 0) (30) 

x=CP4- 0 (0)p~)tj	 1 -)~ =0). (31) 
of (19) 	 becomes a 

m is large, the computationWhen 
difficult problem, we take advantage of the special pattern 
of matrix P and develop an algorithm for calculation. The 
details are shown in the Appendix. 

A high-order differential equation with constant coef-
ficients can always be written as a state equation. There­
fore (19) and (20) enable us to solve linear time invariant 
systems elegantly and completely. Of course, the answer is 
in terms of Walsh functions. 

A subroutine WALDE has been written in Fortran 
.anguage for solving an nth-order differential equation. 

V. OPTIMAL PROBLEM 

The optimal control of a linear time-invariant system 

=Ax+ 	Bu (21) 

with quadratic performance index 

=1if(xQ -'R)dt (22) 

is well known totbe . 

u*=R - B'p(t) 	 (23) 

where p(t) satisfies the following canonical equation: 

(24)[[i]=[A BR-B'J[x]-A' 	 Jp 

From (30), we have 

x(,r= = 7 t()x(r). (30a) 

Substituting (30a) into (31) yields 

P(r) =q2 (r)n '(r)x(r). (31a) 
Then optimal control is reduced to 

u*(t)= 	R -'B'1 21(tf - tl I (tf - t)x(f- ) 

S-L(tr- tOx(tf - 1) (32) 

where L(Q- t) is the optimal feedback gain matrix. 

VI. WALSH SERIES SOLUTION TO THE PROBI.EM 

Because Walsh series is defined in the 0 to 1 interval we 
normalize the problem first by using 

X 7/tf; (33) 

then (28) becomes 

k (x) I -fM[ P(X) 1 0 < A< 1. (34) 

Next, assunme i±Q) and P(A) to be expanded into Walsh 
series whose coefficients are to be determined.

r(x) 1 

(35)()]=C ) 
where C is an 2n Xm matrix, and O9X), an m-vector. 

http:PROBI.EM


Then (7a) is applied to perform integration on (35): 	 " () (](X1x 0 	 ()- (43)
x(X) CPO(A) + (-)(36) PX 
P(A)I= ]. where C is a 6x16 matrix to be determined and 4(,) a 

Substituting (36) and (35) into (34) gives 	 Walsh, vector of 16 components. Letting x(A =0)= I and 
all other initial conditions (X=0) equal to zero, and apply­

Sx(A=) 0]l X ing (37a), we obtain the first column of t11 (X)and %,(X). 
00 0 ...2W Then, letting x2( = 0)= 1,we obtain the second column of 

(37) i1t(X) and '121(A); and letting x3(Q=0)=1, we obtain the
third column. The optimal gain ig evaluated with (32), 

Defining k as which is a multiplication of matrices. The waveform is 
shown at the lower right hand corner of Fig. 4. 

- tfAx(X=0) Taking the average for each' pair of consecutive values 
- tQx~A=0) of the above obtained optimal gains with 16 subintervals,we obtain a new set of piecewise feedback gain for 8 

k= 0
2" (38) subintervals. Continuing this procedure, we obtain con­

stant feedback gain for 4, 2, and 1 subintervals. All of 
them are shown in Fig. 4. 

02. 	 The cost matrix associated with the gain matrix L(t) is 
a unique solution of the following:
 

then (37) is simplified into
 

V(t)= - V(t)[A - BL(t)]
c= [ 1+ tfM P']'k. (37a) 

Solving (37a) for c,we obtain the Walsh coefficients of - [A - BL(t)]' Vt)- Q- L'(tRLQ) (44)
the rate variable k(X) and the rate co-state variable p(). V(tf)=O (44a) 
Then substitute them into (36). The answer of x(A) and 
p(t) in terms of Walsh function are finally found. 	 and p is defined as the trace of V(O), namely 

VII. EXAMPLE OF FEEDBACK GAIN DETERMINATION 	 P= tr[ V(0)]. (45) 

Let us consider Kleinman's example [1], [2], For a detailed explanation of V(1)'and p,the reader is 
.t(t)=Ax(t)+Bu(t) referred to [1]. . 

-1 0 01x~) r 2 ju1 We evaluate V(0) and pi for each control law we have 
- 0 -2jx(t)+ ju(t), x(0)=x 0. (39) previously derived. These t's aretabulatedbelow. 

02 0J 1l
 

The performance index is specified as 	 Number of Subintervals 16 8 4 2 1 
p. 1.7125 1.7115 1.7114 1.7471 1.9063 

8= 2(x'Qx + u'Ru)dt 

f2CF[ 2 -2 0 2} These values 	are slightly larger than those of Kleinman, 
= Jx -0 2 x+2u2 dt. (4o) but our method is much simpler.

0 0 0 0 +u2 

Since t-=2tt 1, we-Anced to normalize the time scale. VIII. CONCLrSION 
X= (tf-t)11f=--O.5. (41) A Walsh function method for determining the optimal 

piecewise constant gains for a linear system is established. 

The-canonical equation then becomes The basic formula is (37a). Compared with Kleinman, 
Fortman and Athans- method, the proposed approach is[ 2 0 0 -4 -4 2 much simpler in analysis and easier in implementation. 

(N) 0 0 4 -4 -4 2E 0 -4 0 2 2 1 	 APPENDIX
h) -4 4 0 -2 0 0/Lp(X) j

4 -4 0 0 0 -4 Algorithm for Solving C Via the Kronecker Product For­

0 0 0 0 4 	 mula 

(42) In this Appendix we derive a recursive algorithm to 

Assuming that the Walsh expansion of 9.() from (19) instead of inversing [I-A®P']and P(X) solve C 
may be approximately expressed with 16 terms, we have directly. Let us illustrate the procedures for m =23=8. 



.5 I G3 A (AM) 

0t 0 t 1- R 3 A -(I/2+')GA; (A4) 
2 12 then 

0 1Y 2t t c,+4 =R 3 ,+k+4, i0,1,2,3. (A) 

Substituting (A2) into (Al), we have 

' 10" ' 2I25 2:1 (A+(-)A (+) )0 o 

1C2 0-) o ()A2 

1o 16 4 

,.I---*-Qo+ k )k12 - "0 t ,2 I +(,)Ak 6 (A6) 
0 ' . ---...--t i , t k3+ (-1L)Ak 7 

.21 1 .2f 1C 
e--_- _ 

Now the diagonal elements are no longer null matrices. 
1 We may define the new diagonal matrix as F3, and the 

new inputs as k ,m . 

_4 2 = -1+1ARF3 23 (A7) 

EF. 4. Solving Kleniman's problem via the Walsh function method. ki, A k,+ -3AG 3 , (A)'k+ 4 i=0,1,2,3. 

Step 1: Equation (15a) may be rewritten explicitly for Step 2: Eliminating c, c3 from the lower half of (A6),
m=8. we have 

Co (14 ()A (,)A 0 ( )A 0 0 0 
Cl (-t)A 0' 0 (L)A 0 (L6,)4 0 0 , k, 
c2 (-8')A 0 0 0 0 0 (k)A 0 c2 k2 

C3 00 (j)A 0 0 0 0 0 ( )A c3 k3 (Al) 
C4 (=1-1)A 0 0 0 0 0 0 0 C4 k 4 

cs 0 (=L)A 0 0 0 0 0 .0 '5 ks 
C6 0 0 (tt)A 0 0 0 0 0o6 k6 
C7 0 0' 0 (Ll)A 0 0 0 0 Co7 k7 

It is obvious that 04, Cs, c6, and c1 may be expressed in 
terms of c0, c1, c2, and 03. (j),+g2-A 

[ - )A 0 0 0 [ t 0 (1 J±-W-A 2)-IA
4 

5 oC0 " A 0 0 . r 1 

c6- 0 0- - (-)A 0 co ]+a+ )- [y,.J (A9)C7 0 0 0 (-9A C 2 311]
16)This may be put into recursive form by defining 

ORIGINAL PAGE is k5 GI-F=I+ kA2 (A10)[2

OF POOR QUALITy L [ kj () then A- G-.A=(-k)(I+'A2)-'A; (All) 

In order to keep a consistent notation, we mas' define ./r ci+ 2 = R2c,+ G2-'k(+2),l, i =0, 1. (A12) 
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Substituting (A9) and (A12) into (A6), we have 	 Gp,=-I-Fa+ I[:]R 	 =-2-tfl1GjA 
3641 +) 9=6 	fl,1-+2k.I=k. l+2- -AG ilk+2,pi)p+,. (A24) 

{WLA+FJ-"A(I+2LA)I (I fA2Y1A 

( 4±)A 	 64 l+.4,_6A A/-a Then we obtain-co: 

rl = Go- 1,Go = I- A .- F., (A25)1co 
kl 1, + IA 2 lA3., All the other vectors cj = 1) are,=O, 1,---,(m- found by 

substituting them with 
For recursive operation, we should define again 

c,4 .2,8-1= R:c, + 
F 2 =F 3 +-' A R2 =-'6A 2 -kA (1I+ HI 6A) 'A

i2+1A=,2,-..,a i---0,1,--,(2 -l). (A26) 
(A 14) In the above algorithm, we always work with matrices 

2--A 	 2 k+2,111 i=0,1. .(AI5) (G,F,R) of nXn. Therefore there is no need to operate, 

2+ A kwith larger matrices. For instance, if we wish to apply 128 
Walsh functions to solve a 6th-order differential equation,Step 3: 	Eliminating cl from (A13) and (AI4), we have 
we only work with matrices 6X6. The calculation of 

c,=(.=-)a-F r'Ac0 +a-Fo kin ARlc 0+G-'k,,, matrix inverse of [I-A ®P'],which is of 768x768, is 
4 (l Ravoided. Therefore, we have saved computing time and 

(A16) 	 storage. In addition, we have- reduced round-off -errors 
significantly. 

where GI, R, are defined in the same form as G2, R2, G3, 
R 3.	 REFERENCES
 

, IF 2 	 (A17) [1] D. L. Kleinman, T. Fortmann, and M. Athans, "On the design of 

linear systems with piecewise-constant feedback gains;" IEEE 
RI 	 • 1" GF-A. (AI 8) Tram. Automat. Contr., vol. AC-13, pp. 354-361, Aug. 1968. 

I 1 [2] 	 D. L. Kleinman, and M. Athans, "Tedesign of suboptimal linear 
time-varying systems," IEEE Trans. Automat. Contr., vol. AC-13,

Substituting (AI6) and (A14) into the upper half of (A13), pp. 150-159, Apr. 1968. 
we have [3] T. Fortiann, "Optimal piece constant solutions of the linear 

regulator problems," MIT Electron. Syst. Lab. Rep. ESL-326, Oct.co=[12)+F2+14)RI~o~ko,,+')A -'k,,,. [4)1967.
oS1 (AG 	 Proc. Walsh Functions Symp., Nay. Res. Lab., Washington, D. C.,()AR 

1970, 1971, 1972.

Therefore [5) 	 N. F. Rarmuth, "Application of Walsh functions in communica­

tton,"1EEE Spectrum, pp. 82-91, Nov. 1969. 
c= G 'lk0,I (A 19) [6] M. S. Corrington, '!Solution.of differential and integral equations

with Walsh functions," IEEE Trans. Circuit Theory, vol. CT-20, 
where pp. 470-476., Sept. 1973.. 

[7] 	 L. E. Elsgoe, Calculusof Variations. New York: -Pergamon, 1961. 
F" 1-	 -Go I Q)A 	 (A20) [8] R. S. Schechter, The Variation Methodin Engineering. NewYork: 

"McGraw-Hill, 1967,pp. 23-26. . 
[9] 	 J.. L. Walsh, 'A closed set of orthogonal functions," Amer..J. 

+2110 Mark, vol. 4 5;pp. 5-24,1923. 
21 F (A21) H. Rademacher, "Einge Satze Uber Reien Von Allgem Ortho­1AR,+ [10] 

A gonal Function," Ann. Math., vol. 87, pp. 712-738, 1922.
a 

ko -- ,. - ) 11] M. Athans, "The matrix minimum principle," Inform. Contr., Nov. 
= ko,, 1 +{---AG 1 'k,. 	 1967. 

Step 4: c, is obtained by substituting co into (A16). 
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A state-space approach to Walsh series solution of 
linear systems 

C. F. CHENt and C. H. HSIAO$ 

A state-space procedure for solving linear dynamic systems by the Walsh series is 

developed. A now operational matrix plays the main role and a now Kronecker 

product formula is established. The laborious use of Corrington's tables is eliminated. 

Several examples illustrate the process and demonstrate the power of the approach. 

1. 	 Introduction 
been widely used in the analysis of communicationWalsh's series has 

theory (Harmuth 1969, 1972, Lee 1970, Jones 1972, Dust 1972), optical engineer-

Gebbie 1969, Pratt et al 1972, Kennedy 1971), bioscienceing (Gibbs and 
(Mine at al. 1972, Thomas and Welch 1972), data processing (Andrews 1972, 

Kuhn at al. 1963, Shanks 1969, Ahmed 1972, Chen 1972), electromagnetic 
pattern recognition (Itoradiation (Harmuth 1970, 1972, Pearlman 1970), 

1970, Andrews 1971, Carl and Kabrisky 1971, Clark et al. 1972), and control 
1970 a, b, Gibbs and Millard 1969). In asystems (Dinh et al. 1972, Picher 

recent paper (Corrington 1973), Corrington applied it to a more fundamental 

problem : the solution of linear or non-linear differential and integral equations. 

His technique is (1) to assume a Walsh series whose coefficients are to be 

determined, (2) to perform integrations by using n tables for an nth order 

differential equation, and, (3) to iterate to a convergent answer. 

This paper presents a state space formulation, in which only an, operational 

matrix is involved. For the linear case, iteration steps are eliminated. The 

new approach is much simpler in theory and 'more suitable for digital com­

putation. 

1.1. 	 Rademacher functions 

Notation of the Walsh function approach has not been unified. A brief 

introduction is summarized as follows. 
In 1922, Rademacher (1922) developed a set of functions shown in Fig. 1 

which is a set of square waves of unit height with periods equal to 1, , J, * ... , 

2 (1-k), respectively. In general the number of cycles of the square.wave of 
-rk(t) is 2 1 (Fig. 1). Obviously, it is a set of odd functions about t=I and an 

orthonormal system. For example 
1 

5 r1(t)r 2(t) dt= .	 ( a) 

1 

5 rs(t)dt =1 	 (1 b) 

Received 30 October 1974. 
t Department of Electrical Engineering, University of Houston, Houston, 

Texas 77004, U.S.A. 
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Figure 1. Rademacher functions. 
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Figure 2. Walsh functions. 
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Or, in general 
1 fO if Mon 

. r,(t)r.,(t)dt= () 
0 - if M=n 

Because the Rademacher set consists only of odd functions, it is incomplete. 
In 1923 Walsh (1923) independently developed a complete set which is known 
as Walsh functions (Fig. 2). 

1.2. 	 Derivationoj Walsh junctions 

The set of Walsh functions is similar to and derivable from Rademacher 
functions (Paley 1932) ; and it is a complete set of orthonormal systems. The' 
relationship between Rademacher functions and Walsh functions.is as follows: 

00(t)=rdt)
 

#1(t) =1(t)
 

# 3 (t)- (r2(t))(r 1(t))' 

4(t)= (r3(t))'(r2 (t))(r(t))0 
05(t)=(r,(t))1(r2(t))o(rj(t))1 ORIG'AL PAGE IS 

0 
-6(t)(r,(t))'(r(t))1(r(t))	 OF POOR QUALUITn

¢0t (r,())(r(V))1('r,(0)) 

0) (rq(t))"(,-q1(t))i(r- 2(t))V ... (2) 
where 

q=[log11 2 ]+ 1 	 (3) 

in which [ ] means takingthe greatest integer of'-'. And, 

a• 2-1+ fg 2q- 2 +r 2q- +... n 	 (4) 

Or aofy ... is the binary expansion of n. 

1.3. Illustrative example 

Express Walsh functibn 0(t) by Rademacher functions. 

Un=9 

q= [og2 n]+ 1
 
=4 
 (4a) 

9 = I - 2a.+ 0 -'22+ 0--'21 + 1.• 2 0 

1' t 1' t
T T . T 

Substituting the values of a, Ri, y and 8 of (4 a) into the general expression of 

(2), we obtain 
=((t))'(rv) 5())0(v2(t))o(v(t)' 

which means that Walsh function 0,(t) is decomposed into Rademacher 
functions as shown in Fig. 3. 

1. (7/ 
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C 2()l) =r2(t 

Figure 3. Walsh funcion is obtaineds()from the product Rademachsr functions; 

]By inspection, we have t~he following corresponding relationship. 

¢&(t) =r(t) 

¢ (t) =r5(t) 

ejt)="--r(t), n-2q-' (2 a) 

It is seen that the Raudemacher functions are contained in the Walsh functions ; 

while the latter is a complete orthonormal set and the former is not. 

2. Walsh coefficient evaluation 
A function J(t) that is absolutely integrable in [0, 1) may be expanded as a 

Walsh series. 

(t) = Co~o(t) + c1 #1 (t) + C'02(t) + ... , + 

nCo 

where {c,) are called the coefficiel ts of Walsh series. 
Our problem is to determine the coefficient c. so that the integral square 

error satisfies, 
1 Nv 

Olim J [i(t) - cn#,(t)]2 d t = (6) 
Nl- 0 

Multiplying #,,(t) on both sides of (5) and then integrating from 0 to 1, we have 
"1 1 1

5 /(t)¢(t) dt= 5 o~O(t)#,(t) dt+ .5 c1 #(t)qS,(t) dt+ 
0 0 0 

1 

x f Co. 2(t) dt+ ... (7)
0 
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Every term on the right-hand side of (7) is equal to zero, due to the orthogonal 
property, except the square of #,(t) term ; therefore 

1 

c,,= S tl(f)dt 	 (8)
0 

2.1. Gate faction example 

Let us expand the gate function shown in Fig. 4. 

0 otherwise 
as a Walsh series. 

Assume f(t) = Z c ,jt,)( 

ORIGINAL PAGE IS 
f(t .OF POOR QUALITY 

0 I I 1 

4 2 4 

Figure 4. A gate function. 

The Walsh coefficients can be obtained by substituting into (8) 

1 1/2 
co f 1(t) - 0 0(t) dt= I . dt=j 

0 114 

1 1/2
c1= fI(t). 1(t)dt= I I-I dt=j 

0 114 

1 1/2 
c2= i /(t) -0 2(t) dt= If1" (-1) dt=-i 

1 1/2 

S31f(t) - 3(t) dt IIf1-(-I) dt=­
o 1/4 

4 s-065 .:. =0 
Therefore j(t) - #0(t) + 4# (')- i#2(d)- kg 

2.2. 	 Sine function example 

Express a sinusoidal-wave foim 

1(t)=sin (rt), 0<t< 1 

into Walsh series (say, only taking the first eight terms). 

/7!; 
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Assume 7
 

it) = sin (t) c.(t)
. =1* (t) 

Substituting into (10), we obtain1 	 0 

co= S sin (wt) 	dt=- [-cos (t)]O=-=0.037 

112 1
 

c1= f sin (itt) dt+ 5 -sin (itt) dtO=0
 
0 112
 

114 12 3/4 1
 
= sin (t)-dt- 5 sin (wt)+ f sin (w-t) dt- f sin (wt) dt=0 

o 	 114 112 314 

112 V 
=2f (wt) dt- fsin 	 2 2 

--0-263 

C4= 0 11 3//8
 

c5=2{ sin ( t) - I sin (wt) dt+ f sin (wt)- f sin (wdt)
1/8 114 3/8 

=-0.126 
11I8 	 318 112 

c6 2 fIosin (vt) di- f sin (wt) dt+ f sin (-t dt
10118 	 1/8 

--00573 

C7= 0 
The resultant of the eight components is tabulated below and the comparison 
of the original curve and the partial sum of the Walsh series.is shown in Fig. 5. 

t 1/16 3/16 5/16 7/16 9/16 11/16 13/16 15/16 
(T 1)

j*(t) 0.196 0.55 0.825 0.976 0.976 0-825 0.55 0.196 

2.3. Ramp function example 

Let us expand a unit ramp function t which is shown in Fig. 6 into Walsh 
series; i:e. 

Substituting into (8) yields 
1 

co= 00(t) tdt=j 
0 

cl=- 01(t) "t-dt= ­
0 
1 (9)f 02¢(t). t.d' 
0 

r3= 03, (I) t-dt=o 
0 

Therefore t#( 

-o0 e~M-Ls( .
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f(t) f'(t) 

I0. 
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01/ t 

Fgure 5. Sine function and its Walsh series approximation. 

f(t) 

I I 

Ii[ 
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Figure 6. Unit ramp function. 

3. Discrete formula 
If the given function is not described in a closed form and its Walsh series 

is desired, we can easily modify (5) and (8) into their discrete forms 

M-1 
" '=i X 'nkfk -, nO, 1,2,. (r-) (8 a) 

where fk is the average value of the function in question in the kth.subinterval, 
n' is the value of the nth Walsh function in the kth subinterval, and m is the 

total -numberof subdivisions. 
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3.1. Ratp function example again 
For illustrating the use of discrete formulae, lot us evaluate the Walsh 

series for the ramp function again. The given set of data {1k} is as follows 

k A. 

0 0 
1 1/4 (T 2) 
2 2/4 
3 3/4 

4 4/4 
We convert the table into a discrete form by taking the average value over 

each interval and obtain the following corresponding table. 

o 1(0+)= 

( + )=4 (T3)21 
1(-24+ D= 

3 (Q+j)=j 
Substituting (T 3) into (8 a) and writing it in a matrix form, we have 

a)­~(10s:_ I- - I [_Lfh_f 
In a compact form 

c=,Wf 1-(O
C =W (10) 

where W is called the Walsh matrix and is obtained from the definition of the 
Walsh functions. Figure 7 shows the correspondence. 

(t) 

o t~. Il-

0-I 

-tt 

Figure 7. A set of Walsh functions and its Walsh matrix correspondence. 

/./6 
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Substituting fk of (T 3) into (10 a) and evaluating c., we obtain the same 
results as shown in (9) of the previous section. 

3.2. Triangular /unction example 

Let us consider a triangular function shown in Fig. 81 The given data are 
in numerical form, or 

k 1k 

0 0 
1 j (T 4) 
2 
3 
4 0 

The Walsh cbefficients of this function are desired. 

f(t) 	 ORIGINAL PAGE IS 
OF POOR QUALITY 

4-------111 

4 2 4 I 
Figure 8. A triangular function. 

First of all, we take the average values of what in each interval and have 
the following, 

k ft 

0 (0+-) -	 (T 5) 

2 -( +2 )=j 
3 4(2+0)= 

Substituting (T 5) into (8 a) yields, 

I 1 1 = 	 !0C- c° -r	 ! . 

3.3. 	 Double triangularfunction example 

The double triangular functions shown in Fig. 9 are of our particular 
interest. Their Walsh coefficients can be evaluated routinely by first taking 
the average numerical values and then substituting into (8 a). 

14.7­
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L t) 

Figure 9. A double triangular function. 

Ic 4 A 

0 00 in~1 (+1= (T 6) 

2 0 (To)3 o+ 1) = ­

2 In]CA]c=W.4 i = 
3.4. Alternating triangular/unction example 

The alternating triangular function shown in Fig. 10 is nearly the same as 
that of Fig. 9 except with the second triangle inverted. The sampled values 
of the alternating triangular function and its average value in each interval are 
tabulated below : 

f ) 

0 

Figure 10. An alternating triangular funetjon. 

0 Q
 
8 o 2(0+o)=k (T7)
 

3 - 1' _i(o)=­4 o ,(-+o)= -* 

Substituting (.T 7) into (8 a) again, we have 

cA[0J W?.i..1 A A-1 f-1s-}i.=L 
C3 1040 

ORIGINAL PAGE IS
 
OF POOR QUALITY
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4. Derivation of operational matrix 

We recall that Walsh functions are a set of rectangular waves. Their 
integrals are various triangular waves. We summarize the facts as shown 
inFig. 11. 

1.dt 

,(t, 	 d
t
 
0 	 t­

0 	 t0'(	 _- : 

~i I 3 0 i I 1 I • t 

Walsh function 	 First integration of 
Walsh functions 

Figure 11. Four-interval Walsh functions and their firstintegrals. 

The first integration of Walsh functions are expressible by Walsh functions 
and each one has been evaluated in the previous section. Therefore, we can 
write the relationship between Walsh functions and their integrals in the matrix 
form 1 0odtii --I -i o]F-l0_ 

f01 dt Ii 0a)0 	 -1j/I#/' (
J0dij L 0 0 0 OJL 2] 

or in compact form, 
(,) (11)dt =P(4)4(4) 


P is called the operational matrix,which relates the Walsh Rhnctions and their 
integrals. It is,chosen as a square matrix for convenient computation and its 
dimension depends on the number of components chosen. 

4.1. 	 8 x 8 operationalmatrix 

Equation (11) is an approximate formula, its accuracy depends on the 
dimension of 4 or P. We can follow a similar reasoning stated in § 3 to derive 
a-larger P matrix. If we 'have 8 subdivisions between 0 and 1, we have eight 
components of the Walsh series. The Walsh components and their integrals 
are shown in Fig. 12. 

17S 
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t-r 

A 	 j~dt 

d 1 I__I fo , 
't o[ ,,, 	 ; t 

-t 

o 	 to V I -I 

- -o 	 t tfo.dt

I t_ 0 t 

-I~~o~t - - -r0 o o. o 
*~~-" 	 ffidt 

Figure 12. Eight-interval Walsh fnnctibns, and their first integrals. 

Evaluating analyrtically or numerically of the trianguilar functions, we 
obtain the followiing m atrix"­

01 	 f#d
i-Oi 0,K 0 0 *O0 00 

I#d1 I 0 -JL 0 0S 0o 'taoio o o I 
Oh /8tt9f0 2 dt 	 k 0 0 0 0 0--A-0 02 

f# 3 dt 	 0,13 0- 0 0 -0 0-.5 #3 

. ........... - - .....---- ---- (-12 a)
H4 -A- 0 0 0 0 0 0 0 

dsjt j 0 0 0 0 0 # 

6 t 0 	 0 A- 0 0 0 0 0 0 
0 t0 b A- 0 0 0 0 
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Or, 
S (8)dt=P(sx3)4)(s) (12) 

It is interesting to note that the upper left corner of P(8x) is exactly P(4x4) 

as shown in (12). The upper right corner matrix and the lower left down 
corner matrix are diagonal matrices, and the lower right corner matrix is 
simply a null matrix. ORIGINAL PAGE IS 

OF POOR QUALITy 

4.2. 16 x 16 operationalmatrix 

Following a similar reasoning line, we can easily establish the 16 x 16 
operational matrix as shown in eqn. (13) 

P(ieXi6) 

~i'~ 0 - 0 0 0 0 0 0 0 0 0 0
 

0 0 0 _ 0 0 0
-- ----- -- o 0 0----o ----- 90, o 0 o 0 0
 

0 o 0 0 0 - 0 0 o - 0 0 0 0 0
 

0 i0 0 0 0 0-kO 0 0- 0 Q 0 0
 

-k0 0 0 0 0 0 0 0 0, '0 7 10 0 '0
 

0 * 0 0 0000 0000 0 -h0 0
 

0 0 -* 0 0 00 0 0 0 0 -i 0
 

0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 -A
 

0 0 0 0 0" 0 0 0 0 0 0 0 0 0 0 

0 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 ", 0 0 0 0 0 0 0 0 0 0 0 0 0 

00 0 0 0 0-0 0 0 0 0 0 0 0 0 

0 00 0 0 ~0 010 00 00 00 0 

0 0 00 0 0 ~00 00 00 00 0 
0 000 0 0 o 00 0 o 00 

(13) 

This looks like table (2) of Corrington. However, he did not present his
 
table (2) as a matrix nor used it as a matrix.
 

/97r 
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If we partition 16 x 16 operational matrix, we observe that the upper left 
corner is the same as P(sx),and then partition the submatrix P(8xs), the upper 
left corner of which is P(4.4), etc. Therefore we have 

.............
(2) 
0 

P(ioi) -&1(2) 0(2) (14) 

I( 0(4) 

..*I(s) GO(S) 

This regular patternenables us to construct an operational matrix with any 
large dimension. Because Corrington used the arrangement of (13) as a table, 
he did not recognize the regularity of the pattern shown in (14). 

4.3. Generaloperationalmatrix 

When we assume the undetermined coefficients series matrix in the first 
step of solution, we chose m terms ; the value of.m is assumed to be, 

m=2" (15) 

where a is a positive integer. This assumption which is only for the convenience 
of computation, of course,.is not absolutely necessary. 

If we do choose m so that (15) holds, the general operational matrix can be 
written as follows: 

1 

---...-.------- -- .....
 ..--T
1- 164 

l/2(m/) 0(ma) 2m 1 

P nx. ) --------- ...... ..- ........- - (1 6)
 

1 
In 

IW(m/2) I O(M12) 

5. Solution of'state equations 
Corrington derived n different tables for solving an nth-order differential 

equation. It is tedious and unnecessary. From a state space viewpoint, 
any nth order differential equation can be converted into a set of n state 
equations, and one table suffices for the solution. The new approach is to 
take advantage of the state space formulation and derive a unique Kronecker 
product formula for the solution. 

'/r
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5.1. 	 Derivationof solution formula 

Given a set of state equations 

*=Ax+Bu, x(O)=x o 	 (17) 

where x is a state vector of n components, u is an input vector of I components. 1.8 
A and B are n x n and nx1 matrices, respectively. 'Forsolving this problem bOIGC1I. P -LjA.3 
the Walsh series approach, we assume the rate vector * instead of state vecto 0 ? 00 . 
x as a set-of Walsh series. Let 

1= Cl~ + clc + e12 t2 ± ­

' 	 = C'20€o+ e210 2 + ... (18) 

.n+.
Xnr +eno+A 1+c ± " 

where o are constants to be determined. Once we know the solution * we u 


can obtain the solution x in a straightforward manner. 
Because Walsh series is not only-orthonormal but also convergent fast, we 

can use a finite number of terms, say m terms, to approximate the actual 
solution. In other words, it is justified to assume. that 

610 C21 ... c014,1) 0' 2 ... .. ... ) 1 	 (19a) 

-n0 .ha ... 02,U_) ,.-_ 

or 
141(19)
 

where C(nxm) is an n xm rectangular matrix and tP(a ) is a vector with in com­
ponents, or 

0 12 ... 
0 n~ln-)oiln1

A 	 2 C2 ... 2M11 	 r22 

S,_-[ ' #.#i.... ] 	 (21) 

Prime means transpose.
 
The state variable xinay be obtained by integration
 

x(t)-C Jp(A) 	 (22)dA +x0 
0 

However, the integral can be evaluated approximately via the operational
 
matrix P as we mentioned in the previous section. We then have,
 

S(*( dA,=Pcj(t) 	 (23) 
0 
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The inputfunction u(t) can be also expressed as a Walsh series 

FUIt) A1 A12 ... AI(ml)][ #o 11 10 11 L..
[(t)i 	 . ..... 
I', hhJ , /1 . h...1 " .. )JL. -I 

(24) 

u(t) is a known vector, i.e. all the elements of H matrix are known. 
Substituting 	(20), (23), and (24) into.(17), we have 

,Cc =ACPc + Axo +BHc (25) 

However, Axo is a constant vector and is expressible as Axo)0 o, or
 

Ax o = Axo
0 )o = [Ax., 0. 0]dc A G( 	 (26) 

(m - 1) columns
 

Then substituting (24) into (23) yields
 

C=ACP+G+BHAACP+K 	 (27) 

where K A G + BH is an n x m matrix. Thefirst column of K may lie defined 
as k0 ; the second column, k,, etc., as we defined for C'in (20), then eqn. (27) 
is expressible in terms of these vectors, 

[co c1 ... C(m.)]=A[€O 	 cl ... c(.,j)]P+[k. k1 ... k(m.l)] (27 a) 

If we re-arrange C as a vector with nm elements by changing its first column 
into the first n components of the vector and then the second column, etc. ; 
and re-arrange K in the same manner, finally we obtan an even simpler form 
in terms of a Kronecker product for (27)[Co1 [Co [ 1 

"=A®P'] c 	 + k1 A[A®P']c+ k (28) 

where-A P' is the Kronecker jproduct defined as 

. - FrA j 21A ... PmIA' 
P 12A P2 2A ... p.,2A 

A P ................... "(29)
...... 

PaIA PI2 .A Pn. AJ 
The solution of c comes from (28) directly 

c=[I-A®P']-k (30) 

After C is, determined the solution*, is obtained. The solution x is easily 
found by substituting C into (22), namely 

x(t) =MP(t + Xo (31) 



A 	state-spaceapproachto Walsh-seriessolution ol linearsystems 849 

5.2. 	 Freesystem example 

For the free system for which 

=-4x, x(0)=1 

we should like to get the solution via the Walsh series approach. 
First of -all, we assume t has a Walsh expansion with m = 4 undetermined 

coefficients, 
co 

6(= ci ORIGINAL PAGE ISci(t) 

=,, 	 OF POOR QUALITY 

[CO,C1 C311 C'4)t) 

Next, the expression of x in terms of 4) is obtained through integration 

x(t)=c' S 4(A)dA+x 0=c'Pc4+x 0 . 
0 

0o +[, oo,o]4 
0
 

Combining x(t) and v(t) with the differential equatipn, we have 

c'$= -4e'P@f+-4, 0; 0, 0]4) 

C--[I + 4p]-l 0=- 01=­

00 - 0 I_ 0 ­ -


X(t) 

1o 

- -Exact solution 

- Four subinterval 
" Walsh solution 

z 

0 I I 3 5 4 7 1 t 

Figure 13. Walsh series~solution~of a'free system. 
. 3M 

x\S
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Therefore, 

a(t) c'P(t) +xO= 28'o00(t) + 1 1 (0 + U(t)- +-k-3(t) 

Figure 13 shows the result of the solution and the following table is the com­
parison between the Walsh approach and the exact solution. 

t 1/8 3/8 5/8 -7/5 

c'F#(t)+x 0 0667 0222 00741. 0-0247 (T 8) 

exp (-4t) 0.693 0.223 0105 003 

5.3. Forcedsystem example 

Consider a set of differential equations to be given as
 

{1 =-X18X2+-8u, xI(0)=0
 
& 2 = 5X - X 2 ,X 

2 =1 (0) O. 

u(t)=unit step input 

It is required to find solutions for x1(t) and x 2(t).
 
The A afid B matrices of this system are as follows
 

The rate vector *(t) may be assumed as thd Walsh series form. 

rL&(t) LFc 11 01 +c 12 02 +10 0 0+ 

O±Cl#2000tz 2O +2±21 

For easily showing the procedure let us take only 4 terms, of Walsh series for
 
each state variable, namely m = 4. ­

=~t[CIO C 2C1. cit fLoiA 

021~2 0jI3~ 

For unit step function, H may be written as 

H=[1, 0, 0, 0] 

The G matrix is a null matrix for zer6 initial condition; then K becomes 

K=B:-1H+ G=- [1800 f[k= 0 , kD, k2, k3]
L 00 0 

Substituting A, P' and K into (28), we have 

JA JA *A 0 1FJ L0k 
CO -+A 0 0 JA lie1 + [k]

[CC ---kA 0 0 0 eC k2L3 i 0 -4,A 0 0ie 
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x ,(t) 

00 

04./ 

Exact solution 
Four subinterval 
Walsh solution 

0 1 4 

Figure 14, Walsh series solution of a forced system. 
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X Mt 

,c 

10 

/ 
/ 

/ 

/ 

/ 

/ 

-

/ 

05 - ---­

/-

Exact solution 

Four subinterval 
Walsh solution 

0I 
0 

/ 
0 _. S !, ', I I. 1 

s zz 4 

Figure 15. Walsh series solution for X(t). 
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Solving for c and multiplying C with P, we have 

Cp = [0"3717155- 0'0637155- 0'0381155- 0"0011377] 

0. 6240888 - 0.3640888- 0.1543L11 - 0.0056888j
 

Finally, the sol 11ion of x1 and -12 are
 

x, = 0.37 [7155#0- 0.063715501- 0.038 [ 1550 2- 0-001 1377# 

X2 --0'6240888 o- 0"364088801- 0-154311102- 0.005688803 

The conventional solution and the Walsh series solution of x1 and x2 are drawn 
in Figs. 14 and Fig. 15, respectively. 

54. A circuitexample (Huelsman 1972) 
Let us consider the circuit shown in Fig. 16. The initial conditions are 

zero and unit step function is applied. The governing differential equation is: 

XI-1 [-Q/0 0 0 -1/01 0 -1I/0l ]-VI] [1/0k]lX 0 -02/02 0 0 - -1/02 1/0 I,2 I 0
d X3 0 0 0 0 0 1/ 3//+I+ 00

dt x4j I/L1 0 " 0 0 0 0 X4 o/XJ/ 0 1/L2 0 0 0 0 I// I o 
0- o1L
 

=Ax + B1u
 

-X6 11L 3 -L 3 0 -R 3IL 3 j- 6j L 

X6X
 3
 

Rl 03Xe L3 3 5 
U X_ _ xI 

1 1 3L2 G 'C2 

Figure 16. A circuit of sixth order. 

If each parameter of the circuit is assumed to have a numerical value of 1, 
A1 and -B become 

0 1o0 0 1 01 00 01~
J1AI= 0 0 0 0 0 1 0­

0 1 0 0 0 0o
 
• I 1- 0 0 -i 0 

Suppose we are interested in applying the Walsh functions to obtain the 
solution for each state variable in the interval 0<t<12. sec. The first step
is to normalize the time scale by lotting, 

rT=t/12"8Atf, dt=tf• d 
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Then 
dx dx dt 

=- =t, Ax+ tjBju AAx+ Bu
W-7 

Next, expanding u(t) into a Walshseries with ?n terms and applying (19), (24), 
and (27), we have 

u=_ Hc 0? Poo -PAGG 
QLAr

C=ACP+K 

where K is-related to H through (27). 
-A question arises here. ' How many terms should we use ' If we wish 

to obtain-a quick answer and to sacrifice accuracy, we can use small-number for 
m, say, let m < 8. On the other hand, if we want accurate answer and do not 

care about computation time, we can use very large value for M,-say, M > 128. 
Let us investigate both cases. Try ?n = 128 first. The matrix C wilti 

contain 768 elements for m= 128, n=6. If we use (30) diredtly, some diffi­

culties might occur in obtaining the inverse of a square matrix of 768 x 768. 
But, recall that the P matrix has the special form as shown in (16). We can 
take advantage of the properties of P and use Gauss' method to eliminate 
C1, C2, ... , Ic,,,_, then' calculate c., finally calculate cl through c,,,- via substitu­
tion. For detailed explanation, the reader is referred to Appendix. 

The evaluation of x(t)-via (31:) should cause-little trouble. Shanl's (1969) 

algorithm may be applied here to speed the computation process. Using 

UNIVAC .1108 computer, we obtained 128 points for each of these state 
Variables. The execution time including normalization of A. and B1, trans­
formation of -(t) into Walsh series, and inverse transformation of Walsh 

coefficients for x into time function is 617 millisce. The waveform of x2 is 

drawn in Fig. 17 which is checked with H.uclsmnan's Fig. 6-7.7 ; his result is 
obtained by using the Runge'-Kutta method.. 

Next, let us try m=8. C contains 48 elements. We may use (30) to got 
the inverse of a square matrix 48 x 48. Or, we may apply the algorithm in 

xz~tI 

Wolish serles'solutlon with 16 suiIntervals 

Ohh 
axmct solution 

Figure 17. Walsh solution- compared with the Rung4-IKutta solution. 

-1.15 
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Appendix. The following values are obtained with the Gauss elimination 
algorithm. 

j 1 2 3 4 

C2, 0.00941 -0-24960 0'48335 -0.04008 
5 6 7 86 

C, -0.00091 -0-21712 0-44308 0.04254 
After multiplying C with P and taking the inverse Walsh transform, we have 

t 08 2.4 4.0 5"6 

x2 (t) 0.02942 0-05480 -0-03593 -0.12136 
t 7*2 8.8 10.4 12-0 

x2(t) -0-03264 0-06517 0-04748 0-01442 
The solution. x2 (t) is dravn in Fig. 17 as 'stairs for comparison. The other 
values of x1 (t), x3(t), x4(t), x5 (t), x 6(t) have been obtained also, but they are 
omitted here. 

For comparison, we have tried to solve this problem with Runge-Kutta.s
method by letting subinterval of integration equal to 1-6 see. Then, we 
obtain, 

t 0 1-6 3-2 4-8 6-4 

x2(t) 0 -013653 -1-0352 -1-5209 2-5396 
t 8.0 9-6 11.2 12-8 

x2(t) 10-499 12-778' 19-543 107.79 
In this case,. Rlnge-Kutta's method fails completely as shown in Fig. 18 
because of numerical instability. 

X2 

01 

-01 

8 S~bintervals 

T(3 2,-10O3) 

Figure 18.. Runge-Kutta's method fails. 

.fo 
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6. 	 Conclusion 
A simple procedure for solving state equations of linear systems via Walsh 

series is formulated. It involves (1) to assume the rate variables as Walsh 
series whose coefficients are to be determined; (2) to use an operational 
matrix to perform the integration ; (3) to develop a new Kronecker product 
formula for the rate variable and (4) to determine the state variable from the 
late variable so obtained and the given set of initial conditions. 

Compared with Corrington's procedure, the new technique has several 
advantages : (1) while we only use an operational matrix he must use several 
tables. The tables so far he derived are only for solving low order differen­
tial equations. In other words, if the order is relatively higher, additional 
tables are not available. (2) We derive an exact formula which involves 
the Kronecker product only. 

The disadvantage of our approach is that our answer is slightly less accurate 
than Corrington's. However, this shortcoming can be easily overcome by 
using more subdivisions and digital computation. 

Appendix 
Algorithm for solving C via the Kronecker product jormula 

Tn this appendix we derive a recursive algorithm to solve C from (28) 
instead of inversing [I - A®P'] directly. Let us illustrate the procedures for 
M= 23= 8. 

Step 1 

Equation (28) may be rewritten explicitly for m = 8. 

co- A JA JA 0 *A 0- 0 0 c "k0­
% -JA 0 0 *A 0 *A 0 0 c1 k,
 
C2 .- JA 0 0 0 0 0 -A 0 C2 k2
 
c. 0 -- A 0 0 0 0 0 +,A c7 + (Al) 
c4 -*A 0 0 0 0 0 0 0 C4 + k4 

CS 0 - 1-A 0 0. 0 0 0 0 e5 k5 
C 0 0 -- 1 A 0 0 0 0 0 C6 k6&

cV 0 0 -*A 0 0 0 0 c7 ' k7A
 

It is obvious that c4 , c., c. and c7 may be expressed in terms of c., c., C2 and c3. 

-0A 0 0 0 Fc7 (Ai 

C = 0 0 -A 0 / /C2 k 
c7j L 0 o- J+0jJFA 

In order to keep consistent notation, we may define 

G3 AI 	 (A 3) 

R3A - (l/2 3+')G 3-'A (A 4)
then ci+4 =R 3c+)6+4, i=0, 1, 2, 3 (A 5) 

.I'7/
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Substituting (A 2) into (A 1), we have 

A [2JA 	 -4 0S JA IA 0 c0 Fk0 +-,,-Ak 4 

-JcA -TiFhA 2 0 jA +, k1 + iir;Aks A0 . . -[ 0 -A-A: A 0 c. k. +-kAk 6 (AG) 
0 -- A 0 --. '.A'-L Lk3 +-,kAk 

Now we may define the new diagonal matrix as F3 and the new inputs as 
ki, 	 II 

S1 1 
2F3 A 	 (A 7)=56 2 =- ' AR-

IITni ,+2k* AG 3-'ki+4 , i=0,1,2,3 (A 8) 

Step 2 

Eliminating c., c3 from the lower half of (A 6), we have 

[C21: + A2)1A 0A ] Cl 
-k 

2 , III] 

This may be put into recursive form by definiing 

G2 AI-F 3 =I+ A2 (A 10) 
1 -

R 2A- +1 G 2-'A= -I(I+I-A 2 )A (A 11) 
then, , C!+2=R 2cj+G 2­ 1kU+ 2), I,I i=0, (A 12) 

Substituting (A 9), (A 12) into (A 6), we have 
ci _r A+ F3- A ( 1I+A 2) -A JA Co] 

[IF -A.	 F3- 4A(1+Y 6.-A2)-1Aj [cj 

+k[ k2, IV, (A 13)4AG2-I,, + 
[k11 1I, + IAG2C'k3 V] 

For recursive operation, we should define again 

F2 AF 3+- AR = -A -A(2 + -'2)A, (A 14) 
22+1 

ki, 1I Aki III + +1 AG- (A 15) 
11k1 ' -21 ..0 
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Step 3 

Eliminating c, from (A 13), (A 14), we have 

C1 = - J(I- F 2)-'Aco+ (I- FQ)-k, 1 ARco + 9l-lk, I, (A 16) 

whore G1, R. are defined in the same form as G., R2 , 3., 

GjAI-F 2 (A 17) 

R -1- 22 G-'A (A 18) 

Substituting (A 16), (A 14) into the upper half of (A 13), we have 

c o = [-A+F2 + JAR,]c0 + ko, li+ *AG -'k., I, 
Therefore 

co = Go-1ko, I (A 19) 
where, 

Go-AI- A-F (A 20) 

FAF 2 + AR (A 21) 

1 
ko,'1 ko , 11 + I A 171k, n (A 22) 

Step 4 

c1 is obtained by substituting co into (A 16). Similarly, C2, CS and c4, C5, 
c., c, are obtained by applying (A 12).and (A 5), respectively. This completes 
the derivation of the algorithm for solving C from (28), with m = 8.. 

In general, for in = 2, a is any positive integer, we start with 
1 1 

- G R,.-- IF- AR (A23)R=I, A 

Then,. we can calculate- Rp6and ki, f, i = 0, 1, ... , 2#-1, 0 < fP< - 1 from the 
following recursive formulae. 

G = I - F6+1 
R.= - 2--'G-'A (A24) 
F6 = F8-+1+:;I+(A k 24)

k,, 6= k,, +1+ 2-fl-:AGflk+2, +1 

Then we obtain cO 

c'=Go-lkoI, G0=I- A-F (A 25) 

All the other vectors ;j, i = 0, 1, ... , (i - 1) are found by substituting with 

= - GFikci+/-')fi (A 26) 

In the above algorithm, We always work with matrices (G, F, R) of n x n. 
Therefore there is no need to operate with larger matrices. For instance, if we 
wish to. apply Walsh functions to solve'a sixth-order differential equation, we 
need only work with matrices 6 x 6. The calculation of matrix inverse of 
[I-A®P'], which is of 768x768, is avoided. Therefore, we have saved 
computing time, storage, and have reduced roundLoff errors.significantly. 
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Abstract 

The paper deals with the application of Walsh functions to the time-domain-synthesis problem, i.e., the determination 
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Laplace transform of u(t) 
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average value of x, 
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1 Introduction -, 

• Finding the simplest system that will realise a prescribed 
Input/output behaviour has been a fundamental problem in systems 
theory since Guillemin's time) Only a few techniques are generally, 
known, and they. including the one developed by Guillemin himself, 
are based on repeated differentiation and contain all the inherent 
disadvantages involved therein. 3 

In searching for anew direction, the question naturally'arises: why 
not use a principle based on integration instead? Walsh-function 
theory,4 when used in the solving of differential equations, is such. a 
pnnciple . Corrington s used this approach on the solution problem. 
This paper proceeds in the inverse direction, attacking theime­
domain-synthesis problem via Walsh functions. 

Let us first briefly review Walsh funclions. 

2 Rademacher and.Walsh functions -[n 

In recent years, Walsh-function theory has been innovated 
and applied to various fields in engineering and science.-6 - The 
original papers were published an 11922 and 1923 by Rademacher8 and 
Walsh," respectively. 

Rademacher's function is a set of square waves of unit height with 
" periods equal to 1, , ,,... 2 (i- ), respectively. The first four 

square waves are shown in Fig. 1. It is noted that the set involves only 

odd functions, and therefore it is not complete. In-1923, Walsh inde­
pendently developed-a complete set-Icnoi 'n as Widsh functions. The 
set of Walsh functions and the set of Rademacher functions have the 
following relations: 
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0.Wt 	 = ro(t) 3.1 Discrete formula 

0 1(t) 	= ri (t) If the given function is not in its analytic form but in 

02(t)= {r(t) tabulated-data or graphical form, and if its Walsh-series expansion is(r2(t)' 
1


032(t)= {r2(t)}t (rtltUP° 	 desired, we would modify eqns. 5 and 7 into discrete forms:0(t)= {r (t)}1 {,(t)	 (1)m­

004(t) = {r3(t)1' {r2(t)}0 {r(t)}	 fa = ) .e, k = 0,1,2,... ,n-i (5a) 

0s(t) = {r3(t)f1 {r2(t)}0 {ri(t)}i 	 n=a 

06(t)= {ra&)}' {r,(t)) rj(t)}"1n-	 cn = -
C. = noa n =0,1,2,.rn-I (7a)

07(t) = {r3(t)} {r2t)} {r, (t)} k n 
where fais the average value of the function in question in the k th 
subinterval, 0,,k is the value of the nth Walsh function in the kth 
subinterval, and m is the total number of subintervals. 

0.0) = {r0 ()}bQ {r 0 t (O} h -j {r'-(t)}b q - 2 .... (2) To illustrate the use of a discrete formula, let us evaluate the Walsh 
where series again for the ramp function in its tabulated form. Given 

k 	 0 12 3(3) 
q -[log2 n] + 1 


A I i i

in which [" means'taking the greatest integer of. Therefore, 


The corresponding graphical form is the ramp function.
 
n = b,2q-1 b-,2q- + . ..b1 20 (4) Eqn.7ain its expansion form form =4 is as follows:
 

where b.or 1 .. bI is the binary expression of n. C. co 001 002 os ol
 
Rademacher function components are required, we simply change n 10i 0 0131 xj (8)
Therefore, ifaparticular Walsh function 0,(t) isgiven and its
into binary form and then substitute in eqn. 2. For example, to find 
 10 	 2 0 0 OO 21 22 023 f1 	 i f~llthe Rademacher-function components of Walsh function 01e(t), 	 0 33i 

q = 	 [log 2 100 0i L 
Substituting the tabulated data of the ramp function into eqn. 8, we 
have 

1[2 1 ,:10 =Ix 23 + x22 +1x 2'+ 0x20 
t" t t' t 	 t --1x (9a) 

154 153 b2 bi 	 2-­
--1j--1
and therefore 

oii(t) = {ra(t)}1 {r3(t)}P r 2 (t)}l {rj(t)}0 

The Walsh functions, like the Rademacher functions, are easy to draw. -I ORIGINAL PAGE IS 

= -J 
(9b) 

OF 	POOR QUALITY 

Walsh-coefficient determination 
 The square matrix defined'in eqn. 8 and the numerical values shown 
A function f(t) that is absolutely integrable in [0, 1) may be in eqn. 9a are easily recognised from the definition of Walsh functions. 

expanded into a Walsh series: It is seen that the Walsh'series of a unit ramp function obtained 
from a discrete formula, or from eqns. 9, and that obtained from the 

f(t) = ceOoQ)+ c1 l0(t)+ ... + cnpn(t) + .. (5) analytic formula are, of course, the same. 
Eqn. 8 cah be written into a general compact form:

where c, are coefficients of the Walsh series off(t). 
It isdesirable to determine the coefficients c, such that the 1 

mtegral-square error satisfies the following relation: c = Wf (10) 

n 	 lf(t)- Z c..(t)1 2dt = 0 (6) wheredW is called the Walsh matrix. 
00 	 3.2 Operational matrix 

Multiplying by 0,(t) on both sides of eqn. 5and then integrating each 
term from 0 to 1, we obtain Inthe preceding Section, we showed that the ramp function 

can be expressed by aWalsh series, or 
c,= 	flo0,(t)f(t)dt (t) t 0(-- A0(t-0 2 (t) (11) 

- This is because of the orthonormal property of Walsh functions. However, a ramp function can be considered as the first integral of 
Let us illustrate the Walsh-series expansion by the following simple a unit step function, or 00(t). Therefore, we write the following 

ramp-function example: 

f (t) = tSubstituting f(t) into eqn. 7 and taking only four terms, we obtain f'@o(x)dx = [,-,--4,]0 1 	 (12) 

c, = fIoo(t) tdt = 
0O 

'lfo 01(~= = -The 	 first'integral of i(t)is a triangular function, and if we expand 
= f.'0. (t)tdt = - the triangularfunction into a Walsh series by using discrete formula 

with m = 4, we have 

C3= fa'0,(t)rtdt = 0 	 O 

After substituting these coefficients into eqn. 5, we have 	 f tp1(t)dx o, 0,'-J] 

f 0[ , 
t = 0o(t-*0,(t)- A(t+00(t) 

Which is the four.terrsi Walsh-series expansion of the ramp function. ?7Oi	 100 

http:0,1,2,.rn


Similarly, we can evaluate the Walsh-series coefficients of the first shown in Fig. 3. Then we could expand the triangular waves into
 
integration of ca(t) and 03 (t) and easily obtain Walsh functions, arriving at the following formula
 

cl f@0dt 0 0 - 0'-1 0 0 0 1 
01 "I f cadt 1 0 II 0 0 0-- 0 0 0 

f,02()X 010 	 (14) f40,dt 0 0 0 00 0 0 0 

-03- t 0 01 0 0 0I -f .
 
and f 0, dt 0 0 0 0 0 0 0 @4
 

ffsdt 0 i0 0 	 0 1 0 0 0 05 

f 0 3(@t)dx [0; i,0l0] 	 (IS) f0 6dt 0 0 0 0 0 0 0 06 

0 0 0 *1 0 0 0 0 07L03 	 f0 7dt 

r-
 which is

Combining eqns. 12-15, we have 

t . 5- -h t 9(a)(x)dx P(axs)9(u)(t) 	 (18a) 
(x)dx 	 0 (t) ­- "o It is interesting to note that the upper left comer of Pr8 a)is exactly 

, *l 0 @)( 4 x 4) in eqn. 17, the upper right corner and the lower corner are unit@dx)d 0 
-0-	 (16) matrices multiplied by --, and , respectively, and the lower right 

f t p2 (x) dx 0 	 0 0 01(t) comer is simply anull matrix. 
' o Following a similar reasoning line, we can write a general expression 

f 0a(x) dx 0. Q 3(t) for the operational matrix P of order m (which is a positive integerL apower of 2) as follows. 
or in compact form 	 I I 

t
 

fo9()X~X.4)()()(17) 7M - I
~ 
Pt, x ) is called the operational matrix of dimension 4 which felates M, I 
Walsh functions and their integrals. It is chosen as a square matrix 2 I r- ­
for the reason of convenient calculation. mIl1 j 0(n5 I 

. ..i. . .I . . .	 i m I­

1 I V (19) 

- - ---1 - -- i , 
I 

L
1O 	 m( ) 0(Om) 

---- This operational matrix will play an important role in thedtime­
- 1 4 1 domain-synthesis problems. 

'?- , 'I'\/T 	\ 

t4 	 4 Principle of transfer-function synthesis 

Consider the following differential equation:F- 0 	 n - y n ) "a ly ) -+.. a n_,Y +yany =b l n4 - ') + ._ -+bn _, +tq bn.u 

-y + (20) 
0 wherea, a 2 , ... ,,b ib 2 , ... ,b, ateunknowns while inputu and 

outputy are given analytically of numerically. Also, assume all initial 
1/4 1/2 3/4 1 conditions are equal-to zero. 

-1 both sides of eqn. 20 n times, we have LIntegrating 
1 "8 	 y(t) +-a, y(t)dt + ... a f ... fy(t)dt 

r 	 (21)A C. 	 - - - -f 0-
- f itt(t)t +... + b f... fu(t)dt 

ce-	 Both giveny(t) and u(t) may be expanded into Walsh senes. We write 

-	 y(t) = c'9(t) = C0 + CI, + C2 2+... (22) 

1 	 . and . u(t) = h'9(t) = hoo+h,@I+h 2 2 +.. (23) 

e.G 	 'No As explained in Section 3, the first integration of a Walsh function 
may be expressed approximately by 

Fg 3(x)dx _ P9(t) 	 (24) 

gWalsh 	 Substituting eqns. 22, 23 and 24into eqn. 21, we havefunctions and-theirfirst integrals 

By the use of eqn. 17, integration becomes multiplication, there- c' [I + aIP+ aP 2 + ... + aP ]9 (t) 

fore, we onsider P as an operational matrix. -= h'[bP + b, P2 + ... -bP ] . (t) (25) 
If we divided the unit [0, 1) into eight subintervals instead of four, 

and evaluated f @5 dt,f 01 or, ., f 0, dt by either an analytic method Eqn. 25 must be satisfied for any value oft. Let us take, say, 2n 
or a discrete formula, we would obtain a group of triangular waves as samples, at tI , t2 t,.2, We have 

A..... 



c'[I+aP+a2P
2+...apn]9(ti) =h'[bP + b2P2+...+bnP"]9(t,) 

c'VI+ a,P+aP' -4- ap (t) = h'bIP+Ibp 2P ±... + b,,Pn19 (t2) 

c'[1+aIP+a2 P
2 + "a n 	](t5n),=[b P+bP2+'"+bn ] (t0) 

(26) 
We can solve the 2n equations for the 2n unknowns a and b. Then 
let us define a matrix 0of 2n x m as 

9; (t) 

,A 9'0(2) (I ORIGINAL PAGE IS (27)[v l - [i -1 -1 1 1 -1 -1 

: OF POOR 	QUALIYI 

9' Q2t.) 

Eqn. 26 is then simplified to 

0'[-P'c,-P"c-P'nP'hm = 0c ( ) 

Performing inversions on the 2n x2n matrix in the {-}, we obtain a 
and b: 

ral 
I={'[-P'c...- Pc,P'h... p'nh]}-70c (28) 

LbJ 
Eqn. 28 is the basic formula to fit eqn. 20; if input/output behaviour 
isgiven. 

4.1 	 Illustrative example 

Suppose the input to a system is a unit step and the output 
data are as follows: 

t 0 j 	 j 1 

:7(t) 0 0-632 0-865 	 0-95 0-982 

It is required to find the differential equation or the transfer function 
of the system. 

Let us average y (t) of each subinterval first. 

k 0 1 2 3 

Y, 0-316 0-7485 0-9075 0-966 
Applying the discrete formula shown in eqns 9 with .n = 4, we obtain 

I1 1 1 [0-316 - 0.73451 

_- 48Integrating 
= 

I 

m 

1 -1 -1 10745] -/-0=25 
1 [-o-1?75j 

I -0'°935 
--1: -1[o.:75 

" Suppose the linear system is defined as 

y+ay 	= bu 

U = [1, 0, 0] (t) 

and choose t, = 6 and t = i. Then -e 

4,[(] = [i 1 1 

9' L) 1 -1 -1I 
Applying eqn. 28 with P defined in eqn. 16 yields 

[:] 	 [3481] 
= [3-631 

The required differential equation is therefore 

.+ 3-48y = 3-63u 

or the required transfer function is 

Y(s) = 3-63 
U(s) 	 s + 3-48 

Lm--LI -1 -1 1 -1 1 1 -J 
Applying eqn 28 with P=P xs), we finally obtain 

rel = 3.9287759] 

[bJ 	 L3924355 

Therefore the differential equation of the system is-
I 

3-9287 759yY = 3-9243553u (30) 
When we took five samples, the differential equation fitted was 
eqn. 29; for nine samples, we obtain eqn. 30. The unit step response 
isactually taken from the following system: 

y 4 4 = u 
It-is interesting to note that the result obtained by the five-point 

approach isacceptable, and that by the nine-point approach is quite
 

satisfactory.
 
5 Principle of state-equation synthesis
 

Suppose we are interested in realising the following system: 

x = Ax 	 (31) 

from a set of zero-input response data x(ti), i= 0, 1, ..., m. 
First of all, we expand-x(r) into a Wals senes with m terms 

cl 	 0O 

x(t) - , CT(t) 	 (32) 

-4 	 e~ . 

where Cisann xm matix;9(t),anm xl vector. 
both sides of eqn. 3l and using the expression of eqn. 32 

and the operational matrix P, we have 

f:CA)dX = A f4 (X)dX = ACfQ9(X)dX (33) 
xt)-x(0)= A CP(t) (33a)-x(0) = A 
Cq(t)- Ix(0), 0,...,0] 9l(t) -A CP 9(t) (33a) 

Eqn. 33a must hold for any value of t. Let us take n samples. 
Define 

[t(t,), 9.(t 2) .(t,)] 	 (34) 

{C-[x(O),0,0,..., O] 1 =ACJ' - (35) 

Then the system matrix A can be evaluated by 
-A = {C [-x(O), 0, 0, .. , O] )0eCPcr} (36) 

5.1 	 Illustrative example 
A zero-input-response of a system is tabulated as follows:. 

01 1 -1 
0-8772 -- 9737* 	 0-7545 -0-9494
 

0-6433 -0 8852
 
0-5321 '0-8231 0-4388 -- 7453 

f 0"3454, -0.6676 0.2720 -- 5879
 
129a)0-1985 0
1 -0-0508 

(29) 

(29a) 

For the same problem, if we took more samples we would obtain a 

better result. To demonstrate this statement, let.us take nine samples 

t 10 j I -ift R I 
y't) 0 0-394 0-632 0'789 0-865 0-918 0-950 0'970 0982 

0-197 0-513 0-710 0-826 0-889 0-934 0960 0-976 

Using eqn. 9 again with m = 8, we have 
c = Wy = 1 [6-063, -1-511, -0-941, -0-711, -0.495, 

-0-369, -0-231, -0169] 

choosing tj = 13/16 and t2 = 15/16, we find 



Using the discrete formula, we find 	 The gate input is defined as 

-1 064064331 =o.89797 x 1 elsewhere 

I - 1 0.4388 0-4007092 Using a discrete formula, we can find the Walsh series for the output. 

c2 W 

1-1 -I 

[11 

__-
1 -1 -1 

1 

[0.2720] 

-08771 
-1~~~Y 

_0:753 
L_--S79 

L00671214j y(t)e'-C'q [COCC3]­

-3192311 1 1 
1*=*[0-72715, -0-01515, -0-07345, -0-14855] 

025= x-- The Walsh-series expansion for the gate input can be easily shown as 

0-0689903 u(t) - [j, ], =,11-h'? 

'= 	 A[1,1,1, 1] 

[t 11 	 Using operational matrixP, we ca find the first and second integrations 

S-1 ofy(t) and u(t). For a second-order system, there are four unknowns, 
Let (P= [9(1), ? ()] two as and two bs, and in = 4 for five discrete data. Thereforej 
The initial conditions are given as 	 0 = W = 

= [I -1
 
Li uSubstituting c,h,Pand Owe obtain
We use P(4 x4) formula, or= 	 .514 

-Ao-f 	 1.8173251 

a P8531946 

(4X)-_0 O: b] 1-0107953 

0 	 177340020 

That means the system may be approximately described as 

Substituting C, x(0), Pand 0 into eqn. 36, we have 

y + 1-8173251 j + 1.8531946y= 1-0107953 A+ 17734002 u 
1* -04908416-2-911856 

{C- [W0), 0, 0-0110 4iF1 / To obtain better results, we may take more data, say 17 points as 
L 01051796 1-6481788j follows: 

C" 3-5091584 16-7641011 t 0 f f f A f ft 

[-3-8948204 -23-186666J i y() 0 0.0624 0-1244 0-1855 0-245 0-241 0-236 0-230 0-222 

Therefore t A M i R i Rf 1 

A-*-04908416 -2-911854 ir 35091584 16 .764 10 11-i y(t) 0-214 0-205 0.1962 0-1866 0-1768 0-1669 0-1569 0-1469 

L 01051796 1.648l788jL-38948204 -23-186666J And choose t1 =2532, t2 =27132, t3 =29/32, t=31/32, namely 

0-01982H1 0-99035251 	 ( 
(37) '(25/32) 

-19962949 -2-0061511J 

q'(29/32) 


The samples actually are taken from the zero-input response of a ­

aL(31/32)system 

x = 	Ax
 
A
 

where 

- 2( -4 	 8 -1 -l1 -- 1 1 -- -- 1 t -- l -t -1 

Then we obtain 

6 Laboratory test 	 2.050781 

The common excitations usually used in a laboratory aret [a] -396 
neither unit-step-input nor initial conditions, but rather gate functions. 
When'the input is a given gate function and the output is measured, it Lb 0.-9980469 

is desired to find the transfer function of the system. The classical/[2 
approaches for the domain synthesis are not easily applied. The new 042969, 
Walsh-function method, however, can fit the transfer function as usual. y + 2-050781 5+ 2-039063 y = 0-9980469 / 4-2 041969 u 
The following example will demonstrate the procedure and the accu-

rate results. The actual system is 
Suppose a gate function is applied to a linear system, an=4 the out­

put is recorded as follows. 	 y + 2y5 + 2 y = ii + 2u. 

t 	0 ft 7 Conclusions 

yt) 0 0-245 0-222 0-1867 01469 A new time-domain synthesis method based on the Walsh 

YA 0-1225 0-2335 0-20435 0-1668 functions has been established. With zero-state response given and the 
/I-
t2d 



transfer function of the system desired, by using the Walsh-function 
principle, we derived eqo. 28 to fit the transfer function. On the other 
hand, with zero-input response given and the state equation desired, 
we derived eqn. 36 to fit. Three examples are included for illustration. 

If the order of the transfer function assumed is too high, the inverse 
of eqn. 28 does not exist. Then we can decrease the order and solve the 
poblem gain.SimilarlyifstThen diensn fcrthe ter qatn s hproblem again. Similarly, if the dimension of the state equation is 
assumed too high initially, the inversion of the matrix in eqn. 36 does 
not exist, and we should lower the dimension,

If what we fitted is a high-order transfer function and what we want 
is a lower order one, then we face a new problem, namely, the model 
reduction problem. The first author' 0 has suggested continued-fraction 
methods to solve this problem effectively. 

It is seen that the Walsh-function approach belongs to the school 
of least-squares identification. In general, however, least-squares 
identification is to use orthogonal polynomials or 

tzo f(t) Ont)C, = 	 i = 1, ... , m 
ti 0 21(t ) 

where 0 (t) is an orthogonal polynomial, and Cj andf(t)are coefficients 
and the given data, respectively, as defined before.

The advantages of the Walsh-function approach are apparent-
(a) it is still least-squares identification, (b) the denominator becomes 
1,because Walsh functions are not only orthogonal, but also orthonor­

mal, (c)the fast Walsh a4gorithush. '2 is available. 
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I. INTRODUCTION 

It is well known[1-4] that optimizing the linear plant 
I = Ax +Bu (1) 

for a quadratic performance index 

J=1r(_,Tql + q1)dt (2) 

where Q and R are symmetric matrices, we obtain the following optimal control law: 

u*Vt) = -R-B TO(t) (3) 

where 0(t) is the vector related to x(t) by 

. --[.€.J(4) 

,in whikh C = SR-$J,: 'stibject to the boundary conditions: 

(6) 
- *(c)=O (6) 

Solving (4) and then substituting the result into (3), the optimal control will be found. 

An alternative consideration is to use the following linear transformation: 

(7) 

Substituting (7)into (4), .we arrive at 

-P-=PBR -'B TP (PA + A TP)-Q (8) 

which is called the matrix Riccati Equation. Solving for P and then substituting it into (3)-(7), we 
will obtain the same control law, of course. 

2. DIFFICULTIES IN OBTAINING SOLUTIONS
 

In solving (8)if the dimension of ihe equation is high, to expand it into a set of simultaneous
 
differential equations is by no means an easy task. Considering the difficulties involved in it, many 
pioneers use (4) directly. MacFarlane[5] and Potter[6] use the eigenvector solution, while 
Vaughan [7] offers a negative exponential solution.Fath [8] establishes aprocedure whichinvolves a 
particulardecoupling matrix, etc. 

193.. 103 
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The technique established inthis paper is to obtain aset of simultaneous component equations of 
(8)by a digital computer with the original symbols preserved. 

3..STATEMENT OF THE EXPANSION PROBLEM 

In the matrix Riccat i Equation (8), the matrices 4, B, Q and I are constant matrices; 
dimensionally they are n x n, nXm, n Xn and m Xm matrices respectively; C is an n x n 
matrix. Also, ?, Q and 4 are symmetrical matrices. 

Let us regroup eqn (8) first, 
-
= (PE.R-'BTP)'-4 +)e Q. (8a) 

Because B and R are given, we simplify (Sa) again 

(8b)
(PCP)- (?4+ ATe) _ 


where 

C= BR'B T (9) 

as we defined before. 
C is still an n x n symmetrical matrix. 
Then arrange the elements of P into a vector such that. 

P " . P...- ;p,, T 
= [ P,P 2, P 3....PS p2 , 

Also, organize another vector if to express the quadratic elements 

PIIPI. PiiPnn, Pi 2P2,S= [PlP 11, PIP,. . .. . . 

P12P. P1P... P12P .. P(.-p 

"Pcn-l)nPcn-)Ja,F,P,i;' 

For matrix Q, we arrange it into a vector such that 

q= [Qi, Qn, Q13 ..... Q1.,Q=; Qn,... Q(n-I)., Q,']T• 

It is desired'to change the matrix Ricatti Equation (8b) into the-following set of simultaneous 
component differential equations 

F IV -d -q. (10) 

The problem is to find Q and a. 
The dimension of the vector or piis n (n + 1)/2 and that of P is[n (n + 1)(n' + n+ 2)/8] •a is 

an [n(n + 1)12] X [n(n + 1)/2] square matrix while 0 is -a rectangular matrix with dimensions 

n(n -1)x n(n + 1)(n 2+ n+2) 
8 -"2 

4. SIMPLE EXAMPLE FOR THE EXPANSION 

To ,illustrate the notations in (10), we give a simple example as follows: 
We rewrite (8) 

P= eCP-(PA+ATP)- (8a) 
. -t Z." 
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Consider that the order of'the equationis two. The equation becomes 

P~, 2PJ = LP:z P2 j."LCr C122JP P2 

, 	 ,-ff'" P12] [A, A12 + rAn A2 i P1i P2]1_ [Q :] (11) 
.LPn En] LA21 A22] [An A22jLPu P, JJ LQn QfJ 

Expanding (11),.and arranging it into component equations, we haveL[c2 2C12 0 Cr 0 0 ] P1P11 
0 o11C 12 C21 C= 0 j ,= ORIGINAL PAGE IS 

ILO0 o 0 Cii 2C7,2 (722. OF POOR QUALYMiP' 2P 2
P12P= 
-P=Pn2
 

[2An 2A1 0 ]jPI [ Q"i 
-A, 2 A,,+A, A21 liP'2 - I[:Q]"1 (12) 

o 2A, 2 2A22J,[P2 2J, LQnJ 
In this example 

.C,, 2CM 0 CM 0 	 0 

0 . 12 Cr=01' (C21 
0 , C n0 2C2C 

and 	 (13)and 

F2A,, 2A 21 0 
a =lA2 A1 i+A2 2 A2,I 

0 2An 2A2J 	 (14) 

The example is the simplest problem of its kind because the dimension is two. Even so, we can 
see the complication of its fl and its a. When the dimension increases to a higher order, to find the 
.and a matrices is extremely difflault. 

This paper attempts to establish two sets of rules for writing 0 and a. Of course, they must 
constitute a computer oriented-procedure. 

5.RULES FOR FINDING a 

In eqn (10), we defined a as an n(n + 1)/2 square matrix. This matrix coincides with the 
Liapunov function matrix. Ina previous paper[10],'an algorithm was developed-for expanding 
the Liapunov matrix. After Mlight modification, that algorithm can be directly used for finding a. 

We use (K, L),and (I, J) as the row and column sfibscripted indices respectively. The 
following formula should be followed when forming the a matrix directly from the A matrix. 

(1) 	 if K= I, L:;6],->A(L, J)
 
if K341, L =J, A(K, I)'
 

(2) 	 ifKoI,Lof,

fK=J,L I -A(L, 1)
 

-	 {,K~e,, L,,I -*-A(K, 1)-. . 

[Kn,L 4-0f " .. 

(3) 	 ffK=IL=J
 

K=3",L =-.A(K 
 , J) 
tK;K,L.A-A(K,)+A(L,])
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(4) 	After the first three steps have been considered if I = J
 
all elements at row I should be multiplied by 2.
 

If the A is a 3 x 3 matrix following the rules shown above, we will have a as follows: 

K-L 

1-1 1-2 1-3 2-2 2-3 3-3 

1-1 2Aj. 2A 21 2A31 0 0 0 
I-" 	 1-2 A12  A 11+An A 32  A2, A31 0 

1-3 A, 3 An A11+A33 0 A21 A31 
2-2 0 2A,2 0 2A= 2A32 0 
2-3 0 A1, A12 An A=+A33 A32 
3-3 0 0 2A 13 0 2An 2A33 

where All are defined by 

" A ,, A 2 -A 13IA2, An An 

A31 A32 A3," 

Here the subscripted index K - L and I - J are the comparing indices. Each element in the 
table can be directly written by inspection. For Example, if we want to find the element Z 

K-L 
I-f Z=? 

we examine 
(1) If K =I, L 1, then Z=A(LJ) 
(2) if K#L L#J, and K0J, L#I, then Z=0. 

6. RULES FOR FINDING fl 

Matrix R can be found in a similar way; however, because pf is a much higher dimension 
vector, the rules for finding q1 are lengthier than those for finding a. 

Examine (10) again; we oily consider the first term of the righthand side this time. 
For convenience and clarity, we write- the elements of j* horizontally and still write P 

vertically. Namely, the arrangement is as follows 

plIPJ1P1, P11P1 PlIP13 ..... 

fP13 

Then we write the subscripts symbolically 

P(K,L)P(M,N) 
P(I, ) y= 

The value of Y is found by two steps. 
(1) Organize a subindices matrix 

[ab~ c d]
 



197Atechnique for expandingthe matrix Riccati Equation 

first by following the rules 	indicated.below: 

(i) 	 if I= K, Then a=L 

I=L, a=K 

I=M b=N RIGINAL PAGE A 

I=N b=M OF POOR QUALT 

if 	 J=K, Then c=L 

J=L c=K 

J=M d=N 

J=N dPM 

(ii) 	 if 10 K, I L Then a=0
 

I M, I L b=O
 

if 	 JOK, J9L, c=O 

J#M, JIN, d--O. 

The element Y is found by 

Y = C(a,d) + C(b, c) 

subject to the following two conditions: 
(i) if a, b, c or d equal to zero, the corresponding C term is equal to zero. 
(ii) if K = M, L = N 

Then 
y =C(a,d) +C(b, c) 

2 

How to use these rules can be illustrated by the following 3x 3 example. 

(K-LXM-N)
 

PP, P.P. P PbP,, P4P,, PaP. P,, 'P. Pu.P. P.P,, PuP.
P,?P. PP. P.A, Pulu tP.. P PaP P.P. nPn PuP. 

P. Co 2C. 2C,, C. 	 2C. C. 

Pa C" C. C., C,. C" C.C C. C,. Cu
 

., C. C. C. C. C. C. C. C, C.
 
1-J 

P. C,. 2C. 2CW C. 2C. C.
 

Pu C., C. C. C. C. C. Cu Cu C.
 

j. 	 C,. 2C., 2C. Cu 2C. Cu 

7.COMPUTER PROGRAM -

Based on the rules for finding the component equations, a computer program has been 
written. 

The part of the expansion of the PA + ATP matrix is written as a subroutine called 
SUBROUTINE PA. 

The part of the expansion of PCP is written as a subroutine called SUBROUTINE PRP. 
The main program is to use the Runge Kutta four step.formula to carry out of the evaluation 

of . Of course,the negative time increment is used. When the steady state values of the 
components of 1 vector have been reached, we use only those values to substitute into eqn (3)
 
and (7). The optimal gains are obtained.
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The details-of preparing the input cards can be summarized as follows 

N-dimension of x
 
M-dimension-of R
 

NM-points of solutions of Runge Kutta Program
 
TN-starting time
 

DELT-time increment (negative values shouldbe-used)
 

Then the following cards are the row elements of matrices A, ., Q, R. The last card is for'PIN 
which means the initial values of the Runge Kutta Program, or the final values of b(P). 

- 8. ILLUSTRATIVE EXAMPLES 

For the given plant 

0[ -'1] [" 

aid for the quadratic performance index 
1 rf~r O1T l 

I [' 2x+uI-udt 
0Jo2 J\ I/­

the input data cards read 

N =2,M= 1,NN= 100, TN =0, DELT =-0.05. 

The P matrix is found from the.computer 'output. 

When the order of the plant is higher, we can see the advantages of using the program. The 
following example will demonstrate the point. 

A plant is given as follows bioooloFo 
A=0 01 0 B-' 0 

1 -o o oj0 0-0'0.0 


Following Fuller[ll], we formulate the plant matrices A and-B as shown. As far as the state 
feedback design problems are concerned, the example- form is a very general one. Then we 
assigned the constants of 9 and R as follows: 

0 0 0
 
-Q= 0 0 0.01 0 0 00
0 0.01 0= R =I' 

0 0.001 0 PIN= nullmatrix 5x 5.0 . 0o. 0 .oo 0ooj 

The input card should be punched as follows 

N = 5, M =1, NN = 200, TN =0, DELT =-0.05. 
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The result obtained is: 

3.219, 5.152 5.128 3.185 0.996 
11.592 13.482 9.338 3.218 

17.597 13.463 
11.497 

5.176-/ 
5.168 ,F0 009 QU AL ] 

(Symmetry) 3.2091 

CONCLUSIONS 

A new technique for expanding the matrix Riccati equation is established: From the given 
equation of theproblem,groups ofrules areformulated andbasedon theserulesacomputerprogram 
iswritten. Itmakesvariouswellknownnumericalmethodsdirectlyapplicabletotheproblem. 
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C SOLUTION TO RICCATI EQUATIONS

C P(DOT)=-PA-A(TRANSPOSE3*P-C PB*R(INVERSCVIaTRANSPOSE)P

C NON DIM4ENSTON OF A OR 0 OR P OR PIN MATRIX 
C NMM DIMENSION OF B MATRIX, M*M DIMENSION OF R MATRIX 
C NN... NO. OF PLOT POINTS. TN... STARTING TIME 
C MAIN PROGRAM BEGINS HERE 

DIMENSION PNI55) ,P(S5),0O(55,5),PODTC55),A(10,10,B(10,10). 
1RtlO,IO),O(0,10),PP(55),ClO,10,PP1155)oQQQ(5),Rg11O,10 ) 
2PINC 1O, 10),PPZ(55) ,DI (10,00), E10,101 

1000 READ(5,500) NMNNTN,DELT
 
500 FORMAT(315,2F10.3)
 

WRITE(6,600) NMNN,TNDELT
 
600 FORMAT(4HN...,T3,6H M...,13,TH NN...,13,0H TN....F16.6,
 

19H DEL T... F16.6)

WRITE (6,610)
 

610 	FORNATL/122HA...N*N SYSTEM MATRIX/I)
 
00 10 1=1,N
 
READ(5,510I (A{IJ),J=I,N)
 

10 WRITE(6,631) IACI,J1,J=1IN)
 
510 FORMAT(4F20.6)
 

WRITEt6,611)

611 	FORMAT(//21HB...,N*4 INPUT MATRIX/)
 

DO 11 I=I,N

READC5,510) (B(I,J),J=1,M)
 

11 WRITEC6,631) IBiJ),JniM)

WRITE(6,6121
 

612 FORMATI//25H.. N*N SYMMETRIC MATRIX/)
 
00 12 :=IN
 
READ(5,510) COIl,JI ,J=I,N)
 

12 WRITE(6,6312 IQCIJ),J=1,N)
 
WRITE(6,613)
 

613 FORNATC//25HR...1*1 SYMMETRIC MATRIX/)
 
00 13 I=1,
 
READI5,510 IRI,J),j=IM)


13 	WRITE(6,631) (RCI,J),J=IMI
 
WRI.TE(6, 614)
 

614 	FORMAT(//35HP1N...N*N INITIAL SYMMETRIC MATRIX/)

DO 14 I=I,N
 
READ5,510) CPINII,J) ,J=IN)


'14 WRITE(6,6.31) IPINtI J),J=I,N)
 

0.zo
 

http:WRITE(6,6.31
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NR=N*(Nt1)/2

LL=O
 

DO 20 K=1,N
 
00 20 J=KN
 
LL=LL+ 
PNILL)=PIN(KJ)
 

20 QQQ(LL)=Q(KJ)
 
IF {M.GT.1) GO TO 21
R(I,I}-I./R({I)
 

GO TO 22
 
21 CALL INVER (RM,,RRO,DET)
 
22 CALL MALTPCN,tBM, R,C)
 

00 150 K=IN
 
00 -150 J=1,N
 

150 	E(JK)=B(K,J)
 
CALL PALTP(N,M,C,N,E,D)
 
NNP=O
 
DO 30 I=INR
 

30 	POOT(I)=O.
 
WRITE(6,630
 

630 FURNAT(/SXIHT,12X,2HPIIIX,2NP2,11X,2HP

3 ,IIX21P4,IlX,2HP5lIX,
 12HP6, 11X2HP7)
 

WRITE(6,631) TN,(PNtI), =INRJ
 
631 FORMAT(IX,9EL3.5)
 

I L=l
 
T=TN
 
DO 40 K=I,NR
 

40 PfK)=PN(KJ
 
GO TO 101
 

100 00 50 K=INR
 
50-QQ(KL)=DELT-POOT[K,­

T=TN+DELT/2.
 
DO 60 K=1,NR
 

60 	P(K)=PN(K)+QQIKL/2.
 
L=2
 
GO.TO 101
 

200 DO 70 K=INR
 
70 QQLKLJ=DELTPDOT(K)
 

T=TN+DELT/2.
 
DO 80 K=1,NR
 

80 P(K)=PN(K)+Q(KL)/2.

L=3,
 

GO TO 101
 
300 DO'90 K=INR
 
90 QC(K,L)=DELT4PDOT(K)
 

T=TN DELT
 
0O110 K=1,NR
 

110 PIK)=PN(K)+QQ(KL)
 

L=4
 
GO TO 101
 

400 DO 120 K=1,NR
 
120 	QQ(KL)=DELT*PO0T(K)
 

GO TO 7
 
1oi CONTINUE
 

CALL PA IN,A.NRPPP1)

KL=O
 

JJ=O - " 
MN=O
 
DO 130 K7=1,N
 
DO 130 L7=K7,N
 
KL=KL+I
 
LN=L7
 
00 131 H7=K7tN
 
00 131 N7=LNN
 

JJ=JJfl -"
 

IF IN7.EQ.N LN=M74 
13i PP(JJ)=P(KL)*P(NN) 
130 IN=KL 

CALL PRPINDNRPP,PP2)
 
DO 160 K=INR
 

160 	PDOT{K)=PP2(K)-PP1(K)-QQoiK]

0 0
GO TO' (lOO,2 ,300,400),L

7 TN=TN+DELT 
DO 170 K=I,NR 

170 PN(K)=PNIE)+.-I./6. )*(QO(K,,I+2.*QQIK,2n}2.QQ(K,3 Q(K,43)
 
WRITE(6,631) TN,(PNCK),K=1,NR)
NNP=NtNP+l

IF (NNP.GT.NN) GO TO 1000
 

-GO T0 1
 
END "
 

SUBROUTINE INVER CAN.BtDET)
 
DIMENSION A(10,10),I10,10),IPVOT(IOINDEX{IO,2PIVDTIIO)
 
EQUIVALENCE (IROWJROJ),ICOLJCOL)
 

57 DET I.
 
00 17 J=I,N
 

1.zic
 

http:NNP.GT.NN
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17 	IPVOTJ)=0
 
00 135 1=,N
 
T=O.
 
DO 9 J=IN
 
IF(IPVOT(J)-1) 13,9,13
 

13 DO 23 K=I,N
 
IF(IPVOT(K)-1) 43,23,81
 

43 IF {ABSIT)-ABSCA(J,K))) 83.23,23
 
83 1R0W=J 
 OAWICOt=K 	 OP POOR LPAGE IS 

T=A(JK)
 
23 CONTINUE '-'uR
 
9 CONTINUE
 

IPVOT(ICOLI=IPVOTIICOL)+
 
IF(IRCWI-COL) 73,109,73
 

73 DET=-DET
 
DO 12 L=1,N
 
T=AIrRONlL) 
A(IROW,L)=A(ICCL,L)
 

12 A(ICOL,L)=T
 
IFIM) 109,109,33
 

33 DO 2 L=1,M
 
T=BIROWL
 
8(IROW,L-)=BICOL,L)
 

2 8(ICOL.L)=T
 
109 INDEX(1,lj=IROW
 

INDEX I,2)=ICOL
 
PIVOTCI)=AIICOL,ICOL)
 
DET=OET*PIVOTI)
 
ACICOLICOL)=I.
 
DO 205 L=1,N
 

205 AIICOLL)=AICOL.L)/PIVOT(IJ
 
IFCM) 347,347,66
 

66 DO 52 L=IM
 
52 BIICOLL)=B(ICOLL)/PIVOTI)
 

347 DO 134 LI=,N
 
IF (LI-ICOL) 21,134,21
 

21 T=AILItICOL)
 
A(LI,ICOL)=O.
 
DO 	89 L=IN
 

89 A(LIL)=A(LI,L)-AIICOLL)*T
 
IF(M) 134,134,18
 

18 00 68 L=IN
 
68 O(LIL)=BILI,L)-CICCLLJtT
 
134 CONTINUE
 
135 CONTINUE
 
222 	DO 3 I=I,N
 

L=N-I+1
 
IF(INDEXIL,I)-INDEXCL,2)) 19,3,19
 

19 	JROW=INDEX(L,1)
 
JCOL=INDEXCL,2)
 
00 549 K=1,N

T=A(KJRON) 
A(KJROWI=A(KJCOL)

A(KJCOL)=T
 

549 CONTINUE
 
3 CONTINUE
 

81 RETURN
 
END
 

SUBROUTINE PA(NA,NIXPP)
 
DIMENSION AIIO,IO),X(55),PPI155),P .55)
 
Mnl
 
KK=O
 

!DO 10 I=1,N
 
00 10 J=IN

KK.'KK±1
 
LM=O
 

DO 20 K=I,N
 
DO 20 L=KN
 
LM=L,4+1
 
IF (K.EO.I.AND.L.NE.J) GO TO 21
 
IF IK NE.I.AND.L.EQ.J) GO TO 22
 
Ir (K.NE.I.AND.L.NE.J.AND.K.EQ.J.AND.L.NE.I GO TO 23
 
IF IK.NE.I.ANO.L.NE.J.AND.K.NE.J.ANO.L.EQ.II GO TO 24
 
IF (K.NE.I.ANO.L.NE.J.AND.K.NE.J.AND.L.NE.I1 GO TO 25
 
IF (K.EQ.I.AND.L.EQ.J.AND.K.EQ.J.AND.L.EQ.I) GO TO 26
 
IF (K.EQ.I.AND.L.EQ.J.AND.K.NE.J.ANO.L.NE.I) GO TO 27
 

21 P(MLFhA(LJ)
 
IF CI.EQ.J) P(M,LMh)=2.*P(M,LN)
 
GO TO 20
 

22 	PIM,LM)=ACX,1)
 
IF CI,.EQ.J) P(NLM)=2.tPCMLM)
 
GO TO 20
 

23 P(MLN)=A(LI)
 
IF (I.EQ.J) P(MLNJ=2.*PCMLM)
 
GO TO 20
 

24 P(MLNh=A(K,J)
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IF 	(I.EQ.J1 P(MsLM)=2.*P(MLM)

GO TO 20
 

25 PINLN)=O.
 
GO TO 20
 

26 	PCM,LM)=AKI)
 
IF (I.EQ.J) P(NL )=2.*P(MLM
 
GO TO 20
 

27 P(M,LM)=A(KI)+A(LJ
 
IF I.EQ.J) P(NLM}=2.*PMLN)
 

20 CONTINUE
 
S=O.
 
DO 31 JJ=INI
 

31 5=P(M,JJ)*X(JJ)+S
 
PPIfKK)=S
 

10 CONTINUE
 
RETURN
 
END
 

SUBROUTINE PRPNNPBRBP, NRPPPP2
 
DIMENSION HII , 770)KN2,2)PBRBPIIOIu),pp(55),pp


2 ( 5 5) 
NC=NN4INN+I)CNN**2+NN+2)/8
 
11=1
 
KK=O
 
JJ=O
 
DO 20 I=I,NN
 
00 21 J=INN
 
KK=KK+1
 
00 30 K=I.NN
 
D3 31 L-K,NN
 
LN=L
 
DO 40 M=k,NN
 
DO 41 N=LNiNN
 
JJ=JJ+l
 

IF (I.EQ.K) KN(1,I)=L
 
IF (I.EQ.L) KN(I,I)=K-

IF (I.EQ.M) KN(1,2)=N
 
IF (I.EQ.N) KN(1-,2)=M.

IF 	(J.EQ.K KN1(2,1)=L

IF CJ.EQ.L) KN(2,L)=K
 
IF (J.EQ.) KN(2,2)=N
 
IF (J.EQ.N) KN(2,2)=N

IF (I.NE.K.AND.I.NE.L) KN(I,1)=O
 
IF (I.NE.I.AND.I.NE.N) KN(,2)=0
 
IF (J.NE.K.AND.J.NE.L) KN(2u1)=O

IF (J.NE.M.AND.J.NE.N) KN(2 1 2)=O

IFI(KN(1,L)-EQO.OR.KN(2,2}*E.O).AND.KN(12).NE.O.ANDKN(2,).NE. 

10) H(IIsJJ)=PBRBPfKN(1,2),KN2,1)}
 
IF(CKN(I2).EQ.O.OR.KN(2,1).EQ.O).AND.KN( ,l).NE.O.AND.KN(2,2).NE,
 10) riIi,JJ1=P8ADP(KN(I,1) ;Kfl(2.2])
 
IF((KN(1,1).EQ.O.OR.KN(2,2) .EQ.O).AND. KNI,2)EQ.O.OR.KN(2,13.
 

IEQ.O)) HCII,JJ)=O.

IF 	(KN(I,).NE.O.AND.KN(2,2).NE.O.ANDo.KNwI,2.NE.O.AND.KN(


2 ,l)°
INE.O) H{IIJJ)=PBRBP(KNC1,1) KN(2,22)+PBRBP (KN(I,21,KN(2j1)I-

IF (K.EQ.M.AND.L.EQ.N HtIIIJJ)=HIIt,JJ)/2.
 
IF (N.EQ.NN) LN=N,+
 

41 CONTINUE
 
40 CONTINUE
 
31 CONTINUE
 
30 CONTINUE
 

JJ=O
 
S=O°
 

DO 51 LL=INC
 
51 S=H('I,LL)*PP(LL)+S
 

PP2(KK)=S
 
21 CONTINUE
 
20 CONTINUE
 

RETURN
 
END
 

SUBROUTINE NALTPCN-,MA,LB,C)
 
DIMENSION A(0,1O ),B(10,l0),C(IO,IO)
 
DO 10 I=IN
 
DO 10 J=1,L
 
S=0o.
 
00 10 K=,M
 
S=S+A(IK)*4(K,J)
 

10 	C(IJ)=S
 
RETURN
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(D) Year: 1973
 

(E) Department: Mechanical Engineering
 

(F) Student Name: Norman C. Martin
 

(G) Faculty Advisor: Professor B. D. Cook
 



Project
 

(A) Project Title. On the Stability of Poiseuille Pipe Flow
 

(B) Project Abstract:
 

The problem of the stability of Poiseuille pipe flow
 

was studied numerically. The finite-difference equations
 

which were solved are approximations to the nonlinear,
 

axisymmetric, 'Navier-Stokes equations in cylindrical co­

ordinates subject to a stream function perturbation. The
 

disturbance to the stream function which was used is
 

axisymmetric, oscillatory and fixed in space. The result­

ing solutions show thd experimentally observed instability
 

of.the stream function and vorticity at Reynolds numbers
 

of 10,000 -and 100,QQO. The experimentally observed sta­

-bilityat a Reynolds number of 1,000 is also found.
 

CQ) Dubl-ication:- Ph.D. -Dissertation in Mechanical Engineering
 

(D) -ear; 1969
 

(E) Department: -Mechanical Engineering
 

(F) Student Name: Henry Johnstoni Crowder.
 

-Faculty
(G) Advisor; Prof. Charles Dalton
 



Project
 

-A- Project Title: 	 The Fluid Resistance of Shrouded and
 

Unshrounded Circular Cylinders in an
 

Oscillatory Flow
 

(B) Project Abstract:
 

This investigation concerns itself with the measure­

ment of a strain-gage signal responding to a sinusidal
 

variation of tension and compression brought about by a
 

circular cylinder oscillating with simple harmonic motion
 

in a tank of water, otherwise at rest. The strain-gage
 

is transformed into the fluid resistance acting on cir­

cular cylinders.
 

A series of plots of 	force coefficient versus Reynolds
 

Number were developed to.gain a better inderstAnding of
 

the phenomenon. The-experimental apparatus is analogous
 

to the distribution of wave forces present on a single
 

fixed leg of an offshore structure.
 

The fundamental variables involvedwere the diameter
 

of the cylinder (0.6254, 1.0, 1.5-inch) and amplitude and
 

speed of oscillation, one- to six-inches and 10 to 0.60
 

rpm, respectively.
 

The 'effectson the fluid resistance'acting on th two
 

smaller cylinders enclosed in a concentric perforated
 

shroud of the same outside diameter as the largest cylinder
 



were determined relative to the fluid resistance acting
 

on the largest unshrouded cylinder. The effects of the
 

shroud were investigated toascertain the feasibility
 

of reducing wave forces on the structural members of an
 

offshore platform.
 

(C) Publication: M.S. Thesis in Mechanical Engineering
 

(D) Year: 1973
 

(E) Department: Mechanical Engineering
 

(F) Student Name: John P. Hunt
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Project
 

(A) -rojeat J.itle:- Model Investigation: Effects of a Reef
 

on Ocean Waves
 

(B) Project Abstract:
 

An obstruction in the path of a water wave will change
 

the profile, energy and forces of the wave. In some case
 

it is difficult to tell exactly what effect a particular
 

geometry will have. A model was constructed for use in a
 

wave tank to investigate a section of the flower gardens
 

for a possible site of an offshore platform, A series of
 

waves varying in height and period were used, It-was
 

found thAt the reef increased the wave forces due to in­

creased mass transport and shoaling. The decision was
 

made to choose a different location.
 

(C) Publication: M.S, Thesis in Mechanical Engineering
 

(D) Year; 1973
 

(E) Department; Mechanical Engineering
 

(F) Student Name; Paul G. Johnson
 

(G) Faculty Advisor:- Prof. Charles Dalton
 



Project
 

(A) Project Title; A Four-Equation Model for Numerical
 

Solution of the Turbulent Boundary Layer
 

(B) Project AbstrAct:
 

in this study, a-four-equation.model of turbulence is
 

presented in order to solve the steady, incompressible two
 

-dimensional turbulent boundary layer flow field. Those
 

four equations are the continuity, momentuh, turbulent
 

kinetic energy, And the rate of dissipation equations.
 

The solution iq obtained in terms of the mean variables
 

Of the low tield,
 

Closure is obtained by assuming for each equation that
 

all those terms containing fluctuating quantities are some­

how related to tle mean variables of the mean flow field.
 

A new tw-1lyer eddy viscosity model is used, Near the
 

wall, the eddy viscosity is assumed to be proportional to
 

the aecond power of the vertical coordinatei For the outer
 

layer, it. is assumed that it is prop6rtional to the ratio
 

of thd square'of the turbulent-kfneticenergy to the rate of
 

dissipation.
 

The model was solved numerically-by 4,finiterdifference
 

tedhniqie, using a variables mesh system in order to have
 

small 'increments near the wall. An implicit numerical pro­

cedure was used in order to speed the computation in the
 



downstream direction,
 

The model was applied to the computation of the in­

compressible turbulent boundary layer over a flat plate,
 

and agreement with the Wieghardt data is excellent. Three
 

cases with varying pressure gradients are also computed;
 

they are based on the Ludwieg and Tilmann data. Those
 

three cases were chosen because they are for boundary layers
 

on flat surfaces with different pressure gradients, mild
 

adVe ef strQn9 adverse, and favorable pressure gradient
 

flow'.
 

The calculation procedure requires that starting pro­

files be known for u, g, and 5 These starting profiles 

are obtained from Ludwieg and,Tilmann. The eddy viscosity 

model at.a given station in the outer region is based on 

the calculated values of g and B at the previous station. 

(C) Publication: PhD, Dissertation in Mechanical Engineering
 

(D) year;- 1974.
 

(E) Departant: Mechanical Engineering
 

(F) Student Name; Iyppolito de Valle Pereira 'ilho
 

(G) Faculty Advisor; Prof. Charles Dalton
 



Proaject
 

(A) Project Title: A Nonlinear Diffraction Study of Inertia
 

Forces on a Vertical Circular Cylinder
 

(B) project Abstract;
 

In this study the inertia coefficient for a vertical
 

circular cylinder subject to wave action in a finite depth
 

of water is analyzed with respect to its independent vari­

ables, The primary purpose of the investigation is to
 

deVelop'criteria for choosing v~lues of the inertia coeffi­

cient for use .in wave- force -calculations, This is 'done
 

keeping in mind that changes inwave height, wave period,
 

water depth, elevation, phase) and cylinder diameter will
 

effect the coefficient chosen.
 

The aialysis,begins by assuming an invisoinA irrota­

tional wave of small amplitude.which can be described by
 

linear wave the6ry. The wave is allowed to diffract around
 

a vertical circular cylinder. The pressure distribution
 

around the cylinder is -calculated by applicatiqn of the
 

complex poteftial for thd-incideit and'scattered wave
 

systems. The force per unit length on thd cylinder is de­

termined by integration of the pressure around the cylinder,
 

The expression for the inertia coefficient is then derived
 

from the known water particle acceleration and wave force
 

equations. Drag forces are -not considered in this investi-
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gation. The resulting equation for the inertia coeffi­

cient is applicable to cy-linder and wave combinations
 

with large diameter to wave length ratios. This provides
 

an improvement to an existing diffraction study. The
 

nonlinear velocity terms in the pressure expression are
 

retained, thus providing still another modification to
 

existing diffraction theory.
 

The results from this investigation indicate that the
 

inertia coefficieit is mainly a function of the ratio of
 

cylinder diameter to wave length, Contributions made by
 

the influence of depth and wave height are small compared
 

to that made by the diameter to wave length ratio,
 

(C) publication; M.S. Thesis in Mechanical Engineering
 

(D) Year; 1975
 

(E) Department; Mechanical Engineering
 

(F) Student Name: Jerry Lee Borrer
 

(G) Faculty Advisor; Prof. Charles Dalton
 



Project 

(A) Project Title: Numerical Solutions for Recirculating Flow
 

(B)- Project Abstract:
 

Numerical solutions have been obtained for the steady
 

two-dimensional flow of a viscous inbompressible fluid in
 

rectangular cavities by solving various implicit finite­

difference approximations of the Navier-Stokes equations.
 

The sets of implicit difference equations were solved
 

using a recently introduced iterative numerical procedure
 

called the strongly implicit procedure (SIP). The strong­

ly implicit procedure was found to-be an effective and
 

economical numerical procedure for obtaining iterative
 

numerical solutions for sets of ,linear and/or -nonlinear
 

finite-difference equations. Various qualitative and
 

quantitative compari-sons have been made to determine the
 

effects of the Reynolds number, the grid size, and the
 

diffeenceapproximation on the numerical solutions and
 

computational procedures. Thd results -showthat one
 

difference scheme was particularly accurate for Reynolds­

numbers and grid sizes which satisfy the stability res­

triction. Streamline patterns and equivorticity plots
 

for a range of Reynolds numbers are shown for various,
 

difference approximations and grid sizes, Changes in the
 

principal features of the flow field have been discussed
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and correlated with changes in the Reynolds number of the
 

flow.
 

(C) Publication: M.S. Thesis in Mechanical Engineering
 

(D) Year: 1975
 

(E) Department: Mechanical Engineering
 

(F) Student Name: Jerry Lee Borrer
 

(G) Faculty Advisor; Prof. Charles Dalton
 



Project
 

(A) Project Title: The Effect of Inclination of a Conduit on
 

Power Spectra of Wall Pressure Fluctuations
 

in Two-Phase Flow
 

(B) Project Abstract:
 

The two-phase flow regime characterization by use of
 

wall pressure fluctuation power spectra was proposed by Dr.
 

M. G. Hubbard and Dr. A. E. Dukler to deal with horizontal
 

flow. In this work, the power spectra of various flow
 

regimes of two-phase flow with different inclinations were
 

obtained and analyzed. The effect of inclination of a con­

duit on power spectra and flow mechanisms was .investigated.
 

Also a method of decomposion of power spectra was proposed.
 

The results suggested that a two-phase flow process could
 

be decomposed into several simple processes each of which
 

was represented by an individual spectralV'component.
 

(C) Publication: M.S. Thesis in Chemical Engineering
 

(D) Year: 1971
 

(E) Department: Chemical Engineering
 

(F) Student Name: Jeng-Shong Liaw
 

(G) Faculty Advisor: Professor A. E. Dukler
 



Project 

(A) 	Project Title: Hybrid Computer Simulation of -Turbulent
 

Diffusion in the Atmosphere by Monte Carlo
 

Methods
 

(B) Project Abstract:
 

Turbulent diffusion in the atmosphere was simulated by
 

implementing a new Monte Carlo method on a hybrid computer.
 

The new method involved the development of a stochastic
 

Langevin equation which required the instantaneous wind
 

velocity as input information-to stimulate the-diffusion
 

process.
 

Although several established models were available for
 

the mean wind profile, there were no models available for
 

the fluctuating component-of the velocity. Thus a model
 

was developed by using empirical equations to describe the
 

rms value as a functionof position and by using independent
 

Gaussian white noises of proper frequency range and power
 

spectral densities.
 

The present method was evaluated by comparing the re­

sults to the theoretical dispersion in a homogeneous flow
 

and to experimental concentration profiles in atboundary
 

layer and in the atmosphere. All of the experimental flow
 

fields were nonhomogeneous. Good agreement was found in
 

all cases. The simulated concentration-distributions were
 

found to have a 95% statistical reliability by a chi-square
 



goodness-of-fit test.
 

A few of the major advantages of the present method
 

are (1) since the current method simulates the diffusion
 

process directly, it has great flexibility and the concept
 

of eddy diffusion coefficients is not used, and (2) esen­

tially all meteorological effects can be fully utilized.
 

The present method is also applicable to multiple sources
 

of almost any type.
 

(C) Publication: Ph.D. Dissertation in Chemical Engineering
 

(D) Year: 1975
 

(E) Department: Chemical Engineering
 

(F) Student Name: Jerry A. Bullin
 

(G) Faculty Advisor: Professor A. E. Dukler
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Project 

(A) Project Title: Studies on Turbulent Diffusion
 

(B) Project Abstract:
 

Turbulent diffusion was studied both theoretically and
 

experimentally. The purposes of..this study were (1) to de­

velop and test a new statistical model for turbulent diffu­

sion which was reasonable in both theory and implementation,
 

(2) to include the-effect of shear stress on diffusion, (3)
 

to extend the new model to a particulate system and (4) to
 

obtain experimental data for particle dispersion to test
 

the proposed model.
 

A Langevin equation model was developed by considering
 

the fluctuating velocity as a stochastic process. The same
 

model was also derived from a one dimensional lagrangian
 

Navier-Stokew equation. This model was physically realistic.
 

The present model was implemented on a hybrid computer.
 

The simulated results Of turbulent diffusion were compared
 

with the theoretical'predictions.for a homogeneous flow nd
 

with experimental concentration profiles in a boundary lay­

er and in the atmosphere. Good agreement was found in all
 

cases.
 

A technique to generate two random processes which are
 

correlated with each other to any degree'was developed.
 

This method was used to investigate the shear effect on
 

turbulent diffusion. In the presence of both -mein velocity
 



gradient and shear, diffusion was shown to be independent
 

of shear for long and short diffusion times but to be
 

strongly dependent on shear for intermediate times.
 

The langevin equation model was extended to permit the
 

modeling of particle dispersion. This was accomplished by
 

deriving a relation between the power spectral density dis­

tributions of a particle and the background fluid from the
 

equation of motion of a particle in a turbulent flow.
 

A series of experiments was designed and executed in
 

a large wind tunnel using glass beads as diffusing par­

ticles. A solid feeder and a particle dispenser were built
 

and a special sampling nozzle was designed for isokinetic
 

sampling. Hot wire equipment was used to.measure the fluid
 

dynamical properties.
 

The conditions of theexperiment were simulated using
 

the developed model. Agreement with experiment was good.
 

(C) Public&tion: Ph.D. Dissertation in Chemical Engineering
 

(D) Year: 1976
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(F) Student Name: Naugab Lee
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Project
 

(A) Project Title: On the Transmission of Sound Through
 

Finite, Closed Shells: Statistical Energy
 

Analysis, Modal Coupling, and Nonresonant
 

Transmission
 

(B) Project Absttact;
 

An investigation of sound transmission into small
 

enclosures considers the effects of acoustically induced
 

coupling between shell modes, Using an integral equation
 

appz~ach, the tranpmissjQn loss into a small rectangular
 

box is computed and the level of cavity reactance examined.
 

The noise reductions for a closed cylinder and a rectangular
 

parallelopiped enclosure (with a single flexible panel)
 

sitting in reverberant acoustic fields are computed and
 

experimentally checked. The transmission by resonant and
 

nonresonant shell modes is examined, especially in relation
 

to the statistical energy analysis apptoach: The nature of
 

the predominance of one type of transmission over the other
 

is considered in relation to shell and cavity configurations
 

and structural damping levels. A technique is.given for
 

estimating the predominance of resonant or nonresonant-modes
 

as the basis for computations of sound transmission by flat
 

panels and cylindrical shells in reverberant acoustic fields.
 

CC) Publication; Ph,D, Dissettation in Mechanical Engineering
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Project 

(A)- Project Title-; 	 Feasibility Study of Flaw Detection in
 

Railway Wheels Using Acoustic Signatures
 

(B) Project Abstract:-


The research is a feasibility study on the use of
 

acoustic signature for detection of flaws in railway
 

wheels. The ultimate objective is the development of a
 

wayside device capable of indicating defective wheels on
 

moving cars or locomotiveEi A test stand was constructed
 

-so that wheels could he excited by random noise under
 

simulated loads, and by impacting with various devices.
 

Analytical and experimental determinations of the natural
 

modes 'ot vibrating wheels are rep6rted, Differences in
 

acoustic signature were found between good and flawed
 

whells, including spectral changes and variations in the
 

time decay of sound.. Pattern recognition techniques were
 

used for selecting good and bad wheels with 'adataprocess­

ing schemeusing a minicomputer.
 

(C) Publi:cati'on; Ph.D. Dissertation in mechanical Engineering
 

(D) Year: 1974
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Project
 

(A) Project Title: Respiratory System Dynamics
 

(B) Project Abstract:
 

The understanding of physiological mechanisms, involved
 

-in the dynamics of respiratory adjustments, and their quan­

titative representation is of major concern in physiology
 

and medicine. A necessary prelude to any analysis of
 

respiratory regulation is the construction of a respiratory
 

plant model which accurately mimics changes in the various
 

state variables following an external disturbance imposed
 

on the system. Most.investigators in the past have attempted
 

to uncover the control hierarchies inherent in respiratory
 

regulation without assessing the validity of their plant
 

representations. As a result relatively little has been
 

accomplished in the delineation of the actual transport
 

processes within blooc and tissue fluids.
 

This report describes a first attempt at a detailed
 

examination of the various aspects-involved in the adjust­

ment of 02 and CO2 stores as well as the maintenance of
 

acid base balance in the body. Our approach is a pyramidal
 

one focusing first on the different subsystems themselves,
 

using experimental data wherever available to assess the
 

representation, -and then examining the over all plant model
 

predictions.
 

To assess the general validity of the blood gas inter­
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actions and relationships used in the study, we derive a
 

theoretical CO2 dissociation curve for blooc in vitro and
 

compare its predictions with experimental data. The kine­

tics of blood gas transport and reaction processes are
 

considered in the analysis of pulmonary gas exchange.
 

Several different alternative transport hypothesis are
 

implemented in our description of the muscle subsystem and
 

appropriate conclusions drawn using open loop experimental
 

data for muscle tissue. A multicompartmental description
 

is presented for the brain which allows examination of the
 

various transport hypotehsis presented in the physiological
 

literature. Finally, by specifying the necessary elements
 

for the entire closed loop flow path, simulation studies are
 

presented for the overall respiratory plant under open con­

trol loop conditions.
 

Good agreement is obtained with the available experimen­

tal data for the individual elements as well as the overall
 

plant. Needless to say, this study does not constitute the
 

last word in analyses ,of the respiratory system but the more
 

basic approach and evolutionary framework used here, hope­

fully represents an important step 'toward'a meaningful'
 

description of respiratory system dynamics.
 

(C) Publication- Ph.D. Dissertation in Chemical Engineering
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Project 

(A) 	Project Title: A Transport and-Thermodynamic Properties
 

Package for Simulation and Design
 

(B) Project Abstract:
 

Transport and thermodynamic properties such as
 

viscosity, thermal conductivity, enthalpy, etc., are fre­

quently needed in chemical process computations. A compu­

ter program was written which calculates these and many
 

other related properties rapidly and efficiently.
 

The system consists of an executor or main subroutine
 

called ROADMP plus 36 subroutines. ROADMP decides wha-t
 

subroutines have to be used to calculate a given property
 

from input data provided by the user..
 

All the subroutines, except ROADMP, consist of small
 

programs that use physical property correlations taken from
 

the literature. Extensive tests and error checks were made
 

and are included, where possible, in the system.
 

The entire programconsists of 3,200.FORTRAN statements
 

and occupies 11K words of memory.
 

(C) Publication: M.S. Thesis in Chemical Engineering*
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Project
 

(A) 	Project Title-: Multicomponent V&por-Liquid Equilibria
 

Computation
 

(B) Project Abstract:
 

This thesis is concerned with the development of a
 

comprehensive computer program for the estimation of multi­

component vapor-liquid equilibria in two phase systems at
 

lowto moderate pressures. The system which has been
 

developed is referred to as "the KVALUE routines" and it
 

fulfills its intended purpose in that it constitutes a
 

versatile, convenient, and efficient vapor-liquid equilibria
 

package which is suitable for use either a-lone or in conjunc­

tion with other computer programs. The KVALUE routines con­

sist of approximately 2,000-FORTRAN instructions which
 

require 21,454 words 	-of storage when loaded into-an IBM 360
 

Model 44 computer.
 

The KVALUE routines 	exhibit a number of very desirable
 

features. 'The most desirable feature of the system lies in
 

its versatility. Multiple routes leading to each of the
 

major thermodynamic and'physical properties allow the user
 

a considerable degree of freedom with respect-t6 the type
 

and quantity of input data which -he may provide. The sys­

tem structure, and the data structure as well, are designed
 

so as to make the package conveniently integrable'with
 

other computing systems. An auxiliary program, CURFIT,
 



which is included in the package, should serve as a valu­

able aid to the user in performing tasks related to data
 

preparation and organization.
 

The techniques used are such that the computations are
 

based upon a sound thermodynamic approach. The text con­

tains a discussion of the theory which is incorporated in
 

the estimation techniques that constitute the various
 

algorithms. Included in this discussion are the following
 

topics: the thermodynamic criteria for equilibrium, the
 

computation of vapor phase fugacity coefficients using both
 

the virial and the Redlich-Kwong equations of state-, the
 

correlation of activity coefficients to liquid phase compo­

sition via the equations of Wilson, Van Laar, and Hildebrand,
 

the calculation of standard.state fugacities from thermo­

dynamic considerations and from the Chao-Seader correlation,
 

and techniques for evaluating-the necessary physical proper­

ties and parameters. Also included in the text is a dis­

cussion of Marquardt's method and the manner in which this
 

algorithmic process is implemented.to obtain a solution to
 

the system of nonlinear equations which must be solved when
 

estimating multicomponent vapor-liquid equilibria.
 

The KVALUE routines have been thoroughly tested and
 

have been shown to produce reliable results in most cases.
 

Several examples are included in the text to illustrate the
 

applicability of the KVALUE routines in typical situations
 

and indicate the quality of the results obtainable.
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The appendices include information pertaining to the
 

use of the KVALUE routines as well as schematic diagrams,
 

listings, and documentations for the various subroutines.
 

Also-included in the appendices are computer output -list­

ings for the example problems which are discussed in the
 

text.
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Project
 

(A) 	Project Title: Optimization by Signal Flow Graph Method
 

(B) 	Project Abstract:
 

Five related objectives were realized in this research:
 

1. 	 A modified linear programming technique was developed.
 

The procedure follows the simplex algorithm, but sig­

nal flow graph (SFG) methods rather than matrix manip­

ulations are used.
 

2. 	 It is shown that all the ordinary post-optimum analysis,
 

including sensitivity analysis, may be performed by the
 

SFG method using the final graph instead of the simplex
 

final tableau.
 

3. The SFG methods to solve linear equations were used to
 

obtain the gradient vectors of objective-functions with
 

equality constraints­

4. 	 The techniques developed in 1 and 2 were incorporated
 

into the method of "feasible direction" (MFD), one of
 

the most powerful methods of constrained optimization.
 

5. 	 Two large, nonlinear, heat exchanger networks were 

studied, and the total heat exchanger area was -mini­

mized using the MFD in conjunction with the LP system 

deveioped. ­

This-research ,points to the possibility that signal 

flow graph methods can be a useful tool for solving linear
 

and nonlinear constrained optimization problems.
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Project
 

(A) 	Project Title: Application of a Generalized Urban Model
 

to a Specific Region
 

(B) 	Project Abstract:
 

The purpose of the research was to take the generalized
 

urban model of Professor J. W. Forrester and apply it to a
 

specific area, namely Harris County, Texas. The only vari­

ables changed were those considered to be "region dependent."
 

The model was initialized with data from the year 1950.
 

Statistical data for 1960 and 1970 was used for checking the
 

validity of the model. The statistical data used was ob­

tained from the 1950, 1960, and 1970 census, along with
 

data from,various planning agencies in the county.
 

The results revealed that the model could undoubtedly,
 

be used as a planning tool for a specific region, as the
 

final model appeared closely tuned .to the major statistical
 

variables. The lack of variables in the model which could
 

be directly correlated with statistical data was thought to
 

be the reason for any fluctuations in the subvariables.
 

Sensitivity of the model to a large number of Variables was
 

a byproduct of the research.
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Project
 

(A) 	Project Title: Systematic Flow Graph Analysis and
 

Applications
 

(B) Project Abstract:
 

A generalized technique for the solution of engineer­

ing problems which can be represented in the form of flow
 

graphs has been developed. The fundamental algorithm is
 

one whereby the paths and loops in a flow graph can be
 

systematically and selectively enumerated. This algorithm
 

serves as the basis for a procedure whereby Mason's rule
 

can be efficiently applied to generate characteristic equa­

tions, system determinants, transfer functions defining
 

input-output relationships, sensitivity functions, and
 

other important network functions related to signal flow
 

graphs.
 

The theory developed provides the basis for a compre­

hensive computing system which is instrumental in solving
 

many types of flow graph problems. The Value of flow graph
 

analysis in engineering science, and the diversified utility
 

of the techniques developed herein are illustrated by six
 

example problems: sensitivity analysis of a heat exchanger
 

network, simulation and analysis of a chemical reactor con­

trolsystem, generation of closed-form expressions describ­

ing the steady-state performance of an absorption column,
 

ordering of recycle calculations for a chemical process
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simulation, computation of eigenvalues, and the solution
 

of a typical transportation problem.
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Project
 

(A) 	Project Title: Numerical Integration of Stiff, Sensitive
 

and Multivalued Equations
 

(B) Project Abstract:
 

A technique for the numerical integration of stiff and
 

multivalued ordinary differential equations has been deve­

loped. Any of the standard numerical integration methods
 

(i.e., Runge Kutta, Adams-Moulton, etc.) may be employed.
 

The technique utilizes a changeable independent variable
 

of integration to conquer the numerical difficulties
 

usually encountered in the integration of certain equations.
 

Application of the method to several problems of interest
 

to chemical engineers was made. In general, the technique
 

works to increase accuracy and efficiency of solution.
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Project
 

(A) 	Project Title: Simulation of Multicomponent Separation by
 

an Adiabatic Cascade Technique
 

(B) Project Abstract:
 

Advances in the ability to estimate thermodynamic
 

physical properties and the demand for solutions to dif­

ficult multistage separation problems have warranted fur­

ther research to develop suitable computer algorithms.
 

Use of composition-dependent vapor-liquid equilibrium
 

ratios and enthalpies preclude the utilization of all but
 

the most recently developed algorithms and as yet no cur­

rent technique is widely accepted as were the historic
 

Thiele-Geddes and Lewis-Matheson algorithms. Additionally,
 

no algorithm is able 	to solve all separation problems-with
 

a single technique. 	Thus, stability of convergence on
 

classes of problems 	or specific examples, and inability to
 

use composition dependent properties are major areas for
 

improvement.
 

The proposed algorithm uses a complete -Chao-Seader
 

physical properties 	package as modified by Grayson-Streed.
 

Liquid phase z-factors are-computed by Yen-Woods coefficients.
 

Two major causes for 	instabilities in-converg6nce are
 

numerical round off error and structural ordering of equa­

tions for solution via successive approximation techniques.
 

Both of these problems are largely eliminated in the
 



proposed algorithm.
 

Inherent instabilities of other algorithms due to
 

structural arrangement are avoided by computing physical
 

output quantities from physical inputs and round off is
 

avoided by requiring the outputs to sum to the inputs.
 

A unique first order acceleration scheme was deve­

loped that is stable for absorption, reboiler absorption
 

and distillation problems.
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Project
 

,
(A} Project Title-: Reliability Optimization of Process Systems 

Using Intermediate Storage Tanks 

(B) Project Abstract:
 

The purpose of this study is to create a model that
 

will predict process system reliability when storage tanks
 

are used as back-up units.
 

The model is nondeterministic and only requires a
 

knowledge of the probability of failure and repair of each
 

unit. It assumes that the tanks will fail according to a
 

step function; when empty the probability of failure is.
 

unity and when full it is zero.
 

Based on this model a computer program for optimizing
 

the size of intermediate storage tanks in a process system
 

with and without recycle was developed. The method of
 

Paviani, et al. was used to find the optimum for a process
 

system composed of three units and three tanks.
 

It was found that the benefits of having tanks de­

creased from the end to the beginning of the system and
 

that the last tank in the system plays such an important
 

role that the optimum will generally be obtained by sizing
 

the product tanks as large as possible.
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Project 

(A-) Project Title: 	 The Optimization of Urban Systems
 

Objective Functions
 

(B) Project Abstract:
 

A generalized computer program has.been developed
 

which enables the representation of the interaction of
 

social segments of an urban structure.- This program is
 

presented in detail such that it can be adapted to any
 

particular urban system of interest. However, the adapta­

tion presented herein is to Harris County, Texas. The
 

calibration has been accomplished utilizing data extracted
 

from magnetic tapes-produced by the Census Bureau, U.S.
 

Department of Commerce (1970 census). This model is the
 

Housing Allocation and Location Optimization (HALO) model.
 

The model functions in a dynamic manner over a selected
 

global analysis period. The assumption is made that the
 

global analysis period may be represented by a series of
 

disdretized analysis periods. During each of these periods,
 

a certain portion of the households is assumed to enter the
 

market seeking to relocate. The model must satisfy a set
 

of quantitative constraints pertinent to the; particular geo­

graphical region of interest to achieve equilibrium.
 

Several features of this model are unique and proVide
 

significant improvement over previous models-:
 

The tremendous problemof evaluating preference
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factors by regression techniques is completely
 

eliminated by the inclusion of generalized
 

weighting factors.
 

A multi-dimensional array is incorporated to
 

control the supply and demand of the housing
 

market. This feature reflects the various
 

degrees of dependency of construction upon
 

the economic situation experienced by dif­

ferent types of housing units.
 

The capability of selecting an optimum location
 

within the geographical region is provided. A
 

generalized user specified objective function is
 

optimized in the global analysis period. This
 

facilitates the selection of optimal sites for the
 

'location of various installations.
 

After the model is 6alibrated to any area of interest,
 

it can be used to evaluate various policies.
 

Two different policies.are implemented in this paper.
 

A new school district is created from an existing school
 

district and the affect on the housing distribution is
 

presented. The housing pattern change caused 'by the
 

completion of a new freeway is also presented. In each
 

case, the impact caused by the policy implementation is
 

evident
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Project
 

-A) Project Title: 	 Reliability Analysis and -Optimiza-tion of
 

Complex Systems
 

(B) Project Abstract:
 

Most of the earlier literature on system reliability
 

optimization consider only the simple series-parallel
 

systems subject to one or two constraints. Practical sys­

tems have complex rather than the simple series parallel
 

configurations. With a view towards solving these complex
 

system reliability optimization problems., an efficient com­

puter algorithm based on the path enumeration method has
 

been developed. An 	important feature of the method is the
 

module representation of the reliability graph which consid­

erably simplifies the calculation of reliability and sensi­

tivity functions of-complex systems. A modified integer
 

gradient method is used for system optimization. Although
 

the method does not insure a global optimum, it does find
 

various near-optimum solutions. From a practical considera­

tion, this could provide for a wider choice during the
 

design phase.
 

In this research ah effort has also been made to apply
 

basic reliability concepts to process plants. A new formu­

lation of the optimal reliability design of process plants
 

which takes into-account the quantitative aspects of systems
 

throughout is proposed. It is based on the k-out-of-n
 



configuration instead of the conventional parallel redun­

dancy configuration. The problem is so formulated that
 

determining the optimum configuration also determines the
 

optimum capacity of units to be used at each stage of the
 

system. A computer program based on a pseudo-Boolean
 

algorithm is used to solve this non-linear integer
 

programming problem.
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Project 

(A) PrQject Title-: Synthesis -ofProcess Fowsheets by a 

Theorem Proving Method 

(B) 	Project Abstract:
 

Events occuring in chemical processing systems are
 

described in terms of an axiomatic second-order theory.
 

The axioms of the theory are mixing, splitting, reaction,
 

change of 	pressure, change of enthalpy and equality axiom.
 

Theorem proving method based upon the resolution prin­

ciple is 	used to test the hypothesis that a required slate
 

of products is a logical consequence of the axioms and
 

available 	raw materials. The proof, if it exists' yields
 

the process plant flowsheet.
 

The computer implementation of the procedure is in
 

LISP 1.5 programming language. An example of flowsheet
 

synthesis.is given.
 

(Cl Publication: M.S. Thesis in'Chemical Engineering
 

(D) Year: 1974
 

(E) Department: 'Chemical Engineering­

(F) Student Name: Vladimir Mahalec
 

(G) Faculty Advisor: Professor E. J. Henley
 

k rs­



Project
 

(A) 	Project Title: A Study of Integration Algorithms in
 

Chemical and Physiological System Dynamics
 

(B) Project Abstract:
 

Solution of many chemical engineering problems requires
 

the use of numerical integration techniques. The most
 

popular integration technique for such problems is the
 

classical fourth order Runge-Kutta that in some cases can
 

be used only with very low efficiency.
 

In the last few years new methods have been developed
 

which seem to be efficient for regular and stiff problems.
 

Some of these new methods were compared in the solution of
 

chemical and physiological systems. -The program written by
 

C. W. Gear, which includes two slightly different algorithms
 

for stiff systems and a third algorithm for regular systems
 

was found to be the most"'table and .efficient in all cases.
 

To increase accessibility of the Gear- program for
 

general engineering-usage, a set-6f subroutines was written.
 

These subroutines were designed withthe-fpllowing objec­

tives: 

a) 

b) 

Minimization Of input requirements. 

Minimization of interaction between user and 

c) 

integration program 

Giving the,-user "the option of calcula

values of the dependent variables -at 

ting the 

certain 



specific values of the independent variable.
 

d) 	Giving the user the option of dynamically
 

selecting the algorithm to solve the problem in
 

question efficiently.
 

The behavior of the different algorithms in the
 

solution of selected problems is also discussed.
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Project
 

(A) 	Project Title: Water Vapor, CO2 and Particulate Effects
 

On The Atmospheric Temperature Profile
 

(B) 	Project Abstract:
 

A new approach is developed for the determination of
 

the atmospheric temperature profile. Various concentrations
 

of carbon dioxide, water vapor, and scattering particles are
 

introduced to determine the perturbing effect on the temper­

ature distribution in the atmosphere.
 

The solution is gained through the combination of the
 

Edwards exponential wide band model equations and the Curtis-


Godson transformation. The Curtis-Godson technique allows
 

a transformation from the equations for a nonisothermal
 

medium to those for the isothermal case while the Edwards
 

band model equations 	provide a-means of finding the absorp­

tion characteristics 	of the carbon dioxide and water vapor.-


The basic radiation 	equation of transfer-is coupled with an
 

energy balance equation through'the use of a wide band
 

model derivative approximation which reduces the complexity
 

of the analysis considerably.
 

An approach is developed for the-inclusion of particle
 

scattering. The simple case of elastic scattering is con­

sidered and-the equations are treated-in a rinner which
 

allows the wide band model derivative approximation to be
 

utilized again.
 



The 	doubling of the carbon dioxide concentration pro­

duced a 1.890K increase in the ground level temperature.
 

Halving the concentration caused a decrease of 1.940K in
 

the ground level temperature. These results agree reasonably
 

well with those obtained by other investigators. In addition,
 

since only a 25% increase in the concentration of carbon
 

no
dioxide is expected from AD 1900 to AD 2000, there is 


threat of a significant ground level temperature change due
 

to the increase of the carbon dioxide in the atmosphere. In
 

fact, the introduction of water vapor and scattering can
 

negate the effects of the carbon dioxide completely.
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Project
 

(A) 	Project Title: Thermal Modelling of a Plate with Coupled
 

Heat-Transfer Modes
 

(B) Project Abstract:
 

The thermal system considered here is a flat plate'
 

subjected to all three modes of heat exchange. The plate
 

also has a constant rate of volumetric internal energy
 

generation, According to the method for thermal modelling
 

proposed here, the volumetric energy generation rate in
 

the model is varied 	in a manner depending upon its geo­

metric reduction and 	other parameters. The model then
 

has the same dimensionless teiperature profile as does
 

the 'prototype. The 	experiments conducted give confirma­

tion of theoretical :results obtained earlier and also
 

give.encouragingresults-for the proposed modelling
 

procedure.
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THERMAL MODELING OF A PLATE
 
WITH COUPLED HEAT-TRANSFER MODES
 

Manohar S. Sohal* and John R. Howell
 

University of Houston, Houston, Texas
 

Abstract
 

The thermal system considered here is a flat plate sub­
jected to all three modes of heat exchange. The plate also
 
has a constant rate of volumetric internal energy generation.
 
According to the method for thermal modeling proposed here,
 
the volumetric energy generation rate in the model is varied
 
in a manner depending upon its geometric reduction and other
 
parameters. The model then has ,the same dimensionless tem­
perature profile as does the.prototype. The experiments con­
ducted give confirmation of theoretical results obtained
 
earlier and also give encouraging results for the proposed
 
modeling procedure.
 

Nomenclature
 

-
C1 = constant for a laminar flow,-0.623 Pr 1/ 3 ReL-/2 
Ct = constant for a turbulent flow, 3.323 Pr-0.6 ReL-0 "8 
I = current flowing in the plate 
i = 1, 2, 3, ... n + 1; i : j 
1 1, 2, 3, n + 1 
kf = thermal conductivity of the fluid 

Presented as paper 73-748 at AIAA 8th"Thermophysics Con­
ference, Palm Springs, Calif., July 16-18, 1973.
*Research-Fellow, Dept. of Thermodynamics and Fluid
 

Mechanics, University of Strathclyde, Glasgow, Scotland.
 
tProfessor, Department of Mechanical Engineering.
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= thermal conductivity of the plate
N = nondimensional thermal conductivity parameter 

kp/EaT 3L 
n = a positive integer
 
Pr = Prandtl number of the fluid
 
Q = total internal energy generation in the prototype
 

QM = total internal energy generation in the model ,
 
q = uniform volumetric internal energy generation rate
 

in the prototype
 
q = convective heat-transfer rate per unit area at the
 

plate surface
 
qmx = varying volumetric internal energy generation rate
 

in the model
 
R = electric resistance of the plate
 
Re = Reynolds number of the fluid
S = series for laminar flow:
ii 

1 1+ -8i7/4- i-i)/ 
7--t 21-(jl).7/4
 

9 is/2-(i-l5/22 (i-l)5/2 ± " 
t 


= series for turbulent flow:S.. 
1~3 

1 + 80 i19/10-(ii)19/10
 
j-l 171 (j~l)19/l0
 

+60 i14/-(i-1)14/5

567 (j-l)14/5
 

ORIGINAL PAGE IS 
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Tx = temperature of the plate surface
 
Tc = freestream temperature of the fluid
 
V = potential.drqp across the plate
 
W = width'of the plate
 
X = nondimensional plate length parameter x/L,
 

0SXSI 
x = dimensionai' Tngth of the plate 
y = nondimensional plate'thickness parameter t/L
Z = nondimensianal dummy variable for length f/L 

Greek Letters
 

S = total-hemispherical emlssivity of the plate 
= the second derivative of nondimensional temperature

6 = nondimensional plate temperature Tx/T. 
P =,electrical resistivity of the plate 

= dimensional dummy variable for plate length 
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a 	 = Stefan-Boltzmann constant, 5.680 x 1012 w/cm
2 -0Kk 

= nondimensional energy generation parameter, 
qt/saT 

4 

I. Introduction
 

The satisfactory design of many systems requires thermal
 
analysis and thermal testing of the hardware. Thermal scale
 
modeling is a useful tool for the design of many systems.
 
Scale modeling gains even more importance with the increasing
 
size of 	space vehicles.
 

The two common approaches to modeling are dimensional
 
analysis and thermal similitude. In the former method, cer­
tain dimensionless groups are equated which must contain all
 
of the-physical quantities and constants involved in the
 
system. This approach has been used by Katz,

l Vickers,2 and
 
MacGregor3 to study the thermal behaviorof the walls of the
 
spacecraft. In the theory of thermal similitude, it is
 
essential to know the explicit governing equations of the
 
system. The model criteria ire established from the govern­
ing equations. Then, if a similar but smaller-sized model
 
is constructed, its thermal behavior would be given by the
 
same governing equations at homologous locations in the model.
 
This approach has been examplified in the works of Jones,

4
 

Rolling,5 and Chao and Wedekind. 6 Jones7 also has given a
 
brief account of the theory of similitude applicable to 
spacecraft.
 

In this'worki an attempt has been made to demonstrate,
 
analytically and experimentally, a method of thermal modeling
 
based upon the theory of thermal similitude. After solving
 
numerically the governing,equation for the temperature of
 
the prototype, the dimensionless temperature profile of the
 
model is forced to be the same as that of the prototype.
 
From that, the local internal heat generation rate in the
 
model is calculated for scaling purpose. The procedure of
 
numerical solution and the scaling method are confirmed b)
 
testing geometrically similar models. The particular example
 
chosen is a flat.plate having internal thermal energy genera­
tion and subjected to-all three modes of heat exchange.
 

II. Analysis
 

- The thermal system considered here is a-thin, semi-in­

finite flat plate placed in a stream of transparent air. The 

. 7. U2. 
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plate (see,Fig. 1) has uniform volumetric internal energy
 
generation and has one face insulated while the other rejects

heat by convection and radiation. It is assumed that the
 
properties of the plate and air are independent of any tem­
perature variation, that the plate is a gray surface, and
 
that the surroundings are black and isothermal at T. The
 
conditions on the surroundings can be relaxed by accounting
 
for the emission and reflection of radiant energy from them.
 
This can be done for a known geometry and known temperature

of the surroundings. The nondimensional plate temperature in 
a laminar flow can be obtained by combining the governing
 
energy equation for the plate with the equation describing
 
the convective heat transfer from the plate. These are given
 
by, respectively,
 

-= kpt(d2Tx/dx2) - es(T 4 - T 4 ) + qt (1)
 
q
x x . - fx[ I_\_1 -2/3.,
 

- =(0.623/k ) 1/3 Re 1/2 J xI jd
 
(2)
 

Combninig Eqs.*(1) and (2) and nondimensionalizing gives
 

ex~~~ + C1k ~ s(A)'l 

Details of'the analysis are given in Ref. 8. The various non­
dimensional parameters for a plate of 1ength'L are defined as
 
follows:
 

uC0 ,tm 
ORIGINAL PAGE IS 

---- OF POOR QUALITY, 

4x -L 

x 

X=O 
 X=i
 

1i9 f lat-plate thermal.system. 
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X = x/L Z = f/L 

ex = Tx/T, = TE/T 

Y = t/L CI = 0.623 pr-1/3 ReC1/2 

N = kp/oT.3L = qt/eoT*4
 

z 1+8 i7/4-(i-1)7/ 4 + 2-i5/2-(i-1)5/2S 
j (j-l)7 4 2ij T 21 9 ( 5-/)S 

13/4
 160 i1 3/4(i-i)

+ 153 (j-l)13/4 +
 

If n is taken to be a positive integer, then i = nZ + 1 and
 
j = nX + 1.
 

Similarly for a turbulent flow, the plate temperature is
 
given by
 

ox =i2 [+.(1is -- .] (4) 

where Ct = 3.323 Pr 0.
6 ReL- 0.8, and
 

t 1 +80 i19/10-(i-1)19/10 160 il4/5-a-i14/5

ij j-1 171 (j-1)l 10 +.567 (j-l)1/5 + 

For thermal modeling, in order to avoid numerous changes,

it is proposed here that only one dtmension'of the prototype

be changed. Therefore, in order to have the same tempera­
ture at homologous locations of the prototype and the model,
 
all physical properties are kept constant except for the
 
reduced length of the model. By solving Eq. (3),for the
 
volumetric energy generation q, we obtain
 

kpT_ F (03t - 1) J n i 4 

_ _1_ (6x f)X{35.5-30 [dik1k)X1 - (y N1 1 - -~ (5) 

Next, we define r = prototype length/model length. If 
we apply Eq. (5) for a model, the varying volumetric energy
generation along the length of the model qmx, for the same
 
temperature profile as in the prototype, would be given by
 

L t 3.530 (x . 5 -- ,Si-j - -. N 

i__ N. 

http:kp/oT.3L
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q +N 1 (e)x-1)(rt.5_1) (6)
 
q 4 3.530 LC1(k/k) XO.5 (r2-1)Yui 6ij 

Similarly for a turbulent flow, we'have
 

l+" ct(k/Ikf)I ) (r 0 X0 . - I (r2-1)Y~i s tj (7pl7 2 

qmx N 1 F(ex - 2-) J, ­q + 9.'827 Lt_ k/f O2ij 

1=i 

Note that, for no internal generation in the prototype (q=O),
 
the equation must be modified by multiplying through by q,
 
which then will cancel with part of *. The method, however,
 
will still apply. The qmx necessary to produce a temperature
 
profile in the model similar to that of the prototype with
 
q=O is then predicted by the modified Eq. (7).
 

III. Experimental Procedure
 

Before confirming the modeling procedure as just 
developed, an experiment.twas performed to see the validity 
of the numerical results of plate temperature as given by 
Eqs. (3) and (4). A 279.4 x 152.4 x 0.0508-mm 303 stainless­
steel plate was tested in a 41.9 x 41.9 cm suction-type wind 
tunnel., The plate temperature was measured by installing 13 
30-gauge chromel-alumel thermocouples on the lower side of 
the plate. The thermocouples were attached at the center­
line of the plate width (279.4 mm) and along its length
 
(152.4 mm),, at equal intervals, except close to the leading
 
edge, where the spacing was decreased. This centerline
 
placement eliminated multidimensional conduction errors.
 
The thermocouples were held in place by Borden Mystik Tape,
 
no. 7366, which also insulated the thermocouple hot junctions
 
from the electric current heating the plate. To insulate
 
the lower face of the plate, it was attached by Dou Corning
 
silicon adhesive to a 25.4-mm-thick Marinite-36 plate with
 
a wedge-shaped leading edge machined at 100. This material
 
manufactured by Johns-Manville, New York has an average
 
thermal conductivity of 0.967 .al/hr-cm-6C' and specific heat
 
of 0.27 Cal/g-0C. Two copper electrodes were bolted to the
 
base plate, with the ,test plate sandwiched between ehe,
 
electrodes and the base plate; This setup was then installed
 
in the wind tunnel and connected to the'various instruments
 
needed to supply power and record'the temperature and velocity.
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The experiment was run for the maximum and minimum
 
Reynolds numbers available from the tunnels 15.6 x 104 and
 
4.92 x 104, based on the total length of the plate. Varia­
tion in Reynolds number was accomplished solely by changing
 
the freestream velocity. For a current through the test
 
plate of 100 amp, temperature data were recorded when the
 
readings became approximately reproducible. Changes in
 
electrode-plate resistance and plate surface emissivity due
 
to high plate temperatures caused some initial fluctuations
 
in the temperature readings. The interior surface of the
 
test tunnel met the condition of being at T. (room ambient
 
temperature). The tunnel walls were probably near-black in
 
the infra-red region, but measurement of the tunnel-wall
 
absorptivity was not made. The temperatures recorded for
 
laminar and turbulent flow cases are shown in Fig. 2, along
 
with the theoretical results. The property values for 303
 
stainless steel, averaged over the experimental temperature 
range and obtained from Ref. 9, are total hemispherical
 
emissivity e = 0.70, electrical resistivit p = 73.5 iohm-cm,
 
thermal conductivity kp = 142.0 Cal/cm-hr- C.
 

The experimental temperature profiles were smoothed to
 
pass through the experimental data results as indicated on
 
the figures. The ratios q /q, shown in Fig. 2, were cal­
culated by using these profiles in Eq. (6) or (7)for a model
 
of full size, i.e., r = 2. The varying v6lumetric internal
 
energy generation in the model q. was obtained by varying
 
the resistance in the electrical path. Therefore, for an
 
infinitesimal length ds of the plate (model) of electric
 
resistance dRx, resistivity p, and for a voltage drop of V
 
across its width,.
 

(sa xWt dx = V2-IdR = V2/(pWlt dx) 

or ORIGINAL PAGE 18 
wx = v/ qx/q OF POOR QUALITy 

Let Wx = W. for x = 0, and, noting that qmo/q = 1, we obtain 

W= W 0 -v lq (8) 

This equation gives the profile of the model plate for
 
the corresponding values of qmx/q for laminar and turbulent
 
flows, respectively, assuming one-dimensional ,current'flow'
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Fig. 2 Determination of qmx/q from 
experimental temperature 

profile. 
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across the test plate. In actual practice, the copper elec­
trodes were shaped to give the desired width of the plate, 
as shown in Fig. 3 for Wo = 292.1 mm. The total energy re­
quired to produce the desired temperature profile in the ORIGINAL PAGE IS 
model is then OF POOR QUALITY 

L 

Qm=qtWoJf 7q7dx (9)
 

0 

On evaluating the right-hand side of Eq. (9) graphically, 
the total energy required for laminar and turbulent flows is 
obtained as 157 and 148.2 w, respectively. Thus, the pro­
posed method demands a specific energy input, as calculated
 
previously, and then examination of the resulting temperature
 
profile for the model as compared with that of the prototype.
 
But, as no method was available to check the actual distri­
bution of volumetric energy generation along the length of
 
the model, an attempt was made to adjust the total power in­
put to the model:so that the temperature profile matched
 
with that of the prototype.
 

IV. Discussion of the Results,
 

Figure 4 presents the results of the experiments for the
 
prototype, the model, and the theoretical results for the
 
corresponding experimental data. Except for the leading
 
edge and the trailing edge, comparison is reasonable within
 
the experimental errors, the maximum deviation from the
 
theoretical results being 7.0%. For the plate temperature at
 
the leading edge to be.equal to the freestream temperature, 
i.e., 00 - 1, the convective heat-transfer coefficient should
 
approach an infinite value. This means that the boundary 
layer thicknessat the leading edge and hence the leading
 
edge itself should have zero thickness. This not being the,
 
case, the flow is likely to separate at-the leading edge,
 
giving rise ,to a separation laminar bubble; as reported by
 
Tantl0 and Chang.11 The boundary layer then begins at a
 

point downstream of the leading edge, and the cbnvective
 
heat-transfer coefficient near the leading edge has some
 
finite value, .which in turn results in a higher temperature
 
close to the leading edge. Similarly, the trailing edge
 
separation, and formation of a vortex wake behind the
 
trailing edge, could be the cause of plate temperature being
 
below that predicted theoretically.
 

http:Chang.11
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For the plate'(prototype), the total energy input for a
 
current flow I can be obtained from Q = 12pW/Lt.
 

It can be seen from Table 1 that the actual energy input
 
as measured during the experiment is more than the corres­
ponding value as calculated analytically. Some energy was
 
lost by conduction through the insulating base plate, which
 
had its lower face in the shape of a wedge with a reduced
 
thickness near the leading edge. A thick leading edge would
 
hamper the formation of boundary layer on the plate. The
 
magnitude of the energy loss by conduction is of the order
 
of 70 w. The electrical resistivity of the steel plate also
 
increases with increase in temperature. This has not been
 
accounted for in the theoretical analysis. The contact re­
sistance between the copper electrodes and the steel plate

also contributes somewhat to the energy unaccounted for.
 
Therefore, either a much more accurate estimate of energy
 
distribution is desired, or the present approach of model
 
testing may be used. To correct for the energy loss, the
 
actual energy input in the model is obtained by increasing
 
the theoretically calculated values for the model by the same
 
factor as in the case of the prototype. This is essentially
 
the'procedute used in the present case. Figure '4shows
 
encouraging experimental verification of the theoretical
 
results of plate temperature .and the modeling technique.
 

In an actual modeling of a prototype, this problem

should be avoided by monitoring the true energy input into
 
the model. Voltage taps that measure the actual drop-across
 
the model and avoid electrode contact losses are necessary
 
when prototype data are not available.
 

An idea of the discrepancies caused in the plate (model)
 
temperature because of its inaccurate curved boundaries can
 
be had from Fig. 2. If the curved boundaries of the model
 
test plate, as shown in Fig. 3, were replaced by straight
 
ones, we would have a constant volumetric internal energy

generation qm in place of varying energy qmx. Therefore,
 
for a model in laminar flow and for a constant qmx/q = 1.27,
 
the temperature profile calculated from Eq. (6) is also
 
shown in Fig. 2a. The difference between ax for constant
 
and varying energy generation, although not severe, is
 
noticeable.
 

V. Conclusions
 

The experimental, results of plate temperature profile
 
compare satisfactorily with those predicted earlier by the
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Table 1 	Theoretically calculated and experimental
 
values of energy required
 

A B (A-B)/A 

Actual Energy required 
Energy 
unac­

energy input, as per calcula- counted 
w tion, w for, % 

Laminar & 
Prototype turbulent 

flows 
100amp, 4.40V 
= 440.0 

265.5 39e65 

Model 
Laminar 
flow 

57 amp, 4.45V 
= 253.5 

157.0 41.6 

Turbulent 
flow 

62 amp, 5.04V 
= 312.5 

48.2 
1 

52.6 

theoretical method. For scaling purposes, the method of
 
varying the internal energy generation does work. More so­
phisticated instrumentation to allow a complete energy ,loss
 
analysis is necessary in order to use the method better.
 

The same 	method can be employed for different fluids and
 
for different flow regimes. Study of two-dimensional and
 
three-dimensional problems would be most desirable to make
 
use of the method presented here. Further research is neces­
sary in such cases to determine whether the method can be
 
applied. It may be necessary to provide locally variable
 
heat sources rather than Joulean heating controlled by boun­
dary shaping. Still, the change of only one parameter, in­
stead if changing many parameters as is the case in dimen­
sional analysis modeling, lends itself as a valuable technique.
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Abstract-The singular, integro-differential equation for the temperature of a flat plate with internalenergy generation and a fluid flowing over one of its faces, is solved numerically using the method of
iteration. The present results compare well with those of Sparrow and Lin, except for the leading portions
of the plate. It is also seen that the relations given by Cess for similar problems may.not give converged
solutions for all cases. The importance of conduction in a plate of high thermal conductivity and of 

radiation in cases of laminar flow has also been demonstrated. 

NOMENCLATURE n, a positive integer; 
a, constant, 0 < a < 1; N, nondimensional thermal con­
a, a2 .... constants; ductiiity parameter, ._.--. 
b, constant, 0 < b <i;1ETL 
bo , b t , b2 ... , constants; p, dummy variable for z;
C1 , constant for ,a 'laminar flow, Pr, - Prandtl number of the fluid; 

0-623 Pr -+ Rep4 ; q, volumetric internal energy
C, constant for a turbulent flow, - generation in the plate;

3-323 Pr - 0 6 Re- 0 8 ;. 4, convective heat-transfer rate 
t9 per unit area at the surface;F' YO - N Rev, Reynolds number -based on 

convectiveefficient; heat-transfer co- Re., length L, (Q L/v):Reynolds number based on 
length x, (UQx/v); 

-., 

kf, 

., 
04 1 +

Y' N N ; 

i ', 1,2, 

S1,2,3,.n + 1;
j,~ 1; 

thermal conductivity of the 

S,, series for a laminar flow, 
1 8 il- (i ­ 1)1

j-1 21 -­ 1)T - + i - 1)T+ 
+ 9 - ( - ) +' 

fluid;- 9 1)-U 
k , 

L, 

thermal- conductivity 
plate; 
length of plate; 

of the '-,­ series for a turbulent flow, 
1 80 i- (i 1­

1_ -0i - -1) -j- 1 171- ]- 1)­
* Now, Research Fellow, Heat Transfer Section, Tech- - 160 0t - (i - 1J, 

nisehe Hogeschool, Eindhoven, The'Netherlands. + 67 ( - 1)j + ' 
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t, thickness of the plate; 
T, temperature of the plate 

surface; 
T, freestream temperature; 
Uo, freestream velocity of the 

fluid; 
x, length co-ordinate for the 

plate, 0 < x < L; 
X, nondimensional plate length, 


x/L, 0 < X 4 1; 

Y nondimensional plate thick-


ness, tIL; 
Z, nondimensional dummy vari-

able for length, /L, 0 Z < X. 

Greek letters 
fl(l, m), represents the Beta 
function of Iand m; 

F, 	 F(), represents the Gamma 
function of (1); 

AX, 	 1/n; 
E, hemispherical total emissivity 

of the plate; 
0,-, 1st, 2nd and 3rd derivatives of 

nondimensional temperature; 
0., 	 nondimensional temperature,

TJTa,; 

06, TT ; 

v, 	 kinematic viscosity of the 

fluid; 
dummy variable for the plate 
length, 0 < < x; 

a, Stefan-Boltzmann constant, 
5680 x 1012 W/cm 2 OK4 ; 

0, nondimensional energy gen-
eration parameter, qt/EuT'; 

T/, 	 nondimensional length para-
meter, (k.kf) [1/N(Re/)] 
a(X)b. 

1. INTRODUCTION 
WiTH the increasing use of complex thermal 
systems, analysis of coupled problems becomes 
very important. In most such systems, heat 
exchange by only two of the three possible 

modes is considered. Some problems of com­
bined conduction and radiation have been 
examined. Viskanta and Grosh [1] analyzed 
heat transfer by simultaneous conduction and 
radiation in a gas between two parallel plates. 
The nonlinear integro-differential equation was 
solved numerically by an iterative method after 
reducing it to a nonlinear Fredholm integral 
equation of the second kind. Howell [2] solved 
a combined conduction and radiation problem 
by a finite-difference technique, considering the 
radiant exchange terms involved in the equation 
to be independent of the conduction process. 
Doornink and Hering [3] gave numerical 
solutions to the transient simultaneous conduc­
tive and radiative transfer in aplane gray medium 
bounded by black walls. The singular nonlinear 
integro-partial differential equation was solved 
by representing its nonlinear function by a 
finite expansion in terms ofelementary functions. 

Other coupled problems of heat transfer have 
also received some attention. Oliver and 
McFadden [4] solved the problem of simul­
taneous convection and radiation in a laminar 
boundary layer on an isothermal flat plate by 
reducing the governing equations to the familiar 
equation of Blasius. Sparrow and Lin [5] 
carried out an analysis to determine the distribu­
tion of surface temperature on a flat plate 
undergoing heat exchange with the environment 
by both convection and radiation and having an 
internal heat source or sink. The nonlinear 
integral equation was solved numerically by 
changing.the integral into a series summation 
and using a predictor-corrector numerical tech­
nique. Cess [6, 7] 'presented an analysis to 
determine the influence ofradiation heat transfer 
upon the forced convection Nusselt number. 
Though the solutions presented by Cess do not 
converge for all the values of plate length, the 
results were used to find under what conditions 
radiation may be neglected. 

The present study is aimed at determining the 
temperature profile ofa thermal system involving 
internal energy generation and conduction. 
Externally, heat is rejected to a flowing trans­
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parent gas by convection and to constant 
temperature black surroundings by radiation. 
Similar problems are encountered in th6 design 
of aircraft and missiles, hot wire anemometry, 
cooling of electronic instruments and other 
areas. 

2. ANALYSIS OF THE PLATE TEMPERATURE 
DISTRIBUTION 

Derivation of the governing equations 
Consider a very thin flat plate of finite length 

and infinite width with uniform internal genera-
tion of thermal energy. Let there be a flow of 
transparent gas over one face of the plate and 
let the other face be insulated (see Fig. 1). It is 
assumed, here, that the thermal conductivity of 

U. rtively 
-

thermal conductivity of the plate, t is the plate 
thickness and q is the volumetric internal energy 
generation in the plate. 

For a constant freestream flow along a semi­
infinite plate, a solution can be obtained for the 
wall temperature for the case of arbitrary 
specified surface (convective) heat flux from 
Kays' text [8]. Considering a laminar flow 

T - T.= 0-623 Pr_+Re f[1 
k f[

0 

( Y ",d,, (2) 
-

wherek.Pr andRe are the thermal conductivity,
 
Prandtl number and Reynolds number respec­

and is the dummy variable. 
- Combining the equations (1) and (2) and 

further simplifying gives 

T, t0623 O 


X=O X=
 

~o 

FIG.1.Thermalmodel. a flat plate. 

the plate and other properties of the plate and air 
remain constant along the length of the plate, 
i.e. the properties are independent of any 
temperature variation. The plate is taken to be a 
gray surface and the surroundings are considered 
to be black. The governing energy equation in 
the plate is obtained by considering an infmitesi-
mal element dx of the plate at a distance x from 
its leading edge. This analysis yields 

= h (T; - T) 

d2T 


= X kp ~ ) + qt, ()X
where 4 is the convective heat-transfer rate per 

unit area of the surface, h is the convective 
heat-transfer coefficient, 7 is the plate tempera-
ture, L is the freestream temperature, k, is the 

T- =TX T. kfPr-+RexI 

Lk~t d 2 - - EafT' - T,) + qj d . 

Define the various dimensionless numbers as 
follows: 

x= X Z
 
L 

T T 
A- 0T
 

T T. 
t = 0-623 Pr- fRe[ = C, 
L L 

k qt
TL 

Thus the nondimensional governing equation 
for the plate temperature in a laminar flow is 

-
0 = I + CQ X k 1 

0 
x YO.- + --01 dZ. (3) 

e27
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This is asingular, integro-differential equation 
with a nonlinearity in temperature. The kernel 

H{ 1 - ( . , 

where 

H. + - +10 

makes the equation singular as it has a weak 
singularity at Z = X. But the integral exists 
and converges to a finite value. By removing 
the singularity, the kernel can be transformed 
into a continuous function. 

In a similar manner the nondimensional 
governing equation for turbulent flow can be 
obtained, using a relation given in reference [8]. 

kYO --0. 1 +0~d]N d. (o4 

where 
C = 3"23 Pr= 6Re. 

Closed form analytical solutions to equations of
the type (3) and (4) are not known. Therefore 
they are solved by employing two numerical 
methods. 

Simpification obtained on integratingby parts
The equation. (3), for laminar flow, can be

rewritten by integrating the right hand side by 

parts. Thus, 

0= 1 + Cl &X-1kf 
{Hx (-) ]-


x f(H_), f1 - dZ 


0 

dZ fdlzfi 4 Yl dzdzV- -),I- d, 

0 fJ X 

It can be easily seen that the term 

j[1 - (Z/X)t]-+ dZ 

is equivalent to 

-i1"- (pX)t ] I dp,
0 

where p is a dummy variable of integration.
Therefore, it is obtained, 

k 4 { ( 0 10+ 
0 = 1 + C1 k -- + N-- ) 

x 
/ 9 

- (YO­-- + -) 
0 

x 
x4dZ-f(Yo -

0 

Applying equation (1), for the limiting case of 
x -. 0, f[ VXT- ,) + txT - T 

- [kpt d2 T/d.9 - EOT , tx­

[ , 

For a flat plate, the local convective heat­
transfer coefficient varies as 1/(x)t, so as 

x - 0, h , 

or 

00 . 

Again considering the energy equation (1) for 
x- * 0,
 

h(T - T')IT k t d2 .
 

dI - 4 

- ea(T4 - Tt)I._o + qtl_,, 

1.2-71
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or similar to the laminar flow case, to obtain, 

Yo 0= I - ° 89827X(Y" Nl+C'gX

Therefore, equation (5)reduces to 
x 

xJ~+ .'._ +(Y f (y ­
kf X X 

(KlI4030) (8 

00 

z - F- pSimplification is obtained by expanding in a 

f dp dZ}. (6)-X 

o 
The finite value of a singular integral of thetype 

x 

-ff1 - (ZIX) ] bdZ 
0 

(where 0 < a < I and 0 < b < 1), can be ob-
tained by making use of a Beta function. Thus, 

x 
-
f Ii - t

(4a 
) 

b
dZ = af 

X ( 
- , 

1) 

-

[l6(l,rm) represents the Beta function of I and m] 
Thus when the integral 

z
S[1 - (p/X)f ] - I dp 

of equation (6) becomes singular, it can also be 
simplified'by using a beta function for Z = X. 

Thus the simplified governing equation for 
the plate temperature in a laminar flow becomes, 

' O: =I C1 lpX - 0,530 Y 0-
X0 5~~ . {3.53OX(Y ~ 

x 

+ 43 

if (P)fl- 4 } (7) 

If the flow is turbulent, the governing equation 
(4) can be simplified by following a procedure 

series. 
The integral in the governing equation (3) 

can be simplified by using anpother method asillustrated by Sparrow and Lin [5]. The treat­
ment presented by Sparrow and Lin is only for 

the case where the delay factor in the kernel is 
of the type [1 - (ZIX)]-b and not of the type
[1 - (ZIX)al-b as used in the present analysis. 
The simplification in the form of delay factor 
used by Sparrow and Lin was obtained, as 
proposed by Hanna and Mayers [9], by using
a superposition of step-changes in surface heat
flux instead of a superposition of step-changes 

in surface temperature. 
Divide the region between X - 0 and X = 1 

into n equal parts, such that AX = 11n. Any
value of X in the region 0 < X < I can be 
denoted by X = (j - I)AX and Z = (i - 1)AX. 
Also, in equation (3)for Iz/xI < 1,the kernel 
can be expanded in a binomial series. Thus 
x 1 

oZ)
J{ 

jAx 

+ + z + 40 

± .dZ =ZFzU - 1)AX[A 

+ 8 il- (i- i)' 2 (if 1)4 1 
2(19 W + ... 
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where 
[j- _1)tA + F,Ax], 

Substitute this in equation (3) and rearrange 
some terms, to obtain 

0x = 1 + C1 kB Xo*, 3.530_+.4P
kf I NNiv 

Y- SZ' (9) 

where 

1 8 il - (i 	 1? 2
S ++ - 1) -

S - 21 (1 

- (i - 1), 160 i - (i -1) 

1(i-) 1053 U- 1), + "" 

The equation (9)can be solved numerically for 
all values of Z/X < 1. However, for ZIX = 1 
the equation in the form given is indeterminate, 
Once again use is made of beta function and in 
place of the summation, the integral is given by, 
x [ 

dZ 

0 x-AX 
X-AXF1 

Lf[numerical 
0 

+ X AX 	 I (r ) _ } 
+ 	F{3-530ox - 1 - dZ. 

I f \X/j 

In similar manner, the simplified equation for 
the plate temperature in turbulent flow is 
obtained, which is, 

= [ (1 + -_) 
0, = I + 1[9"827 N 

1 
+Y 	 (10)

+ i Sdtransfer. 

where
 
i (i­

)i- (is ( ;
yY1 1 

+160 - 1)' + 

567 - 1), 

For Z = X, again the beta function is used 
to solve the integral. 

3, SCUSSION OF THE RESULTS 

Comparisonof the present resultswith those avail­
able in the literature 

The general procedure to solve the above 
simplified governing equations is the method ofiterations. To find a root of the equation 

f(x) = 0, the method of iterations is concerned 
with the finding of numbers x0 , x1 , x2. S, 
which converge to limit S such that the equation
f(x) = 0 is satisfied by x = S. Therefore an 
initial guess for the temperature profile of the 
plate is made. An accurate curve-fitting method 
needs to be used, because the temperature 
derivatives at the various locations of the plate 
length are obtained by differentiating the poly­
nomial representing the assumed temperature 

profile. The initial guess for the temperature 
profile is then corrected to approach the tem­
perature profile output obtained by the above 

procedure. This process is continued 
till the input and output temperature profiles 
match within a prescribed accuracy to give a 
solution to the governing equation. The detailed 
numerical program is given in [10].The results for the plate temperature in
laminar and turbulent flows are presented in 
Figs. 2 and 3 respectively. For comparison, 
plots from the results of Sparrow and Lin [5] 
and Cess [6] are also shown The ratio hRAJhUHF 
in the analysis of Sparrow and Lin can be modi­
fied for comparison With the present.results. The 
ratio hRAD/hUHF is a measure of the relative 
strengths of radiative and convective heat 

Therefore, 

/.2-./ 

http:3.530_+.4P
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hRAD 3511 C1 k or oTurbulenthu__ N '-X 0 , for laminar flow, 
VuHF N kf 

10"166 C'& X02k106 ,for turbulent flow. 

Also the parameter, e/eoaT4 of Sparrow and 

Lin, is equivalent to (1 + .P).o­

L.mi.r flow 
Y - 8 33 x 0-

N - 21 554 
16 -3

1.2 C 3163 x 

, N 34-02 p0es060o0n 

- f -- rwad .. S]­''4-922x104 Imp[5 

I Ise-ar 

1 05 	 =00 

9, 1008 
0X2o8 o6 1. 10 

-­o5 x-0 
0 95 

0 9-05 

085 

-

08 =-I 
Fia. 2. Comparison 	 of the plate temperature results in 

laminar flow. 

From Figs. 2-and 3 it is.seen that the results of 
Sparrow and Lingive a lower value of-the plate 
temperature than the. present results. The 
maximum deviation of about 5 per cent occurs 
for turbulent flow near X = 0-2. The deviation 
-subsequently decreases continuously. Both ,of 
the present methods (equations (7H10)) of 
solving the governing equation for plate tern-
perature give identical results 'for all similar 
cases. Integration is essentially a summation 
process, which explains the identical nature of 
the results given by the present two methods. 

flowt'5 Y -ss*333x10' 

N * S6215 
4
 

CfI 2 88. 10 
I 4/ K N85 06 Pree.t anal.ysi

R.' 15 0 sporrow oad (51 
- N---cess [6 

0.101.1 

lz01.05 

0 10
 
- 02 04 0 0
 

09 

0 9. 

85. 	 -0 

FiG. 3. Comparison 	 of the plate temperature results in 
turbulent flow. 

Therefore, the two methods have not been 
differentiated on the figures. The governing 
equations for the plate temperature in laminar 
and turbulent flows, equations (25) and (20) 
respectively given by Sparrow and Lin [5], 
are modified to correspond to the present 
analysis. For laminar flow, the analysis of 
Sparrow and Lin gives 

0 j ++ -_ ( T- - -
X hu F 3X huHF 

0 d
 
X (1- dZ,
 

0 

k o /1 +
0 5  1 + 3"511 C, -_x . t +'-p) 

kf 
,i
 

, N ._-

R (V
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Including the conduction term also, 

0=1I + 3-511 C ~x.s J( + 'f-PC
kf N + /. 

I 

/x- (Y, - _\' / - i 4'1
N I 7 - • 

X wthe 
(12) 

Similarly, the two equations for turbulent flow 
without and with conduction heat transfer 
would be, 

j

=1 + 10.166 &+x NN)f 

S- 1 - 't - !­ (3 
) -- (13) 

and 

0 =1 + 10"166C X 2O{ {(l+Z 
kf -. 

1 

S-

(14) 

The results of Sparrow and Lin in Figs. 2 and 
3 are the solutions of equations (11) and (13) 
respectively by using a predictor-corrector 
numerical technique. But it is found that by 
using the method of iterations, the results of 
equations (11) and (13) are exactly the same as 
those for equations (7) or (9) and (8) or (10) 
respectively. This is not because of neglecting 
conduction terms in equations (11) and (13), 
since the conduction term is immaterial for the 
small value of thermal conductivity k, used. 
The results for N = 0.0, 86-2 can hardly be 


distinguished in the graphs presented here. In 
the absence of conduction in the plate and 

because radiation heat exchange is negligible 
close to the leading edge, convection is the 
dominating mode of heat transfer near the 
leading edge. For convection, T 1/h/z. Thus 

while h. drops asymptotically from a very large 
to a finite value, the temperature would ob­
viously show a shamp increase along the corres­
ponding plate length for the case ofsmall values 
ofthermal conductivity. This effect isnot obvious 
from the plots of Sparrow and Lin. As shown 
in the subsequent figures (i.e. Figs. 4, 7 and 8), 

figures for lower thermal conductivity show 
a steeper profile as compared to the curves for 
higher thermal conductivity. Therefore even the 
results for the boundary condition 4' = qt 
(case of zero thermal conductivity) should show 

a sharp increase in temperature close to the 
leading edge. Nevertheless, it seems that the
method of iterations with AX = 0.01 and the 
predictor-corrector method as employed by 
Sparrow and Lin, converge to different results. 

Equation (5) of Cess [6] gives the plate 
temperature as 

a,] 


where a1, a2,...are the constants and for 

laminar flow T' is given by 

/c 1kf VUo 

-
=2 R 
kfN/(ReL)-


Therefore, for laminar flow, 
'k 1 

0 = 1 + / (JX)
Lk2 NV(ReD -405 

k 1 )2 

- 8321 ( I + .. (15) 
\kf NJx(Re) ... 

and for turbulent flow, 

0 = I + 0 'k xO.2 

k 1_ ).a 

- 142.27 ..P 0 8 X(R) . (16) 
kfNj 

For the plate temperature distribution in a 
laminar flow for higher values of P, Cess [7] 
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has given an alternate approach, Laminar flow 

t' : 0 001667 
~~~~1~47305. 1 b 10,1+b 1+ L, + ... (17) 0 .3163x 	 -10'o 
 S/0 	 K 1K, N.8 506 N431 08 

where
where 

bo = (1 + ')+ - 1, 

and 


b= 0"2927 

bo 4(1 +-0)1* 

With these substitutions, equation (17) becomes 

0.2927 [(1 + 0)+- 1]
0( O 4 (1 + 0)' 

k N(Re+) 

x + .... (18)

kp ]/X 


Results from equations (15), (16) and (18) are 
also shown in Figs. 2 and 3. The results of 
equation (15) converge only up to a small value 
of X around 01-02.The plots of equation (18) 
produce results which are physically consistent 
for 0 = 05 and 1-0, for X = 0.2-1.0, but fail 
to give satisfactory results for 0 = - 0"5. For 

turbulent flow also the equation (16) gives 
results which differ appreciably from the present 
results and those given by Sparrow and Lin. 
These plots show a steeper increase in the plate 
temperature near the leading edge for the same 
relations given by Cess [6] than the plots 
presented by Sparrow and Lin. 

For both -laminar and turbulent flows, the 
present two methods and the relations given by 
Sparrow and Lin, solved by using the present 
numerical technique give identical results, maxi- 
mum deviation being less than 1 per cent. 
Therefore, to reduce the computer time, for all 
the curves presented henceforth, the method of 
iterations is used to solve the simpler equations 
(12) and (14), for laminar and turbulent flows 
respectively 

Effect of various parameters 
In most of the previous analyses, the conduc­

tion heat flow in the plate has been neglected. 

:862 15•17243 
2.6 	 :3448-6 

.517,9 
=862l 5 

2-2 

Ox 
1.8_
 

14
 

0 02 04 0 6 os ,.0
 

FIG. 4. Effect of thermal conductivity parameter N on the
 

temperature of 0'254 mm thick plate in laminar flow.
 

Lo,inor flow 
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Flo. 5.Correction to be applied in the determination of 0. 
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Laminar flow 	 Thus, in order to study the effect of thermal 
= o0-000333 conductivity, numerical determination of 0l 

N - 86.215 becomes very critical. Because of the constant 
" C'=-3.163x10 " 	 internal energy generation in the plate, its 

6.0. K 1K, 'V 0425 temperature has to increase with X. This means 

----Without radiation that 0X can never be negative, its value decreasing 
5-5 With radiation with x and becoming equal to zero in the 

extreme case. Therefore Ox cannot have a point 
$0 050-0/ of inflection and its value has to approach close 

/ to zero at X = 1. The usual method of deter­
4.5 	 mining 6. by differentiating the curve fit of the 

/' temperature profile is susceptible to sonie 
4-0 errors, which in turn may cause errors in the 

40 / 	 calculated temperature. This effect is shown in 

xFig. 5 by a solid curve in the range X = 0.7-1.0. 
Ox -5 /Hence Ox is forced to follow a physically more 

/q 25.0 - realistic profile as shown by the dashed line in 
30 Fig.5. 

S.-" Figure 6 shows the effect of changing the para­
5 "1 meter 0 and also the plate temperature with and 

. -without inclusion of the radiatie transfer term. 
o = 14..-. 	 Changing 0 essentially means changing either 

14,61 	 Lamolo flow 

= 	 Y -o0003331.5 	 - 0-0 


------ 0 =3 i63c I0~
~C 1461

0=5-0plKtIO 425 W -th I 
1p/KN 425 rodioilon 

0 oa 0-4 06 08 1.0 
K 	 3 

FIG. 6. Effect of the parameter Dand radiation on the plate 
temperature in laminar flow. 

Figure 4 shows the plate temperature for a wide 
N. 9x 12 	 N6215range of thermal conductivity parameter 

It can be seen that the higher values of N bring -3448 6 

down the plate temperature appreciably at - : 1729 

smaller values X, -- with subsequent . --------­of but 

increase in X the effect of N continuously -with radiation 
decreases. For a 0.254mm (Y = 0'00166) thick ' ­

copper plate (N - 1724.3) neglecting the ther­
mal conductivity would cause an error of 62 
per cent in the plate temperature at a location 
X = 0.05 from the leading edge. For an infinitely 

large value of thermal conductivity, 0: would 0 0? 04 06 0 8 1 

approach zero, i.e. 6 v FIG. 7. Effection of the parameter N and radiation onWould tend to a constant the 

value. plate temperature in laminar flow. 
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internal energy generation or the plate thickness radiation could mean a maximum increase of 
at low thermal conductivity. Thus, as would be about 43-5 per cent in the plate temperature in a 
expected, an increase in 0 increases the plate laminar flow, the maximum increase occurring 
temperature as shown in Fig. 6. This figure also at the trailing edge of the plate when N = 86-215. 
illustrates that radiation becomes more and The corresponding increase in a turbulent flow 
more important with the increase in the plate flow is only about 5-55 per cent. This emphasizes 
temperature, which is caused by the higher the relative importance of radiative heat transfer 
volumetric energy input, in laminar and turbulent flows. Clearly, in tur­

bulent flow convective heat transfer is much 
Turbulent flow more dominant. Cess [6] has also reported that 

Y '000333 abovea turbulent Reynolds number of 3-5 x 10' 
0 14 61 

1.4 	 Ct - 288 X jo-4 
Without radiation the error caused by neglecting radiation-effects 

fIX N -. 5would be less than 5 per cent.o42s 


N-86-215 
= 862415


I -	 4. CONCLUSIONS1724-3 

1-3 a 34486 The present work presents solutions for the 
---- - 821 plate temperature, where conduction heat trans­8 s 

fer along the length of the plate becomes 
-- -With rodotion important. These are the cases of plates having 

a higher value of thermal conductivity and 
1 2 certain cases of thicker plates, where the 

assumption of constant temperature across 
the plate thickness can be maintained. This 
paper also gives solutions for integral equations 
which contain a delay factor of the more general 
type [1 = (Z/X)]-b in the kernel, though
these solutions show little difference over the 
results using the delay, factor of the type 

'[1 - (Z/X)]- as done by Sparrow and Lin. 
The present results obtained by using the 

0 o 2 04 n6 u8 o method of iterations, compare within 5 per cent 
x of the results of Sparrow and Lin. Due to a 

FIG. 8 'Effect of the parameter N and radiation on the plate sharp decrease in the value of convective heat 
temperature in turbulent flow. transfer coefficient on moving away from the 

leading edge of the plate, there has to be a sharp 
increase in the plate temperature, unlike the 

Figures 7and 8present the relative importance plots of Sparrow and Lin. The relations given 
of conduction and radiation heat transfer for by Cess for plate temperature are not physically 
laminar" and turbulent flows, respectively. The consistent over all ranges of parameters, as they
maximum error caused by neglecting the con- do not give a constant increase (or an asymptotic
duction-heat transfer in a 0.0508 mm thick plate approach to a constant value) in temperature in 
with N = 1724-3 is about 10 per cent, as shown some cases. The neglect of radiation heat 
in Fig. 7. For the same volumetric energy transfer in turbulent flow does not cause as 
generation, corresponding error for a 0.254 mm severe an error as in laminar flow, a phenomenon 
thick plate from Fig.4, is 62 per cent. Absence of also shown by Cess. 
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DETERMINATION DE LA TEMPERATURE D'UNE PLAQUE DANS LE CAS D'ECHANGE DE
 
CHALEUR COMBINE PAR CONDUCTION, CONVECTION ET RAYONNEMENT
 

R6sun-On a r6solu num6riquement par ]a m~thode itrative 1'&juation int6gro-diff6rentielle singuli6re 
pour [a temperature d'une plaque plane avec une g6n6ration d'6nergle interne et un luide qui s'6coule 
sur l'une de ses faces Les r6sultats pr6sent~s se comparent bien Aceux de Sparrow et Lin, sauf pour Ia 
rgion du bord d'attaque de la plaque. On voit aussi que les relations donnes par Cess pour des probl6ames 
similaires risquent de ne pas donner de solutions convergentes dans tous les cas. L'importance de la
 
conduction dans une plaque Aconductivit6 thernique 6lev6e et dii rayonnement dans le cas d'Ecoulement
 

similaire a 6t6 d6montre.
 

BESTIMMUNG DER PLATTENTEMPERATUR IM FALL DES KOMBINIERTEN
 
WARME-AUSTAUSCHS DURCH LEITUNG, KONVEKTION UND STRAHLUNG.
 

Zusammenfassimg-Die Integro-Differentialgleichung fur die Temperatur einer ebenen Platte mit inneren
 
WRmequellen, wobei ein Fluid Oiber vine Plattenflache strdmt, wird numerisch dutch Iteration geltst. Die
 
Ergebnisse lassen sich gut mit denen von Sparrow und Lin vergleichen, auller fur den Plattenanfang. Man
 
sieht auch, daB die Gleichung von Cess fur Rhnliche Probleme mcht for alle FhlIe Obereinstimmende
 
Ldsungen ergibt. Auch wurde die Wichtigkeit der Leitung in einer Platte von hoher thermischer
 

Leitflhigkeit und die der Strahlung fin Fall einer laminaren Str6mung gezeigt.
 

OIIPEAEJIEHHE TEMHEPATYPbI HJIACTI4HbI B CJIYqAE CJIOHHOPO 
TETJIOOBMEHA TETIJIOHIPOBO) HOGTbIO, KOHBEHIIHEII K PARHAII14Ef 

AHRoTaEgus-MevTOOM uTepalilk npoBeeHo tncJeHHoe petnetiae ctHrynapHoro HHTerpo-
H4epetimIaIHoro ypaHeHHa JAJI Temnpaypi ninacT1u1H1 c BHyTpeHHHM HCTO4HIIXhOM 

aHeprHHnpH 1oTeHaHImI eec O9OA CTOpOHJ. PeayjiTaTm BTOl pa6oTuL xopomo coraacyo'cn 
c H JIHa an nepeiiefl KpoMKH nriacTHHnI. YcTanOBieno,C gaHHBMHi Cnappoy HCHAiOeHHMM 
MTO CooTHOuireHHH, npimegeuibie CeccoM giH aagaq TaHoro TimaHHe Beerga AaKIT CXORHIIaecH 
peseanna. loxanano, qro Ann nIaTHHM BLICORHM Hoa44IgIIeHTOMc TeniiOnpoBOHOCTH H I1pH 
Haainunn HsjiyqeHIH B ciy'ianx naM naporo 0TeaHIsH TenIn OnpoBOHOCTh urpaeT 

cyniecTBeHyto porh. 
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An Approximate Solution For the Energy
 

Equation with Radiant Participating Media
 

S. DOUARA 	 J. R.HOWELL
 

ABSTRACT 


The analysis of combined modes of heat transfer 


in a gas becomes increasingly difficult with the in-

troduction of the radiation term in the energy equa-

tion. In this paper, the problem of simultaneous con 

vection, conduction and radiation in the laminar boun-

dary layer over a flat plate is formulated and solved, 

The solution is obtained analytically by means of the 

perturbation technique, and the effect of including 

the radiation term on both the temperature distribu-

tion and the heat flux is presented for various condi 

tions. The case of a steady, laminar, two dimensional 

flow over a black isothermal flat plate is considered, 

In addition, the fluid medium is assumed to be gray, 

isotropic, viscous, radiation absorbing-emitting and 

a thermally conducting perfect gas with most proper-

ties independent of the temperature, The nonlinear 

integral-differential energy equation is reduced to a 

simpler form through the use of both the Rosseland and 

the optically thin approximation for the radiation 

term. The resulting equations clearly illustrate that 

the problem may be treated as a singular perturbation
 
problem, particularly if the parameters (N), (), and[ 

or their product (Ng) are small, which is typical for
 
most gases: Results obtained by this approximate 

method are compared with those obtained numerically 

for the exact form of the energy equation, 


NOMENCLATURE 


a absorption coefficient
 
cp specific heat at constant temperature 

En(t) exponential integral function of nth degree,
 

n-Z exp(-t/p)dp 

Ct-

f(T) dimensionless Blasius stream function
 

H(n) Heaviside function 

k thermal conductivity
 
N dimensionless conduction-to-radiation para-


3
meter, (ka)/4n2oT
 
n index of refraction 

Pr Prandtl number, pc /k, v/a 

q 	 local total heat flux 


7r 	 dimensionless local heat flux by radiation, 


qr/0T4 


-	 dimensionless local heat flux by conduction, 


qC/aT B 


T 	 absolute temperature 

u 


U 


v 


x 

y 

a 

6 

C 

n 

9 
0 


p 

a 

T 

A 

1 
v 


velocity component in the x-direction, paral­
lel to the plate

free stream velocity
 

velocity component in the y-direction, normal
 
to the plate
 
distance measured along surface
 
distance measured normal to surface
 
thermal diffusivity, k/pcp
 
boundary layer thickness
 
perturbation parameter,
 

7
dimensionless normal coordinate, yvu
 
dimensionless temperature inner problem, ON
, 

dimensionless temperature, outer problem, T/T.
 
dimensionless radiation-to-convection para­
meter, aoT_3x/pcU , also used as dimension­
less axial coordinate
 

density
 
Stefan-Boltzmann constant
 
optical distance, a'y
 
Tw/T.
 
absolute viscosity
 
kinematic viscosity
 

Subscripts
 

in 	 inner layer
 
out 	 outer layer
 
w 	 wail conditions
 

free stream conditions
 
.0 	 zeroth order perturbation
 
I 	 first order perturbation
 

Superscripts 

c 	 conduction or convection
 
r 	 radiation
 

total
 
denotes 	differentiation with respect to n
 

INTRODUCTION
 

Over the last few years increasing interest has
 
been expressed in problems of combined heat transfer.
 
This interest is attributed to the needs of missile
 
technology, power generation and other industries. The
 
common difficulty encountered in these problems is in
 
solving 	the governing nonlinear integro-differential
 

energy equation. As known, no general methods have
 
been developed for solving these problems; and it is,
 
therefore, not possible to obtain exact analytical so­
lutions of the combined heat transfer problems without
 
introducing some assumptions and approximations. The
 
most far-reaching assumption which is used in these
 

studies 	is that the heat transfer by conduction and
 
radiation is one-dimensional. On the other hand, most
 
of the approximations were based on the optical thick­
ness of the gas. The assumption that the gas is either
 



optically thick or optically thin throughout the layer 


reduces the nonlinear integro-differential equation to 


an ordinary, but still nonlinear, differential equation 


which for most cases was solved numerically. Such an 


approach is physically incorrect, since a radiating gas 


flowing over a surface should be considered to be opti-


cally thin in regions close to the surface and optical-


ly thick in regions away-from it. Therefore, a solu-


tion that combines these two limits is sought. In this 


study the gas layer is divided into an inner and an 


outer region. In the inner region the optically thin 


approximation is used for the radiant term, while the 


optically thick approximation is used for the outer 


region. The governing energy equation of both regions 

is thus reduced to a nonlinear differential equation.
 
The lack of an exact method for solving these types of 


equations forced us to resort to 
a form of approxima-

The latter approach
 

to a numerical solution.
tion or 

was disregarded since the object of this study is to 


obtain a closed form analytical solution for the prob-


lem at hand. Foremost among these approximation tech-


niques is the systematic method of perturbations in 

terms of a small or a large parameter present in the 


equation. The solution of each region is then repre-


sented by the first few terms of a perturbation ex-


pansion. The solutions are then matched together to 


form a composite solution valid everywhere in the gas 


layer. 


ASSUMPTIONS 

f the'
 
The physical model and coordinate system 


problem is shown in Fig. 1. The case of a radiating, 


thermally conducting gas flowing in a forced convec-

tion over a flat plate is considered. The gasis as-

sumed to be perfect, gray, isotropic, non-scattering 


and, except for its density, all properties are con-

stant. The plate surface is assumed to be black and 


The flow is assumed to be steady two­isothermal. 

dimensional, laminar viscous type. The effect of the 

viscous.dissipation as well as the work of compres-

sion are neglected in the energy equation. Also in 


this study, the gas layer flowing over the plate is 


divided into ,two regions: (a) the viscous region, 


referred to as the inner region,- in which the flow is 


two-dimensional, the gas is optically thin and the 

temperature gradient is very large.
 

OPTICALLY 
THICKd2 

REGIONA TD 

yror 0) . 

- ' OPTICALLY 
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REGION 

Fig. 1 Physical Model and Coordinate System 


2.
 

These characteristics imply that the radiation emitted
 

by the plate will pass virtually unattenuated through
 

this region, and that conduction is anticipated to
 

play an important role in this region. (b) The free­

stream region, referred to as the outer region, where
 

the flow is parallel to the surface, the gas, being
 

considered as infinite in extent, is optically thick
 

and the temperature gradient is not as large as in the
 

vicinity of.the surface. Thus, all the radiation emit­

ted by the plate must eventually be absorbed by the gas
 

in this region, and that conduction is not as important
 

as in the previous region. The mathematical model for
 

the assumed physical problem is prescribed by means of
 

the conservation equation of energy, -(I) as
 

3YT
3T v_3T2y= c+ 3-- a a r(t u 


The terms of the lefthand side of Eq. 1 represent the
 

convection contribution, while the terms 6n the right­

hand side represent the conduction and radiation con­

tribution, respectively.' Eq. 1 constitutes a partial
 

nonlinear, integro-differential equation, and even
 

with the simplifications that have been made, a com­

plete solution to. the problem is still very difficult.
 

As an alternative to this, Eq. 1 will be applied to
 

each of the two prescribed regions, yielding two limit­

ing solutions that, although restrictive in natare,
 

will yield useful qualitative information.
 

INNER REGION PROBLEM 

ornof the boudary layer energy
The applicable 


to the inner region is given by (2)as 
aT aT _ 2T Zao[w + T., - 2T ] (2) 

UDT + v = a412T-+ . 

ayp 
subject to the following boundary condition:
 

TT = Tw ; y = 0 (3) 
The other boundary condition is later derived from

sith Since
the matching condition the outer solution. 


te ma reconstan it the oe ientuto de
 

(Tw, T.) are constants, it will be convenient to de­

fine the followimg dimensionless temperature ratio
 

X = Tw/T ; =T/T­

then Eq. 2 and 3-become 
LO+V . a 2-2-+26 '2a2TI[X4 +l-1ys2 (4) 
ax ay ay2 PCP 

S ; y 0 (5) 

Using the familiar Blasius stream 'function, f(n), Eq.
 

4 reduces to
 

f de a d20 +2aTS x [ +l - 264] (6) 
T2dn V Ti7 Pp U. 

Introducing the dimensionless quantities (C,Pr, N) 
into Eq. 6, it reduces to 

Nd26 fNPr de-4Nr6 ~tA 7 
N A-6 + 2---d- 8 

2 n2 

Rephrasing Eq. 7 in terms of a new dependent variable,
 
0, and the perturbation parameter,. e, which are de­

fined by
 

= N6 /4NE= (8) 

the following is obtained:
 

2
d 0 fPr& 2[d04 X4+1 

dnm + 2 edn N P 2) 9 



The first term on the left-hand side of Eq. 9 repre-

sents the conduction contribution, the second term 

represents the convection contribution and the last 

term is the radiation contribution. It is clear from 


Eq. 9 that the radiation contribution is of a smaller 

order of magnitude with respect to either the conduc-

tion or convection contribution. This result was
 

anticipated, since the optically thin approximation 

was used in this region. The optically thin approxi-

mation implies that the radiation contribution from 

the plate will pass virtually unattenuated through 

this region, i.e., will be of negligible effect. If 

= 0, Eq. 9 reduces to a pure conduction-convection 


problem. To determine an improved approximation to 

the solution of this problem, i.e., to include the 

effect of the radiation contribution, we seek a per­
turbation expansion of the form
 

2 2
e=X (0 ) 6 + s 0 + . . (10) 
n=0 

The first term of this expansion, E0, represents 


the temperature profile for the case of negligible
 
radiation interaction (e=O), while the second term,
 
01, denotes the first-order radiation effect upon the 

temperature profile within the inner region. The
 
series, though not necessarily convergent, is by con-

struction an asymtotic expansion, in that as the per-

turbation parameter tends to zero, the approximate 

solution becomes increasingly accurate. 


Upon substituting the expansion of Eq. 10 into
 
Eq. 9 and collecting like powers of (E2), the follow­

ing is obtained: 

d2 00 + QPr dog = (i1) 

dn2 2 dn 

d26, +A±rs4§.A=? 4 X4+1 
_d_ Iv - __(12)drJ2 	 2 dn N 2 

Similarly, the boundary condition of Eq. 5 reduces to 


the following
 

0 =N ; = 0 (13)
 

0o ; n 0 (14) 

Therefore, the problem of the inner region reduces to
 
the solution of Eqs. 11 and 12 subject to the boun-

dary conditions specified in Eqs. 13 and 14, respec-

tively. The solution of the inner region is thus
 
obtained by substituting those results into Eq. 10. 


SOLUTION OF THE INNER PROBLEM (ZEROTH ORDER PERTUR-


BATION 


The zeroth order perturbation of the inner prob­
lem is given by Eqs. 11 and 13, whose solution is 


n T 
= f exp(.- f dn)dl + AN (15) 

0 20 
0 0 Cl 

where C1 is a constant to be determined from matching 

with the outer solution. 


The Blasius stream function, f(n), can be ap-


proximately expressed by the following suggested 

formula: 


f(n) = H13-n)(0.166 nZ) + H2 (n-3)(n-l.7208) (16) 

where 


where 


Hi(3-n) 	= Heaviside function (step function) 
= 0 for (3-n) < 0 i.e., n > 3 
= I for (3-n) 1 0 i.e., n < 3 

H2 (n-3) = Heaviside function
 3

= 0 for (n'-) < 0 i.e., Ti < 3 
= 1 for (-3) > 0 i.e., n > 3 

A comparison between the assumed and the actual repre­

sentation of f(n) is given in Fig. 2. From this com­
parison it is apparent that the analytical represen­
tation of f(n) is good for all values of r lying be­

= 

tween 0 and - except for n 2.5 - 3.8. Substitute
 
Eq. 16 into Eq. 15 and carry out the integration. The
 
following results are obtained for 60 in terms of the
 
actual variable, 6
 

70 

6.0 - ASSUMED FUNCTION 

-5.0
 

Z 
O
 
o 40 
Z 

< 3.0 
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/
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2 	 4 6 8 

Fig. 2 	Comparison Between the Actual and the Assumed
 
Value of f(n)
 

c1
 

(00)in A +.j(H(3-njrrexN-.0276rr n3 )l +
 

3 3 2

.0828Pr 1 (.0828Pr n )


4* 	 + . .)} + H2 (TI-3) 

{j• exp(-.337Pr).[erf(.86Pr) + erfr(n-i.72)]
 
2 (17)
 

OUTER REGION PROBLEM
 

The applicable form of the boundary layer energy
 

to the outer region is given by
 

U T 82T 4aa 82T( 
(2
U 


ax 8y2 3pcp aT2
 

Using the dimensionless parameters introduced in the
 
inner region, Eq. 18 reduces to
 

2 2 Pr 8204 Pr . ?. = 0 (19) 
+23 3T P-iF	 (9 

The first term on the righthand side of Eq. 19 repre-
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http:erfr(n-i.72


ORIGINAL PAGE IS
 
OF POOR QUALTY
 

sents the conduction contribution, the second term the 

radiation contribution and the last term is the convec­
tion contribution. 


It is clear from Eq. 19 that the conduction con-

tribution is of a smaller order with respect to either 


the convection or the radiation contribution. This re-

sult was anticipated, since in this 	region the temper-

ature gradient is very small compared to that in the
 
vicinity of the plate. If e=O, Eq. 	19 reduces to a
 
pure radiation-convection problem. 	To determine an im-


the solution of this problem,
proved approximation to 


i.e., which includes the effect,of the conduction con-

tribution, we seek a perturbation expansion of the 

form: 


n:O n = + + 

0= 
2 )n n( 0 .TION)
 

The first term of this expansion (80) represents the 

temperature profile for the case of negligible conduc-

tion interaction (c=O), while the second term (6 1) de, 

notes the first-order conduction effect upon the tem-

perature profile within the outer region, 


Upon substituting the expansion of Eq. 20 into Eq.

2
19 and collecting like powers of , the following is 


obtained 


324 n 
@-T(604) -	 (21) 

DE-


3162(63 = 1 i2(22) 
33C Pr a, 

An additional simplification will now be employed; it 


consists of assuming that the temperature within the 

outer region is so close to T, that T4 may be expres­
sed as a linear function of T. This is accomplished


4
by expanding T in a Taylor series about T and neg­
lecting higher order terms of T, thus 


similarly = (23) 
8= 390- 2. 

it re-
Upon substituting Eq. 23 into Eqs. 21 and 22, 
duces to 


'_-= 	 (24) 


16 a2 3 2 - i 320 

3 1"'61 Lr -~0
(30 o -C2)r 	 (25)'-~ 

The boundary conditions associated with the outer re-
gion problem are given by 

a) e = 1 ; = 0 (26) 

b) e = 1 ; T = 	 (27) 

c) The second boundary condition in the variable 

(r) is the temperature jump at the surface, which for 

a gray fluid and a black surface is given by; 


e4 - 2 D64) * 

or in linearized form it reduces to 


= X4+3 + 2 LB 

60 = 1 at C = 0 ; 60 = 1 at r = (29) 

)L43
 
0= 3+ Z at =0
 

4
 

and
 
1= 0 at E = 0 ; 81 = 0 at = (30)
 

61 = - at T= 0 
s
 

The problem of the outer region thus reduces to the 
solution of Eqs. 24, 25, 29 and 30, respectively, and 
substituting the results into Eq. 20. 
SOLUTION OF THE OUTER PROBLEM (ZEROTH ORDER PERTURBA-

The zeroth order perturbation of the outer prob­
lem is given by Eqs. 24 and 29. The solution of these
 
equations is obtained through the use of the Laplace
 
transform, which transforms the governing partial dif­
ferential equation into an ordinary type,
 

16g
 
0 	 (31) 

TT
 

subject to
 
1
 

(

(32)
 

S) 48(O d710
413 + 


-- 3 T=0 

The solution of Eqs. 31 and 32 is given by
 

- 1'[ + X-- - ­
00y 4 xp&--4- T.))­

&.z - 1 e " )33 
+74 ex (--4T) (33) 

The inverse of Eq. 33 is given by:
 

(6) 	 'v/ 3
 
(80)out 4 .(erfc 8 - exp(-fT+12 ). 

erfc(T V 

or, in terms of the inner variable, 	n, 

(80)out 1 + 4 -erfc ' ­

erc(---' + 26Z) 	 (34) 

MATCHING OF THE INNER AND OUTER SOLUTIONS
 

The method described in (4,j) is used to match the
 
solutions of the inner and outer problem, represented
 
by Eqs. 17 and 34,.respectively. This method briefly
 

states that
 

Lim (inner solution) = Lim (outer solution)
 
TO0 


+ 	 ae T =0 (28) where n and T are the inner and outer independent vari­
ables, respectively. The relation between n and T is 

Upon substituting the expansion of Eq. 20into Eqs, 26, given as follows:
 
27 and 28, the boundary conditions associated with the since = . = (35)
 

outer problem reduce to: sinc n
 

2 4 



ka a T 
andU X2.f2Sa (36)N4 4oTx pc U 


Sublsittig the value of( i) of Eq. 36 into Eq. 35 

it reduces to
 

= 

t
therefore,4
 

q (37)
 
= e 

The constant (CI) of Eq. 17 is obtained through the 

matching of the two solutions resulting in the follow-

ing expression for the inner solution; 


(eo). X + ir e (.337 Pr) ((l ++ 
in = 4+ [I + erf(.86 Pr)] 


)-l1 
4 exp 12g -erfc 2,73g)H(3-n) 'Fig. 

3
PrO)n~l+ .exp(-.0276
0828 Pr n
4 + 


(.88,7rn ) .}+H(n3){exp(-.337 Pr ) 

* erf (.86V ) + erf- (ri-l.72)) }) (38) 

THE COMPOSITE SOLUTION (ZEROTH ORDER PERTURBATION)
 

As discussed previously, the outer solution is
 
not valid near the surface of the plate, while the in-

ner solution is not valid in general away from the re­
gion n 0(). To determine an expansion valid over
 
the whole interval, a composite solution for (e0) is 

formed according to (4,2) as follows:
 

(Ocomp fi()in +()ou [(0in °ut
 t 
= (00)in+ (8O)out - ((0)out)in (39) 

in-


where 


(Go).) out Lin(6). denotes the outer limit
 
)n r ' in of the inner solution 

)i L ) denotes the inner limit
((60)out = W(60)out of the outer solution. 


The two forms of Eq. 39 are equivalent, since the mat-

ching principle requires that 


(( 6 0 )in)t = 0 )u)in-(n) out 


1 ++-(1 - exp(12g).erfc(23)} (40)
4 


Substituting Eqs. 34, 38 and 40 into 39, the following 

form of the composite solution of the zero order per-

turbation is obtained: 


0 r ep(.337Pr) i 4-i 

+ 1 + erf( 86M)T ) + 4 

(1 - exp(12 )'erfc2i J))(Hi(3-){exp(-.0276Pr3) 

n'(l+ .0828Pr n3 + +f.8.Pr)} 

+ H2 (n-3){exp(-.337Pr) j--[erf(.86fPHr) +r 


+ (1 + 

e +( + 4 

exp(j3 e + 12 ).erfc + 23)}) ­

(i + A!: {1 - exp(12 )erfc(2r3v)}) (41) 

ACCURACY OF THE APPROXIMATE METHOD
 

The problem of the combined mode of heat transfer
 
described above was solved numerically in (6). The
 
exact, rather than the approximate, forms of the radi­

ant term were used in Eq. 1, i.e., the solution was
 

obtained for the governing non-linear integro-differ­
ential energy equation. The temperature profile ob­
tained using both the numerical method as well as the
 
approximate solution described by Eq. 41 is plotted in
 

3 for the following characteristic parameters:
 
= 
Pr = 1,E = .1,A .2, N = 2.5xlO. , It is clear 

from Fig. 3 that the two results are in good agreement

for values of n less than four but that they diverge
 

from each other for higher values of n. The divergence
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Fig. 3 A Comparison of Temperature Profiles Obtained
 
By the Perturbation Approximation and By the Numerical
 
Analysis
 

in the temperature profile between the two solutions
 
was anticipated due to the different boundary condi­

tions used in each study. Oliver and McFadden (6)as­
sumed that T_ is reached at the edge of the boundary
 
layer, while this study assumed it to be reached at
 
infinity. It is, therefore, evident that the analyti­
cal approach developed in this study for problems per­
taining to a radiating, thermally conducting medium
 
flowing over a flat plate is accurate. It is also evi­
dent, for the problem at hand, that the zeroth order
 
perturbation solution is sufficient to describe the
 
temperature profile in the gas. The results of Eq.41

were also compared in Fig, 4 with those obtained by (7)
 
using the optically thick approximation throughout the
 
flow region. It is obvious from Fig. 4 that the opti­
cally thick approximation overestimates the temperature 
profile in the region near the plate surface. Having 
obtained a closed form expression for the temperature 
distribution in terms of the parameters (Pr, N, , ), .L 
is now possible to derive the heat flux eqoations.
 

HEAT FLUX EQUATIONS
 

The local heat transfer from the plate surface,

being the sum of a conduction and a radiation tec,
 
may now be expressed in terms of the temperature prc­

5q t 
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Fig, 4 A Comparison of Temperature Profiles Obtained 

By the Perturbation Approximation and the Numerical
 
Analysis 


file derived in Eq. 40, as follows: 


qt-	 qP + qE (42)
 

Dividing both sides of this equation by (aT.4), it
 

reduces to the following non-dimensional form: 


-t - c - r 	 (43)w='iw+ w-..
 

where q r is the normalized heat transfer by radiation
 
and is obtained as follows: 


r 

--	-j X4 - 2f0'(n, ).E (n)-di (44) 

An exact evaluation of Eq. 44 for the heat transfer by 


radiation is very tedious and complicated. Two assump-

tions are made in the evaluation: 


a) The exponential integral function is approxia
 
mated by 

= 2exp(-2n)E(n) 


therefore, 

E J() =
=-Ei(n)dn exp(.2n). 

Figure 5 shows a comparison between the exact 


and the approximate values of the function. 


4 

b) 	The function (6) isvery lengthy and compli, 


cated not to mention its integral, 


f(e).E2 d.-

To obtain the heat transfer by radiation from the plate
 

surface, approximations become necessary. Since (94)-

contains both the inner and outer solutions of the tem­

6 

perature distribution, it cannot be automatically lin­
earized with respect to (T.), as previously done in the 
outer solution, G4ot = 4 - 3. However, due to the 
fact that the temperature distribution of the medium 
in the inner layer is much closer to Tw than it is to 

T , its contribution to the total heat radiation might 
be neglected. This means that 6out can be substituted
 
for 0 in the integral and the function (Gout)

4 linearv
 
ized with respect to T, as before. These approxima­
tions will result in an overestimation of the amount
 

0
 

- - ACTUAL VALUE E~t) 
N 80 -----APPROXIMATE VALUE e 

0 
C,)Z 

.6 
-j
 

ORIGINAL PAGE ISOF 	POOR QUALITy'i-

.4 	 OQ 
-j 

Z 

p*. 0 

5 I. [5 I 
20 

Fig, 5 Comparison Between the Exact and the Assumed
 
Value pf E2(t)
 
of heat radiated from the plane surface.
 

Equation 44 reduces to
 

r
 
qw X4 - 2
 
aT4 - 46out - 3)-exp(-2n)dn= 

4 

- - 8out .exp(-2n )dn + 6fexp(-2n)dn (45) 

Therefore,
 

qw 	= (X4-) ( exp(12g)erfc 2/C+ 

( 	 -)exp(- )erf (46) 
a r /3PN
 

(where a = 2 - 3Vfl-K). 
Similarly, the normalized heat transfer by con­

duction is obtained as
 

= =-3Ta 1 n 

-k j-j- .	 (47)
 



= F4 (48) found to be on the thickness of the thermal boundary 
an = 0 layer. As g is increased, i.e., as the radiation 

mode of 	heat transfer is increased, it is apparent

Substituting the value of (9/a)n=o into Eq. 48, it that the thickness of the thermal boundary layer is
 
reduces to decreased,
 

In Fig,7 the Prandtl number is varied between
 
0.5 and 	1.25, and in Fig. 9 the parameter X is varied
 

- \ {(v exp(.337Pr) (. 4 4A+3)) between 0.5 and 2.
 
4 -4X 3))
 

-

(X - [ P exp(.337Pr) + .1541r]- a 


1 + erf(.86 Pr)
 

C=oi
 
exp(12)erfc(2tr3T))1 	 (49) 

t=4001 

TEMPERATURE PROFILE 	 0£ -0I 

The effect of the characteristic parameters (N,
 
Pr, , X) on the temperature profile in the boundary 04 Ps'!
 
layer is given in Figs. 6 through 9. Various curves X=.l
 
are.drawn in each figure to cover the typical range N=1
 
of those parameters in gases. Op
 

In Fig. 6 the dimensionless parameter, N, is var­
ied between 0 and -. The temperature profile for N=1 _ , , , , ,
 
is found to be very close to that of pure conduction 0 I 2 3 4 5, 6 7
 
N = , however, as N decreases, the difference in 
the temperature profile widens. Fig. 8 Variation of the Temperature Profile With the 

' Parameter 
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Fig. 6 	Variation of the Temperature Profile With the
 
N Parameter
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Fig. 9 	Variation of the temperature Profile With the
 
10 	 2NParameter 

B 	 - HEAT FLUX FROM THE. SURFACE 

08 
Pr-0.50 The heat transfer calculated for a given set of 

Pr=0.72 parameters is illustrated in Figs. 10 through 12. 
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Fig. 7 	Variation of the Temperature Profile With the
 
Prandtl Number
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In Fig. 8 the dimensionless parameter E is varied 
between .001 and 0.1. The effect of the parameter, , Fig. 10 Conductive Heat Flux From the Wall 
on the temperature profile for the case of N = 1 is 

7 
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Fig. 12 Total Heat Flux From the Wall
 

The results obtained for the local conductive and
 

radiative heat fluxes using the approximate method
 

developed in this study are compared with those of
 

() for the optically thin conditions. It is apparent
 

that the latter solution predicts consistently less
 
energy transfer by radiation.
 

CONCLUSION
 

Analysis of the work done in this study shows
 

that the closed form solutions for the combined heat
 

transfer problems are possible. However, it should
 

be noted that in the process of linearization, only
 

the radiation terms involving [f,N).8"1 were linearized
 

while those involving [f(N).X'] were kept in their non­

linear forms. As a result of this partial lineariza­

tion, the results obtained were valid for all values
 

of X as long as N = 0(i) or larger. However, as (N)
 

decreases, i.e., as radiation becomes progressively
 
dominant, the results obtained are only valid for
 

values of (A) less than unity. Therefore it is re­
commended that theoretical studies be continued in
 

order to remove a number of assumptions on which this
 

problem was based. The assumptions to be removed are,
 

in particular, the one-dimensionality of the heat flux
 

due to radiation and conduction, isotropicity and
 

grayness of the media, blackness of the surface and
 

a number of others. The removal of such assumptions
 

shall result in solutions of more practical applica­
tion.
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Project 

(A) Project Title: Solar Energy for Process Heat
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Abstract
 

Maintaining and developing available long and short term
 
energy sources is of great importance. This requirement,
 
coupled with a large potential application for solar heating
 
in the process industry has led to the preparation of this
 
report. Included is a study of the economic feasibility of
 
solar heating for use in the process industry.
 

This report also includes a discussion of possible
 
configurations and sizing of solar process heating systems
 
including energy storage capacity based on a process heat
 
load and plant operating-schedule. -


INTRODUCTION
 

Solar systems can provide a clean source of energy without the
 
need for burning valuable fossil fuels. Natural gas, oil, etc., are
 
being consumed at increasing rates and as a result becoming scarce
 
and expensive. As these fuels become scarce the need for other energy
 
sources becomes even more critical. Critical in the sense that there
 
are many industrial processes that must use fossil fuels. The pro­
duction of fertilizer to support our food needs is one example. If
 
we are to conserve our fuels for necessary uses where replacements are
 
not available then we must reduce their use in areas where they can
 
be substituted. Electric power generation and industrial plant pro­
cess heating are two examples of major'fossil fuel uses in which sub­
stitutes are available.
 

Besides solar there are many methods of non-fossil energy gener­
ation presently being studied and used, i.e., nuclear power, windpower,
 
geothermal energy, etc. All of these must be further developed and
 
used to meet our future needs. This paper is a study of solar energy
 
in one general application, process plant heating.
 

This particular project was initiated because it is felt that
 
many process plants throughout the country offer ideal applications
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for solar heating systems. Ideal because of the low temperature (low
 

quality) heat processes which are compatible with low temperature
 
The chief advantages of solar
(flat-plate collector) solar systems. 


in these applications are that solar systems are best adapted and
 

more efficient for low temperature heating; solar systems do not have
 

exhaust fumes or pollutants, and maybe most important, solar systems
 

can save our valuable fuels. In support of this idea several process
 

industries have expressed an interest in using solar systems. One
 

such application has been used as a case study for much of the work
 

presented here.
 

This paper has been prepared as the result of studying and inves-

These investigations
tigating the state-of-the-art of solar design. 


help in determining a practical starting point for the basic solar
 
cover the details
design discussed. This study does not attempt to 


of solar theory or collector design. These areas are covered in
 

[2] as well as in other literature.
References [1] and 


This paper will concentrate on overall solar system design using
 

typical solar collectors in conjunction with standard fluid heating
 

systems. This system is thermodynamically modeled and sized by the
 

computer for a given process heat load to determine economic feasi­

bility of solar systems. Results, for the case study, are presented
 

in graphical form.
 

PROCESS APPLICATION
 

Before a model of any heating system can be adequately analyzed
 

an understanding of both the system to be heated (process system) and
 

the system used for heating (solar system) must be obtained. The
 

unctional, operating, anddesign requirements of each system must be
 
known.
 

The best process application for use with solar systems would be
 

low temperature heating, herein called low quality heat. This is
 

based on the fact that flat-plate solar collectors are limited to tem­

peratures of below 4000 F and are more efficient (require less collec­

tor area) at lower operating temperatures. The case study application
 

is a good example of this kind of process. The process studied
 

requires heat at a constant 1500F to vaporize a liquid substance.
 

Although solar systems are adaptable they also have several pro­

blems when used in conjunction with process plants that must be evalu­
ated and considered. The two major ones are the process operating
 
schedule and the physical size of the collectors.
 

Most process plants operate on a twenty-four hour per day sche­

dule and unfortunately the sun does not. Therefore to utilize solar
 
energy in large process systems for total replacement would require
 
extremely large energy storage systems along with extremely large col­

lector systems. As it turns out this is impractical if not impossible.
 



Howcvcr, solar ,can be used as a supplement, and a short-time storage 
system allows the solar collectors to be oversized for the Job. 
Therefore when the sun is just rising or on partially cloudy days 
there is extra capacity within the solar system to allow for some 

operation. In addition on clear sunny days the extra energy collec­

ted by the collectors can be added to the storage system. This pro­
vides two additional desirable functions. First, on partially
 
cloudy days the storage system will allow continuous operation during
 

periods when the sun is hidden behind the clouds and it also will
 
allow for some additional operating time after sunset. All of these
 

factors are considered in the analyses when sizing a system.
 

The seeond major consideration is the required collector area.
 
In many cases although a solar system may.be economically justified
 
and functionally capable, the space required for the collectors may
 
not be available or feasible. The size of collectors versus the
 
economic feasibility are also evaluated as described later.
 

After defining the process and solar systems functional require­
ments and limitations, the solar system configuration to be evaluated
 
must be determined. Basically there are two general configurations,
 
a direct system (Figure'l) and an indirect system (Figure 2). Both
 
types of systems have advantages. The indirect system is used here
 
for three reasons.
 

AUX. HEAT
 

S°RCESS 
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COLLECTOR
 

FROM
 

PROCESS
 

FIGURE I:. DIRECT SOLAR SYSTEM
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First, the indirect system allows the use of a storage system
 

while the direct system does not. The advantages and reasons for
 

storage for the process applications were discussed above. Second,
 

many process systems, such as that of the case study, are heating
 
substances other than water. Very little collector design or perfor­

mance data is available for any substances other than water. There­

fore, based on present solar technology, the indirect system can be
 

more accurately analyzed. The third reason is that the indirect
 
system is more conservative from the type of equipment needed. The
 

system requires extra pumps, storage tank and solar-to-process heat
 
exchanger.
 

COMPUTER MODEL AND ANALYSIS
 

Introduction
 

The basic system used in the model consists of a flat-plate col­

lector, storage tank, pumps, piping, valves and controls, seen in
 

Figure 3. Water is the pumping medium used to transport heat from
 

the collector to the storage tank and then from the storage tank
 

through a heat exchanger where the heat is transfered for use in the
 

process. The collector-side water is circulated form a water-to-water
 
mixing storage tank, whereas the solar system and process system
 
fluids are separated by a shell-and-tube type heat exchanger. Any
 
auxiliary heat required to supplement the process is added to the
 

process side of the system. The actual computer program is divided
 
into two subprograms, thermal performance analysis and an economic
 
analysis. The results of the thermal performance-are in the form of
 
fuel savings, these savings being a primary input to the economic
 
evaluation. The basic features including method of approach, inputs,
 

assumptions and outputs for each subprogram are discussed in the
 
following paragraphs.
 

Thermal Performance
 

The indirect solar system, Figure 3, was modeled for use in the
 
case study. For the thermal analysis each component was represented
 
in a system heat balance, eqn 1, with the storage tank temperature
 
being used for system operating limits and controls.
 

Qs = Qsol - Qp - Qloss (i)
 
where
 

Qp = energy used in the process
 

Qsol m energy collected by solar system
 

Qs = energy in storage
 

=
Qloss energy loss to environment.
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FIGURE 3: INDIRECT SOLAR SYSTEM MODEL 



The model control scheme is similar to an actual control scheme.
 

When the storage tank temperature rises above a preset minimum the
 

process-side pump is automatically started and heat is transported via
 
This 	transfer of heat is repre­the solar-to-process heat exchanger. 


sented by: 

Qp= h Cp (Ts - Th) (2) 

where 
M= flow through the heat exchanger 

C = specific heat of water 
p
 

Tr 	 storage tank (heat exchanger inlet)
 
temperature
 

T = heat exchanger outlet temperature. 

Whenever the storage tank temperature is below a preset maximum and
 

the solar collector temperature measured at the outlet of the collec­

tor is above a preset minimum the collector circulating pump is auto­

matically started to transfer heat to the storage system for use in
 

the process. This transfer of heat is represented by:
 
Qsl=Me c(Te - Te) (3)
 

QS1 McC P T 2 -TCi(3
 

where
 
M = flowrate through the collector
 

C 

C = 	specific heat of water
 
p 

T = collector outlet temperature
02 

T = collector inlet temperature 
ci 

A more qualitative discussion of the collector performance is given
 

in the next section.
 

The computer model uses the above heat balance with typical inso­

lation data as input to calculate a useful heat output. The output is
 

the actual amount of solar heat transported and used in the process
 

stream. The heat is then represented as a quantity of fuel saved to
 

determine the economic feasibility of the system.
 

Storage Model
 

The storage used with the indirect system is simply a large insu­

lated tank. The heat input from the collector is mixed with cooler
 

water (heat output) from the solar-to-process heat exchanger. Ideally
 

it would be desireable to size the collector and storage system to be
 

able to operate the process system for most, if not all of a twenty­
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four day. However, with a large process heat load this would require 
storage tanks of impractical size. It has been determined as a 
result of this analysis that for most large heat loads (50 x 106 Btu/ 

hr) the storage.system can be used only to stabilize the solar system 
operation. That is, the storage tank is only sized to operate-the 
process for short periods of times, i.e., one-half hour to two or
 

three hours without any solar input. This time period is based on
 
.expected average cloudy periods for a particular area. The tank size
 

is estimated from
 

QP = M C dT(4
 
p p ds (4)
 

where
 
M ='mass (size) of the storage tank
 

s 

dT = design storage tank temperature range
 

dt = design time increment for dT. .
 

It can be seen that the storage tank control temperature limits dis­

cussed above have a direct effect on the size of the storage tank.
 

A physical representation of the storage tank is shown schema­
tically in Figure 4 with the collector outlet and process heat
 
exchanger inlet going to and from the top of the tank respectively.
 
and the collection inlet taken from the bottom of the tank and the
 
heat exchanger outlet returned to the,bottom. That is, hot fluids
 
enter and leave at the top and cold at the bottom.
 

Assuming large storage and hence relatively small velocities
 
within these tanks a degree of stratification will occur, that is,
 
the water temperatures of the tank will,vary from top to bottom
 
depending on.the density.
 

In order to analyze this effect the storage tank has been divided
 
into N horizontal sections. With the energy balance of eqn I for the
 
ith layer of the tank can be written (Reference 11j):
 

,i-i
 

M C M 'C [F CT - T.) + (T_ T F Cj

P, c p 1 ca I2- ­

- (5)n 

+P[F -(T T) i+l j=i+ F H QH 

where
 

F C control functions for the collector 
side and heat exchanger side defined 

- F H ,as follows: 
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FIGURE-4: STRATIFIED STORAGE MODEL
 



0 if Ti_ 1 > T2 > Ti
e =1"{ (6) 
± 1 otherwise 

l ifT. > T > 

v H. f T > Ti+1 (7)
1 0 otherwise 

and the first term M C AT represents the useful solar input QSol
 
M C p AT,pcthe second term represents the heat output Qp =-Mh Cec AT-and
 

Qloss is the system heat loss.
 

This equation is used to continually calculate the outlet storage
 

temperature based on the inlet solar heat (QSol) and the output heat
 

(Qp). As noted above when the storage outlet temperature is less than 

the minimum allowed the process side is shut off until the tank is
 

reheated.
 

A typical performance output from the program is shown in Figure
 
5 (data tabulated in Table 1). For this case, the solar system is
 

assumed to provide the total required process heat as long as the in­

let temperature to the heat exchanger is above 150 0F. Other data was
 

calculated for the case of the heat exchanger outlet temperature held
 

at 150'F, and the heat to the process being calculated from eqn 2.
 

Again the process heat exchanger inlet temperature was required to be
 

aibove 1500F. The latter case is more realistic for a reboiler working
 

at 1500F.
 

Collector Model
 

The process heat load (Qp) is a defined number, normally constant
 

for a particular process. The solar energy (QSol), however, is not
 

constant. .Further the solar energy input is dependent on the specific
 

geographical location, time of year, etc. Insolation data is the
 
basic energy input to the collector used to calculate the useful energy
 
collected as follows:.
 

Qsol x Acol x qcol (8)
 

where
 
Qsol = useful energy collected
 

A = area of the collector 
so,
 

qSo = insolation/area/time 

,and
 
-n = A - B(Tp - T.) (9)
 

p ,( 
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Table 1 THERMAL PERFORMANCE 

Ht.Ex. Collector
Time, Collector First Last Solar 


Hrs. Outlet Layer Layer Outlet Heat, Efficiency
 

Temp., -F Temp. Temp. Temp. Btu
 
2 

_hr/ft 

0.25 46.4 45.7 44.6 45.7 23.5 0.74
 

59.9 58.4 56.4 58.4 46.9 0.71
0.50 

0.75 78.5 76.4 76.3 76.4 70.0 0.67 

92.7 0.62
1.00 101.1 98.6 95.2 98.6 


1.25 126.5 123.7 119.9 123.7 114.8 0.56
 

153.3 150.6 146.3 150.3 135.2 0.58
1.50 

1.75 157.2 161.8 149.3 111.8 156.7 0.49
 

2.00 156.6 158.8 147.5 108.3 176.3 0.50
 

2.25 162.0 162.5 152.2 112.5 194.8 0.49
 

165.0 164.7 154.4 114.7 212.1 0.49
2.50 

2.75 170.3 169.6 159.0 119.6 228.1 0.48
 

3.00 177.0 176.2 165.4 126.2 242.7 0.47
 

3.25 184.7 183.7 172.8 133.7. 255.8 0.45
 

3.50 192.7 191.7 180.7 141.7 267.3 0.43
 

3.75 200.5 199.6 188.6 140.6 277.2 0.42
 

4.00 200.5 199.7 188.0 149.7 285.3 .0.42
 

4.25 189.2 200.6 189.2 150.6 291.7 0.42
 

4.50 184.8 200.5 184.8 150.5 296.3 0.44
 

4.75 198.8 199.8 184.9 149.8 299.1 0.45
 

5.00 177.4 200.1 177.4 150.1 300.0 0.46
 

5.25 197.7 199.9 184.1 140.9 299.1 0.44
 

5.50 201.0 199.7 188.0 149.7 298.3 0.42
 

5.75 199.3 199,.7 186.5 149.7 91.7 0.43
 

6.00 199.1 199.1 186.7 149.1 285.3 0.42
 

6.25 184.9 200.1 184.9 150.1 277.2 0.42
 

6.50 197.4 199.7 185.9 149.7 267.3 0.42
 

6.75 196.3 200.0 185.4 150.0 255.8 0.41
 

7.00 199.0 198.9 198.0 148.9 242.7 0.40
 

7.25 198.8 197.7 187.4 147.7 228.1 0.40
 

7.50 193.1 195.4 184.3 145.4 212.1 0.41
 

7.75 187.9 192.0 179.5 142.0 194.8 0.41
 

8.00 181.1 187.1 173.4 137.1 176.3 0.43
 

8.25 173.0 181.0 165.8 131.1 156.7 0.44
 

8.50 173.4 173.5 156.9 123.5 136.2 0.46
 

8.75 153.4 164.7 147.8 114.7 114.8 0.48
 

9.00 140.2 155.0 135.3 105.0 92.7 0.51
 
9.25 142.7 149.3 139.1 149.3 70.0 0.50
 
9.50 152.4 151.4 150.1 151.4 46.9 0.47
 
9.75 155.7 155.2 154.6 155.2 23.5 0.46
 

10.00 154.0 155.5 154.9 155.5 - 0.0 0.45
 

Flow 5.OOOOOE 06 1bm/hr Number of Thermal Layers in Tank = 4 

HFlow = 1.OOOOOE 06 ibm/hr Tank Size = 71899 gallons 
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where
 
fl collector efficiency
 

A,B = constants determined for a particular
 
collector design
 

T' = average collector plate temperature
p
 

Tw = ambient temperature.
 

This technique of modeling collectors by calculating efficiencies
 
is based on methods similar to those developed in Reference [l] for
 
flat-plate collectors. It has the advantage of allowing close approxi­
mations to actual collector performance.
 

The efficiency of a collector plotted against (Tp - Tw) will give
 

a curve as shown in Figure 6 by the dashed line. If a straight line 
approximation is used for actual or calculated data from a specific 
collector the coefficient A and B can be determined from the equation 
of the straight line: 

y = A'- Bx
 

by standard mathematical procedure where y n and x (Tp -T).
 

1 
0 

z 

5­

01 

300 
(Tp -T )0 F 

FIGURE 6. COLLECTOR EFFICIENCY 
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These coefficients are input for the specific type(s) of col-


The computer then calculates
lector to be analyzed by the program. 

T.) and uses the results to
collector efficiencies based on (T. 


calculate the useful energy gain from eqn 8.
 

The useful solar energy, Qsol, is then used in eqn 5 in the
 

general form: 

Qasol M Cp(T Ccp 2 Tcl)i (10) 

where 
M = flow through the collector 

c 

C = specific heat 

p 
TCz = collector 

outlet temperature 

T = collector inlet temperature. 
ci 

ECONOMIC EVALUATION
 

Once the system is sized and the useful energy saved is calcu­

lated, the computer program'determines the total cost of each solar
 

system and compares it to the cost of fuel saved. Knowing that a
 

system saves money is not necessirly justification alone for instal­

ling it. During the technical discussion it was shown that a solar
 

system can only supplement a process system. Therefore, it is also
 

important to know what percentage of the total annual heat load the
 

solar system will handle and also how much fuel it will save. Remem­

ber that the saving of valuable fossil fuels is one major objective
 

in using solar. The economic program provides all this data.
 

In determining the economical feasibility of any system alter­

native the designer must'know the present cost of money (interest
 

rate) and payback period for his company plus he must have available
 

the cost of equipment, fuels, labor, maintenance, etc. In most cases
 

these figures are available. However, when evaluating a technically
 

new product such as solar collectors, cost data may not be readily
 

available or -accurate. In performing the analysis, the question of
 
can
importance becomes what cost per square foot of solar collector 


be economically.justified and are collectors available at that price?
 

This becomes important because the solar collector costs are the
 

overriding factor in the overall annual costs of a solar process sys­

tem. This will be shown more clearly in the next sections.
 

Cost Analysis
 

The annual total cost of the solar -system, including installation,
 

maintenance and operating cost, dre calculated by-the following
 

expression:
 



Total Cost = [Coll x Acoll + Cstorage + Cpumps 

+ Cinstali + Cequip x CRF + Epump
 

+ Cmaint + Clabor (I1)
 

where
 
Ccoll = cost of the collector $/ft 2
 

Acoll = area of the collector
 

Cstorage = cost of storage tank
 

C = cost of pump
pump
 

Cequip = cost of piping, valves, instruments,
and insulation
 

Cinstal = cost of installation
 

CRF = capital recovery factor
 

E = annual energy charge to operate the
 
PUMP 
 pumps
 

Cmaint = annual cost of maintenance
 

Clabor = annual cost of labor.
 

The results of the cost analysis show two major items. First,
 
the cost of the solar collectors is by far the major cost of the sys­
tem. The price of pumps, piping, storage, etc., has a small effect
 
on the results of the analysis. -Second, today's cost of fuel requires
 
that the collector costs be lower than $6.00 per square foot for eco­
nomical justification of the system.
 

Figure 7 shows results of the economic analysis for the case
 
study. Each curve is plotted for annual total costs for varying
 
sized systems versus the fuel costs savings per million Btu. The
 
horizontal dashed line represents the present day cost of fuel per
 
million Btu (intra-state recent contract price). It can be seen that
 
at collector costs of $4.00 per square foot the solar system can be
 
economically justified. Any point on these curves below the hori­
zontal fuel cost line represents an economically justified system.
 
The low point of the curve is the most economical system. However,
 
the intersection of the two lines on the right side of the figure
 
represents the system which saves the greatest amount of auxiliary
 
fuel. However, the final selection of the solar system size may not
 
be either of these two points but may be based upon the physical
 
space available. For example, on curve II the area varies from 13 to
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22 acres for the range of economically justified systems. That is a
 

considerable difference when you think of the space as solar collec­

tors. In addition the present location of a plant may only allow,,
 
say for example, 14 acres of collectors. Since this area is justi­

fied by economics and will still handle 25% of the total load, 14
 
acres would be the size system recommended.
 

The position of the economic curves in Figure 7 with respect to
 
the cost of .the fuel line is affected by both the interest rate and
 
the number of years for payback. Curves I and II show this effect.
 
The higher the interest rate and the shorter the payback period the
 
less economical the system. For example, at 12% interest and ten
 
years payoff period the $4.00/ft2 collector system is not justified,
 
whereas at 7% and 20 years payback it is.
 

The results do not include the effects of fuel cost escalation.
 
If present trends continue and there is much evidence in the face of
 
fuel shortages that it will, then the cost of conventional fuels
 
should'continue to escalate at up to 10 to 15% per year and perhaps
 

even higher. If this is the case-, the results are conservative.
 
Therefore, general curves were developed which show the economically
 
justifiable initial investment versus the life of the solar system
 
for various inflation rates. The curve, Figure 8,. is based on the
 
method given-in.Reference,[2] for heating systems with increasing
 
fuel costs. The equation used is:
 

(i + iyn f - 1 

P =A eff (12)
Sieff(l + 'eff
 

where
 
P = initial investment
 

A0 = initial annual fuel saving 

N = number of years
 

I i -i
 
eff 1 + j
 

where
 
i = annual interest rate
 

j = rate of price escalation.
 

These curves may be used in conjunction with the annual fuel
 

savings calculated in the computer program to determine an economical­
ly justifiable system based on a rate of fuel cost escalation.
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where 
Ao Initial annual savings from solar system 

P= Present justifiable capital expenditure 



CONCLUSION
 

Solar systems can be economically competitive with fossil fuels.
 

However, this report shows some important generalizations in reaching
 

First is that solar systems can only supplement
this conclusion. 

For the case study it was shown that the solar
 process heat loads. 


This is significant when
 system can supplement 25% of the total load. 

to 30% fuel
considered as fuel savings. It was also found that 25% 


This
savings could be realized in general for any large heat load. 


was assuming that unlimited space is available for the collector 
area
 

required.
 

Next it was determined that the main advantage of a storage sys­

tem was for system stabilization over a given day. The storage tank
 
sun is
could provide limited process operation for periods when the 


hidden behind the clouds, but not for extended periods. A half-hour
 

storage for the case study would require a 70,000 gallon storage tank
 

whereas a two hour storage would require a 200,000 gallon storage tank.
 

The system designer should consider available solar data for the plant
 

location in selecting a size. Fora generally cloudy location a
 

larger tank should be selected.
 

Finally, in the area of economics it was shown that collector
 

costs will determine whether or not the system is justified. Collec­

tors must be available at $6.00/ft 
2 or less. All other costs are
 

only a fraction of the total.
 

As noted, these conclusions are based on a case study with many
 

fixed systems parameters, such as maximum and minimum process system
 

and storage tank operating temperatures. When actually applying
 

these generalizations the designer should keep this in mind-The
 

computer program developed will allow time varying input data for any
 

indirect prQcess solar heating system to aid the designer in final
 

economic verification.
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(B) 	Project Abstract:
 

This investigation is concerned with a fundamental
 

analysis of the dynamic behavior of vapor-liquid 
interphase
 

mass transfer trays. A theoretical model is first developed
 

to describe the transient behavior of a single 
mass trans­

fer tray in response to either a single or 
multiple distur­

bance in composition of the entering vapor or 
liquid stream.
 

The-proposed model takes into account the fact 
of incomplete
 

liquid mixing on the tray by using the eddy diffusion 
mecha­

nism to describe such liquid mixing behavior. 
The dynamic
 

interphase mass transfer of,a,bubbling tray is characterized
 

by two dimensionless parameters, the Peclet number 
(PL) and
 

the mass transfer parameter k. The influence of the para­

meters are determined and discussed.
 

The concept of partial position transfer function 
is
 

proposed to provide a concise-and general tool for relating 

the dynamic response of a system of multiple disturbances 

to those of the same system subjected to single, and ,inde­

pendent disturbances.
 

The concept provides the means, of breaking the compli­

cated response system into a.series of the partial responses
 

which can be obtained from the system with less difficulty.
 



The concept was applied successfully in obtaining the dyna­

mic response of a tray which is subjected to simultaneous
 

composition disturbances in either pulse or a step or a
 

frequency form.
 

The dynamic mathematical model for an interphase mass
 

transfer plate column was developed using the fundamental
 

knowledge gained from the study of a single tray. A pre­

liminary attempt has been made and successfully carried out­

intobtaining the solubion of the model by a numerical method.
 

The solution clearly indicated the importance of the effect
 

of liquid mixing on the dynamic response of an interphase
 

mass transfer column. When the liquid on the trays is not
 

completely mixed, there exists a significant delay between
 

the disturbance and the response.
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A Dynamic Model of the Circle of Willis 

J. C.CHAO 	 N.H.C.HWANG 

INTRODUCTION
 
Aneurysm on cerebral arteries is a matter of post-occlusive pressure distribution in every part
 

of the brain artery system.
acute concern to neurologists and neurosurgeons 

Past attempts to model the circle of Willis
alike. Under most circumstances, the aneurysm(s) 


is (are) found on or near the vicinity of the cir- have dealt entirely with the study of the much
 

cle of Willis. Treatment of the cerebral aneurysm simplified steady flow in rigid tubes using a flu­

id model (1-k) an electric analog model (5-_)

has been mostly surgical, either by'direct ap-


proach to the aneurysm through craniotomy or by 	 and a computer model (1). Most of these models
 

were comparatively studied in the form of their
elective occlusion of one or more of the afferent 

computer representation recently by Clark, et al.
 cervical arteries, 


This paper will present a basic model of the
In the hands of most surgeons, the surgical 	 (8). 

circle of Willis with pulsatile flow in distensi­procedure of-cervical artery occlusion carries 


less risk than the direct intracranial approach 	 ble tubes.
 

to the aneurysm. However, because of the uncer­

tainty of post-operative flow pattern and the pres-	 CONSTRUCTION OF THE MODEL
 

sure distribution in the brain arterial system, it
 

has frequently led to recurrent hemorrhages from The measurement of major cerebral arteries
 

of a group of dogs as quoted in reference (4)have
the aneurysm(s) for which occlusion was performed 


and other post-operative bleeding episode. The been taken as the prototype for our studies. The
 

prototype circle was subdivided into 22 segments
comparative values of the cervical arterial occlu-


sion treatments has remained a controversial of approximately equal volumes. 
Some irregulari­

ties of the sectioning are introduced from the
subject. 

need to have the regions where circulation would
The basic purpose of cervical artery occlu-


sion is to reduce the local pressure in the weak- be influenced by local increase of resistance or
 

ened portion of the arterial wall in which the
 

aneurysm resides. Therefore, it is extremely 	im- 1 Underlined numbers in parentheses designate
 

portant to be able to predict preoperatively the 	 References at end of paper.
 

i internal carotid
 

ant.~ ~ ~ ~ -.t ceeblre...bral,.,,, 
t d. cerebral
 

ant. co . ant. cerebral
 

basilar
 

Fig.l Sketch of the mathematical model 



altered field of blood supply coincide with June- At the wall a radial velocity (We) is as­

tions of segments. The mathematical model is sche- sumed. Here Womersley (10) and Jager, 'et al.,
 

matically shown in Fig.l. (11) have shown 

Within each of the 22 segments, blood flow 
is assumed to be approximately laminar and incom- dW Ph -t (6)
pressible. Disregarding body forces and the small = -- + w dt ( 
tangential motion of the blood, the simplified (i-a 
Navier-Stokes equations in the cylindrical coordi­
nate-form can be written as: 	 in which p is the wall density, is the wall
 

damping coefficient, E is Young's modulus of the
 

wall, a is the Poisson ratio of the wall, and h is
 
- Dn+ a 


a 
 uI au i2 wall thickness.
 

As discussed in reference (9), the first two
 

can be ignored because radi­in equation (6)

+w Ia ,a2terms 

ar + U 1F w 2 (2) al velocities are small. Equation (6) then be­
a 	 (r comes
 

Here p is pressure, z is the distance along the 	 t
 
=
axis, p is fluid mass density, p is the ordinary P 2 WRdt (7)
 

coefficient of viscosity, and u and w are longi­

tudinal and radial velocity components, respec­
tively. 	 Let the input and output flow at each end of
 

If we further assume that the pressure is the Az length of the nth annulus be designated as 
independent of r, a reasonable assumption for qni and qno, then the continuity relates such 
small radial velocity, eqution (2) can be neg- flows and the radial velocity at r -R as 
lected initially. The value of w may then be de­
termined from wall elasticity using the continuity N-i 

Z (qni- no) = 2n RWR Z (8)
relation. 


Equation (1) may be converted from differen­
tial to difference form in the radial space dimen- From equations (7) and (8),
 

sions by breaking up the segment radially into N
 
concentric annular shells of equal thickness of Ar t
 

C-N-d

for all but the outmout annulus, which was chosen P h / 


to have thickness Ar/. Applying the simplest 2R/( =)Azni-no
 

case, N = 2, Rideout and Dick (j) have converted
 
equation (1) to the following form: For the case of N=2, we have,
 

SpAz dq1 SljiAZ 
P.-Pi Rdt qi (3) I th4R2 o 8R4 	 P 
= 2wSl-_B2hz1 (-qnodr(0


3 2 , y (% -q ) d t - ( 10)
B I T R 	 p 

Here As is the length of the segment, H is the
 

tube radius, and q is the longitudinal ,flow rate. The fluid -capacitance for the segment of length
 
The subscripts i 'and0 'indicate the input and out- (As) is, therefore,
 
put at the entrance and the exit of the segment,
 

respectively.
 
The coefficient of the second term on the C = 2,R3 (i-o2)Az = SR 3Az (11) 

right-hand side of equation (3) gives the fluid Eh 2Eh 

resistance of the segment, take a = 1/2. 

Measuring the dimensions in CGS units and
 
8VR4, (4) converting the blood pressure from the convention­

al unit of Mn Hg to dyne/sq cm by 1 mm Hg = 1332
 

dyne/sq cm, the values of R, L, and C are calcu­
while the coefficient of the first term on the lated for each of the 22 segments. The values are
 
right-hand side of equation (3) gives the fluid shown in Table 1.
 
inductance, 	 As shown in Fig.l, all the efferent branches
 

L =-.PAz are each represented 	by-two segments in series.
 
2
4%R	 (5) The distal part is accounted for 80 percent of the
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Table 1 Characteristics of Arterial Segments 

Segment Radius Length R 3 L 2 C 
(cm) (cm) l dyne/cm) ,10 dyne/cm (10- m/dyne/cm) 

Basilar 


Post comm. 1 


Post comm. 2 


Post comm. 3 


Post comm. 4 


Ant. comm. 1 


Ant. comm. 2 


Ant. cerebellar 


Post cerebral 


Int. carotid 


Mid.cerebral 


Ant. cerebral 


mi/sec iml/ sec 

.05 4.2 68.6 1.130 5.88
 

.035 .50 .310
42.8 .202
 

.101
.035 .25 21.4 .156 


30.8 .146
.035 .36 .223 


.146
.035 .36 30.8 .223 


.042 .25 10.4 .107 .175
 

.042 .66 27.4 .244 .460
 

.032 .73 89.2 .536 .226
 

.039 .41 22.7 .202 .228
 

.06 4.2 41.6 .880 8.56
 

.048 .81 .265
19.6 .841
 

.06 1.12 10.4 .220 
 2.14
 

pressure drop. Hence, the lower resistance is was taken to test the model performance. At this
 

four times the upper resistance; the lower com- preliminary phase of the study,
2 several assump­

pliance is six times the upper compliance. tions, which had been commonly made for almost all
 

previous models (1-5,J), were accepted to test our
Applying relations (4), (5), and (11) to a 


segment (m), which is located between sections (m) model. These assumptions-are as follows: 1) the
 

total flow through the system is estimated at 63
and (m+l), equations (3) and (10) can be rewritten 

cc/l00 gm of dog brain per minute, 2) the afferent
 as follows: 

flow is divided equally among the two carotids and
 

the basilar, 3) the efferent flow is distributed
 

in accordance with the weight of brain irrigated
U6 =m [(pM-l-) -- ]dt (12)(12)by each vessel, and 4) the input pressure at all
 

and 


1 t . 

P / (q=rqm )dt (13) 


The analog computer setup for the segment is shown 


in Fig.2. 


The entire model including its input func-


tion, as mentioned in the next paragraph, has been 


set on the SS-100 Analog/Hybrid Computer in the 


Cullen College of Engineering. 


TESTING OF TE MODEL 


Intravascular pulse pressure directly meas-


ured from a dog's right common carotid artery (12) 


three afferent arteries was the same function of
 

time and there is no phase delay.
 
Pulse pressure and flow rate at several sec­

tions on the model were measured with a Polaroid
 

on the screen
camera which photographed the traces 

of a Textronix dual-beam oscilloscope. The meas­

ured pressure and flow rated at each of these sec­

tions are shown as functions of time in Figs.3 and
 

4, respectively.
 
Comparisons of the model output with the
 

animal data (12,13) were rather encouraging be­

cause the relative pressure drop and flow distri­

bution at each of the junctions were comparable
 
2
 

A hybrid computer phase of the model with de­

layed individual input function for each of the
 

three afferent.arteries will be reported in sub­

sequent papers.
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(A) Arterial segment 


(B) Integral equations representing (A) 


(0) Analog computer setup for (A)
 

Fig.2 


both in magnitude and wave forms. Although a 


point-to-point comparison was not made in this 


study due to the fact that different animals were 


involved, the similarity in trends indicated the 
possibility of satisfactory refinement of the mod-

eling technique. The comparison of the changes 
in flow rate and pressure with the previous models 


was not possible since the flows in all other mod- 

els were steady in nature. However, the ranges 


of magnitude showed good agreement between our 


model and the previous models. 


CONCLUSION 


The advantages of analog modeling of a com-


plex circulation system, such as the circle of 


Willis at the base of the brain by integrated 


lumped circuits, are apparent. Not only does it 


offer a far greater versatility than a convention-


al fluid-model, but it also offers the convenience 


of recording the pressure and flow rates at almost 


any desired sections in-the system; the ease of 


finding values of functions with varying param-


eters; and most of all, it permits the possibility 


of including the nonlinear terms. 


The assumption of laminar flow in cerebral 

arteries may be regarded as a better approximation 


sion of the present model is now under construc­
in our laboratory. In the model, the analog
 

representation described in this paper will be
 

combined with a digital representation of some of
 
the slower acting control loops, such as the per­

ipheral resistance and phase delay of pressure
 
waves in different afferent arteries. Better con­

formity of model to animal prototype can be ex­

pected. 
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Causes, Magnitude, and Effects of 
Temperature Fluctuations (Flickering) of 
Catalytic Wires and Gauzes 

An experimental study has confirmed a theoretical prediction that, when 
an exothermic mass transfer limited chemical reaction occurs on a single W. M. EDWARDS. 
catalytic wire for which the parameter a [Equation (11)] is large, tempera- J. E. ZUNIGA-CHAVES 
ture fluctuations (flickering) of large amplitude must be induced by con- F. L. WORLEY, JR. 
centration fluctuations. A simplified model is presented for predicting the and DAN LUSS 
magnitude of flickering in industrial convertors for which the parameter a Department of Chemical Engineering 
is usually large. The model should be useful in estimating the influence of University of Houston 
improved mixing of the reactants on the reduction in precious metal loss Houston, Texas 77004 
from the gauze. 

SCOPE 
The industrial ammonia oxidation process utilizes a 

catalytic gauze consisting of 10 to 40 layers of platinum-
rhodium wire screens. Observations of these gauzes reveal 
localized regions of high luminosity whose intensity flue-
tuates randomly with time, a phenomenon referred to as 
flickering. Nowak (19 69) reported that the rate of precious 
metal loss in the ammonia oxidation process, which ac-
counts for about 5% of the manufacturing costs, can be 
represented by an Arrhenius temperature dependence 
with an activation energy of about 40,000 cal/g mole. 
Due to this convex temperature dependence, temperature 
oscillations (flickering) increase the metal loss above the 
level corresponding to uniform temperature operation at 
the same average temperature. Thus, information about 
the magnitude and causes of flickering could lead to a 
design which reduces these precious metal losses, 

Ervin and Luss (1972) used numerical simulation to 
show that large amplitude flickering can be induced by 
the fluctuations of the turbulent transport coefficients 
(caused by velocity fluctuations) if the parameter a, which 
is the ratio of the characteristic time for changes in wire 
diameter to the characteristic time for surface concentra-
tion changes, was of order unity or less. However, 
under the conditions prevailing in industrial convertors 
the parameter a is very large, and for this case numerical 

simulations indicate that the magnitude of flickering in­
duced by velocity fluctuations is negligible. A model 
presented here shows that if the parameter a is large and 
the reactants are not completely mixed on a molecular 
level, concentration fluctuations can induce flickering of. 
large amplitude. Edwards et al. (1973) measured large 
amplitude flickering during the catalytic oxidation of 
butane in air on single platinum wires for which a was 
rather large. The experiments demonstrated the existence 
of a correlation between flickering and the turbulence of 
the reacting gas but did not enable a determination of 
the specific cause for flickering. 

The main objective of this work was to determine the 
primary cause of flickering of single catalytic wires for 
which the parameter a is much larger than unity. To this 
end a high resolution infrared detector was used to mea­
sure localized surface temperature fluctuations on single 
platinum wires duing the catalytic oxidation of either 
hydrogen or ammonia in air. By changing the feed port 
location and method of injection various intensities of 
concentration fluctuations were obtained in the same 
turbulent flow field. The results of this study were used 
to develop a theoretical model for predicting the causes 
and magnitude of flickering under the conditions prevail­
ing in industrial converters. 

ORIGINAL PAGE IS 
CONCLUSIONS AND SIGNIFICANCE OF POOR QUALITY 

A series of measurements of the root mean square 
temperature fluctuations in the same turbulent flow field 
and various levels of concentration fluctuations indicated 
that concentration fluctuations must be the primary cause 
for flickering of the magnitude observed in industrial 
convertors. The theoretical predictions of Equation (23) 
adequately described the relation between local flickering 
on a single wire and local concentration fluctuation in-
tensity. A comparison of the probability density functions 
of the fluctuations about the mean of the wire's tempera-
ture with those of the concentration and velocity of the 
reacting gas further confirm the conclusion that flickering 

Correspondence concerning this paper should be addressed to D. Luss. 
W. M. Edwards is with the M. W. Kellogg Company, Houston, Texas. 

AlChE Journal (Vol. 20, No. 3) 

was -induced by concentration and not velocity fluctua­
tions. The spectral density functions of the temperature 
fluctuations do not enable a conclusive determination of 
the cause of flickering. 

A simplified model was developed for estimating the 
magnitude of flickering in industrial gauze converters 
[Equation (41)]. The model predicts that under the con­
ditions prevailing in typical high pressure ammonia con­
vertors imperfect mixing and concentration fluctuations 
are the main causes for flickering. Thus, equipment modi­
fications which reduce the concentration fluctuations up­
stream of the gauze will decrease the magnitude of flicker­

ing. This in turn will reduce the precious metal loss and 
the deterioration rate of the catalytic gauze. 

'4. ; / May, 1974 Page 571 



Catalytic gauze convertors deteriorate with time due to 
(mainly in the form of volatile ox-precious metal losses 

plant to plantides). The precious metal loss varies from 

and often has a significant impact on the economics of the 

process. For example, in the high piessue ammonia oxida-

tion process, the metal losses may account for about 5% 
of the manufacturing costs (Newman and Hulbert, 1971, 
Gillespie and Kenson, 1971; Heywood, 1973) and, ac-
cording to Nowak (1969), can be correlated by the em-
pincal-expression 

d -- f(O) exp(- EIRT) (1) 

where E, = 40,000 cal/g mole. 
Large amplitude random temperature fluctuations (ck-

ering) have been observed in commercial conveitors. One 
of the main disadvantages of flickering is its deleterious 
influence on the rate of precious metal losses from cata­
lytic gauzes. An instiuctive parameter for gauging the in-
fluence of flickering is the relative metal loss r(T), defined 
as the ratio of the metal loss with flickering to that during 

uniform temperature operation with the same aveiage 
temperature and average reactant concentration. 

(d
lexp ( --E ) 

d t \\ -T (2
r(T) -M (2) 

I - - ) ­

dt /=<T> 
2 R<T> 

denotes the time average of a stationary proc-where < > 
ess. Since exp(- EIRT) is a convex function of the tern-
perature r(T) 2 1. When the probability density function 
(pdf) of the temperature fluctuations is known, (2) can 
be used to calculate the effect of flickering on the metal 
loss. Experiments carried out in this laboratory with single 
wires indicate that when no infoimation is available about 
the pdf of the flickering a Gaussian distribution should be 
good approximation. Typical values of r(T) are reported 
in Table I using this assumption and operating conditions 
similar to those existing in industrial ammonia oxidation 
convertors, It is noted that the relative metal loss increases 
rapidly with increasing root mean square temperature 
fluctuations. 

The temperature and surface concentration of a single 
catalytic wire on which a single chemical reaction occurs 
can be described by the equations

dA)LPeCh> 
d(AS) = k 1(S)-C -- r (3) 

cit 

Apcp - k A -- + hP(T - T) + P(- I)r (4) 
atS2 

(S) + (AS) = L (5) 

have shown that when the reactionEdwards et al. (1973) 

is mass transfer controlled the maximal temperature rise is 

given by 


Ak, 02T 
<AT.d> = <ATad*> + - - (6)

whe> 01.39A. 

where 

<AT (- Anl )<G> ( Np, 2 1 


pjecp-


(- AH)<x0> & (7) 

Cef M1 

The second term on the right-hand side of (6), which 
accounts for the influence of thermal conduction, is negli-
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TABLE 1. VALUES OF r(T) AS A FUNCTION OF THE TiN E 

AEiiACl TEIPEIA1U11E AND iHE ROOT MEAN SQUArL 
TEdIPERAIUiE FLUC.rUA1\Os Assuxii\C AGAUSSIAN 

TEMPERATUBE OscILa1iON pdf AND E,, 
40,000 CAL/C..OLE 

<T>, 'C 

T 
*C 

,C 800 850 900 950 
20 1.05 1.04 1.033 1.028 
40 1.22 1.18 1.15 1.12 
60 1.54 1.43 1.35 1.29 

togibleamhen comparedaterth<ATa0 > for wires with length 

The tuibulent mass tanstei coefficient to a cylinder can 
be expiessed as (Tieybal, p. 59, 1968) 

k, d 
Nsh = - + 161111 (8) 

DAB 

where a and P are two empirical constants. Local turbu­
lent transpoit coefficients fluctuate with time and can be 
expressed as the sum of their stationary aveiage and a 
fluctuating component, which is denoted by a prime. When 
the fluctuating velocity component u' is much smaller than 
the time avemaged velocity <u>, the ratio between the 

instantaneous to the time averaged mass tiansfer coeffi­
cient may be approximated by 

-l (9)ke = 1 + N 

<k,> <u> 
where 

__0n1<u>n (1 
N - <NU>1=-n <N,> (10) 

and n is an empiiical constant, which is about 0.5. Analogy 
between heat and mass transfer implies that when the 
Lewis numberis close to unity the right-hand side of (9) 
desciibes also the ratio of h/<h>. 

Ervin and Luss (1972) used a numerical simulation to 
demonstrate that fluctuations of the transport coefficients 
may induce flickering on a wire. The magnitude of this 
induced temperature fluctuation was found to be strongly 
dependent on.the pardineter 

,p e <k><C> AP C,<ATad*> 
a = cL< > AP Aa>

"LP(- H) 
1lAp c,<xg>NL,- i 

"L opt<M> 

which is the ratio of the characteristic time for changes in 
wire temperature to the characteristic time for surface 

concentration changes. The numerical computations indi­
cated that appreciable temperature oscillations were in­
duced by fluctuating transport coefficients only when a 
was of order one or less. 

Estimation of the parameter a requires information 

about the concentration of active surface sites per unit 
surface area L. The atomic radius of a platinum atom is 

Hence, L 2 x 10 - 9 g atom/cm2 . A high tem­
perature steady state can exist only if the reactant mole 
fraction exceeds the value corresponding to extinction x,. 
Some estimates of a lower bound on. the parameter a are 

reported in Table 2 for reactions on a 0.025-mm platinum-
wire, based on the assumptions of L = -2 X 10 9 and 

<x> = x ,. These estimates indicate that for all these 
cases a is at least of order 100. In the industrial am­
monia oxidation process <x 9> 0.11 and d. = 0.075 
Him, yielding 9900 as the lower bound on a. A similar 
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TABLE 2. EsrMAxoN oF A LowEn BOUND ON THE 
PAnnssmnrjr a FROM ExpEmniMNsrs WxT A 0.025-mm 

PLATINUM WIME 

AT*ad/ 
Reactant Nz, x [K*) T0 ['C] X. Mm(a) 

Butane 2.30 47,500 145 0.0087 140 
Hydrogen 0.27 19,600 24 0.010 710 
Ammonia 0.895 8,000 24 0.040 1,240 

magnitude is attained in the HCN process. The model of 
Ervin and Luss (1972) predicts that for these high values 
of a the amplitude of the flickering is negligibiy small, 

transport coefficients cannotand that fluctuations in the 
induce the large amplitude flickering observed in industrial 
convertors. 

In the following discussion, a model is described which 
explains flickering for systems having high values of the 
parameter a. The main assumption of the model is that 
for mass transfer controlling conditions and large values of 
a the surface concentration of the adsorbed reactant satis-
fies the pseudo steady state relation 

r= k,(S)C = k0C (12) 

Substitution of (12) into (4) and neglecting the effect of 
axial conduction yields 

Ap c, dTP dt = h(Ta -T) + k0C(- MI) (13) 
F = - + (Substitution 

Equation (,13) can be rewritten as 

Ap p dT" 


P<h><T- T,> dt 
h'T 


(+ - )( 1 - )
< 1 

+ (i + >)(I C, ) (14) 

where we have expressed the transport coefficients, the 

concentrations, and the temperature as a sum of a sta-
tionary average and a fluctuating component, and used the 
relations 

d<T> 0 (15) 

ORIGINAL PAGE IS dt 

OF POOR QUALITY (- AH)<k,><C> 
<h>T (16) 

Substitution of (9) into (14) and neglecting second-order 
terms yields 

Ap cp dT" " <T - T,>C' 

'=Tv"dt - + < > (17)F<h> 

Assuming that the gas temperature is uniform (Ta' = 0) 
Fourier transformation of (17) yields 

f) T- c (T> (f)
<CT [1 + (f)(18)

where 

Ap c, 


r= (19) 
P<h> 

and GT,(f) and Ge,(f) are the power spectral density 
functions of the wire temperature fluctuations and of the 
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feed concentration fluctuations, respectively. 
The one-dimensional spectral density function of the 

velocity fluctuations in an isotropic turbulent flow field 
can be usually approximated very well for low frequenciesby (Hmnze, 1959) 

(e0,.()1959 1 1 
4 <u'2 >TE 1 + (2. -E) 1 + (f/fin2) ( 

where rE Is the Eulerlan time scale and f112 is the half
 
power frequency. The power spectral density of concen­
tration fluctuations in a turbulent field should be rather
 
similar to that of velocity fluctuations and cin be approxi­
mated by
 

Gc,(f) 1 
4<C(>2 (2ire)( )-

where rc is the Eulerian concentration time scale. Experi­
mental measurements of the spectral density function of 
scalar fluctuations in a turbulent flow field have been re­
ported by Becker et al. (1966), Lee and Brodkey (1964), 
and Freymuth and Uberoi (1971). Substitution of (21) 
into (18), integration over all possible frequencies and 
application of the definition of power spectral density func­
tion 

fl" Gr.(f)df = <T'e>. (22) 

yields
 

<Tr2> rc<C'2>
 
c <)<>2 (23)<T- T,>2 = " 

of (21) and (23) in (18) yields 

'Gr,(f) ( c + r) 

4<T2> [1 + (2-rr)2] [1 + (2_rfrC)2 ] 

Edwards et al. (1973) have shown that if flickering, is 
induced by fluctuations of the transport coefficients then 
the experimental data should satisfy the relation 

G r,() T7( 7+ T ) (25) 

4<T'2> [1+ (2rvfr) 
2 

] [1+ (24rw)2)

wher ic e
 
where T. is computed from
 

tan - ' (21,/2 ,r.) 

-- tan-' (2 f1/2 rr) 1 -- ,E 
in 2 ha ( (26) 

Hinze (1959, p. 231) has shown that for isotropic tur­
bulent mixing the ratio r/re is equal to NVN2s.For a 
mixture of a reactant in excess air Ns, is close to unity 
so the values of IE and rc should be about the same. In 
addition, computations indicate that for our experimental 
conditions -.and r are about equal. Hence, a comparison 
of (24) and (25) indicates that the temperature spectral
density function cannot be used to determine whether 
flickering is induced by velocity fluctuations or by concen­
tration fluctuations. However, measurements of the tern­
perature fluctuations in the same flow field at various levels 
of concentration fluctuations can be used to test the valid­
ity of (23) and to determine the main cause of flickering.
In the first part of this work we report an experimental
study of temperature fluctuations on single catalytic wires. 
The results are then applied to predict the causes and 
magnitude of flickering incatalytic gauze convertors.
 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The experimental data obtained to determine the cause of 
flickering include measurements of instantaneous values of 
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local surface temperature and reactant concentration. Instan- 63mm STAINLESS STEEL
 

taneous wire surface temperatures were measured with an in- TUBES2
 
frared detector while concentration fluctuations were measuredi
 
with an aspirating probe unit manufactured by Thermo Sys­
tems, Inc. The temperature measurements were made on single TOP
 
platinum wires placed normal to the flow direction of a turbu­
lent reactant (either ammonia or hydrogen)-air mixture. The
 
test assembly (Figure 1) which includes gas flow meters, mix­
ing nozzles, flow channel, probe holder, and infrared detection SCREEN SAPPHIRE
 

REACTANTunit is the same as that described by Edwards et al. (1973), 
RPOINT
but includes a redesigned flow channel, wire probe, and mix- P
 

ing devices.
 

The rectangular cross section (25 X 152 mm) flow channel VENT 

(Figure 2) was constructed from two (203 X 1650 mm.) INLET 
3.2-mm thick aluminum plates separated by 25-mm square 

2-- 25m
insulated with a 38-mm 

thick layer of fiberglass. The feed gas, air, or nitrogen, entereda [.--255 mm S'n825mm570mm
 
aluminum bar stock. The channel was 

a 12.5-mm diameter opening into 
the flow channel through 
short (127 mm long) diverging section. In order to break up SIDE
 
the incoming jet and to provide a uniform velocity distribution,
 
the gas was passed through two 30-mesh stainless steel screens I ll PO
 
(100 mm apart) followed by a section packed with 6.3 mm SCREEN PROBE 
I.D. 102-mm long stainless steel tubes. The flow inside these
 
tubes was laminar for the experimental conditions used. FEED
 

DISTRIBUTOR IO2mm was positioned 700 maiThe catalytic wire probe (Figure 3) 

downstream from the exit of the stainless steel tubes (56 (POINT A) 6.3mm STAINLESS
 

X 50 ram) in STEEL TUBES
channel half heights). The probe opening (12.5 

the bottom of the channel was sealed with a spring loaded Fig. 2. Schematic of flow channel.
 
fiber plate to prevent gas leakage.
 

A 2 5 -mm. diameter sapphire window transmitting radiation
 
in the 1-8ps range "vas installed in the top late to permit
 
direct viewing of the platinum wire with the infrared unit. This
 
unit measured the instantaneous local wire surface temperature HOLD DOWN SCREW­
of a 0.04 mam. diametr spot. The root mean square noise level
 
of the measured temperature fluctuations was 0.7C. The PLATINUM WIRE
 
gas temperature was measured with a mercury in glass ther­
mometer inserted through a port in the side of the channel
 
near the catalytic wire. Details of the method of measurement, 6mm
 
calibration, recording, and data processing were descnbed by .FBRE PLATE
 

IR LTEdwards et al. (1973) and Edwards (1973). 

-TENSIONING SCREWS 

AIRFIR BOK
 
SUPPLY 


REACTANT
 
SUPPLY BRASS ROD 

( . rn 
(D) 

(C) 

AR AIR ()VENT ' BRASS ROD 

DRIERLi HEATER. 

Fig. 3. Catalytic wire probe. 

INFRARED DETECTOR A wide range of reactant concentration fluctuations was ob­
tained by varying the method of reactant injection and/or by 
changing the injection point (labeled A, B, 0, and D in Figure 
1). The reactant injector at point A consisted of a 0.3-mm 

to the air flow in the channel 
between the two 30-mesh screens. The as was injected through(A) FLOW CHANNEL stainless steel tube placed normal 

eleven 0.34-mm diameter holes space 12.5 mm apart. This 
distributor could be rotated so that the reactant could be in­
jected at any prescribed angle relative to the bulk flow axis. 
Feed point B was a tee connection and 'the reactant was in­
jected through nine 0.24-mm diameter holes in a steel plate. 

Fig. I. Schematic of test assembly. Feed point C was similar to B and contained nine 0.5-mm 
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diameter holes in a plastic plate. A 50-mm I.D. packed bed 
3 toppedcontaining 100 cm of 0.065-mm diameter glass beads 

by 100 e 3 of 3-m diameter glass beads was placed between 
points C and the channel inlet in order to improve the mixing
and therefore reduce the magnitude of concentration fluctua-
tions. Feed point D consisted of a tee connection ahead of the 
Im. high packed bed air drier shown in Figure 1. 

Instantaneous concentration fluctuations for nonreacting 
turbulent helium-air or hydrogen-nitrogen mixtures were men-sured with a Themo Systems Model 1441A aspirating probe 
(Figure 4) in conjunction with a Thermo Systems Model 
LOIOA constant temperature anemometer system. The design 
and principles of operation of this probe have been described 
by Blackshear and Fingerson (1962). Edwards (1973) dis-cussed the conditions under which the measurements of the 

aspirating probe can be considered valid. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Edwards et a]. (1973) have shown that for butane oxi-
dation the temperature fluctuations behave as a stationary 
process for times much longer than those required for a 
single experiment and that conduction due to end effects 
had a negligible influence on the time averaged tempera-
lure and root mean square temperature fluctuations at the 
center of wires of diameter 0.075 mm or less. In the ex-
periments reported here, it has been assumed that the 
same is also true for either ammonia or hydrogen oxidation. 

Preliminary experiments demonstrated that when the 
reactant was injected at either one of the feed points 
labeled as B, C and D in Figure 1, there existed no 
gradient in the time averaged concentration at the wire 
station. However, when either hydrogen or ammonia 
were injected at point A, gradients in the time averaged 
concentration existed at the wire station. Moreover, it was 
found that the concentration fluctuation intensity, the 

/ . 
SAMPLE 

SEDTI 
S 


ORIGINAL PAGE IS 
OF POOR QUAL I 

3.2 mm 

12.5 MIT 
(NPT) 

TO 

VAC UUM 

1.2 mm DIA. 0.8mm FLARE) 

SENSOR 

ORIFICEspecified, the channel Reynolds number was 4000, the 
( ) turbulent intensity (u s,/<u>) was 0.11, To = 240C, 

(.51mm) andd = 0.075 mm. 
ENSOR\ Experiments with a mixture of 3%v H2 in air yielded

SE values of T'r, equal to 0.84, 1.10, and 2.70C and C'.. 
150 mm LEAD <C> equal to 0.002, 0.004, and 0.006 when the hydrogen 

was injected from feed points D, C, and B, respectively. 
DETAIL C 
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fig. 5. The effect of the angular position of the feed distributor 
on: <X0 > and C'r./IC> as measured by the aspirating probe, 
on <To - To> and T'rrns/<Tc - Tg> for a 0.075-mm wire as 
measured by the infrared detector, and on C',,IU/<C> as computed 

from T'rm/s<Tc - Tg> by Equation (23). 

probability density function (pdf), and the spectral den­
sity function (sdi) were sensitive to the angular position 
of the distributor at point A. The intensity of the con­
centration fluctuations at the catalytic wire station de­
pended on the feed port location and was in the following 
order A >> B > C > D. 

A series of experiments were carried out to determine 
the relation between the concentration fluctuations (as
measured by the aspirating probe for a hydrogen-nitrogen 
mixture) and the root mean square temperature fluctua­
tions (as measured by the infrared detector) at the center 
of platinum wires during the oxidation of hydrogen in air. 
In all the experiments reported here, unless otherwise 

These results indicate a direct correlation between the con­

centration and temperature fluctuations and point out 
that in the absence of concentration fluctuations T'rms will 
be very small (the noise level of the detector was 0.7'C). 

The above measured values of C'MS/<C> are accurate 
to only one-significant digit due to the poor signal to noise 
ratio. Thus, in order to obtain data suitable for a critical 
examination of the theoretical predictions it was necessary 
to use injection point A, which yields high values of con­
centration fluctuations at the wire station. 

Experiments with the aspirating p obe as well as chro­
matographic analysis of samples taken at various points 
across the channel revealed that gradients in the time 
averaged concentration existed next to the wire when in­
jection point A was used to obtain a mixture of 2.5%v H2
in air. Moreover, the time averaged concentration next to 
the wire depended on the angular position of the feed 
distributor. A comparison of <x,> and <T - To> shown, 
in Figure 5a indicates that the variations in the time aver­
aged concentration next to the wire were responsible for 
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BNC CONNECTOR 

Fig. 4. Schematic of the aspirating probe. 
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the variation of the time averaged temperature rise of the 
wire with 0 and its deviation from 4750 C. (If mixing of 
the reactants were such that no gradients in the time 
averaged concentration existed then for this mass transfer 
limited reaction <To - T0> would have been 4750C. The 
injection angle 0 is defined as 0 for injection in the direc-
tion of air flow and positive when measured in the clock-
wise direction, for example, vertical upwards injection 
corresponds to 900.) 

Figure 5b describes the effect of the angular position 
of the feed distributor (point A) on the measured con-
centration and temperature fluctuations. The results in-
dicate a close similarity between C'r,/<C> and 7.s/ 
<T. - Tg>. Thus, while C'mf<C>changes by a factor 
of about five as the distributor is rotated, the ratio of 
(C'rms/<C>)/ (T'rms/<Tc - T>) changes by no more 
than 8%. The values of T'2s obtained in these experi-
ments were quite large compared to the values obtained at 
points B, C, and D, and ranged from 8.60 to 83.4°C. Since 
peak to peak temperature fluctuations are about six times 
larger than T'rs, the temperature fluctuations could be 
observed visually, 

The assumption that flickering is induced by concentra-
tion fluctuations when a >> 1 led to the development of 
Equation (28) in the theoretical section. In order to test 
its validity it was used to compute C',s/<C>from the 
measured values of T'./<T,- T0>. To accomplish 
these computations, values of r and rT. must be known. 
The value of r was determined from heat transfer ex-
periments as 0.070 see. Measurements with the aspirating 
probe showed that T, varied between 0.080 and 0.039 s 
depending on the injection angle. The computed values of 
C',,/<C>shown in Figure 5b agree very well with the 
values measured by the aspirating probe, and support the 
validity of Equation (23). 

Figure 6a describes the measured values of T'ins/<T 
- To> as a function of the wire diameter for a mixture 
of 2.5% vol. H, in air. The mixture was injected at point 

, , , I,, 

.05 a A =2700 

0t = 800 

E .02 
t-

.01 I I
b3 

3 .0 
5-

to 
E 0 

ii (wire 

.02 I I I 

.02 .05 .1 .2 

WIRE DIAMETER Emmfl 
Fig. 6. (a) The effect of wire diameter and position of distributor on 
the temperature fluctuation for a mixture containing 2.5% H2 in 
air; (b) Computed values of C'ms/<C> from T'rmnsf<Te - T0> 

using Equation (23). 
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A using two different angular positions of the distributor. 
The temperature fluctuations in these eases almost doubled 
as the wire diameter was decreased from 0.125 to 0.025 
mm. The magnitude of <To - To> in these experiments 
was about 475°, -and the flickering was quite large in 
some cases. 

The above measurements of T., were used as a further 
test of the validity of Equation (28). The values of r as 
measured by heat transfer experiments were 0.011, 0.070, 
and 0.141 s for wires of 0.025, 0.075, and 0.125 mm diam­
eter, respectively. Measurements with the aspirating probe 
determined r. as 0.089 and 0.030 s for 4, = 1800 and 
2700, respectively. Figure 6b presents the values of C'rms/ 
<C> calculated by Equation (23) from the measured 
temperature fluctuations and the measured values of r and 
re. The computed concentration fluctuations are indepen­
dent of the diameter of the wire used for measuring the 
temperature fluctuations and agree within 4% with values 
of C'rms/<C> measured directly by the aspirating probe. 
These results strongly support Equation (23) and the 
notion that when the parameter a is large compared to 
unity temperature fluctuations are induced mainly by con­
centration fluctuations in the reacting gas mixture. 

It should be noted that Equation (23) was derived as­
suming that Equation (21) is an adequate representation 
of the concentration spectral density function (sdf). Fortu­
nately, the constants appearing in (23) are rather insensi­
tive to the exact form of the concentration sdf as is often 
the case with results based on integrals of assumed profiles. 
This insensitivity to the sdf enables application of (28) 
even when Equation (21) is no more a proper representa­
tion of the concentration sdf. On the other hand, the 
temperature fluctuation sdf is rather sensitive to the exact 
form of the concentration fluctuation sdf (especially when 
"re> T) and Equation (24) cannot be expected to be valid 
when (21) is not However, Equation (18) should be 
valid regardless of the form of the sdf of the concentration 
fluctuations, provided that the hypothesis about the cause 
of flickering is correct. 

The sdf of the temperature fluctuations was measured 
for various reactions, wires, and operating conditions. Fig­
ure 7 describes the normalized sdf W'(f)/GT.(O) for a 

0.075 -mm wire using mixtures of either ammonia or hydro­
gen in arinjected at point C. According to Equation (24)
this normalized sdf should satisfy the relation 

GT C1+07Gr.(o---)=C 

GTp (0) [1+ (214.)2) l] (2nfrc) 2] 

For the experiments shown in Figure 7, - was determined 
to be 0.07 s, while r, was measured with the aspirating
probe (H2-N2 mixture) and found to be 0.03 s. The ex­
perimental results agree well with the theoretical curve 
which uses the value of rTofor the H2-N2 mixture. This 
agreement is not a critical test of the validity of (27) 
since r> and the theoretical. curve is rather insensitive,c 

to ro in the range of frequencies for which the measure­
ments were made. A critical test of the theory requires ex­
periments with very thin wires for which T < 7,. Experi­
ments with a 0.025-am diameter wire (r = 0.011 s) have 
been inconclusive in this respect due to vibrations of the 

which introduced large errors in the measurements. 
Thus, the sdf of the temperature fluctuations, in contrast 
to the root mean square, was not useful in determining the 
major cause for flickering. Additional information concern­
ing the sdf is presented by Zuniga (1974). 

Instantaneous velocity measurements by a hot wire in­
dicated that the pdf of the velocity fluctuations at the 
catalytic wire station was skewed with the mode smaller 
than the average. Changes of the angular position of the 
feed distributor did not affect the magnitude of the veloc­
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ity fluctuations or the pdf. However, rotation of the dis-
tributor affected both the magnitude and the shape of the 
pdf of the temperature fluctuation on the wire. Figure 8 
describes the temperature fluctuation pdf on a 0.075-mm 
wire during the oxidation of a mixture of 2.5% vol. hydro-
gen in air. The pdf's are skewed, and the position of the 
mode relative to the average depends on the angular posi-
tion of the distributor. Measurements of the concentration 
fluctuation pdf of 2.5% vol. hydrogen in nitrogen showed 
that they were also skewed and very similar to those of 
the temperature fluctuation pdf. The similarity between 
the temperature and concentration fluctuation pdf's, and 
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Fig. 9. The influence of the angular position of the distributor and 
the size of the holes in the distributor on the magnitude of: (a) 
<Tc - To> and (b) Trms<Tc - Tg> during the oxidation of 

ammonia on a0.075-mm wire. 

the lack of any correlation between the velocity and tem­
perature fluctuations further supports the argument that 

fluctuations are induced mainly by the con­
centration fluctuations and not by velocity fluctuations. 

Temperature fluctuations were measured during the oxi­
dation of ammonia in air on a 0.075-mm diameter wire 
using two geometrically similar distributors, one of which 
(#2) had 0.51-mm diameter injection holes as compared 
with the 0.34-mm diameter holes for the standard dis­
tributor. The results (Figure 9) indicate that both T'rms 
and <T, - T> depend on-the size of the holes as well as 
on the angular position of the distributor. This result is 
of course similar to that obtained with hydrogen. A com­
parison of Figures 9 and 5 indicates that the maxima in 

T'rms were attained at different angular positions of the 
standard distributor during the oxidation of either hydro­
gen or ammonia. This must be due to the difference in the 
effect of P'on the magnitude of the concentration fluctua­
tions for different reactants. Unfortunately, C'rms/<C> 
for ammonia cannot be measured using the aspirating
probe due to the small difference in the thermal conduc­
tivities of air and ammonia. When the distributor at point 

was used to obtain the 2.5% vol. mixture of H2 the 
injection velocity of the jets was 1.39 X 104 cm/s. How­
ever, when a 5% vol. mixture of NH, was prepared the 

velocities were 2.84 X 104 and 1.29 X 104 cm/s 
feed distributors 1 and 2, respectively. This differ­

ence in the injection velocities and the density of H2 and 
NH3 is responsible for the variation in the effect of 4on C'n=,/<>. 

There is no question,'however, that concentration flue­
tuations are the main factor affecting the magnitude of 
temperature fluctuations in both the hydrogen and am­
monia oxidation reactions. This conclusion was further 

confirmed by passing a premixed mixture (5.0% vol.) of 
ammonia in air over the catalytic wire at NRe = 3200 and 
To = 240C. The measured T' 3 (0.76°C) was very close 
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to the root mean square noise level of the detector 
(0.70'C). Thus, we conclude from our experiments that 
large temperature fluctuations ale caused mainly by con-
centration fluctuations of the reactants when the parame-
ter a is large. 

CAUSES AND MAGNITUDE OF FLICKERING 

IN GAUZE CONVERTORS 


A theoretical model of gauze convertors will be used 
here to predict the main causes of flickering and to 
estimate its magnitude. 'he model assumes that: (1) the 
reaction rate is inmited by mass transfer; (2) the param-
eter a is large; (3) plug flow of the gas through each 
gauze; (4) the length ot the effective low path through 

a single gauze is I and the surface area of a single gauze 
is art per unit cross section of the reactor; (5) the local 
temperature of each gauze layer is uniform .in the flow 
direction and the rate of heat transfer by conduction and 
radiation between successive gauze layers is negligible;
and (6) the effect of axial concentration dispersion can 
be ignored. 

The concentration of the gaseous reactant flowing 
through gauze i is desbribed by the equation 

dC 
u- = - cc,j a (28) 

Defining C, as the concentration of the gas stream leaving 

gauze i we obtain from (28) 

Ci I kc,jial \ a 

= exp K- = exp(- NtI) =--­
(29) 

The mass transfer coefficient for a long cylinder can be 
described 	by the conelation (Treybal, 1968) 

NSh = 0.48 + 0.53 Ns,0OsiNR,.w 0 5 (30) 

For a typical high pressure ammonia oxidation con­
veator the gauze wire Reynolds number is about 35 and 
the Stanton number is ess.entially a constant changing by
less than 15% as the gas average film temperature in-
eteases from 5000 to 9000C. Thus, it will be assumed that61 is the same for all the 'gauze layers, yielding 

Ci 
6i-- (1) 

At steady state the heat loss from any gauze is equal to 
the heat generated by the ieaction. Hence, the tempera-
tue of each gauze satisfies 
T - T j. 

( AH)k Cii_ ( AH)Co C,10, 
NLO- 2 1 3  - (32)

h pthe 

where we have used the heat and mass transfer analogy 

PI9kIc. NLe_2/8 (33) 
h 

and the subscript i, lin denotes the logarithmic averageacross gauze i. An enthalpy balance yields 
-

( AH) (C. - C,.n) 

PJCPi 
(- AH) C, 

I - SI.} (34) 
pycpy C. ;The 

Addition of (84) and (82) yields 
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T,- T o 

-(-AH)C v + (1- ) ­
mcP 

(35) 

If r << i- and i-, this relation can be used to predict the 
temperature fluctuation T'. Subshtuton of 

C. = <C0 > + C, (36) 

= <e> + e' (37) 

into (35) yields after discarding second-order terms 
Z,' C.' 

-C> 
+K-(<,> - 190 +- <> (88) 

where 
- 21 3 - -) <C> (I - NLe ) 

K = 
PjcPf (<T> - To.) 

- 1) <>>-' - i<4> <e>.-i - <e> 1 
l - 'ln<C>)a 

(39) 
The fluctuations in eare induced by the turbulent velocity 

fluctuations and thus cause fluctuations in the mass transfercoefficient. 	Substitution of (9) into (29) yields 

' 1 
<e> <4>€,-NW1<U> (40) 

Substitution of (40) into (38), squaring, and time averag­
ing yields 

<T 2> <Co,2>
 
(<T> -_,[.)2 <Co>
 

+ 21( <C> (I - 6 

<C0 > 

+ K 2 <(1 - <C>(-N)u'<>)2> (41)
Computation of K1 for typical industrial conditions indicate 
that its value is usualiy much smaller than unty. This in­
diates tate i causflierin in istialdiates that the main cause of flickering in industrial 
gauzes is the concentration fluctuations and not the turbu­
lent velocity fluctuations. Numerical computations of the 
amplitude of tempeiature fluctuations caused either byvelocity fluctuations or concentration fluctuations for a 
typical ammonia oxidation convertor for which x. = 0.11, 
NU0 = 0.895, <e> = 0.5, 10 = 250, and N = 0.45 pre­
sented in Table 3 demonstrate this point. 

When the time constant of a single wire is about equal 
to or larger than rc or rE the amplitude of the flickering
will be attenuated and (41) will overestimate kT,'2>. In
this case a numerical simulation of the hansient behavior ofvarious gauze layeis is required for predicting T. 
Compaiison of (23) and (41) indicates that Tt

rms will be 
attenuated by a factor of 1/% TV7,. For a typical high 
pressure ammonia convertor d. = 0.075 mm and the wire 
Reynolds number is 85, yielding r = 0.03 s. The reactor 
diameter is about 1 m and the average gas velocity 2 m/s.
Since Af -	 D/3 then iE = Ay<u> r0c is approximately0.166 s and r/r = 0.18. Thus, the attenuation of T 'ms 
due to the heat capacity of the wire should be very small
in industrial convertors and (41) should yield a good pre­
diction of T'.. s . It should be noted that in some of our 
single wile 	experiments r > "r and the attenuation was not
negligible. 

above model predicts that flickering is a localized
phenomenon induced mainly by concentration fluctuations. 
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= 0.11, NLe = 0.895,TABLE 3. COMPUTATIONS OF Ki AND T'r=s FOR AN AMMONIA CoNvERTER OB Wimca <x0> 
< > = 0.5, T0 , = 

Layer 

number 


i <Tgf> [C*] <Ti> [C3 

1 253 887 
2 547 865 
3 695 853 
4 768 848 
5 805 845 

10 841 842 

We will now examine briefly the influence of conduction 
on flickering. The characteristic time for conduction along 
a single wire is 

rk = pc, st/k (42) 

while that for heat losses by forced convection from a wire 
is = pcyd2 

= (48) 
4 4NNjkq4h 


These two time scales are equal when 

ORIGINAL PAGE IS - k. 10. 
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Equation (44) predicts that under typical operating condi-
tions the two time scales are equal when the wire length 
is about ten diameters. Hence, the influence of conduction 
is rather localized and is not expected to attenuate to a 

large extent local temperature fluctuations induced by in-

stantaneous concentration fluctuations. 
The above results indicate that flickering is induced pri-

marily by concentration fluctuations. Hence, it is important 
to estimate the magnitude of concentration fluctuations in 
industrial convertors. The only theoretical correlations de-
veloped so far are restricted to a homogeneous isotropic 

turbulent flow-field. Cousin (1957) suggested that for an 
idealized mixer 

<C2(t)>_ exp ( 6vt\ (45) 

<C2(0)> X 

According to Hinzo (1958, p. 186) 

L 4 Af _ y u'sX 

L._.= - = i5 u (46) 


where y is a constant of about one. Substitution of = 
XI<u> and (43) into (44) yields 

<C 2(t)> 
= exp(- 0.4y m) (47) 

where <(2/2(0)> 
8 X t 

(48)<iu> 


carried out a numerical com-
Beck and Miller (1959) 

putation of the spectral transfer of concentration fluctua-
tions in the wave number space. Their graphical results 
indicate that after a short distance downstream from the 
mixer the concentration fluctuations decay exponentially 
as a function of m. Their design charts show a significant 
improvement in mixing when the number of inlet nozzles 
is increased. However, this result should be applied with 
care since it is based on the yet experimentally unproven 
conjecture that the size of the concentration eddies in the 
inlet is inversely proportional to the square root of the 
number of injection nozzles. Moreover, the calculations 
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25% and N = 0.45 

T'ms 
t
u' =s 0.1 <u> Ur = 0 

102Ki C's = 0 C'r = 0.05 <C> 

2.3 0.7 43.1 
3.9 1.2 42.0 
3.3 1.0 41.4 
2.4 0.7 41.2 
1.5 0.5 41.0 
0.1 0.03 40.9 

are restricted to the special cases inwhich the injection 
velocity is equal to final mixed stream velocity. 

In a typical ammonia convertor the distance between 
the mixer and the gauze X ,' 20D, U'ms/<U> = 0.03, 
and Aj O.4D so that m _ 1.13. For this case (47) pre­
dicts that <C'2(t) >/<C'2(0)>= 0.64, while the graphs 
of Beek and Miller predict 0.57 and 0.014 for the cases of 

one and 64 injection nozzles, respectively. Although the 
above predictions are a rough approximation, they indicate 

-that under commercial conditions the distance between the 
mixer and the gauze is not sufficient to eliminate concen­

tration fluctuations. 
One of the main difficulties in estimating C' 5 (i) is the 

lack of a reliable estimation technique for C'n,(O) in in­
dustrial mixers. Keeler et al. (1965) suggested for an ideal 
one-dimensional system the approximation 

C'm,(0)
 
<C()> 4 2 (49)
 

the main stream and tracer volumetric 
flow rates, respectively. Toor (1969) obtained the 
where G and I are 

same 
result for an idealized' mixer in pipe flow. This prediction 
is at best a crude estimate for an industrial gas mixer for 
which gradients in the time averaged concentrations usu­

ally exist next to the injection nozzles. For these mixers, 
the initial root mean square concentration has to be de­
termined experimentally. Fortunately, in most practical 
cases the time averaged concentration gradients decay 
faster than the concentration fluctuations, and the graphs 
of Beck and Miller (1959) should be a good approximation 
for the decay of <C'2(t)> at the center of the pipe at 

points where no gradients in the time averaged concentra­
tion exist. The decay rate next to the wall is expected to 
exceed that predicted by their graphs. 

The prediction that C',ms decays exponentially as a func­
ton of m is most useful 'for scale-up purposes and for 
equipment modifications. Thus, measurements of C'r,s at 
several points downstream from the mixer should enable 
one to predict the effect of changing the length of the 

inlet pipe on C'.. at the gauze. This should enable design 

or modification of equipment to reduce concentration fluc­

tuations and the accompanying flickering. 

CONCLUDING REMARKS 

The present study was concerned with the causes and 
magnitude of flickering of single wires and gauze con­
vertors on which a single catalytic reaction occurs. Flick­
ering has a deleterious influence on gauze convertors since 
it increases the precious metal loss. Dorawla and Douglas 
(1971) have shown that in complex reaction networks the 
yield of a desired intermediate can be increased by oscil­
latory operation. Wandrey and Renken (1973) have re­
cently shown that periodic variation of the concentration 
of the feed to a gauze converter (frequency 0.5-2 per 
Tin.) has a significant influence on the selectivity (CO/ 
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CO ratio) during the oxidation of cyclohexane on a cata-
lytic gauze. Theiefore, it is most likely that concentration 
fluctuations which induce flickering affect the yield in 
industrial gauze convertors used ior the production of 
HCN. 

Our analysis indicates that the parameter a is usually 
large in industrial reactois and that flickering of the magni-
tude observed in industrial ammonia convertors must be 
caused by imperfect mixing of the reactants. It is desirable 
to minimize the amplitude of the flickering in order to re-
duce the precious metal loss, and our analysis indicates that 
this can be accomplished by impioving the mixing of the 
reactants. This prediction merits a test under commeicial 
conditions and is supported by the observation of Heyvood 
(1973) that when a catchment gauze was placed below 
the platinum gauze there was evidence for improved gas 
mixing and a reduction in the rate of deterioration of the 
gauze. 

At the present time, mixing theory is restrictedto certain 
idealized flow fields and mixing devices and is not suitable 

for predicting the performance of various industrial mixing 
devices. This study points out the need of improving our 
knowledge and understanding of mixing under industrial 
conditions. One of the difficulties in investigating mixing 
is that most probes for concentration fluctuations can be 

with a-very limited number of substancesoperated only 

which are not normally encountered in industrial reactors. 

The fact that flickering of a single wire is dilectly related 


to the concentration ffuctuations has led to the develop-

ment of a new probe which can measure the intensity of 

concentration fluctuations of a number of gaseous mixtures 

of practical interest. This probe should be useful in many 

applications and will be described elsewhere. 
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NOTATION 

a = capacity term defined by Equation (11) 
a, = gauze surface area per unit volume, cm - 1 

A = wire cross-sectional area, r 2 

AS = occupied catalyst sites, g mole cM
- 2 

- 3 
m
C = reactant concentration in fluid, g mole 

v, = wire heat capacity, cal g-1 *K-' 
cPJ = fluid heat capacity, cal g' OK­

d = wire diameter, cm 
D = diameter, cm 
DAB = binary diffusion coefficient, cm2 s- 1 

-E. = metal loss activation energy, cal g mole ' 
f = frequency, Hz 
f1l, = half-power frequency, Hz 
G = main stream volumefric flow rate, crn3 s - 1 

GC(f) = one-sided power spectral density of random proc-
ess y 

- 2 - 1
h = beat transfer coefficient, cal s-1 cm °K 

-
AH = heat of reaction, cal g mole ' 
S = catalytic gauze layer number, integer 

I = tracer injection volumetric flow rate, cra3 s -t 

k, = mass transfer and adsorption rate constant, cm3 g 
-mole - , s- 1 

-k = mass transfer coe.fcient, cm s 1 
- 1 - 1k = thermal conductivity, cal s cm °K-' 


Ki = constant defined by Equation (39) 

1 = flow path length through a single gauze layer, cm 


-L 

L = characteristic scale of turbulence, cm(17)
 

L = total catalytic sites, g molemoe cmcm(1973). 
LM = tiscaleof mtu ne,gcharerig prec
M = weight of precious metal gauze, g 
m = parameter defined by Equation (48) 

! = molecular weight of fluid, g g mole-' 
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n = empirical velocity exponent in Equation (10) 
N = constant defined by Equation (10) 
N,, = Lewis number, kj/pl DAB CPD 
Nz, = Nusselt number, hD/k 1 
Np, = Prandtl number, cp, yflk 
N,, = Reynolds number, D u/v1 
Nsc = Schmidt number, v 1/DAB 
Ns, = Sherwood number, kc0 D/DAB 

Nst = Stanton number, k/u 
F = wire perimeter, cm 
r = suiface reaction rate, g mole cm- 2 s-1 
r(T) = relative metal loss, Equation (1) 

-R = gas constant, cal g mole ' K-1 
S = unoccupied catalytic sites, g mole cm

- 2 

s = distance along wire axis, cm 
t = time, s 
T 
u = 

temperature, 
fluid velocity, 

*K 
cms -

X = distance from mixer, cm 
xc = mole fi action reactant in fluid 

z = axial distance in catalytic gauze, cm 
Greek Letters 

¢ = constant in Equation (8) 
, = constant in Equation (8) 
v = constant used in Equation (47) 
X = concentration microscale, cm 
Ac = concentration macroscale, cm 
Aj = velocity longitudinal macroscale, cm 

16 ­
$ " viscosity, g cm - i s 1kin m tc 2v s o i ye = kinematic viscosity 

/ , ewirdefi yE (2 -

P = wire g cm_-33 
p! = fluid density,density, g cn 

T = wire time constant, Equation (19), s 
7 = Eulerian time scale of concentration fluctuation, s 
rE = Eulerian time scale of velocity fluctuations, s 
r-k = characteristic time for conduction along wire axis, 

s 
r, = wire time constant defined by Equation (26) 

Subscripts 
ad = adiabatic 
f = fluid 

= fli 
g = gas 
0 = inlet conditionto = wire 

Superscripts 
= fluctuating conponent 
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Measurements of Concentration Fluctuations in Gaseous Mixtures 

William M.Edwards, Jorge E.Zunilga-Chaves, Frank L. Worley, Jr., and Dan Loss* 

Department ofChemlcalEngineering, UniversityofHouston, Houston, Texas 77004 

A new experimental technique is presented for measuring concentration fluctuations ingaseous mixtures using 
a catalytic wire on which a mass-transfer-limfted exothermic reaction occurs. This method utilizes a catalytic 
sensor Inconjunction with a constant-temperature anemometer unit. Itshould be a useful tool for studies to im­

prove the design of gas mixing equipment and of chemical reactors in which the yield and/or conversion depend 
on the degree of mixing. 

Information about instantaneous concentration fluctua-
tions in gaseous mixtures is very useful for the design of in-
dustrial gas mixing equipment and of reactors in which the 
yield and/or conversion are sensitive to the mixing of the 
reactants. The techniques now available for measuring these 
fluctuations (Corrsin, 1949; Blackshear and Fingerson, 1962; 
McQuaid and Wright, 1973) are either suitable only for mix-
tures in which the heat transfer properties (e.g., k, Cp) of the 
two gases are significantly different, or require the simulta­

neous use of several sensors. Recently, optical techniques were 
developed which use interferometer or crossed Schlieren op-
tical systems to detect selective index gradients for mixtures 
of gases with large density differences (Wilson and Prosser, 
1971). These can be related to density fluctuations and hence 
concentration fluctuations for isothermal gas flow. 

We desbribe here a novel technique for measuring root-
mean-square concentration fluctuations. The method utilizes 
acatalyticsensor inconjunctionwithaconstanttemperature 
anemometer unit. It is applicable to gaseous mixtures con-

taining species which can react rapidly and exothermally on 
a platinum wire, such as hydrocarbons and oxygen. A major 
advantageof this technique is that it can be applied to mix-

tures of gases with similar physical properties. 

Theoretical Background 

Consider a catalytic wire whose capacityparameter, defined 
as the ratio of the characteristic time for changes in wire 
temperature to the characteristic time for surface concen-
tration changes due to changes in the rate of mass transfer, 
is large. When a mass-tranMr-limited exothermic reaction 
occurs on such a wire its temperature may be described by the 
equation (Edwards et al., 1974). ­

022'LApCp aT =kwA- -2+ hP(Tg-T)+P(-AH)kcC (1) 
Pat 

For wires with negligible end effects, the first term in the 
right-hand side of (1)can be discarded (this term is normally 
ignored when dealing with hot wires with length-to-diameter 
ratios larger than 200 (Hinze, 1959)). If in addition the wire 
is heated by means of an electric current, eq 1 takes the 
form 

dT 
ApCpT= hP(Tg - T) + P(-AH)k0 C + JI 2R (2) 

The temperature of the wire can be maintained at a con­
stant level by using a constant-temperature anemometer to 
control the heating current. Therefore, the time derivative in 
(2) vanishes. Moreover, the transport coefficients, the limiting 
reactant concentration, and the electric current can be ex­
pressed as the sum of a stationary time average and a fluctu­
ating component thus enabling the reduction of (2) into 

h'
 
(h)(T- +- ") = (-AH)(kc)(C)


(h) 

/ kg C' 2/'
+J(I) 1+ 1 IF (3)

/+h(keu(C) ) t have 

In this equation all second-order terms have been neglected 
and ( ) denotes a stationary time average. 

Time averaging of (3) yields 

(h)(T- Tg) = (-AH) (k0 ) (C) +J(I) 2R/P (4) 

When no electrical heating is used 
T* - Tg -A(-AH) (kc)-(C)I(h) (5) 

Tand T* - g is defined as the adiabatic temperature rise. 
Subtracting (4) from (3) and division by (5) yields 

C' 2'h' Ih k0-+ il )-- (6)
(7h) ;c)) (6)Yxm)+-

f.3i3 . - ._.n %' 19 Mn A 147A 21 



where 
m = T -T =R 

T - T* R - R* 
*- TR*-R, -R (7) 

and 
J(I)2R (8)

P(h)(T = 1 (8) 

For flow normal to a cylindrical wire the heat and mass 
transfer coefficients may be approximated by (Treybal, 1968; 
p 63) 

3
NNu = C1 + C2NrenNprO., (9) 

-13
Nsh = C1 + C2Np~ n Nsc0 (10) 

where C1,Cz and n are experimentally determined constants. 
When the transport coefficients and the velocities in (9) and(10) are expressed as the sum of time-averaged and fluctuating
quantities,and the result issubstivted into (6)the following 
equation isobtained 

21' 2E' U' C' 
(- =E)cfn (-) - m - (11) 

where 

C2 (Npe)fNprOSr (2 

(NNu) (12) 

= ) L mU) (13) 

Squaring and time averaging (11) yields 

2E' 2 ( U= 

- 2amnf (UCW) + M C' 2 (14) 
(U)(C )AR,(

It follows from eq 14 that by operating the constant-tem­
perature anemometer at three different wire temperatures 
(values of m) the resulting simultaneous equations can in 
principle be solved to determine U'.J(U), (U'C')/ 
((U) (C)) and C'r,,( C), where the subscript rms (root-
mean-square) refers to the square root of the time averaged 
square values that appear in eq 14. 

Equation 14 can be rewritten as 
2E' _C' 
2E(E)-

+B
I + B 

-
2BRuc 

_in 
F (15) 

m(E) (C) (C) 

where 

B afnU'r.,(U) (16) 
mC' j(C) 

= (U'C') 
U' C' (17) 

The correlation coefficient Ruc is bounded between -1 and 
+1. Consequently, for B < 1 

1 - B :5 F -S1 + B (18) 

This suggests that ifB can be made sufficiently small, the 

parameter F in eq 15 may be taken as unity and C'rJ(C)can 
then be determined from a single measurementof E'rJ/(Ey).
This condition can be met if the system is operated with a 
large value of m. 

Note that the catalytic probe technique described above 
should not be used for mixtures in which the average reactant 
concentration exceeds the lower explosive limit (LEL). On the 
other hand, the limiting reactant concentration should not be 
lower than the extinction concentration below which the re-
action cannot be sustained on the sensor without electric 
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Table L Extinction Concentrations and Lower Explosive 
Limits for Various Reactants in Air 

Extinction concn, L.E.C., 
Reactant mol % mol 6 
Ammonia 
Methane 

3.9 
1.5 

16 
5 

Butane 0.8 1.9 
Hydrogen 1.3 4 
Values from Steere (1967). 

heating. Typical values ofthese bounds for several mixtures 
of reactants in air are reported in Table 1. 

Experimental System and Procedure 
A catalytic wire probesimila to that described by Edwards 
atal94 Fire 3)owasiused measre pon arcntal. (1974, Figure 3) was used toto measure the point concen­

tration fluctuations. The sensor consisted of a 6mm long by
0.025 mm diameter platinum wire (ld = 240) supported by 
two 3.2-mm diameter brass rods. For the aspect ratio used it 
was assumed that the conduction end effects weresmall, in 
accordance with the normally accepted practice in hot wire 
anemometry.Constant wire temperatures were attained by connecting
the probe to a Thermo Systems Model 1010A constant-tem­
perature anemometer. This unit provided a convenient 

method for maintaining desired values of the overheat pa­
rameter, defined as 

m'= (R* - Rg)/(R - R*) (7) 

or 

m = (R - AR -Rg)lAR (19) 

where 

' overheat resistance = (R - R-) (20) 

The instantaneous anemometer bridge voltage-was condi­
tioned by filtering out all frequencies abov'e a predetermined 
cutoff frequency off with aKrohn-Hite Model 3750 low-pass 
filter and then recorded on magnetic tape using a Hewlett-
Packard Model 3960-FM recorder. The signal was subse­
quently processed by digitation at a sampling rate of 2f0 to 
obtain (E) and E.. A calibration of (E)vs. AB was utilized 

interpreting the tape recorder signals.
While the above procedure was found tdbe the most accu­

rate, reasonably good Values could also be obtained by direct 

measurements without tape recording. In this case the in­stantaneous bridge voltage was passed through a dc offset unit(two-operational amplifiers in series) to remove the dc com­
ponent of the original signal. The fluctuating quantity was 

then passed through a band-pass filter and finally connected 
to a Thermo Systems Inc. Model 1060 RMS voltmeter. This.procedure enabled a simultaneous measurement of both (E)
and E'r. and these values agreed to within 6% of those de­
termined by processing of the tape recorded data. 

To determine the maximum error in the concentration 
fluctuations prediction of eq 15 (single point procedure), it is 
necessary to estimate values oftheparameter.B via eq 16. To 
do this, an independent measurement of the turbulence in­
tensity, U'rJ(U),was made using theconstant-temperature 
anemometer unit and a Thermo Systems hot film sensor. In 
practice this measurement can be nadA with the catalytic wire 
by operating at a sensor temperature below the ignition 
temperature or with a nonreactive mixture. 

Initial experiments indicated that the electrical resistance 
ofthe platinum sensor could increaseaup to 10%after several. 
hours of operation-due to a progressive roughening of its 
surface. To.eliminate this effect, the wire was first pretreated 
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Figure 1.Comparison of C'RMs/(C) measurements by the catalytic 
probe with those made by the aspiratingprobe. (Tg = 24 0C, channel 
Reynolds number = 4000). 

(activated) for a period of 8-10 bin a stream of3%v hydrogen 
in air. During this period the resistance reached an asymptotic 
value and did not change for several weeks. 

Experimental Results 

In order to test the validity of the technique and its accu-
madewere 

racy, measurements of concentration fluctuations were made 
in a mixture of hydrogen and air. These results were compared 
with those for the nonreactive hydrogen in nitrogen mixture. 
The latter measurements were carried out with a Thermo 
Systems Model 1441 aspirating probe in conjunction with a 
Thermo Systems Model 1010A constant-temperature ane-
mometer. The aspirating probe has been described by 
Blackshear and Fingerson (1962) and a discussion of its ap-
plicability was presented by Edwards (1978). 

The measurements were carried out in the rectangular (25 

X 152 mm) flow channel described by Edwards et al. (1974). 
A wide range ofhydrogen concentration intensities,.C'rJ(C), 
were obtainable by using eight different angles of hydrogen 
injection relative to the main (air or nitrogen) stream, as 
shown by Edwards et al. (1974). The hydrogen was injected 
into the main stream (NRe = 4000, TS = 24 C ) at a rate cor-
responding to a final average mixture concentration of 2.5%v 
for all experiments. After measuring the hydrogen in nitrogen 

concentration fluctuations, a stream of air was substituted for 
the identical flow conditions (N4. = 4000, Tg = 24 C), and 
the aspirating probe was replaced by the catalytic wire probe. 
The chemical reaction was then initiated on the catalytic 
sensor and a series ofmeasurements were made at each of the 
injector angles used above. In all the experiments the signal 
was conditioned by filtering out all frequencies above 50 Hz. 
Values of the hydrogen concentration fluctuation intensity 
were calculated using eq 15 with F = 1. The results of these 
two sets of measurements are summarized in Figure 1, and 

they indicate that there was good agreement between the two 
independent measuring techniques.

Independent measuren thuee 
Independent measurements of the turbulence intensity at 

the catalytic wire station with no hydrogen injection showed 
that U'rm/(U) = 0.11, and thatvalues of f = 0.31 and n = 0.5 

could be employed for estimating the error term B, eq 16. The 
factor a was calculated from eq 13 using Ci = 0.43 and C 2 ­
0.532 (Treybal, 1968), in conjunction with the experimentally 

chosen values of m. When the values of B were calculated for 
each experiment it was found that the largest value ofB was 
0.12, and the average of B for all experiments was 0.07. Thus 
the average error in CrJ(C)due to the assumption that F 
= 1, was of the order of 7%. 

experiments indicate that the proposed technique is 
suitable for a rapid evaluation of mixing characteristics of 
gaseous streams. Its applicability to a variety of-systems, such 
as mixtures ofhydrogen, ammonia, and hydrocarbon species 
in air, should make ituseful for evaluation ofindustrial mixers 
and in scale-up of reactors in which fast chemical reactions 
occur. 

Nomenclature 
= wire cross-sectional area, cm2 

= parameter defined by eq 16 
C = reactant concentration in fluid, g-mol/cm3 

Cp = heat capacity, cal/g K 
d = wire diameter, cm 
DAB = binary diffusion coefficient, cm2/s 
E = bridge voltage, V 
f = parameter defined by eq 12 
p = parameter defined by eq 15 

2 Kh = heat transfer coefficient, cal/s em
AH = heat of reaction, cal/g-mol 
I = wire current, A 
J = conversion factor, cal/sW 
k = thermal conductivity, cal/s cm K 
k = mass transfer coefficient, cm/s 
m = parameter defined by eq 7 
n = empirical velocity exponent in eq 9 
NNu = Nusselt number, hd/kf 

pr= Prandtl number, C pfv/kf 
Nre = Reynolds number, l/he 
Ns, = Schmidt number, pf/DAn 
NSh = Sherwood number, kcd/DAB 
P = wire perimeter, cm 
R = wire resistance, ohms 
Ruc = correlation coefficient (eq 17) 
t = time, s ORIGINAL PAGE IS 
T = temperature, K OIPOOR PAG E 
U gas velocity, cm/s OF POOR QTJAI 4Y 
x = distance along the wire, cm 

Greek Letters 
a = parameter defined by eq 13 
U = viscosity, g/cm a 
v = kinematic viscosity, cm 2/s 
p = wire density, g/cm3 
Subscripts 
f = 
g - gas phase 

rms = root-mean-square 
w = wire 

Superscripts 
' = fluctuating component 
* = with reaction only 

Literature Cited 
Blackshear. P.L., Fingerson, L, ARS J., 1709 (1962).
Cormsn, S., NACA Technical Note 1864 (1949).
Edwards, W. M, Zunlga-Chaves, J. E., Worley, F.L,LUsB, D., AIChEJ, 20,571

(1974).
Edwards, W. M, Ph D.Thesis, University of Houston, 1973. 
Hinze, J. 0., "Turbulence", Mc -aw-Hill, New York, N.Y., 1969. 
McOwi. J, Wright, W. Int.J. Heat Mass Transfer 16, 819 (1973). 
Steere, N.V., Ed., "andbook ofLaboratory Safely". The Chemical Ritber Co.,

Cleveland. Ohio, 1967. 
Treybal, R. E., "Mass Transfer Operations". Mcraw-HII, New York, N.Y., 

1969. 
Wilson. L. N. Prosser. D.W., Proceedings of Symposium on Turbulence Mea­

stremfnts InLquiuks, 1971. 

Received forreview October 10, 1975 
Accepted May 24,1976 

The financial support of the National Science Foundation through 
grant GK 18226 is gratefully acknowledged. 

Ind. Eng. Chem.. Fundam.. Vol. 15. No.4, 1976 343 



Project
 

(A) Proj-ect Title: Forced Longitudinal Vibration of Prismatic
 

Slender Bars under the Influence of Quadra­

tic and Equivalent Viscous Damping
 

(B) Project Abstract:
 

Forced longitudinal vibration of a prismatic, slender
 

bar with quadratic skin damping and equivalent viscous
 

damping are analyzed. The differential equation of motion
 

with quadratic damping is solved numerically by the method
 

of characteristics. Tke bar is assumed to be free of
 

stres A t one end and subjected to sinusoidal motion at
 

the other. Frequencyresponse curves are plotted for
 

several values of the nonlinear damping coefficient, The
 

equivalent linear system is analyzed by Laplace Transforms
 

and the results are compared with those for the nonlinear
 

system, The damping is linearized by equating the energies
 

dissipated Per cycle by quadratic and viscous damping.
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(A) 	Project Title: Axisymmetric Contact Problems Involving the
 

Half-Space and the Elastic Layer with a
 

Circular Cylindrical Hole
 

(B) Project Abstract:
 

The present investigation is an analytical study of
 

axisymmetric contact problems involving the half-space and
 

the elastic layer with a transverse circular cylindrical
 

hole. A bolt-shaped, rigid punch is pressed into the elas­

tic medium under the action of an axial load. Extended
 

Hankel transforms are employed to transform the Navier dif­

ferential equations of equilibrium in cylindrical coordi­

nates with axial symmetry.
 

Two sets of dual integration equations are derived:
 

One for the half-space and one for the layer. Both are
 

shown to reduce to a singular Fredholm integral equation of
 

the first kind with symmetric kernel. The integral equation
 

for the half-space is solved numerically and results for
 

stresses and displacements are presented in graphical form.
 

(C) Publication: Ph.D. Dissertation in Mechanical Engineering
 

(D) Year: 1971
 

(E) Department: Department of Mechanical Engineering
 

(F) Student Name: Solon C. Parlas
 

(G) Faculty Advisor: Professor C. D. Michalopoulos
 

4.3*? 



Project 

(A) Project Title: The Effect of Tension on the Dynamic
 

Behavior of Eccentric Shafts Rotating
 

in Fluid Medium
 

(B) Project Abstract:
 

Using Euler-Bernoulli beam theory an investigation of
 

the dynamic behavior of an eccentric rotating shaft, subject
 

, to linearly varying or constant tension, was made. The
 

shaft has distributed mass and elasticity and is suspended
 

in A fluid, Initial lack o straightness was also included
 

in the Analysis-. The 'localmAss eccentricity is assumed to
 

be a deterministic function of the axial coordinAte,
 

or the variabletension case the response was deter­

mined for a vertical shAft simply supported at the top and
 

vertically guided at the bottom. The constant-tension case
 

was Analyzed for a shaft simply supportedat its ends. The
 

,olution was obtained using mQdal analysis, Ittis in series
 

form and is expressed in terms of characteristic functions
 

of the free vibration shaft..
 

External damping was linearized by equating the energy
 

dissipated per-revolutjon by-quadratic and equivalent vis­

cous dampling,
 

Displacements and stresses were computed along the
 

shaft at a specific speed of rotation. Also maximum stress
 



ORIGINAL PAGE IS 
OF POOR QUALITY 

and displacement were computed for speeds in the neigh­

borhood of a natural frequency. Results are given in
 

graphical form for several valued of the tension and
 

different edcentricity functions.
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(A) Project Title: The Effect of Transverse Shear Deformation
 

on the Large-Amplitude Free Vibrations of
 

Plates and Cylindrical Panels
 

(B) Project Abstract:
 

In the present investigation, the equations of non­

linear flexural vibrations of plates and cylindrical panels
 

are derived with the effects of rotatory,inertia and trans­

vetse shear deformation taken into account, The Galerkin
 

tedhniique i~s used to solve the nonlinear differential
 

equations, The one-term approximate solutions of the.
 

free vibrations of a rectangular 'plate and cylindrical
 

panel is found. With the 'assumption that the in-plane
 

inertia and rotatory inertia effects are negligible it is
 

found that the transverse 'shear deformation has greater
 

ifluence onthe free vibrations of transversely isotropic

E
 

plates with large E ratio (such as pyrolytic graphite
 

material) than on isotropic plates. The same is true for a
 

cylindrical panel.
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(A) 	Project Title: A Hybrid Computer Study of the Dynamics of
 

a Tubular Chemical Reactor
 

(B) Project Abstract:
 

The stable hybrid computer solution of a time-dependent
 

tubular chemical reactor represented by a system of parabo­

lic or elliptic-parabolic partial differential equations is
 

studied. In the classical approach to the serial hybrid
 

solution of the one-dimensional diffusion equation using
 

the continuous-space-discrete-time (CSDT) technique, there
 

exists an undesirably large amount of positive analog loop
 

feedback. This makes the classical hybrid method highly
 

unstable in the study of higher. frequency transient
 

behavior.
 

The serial decomposition method used in this study
 

replaces the linear second order differential operator by
 

two stable first order operators integrating in opposite
 

directions and yields one-pass solutions instead of the
 

usual iterative solutions. Thus, considerable computation
 

economy can be expected.
 

Application of the serial decomposition method to the
 

two-space dimension problem is also possible. The results
 

of the analysis of tubular reactor dynamics in two space
 

dimensions using the continuous-space-discrete-space-discrete­

time (CSDSDT) approach not only support the findings of the
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previous digital computer steady-state simulation of a
 

homogeneous turbulent flow gas phase SOCl 2 decomposition
 

problem, but also give insight to the transient behavior
 

which is not so easy to obtain otherwise.
 

Dynamic studies of chemical processes appears promis­

ing with the hybrid decomposition method. Special interest
 

may be in the area of process sensitivity and stability
 

analysis.
 

The difficulties and major errors involved in hybrid
 

computation of partial differential equations are also
 

discussed.
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(A) 	Project Title: Information Structures and Order Concepts
 

for Chemical Process Computations
 

(B) Project Abstract:
 

A study was made to determine how to carry out
 

chemical process computations on a digital computer in a
 

more effective manner. The concepts and algorithms devel­

oped during this study were then used in the development of
 

a more powerful and more efficient chemical process simula­

tion system.
 

More effective use of computer memory was desired,
 

along with a minimal sacrifice in computational efficiency.
 

This was achieved by storing process data on secondary stor­

age devices and retrieving this data only as needed. The
 

retrieval and storage function was done simultaneously
 

while computations were proceeding. This feature minimizes
 

the computational delays normally associated with the
 

retrieval of data from the comparatively slow secondary
 

storage devices.
 

An algorithm was developed for ordering process
 

computations in such a way to minimize the number of re­

cycle parameters. There is strong evidence to indicate
 

that computational efficiency can be significantly improved
 

by ordering process computations in this manner. A different
 

approach was used in 	devising this algorithm that that used
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by previous investigators. 
This approach is intuitively
 

similar to the signal flow diagram concept used in control
 

system theory. The algorithm which resulted from this
 

study is effective and conceptually much simpler than
 

other existing algorithms.
 

Lastly, a method was proposed to permit a user of
 

a process simulator to vary design parameters during the
 

actual execution of a simulation. This will permit a
 

good design engineer limited interaction with the sim­

ulator and will be of considerable value.
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(B) Project Abstract:
 

A hybrid computer simulation study of the Eschenroeder
 

and Martinez (General Research Corporation, March 1971)
 

photochemical smog model'generated more accurate prediction
 

of ground level pollutant concentrations. Advantage was
 

taken of the speed of computation of the analog-digital
 

system to adjust the photochemical kinetic constants in
 

real time within the diffusion-kinetic model.
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ABSTRACT-


A hybrid computer simulation study of the Eschenroeder
 

and Martinez (General Research Corporation, March 1971)
 

photochemical smog model generated more accurate prediction
 

of ground level pollutant concentrations. Advantage was
 

taken of the speed of computation of the analog-digital
 

system to adjust the photochemical kinetic constants in teal
 

time within the diffusion-kinetic model.
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Table 1
 

Photochemical Reaction Mechanism for Propylene Kinetic Rate
 
-
(ppm I min-1
Coefficients 


From Diffusion
Reaction Step 
 Model (1) Laboratory
 

+1. NO2 + (hv) + NO + 0 	 .4* .4* 
-**2. O - 2 +M) + 03o+ M) 1.32 x 10 1.32 x 10 5 

3. 	03 + NO NO2 + 02 40 
 22 - 44
 

4. 	0 + HC -* 2R0 20 	 6100 6100
 

5. 	OH + HC 
 2RO2 	 80 244
 

6. 	RO2 + NO NO2 + .5OH 1500 
 122
 

7. 	RO2 + NO2 - (PAN) 
 6 122
 
**8. OH + NO + (M) HNO2 + (M) i0 
 99
 

*'9. OH + NO2 + (M) HNO3 + 
(M) 30 
 300
 
2 3 

10. 03 + PC + R02 .0125 .0093 - .125 

/11. NO + NO2 + H20 2HNO2 .01 

+12. HNO 2 + (hv) NO + OH .001
 

* 	 min 

+ 	 Incident light effect lumped into first order rate coefficient 

** Third body concentration lumped into second order rate 
coefficient 

# 	 Water vapor concentration lumped into second order
 
rate coefficient
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C **** A HYBRID SIMULATION FOR PHOTOCHEMICAL SMOG UIFFUSIU,4 SYSIEm -'- I
C ( LOS ANGELES BASIN ) r---S

& THE LAGRANGIAN SMOG-DIFFUSION EQUATIONS WITH PIIOTOCHEMICAL Kr.ACIu:4 P5S 
(DC#/DZ)=(E(L)*C#) ' +R(CS) 
 PSUDS


C < C# ; CONCENTRATIUN FUR EACH SPECIES # Z ; HEIGHT > I.Sos 
C < 0 ; (D/DT) T ; TIME R(C#) ; REACTION TERM > tlptDS

C < E(Z) ; DIFFUSIVITY > PSUS 
C & SPECIES 
 pSIJS

C II (7) COMPONENTS 
 v.sos
 
C --- > N02 NO 0 03 HC(HYDROCARBON) R02(PERUXYACYL) Of S
 
C --- > PAN(PEROXYACYL NITRATES) <H4NU2> <I1N03> <O) Pi)S

C & REACTION EQUATIONS --- (PPM-MIN. UNIT)
K ---

C 1) NO2 + (LIGHT) --> NO + 0 K1 = 

SOt
 
.6 PSUS 

C 2) 0 + 02 + (M) -- > 03 + (M) K2 = .0026L. PSUS 
C 3) 03 + NO -- > N02 + 02 K3 = 40 '5)5S

C 4) 0 + HC -- >2Ro2 K4 = 305 PL)D

C 5) OH + HC -- >2R02 
 K5 = 4' SDS
C 6) R02 + NO -- >NO + .50H K6 = 1500 psoS

C 1 7) R02 + N02 -- > PAN 
 K7 = 6 PSUS

C ( 8) OH + NO ->HN02 K8 = 10 ISiS 
C ( 9) OH + NU2 -- > HN03 K9 = 30 $5,0 I
C (10) 03 + HC -- > R02 K1O= .0125 P5SD)S
C' (I) NO + NU2 + (H20)---> 2HN02 KII= .01 PSuS
 
C /I/ CONDITION 
 P5,0S
 
C DIFFUSIVITY EM) = 40 + 3.34Z (M**2/M[N.) .... * 1SuS 
C AT AVERAGE WIND SPEEDS U= I (METER/SEC.) PSUS
 
C * A.Q.ESCHENROEDER, G.R.C., NWV. Jit p iiUS
C & AUTOMOTIVE EMMISIONS DATA .... SYSTEMS APPLICAl IONS, ,., HA. L,. 17 

< Qh ; AUTOMOBILE EMISSIONS FACTORS FOR EACH CUW}PUPLNI i > r'SL)S
C < M(D,N,T)=D(L)(N(1)*T(I)+N(2)*T2) 
......+N(S)*I'(S)) > I'SuS
 
C EMISSIONS (J@IGRAMS/HR)=Q#(,RAMS/V-FICLE)*M(D,N,T)(VEICL* 
i'LL,/, ) P50
C < N ; VEHICLES PER DAY(GIVEN AS TRAFFIC COUNTS AT A PHlpi', vS0S

-C ASSIGNABLE FO A SEGMENT OF ROAD) > PSuS
C < D(L) ; FRACTION OF DAILY TRAFFIC COUNT ASSIGNABLE TO HOURLY (I) ) PSUS
C < T ; MILES OF ROAD SEGMENT TO WHICH COUNT (N) IS ASSIGNLI; > )SS
C < S ; NUMBER OF ROAD SEGMENTS CONTAINED IN EACH OIVIDLD sECtfON > P1SOS 
C .... Q@ IS ESTIMATED FOR SURFACE STREETS AND FREEWAYS 1'st
 

COMMON/DAC/Fl F2 ,ALPH,KHR 
 PS05
 
COMMON/SM/SCAL,MAXI, DA 
 PSuS
 
-MMON/PS/IVAL,NPOTKVAL .PSS
 
COMMON/PRN/LOCA,NAME t
PS.5 

COMMON/QQ/QHC,QN02,QNOTIME,KMINTIME,KTIME,MINTLNDVIC, iFi , PSUS
 
COMMON/FO/FONO2FONO, FO0,FO03, FOHC,FOR02,FOII 
 PSOS 4
 
REAL*8 MODCCWi2),MODRCB(4),STPCCW(2),STPRCB(C,) 
 PSDS
 
REAL*8 PTSCCW ( 2), P rSRCB (4), DACCW( 2 ), DARCb (4 ) , AICLW(2 )AIR.,) PSuS 
INTEGER*2 LOCP(28),LOCIC(3),IVAL(8),M[C/16/,KVAL(28) 
 J'SuS

INTEGER*2 LOCA(IIEOO).LOCB(1100),LOCC(150),LCD(150),ISIli,,-(II '; I'5I)S ' 
INTEGER*4 IHOLDNPOT(28) 
 ,'S1S -,
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INTEGER NO(20),VERT5),HORZ(5)NAME(7)ISCLU() PSDS 

REAL F2(7,32),F,(7,32),GC7,32bY(32) PSIlS 5.
 

C 

C 

C 

C 

C 

C 

303 


CC 

C 

C 
C 

125 


C 

C 

[C 


C 
ir 


REAL KHR Il),KMIN( 1),SCA,L(7),DA(14)VIC4),VFIN(4) 

REAL LAMF(7,32),FSTAR(7,32)" 

REAL OHC(12),QN02(12),QNO(12),ALPH(32),BETA(32),FOUH(32) 

REAL FON02(32),FOND(32),FOO(32),FO3(32),FOHC32),FORD2(3.) 

REAL A(lO,9) 

DATA HORZ/' PPM',' ', ,1 ,4 1I 

DATA VERT/' OF ','THE ',ACLOC','K $i' 'I/ 

DATA NO/'PHOT','OCHE','MICA','L SM','uG H','ITSrO';'RY A''LO,', 


1' 11:','30-E',i L MO','NTE ,'( I-','N02,1', 35-1' 
2' 7-H'vc )171 1/ 

f0, 'i','-03,', 

ID NUMBER OF EACH SPECIES 
I...N02, 2...NO, 3...0, 4...03, 5...HC, 6.. .R02, 7.. . i 

N0(9)-(12) MAY BE CHANGED FOR EACH WIND TRA.JYCFURY 


DO 303 1=1,7 
ISCL(I)=SCAL(I) 

N=TEND/DYTIME 


A(I,J) MATRIX FOR PLOT SUBROUTINE 


DIMENSION I=N2, J=9 


NI=N+I 
N2=N+2 
DO 125 I=1,9 
DO 125 J=IN2 

A(J,I)=O.O 

At 1, 1)=TIME-TEND 
A( 1,2)=VIC 1) 
At1,4)=VIC(2) 

AC1,6)=VIC(3) 
A(1,8)=VIC(4) 
ACNI,3)=VFIN1) 

A(NI ,5)=VFINC2) 

A(NI,7)=VFINt3)

A(N119)=VFIN(4) 


INITIAL" CONDITION SET FOR EACH SPECIES 


FON02Cl)=VICCI)*SCAL(1) 

FONO(i )=VICt2)*SCAL(2) 

F003 (1)=VICC3)*SCAL(4) 

FOHC(I)=VIC(4)*SCAL(5) 


STATIC ,CHECK FOR ANALOG BOARD 

ORIGIALrP AGEIS 
QUAIMVSDS 

OF POOR QssDS 

PSDS 5
 
PSDS "
 
VPSDS t'
 
vSOS ":'
 
PSDS D(
 
PSDS 51
 
PLS "
 
PSOS ,D 
lPSDs i.
 
P51)5 tS . 
;'sus
 
PS05 6
 

Ps5S 
PSDS c, 
0SI)s 6 
P5 'S
5 
PSDS 6 

l1P S (
 
PSS)5 7
1'505 T


I 
I 

7
 
Ps5)s 7 

-PbDS 7 
Si)S 7. 

PS.S 1, 
PSLS 7 
Psu0 7 
SI 

P3uS 
3sDs
 
PSljs
 

SuS ti.
 
iJ0-
P505 ,
D 
PSDS U. 
IJSDS i.-

PSD)S 9
 
PSS ;0 

Pb0S 9. 
,Us ­
vs05 ,
 
PSDS
 

PS0S 9, 
P505 9. 
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WRITE( 15,111) 	 PSIS
 
III 	FORMAT('NEED STATIC CHECK ? EOB,NO... I') psFS IB 

READ(15,106) K2 1'SbS 1 
IF(K2.EO.i) GO TO 41 lE.OS It 
CALL STCHCK 1,.US I 

C 	 PSUS I 
C ALPH(Z)f=100100/(5*E,(ZJ).) -BET (ZAt= 1E(IZ*(-DElZ)-0iL) P'I)'S ,I 
C i'nJS I 

41 WRITE(6,Ol) TIME I's)S I' 
101 FORMAT(//5X,,'r*** PHOTOCHEMICAL SMOb DIFFUSION4l*44v'//--------- ',S It 

IF5.2,@-EL MONTE TRAJECTORY OF AIR MASS) ------- //) ps|)5 It 
MX=MAX+I 5L) I: 
Z=0.0 11s)S Ii 
DZ=I.O/(MAX1-1) 	 PSUS 1. 

00 1 I1I,MAXI pSs I 
IF(Z.GE. 0.75) GO TO 50 SUS I] 
ALPH'(I)=OOOO./(1800.+20800.*Z)/5. PSuS 1] 
B3ETA()= 20800./(1800.+20800.*Z)/10. Psos i: 
GO TO 51 PSDS I] 

50 ALPH( I )=i0000./18000./5. PSOS 1]
 
BETA(I)=O. PsOS 1i
 

51 Y'(I)=100.*Z PSDS I;
 
I Z=Z+DZ e DS I 

C fj I 
C F1 IS EACH' COMPONENT CONCENTRATION OF PRFVIuUS SThP PSIS 1, 
C 	 pbUS 1 

DO 3 I=I,MAX1 P3L)S i 
FI(,I )=FONO2(I) FDSI I, 
FI (2, 1)=FONU( 10 0S 1z 
FI(3,1)=FO0(I) HfIS 1, 
FI(4,1)=F03(I) PS)S I, 
FI(5,I)=FOHC(I) PUb I 
FI(6,X)=FORO2(I) PS)S 1.
 

3 FI(7,1)=FOOH(I) PSOS 1:
 
C 	 v sbS I 
C KHR(PPM-HOUR UNIT),,KMIN(PPM-MIN. UNIT)...REACTION RAI C 'FUI't. S 1 
C 1z.US i: 

DO 300 I=I1, 	 PsuS i 
300 	KHR(I)=KMIN(1)*60. PsDS r 1 

IHOLD:0 PSOS I-
CALL XSTCTL(IHOLD, 15) -sOS 1 

C P5 JS i' 
C INITIAL CONDITION OF EACH INTEGRATER IS ZERO - FEDS 1 
C USD5 I/.

WRITE(15, 112) iSuS 14 
112 FORMAT('NEED POT SETS ? EOB,NO... I') PSOS 14 

READ(15,106) K2 Iz-PSS 

,
IF(K2.EQ.1) GO TO42 PS0s 11

6 CALL FRCBSU(PTSRCB,28,PTSCCW) P1sDS li
 

mailto:IF5.2,@-EL
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CALL POTSS(PTSCCW,28,NPOT,KVAL,PTSRCB) PSOS i,
 
CALL EXC(PTSRCB) PSDS I/
 
CALL XRQANCNPOT,28,LOCP) PSDS I..
 
00 4 1=1,28 PSDS I'
 

4 LOCP(I)=LOCP(I)/.8191 FsS I-,
 
WRITE(6,103) (NPOT{IILOCP(l),KVAL(I),[=1,28) PSuS 1"
 

103 FORMAT(//20X,'***** POTS. TEST ...ADDRESS = ACTUAL (D[SIRED} VALUtPSDS 1'
 
1 €****/// (5(3XA4,'=',1I6,' ( ',14,' ) ')/l PS)S I-'
 
DO 5 I=1,28 PSDS 1,
 
ERROR=LUCP(I)-KVAL(1) Ps5S i 
IERROR=ABS(ERROR) PsOS 1I 
IF(IERROR.LT.10) GO TO 5 ORIGINAL PAGEIS PIJS I 
WRITECL,104) NPOT(I),IERROR OF POORQUJfyI P'SDS I 

5 	 CONTINUE PSOS I'.
 
WRITE(15,105) PDS 1/.
 

104 FORMAT(X,'D(C',A4,') ...' ,5) PSus 1,
 
105 FORMAT(VWANT TO POTSET AGAIN ? TYPE IN 1 WITH 12') PSDS I('
 

READ(15,106) K1 PSOS 1.
 
106 FORMAT(12) PSDS It
 

IF(KI.EQ.1) GO TO 6 PSDS It
 
C 	 PDS I, 
C POT SETS ARE OVER PSDS it 
C PSDS 11 

WRITE(6,121) (IKMIN(I),I=l,1I) P9DS It 
121 FORMAT//2OX,...... REACTION RATE CO6FFICIENTS FOR THIS SYSTI M (h9PPSUS 1 

IM-MIN. UNIT) ..... '/I(1OX,'---> ',5('K(',I2,')=',EPI.4,5)/)///) 5 It 

C PSuS 1/
 
C PRINT OUTS OF INITIAL CONDITIONS FOR THIS SYSTEM PSuS 1I
 

PSD I
 

42 WRITE(6,102) TIMEKTIME,MIN,(NAME(I),I=1,7),(ISCL(I),I=,t), PSDS 1I 
I(YIMX-I)P(FI(K,MX-I),K=1,7),I=I,MAXI) PSUS 1? 

102 FORMAIb//23X,'***** PROFILE OF SMOG CONCENrRATION ALU'. *,F&.c, PsuS 1-
I'-EL MONTE IN LOS ANGELES BASIN ****'////'** Al ',12,':',I ,' P5S5 I, 

2*****'///IX,'HEIGHTS(M)I,IX,7(9XA4,2X),3X//12X,7(9X, ' ',i ,IA)// P5S It 
3100(2X,F6.2,4X,7(FI5.B),3X/)//) PSus I, 
WRITE(15,109) 	 PSDS it 

109 	FORMAT('PRINT OUT DA-VALUE ? YES...i') PS)S l'i
 
CALL MODE(MODCCW,MIC) I'SUS t;
 
CALL FRCBSU(MODRCB,2B,MODCCW) PsDS 11
 
CALL EXC(MODRCB) PSDS 1.'
 
READ(15,106) LPR PSDS b,
 
FI(3,1)=0.10 	 PSOS It 
F1(7,1)=O.IO PSDS I i 
Fl(6,1)=O.IO IISDS I') 

DO 31 K=1,7 PSDS I; 
Z=FI(Ki) PSDS I' 
DL=FI(K,1)/(MAX1-1) PSDS 1', 
DO 31 I=1,MAXI 'SDS Ii 
FI(K,I)=Z PSt)S 1; 

http:Fl(6,1)=O.IO
http:F1(7,1)=O.IO
http:FI(3,1)=0.10
http:IF(IERROR.LT.10
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31 	 Z=Z-DZ PSIJS I 
DO 29 K=1,7 ISJS 1
PS)S I
DO 29 I1I,MA-Xl 


PSos I29 	 G(Kl)=F1(K-,I) 

), {yUA-I), P OS 2
WRITE(6,110) KTIMEMIN,(NAME(1) I= 1,l ,(ISC I.),I=, 


1(FI(KMX-I),K=1,7),I=I,MAXl) 
 PS)OS 2 
110 FORMAT(//IOX,'/// ASSUMED INITIAL-CONDITIONS ///1 IS0S 2 

I/j'-*** Al ,1 ,':,1,' PSDt 22*****///iXIHEIGHTS(M)e,1X,7(X,AA,2X),3IX//12X,(9X,*'e,L4z,IA,// PSU;S 
2

3100[ 2XF6'2,4X,7{ F15"6), 3X/)//) IS Z
 
00 52 1=1,15 
 PSbs 2
 

52 LOCA(I+)=O.O 
 P50S 2 
CALL XWRTDA(16,0,0,5,LOCA) 
 uS-5
C P50)S
 

C BETA(Z) IS PREPARED FOR DACIO-) 
 1505 2
C PsiJS2
 
PtuS 2
DO 9 I=1,MAXI 

)'SS 2
IB=MAXI+I-I 


LOCA(30*I-28)=BETA(B)*8191./IO. 
 P50S 21

9 LOCA(30*1-13)=LOCA(30I-28) 
 I'SUS 21 

C ------ -----------------------------------------------------------------------C. PS)$50S 2 jI 
C 
C 

C-

SYSTEM, STARTS FOR EACH TIME STEP 

DO 7 M=1,N " 
"ISU 

IISDS 2 
r i5S zU, 

P505 2DS 
S 2, 

C 
C 

F2 IS ASSUMED CURRENT CONCENTRATION FOR EACH 

DO 8 K=1,7 

IIER-ATIU- dr;,zt3 "L PS0S 2,11s S z. 
,'S 12Sz 

C 

-

8 

DO 8 I=I,iMAX1 
FI(KtI)=G(KI) 
F2(K,I)=G(KI ) 

IS j 
rSOS 2.DIJS21 

S[S 2 
C POLLUTANT SOURCE AT GROUND LEVEL PSDi z 

C -SDS 2' 
27 FQHC=-QHC(Mi*SCAL(,5)/3.O5 

FUNO2=-QN02(M)*SCAL( 1)13.05 
FQNO=-QNO(M)'*SCAL(2)/3.05 
ICOUNT=1 

,SS I'u1s 2 
PDS 2 
951SS 

C I'S0S 2
C ITERATION PROCESS FOR F STARTS 1D0 .C
 

23 CALL XRSCTL(IHOLD,14) 
 iSuS "C ;tosS ' 

C INPUT DATA TO EVERY LAMDA-F AND F* INTEGRATIONS, FOR OA. 	 PSOS 2,
C vSoS 2"'CALL LOCDAC 
 PS DS 2"
 

I-F('LPR.NE.1) 
GO TO 113 	 PsOS 2] 
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CALL PRINT(MAXI) pSDU 2'. 
113 N0=30*MAX1 PSUS 2'. 

PSL0S 24 
ANALOG COMPUTER STARTS FOR INTEGRATIONS OF LAMDA-F AND 1:4- LU'AI lihN5 21, 

C PS1S 2" 
CALL DAADCCDACCW.,DARCB,LOCA,ADCCWADRCB,LDCB,14,N)-) PSIS 2', 
CALL RUNtIHOLDDARCB,ADRCB)- PSUS 2'. 

C PSI)S 2 , 
C ANALOG COMPUTER STOPS VSuS 2' 
C PSLS 2-
C CHECK OVERLOADS OF SCALED VARIABLES FROM ADRInjjLpiGE PSOS 21C 	 Pi EIS 11J S "I.Z'DO 26 I=I,ND 	 OF POOR QUALIT isDS, -

ISTOR(I)=-LOCB(1+1) PSDS 2',
 
IF(ISTORCI).LE.8191.AND.ISTORCI).GE.-8191) Gi I0 26 PSDS 2,.
 
J=I-l PSOS 21
 

302 	 IF(J.LT.15) GO-TO 301 PSUS 2i, 
J=J-15 4'SJS 2, 
GO TO 302 P3)s 2!, 

301 	STOR=ISTOR(I)'*100./8191. PSDS 2 , 
WRITE(6,500) J,STOR PSDS 2o; 
IF(ISTOR(I).LT.-8191) ISTORCI)=-8191 PSDs 2c 
IF(ISTORIl).GT. 8191) ISTORC[)=8191 PSOS , 

26 CONTINUE P&DS ­
500 FORMAT(/50X,'OVERLOAD AD(',12,')=',FIO.4,'VOLTS',4x,"ASuM(EI) 1I PSDS 2t 

IUR - 100 VOLTS') PSDS 21 
C 	 PSDS 2 ,' 
C LAMDA-F AND F* ARE CONVERTED FRUM ADC VALUE 	 PSDS 2,!


Psu)s 2DO0 45 K=1,7 	 IPS05 2/ 

IFCK.EQ.3.OR.K.EQ.6.OR.K.EQ.7) GO-TO 43 	 pSuS P.
 
DO 44 I=IMAXI PSIS 27 
182*K+30*MAXI-I) vs)S 2% 
FSTAR(KI)=ISTOR(IB+I)*10./8191. POS 2/ 

44 	 LAMF(K, I)=ISTOR(IB)*100./8I91. PSuS 2' 
GO TO 45 P5DS 2 

43 	 DO 2 I=I,MAXI Psus 21. 
IB'2* K+30*CMAX1-I) PSDS 2:) 
FSTAR(K,I)= ISTOR(IB+ )*100./8191. PSDS 2: 

2 LAMF(KX')=ISTOR(IB)*1000./8191. PSDS 2 
45 CONTINUE PSDS 2" 
114 CALL XSTCTL(IHOLD, 14) PSUS 2' 

C................ .........................................................PS S 2., 
C* 	 PSuS 2.., 
C DO LOOP 13 FOR FORWARD INTEGRATION 	 PSDS 2'1
 
C PSDS 2,J, 

00 13 K=I,7 PS )s 20 
CALL XRSCTL(IHOLD,12) 	 P0,S 2,
 
DO 14 I=I,MAXI 	 PISUS 21, 

http:IF(ISTORIl).GT
http:IF(J.LT.15
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IB= 2*K+30*(MAXI-1) i'SoS 2
 
LOCC(4*I-2)=-ISTOR,(18) 
 psus 2
 
LOCC(4*I)=-ISTOR(1) 
 PSUS 2 
LUCC(4*I-l)= ISTORi(IB+1) ISUS 2
 

14 LOCC(4*I+1)= ISTORIIB+I) 
 PSI)S 2
 
LOCC(4*MAX1)=O 


. PSuS 3'. 
LOCC (4*MAXI+')=O PSuLS 31 

C 
 P S 3'
 
C COMPUTATION OF INITIAL VALUE FOR F-INTEGRATIUN 1'DS 3.
 
C 
 I'SuS 

FIC= LOCC(3)/(LOCC(2)*10.). i'Sus A 
IF(K.EQ.1') GO TO 15 PSUS 3.
 
IF(K.EQ.2) GO TO 16 
 I'S I 
IF(K.EQ.5) GO TO 17, PSUS 3,


C IF(K.EQ.4.OR.K.EQ.6.UR.K.EQ.7) CALL XSICTL(IHOLUL2) PSUS 3
 
GO TO 18 
 il0S 3i
 

15 FIC=FIC-FQNO2*8191./(LOCC(2)*100.) 
 PS S 3]

GO TO 18 
 PSus 3
 

16 FIC=FIC-FQNO*8191.-/(LOCC(2)*100.) 
 JSUS 3j

GO TO 18 
 [.sOS 31
 

17 FIC=FI-C-FQHC*8191./(LOCC(2)*1O0.) 
 PSDS 3]

18 IF(FIC.GT. 1.0) FIC=i.'O 
 SD5 31 

115 LOCIC(2)=FIC*8191. PSUS 3]

LOCIC( 1)=514 
 Pso50 3i
 
IF('K.EQ-..3,.OR.K.'EQ.6.UR.K.EQ.7) GO TO 46 
 I'SuS 31
 
CALL XSTCTL(IHULD,13) 
 r"jL)S 3.
 
GO TO 47 
 PsDS 31
 

46 CALL XRSCTL(IRAULD,.13) 
 [SS 3.
 

C SET INITIAL CONDITION FOR F-INIEGRATION, 01)5 ?,
-C PSuS 3.
 

47 CALL XWRTDA(I,O,2,.,LOCIC). 
 i-,S 3e 
ND=4*MAXI 
 5S 3
 

C -1 
 505 3
 
C ANALOG COMPUTER STARTS FOR F-INTEGRATION P531). 3,

C 
 f'SuS 3,
 

CALL DAADCCDAC.CWDARCB,,LOCCvA'CCw,ASuRCB,LU{ijlNb} 
 YSuS 3
 
CALL RUN(IHOLDDARCB,ADRCB) 
 r'DS 3d
 

C 
 PS1)5 31.
 
C ANALOG COMPL TER STOPS 
 PSS 33
 
C .fsOs 
 3_
 

DO 19 I=I,MAXI 
 PS[S 3 1
 
19 G(K,r)= LOCD(4*I-2)/81q1. 
 PSljS 3,.I
 

13 CONT-NUE 
 PS1)S 33
C 
 PI0 3D

C FORWARD INTEGRATION OVER .P50,S 
 3>,
 

C '/,
 PSUS 3
 
C ............................e....................... *.....................i',U
OS 3 .
 

1251)S 3',
 

4i,.
 

http:XRSCTL(IRAULD,.13
http:IF('K.EQ-..3,.OR.K.'EQ.6.UR.K.EQ
http:IF(FIC.GT
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C CHECK ITERATION CRITERION PSDS 34 
C PSDb 3s, 

DO 30 1=1,15 PSLS 3/­
30 	LOCA(X+1)=O.O ORIGJNA. PAGE I, PSOS 3t, 

CALL XWRTDA(16,0,C,15,LOCA) PSDS 3z 

NCOUNT=O PSlS 14 
00 200 K=1,7 PSuS 3,. 
SUM=O.0 PSDS 3 
DMAX=0. 0 P0sS I' 
DO 20 I=I,MAXI PSDS 3'. 
IFCG(K,I).LE..0001) G{K,I)=0.O00I. PSDS 3, 
DERIV =ABS(G(K,1)-F2(K,I))/ABSCGUK,i)) 	 i$IDS 3,
 

SUM=SUM+DER I V 	 PS0S 3' 
20 	IF(DERIV.GT.DMAX) DMAX=DERIV P50 31 

AVE=SUM*100./FLOAT(MAXI) lS0S 3', 
IF(AVE.GT.10.0) NCOUNT=NCOUNT +1 PSus 3l 

200 	CONTINUE I41)S 3, 
IF(NCOUNT.EQ. 0) GO TO 21 i-SDS , 
IFCLPR.NE.1) GO TO 116 IPS0S 3. 
WRITE(6,201) ICOUNT, (NAME(i),I=b,7),(Y(MX-I),( u(K,MX-),rf=,/)HSUS 3, 
11=1 ,MAXI) PSDS 3e 

.201 FORMATC//23Xt'UNDER ITERATION (',12,'-TIME)'///1X,'IEICII:d,,fSOS 3. 
l7(9XtA4,2X)3X//100(2XF6.2,4X,7CFI5.6),3X/)//) rSOS 3, 

116 DO 22 K=1,7 PSIS 31 
DO 22 I=I,MAX1 P0SS 3, 

"22 F2(K,I)=(G(K, I)+F2(K,I) )/2. p );DS 3, 
ICOUNT=ICOUNT+1 PSDS 3/ 
GO 	TO 23 *IS S 31

otPSDS 31I 

C ITERATION PROCESS FOR F ENDS PSUS 31" 
C PSD05 31 

21 MIN=MIN+60*DTIME Psjf 31 
[F(MIN.LT.60) GO TO 24 P5scS 3/ 
KTIME=KTIME' I'SOS 3" 
MIN=MIN-60 5lk)S 3/ 

24 	00 25 K=,7 PDS 3, 
00 25 I:lMAXI ivSui)S 3, 

25 	FI(K,I)=G(K,1) PSDS 3
 
A(M+I,1)=FLOATCKTIME )+FLOATCMIN)/1OO. PSDS 3,
 
A(M+1,2)=FI(II)/SCAL'(1) PSDS 3'
 
A(M+I,4)=FI (2,1 )/SCAL (2) PSDS 3,
 
A(M+1,6)kFI(4,1)/SCAL(4) PS)S 3'
 
A(M+1,8)=F1(5,1)/SCAL(5) I'SLS 3,
 
IF(M.EQ.N.AND.LPR.EQ.O) GO TO 118 3'
 
IF(LPR.NL.2.AND.LPR.NE.1) GO TO 7 PSDS 3:
 
WRITEC6,1111) ICOUNT P50S 3,j
 

1111 FORMAT(//IOX,'AFTER ',12,'-TIME ITERATION'//) PSDS 3'
 
118 WRITEA6,107) KTIME,MIN,(NAME(I),I=1,7),(ISCL(),I=,7),(YX-i), PSDS 3uj
 

http:F(MIN.LT.60
http:IF(NCOUNT.EQ
http:IFCG(K,I).LE
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I(FI(K,MX-I),K=I,7),I=l,MAXI) Pb)S-0
 
107 FORMAT(//'*'*** AT #j12,':1,12,' *****'///X,'li-GI1TS ( 2x,2X,f(vI,, PSS 3
 

IA4,2X),3X//12X,7(9X,'*',14,1X)//100(2XF6.2,4X,7(F5.6),3X/)//) P50S 3S
 
7 CONTINUE PSD0 3
 

C CS1S 31
 
C COMPUTATION ENDS FOR EACH TIME STEP PSs 31
 
C F'DS 3
 
C - ---------------------------- :i US I 

WRITE(6, 108) I"vSb)s 
108 FORMAT( //T6O,' ..... AT EL MONTE '/) i'sos4 

CALL UIIPLOT(NO,A,N2,9,VERT,HURZ,U) I'5s 4 
WRITE(6,119) I5Li. 41 

119 FORMAT(/3OX,'CALC.--->',3X,I--> N02 5--> t'fl 5--> ji f--, i,1PSOS 
1'/30X,'OBS. -- >',3X, K.ItsS 
2 '2--> N02 4--> NO 6--> 03 H1'//l I,'WI4r ,,'$L) 4I-> 
3 END OF SIMULATION ***** ') PSL)S 41 
STOP PS S 4. 
END O'OS ­
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SUBROUTINE DAADCC CDACCWDARCBLOCAADCCW,ARL B,LOCB,NCt)'N,,;U)
REAL*8 DACCWl(),DARCB(I),ADCCW(I),ADoCB( ) 

bAAD 
IAAQ 

INTEGER*2 LUCACI),LOCB(I) tUAA -
LOCA(1)=NCON 
LOCB( I)=NCON 

DAAD 
DAAO 

, 

CALL WRIrDA(DACCW, 3,ND.,LOCA) i.AAU 
CALL FRCBSU(DARCB,30,DACCW), IAAu 
CALL READAD(ADCCWYND, 3,LOCB) uAAD 
CALL FRCBSU(ADRCB,29,ADCCW) LjAA& 
RETURN uAAO i. 
END IAA) I I 

ORIGINAL PAGE IS 
OF POOR QUALIT 



Mi'JICL 4" PS VERSION 3, LEVLL 2 OATL 72121 P 

SUBROUTINE RUN(IHOLDDAAD) RUN 
REAL*8 DA(l),AD(1) ;,N 
CALL XRSCTL(IHOLD,15) ;(uN 
CALL FRTIO(DA,IR) ,<N 
CALL FRTIU(ADIR) Rj.UN 
CALL FCHECK(AD,Rti) 
CALL XSTCTL(IHOLD,15) ,(t , 
RE TURN ,UII . 
END ,tJi ' 

it i 
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SUBROUTINE EXC(RCB) 
REAL*8 RCB(I).-
'CALL FRTIO(RCBtIR) 
CALL FCHECK(RCBIR, 1) 
RETURN 
END 

ORIGINAL PAGE IS 
OF POOR QUALIT4 

LA 
FX 
L. 
XC 

LXt. 
LtX, 

-

t 
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SUBRuUTINE LUCDAC 
COMMUN/DAC/FIF2,ALPH,KHR 
COMMON/PRN/LOCANAME 
COMMON/SM/SCAL,MAXI,DA 
INTEGER NAME(7) 
REAL F1(7,32),F2(7,32),ALPH(32}bKHR(11),SCAL(7),)A{14) 
INTEGER*2 LUCACl 0) 
M=MAX1 

LUG 
LOC 
LUG 
LOC 
LUC 
I OC 
LUG 
LUG 

/ 

DO 1 I=I,M
iB=M I_-I 

L!IU 
L.U I 

KFI=30*I-28 
KF2=30*I-I 3 
F=ALPH(IB)*8191. 
LUCA(KFI+I)=-F*(U.1+O.O5*(KHR(I)+KHR(7)4K'(o,I:)/SLAL( ,)+ 

IKIIR(9)*F2(7,IB)/SCAL(7)+KHR(11)*F2(2,11)/SCAL(?))) OA (1) 
LOCA(KFI+2)=F*(F1(1,1B)+O.5*SCAL(1)*(KII(3) Fr (4,fic)/Ss. aV) 
IKHR(6)*F2(6,IB)/SCAL(6))*F2(2,IB)/SCAL(?))L ,{() 

LOCAKFI+3)=- (O.1+0.05 (KHR(3)* F 2(2 ,I()/SG1BI.(4)Ii(' )ui( 
1/SCAL(6)+KHR(8)*F2(7,IB)/SCAL(7)+KHR(II)*F2(IiR )/S/C.L(I )))':,

LOCA(KF1+4)=F*{FI(22 1B)+O.5*SLAL(2)*KH{( 1)*F/( Ilb}/ C _{ )) 

LCL i 
LUC 
LGjc 
LO 
LUC 
LL 
LUL 

I-} L(JL 
(:) LUC 
) LJ 

I 
I' 
I. 
I 
I 
11( 

i 
I
2, 

LOCA(KFI+5)=-F*0O.U+O.OO5*(KHR(2)*U.212?+KiR(4)*F2(-,II /' .tL()LUC 
1))*DA(5) LUG 

LOCA(KFI+6)=F*FI(3, IB)*0.1+O.05*SCAL(3)*KIR()FZ|t,I /CAI (I)) LOU 

1*DA(6) LUC 

LOCA(KFI+Y)=-F*(O.1+O.05*(KHR(3)*F2(2, 1B)/SCAL(2)+KfIR,(Iu) ;-F2( ,, lI)L)C 

1/SCAL(5)))*DA(1) LUL 

LOCA(KFI+8)=F*(FI(4,iB)+O.5*SCAL(4)*KHR(2)*.232t;,F2(',i)/ LOC 
ISCAL(3))*DA(8) LUG 

LOCA(KF1+9)=-F*(0.1+0.O5*(KHR(4)*F2(3,IB)/SCAL(3) LOC 
1+KHR(5)*F2(7,1B)/SCAL(7)+KHR(1O)*F2(4,IB)/SCAL(4))}*,H (')) LOtI 
LOCA|KF1+10)=F*FI(5,1B)*DA(O) LUC110 
LOCA(KFI+11)=-F*(.01+.O05*(KHRL6)*F2(Z,IB)/SCAL(2)+KHfl',)F.{L,1i,)LUC 
1/SCAL(1)))*DA(11) LOC 
LOCA(KFI+12)=F*( .0O5*SCALC6)*(2.0*KHii(4)*Fz11,H)/SC,, ( )4I.OC 
12.O*KHR(b)*F2(7,IB)/SCAL(7)+KR(1)*F2(4,I)/SCA()) 

4 2z(,,I )/ l0c, 
2SCAL(5)+0.1*F1(6,1B))*UA(12) tUL 

LOCACKF1+13)=-F*(.O.1+.O0*(K-lR( 5)F2(b5,13)/SAL()I-KH(,-i2'. It)LUC 
I/SCAL(2)+KHR(9)*F2(IIB)/SCAL(.i)))*DA(13) LOC 
LOCA(KFltl4)=F*( .05*SCALCT)*0.5*KHR(6)*f-2(6,Ib)*h2(,tILJ) LUC 
I/SCALC6)/SCAL(2)+O.I*FI(7,IB))*DA(14) LOC 
DO 6 J=1,7 LOC 

21 
2 
?' 

zGi 
2 
2, 
21 
2 
2, 

3. 
3 
3'. 
W, 
3. 
3( 
3. 
3. 
'.t 

41 
JO=KFI+2*J-1 LUC 4, 

JE=KFI+2*J LOt 43 

6 
IF(LOCA(JO).GT.-I) LOCA(JO)=-I 
IF(LOCA(JE).LT.1) LOCA(JE)=1 
DO 2 K=I,14 

LOC 
LUC 
LUC 

4', 
45, 
4-, 

2 LOCA(KF2tK)=LOCA(KFI+K) 
CONTINUE 

LUC 
LfC 

47 
4r 

N=30*M-14 LOG 4, 
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00 4 1=1,N LOC 
IF(LUCA(I+1).LE.8191.AND.LOCA(I+l).GE.-8191) G TO LOC 51 
J=I-1 LOC 5t 

7 IF(J.LT.15) GO TO 8 LLOG Is 
J=J-15 LUC b1t 
GO TU 7 LOG 5% 

8 OVER=LOCAI+)*00./8191. LOG 
WRITE(6,100) J,OVER 
IF(LOCA(I+l).LT. -8191) LOCA(1+1)=-8191 

LOG 
LUGL 

5( 

4 
IF(LOCA(1+I).GT. 8191) LOCA(I+i)= 8191 
CONTUNUE 

L 
k UG 

5) 
,. 

100 FORMAT(/IOX,'UVERLOAD DA(',12,')='FIO.I,'VULTI',4A,flSu I II Ltu 
lOR - 100 VOLTS') LU , 

101 FORMAT(/1OX,-'OVERLOAD LOC(',13,')=LFIU.4,'VfLIb,4X,.'AJ,. II ijC 6 
1-100 VOLTS') LuC 64 
MAXA=30*M-14 LUC 0 -" 

DO 3 1=1,15 L3C uf. 
3 LOCA(MAXA+I)=O LLJL -.1 

C LLlGC 6 
C DA(21-1)...INPUT TO LANDA-F INTEGRAION FOR EACH SpLulI LLJI Lj 
C -DA(ZI) ... INPUT TO F* INTEGRATION POR EACH SPcGI LOc t., 

C. LUc 71 
RETURN LUC 7L 
END LOG (" 

ORIGINAL PAGE IS 

OF POOR QUALITY 
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SUBROUTINE PRINT(M) P I 
COMMON/PRN/LlCAtNAME tRiN 
INTEGER*2 LOCAC1100) PRN 
INTEGER NAMEC7) iRN , 
REAL PLAM(C7,32), PFST(7,32) pRpm
 
DO I=1,M P11,1 
KF=30*I-28 itN, 
GO 1 K=,7 11!0i 
PLAM(K, I)=LOCA(KF+2*K-1)/8191. 

1 PFSTCK,I)=LUGA(KF+2*K)/8191. I'R t 
WRITE(6,100) (NAME(I), I=i,7), ((PLAM(K, I),PFS I(K,!) ,K= lI, ,I =i,!,) FRP IN 

100 FORMAT(//10X,'LIST OF LOCA IN DAC' ///?((X,A4,4X)//luuj(Y(I, h-..,<. 1. 
I/)) E'1tN I . 
RETURN r'KN IZ, 
END pRN1 
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SUBROUTINE STCHCK 
 JTLH
 
C***** STATIC CHCK FOR PHOTOCHEMICAL SMOG DIFFUSION SYSr_ 
 -4-+ bTCki
 
COMMON/PS/IVALNPOTKVAL 
 STCH
TCH 4

INTEGER*4 IHOLDONPOT(28) 
 TCH -INTEGER*2 IVAL(28)KVAL(28) 


-CH
INTEGER*2 PVAL(28),AVAL(49),LOCA(c7) 

ACl 1
REAL*8 PTSCCW(2),PTSRCB(4) 


REAL CAMP(55),X(55),ERROR(55) TCM
ILIH
INTEGER PX(28),PERROR(28),IAMP(55) 

DATA lAMP /'AO03@,'AO041,1AOO5',IAOOywaAa(, uOu.jp,sA l,t. .TCif 1',
 

A l 0 2 lt
I'AlO2°'IA01l'l*AIOl3'1 AIi 53 moo 1 IO ' AI yA'I' i.CI] *ou,21IOI' AilI''IA113' ,AA' '/~l1','MOOI' , 't..' , *P tu3',* ,-.u-'' S"CH It 
3'M0051', 'M006','M401', 'M402'IM403' 'M404v','t;4C,' ,t.6' ,,' ,,', afCl -ii
t
 
4'M408''CO03'.uCoo5etucoo7,scooysco1II,.tcL3.,.l,Jl, ,I;,j. 
 .ICH 14 
5C105', 'CIO7','C109'0C11', I'C113CIb' ,'A201' ,'C2l' , HnIO Tuli 1 
6'A203','C203','M102'/ .TCII 
 1.,
-TCi1
INTEGER FAMP(3)/A20 .1',C201,Miol'/ 


-TLfl 1.
INTEGER GAMP(3)/'A203','C2o3','MIOZe/ 

T H I',
CALL XPS 


CALL FRCBSU(PTSRCB,29,PTSCCW)
 
CALL POTSS(PTSCCW,29,NPOT,IVAL,PTSRCB)
 
CALL EXC(PTSRCB) 
 STOM 22
T.H 2:
CALL XRDAN(NPOT,28,PVAL) 


T1Cl 2'
DO 20 I=1,28 

SECII 2P
PX(I)=PVAL(I)/0.8191 

sluII 2
A=PX (I) 

T ;Il 21B= IVAL({ ) 


STbfu 2.
20 PERRORI)=ABS(A-B) 

WRITE[6,1O0) (NPOT(IIPX(I),IVALII),PERRUIR(1),I=I,,=b) 3 L .
 

100 FORMAT(//20X,'*** STATIC CHECK FOR PHOTOCHEMICAL S,1,O, 
 u Fr-j',, :,TCII 3,,1****** !OX ' .... POTS. TES] ( ( X zI , : , / t 33/2 
21X,'(',14,1) ... ,14)/)//) 3ZTLH zsTon 3z
WRITE(15,200) 


200 FORMAT('WANT TO POTSET AGAIN ? TYPE IN 1(12)') 
 STCH 34.
 
READ(I15,300)J1 
 5ICH 3I
" bICH 3o
300 FORMAT(I2) 


5TC1 31
IF(JL.EQ.1) GO TO I 

CAMPI l)=---00.*0.i) ORIGINAL PAGE IS $TCH 3r+
 
CAMP2)=-5.+CAMP(1)) 
 OF POOR QUTALN'Y STCH 3',
CAMP 3)=-{100.*O.I) STC- 4;


STCH 4 1
 CAMP 22-)=-(CAMP(C)*CAMP(2 )/loo. 
sTCH 4
CAMP(23)=-(CAMP(2)*CAMP(3))/I0 .
 
TCIH 42
CAMP(36)=-(CAMP(22)*1O.+5.)/1o. 


SFTC 43,
 CAMP 37)=-(CAMP(23)*1.0+10. /Io. 

sCH 4L,
CAMP(4)=-(-100.*O.I) 

SI-TH 4.,
CAMP(5)=-(5.+CAMPC4)) 

S$C1 1 47
CAMP(6)=-(00.*O.I) 

STLlI 4jCAMP(24)=-(CAMP(4)*CAMP(5))/100.. 

STLH 40
CAMP(25)=-(CAMP(5)*CAMP(6))/100. 


$14 49 
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CAMP(38)=-CCAMPC24)+15.w/lo. 

CAMP(39)=-CCAMPC2±i)42Qj)/1O. 

CANP( 7)=-(-100.*0. 1) 

CAMP(8)=-C5.*O.j+CAMPCT))3 

CAMP(9)=-CjOO.*O.1) 

CAMP(26)=-CCAMP(7)*CAMP(8))/loo. 

CAMPC27)=-CCAMP(8J*CAMP(y)),1oo. 

CAMP(40)=-CCAMPC26)+25.)/1o.'rcit
 
CAMPC41)=-ICAMP(27)+30.)/1O. 

CAMP( IO).-(-100.*o.1) 

CAMP(11)=-C5.+CAMP(IO) ) 

CAMPC 12)=-(10O.*O.1) 

CAMPC28)=-CCAMPC1O)*CAMP(1j))/1oo. 

CAMP(29)=-CCAMPC1)*CAMPp(12)3/oo. 

CAMPL42)=-CCAMPC2B)*1..o+3s.)/1o. 

CAMPC43)=-CCAMP(29) +40.)/10. 


CAMP(14)=-(5.+CAMP(13))I 

CAMP( 15)=-C 100.*O. 1) 

CAMP(30)=-CCAtIP(I3)*CAMPcl4)3/loo. 

CAP3)-CM(4)CM~5)10 

CAtP(44)=-(CAMp(30)*jo.+45. 3/jo.

CAMPC45h)-CCAMP(313*1o.+5o.3/10. 


CAMP(16)=-(-l0c.*o.1) 

CAMPC 17)=-C5.O+CAMP(16)) 

CAMP( 1S)=-C 100.*O.1) 


CAMPC33)=-(CAMP(1y)*oAMPcls))/loo. 

CAMP(46)=-CAM~Pc32)*1.o+55.)/lo. 

CAMPC47)=-(CAMP(33)*Io.+6o.j/1O. 

CAMP( 19)=-(-100.*O.1) 


CAMP(20)=-(5.+cAMpcl9) ) 

CAMP(21)=-( 10j.*0.1) 

CAMP(34)=-(CAMP(l9)*CAMPc2o))/1bo. 

CAMP(35)=-CCAMP(20)*CAMP(21))/loo. 

CAMP(48)=-(CAMP(34)*1o.+65.)/lo. 

CAMPC49)=-(GAMP(35)*1O.+7O.)/Io. 

CAMP(50)=-(-2o.J 

CAMPC52J=-CCAMP(5o)*(-20.)j/100
 .
 
CAMP(51)=-(-20.+1O.*CANPCS2))/iO. 

CAMP(C53) =-(-20.) 

CAMP(5b)=-(CAMpC 533 *(-20.))/100. 


CAMP(54)=-(-2o.+1o.*CAMPCSS))/lo. 

60 	 CALL XSTCTLCIHOLD,15) 


CALL XRSCTL(IHOLD,14) 

LOCA(2 3=0.05*8191. 

DATEST=O. 05 

D0 30 1=1,14 

LOCAL I+2-)=DATES-T*s1q1. 


s)TGH
 
Jinr:
 
STOR 5,
 
STOI 51
 
.rch w
 
W
 
une
 

, I
 
sTCH 5 
silCH
 
su
 

il 
'TH6
 
Z,IGd 
,)IGH
 

s CfI
 
s,i-liG
 
!SrtriL 
lTCh 'I,
 
S)TO 71
 
zsTLI 7,
 
ACMH 7
 
')I'U'h 1'.
 
iTCH 11
 

ICH (I 
:TGM It
 
S1W7,,
 

8it
 
SIGCH di 
,TLH 8, 
,I l-I 1 
,srui 6a,
 
sT~m is 

T401 6
 
SIGH 6,
 
Sf011 f81
 
SIGH 8j
 
SIGH 9-

S,FCH 9]
 
10-i 91. 
STGH 9', 
S-Tot-H 9', 
STOW 9 
&1GH 9( 
STOW 91 
STCH 9t8 
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30 DATEST=DATEST+0.05 
 SlGh 9',

CALL XIC 
 STCIII0 t ;

CALL XWRTDA(15,0O,14,LOCA) 
 TCI11U
 
CALL XRDAN(IAMP,49,AVAL) 
 :I)11110Z
 
DO 70 [=1t49 
 '.)TCHIL'


70 X(I)=AVAL(I)*100./8191. 
 STCHI1U4
 
CALL XSTCTL(IHOLD,14) 
 10C1I10:,
 
CALL XSTCTLIIHULD,13)
 
DO 50 I=1,3 
 'tCIoui
50 LOCAl I+1)=.2"8191. L I
 

CALL XWRTDA(3,oO,2,LOCA) ORIGINAL PAGE IS STCIIIC6
 
CALL XRDAN(FAMP,3,AVALJ 
 O POOR QUALITY UTLHIl.,
 
DO 90 1=1,3 OTCH Ii i
 

90 X(49+I )=AVAL(I)*100./8191. srLtile
 
CALL XRSCTL(IHOLD, 13) )TCHI 13
 
CALL XROAN(GAMP,4,AVAL) 
 " It 4
 
DO 92 1=1,3 
 sTrlil1"
 

92 X(52+i)=AVAL(I)*I00./8191. 
 Si1ch l
 
DO 40 1=1,55 
 .,THIlll 

40 ERROR(I)=ABS(XII)-CAMP(I)) . STCfil 
WRITE(6,400) (IAMP(I),CAMP(I),X(I),ERRUR( I),4=I1,55) STGIII 

400 FORMAT (15X'COMPONENTI5Xq,'CALCULATION',1OX, 1REAL0,1,2o
.STCI12
 
1(TX,A4,9X,FIO.4,4X,FIO.4,4XFIO.4/)) 
 S)TCIil?J

WRITE(15,500) 
 STufile
 

500 FORMAT('REPEAT ? IREAD OUT 
AGAIN ? 2') ",ICII1"
 
READ(15,300) J2 
 ,I i 2,
 
IF(J2.EQ.I) GO TO I 
 SI LIII?'
 
IF(J2.EQ.2) GO TO 60 
 .bTCIIl2t.
 
WRITE(6,600) ICi2f
 

600 FORMAT(/2OX,'***t:* END OF STATIC 
TEST ***** ') 101s12h 
RETURN :TCH12vj
 
END 
 sTCH13.,
 

http:DATEST=DATEST+0.05


MUDEL 44 PS VERSION-3 LEViL 2 DATE 72121 I 
SUBROUJTINE"UHPLOT(NOANROWNCOLVERTHORZBSORT) 
 ihHL
 
IMPLICIT INTEGER(A-Z) 
 UHPL
 

,CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCLCCCLC 
0-PL
#CCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCI-(LCUHPL 

C Ot-PL -
C...............*.**..................................................................t(-iklL
 
C UtiPL I 
C SUBROUTINE UHPLOT lIII L IH 
C 
 UII1PL
 
C PURPOSE UiI PL I 
C PLOT SEVERAL CROSS-VARIABLES VLRSUS A BASI- VARIA3LI nnPL Lt 
C OVER-PRINTING OVERLAPPING PPIHIS. UJHI'L I,'
C I PL I
 
C USAGE 
 ti1PL 14, 
C CALL UHPLOT(O,ANROW,NCUL,VERT,HORZ,finrI) 
 uHPL I 
C 
 I41PL I,

C DESCRIPTION OF PARAMETERS 
 unHPL 1/

C ",,iPL I 
C NO = PLOT HEADING IDENTIFICATION - 20 WOKbS OiFI'fUkiAI 4 UH,-PLI " 
C INFORMATION PRINTED AT TOP OF PLOT. (80 CiAI<ACiL, ,) imPL ZL
C A MATRIX OF DATA TO BE PLOTTED. FIRST COLUMN RE PFI Z,-.,I UIP.L 2i 
C BASE VARIABLE AND SUCCESSIVE COLUMNS ARE Ilt LitUSS t.l( UHPL 2_ 
c DEPENDENT VARIABLES (MAXIMUM IS 9) lliPL
C CAUTION: MATRIX MUST HAVE DIMENSIONS (NRU W,,JNL) ...... .LiPL 2" 

CONTINUE IJilPL 2' 
C NROW = NUMBER OF ROWS IN MATRIX A 
 UHPLt 
C NCOL = NUMBER OF COLUMNS IN MATRIX A. MAX. IS 10.


4 
uHPL 2i 

VERT = VECTOR OF 5 WORDS IN A4 FORMAT DESLRIBING vl-Rf,.,L UIIPL -, 

SCALE UNITS. 1ii1PL '
 
C HORZ = VECTOR OF 5 WORDS IN A4 FORMAT DESCRIRIllt, IVI'ULi J L LIPL 3:
C SCALE UNITS.; tjhPL 3i 
C BSORT = CODE FUR SORTING BASE VARIABLE. UIPL 3,
C 0 = DO NOT SORT. UHPL 3J

C I = SORT BASE VARIABLE IN ASCENDING ORDER ,;iPlL 3,

C (I.E. COLUMN I OF MATRIX A). ,IHIPL 3'.

C 
 UlhPL 3I
C NONE IIIPL 3 
C 
 UIIPL 3t , 

C. .................................................................. UHPL z41
 
C 
 UHPL
 

REAL AFLOAT,YSCAL,YMAX,YMINYPR,XPR,F 
 UHPL 4-2
 
DIMENSIUN A(1)tNO(20),VERTCS),HORZ(5) ,YPR(II),ANG(9) 
 UIIPL 4
 
DIMENSION OUT(1O1),OUTOVR(Io1) 


t*HPL 4'i
 
C IJHPL 'i 

"
DATA BLANKPLUSANG/' I',+%WI'r2',*3 ,whs ,eb',uts,! .,..~./ IHPL 4(.11
C 
 IJIIPL 41 

MI = NROW + I UIIPL zi 
YMIN = AIM1)
 
MN = NROW * NCOL 
 UHPL L. 
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251 YMAX=YMIN 
 uhPL 51 
C -... . ... . . ... . . .	 UHPL 52 

tC COMPUTE YMAX, YMIN, YSCALE UIIPL t3 
C UHPL 54 

DO 205 J=M1, MN UhPL 5', 
IF(YMAX .GE. AM)) GO'TO 200 UI-iPL 5; , 
YMAX = A(J) LIiPL ',1
 

200 IF( YMIN .GE. AUJ) ) YMIN = A(J) ORIGINAL PAGE IS UDhPL 5
 
2u5 CONTINUE OF POOR QUALITY UIIPL "I-


YSCAL = (YMAX - YMIN) / 100.0 UIiPL 6 
YPR(1) = YMIN uliPL 61 
DO] 208 J=I, 9 uiIPL 6­

208 YPR(J+I) YPR(J) + YSCAL* I0.0 IHPL 64 
YPR(1I) = YMAX UHPL 6,t 

C SET UP FIRST VERTICAL SCALE VALUE FOR LATER USE. UHPL f,:, 
XPR = A(1) I.; PL b:. 

C------------------------------------------------------------- - jiHPL 6t
C SORT BASE VARIABLE DATA IN ASCENDING URDER OF hsURI I uIIPL t,.., 
C 	 UtIIPL b ) 

I'F(BSORT) 300,300,210 	 UIiPL 7;
 
C UfIPL 71 
2.10 	 DO 215 1=11, NROW UHPL 7" 

DO 214 J=1,NROW uHPL 7-, 
IF( A(I) - A(J)) 214,214,211 UIIPL I, 

211 	 L = I- NROw 
 UIIPL 7'. 
LL = J - NROW UHPL 7,
DO 212 K=I, NCOL 	 oIIPL It 
L = L 	 + NROW LJIIPL 7. 
LL = LL + NROW utiL 7,) 
F = ALI (HPL '.)( 
A(L) = A(LL) UrIPL P1 

212 A(LL) = F (lilHL 8; 
214 CONTINUE UHPL ti
 
215 CONTINUE 
 UHPL elf
 
C ---.---.--------------------------------------------­ l PL 8' 
C PRINT HEADING , SCALES AND IST LINE OF PLUT iiPL 6' 
C UiIPL 8/ 
300 WRITE(6,100) UIIPL 6., 

WRITE(6,101) NO UHPL 8v 
WRITE(6,102)" VERT UHPL ):, 
WRITE (6,103) HORZ UHPL 91 
WRITE(6,104) (YPR(J),J=2,1O,2) uHPL 92 
WRITE(6,105) uhPL 93 
WRITE(-6,106) (YPR(J) ,J=I,11,2) uHPL 96 

C -JHPL 	 9-. 
C PRINT BODY OF GRAPH 	 UHPL 9,
 
C tJHPL Y,
C PERFORM INITIAL SPACE -- SPACING IS DUNE [Y A St:PL-'AIT UHlPL 98 
C WRITE STATEMENT TO ALLUW OVERPRINTI UHPL 9,1 NG. 




--- --- --- --- ------- 

----- -- -- --- --- --- --- --- --- --- --------
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WRITE (6, 107) LiliPLl IC 
 iPLIJ-
MY = NCOL -1 HPL1C, 
L1 WiPL1 

340 DO 390 N=2, NROW inJPLII
C BLANK BUFFER - OUT (ill LI.I 
DO 355 IX=l 101 
 tiPL 10­

355 OUT(IX) = BLANK UIIPL I 
C INSERT PLUS CRI MARKS 
 tblipLII

Do 358 K=I, 101, 10 L 1Lk!IIll 
358 OUT(K) = PLUS 0i PL I/
C FILL BUFFER WITH ALL POINTS - OVERPRINTINU W)IL.L tGVt ,&L.i' IrilFLII 
C OCCUR. UHPL I I f 

C UJIPLIL 
DO 370 J=l, MY 
 tvi PL 11I 
LL = L + J*NROW UlHPLI1I 
JP = ( (A(LL) - YMIN) / YSCAL) + 1.0 
 uhIPLIJ(

IF(OUT(J.P) 
.NE. BLANK .AND. OUT(JP) .NE. PLUS) G(,ni 34, 'JHPLI]* 
OUT(JP) = ANG(J) uiIPLlI 
GO TO 370 1)IILIi' 

C --- --- --- --- --- --- ---
 --- --- --- ------------- uHPLI2C. OVER-PRINT SECTION
C UrIPL1?
U-i LI ! 

361 DO 362 K=I, 101 PLI2
 
362 OUTOVR(K) = BLANK 
 UIPLI,"


OUTOVR(JP) ANG(J) ulIPLI21 
WRITE(6,108) OUTOVR 
 11'PL12, 

c-------------- ---------------------------------
---------------------- --- LIPLI20370 CONTINUE UHIPLi/
-C PRINT REGULAR LINE THEN SPACE 
 UjIPLI2
C UjIJ L ]13. 

WRITE(6,109) XPR,(OUT(I) ,I=iiOi ujIVLIj
 
WRITE(6,107) 
 UIiIPL 131 
XPR = A(N) UiPL13 
L = L + I 
 IjhPL 131
 

390 CONTINUE IIPL1
 
uhPLl3c 

-

CC IL3 
C PRINT. LAST LINES 

_ 

UHPLI31
 
C 
 UHP 13,

WRITE(6,I04) (YPR(J) ,J=2,1O,2) UHPLI4 
WRITE (6 105) IIPL I 
WRITE(6,106) (YPR(J),J=1,1I,2) U PL 1tEC
 
RETURN uFPL14 

C C UIUMPLI I 

100 FORMA-T(1HI)

101 FORMAT(///,5XI---- ',20A4,' ---- ) dJfPLI4.

iIPLi, 
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102 FORMAT(//,1OX,'VERTICAL SCALE UNITS = ',5A4) UrPL 4', 

103 FORMAT(IOX,'HORIZONTAL SCALE UNITS = ',5A4,////Y IIiPLI5,. 
UHPLIb i
104 FORMAT(Tl9,5(G7.63X)) 

0I PL 5.105 FORMAT(T28,'j',4(IgX,' I,)) 

1,IX, UHPL1);
106 FORMAT(9X,G17.69T28,ute,.lXtG.6,T48,usu,lX,(;17 .6 ,T68,1
 
IIIPL 15;I G17.6,188,' I ',IX,G17.6,TI08,' I' ,IXGI1.6) 
UHILIb .107 FORMAT(IHO/) 

ijliPL ',j108 FORMAT(I+,16X,lOIAL) 


109 FORMAT( lH+,G12.6,4XIO1A1I)JIIPLI5
 
UIIPLI :.END 

ORIG1jL PAG$, IS 

pOOR QUALITYOF 



-- - - - - - - - - ---- 

'a
 

//AUD JOK ,SD2004GbDJAHLK ADD XSERIES 
J/ -ACCESS SDSREL 

DELETE SDSREL ( XMOOE, XI.C, XOP, XPS, XHD, XRT, XS) 
1 SYS 0 0 0 ACCESS SDSREL(XMODEXICXOP,XPS,XIIDXRT,XST),NEW 

//XMODE E'XEC FURTRAN(MAP) I 
SUBROUTINE XMODE XMOD 

C XMOD 
C --- - . . . . . . . . . . . . ..- X M OD i 
C SUBROUTINE TO SET THE ANALOG MODE. XMOD
 
C TU SF.T THC DESIRED MODE CALL WIT.II [HE PROPER I-,rkY XMOD
 
C POINT. XMO)
 
C 	 XMCI) 
C NOEF: IF CALLED AS XMODE NO MODE CIHAIGE UCCURS. XMO(
 
C XMO)
 

REAL*8 MODRCB(4),MODCCW XMOD i
 
INTEGER*2 M,COMBTE/23/,OP/4/ XMOD I
 
INTEGER*4 CUNTRL/28/,SUBNAM(2)/'XMODi,'E I/ XMOU 11
 
EXTERNAL FRCBSUJ,FRTIO,FCHECK,CCWCR,XEI<RAN XMOD I
 
RETURN XMUD I
 

C XMUO Ii
 
C --- --- .--- --- ... ... -- - . --- .. --- I
... ---.. ....------ --- . --- ..-------	 XMOD 

XMOf) 11 
- ENTRY XIC XMO I 

M = 16 	 XMOD Il
" 
GO TO.30O XMOD 21 

C XNOD 2 
C --- ------------- ---- --------------- XMUD 24 
C	 C X M O D I-

ENTRY XOP XMOD 
M = 8 	 XMOD _, 
GO TO 300 XMOD 2, 

.C XMOD 2' 
C XMOD 2 
C 
 XMOD 21
 

ENTRY 	XPS 
 XMOD 31

M = 32 XMuD 
GO TO 300 XMOD 3,'
 

C 

C 	 - - - 7 - - C- - -- -- -- -- -- -- -- -- -- -- -- -- XMoIDXMOI) 3L,3 

INO 

ENTRY XHD XMOD 3' 
M = 4 XMO 31 
GO TO 300. XMOD 31 

C XMOD 39
 
-XMOD 41
 

C 	 XMOD 
ENTRY XR-T XMCD 42 
M = 10 XMOD 4-
GO TO 300 XMOD 4I 

C 	 XMOD 4C.J
 
- - - - XMOD 4t, 

ENTRY XST XMOD 4
 
17
M = 


XMOD 49 

C--- -- --- ---- -------------------------------------- XMO) 5* 
C XMOO 5I 
300 	 CONTINUE XOD 5 

r YoC 	 XMr 



CALL CCWCB(MODCCWCOMBTEOPM,2) XMOO 54 
CALL FRCBSU(MOORCBCUNTRLMODCCW) XMOD 5 
CALL FRTIO(MODRCRIRET) XMO) 5t 
IF( IRET .NE. 0 ) CALL XERRAN(I,IRET,SUBNAM) XMOO 5/ 

320 CALL FCHECK(MODRCBIRET,O) XMOD bi-
IF ( IRET .EQ. 4 ) GO TO 320 XMOD 51 
IF(IRET .NE. 0 ) CALL XERRAN(2,IRETSUBNAM) MOD t'. 

RETURN XMUU bI 
END XMOD 6 

37
 



------------------------------------------------------- 

'C
 

//ADD JOB ,SD2004G5DJAHLK ADD XSERIES
 
// ACCISS SDSREL
 

DELETE SDSREL(XSTCTL,XRSCTL)
 
/ISYSOOO ACCESS SDSREL(XSTCTLXRSCTL),NEW
 
//XSTCTL EXEC FORTRAN(MAP)
 

SUBROUTINE XSTCTL(IHOLDLINE) 
 XSCL
 
C IHOLD = INTFGER*2 TEMPORY WORK AREA THAT HAS BITS SET XSCL
 
C SUBROUTINE TO SET A GIVEN SINGLE CONTROL LINt:. 
 XSCL

C IIOLD = INTFGER*4 TEMPnRY WORK AREA THAT HAS BITS SET XSCL 
C IN IT ACCORDING TO THE PRIOR REOUESTS [FIAT HAVF IsFCN XSCL
C PROCESSED. 
 XSCL
 

XSCL
C IF IHOLD IS SET TO LEIRO AND ANOTHEi CALL Hkv XSTCTL IS XSCL
C MADE ALL OTHER LINES WILL BE RESET EXCEPI FOR THF XSCL 
C REQUESTED LINE. 
 XSCL I
 
C LINE = INTtGER*4 THE LINE NUMBER TO BL Sid. XSCL 1
 
C ----------------------------------------------------
 XSCL


REAL*8 XRCBC4),XCCW 
 XSCL I
 
INTEGER*2 OP/4/,COMBTE/31/,IHOLD 
 XSCL I
 
INTEGER*4 CONTRL/28/,SUBNAM(2)/'XWTC','TL 'I,ONE//,MONF/-II XSCL I 
EXTERNAL FRTIOFCHECKFRCBSU,CCWCBXERRAJ 
 XSCL 1i


C ------------------------------------------------------

C 
C THESE SUBROUTINES DO 
C 
C 

CONTROL LINES. THE 
REQUESTED. THIS IS 

C OF ALL CALLS ON XSTCTL AND XRSCTL. 
C 

ITEMP = ISL(ONE,(15-LINE)) 

MTEMP = IHOLD 

IHOLD = IOR(MTEMP,ITEMP) 

GO TO 290 


C
C 

ENTRY XRSCTL (IHOLD,LINr) 

C 

C SUBROUTINE TO RESET A GIVEN SINGLE CONTROL LLL. 


XSCL I 

NOT DESTROY THE VALUE OF ANY UThiER XSCLXSCL 
ONLY LINE CHANGED IS THE ONE XSCL 2
DUE TO [HOLD HOLDING TI-E PAST RECORD XSCL 2 

C 
ITEMP = ISL(ONE,(15-LINE)) 
ITEMP = IEOR(ITEMPMONE) 

MTEMP = IHOLD 
IHOLD = IAND(MTEMP,ITEMP) 


290 IF (LINE .LT. 0 .OR. LINE .GT. 15) 

CALL CCWCB(XCCWCONIM3TEOPIIIOLD,2) 

CALL FRCBSU (XRCB,CONTRL,XCCW) 

CALL FRTIO(XRCB, IRET) 


-

GO TO 600 


IF(IRET .NE. 0) CALL XERRAN(IIRET,SUBNAM) 

300 CALL FCHECK(XRCB,IRET,O) 


IF (IRET .EQ. 4) GO TO 300 

IF (IRET .NE. 0) CALL XERRAN(2,IRETtSUBNAM) 


320 RETURN 

600 WRITE(6,loo) LINE 

10 0 
 FORMAT(3X,,$$$$***- ERROR IN 
XWTCTL - 1/1 CONTROL LINE
1 .LT. 0 OR .GT. 15',/' LINE SET TO -9999') 


LINE =-9999 

GO TO 320 


XSCL 2 
XSCL 21 
XSCL 2 
XSCL 21
 
XSCL 2
 
XSCL 2,
 
XSCL 2
 
XSCL 2j
XSCL2!.
 

XSCL 3.
 
XSCL3 
XSCL 31 
XSCL 3 
XSCL 31
 
XSCL 31
 
XSCL 3'
 
XSCL 3
 

XSCL 3j
 
XSCL
 
XSCL 3,
 
XSCL 41
 
XSCL 4!
 
XSCL 42
 
XSCL 4,
 
XSCL 41
 
XSCL 4'
 
XSCL 4 

,'5, XSCL 4

XSCL 4.
 
XSCL 411
 
X 5
 

XS CL 5 



-- -- - -- - - -

------------------------------------------------------- 

----------------------------------------

['/ & 
//A0U inn , SD?004G5DJ AILK ADD XSERIES 
J/ 
ACCI SS SDR[L
 

OJF-.f-TI SDSRELIXROAN) ORIGINL
 
//SYSO0() ACCISS SDSREL(XPIDAN),NEW QUAGU'I
 
//XRDAN EXEC FGRTRAN(MAP) 	 OF POOR I 

XRDA .I.SUBRUTINE XRDAN(NAME,N, IVAL 
2(
ICXRDA

C ---..... - - -- - -- -- - -- -- - - -- -- - - XR DA 3:' 

c SUBROUTINE TO RLAD ANY ANALOG COMPONENT ON THE. 1-S1 SS-IOOXRDA 4i' 

= VECTOR F UP TO 100 A4 FORMAT ANALOG COMPONENT XRDA 5,
CNAME 

XRDA 6'C 	 NAMES.... P1O1, AO05 ETC. 

XRDA
IT = NUMBER FIF COMPNE:NTS TO BE READ 

C INTFGER*2 VECTOR IN WHICH THE READ VALUES WILL BE XRDA 8, 
XRDA 9­c 	 RETURNED. 
XRDA 10C 

-- ---	 XRDA 11 
XROA 12.

C 
XRDA 13'
P[hl.*P ANARC,(8ANA(CCW(2) 

XRDA 14

DIMLNSION NAME( 1) 
XRDA 15
ENTFGFR*4 	CONTRL/21/,READAU/29/ 

XRDA 16
INTFr:R*2 IVAL1I),ANADODR(IO0) 

XRUA 17
EXTCRNAL 	ANALfG.,FRCSU,FRTIO,FCHECK,XERRAN 

XRDA It,
 
XRUA 19
IF( N .G. 100 1 G1 T) 600 

XROA 20,
CALL ANALUG( NACCW,NNAMEANAODR, IVAL) 

XRDA 21
CALL. FR,CUISU(A,,IARCBCONTRL,ANACCW,4,READAD,ANACCW(2)) 

XRDA 2L
CALL FRTIO(ANARCBIRET) 

XRDA 23
IF iEF .,4E. 0) CALL XERRAN(1,IRET,'XRDAN 1) 
XRDA 24

C 	 F(,IIECK JPT! = C SO CAN BE USED IN RTT 
,
XRDA 2'


200 CALL f-CHELK(ANACF, IR.-f,u) 
XRDA 2o
IF( ['LET .1I,,. 4) 60 TO ?C,O 

IF( IRL1 .NE. 0 ) CALL XERRAN(2,IRET,'XRD AN ') XRDA 27 
XRDA 2C­220 RETURN 

XRDA 29
C 	 XROA 31" 
XROA 3('
C-------------- ---------------------

XRDA 31
F;R'JR RI-POHT SECTIONSc 	 XRDA 32
c 


XRDA 3­600 W.R ITi-[C8, (10) :, 


100 FOR AT(3X,,$%T **- '4 .AT. 100 IN XRDAN, N= 1,110) XROA 3"
 
XRDA 3'
GO I(I 22O 
XRDA 3Fr:NO 



//ADD JOB ,SD2004G5DJAHLK ADD XSERIES
 
I/ ACCESS SDSREL
 

// DELETE SOSREL(XWRTDA) 
//SYSOOO ACCESS SDSREL(XWRTDA)hNEW 
//XWRTOA EXEC FORTRAN(MAP) 

SUBROUTINE XWRTDA(N,ICONSA,EALUCA) XWDA I
 
C 
 XWDA 
C SUBROUTINE TO DO A DIGITAL TO ANALOG WRITE. XWDA 
C ***4 WORKS IN THE SEQUENTIAL MODE ONLY * XWDA , 
C N = NUMBER OF D/A TO BE WRITTEN. XWDA 
C ICON = MODE CONTROL XWDA 
C SA = INTEGER*4 STARTIUiG ADDRESS OF D/A XWDA I 
C EA = INTFGEP*4 ENDING ADDRESS OF D/A XWDA 
C LOCA = INTLGER*2 VECTOR OF VALUES TO BL .WRITTEN. XWDA v 
C LOCA(I) CAN NOT BE USFD AS IT IS USE[) BY IH1F SYSTEP. XwDA ii 
C --- ----------- ------------------------------------------ XWDA Ii 

REAL*8 WTRCB(4),WTCCW(2) XwDA 1; 
INTEGER*4 SA,EA XWCA I-
INTEGER*4 WRTDAL/30/,SUBNAM(2)/'XWRT#,IUA '/,ONCE/I/, XWDA 11
 

I MBASK/ZFFFFFFF7/ XWDA I
 
INTEGER*2 LOCA(I) XWDA It.
 
EXTERNAL FRTIO,FCHECKXERRAN,WRITDAFRCBSU XWDA If
 

C---------- ---- ---- - --------------.--------------------------- XWDA 1, 
C XWDA I-, 

LOCA(I) = SA*256 + EA XwDA 2 
200 IF( IAND( ISL(ICON,-2) , ONE ) .EQ. ONE ) GO 10 300 XWDA z, 

GO TO 350 XWDA 2e" 
300 WRITE(8,100) ICON XWDA 2" 
100 FORMAT(3X,'$$$$***- ICON = ',15,' IN XWRTDA IIVALIU'/' RANIJLM MODEXWUA 4,-

I NOT SUPPORTED'/' RETYPE ICON - 12...EUB')- XWDA 2­
-READ(8,1OI) ICON XWDA 2t 

101 FORMAT(12) XWDA 21 
GO TO 200 XWDA 2
 

C ------------------------------------------------------ XWDA 2,
 
C 
 XWDA 4.
 
C THE FOLLOWING IS INSERTED SINCE THE lISI 1044 HAS NOT XWDA 3j
 
C BEEN WORKING FOR A WRITE D/A IN THE BURST MODl)E WIThjUT XWDA 3.
 
C DOUBLE BUFFERING. THE STATEMENT AT 350 RESErS TlW MODE XWDA 31
 

,
C TO MULTIPLEXED IF BURST MODE HAS BEEN REQUESTED XWUA 3'

C WITHOUT DOUBLE BUFFERING. XWDA 3
 
C 
 XWOA 3, 
350 IF (IAND (ICON,8) .EO. 8 .AND. IAND( ICON,ONE) .FQ.'O) XWDA 3( 

IICON = IAND(ICON,M8ASK) XWDA 3 
C XWA 3i
 
C ----------------------------------------- ------------ XWDA 4, 

CALL WRITDA ( WTCCWICON,N,LoCA) XWDA 41
 
CALL FRCBSU ( WTRCBWRTDAL,WTCCW) XWOA 4.
 
CALL FRTIO (WTRCB,IIRFT) XWDA 4t
 
IF(IRET .NE. 0) CALL XERRAN(1,IRET,SUBNAM) XWDA 411
 

360 CALL FCHECK(WTRCB,IRET,O) XWDA 4.
 
IF(IRET .EQ. 4) GO TO 360 XWDA 4
 
IF(IRET .NE. 0) CALL XERRAN(2,IRETSUBNAM) XWDA 4t
 
RETURN 
 XWDA 4
 
END XWCA 4,
 



l&
 

I/ADD JOB ,&02004uODJAHLK ADO XSERIES 
/I ACCESS SDSRFLORIGN!, PAE 
/ DELETE SDSREL(XWRTDA) ORIG LAG IS 
//SYSOOO ACCESS SDSRLL(XRTOA),NLW QUOh~y 
//XWRIDA EXEC FORIRAN(MAP) 

SUBROUTINE XWRTOA(N,ICUT,SAEALOCA) XWDA 
C XwUA 
C SUBROUTINE TO DO A DIGITAL TO ANALGG WRITE. XWOA 
C **** 
c N = 
C ICON 

C SA = 

C EA = 

C LOCA 


WORKS IN 1HE SEQUENI IAL MODE UNLY -rrr XWDA 
NUMBIER OF D/A TO BE WRITTEN. XWOA 

= MIODF CONTROL XWDA 
INTEGFR*4 STARTInG ADDRESS fOF f/A XwDA 
INTEGEP*A4 EIIING ADDRESS OF D/A XWDA 
= INTEGER*2 VECTOR OF VALUES TO dw WRITrVms. XWDA 

C LUCA(I) CAN NOT BE USFO AS If IS USFU BY lhF %YSIE2-. XwDA 1 
C ....----- -------.......--.-------------------------- XWDA I 

REAL*8 WTRCB(4),WTCCW(2) XwDA I 
INTEGER*4 SA,LA XWCA I
 
INTEGER*4 WRTOAL/30/,SU3NAM(2)/'XWRT*,'DA '/,IJNEII/, XWOA I
 

I M8ASK/ZFFFFFFF7/ XWDA I
 
INTEGER*2 LOCA(1) XWOA 
I 
EXTERNAL FRTIflFCHECK,XERRAN,WRITDA,FI(CBSU XWDA I 

C --------------------------------------------------------- XWDA I 
C XWOA I 

LOCA(I) = SA*256 + EA XvwDA 2 
200 IF( IAND( ISL(ICON,-2) , UNE ) .CU. OJE ) GO 10 3f'j XWDA z 

GO TO 350 XWDA 2 
300 WRITE(8,100) ICON XwUA 
100 FORMAT(X,'$$$$***- ICON = 07,15,1 IN XWRTDA IVAL I I/' JRANIOl.h MODLXWDA z 

I NOT SUPPORTED'/* RETYPE ICON - 12...cUBI) XWDA 2 
READ(8,101) ICON XWDA 2 

101 FORMATI12) XWDA _ 
GO TO 200 XWDA 2
 

C ... ... ... ... ... ... ... .. . ... ... ... ... ... ... ... .. . ... XwDA 2
 
C 
 XwOA 3
 
C THE FOLLOWING IS INSERTED SINCE THE HSI 1u4 4 HAS NOT XWOA 3 
C BEEN hORKI-G FOR A WRITE 0/A IN THEIBURST MODE WITI OUT XWOA 3 
C DOUBLE BUFFERING. THE STATEMENT AT 350 itESEIS THE- MDI: XWCA 3 
C - TO MULTIPLEXED IF BURST MODE HAS BEEN REQUES [EU XWDA 3 
C WITHOUT DOUBLE BUFFERING. XWDA 3 
C 
 XWCA 3 
350 IF (IANO (ICON,8) .EO. 8 .AND. IANOt IC(N,ONC) .EQ. 0) XWDA 3 

IICON = IAND(ICONiMSASK) XDA 3 
C 
 XWCA 3
 
C --- --- ----- ------------------------- XWOA 4 

CALL WRITDA ( WTCCW,ICON,.,LOCA) XWOA A 
CALL FRCBSU I W-TRCb,WRTOAL,WTCCW) XWDA I 

CALL FRTIO (WTRCR,IRFT) XwI)A 4 
IF(IRET .NE. 0) CALL XERRA:,J(I,IRFT,SUBAM) XWDA 4, 

360 CALL FCHECK(WTRCBIRET,O) XWOA li
 
IF(IRET .EQ. 4) GO TO 360' XWDA 4 
IF(IRET .NE. 0) CALL XERRAN(2,IREFISUBNAM) XWDA A 
RETURN XWOA 4
 
END 
 XwDA 4 

*1/
 



MODEL 44 PS VERSION 3, LEVLL 2 DATE 72121
 

BLOCK DATA 
 ,AlA 
COMMON/PS/IVALNPO, KVAL OATA 
COMMON/SM/SCAL,MAXI,DA 
 hATA
 
COMMON/QQ/QHCQN02QNUDTIMEKMINTIME,KTIMEMIN,1iND,VIC,vFi 
 iATA
 
COMMON/PRN/LUCAi NAME 
 UATA
 
COMMON/FO/FONO2,FONO,FOO,FO03, FOHCFQRf2,FOOH 
 OATA
 
REAL QHC(12),QNO2(12),QNO(12),FOOH(32),KMIN(Ii),DAliI),SLt.'L(/) 
 I)AIA

REAL FONO2(32)bFONU(32)tFo6(32),FOu3(32),FOH(3),FOROz(j-,) IJAFA 
REAL VIC(4),VFIN(4),DTIME/.5/,TEND/4.U/,TIML/11. 30/ oAIA 
INTEGER*4 NPOT(28) U;AIA 1,
 
INTEGER*2 IVAL(28),KVAL(28),LOCA(I11() UATA 1. 
INTEGER NAME(7),MAXI/32/, KTIM/f/,IMIN/3u:/ uAIA I,
DATA SCAL/I., 2., 10.0,2.,1.,10.i,10.0/ jAlA 1? 
DATA NAMEI'N021, NO', O','03%,HCIi'RL21,'ill/ UATA i' 
DATA QNO2/0.430,0.334,0.265,O.305,0.299,.23k,,O. ,u.2z, , / LLA TA I 
DATA NO/1.29O1.O,.795,0"915,O.896,O.69O,.216,.7Z),zi+- ,./ IjArA IL 
DATA QHC/3.40,2.64,1.86,2.39,2.54,0.909,.62,2.v!t,t./ LAIA ]i
DATA FONO/32*O.0/ uAIA i
 
DATA FOND2/32*O.0/ 
 iAIA 1' 
DATA FOO/32*O./ 
 IAFA 2k
 
DATA F003/32*0.0/ 
 UATA 2j 
DATA FOHC/32*O.0/ JATA 2., 
DATA FOR02/32*O./ DATA 2'
 
DATA FOOH/32*0./ 
 DATA &
 
DATA IVAL/19*1000,7*1O,2*50/ 
 I)AtA 2
 
DATA KVAL/OIOOOO,0,100O,0,0,10QO ,6*0,1OOic.,u,louu,ti,,, 'iATA 2,. 
12*10,20,25,2*10,2*50/ ,_ArA 27
 

,
DATA NPOT/ IP003 I012tP1OT'P00si'POo ' 00, I.', ,)ATA 2' 
l'POll,'PlOl,'PlOiI3P105','plO7' ,'PlOQl',P11Ol 'Pilli','ri, D(ATA 2,' 
2'P114','P11511'P2Ol'IP2211P2o3111p204,'pPfl4e.'Se 2.ep,be.p:, /', uATA 3" 
3'P208l,'P209'1 
 uAIA 3]

DATA DA/O.01,Oo.OlO-001,0.01,2*.O01,3*.ol,.1,w3*t...Liu.,nl DATA 3
 
DATA KMIN/.6,0.264E-02,40.,305.,4.,1500.,6.,O., 3 .,..*;2z,,,. 1/ uATA 3:
 
DATA VIC/0.174,0.439,0.I00,0.945/ 
 UAIA 3,.

DATA VFIN/O.213,O.032,0..236,O.64/ 
 DATA 3
 

.END uAf'A 3. 

http:NO/1.29O1.O,.795,0"915,O.896,O.69O,.216,.7Z


MUUtL f44 P. VERSION 3, LEVEL 2 DATE 2121
 

BLOCK DATA 
 uAf4 I
 
COMMON/PS/ IVAL,NPOTtKVAL 
 OATA
 
COMMON/SM/SCALMAXI,DA 
 iATA
 
COMMON/QQ/QHC,QN02,nNUDTIMFKMIN,TIME,KTIME,MIN,ILND,vIL,vF. 
, DATA ,
 
COMMON/PRN/LUCA,NAME 
 ,.ATA

COMMON/FO/FONO2, FONO,FOOF003, FOHC,FOR02,FO(%H ATA 
REAL QHC(12) ,QN 2(12),QNO(12),FOUR(32),KMIN(Ii),DA'(14 ) , L,.L( f) DAIA I
 
REAL FON02C32),FONU(32),FO0(32),FOU3(32),FOC L(3/),FoaiK(Iz) ihATA 
REAL VIC(4),VFIN(4),DTIME/.5/,TEND/4.0/,TIML/11.3u/ 
 .)Ai A ' 
INTEGER*4 NPflT(28) 
 uAIA 1
 
INTEGER*2 IVAL(28),KVAL(28),LOCA(iIOu) 
 UiATA ii
 
INTGEFR NAME(7),MAXL/32/, KTlMI/t/,H/3./ UAA l/
DATA SCAL/1., 2., 10.0,2.,l.,10.0,10.0/ IAIA 1i 
DATA NAMF/'N021,'NO','DOl'C3','HC',,R(]21,bJI,/ LiAFA 1, 
DATA QN02/0.430,0.334,0.265,0.305,0.299,b.2 , ,.u.. ), ,.,'itz,/4-L UATA 1..DATA ONO/1.290, 1 .OO.795,0.915,0.896,0.6900, .2(,L..Itj"," .1 L/ 1,
hAA 
DATA QHC/3.40,2.64,1.862.39,2.54,0.90,I.b?,2.r, ,4"../ 
 LAfA It
 
DATA FONU/32*0.0/ 
 uAIA 1,

DATA FON02/32*O.0/ 
 iAIA 1%,
 
DATA FOU/32*0./ 
 DAfA 2k.
 
DATA F003/32*0.0/ A GELIS DA 1A zi 
DATA FOHC/32*0.O/ ORLGINJ 0)A TA 2g'
DATA F0O2/32*0./ OF pOOR Qu - DATA 2' 
DATA FOOH/32*O./ tATA c/i 

DATA IVAL/19*1000,7*1O,2*50/ 
 DAIA 2".
 
DATA KVAL/OIO00O0,0,1000,O,O,1000,6*O,Iooo,.,u ,lObu, ,., 
 JAFA 2.
 
12*10,20,25,2*10,2*50/ 
 LArA z2 
DATA NPOT/'PO030,'PO04','PO05','POo7','Poos',PI)9',sp, LI','t L2',%ATA 2' 

1.'P013, 'P1OI'P103' ,'PIO5','P1O7' ,'P109lQ','PI 'PIi I, I IiATA 2" 

30P208' ?'P209'/ 
 uAIA It
 
DATA DA/0.Ol,0.01,O.001,0.01,2*O.OOI,3*O.01,u.1,3*L.,,1,L,)/ 
 FDATA 3.
 
DATA KMIN/.6,O.264E-O2,4O.,3O5.,4.,1500.,6.,1.,3,.,.)I


2 -, I/ uATA 3
 
DATA VIC/0.174,0.439,0.100,0.945/ 
 iAIA -34
 
DATA VFIN/0.213,0.032,0.236,0.64/ 
 D)AtA 3t
 
END 
 LAfA i.
 

http:VFIN/0.213,0.032,0.236,0.64
http:VIC(4),VFIN(4),DTIME/.5/,TEND/4.0/,TIML/11.3u
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Two problems are investigated in this paper: 
(1) The complete response to periodic inputs of a linear time-invariant system or
 

time-varying system with periodically varying parameters is synthesized. When the
 
periodic input is continuous or piecewiso continuous, a computational method is
 
established to decompose the complete response ofa linear system into two components;
 
the periodic response and the transient response.
 

(2) For inputs which cut off at time t,, the cut-off response of linear time-invariant
 
or time-varying systems is also analysed. A computational method to obtain the
 
cut-off response for such inputs is derived.
 

Several examples which illustrate the methods are included. 

1. Introduction 
The complete response of a linear time-invariant system to continuous 

periodic inputs may be obtained by classical methods, for example Laplace 

transform and Fourier transform. When the input functions are discon­
tinuous, one usually needs to refer to stepwise integration. 

For a linear time-varying system, the analytical closed form response is 

not necessarily obtainable. However, the complete response may be obtained 
by means of numerical integration techniques. 

The recent emphasis on practical applications has led to a focusing on the 

study of the steady-state response as a component of the complete response of 
a linear system to continuous periodic inputs. For a linear time-intariant 
system the subjectlas been analysed by the methods of Brand (1968), Susman 
(1969), Blackman (1961). The steady-state response of linear time-invariant 
systems to periodic non-sinusoidal input functions has been investigated by the 
methods of Davison and Smith (1971), and Miyata (1964). The methods of 
this paper are applicable to time-invariant and a class of time-varying linear 
systems as well. 

In many practical applications the input function cuts off at some time t1. 
The response of a linear systems to such an input may cease at t> if the 
proper set of initial conditions is chosen. This response is called the cut-off 

response and has been investigated by the method of Brand (1969), but that 
paper again treats linear time-invariant systems only. 

The computational techniques established in this paper are valid for the 
analysis of the complete response and of the cut-off response for time-invariant 
and a class of time-varying linear systems. - When the input is a periodic con­

tinuous function, or a piecewise continuous function whose pieces are of class 

t Communicated by the Authors. 

CON. 

1.-3. 
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C n ­, then the complete response of a linear system can be decomposed into a 
periodic and a transient component. 

For the input which cuts off at a time t1 ,,a set of initial conditions can be 
chosen which will yield the out-off response. 

The approach rests on the use of the superposition principle. 

2. 	 Evaluation of transition matrix and-zero-state response
 
A linear system can be described by the state equation
 

X(t)=A(t)X(t)+B(t)U(t), X(0) =X(to), 	 (1) 

where X(t) is the n-dimensional state vector, A (t) and B(t) are n x n and n x m 
matrices respectively, and U(t) is-the m-dimensional input vector. 

The solution of (1) is given by 

Sx(t) = F(t, to)X(to) + P(t, to), (2) 
where 

P(t, to)=f CD(t, A)B(A)U(A)dA 

and $ (t, to) is the, state 'transition matrix. Although the explicit forms of 
(D(t, to) and P(t, to) in (2) are not always obtainable, numerical solutions for 
them can be generated by numerical integration. Let (D(t, to) have -columns01,02; . . . . or 

¢((=L,o)=(j)... n)(3)2 

and choose X(to) as the natural basis; or 
Xi (to) = sin, 

where 
8 n(o ... 0o, 1, 0 ..... O)T j-, 2,....n). (4) 

The numerical values of (D(t,-to) and P(t,'to) can be, evaluatdd for any time t, 
using the following 'procedure: 

,StepA : let U(t)=0, and apply the Runge-Kutta integration to (1) to obtain 

X-(t) = D(t, t6)Xj(to) = ¢D(t, to)8jn 

= j (j= 1,,.....n). 	 5
 

Evaluation -of (D(t, to) for -any time t requires n ,numerical integrations. 

Step B let U(t)#00 and apply numerical integration again to obtain,: 

X(t) 4 (t, to)X 1(to) + P(t, to) 

- c(t,.to) 1 n+ P(t, to). 

- +P(t, to). 	 (6) 

Since 0 has been obtained previously, eqn. (6) may be solved for P(t, to): 

!P(t,to) - X(t) - 01. (7)* 

Thus, the zero-state response P(t, to) is obtained. 



Periodicand cut-off responsesfor linear state-spaceequations 371 

3. 	 Synthesis of complete response 
Let U(t) be a periodic input function of period T and be either continuous 

or piecewise continuous with pieces of class On- , and let Xp(t) be the periodic 
response, Xt(t) the transient response. It is well known that the complete 
response X(t) is a linear combination ofX,(t) and Xtr(t). The explicit equations 
are as follows: 

U(t)=U(t+-KT), to<t<T+t (K=!,2,...), (8)o 

Xp(t)=Xp(t+KT), to<0 t<T+t (K=l,2,...) (9)o 
and 

X(t)=X,(t)+Xtr(t) to<t< o. (10) 

Rewriting eqns. (1) and (2) as (11) and (12) respectively we have 

X(t)=A(t)X(t)+B(t)U(t) (11) 
and 

X(t) = 4(t, to)X(to) + P(t, to). (12) 

Where the linear system is restricted to be a system of time invariant or a 
system with periodically varying parameters. Our goal is to decompose the 
complete responseX(t) of (12) into two components : the periodic response X,(t) 
and the transient response Xtr(t) or 

x(t) =.Xp(t)+Xt *(). 	 (13) 

If the periodic response exists, a set of initial conditions, defined as periodic 
conditions and denoted by XP(to), can be chosen such that the solution of (12) 
yields the periodic response or 

'D(t, to)X,(t) + P(t,to) =XP(t), (14) 

4(t±.T, to)Xp(to) +P(t+T, to) =X,(t+ 2) (15)
and 

XP(t)=X-(t+T), to+KT<t<t+(K+l)T. (16) 
Replacing to for t in (14), (15), and (16) yields 

XP(to) = 0(to, to)X,(to) + P(t o, to) 

= tXP(t0 ), (17) 

Xp(to + T) = 4(t o+ T, to)Xp(to)-+ P(to+ T, to) (18) 
and 

Xp(to)--Xp(to+ T), (19) 
where 

4'(t,t)=1 and P(to,t)=O. 

Equating (17) and (18) yield 

Xp(to) = [I- D(to+ T, t)]-'P(to+P, to), (20) 

if the inverse matrix in the right side of (20) exists. Equation (20) shows us 
that we can adjust the initial conditions X(t.) of (12) to Xp(to) of (20) for which 
the complete response of (12) will be the periodic response Xp(t). In other 
words, by using the set of initial conditions Xp(t0 ) and applying the numerical 

2A2 
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integration technique to the given system, (11)- the periodic response XP(t) 
can be obtained. The periodic response of (J2) is therefore 

Xp(t) = 0(t, to) [I - 'D(t0 + T, to)]-'P(to+ T, to) + P(t, to) 
and 

XI(t).=XP(t+KT), to+KT<t,<to+(K+1)T (K=], 2,_..). (21) 

Recall that the numerical values-of (D(to+ T, t6) and -P(to+T, to)-in (21) can be 
obtained from (5) and (7). The transient response Xtr(t) can be evaluated 
from (10) or 

Xtr() =X(t)- (t). 	 (22) 

Substituting (12) and4 (14) in (22) yields 

Xt,(t)= o(t, to)[X(to)-Xp(to)], to <,I<o. (23) 

4. 	 Analysis of cut-off response 
In many practical applications the'input function exists in a finite interval 

T only or 

.U(t)=o, T2<t<co. (24) 

The response of a linear system to this input depends on the initial conditions 
chosen, and a set of initial conditions can be chosen for which the complete 
response will vanish for t > T. This is called the'cut-off response. 

We again rewrite eqns. (1) and (2) as (25) and (26) respectively 

X(t) = A(t)X(t) + B(t) U(t), 	 (25) 

X(t) = 0(t, to)X(to) + P(t, to), 	 (26) 

where the linear system is time invariant or time varying. A set of initial 
conditions, defined as, cut-off conditions and denoted by Xo(to), can be chosen 
for which at t = T + t o the summation of the right side of (26) yields the cut-off 
response or 

0(t o + T, to)X.(to) + P(t o + T, to) = X(t o + T) = 0. (27) 
Since 

U(t)=0, to+T<t 

and 
X(t o + T) = 0. (28) 

The uniqueness theorem (Brand 1966).shows that X(t) vanishes when t > to+ T 
and the X(t) of (26) is a cut-off response. Rearranging 6qn. (27) yields 

Xo(t) = - D(to + T, to)-'P(to + T, to), 	 (29) 

if 0(t o + T, to) - ' exists. Recall again that CO(t o ± T, t.) and P(t o + T, to) can be 
obtained, from (5) and (7). By using X(to) and applying a numerical integra­
tion technique the cut-off response can. be obtained. The cut-off response- is 
therefore
 

X0 (t) = - 0(t, to)0D(to + T, o)-P(to+ T, to) 4. P(t, to). (30) 
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5. Illustrative examples 
5.1. Examples of periodicresponse 
Example 1 

Consider the following unstable system with a sinusoidal input of period 
2w and initial conditions as given below: 

Z,+KsintEZ1= 0 2 (31) 

and 

1=1.1.(32) 
Ix2(O)J IJ 

The numerical values of the transition matrix and that of the zero-state 
response evaluated at t = 2w can be obtained from (5) and--(7). However, for 
this example the explicit form. of the response can be written as follows: 

0(t)= 'D(t)X(O) + P(t), (33) 
where 

2eties -e +1 ' 
= [](34) +(t)
12_2e21 -es'+2011 

and 
f- I e'+e 2 '+ cost+* sin Cj 

P(t)= - . (35)
1-i e'+* 6 t- . sint- & costj 

A set of initial conditions X(0) in (33) can be chosen for which the transient 
component on the right side of (33) vanishes. The procedure for finding 
X,(0) is as follows. Replacing 2ir for t in (34) and (35) or applying the results 
of (5) and (7) we have 

42
[ 2e 2 4 -e -e-on +e

(2I)I (36) 
- [2e 2 2e4 .-- 2-4nJ2ez2+ _ 

and 
F e-o + ke4#+ fl 

(2) = (37)L-I e2 + }e4 + J 

Substituting (36) and (37) in (20) finally yields. 

-22e22 67- - 2 f+*esf+2JExP(O)j .e + s -L[el" [ 
Lx~2(O~jIF 1+~lx.2etJ _2272el e4- (3 

Substituting (38) in (21-) and (23) we havethe periodic response 

ost -+sin t -
[xz (t ) F 

LX_ 2tJ ~sin t±. coj()
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and the transient response 

1261= i:I+6t l][O)....ar()][Iel+*eji (40)t:[:tz~t 
The initial conditions xP1 (O)and xP2(O) are in fact one point on the oscillatory
solution circle in the phase plane, and can be used to generate the oscillatory 
circle. 

Exampole 2' 
Consider the following system with a piecewise continuous input of period 

4 see 

i+x=g(t). (41) 

The first period of input g(t) is as follows : 
g(t) = t- 2h(t - 2) - 2(t - 2)h(i- 2) + (t - 4)h(t - 4) + 2h(t - 4), (42) 

where,h(t) is a Heaviside function.
 
The explicit solution of (41) and (42) for the first period of input is
 

x(t) = 0(t)z(o) +p(t), (43) 

where 

-)(t)=e ' and p(t)=(t-l+e-')-2(t-2)h(t_2). 

Evaluating (D(t) and p(t) at t=4 yields 

'D(4)=g-4  and P(4)=-(1-e-). (44) 

Substituting (44) in (20) we have the periodic conditions x,(0) or 

x,(O) = [1 - I(4)]-IP(4) - ­

and the first period solution is therefore 

x(t)=(t-1)-2(t-2)h(t-2), O<t<4, 

or 

xpft) =t- 1 te[o, 2] 

=-t-3 te[2,4] 

and the solution for the other periods is 
x,(t)--xp(t+4K), 0<1<4, (K-I,2,...) 

and the transient solution is 

'x(t)= e-1[x(O) -x%(0)], 0 t < 0. 
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5.2. Examples of cut-off response 

Example 1 

Consider a harmonic oscillatory system with step-function input as follows: 

(45)1 ),
= I+ 

where 
g(t)= 1 + h(t - w)- 3h(t - 2w) + h(t - 3v). 

For a properly chosen set of initiil conditions denoted by x0 (0) the response 

of (45) vanishes ('cut-off') at t = 3r. The transition matrix and the zero­

state response evaluated at t=3 can be obtained from eqns. (5) and (7). 

However, for this example the.explicit response can be obtained as follows : 

X(t) = (D(t)X 0 (O)+ P(t), (46) 

where 

E- sin ti cos t 

and c s 

1 )]h(t- r)- 3 [1 - cos (t- 2r)]h(t-2r)j[1 -cos t] + [I -c os (t-
8r)+ [1- cos (t - 3 r)]h(t- /1 

J(48)P(t) 
t + sin (t- r)h(t -r3 sin (t- 2r)h(t -2)Fsih 

+ sin (t -3v i) 

We put t =3 in (47) and (48) 

F 0-1 01 

Substituting (49) in (29) yields 

(50)01-4 [-1][-4]1X.,(0)] [J-1 

[XC2(oj] 0 01]
 

Equation (50) is the cut-off conditions. With these values and from eqn. (45) 
we have the cut-off response 

1(t) - 5 s tJ , 

[X(2 n 
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xi(t) [-1-costl 

I I te[2i, 3r]
[x2(t)J sin t J 

and 

I I II'te[3r, oo]. 

If x01 (t) anti x. 2 (t) axe the power absorbed by resistors, then integrating 
x01 (t) and x0 2(t) with respect to t, the total energy consumed in resistors can 
be evaluated. 

Example 2
 
Consider a time-varying system with a cut-off input as follows:
 

=[. t j+[u ,
LJFT 

1 

[XI~ ++ 
() 

where u(t) = (t + 1)[h(t) - h(t - 1)] which cuts off at t= I sec. The numerical 
values of the transition matrix and that of the zero-state response evaluated 
at t = 1 can be obtained from (5) and (7) or

3and.N1L± P(1P[ (52) 

Substituting (52) in (29). we get the cut-off conditions 

X02(O)] I2] 

The eut-off response is therefore 

( - )1' tE[O, 1] (53) 

and 

X1 0 

IX2t]= I', 

6. Conclusion 
Two problems are discussed in this paper. When the periodic input is 

continuous or .piecewise continuous, the complete response of a linear time­
invariant or of a class of time-varying system can be decomposed into two 
components : the periodic response and the transient response. The periodic 
conditions can be immediately obtained from the developed formula and 
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numerical computation. In the phase plane the periodic conditions developed 
in this paper turn out to be a point to generate the oscillatory circle in the phase 
I)lane if the linear system has a closed trajectory. 

When the input is continuous or piecewise continuous and vanishes at time 
t1, the cut-off conditions can be obtained by the derived formula and numerical 
computation. Thus the corresponding cut-off response can be obtained. 
Since the closed curve will be obtained by the cut-off conditions chosen, then 
energy or power for a linear system may be evaluated. 
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Project 

(A) Project Title: Equipment for High Pressure Infrared
 

Absorption, PVT, and Configurational
 

Properties of Liquids - Measurements of
 

Cis-Pentene-2 and Mixtures
 

(B) Project Abstract:
 

The continued study of the liquid state as presented
 

in this work includes the development of a Perkins type PVT
 

apparatus for measurements up to 10,000 atmospheres, a
 

semiconductor strain gauge pressure transducer, and a 0-1500
 

atmospheres variable path length IR cell. 
 PVT measurements
 

were made and correlated, and certain configurational thermo­

dynamic properties calculated.
 

The strain gage pressure transducer measures pressure
 

with an accuracy of 5;5 parts per 10,000 at 10,000 atmo­

spheres. The-Perkins PVT apparatus determines volume with
 

a maximum uncertainty of 3-4 parts per 1000.
 

The PVT data covers the range 0-6000 atmospheres and
 

24 to 20000C. Measurements were made on &is-pentene-2, and
 

mixtures of cis-pentene-2 and carbon tetrachloride, and cis­

pentene-2 and chloroform. A nonlinear least squares method,
 

which included weighting factors, was used to correlate the
 

data-by means of the Tait Whol equation of state. The cyclo­

hexane, 2,3 dimethylbutane, and n-hexane data of Shaver were
 

also refit. It was observed that data determined-with the
 



Beattie PVT apparatus could not be fit by the Tait-Wohl
 

equation to the limit of the precision of the data, 3-5
 

parts per 10,000, suggesting that further improvements in
 

the equation are required.
 

A procedure for calculating the configurational pro­

perties of liquids was extended and used to determine the
 

configurational energy and entropy of aforementioned
 

systems.
 

(C) Publication: Ph.D. Dissertation in Chemical Engineering
 

-(D) Year: 1968
 

(E) Department: Chemical Engineering
 

(F) Student Name: Jerry Van Fox
 

(G) Faculty Advisor: Professor H. W. Prengle, Jr.
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Project 

(A) 	Project Title: Mathematical Evaluation of a Dynamic Method
 

for Determining V-L Equilibria
 

(B) Project Abstract:
 

A dynamic method proposed by Prengle and Curtice to
 

determine the vapor-liquid equilibrium data at constant
 

pressure for a binary mixture using only the initial com­

position and the temperature-liquid weight data has been
 

explored and proved feasible. The method obviates the
 

necessity of having to determine experimentally the liquid
 

or vapor composition.
 

By combining the equations proposed with the Rayleigh
 

equation an integral equation is produced. The value of the 

integral cat-be calculated from the liquid weight at any 

instant and intially. The lower limit of the integral is 

the initial weight fraction of the more Volatile component 

and which is a known value. The upper limit is,the weight 

fraction at any instant which is to be determined. A com­

puter program was written using Gauss' numerical-quarature 


method for solving the integral equation.
 

Ramalho and Tiller':s experimental data for Rayleigh
 

distillation of methanol-water system at 760 mm Hg, includ­

ing measured liquid composition data,-were used to check
 

the method. The results obtained indicate good agreement.
 

Extension of the dynamic method into an experimental
 

.6
 



procedure is discussed.
 

The average excess enthalpy was determined from
 

literature experimental constant pressure V-L data and
 

found to be in good agreement with individually measured
 

excess enthalpy data.
 

(C) Publication: M.S. Thesis in Chemical Engineering
 

(D) Year: 1969
 

(E) Department: Chemical Engineering
 

(F) Student Name: Ling-Kun Huang
 

(G) Faculty Advisor: Professor H. W. Prengle, Jr.
 

ORIGINAL PAGE IS 
OF POOR QUALITY 



Project 

-(A) Project Title: 	 Kinetics of Djels-Alder Reactions
 

Preliminary Work on the Prediction of Rate
 

Constants by Transition State and Molecular
 

orbital Methods
 

(B) Project Abstract:
 

Selected data on various Diels-Alder reactions in the
 

gas and liquid phases were analysed by the transition state
 

theory, and equations for roughly estimating the enthalpy
 

and entropy of activation were obtained for these. The
 

activation enthalpy, AH*, was found to-be the significant
 

variable in comparing reaction rate constants, k, between
 

similar reactions, catalyzed or uncatalyzed.
 

Solvent effects on reaction rates and possible correla­

tion methods were reviewed. The effect was found to be
 

small in most cases and subject to correlation-by regular
 

solution or dipole-interaction methods.
 

The activation enthalpy was broken up into various
 

parts, the significant variable being a -electron ehergy
 

change AE , which can be roughly evaluated from perturba­

tional molecular orbital calculations.
 

A molecular orbital program based on the HEckel method.
 

was developed and parameters for calculations on 1,3
 

butadiene and acrolein derivatives were evaluated by com­

paring calculated physical properties against experimental
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values. The parameters were used in perturbation calcula­

tions and values for AE /y2 were evaluated for different
 

reactant pairs, y being an interaction term. Plots of AH*
 

or RTlnk vs. AE /y2 were found to be linear for various
 

sets of reactions.
 

Simplified correlations of AH* or RTlnk vs. some
 

calculated properties were found to give definite trends.
 

The influence of an electron-withdrawing effect at
 

the polar group of the dienophile was studied. It was
 

concluded that a likely explanation for the reduction in
 

AH* during catalysis lies in a reduction of the r-electron
 

delocalisation and dipole-induction energies.
 

A combination of the transition state and molecular
 

orbital methods was thus found to be a suitable starting
 

point toward-predicting rate constants in Diels-Alder
 

systems.
 

Suggestions for future work toward a more coherent
 

approach are presented.
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Project 

(A) 	Project Title: Measurement of Infrared Absorption
 

Coefficients of Pollutant Gas Species
 

(B) Project Abstract:
 

Quantitative analysis of gas mixtures by means of
 

infrared spectroscopy must be based on a knowledge of the
 

absorption coefficients, k%, of the species involved at the
 

actual conditions of optical path length and temperature of
 

the sample.
 

For the majority of-pollutant gases, information about
 

these coefficients is scarce or incomplete and.the objective
 

of this work was to'determine such coefficients for the
 

following pqllutants, CH4, C2H4, C02, -CO, S02 NO2, NO, H2S.
 

Measurements were made at room temperature for certain of
 

their wavelengths, and the absorption coefficients k%, de­

termined over the widest possible range of optical path
 

length, pl. -The wavelengths chosen -were those free from
 

interference with absorption by water vapor.
 

The validity of Beer's law was confirmed for a limiting
 

value of p1, which w&s different for each wavelength. A
 

correlation between k 
- nd pl was made of the following
 

form,
 

in kl = n kb 	 C. (in pl)i 
V Vo - 2 

-= 
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For three gases, C2H4 , CO2, SO2 at one characteristic
 

wavelength, k% was determined as a function of temperature,

V 

at 1250C, and 2000C. A correlation was found to be
 

ln ku a + sln (T/T)

V 0 

Combining the two correlations of k% as a function of
 V 

pl and T the following form results, 

m 
ln k% ln ko [ S C (ln pl) ] + s ln(T/T

V V0 i=O 0
 

and permits computation of kb at any desired condition.
 

V
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Project
 

(A) Project Title: Configurational Properties of Liquids
 

(B) Project Abstract:
 

A project has been underway in the Chemical Engineer­

ing Department to investigate properties,of liquids and
 

solutions; the work presented in this thesis is one part
 

of the program. The objective was to determine the con­

figurational thermodynamic properties of certain substances
 

as 
a function of liquid density and molecular size and
 

shape, which could be used later in theoretical molecular
 

models for, 1) the configurational properties of pure com­

ponents as a function of density, .and 2) the excess thermo­

dynamic functions for species in solution-..
 

Fifteen nonpolar and polar substances were chosen
 

covering a wide range-of molecular-weights and acentric
 

factors:
 

Hydrocarbons: methane, cis-pentene-2, cyclohexane,
 

benzene., n-hexane, 2,3 dimethylbutane,-2,2,4 trimethyl­

pentane, n-octane, n-decane.
 

Hydrogen bonded substances: watermethyl alcohol,
 

isopropyl'alcohol.
 

Others: argon, nitrogen, carbon tetrachloride.
 

Using the approach of molecular Sstatistical thermody­

namics, a "sun of contributions" method'was employed, in­

volving translation, external rotation, internal vibration
 



plus rotation, and intermolecular configuration; also the
 

total property can be visualized as made up of two parts:
 

one temperature dependent and the other density dependent.
 

The results obtained for the configurational energy
 

indicate a very decided effect of molecular size and shape
 

for all classes of substances, and similarly for the config­

urational entropy; however for the latter, the trends are
 

somewhat obscurred, and not as apparent as for the energy.
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Project
 

(A) 	Project Title: Measurement of Infrared Absorption Coeffi­

cients for Certain Pollutant Gases
 

(B) Project Abstract:
 

Concentrations of air pollutants in the atmosphere can
 

be determined by long path absorption spectroscopy, and by
 

remote emission spectroscopy, but require a knowledge of
 

the absorption coefficients k" as a function of optical path
 

length and temperature T. Literature search revealed that
 

such information is scarce and incomplete for most pollutant
 

gases. In a previous investigation absorption coefficients
 

were determined at room temperature for CH4, C2H4, C02, CO'
 

So2, NO2 , NO and H2S, and at elevated temperatures for C2H4
 

and S02- The objective of this-work was to extend the
 

measurements at elevated temperatures for CO2 , CH4, NO, NO2,
 

and CH3CHO, and at room temperature for CH3CHO. Data from
 

both investigations were compatible with the Bouguer-Beer
 

Law for a limiting range of the optical path length x, and
 

for larger values of 	x, kx decreased, and was correlated as
 

a function of x and 	T. A method was developed and used to
 

correct for the finite spectral slit width which has consid­

erable effect on the 	experimentally determined absorption
 

coefficient.
 

A model was proposed for spectral band absorption
 

which reduces to the Square Root Absorption Law for large
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values of x. The correlation of the k%V 
values indicated
 

that the above law is a very rough approximation of the
 

trend of actual data.
 

A method was developed and used to calculate the
 

Einstein Transition Probability from the k% values.
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Project 

(A) 	Project Title-: Exploration of Intermolecular Effects in
 

Liquids by Infrared Spectroscopy
 

(B) Project Abstract:,
 

Intermolecular effects in liquids, field potential and
 

decay of rotation, were explored by means of infrared
 

spectroscopy.
 

The shift and broadening of the C=C stretching band of
 

cis-pentene-2 were studied from 4730K to 104
0K, covering
 

the liquid from the critical point to the triple point, and
 

some measurements in 	the solid. Pure cis-pentene-2 and in
 

solution with four different solvents: n-pentane, toluene,
 

diethyl ether, and acentronitrile, were studied.
 

The shift in the vibrational frequency.was related to
 

the second derivative of the intermolecular function by a
 

mathematical model, and used to obtain the field potential,
 

zU/k as a function of density, and the parameters.in a poten­

tial function, A, y, and zm o k. Assuming-im 14, E /k
 

values are in reasonable -agreementwith other experimental
 

values.
 

The vibrational-rotational band width was related to
 

the rotational energy of the molecule. It was found that
 

the rotational energy of cis-pentene in all five systems
 

decayed as a function of the density p, according-to the
 

relationship.
 



Erot/RT = (3/2)(1 - ap/po)2 

decreasing to approximately 10% of its fully developed
 

value at the triple point.
 

The decay in translational and internal mode energy
 

was also estimated from the data and found to be substantial.
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Project 

(A) 	Project Title: Equilibrium Theory of Liquids - An
 

Exponential Perturbation Theory
 

(B) Project Abstract:
 

In this work, the equilibrium theory of liquids,
 

molecular correlation functions, radial distribution func­

tion, and perturbation theories are reviewed and discussed.
 

A new exponential perturbation theory was developed to cal­

culate the radial distribution function and the thermo­

dynamic properties of liquids.
 

A function cailed the potential difference function is
 

defined as the difference of the molecular interaction
 

potential of average force, and expanded into a Taylor
 

series of the reciprocal of the temperature. By a topo­

graphical reduction method, an integral equation is obtained
 

for the function. The integral equation provides a genera­

lization of the perturbation, and the various possibilities
 

of approximation were analyzed.. With certain assumptions,
 

the integral equation can be solved by knowing the inter­

action potential and the hard sphere radial distribution
 

function. A simple procedure was proposed to correlate
 

the hard sphere diameter as a function of temperature-and
 

density.
 

The theory was tested against the computer simulation'
 

results of Verlet for a Lennard-Jones (6,12) fluid. The
 



agreement was excellent, the radial distribution function
 

and thermodynamic properties are reproduced with high
 

accuracy. The computation time is reasonable.
 

Calculations were also extended to argon, and it was
 

confirmed that the Lennard-Jones (6,12) fluid is a good
 

approximation for argon. With suitable choices of poten­

tial parameters, the pressure-volume-temperature relations
 

of liquid argon can be reproduced successfully.
 

A new cell model was constructed to calculate the
 

Helmholtz free energy as the sum of various contributions:
 

the Helmholtz free energy of the hard spheres, the average
 

cell potential energy and the fluctuation of the cell
 

potential energy. The average cell potential energy was
 

assumed linear with density. The fluctuation term was
 

evaluated fromnthe results of the exponential-perturbation
 

theory. The -ormulation was simple and gave good results
 

for Helmholtz free energy and'internal energy. The model
 

might be useful in predicting the excess mixing properties.
 

Compressibility factor calculations were satisfactory.
 

Suggestions and formulations are given to extend the
 

exponential perturbation theory to polyatomic molecules
 

and mixtures of simple liquids,'but no numerical calcula­

tions were attempted. Using published data for-a hard
 

sphere mixture, the present theory was shown to be better
 

than the existing perturbation theories..
 



Suggestions for the future work have been made. Results
 

of the present work are to be correlated in terms of hard
 

sphere properties and it is hoped that this correlation
 

will make the perturbation theory feasible for engineering
 

calculations.
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Project
 

(A) 	Project Title: Correlation and Measurement of Stack Gas
 

Pollutants by Infrared Absorption
 

(B) Project Abstract:
 

Stack gas pollutants can be determined by use of long
 

path absorption spectroscopy for stack samples and by remote
 

emission spectroscopy on stack plumes. However, a relation­

ship between the absorption coefficient and the optical den­

sity is required in order to do so. Previous investigations
 

were conducted on CH4, C2H4, C02, CO, s021 NO2, NO, and H2S,
 

but mathematical and experimental errors rendered the,results
 

inaccurate. The objective of this work was to improve the
 

previous measurements and extend them to partially oxidized
 

hydrocarbons (HCHO).
 

Data obtained from this investigation was seen to
 

approach'the constant limit of the Beer's Law absorption
 

coefficient at low values of optical density while at high
 

values the absorption coefficients decreased with optical
 

density. A model was proposed for the correlation and a
 

least squares program was used to obtain the correlation
 

model constants for each pollut&nt.
 

A stack sampling system was built to obtain samples
 

from a boiler furnace. Samples were collected and analyzed
 

using the previously correlated data.
 



(C) Publication: M.S. Thesis in Chemical Engineering
 

(D) Year: 1975
 

(E) Department: Chemical Engineering
 

(F) Student Name: Kerry Lynn Rock
 

(G) Faculty Advisor: Professor H. W. Prengle, Jr.
 



Project
 

(A) Project Title: Molecular Thermodynamics - Exploration of 

Translational and RotationalDecay in
 

Condensed Phase
 

(B) Project Abstract:
 

In this work the Nearest Neighbor-Distribution-Fluctua­

tion Cell model was improved and extended, and the decay of
 

the dynamical modes - rotation and translation - in condensed
 

phase was investigated.
 

For the substances argon, methane, cyclohexand and
 

cispentene-2 a wide range of conditions was studied, from
 

perfect gas state at the critical temperature .down to the
 

00K solid. It was found that the external potential field
 

not only influences configurational properties, but also
 

changes the dynamical behavior of molecules.
 

The configurational properties are determined by the
 

cell potential, a value evaluated from the minimum energy
 

(at 0 K), and the average number of effective nearest neigh­

bors, a function of density. The average number of effec­

tive nearest neighbors was found 'to have a negative devia­

tion from a linear relationship. The deviation is larger
 

for more complex molecules and was well correlated by a
 

mass-dispersion parameter of molecule, the acentric factor.
 

A parameter called the normalized maximum kinetic
 

energy was defined for the dynamical modes, and is used in
 



the partition function integral to obtain the effect of
 

decay on all properties.
 

It was found that translation decays in some condensed
 

phases. For argon and methane, -translation is essentially
 

fully developed and maintains approximately 60 - 70% deve­

loped at triple-point solid. For more complex molecules,
 

the decay of translation is larger and is proportional to
 

the mass-dispersion of the molecule.
 

The decay of non-preferential rotation for spherical­

top molecules is very similar in magnitude to that of trans­

lation. The decay of preferential rotation was represented
 

by superimposing the effects of rotational moments, the
 

ratio of moment.of inertia to the smallest one, on that of
 

non-preferential rotation.
 

A generalized theory for all modes was constructed to
 

provide a method for prediction of the thermodynamic
 

properties. Ethane was chosen as a test substance for the
 

proposed models and the agreement with experimental data
 

was quite satisfactory.
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(A) Project Title: Remote Sensing of Temperature and Composi­

tion of Gas Plumes by Infrared Emission
 

Interferometry-Spectroscopy
 

(B) Project Abstract:
 

Quantitative aspects of the technique of remote sensing
 

of stationary sources by infrared emission spectroscopy have
 

been studied in this investigation. A method is developed
 

for independently determining the temperature and composi­

tion of the remote gas plume from data collected .with a
 

rapid scan interferometer-spectrometer system. The analysis
 

accounts for atmospheric attenuation caused mainly by CO2
 

-
and H2O background radiation originating from various


sources in the background of the plume. The background
 

radiation factor has been semiempirically correlated for
 

application to transparent and opaque targets.
 

Measurements were made, using the above technique, to
 

observe temper&ture gradients and fluctuations in an emerg­

ing plume in a generally calm atmosphere. The axial pro­

file data indicated a decay in the mean plume temperature
 

from 507 0K at the source to 4250K within three meters down­

stream from the source. The experimental data showed that
 

near the stack, the axial gradient is small, whereas
 

Priestley's theoretical model predicts a large grddient.
 

The data does not agree with Priestley's model because the
 



temperature decay near the stack is primarily dependent on
 

the temperature and energy content of the plume at the point
 

of emergence and the effect of the surrounding fluid is
 

neglible. Further downstream, turbulent diffusion and air
 

entrainment become appreciable causing the temperature to
 

decay more rapidly. The experimental data when extrapolated
 

along the theoretical model predicted a decay of the mean
 

plume temperature to near ambient levels within 45 meters
 

from the source. Radial temperature data were also taken
 

and showed an approximate Gaussian Profile. Temperature.
 

fluctuations of the order of + 250K were observed. Inten­

sities of turbulent temperature fluctuations were determined 

axially and radially and compared to existing data on 

laboratory scale jets. 

The remote sensing technique has been developed for
 

quantitative determination of the pollutants - CO, NO, NO2,
 

CH4, C2H4, HCHO, CH3CHO; C2H6, H2S and S02. Field measure­

ments were made at 68 meters distance on gas fired -power
 

plant plumes. NO2 and HCHO were consistently found while
 

small quantities of CO and CH4 were also detected under
 

normal furnace operation. A sharp rise in the CO and CH4
 

concentrations was detected when the excess air in the fur­

nace was lowered.
 

The remote temperature measurements were found to be 

accurate to within + 5K.' Concentration results over a 

large number of runs showed good consistency. NO2 and HCHO 



concentrations showed a per cent deviation of 21% each.
 

The per cent deviations for CH4 and CO concentrations were
 

76% and 51% respectively; a large part of these deviations
 

were due to natural fluctuations in the normal operation of
 

the furnace.
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Project
 

(A) 	Project Title: Biofeedback Training of 40Hz EEG and
 

Behavior
 

(B) Project Abstract:
 

A specific pattern of brain electricity, a narrow fre­

quency band centering at 40Hz, reflects a state of circum­

scribed cortical excitability or focused arousal which is
 

"optimal" for consolidation in short-term store. 
On-line 

control procedures have been developed to reliably record 

and digitally count this low-amplitude EEG activity inde­

pendent of muscle artifact. 

A high degree of operant control of the 40Hz EEG can 

be achieved by biofeedback training in both conditioning 

and suppression. In control testing sessions following 

conditioning and suppression training, some degree of vol­

untary control,has been demonstrated when subjects alter­

nately turned the 40Hz on and off only upon instructional 

sets. The generality and stability of relationships shown
 

between the conditioned 40Hz EEG and problem-solving be­

havior requires further systematic verification.
 

(C) Publication: Behavior and Brain Electrical Activity
 

(D) Year: .1974
 

(E) Department: Psychology
 

(F) Faculty Advisor: Professor Daniel- . Sheer
 



Reprinted from: BEHAVIOR AND BRAIN ELECTRICAL ACTIVITY 
Edited by N. Burch and H.L. Altshuler 

Book available from: Plenum Publishing Corporation 
- 227 West 17th Street, New York, New York 10011 

biofeedback training 
of 40-hz eeg and behavior ORIGNA PAGE IS 

OF POOP QAIY 

Daniel'E. Sheer, Ph.D. 

Department of Psychology 
University of Houston 
Houston, Texas 

The use of operant training techniques to control electrical brain activ­
ity is relatively recent, dating back some ten years to the beginning of the 

present series of publications (Mulholland 1968). As is generally true of new 
research, there is a focus on questions about the basic process itself­

definitive training procedures, transfer and concomitant effects and, not the 
least of it, skepticism about the reliability of the phenomenon itself. The 

ever-accelerating literature reflected, in part, in a handbook (Barber et al. 
1971a), in a recent bibliography(Butler and Stoyva 1973), and in a series of 
annual reviews (Barber et al. 1971b, Stoyva et al. 1972, Shapiro et al. 1973), 

has both-clarified some issues and raised additional questions. 
in spite of an amorphous surround of "mind control" distorting the 

question, it is now clear that patterns of electrical activity in the brain can be 

brought under operant control through response-reinforcement contingen­
cies. This conditioning has been demonstrated in humans through a range of 
different EEG patterns: theta (Green, Green, and Walter 1972; Beatty et a. 
1974), alpha (Brown 1970, Nowlis and Kamiya 1970, Mulholland and Peper 
1971), a sensorimotor rhythm at 12 to. 14 Hz (Sterman 1972), and, beta 

(Beatty 1971). There is also some indication that asymmetrical control can 

be achieved with occipitil alpha by differential feedback to homologous 
scalp areas of the two hemispheres (Pepar 1971, 1972): Such localized con­
trol raises the possibility of more specific training, because the functional 

825 
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significance of laterality has also been demonstrated with EEG measures. 
Galin and Ornstein (1972) recorded from normal subjects during the per­
formance of predominantly right (spatial) and left (verbal) hemisphere tasks. 
They found a significantly higher average spectral power (more alpha) in the 
right hemisphere, and thus more alpha blocking and beta in the left hemi­
sphere, during performance of the verbal as compared with the spatial tasks. 

Systematic information on optimal training procedures and conditions 
under which operant control will generalize beyond the training'laboratory is 
simply not available. Among some relevant observations, Black (1971) has 
shown that peripheral skeletal' muscle mediation is not an essential condition 
for operant control of CNS electrical activity. Hippocampal theta and non­
theta waves can be conditioned in dogs whose skeletal musculature was 
paralyzed by gallamine. The possibility still remains, however, that hippo­
campal theta waves may be related to central circuits that control skeletal 
muscle activity because such drugs do not block central circuits. Indeed, rats 
who are free to move can be more quickly conditioned to theta than can 
immobile rats (Black 1972, and personal communication). This would imply
a-relationship between the circuitry for skeletal movement and-hippocampal
theta and/or demonstrate the importance of response state for conditioning 
theta. 

At the human level the problem of mediative processing, particularly
cognitive, becomes more difficult to dissect. Beatty (197-2) compared alpha
conditioning during one-hour training periods in one group of subjects who
received feedback on EEG response-reinforcement contingencies, in another 
group who had only pretrial information on the behavioral-state associated 
with the required alpha responses, in a third group who received both, and in 
a fourth group who received neither.. Grbups' one, tivo, and three showed 
exactly the same magnitude and development 6f operant conditioning aA' 
compared with the fourth group, which showed no change. Prior informa­
tion evidently produced the same effects as response-reinforcement contin­
gencies, and a combination of these made no difference. Upon questioning,
subjects in the "information only" group readily reported the typical cor­
relates of alpha-relaxation, calmness, etc.-while the "feedback only" group 
gave a wide range of subjective reports. Apparently, 'in the absence of an 
external feedback system, the "information only" group of subjects, cogni­
tively monitored their own internal states to reinforce the required per­
formance. 

Subtle reinforcers can be established in humansubjects, through cogni­
tive processing, by the history of the subject, by instructional sets, and by 
momentary motivational states of the subject-to specify but a few -condi­
tions. Obviously it would be useful to have systematic data on cognitively 
mediated reinforcement and, when performance deteriorates for no apparent 
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reason, on nonreinforcement as well. On. the positive side, this cognitive 
processing at the human level may inevitably accompany neural response­
reinforcement contingencies. It may thus provide a more effective method 
for achieving voluntary control, as compared with such other methods of 
control as reinforcement of overt behaviors, drugs, or direct stimulation 
(Black 1972). 

It is difficult to demonstrate clear connections between changes in 

patterns of brain electricity and changes in concomitant behaviors, but there 
are encouraging signs. The first approach to the problem was subjective 
reports, in which alpha states were variously described as "pleasant feelings" 
(Brown 1970) and relaxing and "letting go" (Nowlis and Kamiya 1970). 
Mulholland and Peper (1971) associated alpha with passive observation of 
clearly visible targets and its attenuation with visual efferent control pro­
cesses concerned with orienting and tracking. Galin (personal communica­
tion) recorded from symmetrical right and left central leads referred to the 
vertex while subjects were performing a mirror-tracking task that required 
visual spatial abilities. From computer analysis of the left-right ratios of EEG 
alpha he consistently found a comparative increase of alpha in the right 

(spatial) hemisphere in the 0.25-second period preceding the occurrence of 
an error. 

An extensive series of studies by Sterman and his colleagues (Sterman, 
MacDonald, and Stone 1974) focused on a 12- to 14-Hz EEG rhythm re­
corded from sensorimotor cortex (SMR) in cats and man, which is associated 
with relaxation and inhibition of movement. The operant conditioning with 
cats showed that SMR-trained animals had enhanced EEG sleep-spindle activ­
ity, reduced motor disturbances during sleep, and increased resistance to 
seizures induced by convulsant doses of monomethyl hydrazine (Sterman 
1972). Subsequently, seven human subjects-four epileptic and three nor­
mal-were trained for 6 to 18 months. After two to three months of regular 

and continuous training, the four epileptic patients began'to show reductions 
in abnormal EEG signs and seizures, which were sustained throughout the 
training (Sterman, MacDonald, and Stone 1974). 

Theta activity recorded from cortical leads has been associated with a 
subjective state somewhere between the relaxed wakefulness of alpha and 
the sleep state of delta (Green, Green, and Walter 1972). Subjective reports 
by persons trained in theta, include descriptions of hypnagogic-like -imagery 
and reverie or wandering imagination which might be characterized as cre­
ative thought patterns. Beatty et al. (1974) investigated the effect of theta 
states associated with a very low level of arousal on a monotonous visual 
monitoring task requiring a high level of vigilance to maintain efficiency. 
They trained one group of subjects to augment occipital theta waves and 
another group to suppress them. Then both groups performed the contin­
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uous monitoring task in which contingent reinforcement was given for the 
group-appropriate response. The conditioned theta augmentatibn, also rein­
forced throughout the task, produced a significant deterioration in monitor­
ing efficiency, while theta suppression produced a significant increase. 

The substantial relationships shown in these studies between brain elec­
tricity and behavior are restricted entirely to inhibitory behavioral functions. 
The SMR rhythm is associated with relaxation and inhibition of movement. 
The alpha rhythm shows significant comparative increases in one hemisphere
during a time when it is not maximally operative--the right hemisphere 
during verbal performance and the left during spatial performance. Again,
the alpha shows significant comparative increases in the functional hemi­
sphere-the right hemisphere during mirror-tracing performance-but only at 
the time when an error is made. The augmentation of occipital theta signifi­
cantly depresses vigilant performance in a visual monitoring task, which 
shows improvement when the theta is suppressed. 

For all these behaviors the following questions may well be asked. What 
are the patterns of brain electricity associated with facilitatory behavioral 
functions? What rhythm occurs in the sensorimotor cortex with facilitation 
of movement, and not inhibition? What waves show up in the right hemi­
sphere during performance of spatial tasks, and in the left during verbal 
performance? What happens in the right hemisphere with mirror tracing
during correct responding and not when an error is made? What brain electri­
city is in the occipital cortex when theta is suppressed with concomitant 
monitoring efficiency? 

The first approximate answer is that the EEG is desynchronized at a 
very low amplitude with mixed fast frequencies. With the recording tech­
niques and computer resolution now available, it is time that we took a 
much closer look at this low-amplitude, fast-frequency "desynchronized"
EEG usually represented in charts as irregularly thickened black lines. The 
single designation, "desynchronized" or "arousal," for an EEG clearly'refers
to a number of different electrical patterns. In their study of conditioning in 
monkeys, Morrell and Jasper (1956) found that a generalized desynchroni­
zation was diffusely present in the cortex only during the first stage of 
sensory-sensory conditioning. When conditioning was established, a "stable, 
well-localized desynchronization" was limited to relevant cortical areas. Fur­
ther, Morrell (1961) reported differences in units recorded from the brain­
stem reticular formation, hippocampus, and visual cortex during generalized
cortical desynchronization as compared with the localized desynchronization 
in visual cortex. 

The first stage of conditioning, diffuse cortical desynchronization, rep­
resents initial responding to novel stimuli within the complex matrix of 
irrelevant environmental stimuli*. 'It is an oscillatory, unstable state of the 
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organism, in which many different subassemblies of the intrinsic electrical 
activity are firing in different spatiotemporal patterns, that is, nonsyn­
chronously. When connections become established, through spatiotemporal 
patterning of inputs, as in conditioned stimulus-unconditioned stimulus 
(CS-UCS) pairings, subassemblies of the electrical activity now fire in 
synchronous organizations restricted to the relevant circuitry. The desyn­
chronized EEG is then no longer diffuse, but it still may appear as desyn­
chronized without finer grained analysis because the synchronous sub­
assemblies restricted to limited cortical areas are submerged within the total 
ongoing electrical activity. The limited subassemblies, defined by the rele­
vant environmental inputs and the contingent reinforcement, are now firing 
at a synchronous frequency "optimal" for consolidation. We have proposed 
that a specific pattern of brain electricity, a narrow frequency band centered 
at 40 Hz, reflects this state of circumscribed cortical excitability or focused 
arousal (Sheer 1970, Sheer and Grandstaff 1970, Sheer 1972). The asso­
ciation of focused arousal-40 Hz represents an extension of the continuum 
from sleep-delta, through wakefulness-alpha, and diffuse arousal-beta. 

Our focus on the 40-Hz EEG had its beginning in the large-amplitude, 
highly synchronous bursts recorded from the olfactory bulbs and other rhin­
encephalic structures of cats during sniffing, exploring, and orienting behav­
iors (Sheer, Grandstaff, and Benignus 1966). In quadruped animals, particu­
larly, olfaction is an important distance receptor, and the associated motor 
feedback of sniffing is a highly adaptive orienting response for exploratory, 
feeding, and sexual behavior. This pronounced electrical rhythm occurs in 
rhinencephalic structures throughout the phylogenetic scale from catfish to 
man (Sheer and Grandstaff 1970). 

At the neocortical level, where laminar structure is far more complex, 
the 40-Hz rhythm is at -a much lower amplitude in a more complicated 
electrical background, but it can still be observed visually on the oscillograph 
from epidural leads at fast paper speeds. For systematic reliable data, how­
ever, computer analysis is clearly necessary. In'a series of studies with the cat 
in a successive visual discrimination task (Sheer 1970, Sheer and Grandstaff 
1970), consistent relationships were observed between 40 Hz and the acqui­
sition phase of learning. In the 10-sec epoch of a 7/sec flickering light cue 
(SD), a burst of 40 Hz occurred in visual and motor cortex about 0.5 sec 

before, and continuously for about 1.5 see after, a correct bar-press re­
sponse. 

The few references to 40 Hz in the literature present a rather consistent 
picture. Galambos (1958), recording from the caudate nucleus and globus 
pallidus, observed 40 Hz when cats had learned that the last in a series of 11 
clicks led to an unavoidable electric shock. Rowland (1958), recording from 
ectosylvian and lateral cortex and medial geniculate nucleus in cats, observed 
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this activity during acquisition, when an auditory CS was paired with an 
electric-shock UCS. Killam and Killam (1967) also observed it in the lateral 
geniculate of cats when they were fully trained to discriminate a correct 
visual pattern from three presented. Pribram, Spinelli, and Kamback (1967) 

reported 40 Hz in the striate-cortex of -monkeys just after they made incor­

rect differential responses in a very difficult. visual task. In the Russian 

literature, Dumenko (1961), recording from the auditory, somesthetic, and 

motor cortex of dogs, observed 40.Hz when limb responses were conditioned 

to tone as the CS and excitation of skin with induction current as the UCS. 
Sakhiulina (1961) observed it in the sensorimotor cortex of dogs when con­

ditioned flexion of the contralateral leg was paired with different condi­
tioned stimuli. 

In recording from the scalp in humans, the meditation state provides a 
unique situation in which subjects are immobile and the recordings relatively 
free of muscle artifact. Das and Gastaut (1955), recording from occipital 
leads in seven trained yogis, reported high-amplitude levels of 40 Hz activity 

during the samadhi state, which is the final, most intense concentration stage 
in this form of meditation. Just recently, Banquet (1973), studying 12 sub­
jects practicing transcendental meditation with -recording from left occipital 
and frontal leads, also observed 40 Hz during the third deep stage of medita­
tion. Giannitrapani (.1969), recording from scalp leads in middle- and high-IQ 
subjects, compared the EEG during mental multiplication activity and a 
resting condition. A 40-Hz rhythm occurred during the multiplication behav­
ior just prior to the subjects' answering. 

Considerable attention has been focused in recent years on a rather 
heterogeneous clinical grouping variously termed learning disability, minimal 
brain injury, and minimal brain dysfunction in children. One relatively clear 
subgrouping of such children can be characterized by no hard neurological 
signs, no primary sensory or motor defects, no apparent primary emotional 
disturbances, and tow-normal to normal IQ. The main presenting problem is 
that these children cannot learn; they are either retarded in grade level or are 
in special classes. They are unable to assimilate new material and solve-prob­
lems at the level of their chronological peers. Significant decrements were 
obtained specifically in the 40-Hz EEG band during-problem-solving tasks in 
a carefully selected group of such children, as compared with matched chil­
dren at normal grade level (Sheer and Hix 1971; Sheer 1974). One purpose 
of the present series of studies is to develop biofeedback training procedures 
for conditioning 40-Hz EEG.in learning-disabled children. 

Experimental Procedures and Controls 

Reliable, 'consistent EEG recording of 40 Hz from the intact scalp is the 
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first essential procedure to be accomplished, and it is by no means a simple 

task. This low-amplitude, fast-frequency part of the EEG spectrum, recorded 
from the human scalp, is of the order of 5 pV. In addition, it completely 
overlaps with the muscle spectrum, which is broad and highly polyphasic, 
with generally a peak at 50 Hz (Chaffin 1969). Thus one must contend at 
the same time with a low signal level and muscle artifact at a much higher 
amplitude, both in the same frequency range. Over the,past several years we 
have developed recording and analysis procedures that have been used both 
in the controlled laboratory situation and in such field situations as primary 
grade schools. The procedures have been control-tested with, analog and 
digital computer analyses and implemented in portable hardware for on-line 
corrections and digital counts. 

Our standard experimental procedure for operant conditioning of the 
40-Hz EEG signal in both the field and laboratory situations is as follows: 
The subject is seated in a lounge chair in a slightly reclining position in front 
of a screen. His instructions are to turn on as many slides as possible in the 
conditioning period. The slides are colored, detailed, and cover a wide range 
of subjects with the interest level pegged for the particular group under 
investigation, adults or children. The slide-projector is automatically trig­
gered through a stimulus control unit by pre-set criteria of the 40-Hz -EEG 
signal, recordedfrom a-specified set of bipolar leads. 

The equipment and experimental set-up for biofeedback training in 
both the field and laboratory situations are shown in Figures lA and lB. In 
the former situation, the special electrode assembly consists of a Bionetics 
10-mm -porous silver chloride pellet (Kanter Associates, Santa Anna, Call) 
held in close reference (<'A") td a Texas Instruments TIS '58Silent Field-
Effect Transistor (FET) or Motorola equivalent coiifigurated with a ZN 5089 
NPN-transistor -toprovide a current source for the FET and a 33K resistor to 
limit the current into the FET at 1 mA. This assembly is insulated with 
Insulex and"encapsulated in a mold with No. 8751 epoxilite. The leads frdm 
the FET are a 50-ohm coaxial cable about four feet in length. 

The effect of placing an FET at the immediate electrode site is to 
provide a low source impedance from the point of the FET of about 300 
ohms which produces an excellent shunt to ground for all cable-induced or 
EMF'noise detected along the length of the cable. 

The electrode assemblies are applied to the scalp with adhesive rings, 
which are first attached, to the rim of the epoxy mold and then fixed to the 
scalp. Standard electrode paste is applied between the pellet and the scalp 

with a syringe needle through holes in the rim of-the mold. This electrode 
assembly fixes firmly to the scalp and can be easily removed by applying 
acetone.
 

The electrode leads go into a portable eight-channel differential AC 
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stimulus control unit. In 'the laborat6ry'situation, the recordings are made with standard 
Grass electrodes and a 10O-channel, Model 78 Grass polygraph withthe same comparatrs 
and feedback-loop. 
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amplifier assembly at 80,000,gain, with a narrow frequency window between 
16 and 80 Hz and a common mode rejection above 100 db (Model MC 
128E-4, SCI Systems, Houston, Texas). The power supply for this entire 
configuration is regulated at ± 15 volts and the internal noise level is of the 
order of 2 p-V. The output from these amplifiers is monitored on-line with a 
two-channel Beckman Type-K Dynograph. 

In the laboratory the recordings are made with standard Grass elec­
trodes and a ten-channel Model 78 Grass-polygraph. The Grass amplifiers are 
set at or close to maximum sensitivity; the high-pass filter cut-off is set at 10 
Hz and the low-pass at 90 Hz, with the 60-Hz notch filter cut out. EEG 
records are monitored on-line on the Grass oscillograph by-running the paper 
speed at 100 mm/sec during critical trial periods or for periodic samples 
during baseline conditions. 

Electrode placements, in both laboratory and field situations, follow 
the standard Ten-Twenty.System; in addition, a set.of bipolar leads from the 
neck and temporal muscles are recorded frd'the side of the head on which 
the EEG signal is conditioned. Outputs from the Grass polygraph are stored 
on a seven-channel FM tape recorder for further computer processing. 

Comparators.On-line, the EEG and muscle leads go into identical com­
parators or coincidence detection units, which are-the hardware developed 
for feedback control of muscle artifact. A schematic drawing of these units is 
shown in Figures 2A and 2B. Each unit consists of two high Q, narrow-band 
twin-T analog filters (Model 3385, White Instrument Co., Austin, Texas) 
with rectified output compared against a DC level to develop adigital out­
,put. Both filters have a'23-percent band, one tuned at a center frequency of 
40 Hz, the other at a center frequency of 70 Hz. The filter outputs are 
integrated with adjustable time constants and their threshold levels are set 
with amplitude comparators. 

For the EEG leads an anion gate circuit allows the 40-Hz output to 
trigger a reinforcement only when it is not coincident with the 70-Hz out­
put, which is used as an index of the polyphasic muscle. In addition, when a 
40-Hz muscle signal from the muscle comparator coincides with a 40-Hz 
BEG signal, the slide projector will again n6t trigger. 

When the output from 'the EEG comparator is neither 'coincident with 
the 70-Hz EEG signal nor with the 40-Hz muscle signal, it activates the 
stimulus control unit which tiggers the slide projtctor. The outputs from 
the EEG and muscle comparators also go to digital couiters, which keep a 
consecutive count of 40-Hz EEG bursts and 40-Hz muscle bursts for any. 
specified time period. 

-. The criteria of amplitude levels and burst durations are set by adjust­
able gain potentiometers and time constants for both the EEG and muscle 
comparators., The time constants are set at 75 msec, which represents three 
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cycles of EEG at 40 Hz and five cycles of muscle bursts at 70 Hz. The 
amplitude levels are empirically determined for each subject at a precondi­
tioning baseline session and are adjusted to allow for a low to moderate level 
of free operants. If there is any partial overlap of the three cycles of 40 Hz 
-and -the five cycles- of 70 -Hz from the same EEG leads, the slide is not 
triggered. This overlap can occur from a minimum of 20 msec before to 20 
msecafter the 40-Hz filter output because of the different time delays of the 
40-Hz filter (54 msec) and 'the 70-Hz filter (31 msec), and a 40-msec one­
shot time delay after the 70-Hz time constant circuit. These stringent criteria 
are probably an overcorrection for muscle-artifact, resulting in a conservative 
estimate of the EEG signal. 

Control procedures. The on-line control for muscle artifact with the 
comparators is essentially nonparametric contingency detection of the coin­
cidence between EEG and muscle within the threshold limits specified. It is 
based on a correction for muscle using a parametric analysis of covariance, 
shown in Figure 3, developed with computer analysis on data obtained with 
matched groups of normal and learning-disabled children (Sheer and Hix 
1971, Sheer 1974). -

As. can be noted in Figure 3, electrical activity in the range from 62 to 
78 Hz with a-center frequency at 70 Hz is.specified as muscle (Zx 2 ) and,from 
the same leads, activity in the range from 36 to-44 Hz with a center at 40 Hz 
is specified as EEG (Ey 2 ). Thecorrected power function 

-Zy2 =(Zxy) 2 
2'x 

represents-the variance or power of the EEG independent of muscle. We have 
carried-out a number of independent control checks on this power equation 
to confirm its independence from muscle. 

An analog-computer analysis procedure (Sheer 1970) was used to ob­
tain these corrected spectral power functions for three 23-percent frequency 
bands,- centered at 31.5, 40, and 50 Hz, on normal and learning-disabled 
children during control and problem-solving-situations. Using the corrected 
.power functions, there were significant increases in the 40-Hz power bands 
for the normal children during problem-solving situations but not in the 
bordering ?1.5 and 50 Hz bands set up as controls (Sheer, and Hix 1971, 
Sheer 1974). There 'is no reason why, polyphasic muscle, with a relatively 
higher amplitude at 50' Hz, should show up differentially in the 40-Hz band 
but-not in the 31.5- and 50-Hz bands.-

Using a hybrid-computer analysis procedure with an IBM 360, high­
resolution spectral-density functions were obtained with a Fast Fourier 
Transform program modified to provide covariance power functions. At the 
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Figures2A and 2B. Schematic of the comparators used in the conditioning set-up to 
control for muscle artifact. The EEG leads to be conditionedgo into one comparatorand 
the muscle leads into another.Each comparatorsplits the inputsignal into a 40-Hz and a 
70-Hz output with adjustablegain levels and burst durations,which are empiricallydeter­
mined for each subject. The EEG comparatorwill trigger the stimulus control unit; that 
is, count a 40-Hz burstand turn on-the slide projectoronly when thereis not a coincident 
70-Hz burst. Also the muscle comparatorand EEG comparatorare connected so that 
when there is a 40-Hz muscle burst coincident with a 40-Hz EEG burst, the stimulus 
controlwill not trigger. The time constantor burst durationfor both the EEG and muscle 
comparatoris set at 75 msec, which represents three cycles of EEG at 40 Hz and about 
five cycles of muscle at 70 Hz. With a time delay in the 22% 40-Hz filter of 54 msec and 
in the 23% 70-Hz muscle filter of 31 msec, and a 40-msec one-shot after the time 
constant circuit, the 40-Hz EEG signal will not trigger the stimulus control unit if the 
70-Hz muscle signal occurs from a minimum of 20 msec before to 20 msec after the 
40-Hz filter output. 
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first stage of this analysis, during digitization of the analog signals, bursts of 
high-frequency components were automatically blanked out at pre-set levels 
by detecting the slope of the line of baseline crosses as the amplitude of the 
first derivative. The amplitude levels for blanking were empirically deter­
mined for each record and pre-set for automatically digitizing the analog 
EEG by balancing the maximal blanking of high-frequency bursts with the 
minimal effect on frequencies of interest. This procedure was the first step in 
the hybrid processing, primarily to keep the standard deviations of the EEG 
distributions within a homogeneous range for the subsequent covariance 
analyses. It is a gross correction, analagous to deleting obvious muscle bursts 
by visual inspection. 

STATISTICAL CONTROL OF MUSCLE 

x = Observed Muscle (70 H Fite) 

y= Observed EEG (40H.Filer) 

Sy' Predicted EEG from x 

y-y'= 	 DIfference between Observed and Predicted EEG 
-- the EEG Independent of Muscle 

(y-~y= Power Function 

y, =JiX 

y -Vy = y -. X 

where fr 9 iy ir= EX and cy 

then $ - _ Y_
Ex2 EX2 

Therefore 3-(y_y) 2 Eye (-_ .). ;. 

Y2 (CXY)2 

Figure 3. Correctedpower function for the 40-Hz EEG signalis shown at bottom line. It 
is essentially a covariance analysis, in which the variance of the errors of estimate are 
determined for the 40-Hz frequency band when the spectralpower functions are com­
puter-analyzed. 
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A high-resolution print-out, shown in Figure 4, compares the corrected 
spectral-density function for an EEG signal with a spectral function' for 
concurrent muscle. At one-half Hz resolution, it was possible to show clear 
differences in the spectral density distributions for EEG and muscle when 
the corrected power function was used for the EEG signal (Sheer 1973). 

HIGH RESOLUTION POWER SPECTRA OF 0,-P, EEG AND LEFT TEMPORAL MUSCLE 

0-

FREQUENCY (IN 58 Hz INTERVALS) 

FREQUENCY (IN 5S8Hz INTERVALS) 

NOTE THE INCREASE IN THE NOTE THE INCREASE IN THE 
40 Hz BAND IN THE EEG WITH- 50 Hz BAND IN BOTH THE EEG 
OUT A COMPARABLE INCREASE AND THE TEMPORAL MUSCLE 
IN THE TEMPORAL MUSCLE 

Figure 4. High-resolutionspectral-density function print-outof concurrentBEG and mus­
cle actiuity using the FFT digital-computeranalysis. Ordinateis relativepower;abscissais 
the frequency spectrum in one-halfHz intervals. 
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THE COMPARISON OF THE 40H MUSCLE AND EEG RESPONSES 
ACROSS DAYS(TWO PERIODS FER DAY)INTHE COURSE OF 
CONDITIONING WITH DIFFERENT AMPLITUDE-SETTINGS 
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WITH AN INC;REASE INThE AMPLITUDE SETTING TO 9.0, 
THE EEG RESPONSES DECUNE,8UT THE MUSCLE RESPONSES 

-ARE MAINTAINED UNTILTHE EEG RESPONSES SHOW SOME 
CONDITIONING AT 9.0 WHEN THERE ISA SHARP DROP INMUSCLE 
RESPONSES. 

WITH AN INCREASE INTHE AMPLUTUDE SETTING 10 I0.0, 
THE EE RESPONSES AGAIN DECLINE WITH THE MUSCLE RE-
SPONSES HOLDING STEADY UNTIL TH-E EEG SHOWS CONDITION-
ING AT 10.0 WHILE THE MUSCLE RESPONSES ARE MAINTAINED 
ATA LOWER LEVEL. 

FigreDssoiatonofERG and muscle response during the ciourse of conditioningin. 
one subject. Ordinate represents the number of bursts at each of two 15-minute condi­
tioning periods+perday over seven days. It is clear that the ERG and muscle responses do 
not follow the same pattern-witz changes in amplitude settings and conditioning. 

During the course of conditioning in biofeedback training sessions, 
learning curves for the EEG and muscle 40-Hz responses, obtained from the 

*comparators, -were 'compared. The' EEG le~ds 'were a 'bipolar recording from 
0 1 -P3 and the muscle- leads were a biopolax recording from the neck and 
temporal muscles on the same side. The responses were' conrected 40-Hz 
bursts, 75 msec -in duration, .atthe same amplitude threshold for both EEG 
and muscle. Figure 5 shows the learning curves fpr one, subject- when 'the 
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amplitude thresholds were varied during the course of conditioning to em­
phasize the dissociation of EEG and muscle. 

There were two 15-minute conditioning periods per day for seven suc­
cessive days with the reinforcement contingent on the EEG responses only. 
At day 3, with an increase in the amplitude threshold from 8.0 to 9.0, there 
is a decline in EEG responses for three periods until the conditioning effect 
begins to show up as an increase in responses at the first period on day 5. 
The muscle responses follow a quite different pattern. Beginning at the 
second period on day 5, with an increase in amplitude threshold to 10.0, the 
EEG responses again show a decline for three periods until the conditioning 
increases the EEG responses for two periods on day 7. The muscle responses 
do not show the same decline with an amplitude increase to 10.0 on day 5, 
and actually show a decrease in responses on the two EEG conditioning 
periods of day 7. The differential pattern of these curves for EEG and 
muscle obtained with this subject typifies the consistent dissociation be­
tween EEG and muscle responses obtained during the course of conditioning 
with-the on-line comparators. 

Results 

Conditioning and suppression. The data presented here are based on 
two groups of five adult subjects each who were trained to condition 40 Hz 
and one group of five who were-trained to suppress 40 Hz. All subjects had 
one baseline session, during which the amplitude thresholds of both the EEG 
and muscle comparators were adjusted for each individual subject to allow a 
low to moderate level of EEG operants. They then received eight condition­
ing or suppression- sessions with two 15-minute periods in each session. The 
subjects were instructed as follows: "The task is to learn to control your 
own brain waves. The best way to do this is to remain physically relaxed and 
mentally alert. You will know how well you are succeeding by how many 
slides you are able to turn on. The money you earn in these sessions will be 
based on the increased number of slides you turn on and remember, from 
session to session. After each session you will be asked to describe the slides 
you saw." 

For the conditioning sessions the subjects were told that increases in a 
brain wave would turn on the slide projector. For the suppression sessions 
the subjects were told that decreases in a brain wave would keep a.tone off, 
and that for each 30 seconds the tone remained off the slide projector would 
turn on. 

In addition to the digital counts of 40-Hz EEG and muscle bursts, 
another comparator--set at the same burst duration and amplitude level but 
with a filter in the frequency range of'21 to 30 Hz--also counted beta bursts. 

Sf'zt-'s 
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The EEG leads that were either conditioned or suppressed were 0 1-P 3 , the 
muscle leads were from the left neck and temporal muscles, and the beta 
responses were counted from the same 0 1 -P3 leads. 

The EEG from the 0 1 -P3 leads, left neck and temporal muscle, and 
triangulated combinations of these were continuously monitored during the 
conditioning and suppression sessions. An EEG record from a 40-Hz condi­
tioning session and another record from a beta donditioning session are 
shown in Figure 6. Beta conditioning at 21 to 30 Hz from the O1 -P3 leads 
was carried out on additional subjects as control procedures. 

In the 40-Hz conditioning session (Figure 6), the first-event pen indi­
cates the occurrence of beta; the second pen, 40 Hz; and the third, muscle. 
For the 40 Hz on event pen 2 the 60-Hz marker only above the baseline 
indicates that the 40-Hz EEG is contingent with the 40-Hz muscle and thus 
not counted. It is only counted when the 60-Hz marker is above and below 
the line, indicating noncontingency with both 70-Hz EEG and 40-Hz muscle. 
In the beta conditioning sessions, the first event pen, now a 60-Hz marker, 
indicates the occurrence of beta; the second pen, muscle. 

From the triangulation of these leads it is sometimes possible to infer a 
more specific locus for muscle bursts or for distinctive trains of the EEG. It 
is interesting to note that, with the paper speed at 100 mm/sec, it becomes 
clear that what is being conditioned as beta (21 to 30 Hz) is not "desynchro­
nization" but quite synchronous bursts. 

EEG records from the first and seventh suppression sessions are shown 
in Figure 7. The seventh session is distinctly different from the first, with the 
appearance of alpha and the absence of 40 Hz, beta, and muscle. Note also 
the spread of the high-amplitude alpha activity into the muscle leads, 
NML-TML. Apparently there can also be EEG artifact when recording mus­
cle activity. 

The conditioning data on the ten subjects and suppression data on five 
subjects are presented in Table 1. With session 1 as a baseline, the percentage 
changes on 40 Hz, beta, and muscle are shown for these two groups across 
sessions as a function of conditioning and suppression. 

For the 40-Hz conditioning, Friedman signed-ranks analyses of variance 
with N = 10 were computed. On the 40-Hz EEG there was a significant 
difference across sessions at .01; on the beta there was a significant differ­
ence at .05; on the muscle the difference was not significant. 

The same analyses with N = 5 were computed for the 40-Hz suppres­
sion. The only significant difference was on the 40 Hz at .05; beta and 
muscle were not significant. 

On the 40-Hz conditiohing all ten subjects showed a consistent trend 
toward conditioning. The group had a 160-percent increase in 40-Hz re­
sponses from session 1 to 8. On beta responses there was an increase of 65 

4. 
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percent. On muscle responses the session changes were more variable and the 
percentage change from session 1 to 8 of'16 percent was not significant. 

SIXTH SESSION -40 Hz CONDITIONINGO,-TM, 

W01 


0 -NM
 
P -NM ..
 

N\M -TN 

BETA
 

40Hz
 

MUSCLE
 

FIFTH SESSION- BETA CONDITIONINGo-P3 

BETA ' ,c -I 

MUSCLE 2v 

Figure 6. EEG records of 40 Hz and beta conditioning sessions, show~ing the bipolar leads 
recorded and three events inthe top record and two events in the "bottom record,
indicating the occurrence of beta, 40Hz, and musclefrom the conditioned bipolar leads, 
01-'30 NML =left neck muscle, TML = left temporal muscle. Note that with the paper 

speed at 100 mm/sec the conditioned beta (21 to 30Hz) shows up as synchronous bursts 
instead of desynehronization. 

ORIGINAL PAGE 118 
OF POOR QUALITY 



342 D.E. Sheer 

01-TML 'FIRST SESSION - 40Hz SUPPRESSION 

OEIR 

1-NHz 

MUSCLEpNlvlL ~ 1. " 

ANM-O,-TML SEVENTH SESSION-4OHz SUPRRESSION 

40 Hz ro = 

BETA 

MUSCLE 

Figure 7. EEC records of 40-Hz suppression sessions, showing the bipolar-leads recorded 
and three -events, beta, 40 Hz, and muscle, from the suppressed bipoLir leads, Girl's. 
NML = left neck muscle and TML -=left temporal muscle. Note the marked difference in
the record. during the seventh suppression session with 'the presence of alpha and an 
absence of beta, 40 Hz, and muscle. 



TABLE 1. 
Percentage Changes in 40 Hz, Beta, and Muscle Responses from Baseline During O 

the Course of 40-Hz Conditioning and Suppression 
(Conditioning N-10; Suppression N-5) 

,u 

40 Hz-Conditioning 

% Changesfrom Session 1 0 

Session 1 Session Session Session Session Session Session Session h. 
Means 2 3 4 5 6 7 8 C 

40 Hz 186.4 +6% +60% +107% +97% +100% +77% +160% * 

Beta 1017.6 -33% +33% +66% +42% +20% +54% +65% ** 

Muscle 3191.8 -2% +.5% +3% +8% +1% +8% +16% 

40 Hz-Suppression 
Vk % Changesfrom Session 1 

Session 1 Session Session Session Session Session Session Session 
Means 2 3 4 5 6 7 8 

40 Hz 213.3 -23% -2% -3% -22% -64% -75% -79% ** 

Beta 1587.6 +10% +11% -3% -14% -19% -15% -18% 

Muscle 3588.5 -21% -34% -1.7% -20% -17% -23% -15% 

00 *significant at .01 level 
**significant at .05 level 
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THIRD CONTROL SESSION-ON PERIOD 
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01-TML THIRD CONTROL SESSION-OFF PERIOD 
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MUSCLE 

Figure 8. EEC records of alternate 2-minute control sessions 'in.which subjects were 
required to turn 40Hz "on" and "'off"without reinfdrcement feedback. Note the ab­
sence of 40 Hz during the "off"period and marked presence ofalpha with some beta and
musclein the O1-1'8 lead. During-the "'on"period there is considerable 40 Hz and little 
beta. 
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On the 40-Hz suppression all five subjects showed a consistent trend 
toward suppression. For the group the percentage decrease was 79 percent 
on 40 Hz from session 1 to 8, 18 percent on beta, and 15 percent on 
muscle. 

From these data it 	appears that a high degree of operant control of 
40 Hz activity can be achieved by biofeedback training in both conditioning 
and suppression. With proper controls the conditioning of 40-Hz EEG can be 
dissociated from muscle activity. There is a significant but low degree of 
common variance between 40-Hz activity and beta (21 to 30 Hz). The distri­
bution of correlations between 40 Hz and beta for the different sessions, 
combining conditioning and suppression, generally ranged from .35 to .45, 
which indicates about a 20 percent common variance. It is understandable 
that there should be a significant common variance-perhaps larger if error 
variance were reduced-because beta and 40 Hz represent different aspects or 
functioning of a common arousal process, diffuse and focused. At the same 
time it should be recognized that the different functions must have other 
parameters that are distinct and significant because there is a considerable 
variance which is not common. 

Control testing. From one to three weeks after completion of the con­
ditioning and suppression sessions, control-testing procedures were instituted 
to examine how much voluntary control the subjects had over the 40-Hz 
EEG. The test sessions were given once a week and consisted of one 8­
minute-45-second warm-up period in which the same reinforcement feed­
back was provided as in the original conditioning and suppression. This was 
followed by ten consecutive 2-minute control periods consisting of alterate 
five "on" periods and five "off" periods, during which reinforcement was 
not given. 

For the conditioning subjects the instructions for the "on" periods 
were to turn on the brain rhythm that had turned on the slides, and for the 
"off" periods to turn this brain rhythm off. 

For the suppression subjects the instructionsfor the "on" periods were 
to turn on the brain rhythm (40 Hz) that kept the slides off. For the "off" 
periods they were told to turn on the brain rhythm (non-40 Hz) that turned 
on the slides. 

EEG recordings from an "on" period and from the alternate "off" 
period during the third control session for one subject are shown in Figure 8. 
Differences between these two records are clearly evident. During the "on" 
period there is considerable 40 Hz present, little beta, and a good deal of 
40-Hz muscle activity from the NML-TML leads. During the alternate "off" 
period the EEG picture had changed considerably. There is a complete ab­
sence of 40 Hz, about the same beta and less muscle, but now we see a 
straight run of alpha activity. 
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The EEG records during the sixth control session for the same subject 
are shown in Figure 9. Again the differences between alternate "on" and 
"off" periods are clear. During the "on" period the presence of 40-Hz EEG 
is strong, with some beta and 40-Hz muscle activity. During the "off" period 
there is now no 40-Hz EEG or beta, but about the same muscle. The pro­
nounced run of polyphasic muscle activity in the NML-TML leads, primarily 
due to the neck muscle, does not appreciably affect the O1 -P3 EEG leads. 

The data on 40 Hz, beta, and muscle responses for one subject, carried 
through with control-testing sessions from the third to seventh postcondi­
tioning week, are shown in Table 2. There is consistent pronounced control 
over the 40 Hz activity without reinforcement feedback throughout this 
five-week period. On the 40-Hz EEG the mean for the "on" periods was 37.4 
responses, with only two 2-minute periods at zero responses. The mean for 
the "off" periods was 0.48 responses with 17 out of 25 2-minute periods at 
zero responses. On beta the mean for the "on" periods was 151.04 responses 
and the mean for the "off" periods was 55.80 with no zero responses m 
either period. On muscle activity the mean for the "on" periods was 246.18 
responses and the mean for the "off" periods was 180.56, with no zero 
responses in either period. 

For the "on" periods a rank-order correlation (N = 25) between 40-Hz 
EEG and beta was .22; between 40 Hz EEG and muscle it was -.16; and 
between beta and muscle it was .34. For the "off" periods the 40-Hz EEG 
distribution had 19 zeros out of 25 scores and so correlations could not be 
computed. 

On the eighth postconditioning week the subject was given the same 
control session with the same instructions, but he was also required to solve 
a series of problems during both the "on" and "off" periods. The subject 
was instructed, as in the previous five weeks, to turn on brain waves during 
the 2-minute "on" periods and to turn them off during the 2-minute "off" 
periods, but now he was also given three problems to solve during each period. 

On the ninth postconditioning week the control session was repeated 
the same as before without problem-solving. The data for the eighth and 
ninth postconditioning weeks are shown in Table 3. 

When the subject was required to solve the series of problems noted in 
Table 3, he could not turn off the 40 Hz activity as he had done for the 
previous five weeks andias he successfully did for the ninth postconditioning 
week without problem-solving. For the eighth postconditioning week the 
means for 40-Hz EEG were 41.2 responses for the "on" periods and 48.5 for 
the "off" periods. For the ninth postconditioning week they were 25.8 
responses for the "on" periods and 0.4 for the "off" periods. 

This experimental situation seems to be very sensitive to behavioral 
effects on the 40-Hz activity. This subject had achieved quite remarkable 
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Figure 9. EEG records of alternate 2-minute control sessions in- which subjects were 
required to turn 40 Hz "on" and "off" without reinforcementfeedback. Note the ab­
senceof beta and 40 Hz during the "off" periodand marked neck-muscle artifactwhich 
does not show up'in the 0 1 -P3 leads. 
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control over his EEG activity on the basis of conditioning and instructional 
set. He could not maintain this control when given what were apparently 
conflicting instructions to solve problems. 

The voluntary control of 40 Hz activity has generality beyond this one 
subject. Data are presented in Table 4 for four additional postconditioning 
subjects and two postsuppression subjects who.completed the control testing 
during the first postconditioning week. 

Comparisons between the pairs of alternate"'on" and "off" periods for 
the four postconditioning subjects show a definite trend for a higher level of 
40-Hz responding during the "on" periods. However, they also clearly show 
the important effect of individual differences in motivation level when sub­
jects attempt to maintain voluntary control over their own brain rhythms on 
the basis simply of instructional set. Subject Ihad a comparatively low level 
of 40-Hz but was able to maintain the distinction between alternate "on" 
and "off" periods except for the third pair, where he produced only one 
response for each period. Subject 4 maintained a consistently strong distinc­
tion throughout. Subjects 2 and 3 started out, for the first 3 alternate pairs,
with very high levels of 40-Hz responses andclear distinctions between "on" 
and "off" periods, but they reversed on alternatepairs 4 and 5 and produced 
high levels of 40-Hz responses during the~last "off" period in the session. 

The two, suppression subjects followed a consistent pattern. As in­
structed, they were-able to suppress 40-Hz responses during all "off" periods 
as compared with their alternate "on" periods. The mean number of re­
sponses during the "off" -periods was 0.6; for the "on" periods it was 4.2 
responses. These can be compared with the means for the four conditioned 
subjects for whom the mean was 9.15 for the "off" periods and 33.25 for 
the "on" periods. 

Concomitant behaviors. A number of-different 'behavioral probes were 
tried in this training series to see what techniques might be effectively used 
for demonstrating relationships between 40 Hz change and behavior. 

One series of measures focused on remembering the slides used as rein­
forcers. Detailed descriptions of these slides were obtained from subjects
after each conditioning session] Quantitative and qualitative categorizations 
of this descriptive material as related to various measures of 40 Hz change 
failed to reveal any consistent-trends. 

Many different forms of self-reports-interviews, Q-sorts, adjective 
checklists, etc.-have been used with biofeedback training to try toestablish 

,connections with psychological variables. In the present series extensive 
structured and unstructured interviews were conducted withsubjects after 
each conditioning session. From the voluminous material obtained, almost 
any hypothesis could be partially substantiated, depending upon the classifi­
cations made and inferences drawn from theseclassifications. 
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TABLE 2. 
Number of Responses of 40 Hz, Beta, and Muscle for Ten Consecutive S 

Control Periods of Alternate "On" and "Off" 

On Off 5"On Off On Off On Off On Off 

42 15 0 0Third 40 Hz 41 0 36 2 0 0 0 
'post Beta 213 24 175 50 111 24 16 33 117 46 
week Muscle 273 201 259 217 350 168 216 134 279 182 

Fourth 40 Hz 0 0 87 0 5 0 41 0 75 0
 
post Beta 18 7 137 11 33 15 54 7 139 15
 
week Muscle 290 163 107 109 271 182 109 115 85 208
 

Fifth 40 Hz 52 0 1 0 65 0 27 1 8 2
 
post Beta 268 155 209 170 i67 174 195 203 207 202
 
week Muscle 273 156 240 216 274 164 169' 113 251 270
 

Sixth 40 Hz 57 0 15 1 50 0 46 1 39 3
 
post Beta 186 11 83 41 219 17 167 39 204 23
 
week Muscle 240 277 194 195 326 106 286 278 332 258
 

Seventh 40 Hz 37 0 44 1 52 1 35 0 55 0
 
post Beta 156 32 185 29 172 26 210 17 140 24
 
week Muscle 307 211 285 135 233 144 287 176 223 136
 

Note: Subjects were instructed to turn on the brain rhythm that turned the slides on or to keep the rhythm
 
off. Sessions were given once a Week after 40-Hz conditioning. Data represent sessions from the third through
 
the seventh post-conditioning weeks for one subject.
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TABLE 3.
 
Number of Responses of 40 Hz, Beta, and Muscle for
 

Alternate "On" and "Off" Control Periods at Eighth and Ninth Posteonditioning Weeks
 
fox Same Subject Shown in Table 2.
 

On Off On 9ff On Off On Off On Off 
Eighth 40 Hz 35 55 57 43 37 56 46 48 31 40 
post Beta 150 180 206 139 159 172 168 193 115 166 
week Muscle 287 226 210 158 293 184 278 276 281 240 
Correct 
answers 2 1 3 1 3 2 1 2 0 1 
Test items 
(N-3 in each verbal verbal math. math. ravens 
period) . analogies opposites problems problems matrices 

On Off On Off On Off On Off On Off 
Ninth 40 Hz 4 1 27 0 32 1 19 0 47 0 
post Beta 74 36 102 17 140 30 122 17 158 19 
week Muscle 269 197 229 184 275 203 230 270 245 203 

Note:At the eighth week the subject was also required to solve problems as shown, during both "on" and 
"off" periods. While solving problems he could not maintain suppression of 40 Hz during "off" periods.
At the ninth week, under standard conditions, he again had control of the 40 Hz during "on" and "off" 
periods. 
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TABLE 4. 
Number of 40-Hz ktesponses for Alternate "On" and "Off" Control Periods
 

at First Postconditioning Week for Four Additional 40-Hi-Conditioned
 
qqSubjects and Two 40-Hz-Suppressed Subjects 0 

CD) 

40-Hz Conditioning-First Post Week-40 Hz Bursts 

Subjects On Off On Off On Off On Off On Off 

1 13 1 1 0 1 1 4 0 2, 1 
2 35. 13 66 11 86 6 6. 15 5 31 
3 56 2 72 15 61 5 2 9 20 61 w 
4 30 1 26 2 30 1 22 4 27 4 

- . 40-Hz Suppression-First Post Week-40 Hz Bursts 0 

Subjects On Off On Off On Off On Off On Off 

1 0 6 3 4 1 2 1 1 1 2
 
2 0 4 0 10 0 2 0 5 0 6
 

Note: Instructions to suppressed subjects during "off" periods were to turn on brain rhythm 
(non-40 Hz),that kept slides on. During "on" periods they were instructed to turn on brain 
rhythm (40 Hz) that kept slides off. 
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POST- CONDITIONING TEST 

0-P 

O-P
 

P,-C5
 

,
,WIRST SLIDE DELAY PERIOD 
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BETA 
SECOND SUDE 40Hz 

MUSCLE ?2O,,,I I SEc , 

Figure10. EEG recordofa posteonditioningtest sessibn in which subjects were r&quired to 

solve problems presented as questions (first slide) and multiple choice answers (second 
slide). Note the marked occurrenceof 40 Hz and the absence of beta with the presenta­
tion of the first slide and particularlyat the beginning of the second slide in the 0 1 -P3 
leads. When a large muscle burst occurs with the verbal answer-at the end of the second 
slide in the muscle leads as well as the 0 1 -P8 leads, the 40-Hz bursts arenot counted on 
the 40-Hz event pen because of comparatorcontingencies. Note-also that the condition­
ingof the 0 1 -P3 leads does not appearto carry over to the 0 2 -P4 leads. 
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Based on the literature and our previous work on 40 Hz, we set up pre­
and postconditioning test sessions on problem-solving tasks for five condi­
tioned subjects. Each test session consisted of 5-minutes pre-baseline, two 
10-minute sets of problems, a 10-minute interpolated activity, and 5 minutes 
post-baseline. 

During each 10-minute .problem-solving period five test items were pre­
sented. Each item consisted of a problem presented on a slide for 30 sec­
onds, followed by a 15-second pause, and then another slide with multiple­
choice answers on for 60 seconds. An EEG record of a-postconditioning test 
trial is shown in Figure 10. 

For the pre- and postconditioning test sessions, the electrode leads 
recorded include 0 2 -P4 , P3-C3, and P3-T3 to obtain some idea of what 
spread may have occurred from conditioning the O1 -P3 leads. As can be seen 
in the figure, the marked occurrence of 40 Hz in the O1 -P3 leads toward the 
end of the first slide and the beginning of the second slide does not gener­
alize to the 0 2 -P4 leads on the opposite side and also does not appear to 
spread in either the P3-C3 or P3-T3 direction. Of interest is the complete 
absence of beta even though there is considerable 40 Hz present during this 
problem-solving situation. Note -also the -high amplitude polyphasic muscle 
burst which represents the subject's verbal answer. It spreads into the O1 -P3 
leads, but the 40-Hz EEG-event pen does not register any responses because 
of the comparator contingencies. 

The data on 40-Hz responses and-test Performande, comparing pre- and 
postconditioning- test sessions, are shown in Table 5. The pre- and post­
baselines and memory for words were controls for the two problem-solving 
tasks, modified forms of the -Minnesota Paper Form and Differential Apti­
tude Test. Mean number of 40 Hz responses before and after conditioning 
showed no significant differences on the baseline and "words" conditions. 
There were significant mean increases in 40-Hz responses on the two prob­
lem tasks, with all five subjects showing a rise during both problem-solving 
periods. On the test performance measure, that is, the number of correct 
responses on- both sets of problems, there was a significant-improvement by 
all five subjects after conditioning. 

The data on behavioral correlates of the 40-Hi EEG appear promising. 
The results show that, with proper controls, this electrical activity can be 
conditioned and that some degree of voluntary control can be achieved, 
although with a good deal of individual variability. The. important questioi 
still remains: can changes in this brain electrical activity bring along changes 
in behavior that have sufficient generality and stability to be significant? 
Systematic behavioral analysis, with a focus on generalization and transfer 
effects through a range of subject populations, is certainly required before 
firm conclusions can be drawn. 

iZ.cc 
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TABLE 5.
 
Data on Pre- and Postconditioning Test Sessions for Five
 

Subjects Conditioned on 40-Hz EEG
 

Mean number of 40-Hz bursts during baseline and testsessions before and after
 
conditioning for five subjects
 

Pre- MPFB DAT Post-
Baseline Problems Problems Words Baseline 

Before
 
conditioning 21 37 41 77 58
 

After
 
conditioning 23 141 158 121 22
 

Number subjects
 
increasing 2 5 5 3 3
 

Mean number of correct responses in test sessions before and after conditioning
 
for five subjects
 

MPFB DAT 
Problems Problems- Words 

Before
 
conditioning 2.6 1.6 11
 

After
 
conditioning 4.0 4.4 16.6
 

Number subjects
 
improving 5 5 3
 

Notes: Pre-andpost-baseline:Five minutes of'EEG recording during rest before 
and after test sessions. MPFBproblems: Two equated sets of five items each from 
the Minnesota Paper Form Board Test, one set given before and another set after 
conditioning. For each item the problem was presented on a slide for 30 seconds, 
followed by'a 15-second pause, and then followed by a multiple-choice answer 
slide which was on until the subject'answered, or for 60 seconds if there was no 
answer. Score was the total number of correct answers. DATproblems: Two 
equated sets of five items each from the Differential Aptitude Test, one set given 
before and another set after conditioning. The procedure was the same as for the 
first group of problems. Score was the total number of correct answers. Words: 
Thirty words were presented on slides, one word per slide on for one second, 
with a 15-second pause between slides. Score was the number of words correctly 
remembered after the session. 
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Theory 

The background for biofeedback training of 40 Hz has been reviewed in 
the introduction. Briefly, learning and problem-solving behavior must de­
pend on short-term memory processing; and, in turn, memory traces in 
short-term store-dynamic organizations which are time-dependent, state­
dependent, and context-dependent-must take the form of patterned elec­
trical brain activity (Sheer 1970, Sheer 1972). The 40-Hz EEG reflects a 
state of localized cortical excitability or focused arousal, which is "optimal" 
for consolidation in short-term store. 

There is a unique value in the EEG because it provides an index of the 
combined activity of masses of cells, and it is precisely this combination that 
is of major interest in the analysis of molar brain function. The effective use 
of EEG data lies in synthesizing the framework within which molecular 
analysis can be carried on, in the fashion that Sherrington reflex physiology 
provided the essential molar concepts on which the analysis of the electrical 
properties of the spinal motoneuron has been based. From our correlations 
between 40 Hz and problem-solving behavior, we can go on to a considera­
tion of the mechanisms for this electrical activity. 

The strongest, most pronounced 40 Hz occurs in rhinencephalic struc­
tures, particularly the olfactory bulb, through a range of species~from catfish 
to man (Sheer and Grandstaff 1970). At the.olfactory bulb the essential and 
sufficient stimulus is airflow; at the amygdala airflow is essential but a cer­
tain level of arousal is also necessary (Pagano 1966, Sheer, Grandstaff, and 
Benignus 1966); and at prepyriform cortex 40 Hz can be conditioned to 
neutral stimuli (Freeman 1963). All this is very interesting because in quad­
ruped animals olfaction is a distance receptor, and sniffing-taking in stim­
uli-is an important orienting response. 

In the olfactory bulb laminar structure is first encountered in a much 
simpler form than in neocortex and'an analysis of mechanism should be 
easier to come by. The evidence is strong that the 40-Hz waves in the 
olfactory bulb are standing potentials derived from synaptic and post: 
synaptic events, with the synchrony attributable to successive trains of exci­
tation and recurrent inhibition. The property of recurrent inhibition is essen­
tially negative feedback which functionally contributes to the phasing of 
rhythmic discharges (Andersen, Eccles, and Loyning 19.63; Granit 1963; 
Eccles.1965; Andersen and Andersen 1968). 

Rall and Shepherd (1968) and Shepherd (1970) made an elegant de­
tailed analysis of a dendrodendritic synaptic interaction as a mechanism for 
this rhythmic activity in the olfactory bulb. Air flow excites bipolar receptor 
cells in the olfactory mucosa, whose axons form the olfactory nerves synaps­
ing within encapsulated glomeruli with dendrites of tufted and mitral cells. 
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Impulse discharge in mitral cells results in synaptic excitation of granule 

cells; these granule cells then deliver graded inhibition to mitral cells. This 

inhibition cuts off the source of synaptic excitatory input to the granule 

cells. As the granule-cell activity subsides, the amount of inhibition delivered 

to the mitral cells is reduced, which permits the mitral cells-to respond again 

to excitatory input from the glomeruli. In this way a sustained excitatory 

input to the mitral cells would be converted into a rhythmic sequence of 

excitation followed by inhibition, locked in timing to a rhythmic activation 
of the granule-cell pool. 

At the neocortex there exists a more complicated situation for which 

details on mechanism are lacking. Stefanis and Jasper (1964) and Jasper and 
Stefanis (1965) reported that the axon collaterals of cortical pyramidal cells 

in cats are facilitated at relatively high frequencies of repetitive excitation. 

The negative feedback of recurrent inhibition provides an automatic control 

of level of excitation-the greater the excitation, the more the feedback of 

inhibition. 
The point is that the 40-Hz EEG reflects repetitive stimulation at a 

constant frequency for a limited time over a limited circuitry. The circuitry 

is defined behaviorally by the spatial-temporal patterning of sensory inputs, 

motor outputs, and reinforcement contingencies. It is "optimal" for consoli­

dation because repetitive synchronous excitation of cells maximizes the 
efficiency of synaptic transmission over the limited circuitry. 

Eccles (1964) has well documented this property of frbquency potenti­
ation by measuring the size of excitatory postsynaptic potentials that de­
velop with repetitive activation at different frequencies. The duration of 
constant repetitive discharges is probably as significant in the transfer of 
information as is the intensity of neuronal firing or the number of cells 
involved. From quantitative studies in the spinal cord, Granit (1963) con­
cluded that frequency of firing was 'the main code determining rate of con­

tinuous discharge in control of tonic motoneurons. At the human somato­
sensory cortex, Libet et al. (1967) have shown that subthreshold stimulus 
pulses could elicit conscious sensory experience only if they-were delivered 
repetitively at 20 to 60 pulses per second. 

A significant outcome of this feedback loop-wherein frequency poten­
tiation sets -up recurrent inhibition which sets up synchrony which sets up 
frequency potentiation--is the property of contrast. The negative feedback 
of recurrent inhibition -particularly depresses those synapses that are weakly 
excited in the "surround" and so serves to further sharpen the focus of 
excitation. Behaviorally it is reflected, on the input side, in sharpening of 
attention to relevant stimuli and, on the output side, in decreasing extrane­
ous responses and greater precision of relevant movements. The operation of 
contrast as a function of surround inhibition has been detailed for the somes­
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thetic system (Mountcastle 1961), the visual system (Hubel and Wiesel 
1962), and audition (Whitfield 1965). 

There is evidence that this repetitive synchronous excitation of cortical 
cells is dependent upon cholinergic pathways approaching the pyramidal 
cells of layer V. These pathways provide the final stage in the ascending 
reticular activating system that arises from the tegmental and reticular nuclei 
of the brain stem (Shute and Lewis 1967). Direct stimulation of the mesen­
cephalic reticular formation enhances the release of acetylcholine and is 
correlated with an EEG activation pattern (Celesia and Jasper 1966). 

With the exception of its nicotinic action on Renshaw cells, acetyl­
choline's effect on neurons in the cortex is slow in onset and offset, not 
suitable for rapid "detonation" transmission, but functional in the modula­
tion of the excitability of cortical input cells (Krnjevic 1969). In their early 
work Dempsey and his colleagues (Chatfield and Dempsey 1942, Morrison 
and Dempsey 1943) reported that repetitive excitation after single stimula­
tion of a peripheral nerve was greatly increased after application of acetyl­
choline to the cortex of cats. This work has been extended by Krnjevic and 
Phillis (1963), who found that acetylcholine enhances rhythmic after­
discharges following sensory volleys, and by Spehlman (1971) who found 
that it facilitates the firing rate of cortical units activated by reticular stim­
ulation. 

Behaviorally, the importance of the reticular activating system in the 
consolidation process has been detailed by Block and his colleagues (Block 
1970). They showed that direct reticular stimulation, when applied imme­
diately after registration,of information, considerably facilitates learning; the 
effect is less when the stimulation is delayed until 90 seconds after the 
learning trial. In addition, under certain conditions, posttrial reticular stimu­
lation annuls the effect of fluothane anesthesia, which by itself prevents 
consolidation. 

A series of studies has shown further that learning may be impaired by 
drugs that inhibit and facilitated by drugs that increase acetyicholine action. 
Atropine blocks the cortical postsynaptic effects of acetylcholine release and 
induces a slow-wave, high-voltage EEG pattern. Although behaviorally there 
is no concomitant appearance of drowsiness or sleep, atropine does affect 
learning. It depressed the performance of learned avoidance responses (Herz 
1959) and auditory discrimination learning in rats (Michelson 1961), but, in 
both studies, only when administered during the early stages of training. 
Other impaired tasks include successive discrimination learning (Whitehouse 
1964) and learned alternation and complex multiple-choice discrimination 
(Carlton 1963). On the other hand, physostigmine, which increases acetyl­
choline action, facilitated one-trial avoidance by rats when administered a 
few minutes before training trials (Bures, Bohdanecky, and Weiss 1962). It 
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also improved the rats' learning of a Lashley III maze when administered 30 
seconds after each daily trial (Stratton and Petrinovich 1963). Physostigmine 
impaired learning in both situations when given in larger doses, which recalls 
the U-shaped function-between activation level and behavioral-efficiency. 

The network we have woven here is a long way from the correlation 
between 40-Hz EEG and problem-solving behavior, and its value is primarily 
heuristic. It makes connections between a number of related research areas 
in a context that should provide choice points for experimental testing.* The 
research strategy for such complex functions as memory processing would 
seem to require a two-step procedure as was followed here: first, to establish 
correlations between behavior and critical patterns of organized electricity; 
then, to focus attention on the physical and chemical mechanisms that are 
the basis for these organizations. The two steps seem required because, on 
the one hand, units and mechanisms in isolation are unlikely to be directly 
correlated with the complex behavior represented by memory traces; on the 
other hand, correlations between behavior and electrical organizations are 
only a first step toward an analysis of underlying mechanisms. 

Summary 

A specific pattern of brain electricity, a narrow frequency band center­
ing at 40 Hz, reflects a state of circumscribed cortical excitability or focused 
arousal which is "optimal" for consolidation in short-term store. On-line 
control procedures have been developed to reliably record and digitally 
count this low-amplitude EEG activity independent of-muscle artifact. 

A high degree of operant control of the 40-Hz EEG can be achieved by 
biofeedback training in both conditioning and suppression. In control testing 
sessions following conditioning and suppression training, some degree of 
voluntary control has been demonstrated when subjects alternately turned 
the 40 Hz on and off only upon instructional sets. The generality and stabil­
ity of relationships shown between the conditioned 40-Hz EEG and 
problem-solving behavior requires further systematic verification. 

*Work in progress in our laboratory shows a significant spectral coherence, a lock-in at 40 
Hz, between mesencephalic reticular and cortical visual and motor areas when the cat is 
beginning to meet learning criteria in a successive visual-discrimination task. 
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Project
 

(A) Project Title: Biofeedback Training of 40Hz EEG Activity
 

In Humans: Relationships to Cognitive
 

Performance, Voluntary Control, Subjective
 

States and Autonomic Activity
 

(B) Project Abstract:
 

Forty Hertz EEG was examined in a group of 49 male
 

university students during problem-solving tasks and during
 

resting baseline conditions. Following the completion of
 

the Pre-Test problem-solving phase subjects were then trained
 

using biofeedback procedures; to either increase or suppress
 

40Hz EEG and were again tested on the Post-Test which was an
 

equivalent form of the Pre-Test. Thirty-two subjects com­

pleted this phase of the.study.
 

Forty Hertz EEG and beta (21-30Hz) were recorded from
 

the 01-P3 lead in 25 subjects during the Pre-Test condition. 

Forty Hertz EEG was recorded from the Cz-O 1 and Cz-O 2 leads, 

and theta, alpha and beta were recorded from either Cz-Oior 

Cz-0 2 leads in 24 subjects. Forty Hertz muscle activity 

was monitored from the left or the left and right neck' 

temporal muscle for all subjects. Forty Hertz and 70Hz from 

the muscle leads were compared using coincidence detectors 

to prevent counting 40Hz generated from the muscle leads as 

EEG responses. EEG and muscle filters were set to trigger 

a digital output when three cycles of electrical activity 



was present. Heart rate was recorded from a total of 14
 

subjects.
 

Thirteen subjects were given a Control Test following
 

biofeedback training to measure the degree of voluntary
 

control in the absence of feedback.
 

Subjective state analysis was performed on a total of
 

31 subjects at various stages in the experimental sequence.
 

Q-Sort items, representing descriptions of theta, alpha,
 

beta and 40Hz EEG states were sorted into four subjective
 

feeling categories.
 

The 	following results were obtained:
 

1. 	 Forth Hertz EEG was. significantly greater during prob­

lem solving as compared to a-testing'baseline.
 

2. 	 Following biofeedback training, subjects who were con­

ditioned to increase 40Hz EEG had significantly more of
 

this activity during the tasks condition of the Pbst-


Test as compared to the tasks condition of the Pre-Test.
 

Those subjects who could not be conditioned to increase
 

40Hz EEG-had significantly less of this activity during
 

the tasks condition of the Post-Test as compared to the
 

tasks condition of the Pre-Test.
 

3. 	 Strong and consistent dissociation between 40Hz EEG and
 

40Hz muscle activity, and 40Hz EEG and beta (21-30Hz)
 

were demonstrated.
 

4. 	 Significant increases in Cognitive performance occurred
 

across all groups between Pre-and Post-Tests and was
 



probably due to a general practice effect. However,
 

one group, trained to increase 40Hz from the OI-P 3
 

lead, showed increases in performance that could not
 

be completely attributed to practice effect alone.
 

5. 	 Voluntary control of 40Hz BEG in the absence of feed­

back information was shown for nine subjects, and this
 

control persisted at least nine weeks after training.
 

6. 	 Subjective state analysis indicated high arousal and
 

mental concentration during 40Hz increase state, and
 

low arousal and little mental effort during the 40Hz
 

suppress state.
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Project
 

(A-) Project Title: 	 Biofeedback Training of 40 Hz EEG in Humans:
 

Effects on Other EEG Rhythms and Autonomic
 

Activity
 

(B) Project Abstract:
 

Biofeedback procedures have been employed to establish
 

control over several EEG rhythms in humans and animals.
 

This study demonstrated successful training of human sub­

jects to increase and suppress a high-frequency EEG rhythm,
 

centered at 40 Hz, using biofeedback procedures. Successful
 

biofeedback training of EEG in one hemisphere also produced
 

comparable changes in the opposite, untrained hemisphere-.
 

Substantial dissociation of 40Hz EEG from potential muscle
 

contaminators of EEG and from Beta EEG occured in biofeed­

back training. No significant changes were found for Alpha
 

and Theta EEG, and heart rate. However, objective measures
 

of Subjective correlates of 40 Hz EEG showed that changes in
 

subjective awareness 	followed biofeedback-produced changes
 

in EEG. Data suggested that procedurea variables and vari­

ables related to individual differences significantly in­

fluenced EEG biofeedback learning. The potential of EEG
 

biofeedback for research on EEG-behavior -relationswas
 

discussed.
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Project
 

(A) 	Project -Title: Biofeedback Training of 40 Hz EEG in Humans:
 

Follow-Up on Control, Generalization of
 

Effect, and Maintenance of Control During
 

Problem Solving
 

(B) Project Abstract:
 

Long-term voluntary control of 40Hz EEG activity was
 

investigated in six subjects, originally trained to increase
 

and suppress 40Hz EEG in a previous study. The elapsed time
 

between initial biofeedback training and follow-up control
 

testing varied from one to three years. No practice ses­

sions were held during this period. Subjects were first
 

instructed to alternately-produce and suppress 40Hz EEG with
 

feedback. Feedback was terminated for subsequent periods
 

if and when consistent control was shown. During the final
 

session, subjects were given a battery of test items and
 

were instructed to alternately produce and suppress 40Hz EEG
 

while solving problems. Forty Hertz-EEG was monitored from
 

the,Ol-Cz O2-Cz, P3Cz 2 4-z leads during training and
 

problem solving periods. Forth Hertz EMG was recorded from
 

neck-temporal muscles. on-line comparator circuits pre­

vented counting 40Hz EMG as 40Hz EEG.
 

Significant control of 40Hz EEG, without feedback, was
 

shown for five of the six subjects. One subject was erratic
 

only in the production of.40Hz EEG. Significant control was
 

.V .3$A ­



shown to generalize to the O1-Cz, O2-Cz, and P3-Czleads, re­

gardless of which lead had been reinforced. The amount of
 

40Hz EEG during the suppression periods, while solving prob­

lems, was significantly greater than during the suppression
 

periods without feedback.
 

It was concluded that,. following biofeedback training,
 

long-term voluntary control of 40Hz EEG can be maintained
 

for long periods of time. Furthermore, though the greatest
 

control was demonstrated at the conditioned lead, the
 

effects did generalize to other nonconditioned leads, indi­

cating that it is 
an overall state that is learned. Finally,
 

40Hz EEG could not be suppressed during problem solving
 

periods as compared to suppression periods without feedback.
 

This further supports the association between 40Hz EEG and
 

mental activity.
 

Other topics which were investigated were the changes
 

in alpha and beta production during the training and problem
 

solving sessions and the performance aspect during the 40Hz
 

EEG productio' and suppression petiods while problem solving.
 

Relevance of the results of this study'to the training of
 

MBD children was discussed.
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Project
 

(A) 	Project Title: Theoretical Aspects of (1) Hydraulic
 

Deliquoring, (2) Rotary Drum Filtration,
 

and (3), Disc Filtration
 

(B) Project Abstract:
 

This work deals with theoretical aspects of com­

pressible cake filtration and continuous rotary vacuum
 

filters.
 

Reduction of moisture in filter cakes is important
 

when heat requirements for drying are excessive. During
 

filtration, the porosity of the cake is lowest at the points
 

of maximum accumulative drag or lowest hydraulic pressure.
 

By reversing the-flow through the cake, it is possible to
 

reduce the average porosity and hence the moisture content
 

of the cake.
 

An equation is developed for calculating filtration
 

rates in a rotary vacuum drum filter, taking into account
 

finite partitioning-of the drum, variable hydrostatic head
 

and medium resistance. Constant-average specific resist­

ance of the cake is assumed. Formula-based on sectioning
 

gives rates which vary as much -as 15% from those presently
 

in use. The emerging cake varies in thickness in a periodic
 

manner because portions of a section are subjected to vac­

uum for different cake formation times. This variation in
 

thickness of the emerging cake can be as much as 20% and
 



therefore accounts for the difference in the conventional
 

and the proposed formula.
 

Analytical formulas for the overall filtration rate
 

through a continuous rotary disc filter are developed.
 

Previously theoretical equations have not been available
 

for 	design purposes. In this derivation the-following are
 

taken into account:
 

1. 	Division of the filtration surface into N equal
 

radial sections with inner and outer radii of
 

R and R2
 

2. 	Separation of sections by a blank strip
 

representing a dead area for flow
 

3. 	Variable hydrostatic head
 

4. Medium resistance.
 

It is- shown that-the inner radius- 1 can b6 optimized to
 

produce a maximum rate of filtration. A simple rule is
 

presented-for calculating the inner radius. The flow rates
 

of disc and rotary drum filters are compared.
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Project
 

(-) -Project Title: 	Mechanical Expression, Stresses at-Cake
 

Boundaries and New CP Cell
 

(B) Project Abstract:
 

Expression or squeezing operation under constant pres­

sure was analyzed taking into account the medium resistance.
 

A non-linear partial integro-differential equation represent­

int the squeezing operation was solved using numerical meth­

ods. A computer program was developed to calculate transient
 

pressure profiles and-the, cake thickness as a function of
 

time. The problem was solved in two different coordinate
 

systems.
 

Apparatuses were developed to measure the stress dis­

tribution on the boundaries of fitter cakes compacted under
 

mechanical pressure. It was discovered that for thin cakes
 

the stress distributions on the bottom and at top are bell­

shaped and not flat profiles as assumed by investigators in
 

this field.
 

An improved compression'petmeability cell was developed.
 

In this apparatus, the hydraulic pressure profile was mea­

sured inside the cake at the center and at the wall. The
 

filtration resistance was determined-from slopes of the
 

curved profiles. Previous calculations have been made on
 

the assumption of linearity of hydraulic pressure.­
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Project
 

(A) 	Project Title: A Chain of Factored Matrices for Routh
 

Array Inversion and Continued Fraction
 

Inversion
 

(B) Project Abstract:
 

A chain of factored matrices is derived for formulat­

ing the Routh array if the first column of the array is
 

known. The factored matrices may be used to perform the
 

conversion of a continued fraction into a rational func­

tion. A set of tables based on the second Cauer form of
 

continued fraction expansion is also included. These
 

tables are the approximated rational functions for the
 

commonly used irrational function s and the transcen-
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dental function e
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A chain of factored matrices for Routh array 
inversion and continued fraction inversiont 

L. S. SHIEH, W. P. SCHNEIDER and D. R. WILLAMS 

Department of Electrical Engineering, University of Houston, 
Houston, Texas 77004 

[Received 17 March 1970] 

A chain of factored matrices is derived for formulating the Routh array if the first 
column of the array is known. The factored matrices may be used to perform the 
conversion of a continued fraction into a rational function. A set of tables based on 
the second Cauer form of continued fraction expansion is also included. These tables 
are the approximated rational functions for the commonly used irrational function 
4a and the transcendental function e0. 

1. Introduction 
In 1877, Routh supplied the sufficiency condition for asymptotic stability' 

of a linear, lumped, stationary system when the characteristic equation of 
the system is known. This condition can be obtained by checking the sign 
change of the first column of a Routh array. Kalman and Bertram (1960) 
directly constructed the Lyapunov function in Schwarz's coordinate by using 
the coefficients of the characteristic equation of the linear, lumped, stationary 
system. Ohen and Chu (1966) linked the relationship between the Lyapunov 
function of Kalman- and Bertram with the terms- f the fi&9Y 'dofinrii hf the 
Routh array, and revealed the fact that the linear transformation- matrix 
between Schwarz's coordinate and the phase variable coordinate could be 
constructed with the elements of the first column and those of the other elements 
of the array. Csaki and Lehoczky (1967) connected the relationship between 
the elements of the first column and weighting factors without considering 
the initial conditions. 

Routh's algorithm and continued fractions were associated by Wall (1945) 
and Frank (1946). In these works, the elements of the first row are those of 
the denominator of a rational function, while the row two elements are replaced 
by the coefficients of the numerator of the rational function. The other row 
elements are obtained using Routh's algorithm. In this case the formulation 
of the zig-zag pattern no longer gives the true Routh arfay. It cannot be used 
to judge stability according to the sign changes in the first column. In order 
to simplify this discussion, we can define a problem in the following manner. 

The elements of the first and second row of-an array are given according to 
the Wall and Frank formulation. The other rows are determined according to 
the Routh algorithm. For simplicity we still call such a pattern a Routh array. 

The problem to be discussed is that of determining the elements of the other 
columns of such a Routh array when the elements of the first column are known. 
We call this an inversion problem for the Routh array. Recently Chen and 
Shieh (1969) proposed an algorithm to systematically treat this inversion and 
they revealed the fact that the third, fifth, ... , rows of the Routh array can.be. 

t Communicated by Professor D. R. Williams. 
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used to formulate a linear transformation matrix between the second Cauer 
form in state-space coordinates and the phase-variable coordinate. If this­
appr6ah is used, many determinant calculations are required. In a letter 

a formula for continued fractionrelated to this topic, Chen (1969) offers 
inversion. In the method shown by Chen, many iterative calculations are 
required. Recently Chen and Shieh (1970) derived a matrix for control system 
design; this paper proposes an alternate expression for the matrix such that 

the inversion of the Routh array and continued fraction can be performed. 

2. Analysis and observations 
Consider a Routh array where the Routh elements are given and identified 

by double subscript notation: 

All A12 A18  Al 4 ... 

A21 A 22 A28 -.. 

As1 A 82  ... (1) 
SAu ... 

The general formulation between the elements can be written: 

1 -,+ Aj-tiAJ-lik+l j= 3,4,...,'j+I, I=- 1,2,Ln.. -1. (2) 

Now let.us define a-new constant. .. .. 

A,=A(,+ 1)1 ' p=l,2,..., A_,#O, (3) 

where-the h is a quotient of the neighbouring terms of the first column. In 
order to observe the relationship between these h terms and the elements of 
the first two-rows, we can-express tlie-Routh arriy elements 

A. (k=l,2,...;j=3,4,...) 

in terms of the A, terms, p=1,2,..., and the A ,(k=l,2,...;j=l, 2 ) 
terms and insert an extra column for the h terms in the Routh array. We will 

then have the-following alternate form for eqn. (1): 

An A....
 

A A2 As ....
 

A3< - hz A 2 Als -hA A14 - Al A24 .... 

A4 A- 2 (A147A A4)(4)3 < 

Azs - hl A23a - h3(A 23 - h2[Az - hlA 24]).. 
A < 
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From eqn. (3), it may be noted that 

h, = 411, h2 = A21 ORIGINAL PACE IS 
A 21 A 2 -h1 A22 ' OF POOR QUALIT 

A3 Al 2 -hAA 22
h A22K_h(Al3-h A2,), (5) 

A22h2(Aj3-hlA23)
= A1A hla_h2 -h3LA23h4 _(A14 -hi A)],
 

We can rearrange eqn. (5) to obtain: 

All = hlA21, 

h2Aj2 = A 21+hhA24 22, 
A + h2h3A 3= (hl+h) A2+h h2hA2), (6)

(h + h4)Al3 +,h hah4 A,4 = A2+(hilh2+ hh4+ hah4)A2a+ h h hahCA2
 

A matrix form for eqn. (6) can beformulated as follows: ...
...............
 
[...712h74 (h+h4) 0 0 A14 

0 
O, 

(Ah-
0 

1 
h2. 

0 
0 i A,3

A 12 

0 0 -0 4 JL All 

rhh2A3A4 (Ah,h2+AhA 4+ 1 0 [A2 
0 hA 2 hA3 (h+h) 0 A23 . (7) 
0 
.0 

0 
0 

h hA2 
0 

I 
h1 

A 22 
A2 

In order to reduce the symbological complexity, we can define the n x n matrix
of the left-hand side Of eqn. (7) as HL-,and the n x n matrix of the right-handside of the equation as HnR, With this notati6n the superscript n indicates
the size of the square matrix while the subscript L or R indicates which side 
of the equation it occupies. 

... ...............
1
 
.. 4 ) 0hhh 0h2 +A 0 

HLe= o h2 ,a 1 0 (7 a) 
0 0 hA2
 

0 0 O'1 
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and 

.. (hlh2+hh4+hh4) 0hsA273hs 4 1 

Hj = 0h h2 h (h +hs) 0 (7 b) 

0 0 hl 2 1 
I. 0 0 0 Al 

In general the He and Hj n are not easy to remember, particularly when n 
is high; however, we can decompose He and Hin into a chain of matrices 
which may be called the factored form. To demonstrate this procedure we 
choose n = 4 this means that, h, h2,h3, h4 being known, the 4 x 4 square matrix 
can be written as H2 and H4 which are obtained by a partitioning of the general 
matrix He and Hj. By taking the lower right-hand-corner-of thC!i'and 
HR" matrices we determine: 

hh7 (h2 +h4) 0 0] 

H1 40 h2 h 1 0 (7 c) 

0 0 A21
 

and 
[kh2hSh4 (h h2+kh,4 -h3 h4) 1 0 

0 hh (h+hs) 01 A2ha 
0 0 h *2 I " 

o 0 0 -h 

1 1REach H2 and H can be-decomposed into four matrices as follows: 

41 A2 1 

HRA 3 ][(9) A2 

hx 1 1I
 

1 1 1]
 

We observed that H 4 can be obtained from eqn. (9) by taking the last three 
matrices from the right-hand side of eqn. (9) and substituting j = 1; 2,..:, by 

f t 9 
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hj+, for hi. The last three matrices of eqn. (9) axe then: ORIGINAL PAGE IS 

3h h1l 1 h OF POOR QUALITY']l 
2h	 1 i 1j 

A1 	 1 1 

hs 1 	 h 

1h2 


A 1 1 1 
HL1 (10). 

We also observed that the sequential distribution of-h's-in eqn. (9) is more 
regular than that of eqn. (8), therefore we will concentrate on eqn. (9). 

In general if a terms of h's or h(j = 1,2, ... ,n) are known then we have n 
factored matrices such that 

H-	 = HH =, . ._ . , (11) 
1-1 

where H is a n x n matrix where the elements are such that if we define H,(1, k) 
as an element at tth row and kth column in Hj, matrix then: 

Ij(1, 1)=.Auj+._., .1 = 1,2 .... j, 
1,1+1) =1, 1= ,2...j-t,) 	 (ha) 

H(i)1., l=3+l,...,n if j<n. " 

All other elements in H! are zero. Of course: 
-'n--1 	 "I

In 
HL= 41 (11 b) 

J-1 Isubstitute hA+ for h(j = 1,2,...).1 

From eqns. (7c, d) we can make"the following observations: 

(1) The first row of the-Routh array is in a one-to-one correspondence to the 
first-row of the H1 Ri 	 matrix. 

(2) 	The second row of the Routh array can~be-obtained by: 
(i) substituting hk+1 for h (j = 1, 2,...) in the second row of the Hjin 

matrix; 
(ii) dropping the zero first element and shifting the complete second row 

one column to the left., 

(3) 	 The third row of the Routh array can be obtained by: 
(i) substituting h,,, for h, (j = 1,2, ... ) in the third row of the 1HR matrix; 

(ii) 	dropping the zeros-of the first two elements and shifting the complete 
third row two columns to the left. 

In general we discard the zeros at. the lower triangular matrix of He and 
shift all the elements to the left. After this step we modify Hen by substituting 

n. Aj_-. for h (j-= 12... ,n;, 2 ...,n) into each lth row of H From this we 
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observe that the new formulated matrix, called [A], is the required Routh 
array, for example n = 4: 

hl 2 hA74 (k1 A72±A1A 4+A3A 4) 1 0] 
0 hiA2Ah (h+h) 0 
=0 Aoh2 1 
0 0 0 h 

[(kh1-h 2,h2-*h 3,Ah 4) (A1"+AAh--3 ( ) 
and shift whole.elements to the left: 

1A2 4 " (h 1 2 +AA 4 A 3A 4) 0 
ha78h4 02+i 0 

A4 0 00] 

[A] 

Al A12 A13 Aid
 

= A, A2 A2 A2
As, A32 A33 A34, (12) 

A41 A 42 A 43 A44 
Note that in this ease the element A(,+ 1 .) = 1 or A,- -1 if the given
A(n+1I) $1 then all elements of [A] must be multiplied by a normalization 
factor A(,n+,). Thus we complete the Routh array inversion.' 

In case we are not given the first column, but all the h's are given, we 
know that the first row and the second row of the Routh array are in one-to-one 
correspondence to the coefficients of the denominator and the numerator of a 
respectively rational function which was arranged in ascending order. A 
continued fraction expansion can be formulated by these h's. If a rational 
function f(8) is given: 

f(s) = b,+b 28+bes2 +...
2 +b_..I M+a mai+a2 s+a,8+... , (13) 

then we arrange the coefficient of the denominator of eqn. (13) as the first row 
of the Routh array or A n = al,Al 2 = a2 , ... , and that of the numerator of 
eqn. (13) as the second row of the Routh array, i.e. A21 L bl,.., the Routh 
array, is: 

A1 1 A1 2  A1 3 .. 

As A 22 A23  ... ,] (13 a) 
following eqns. (2) and (3) respectively we have A. (p = 1, 2, ... ) thus we can 
express -eqn. (13) -in a second Cauer form continued fraction expansion as 
follows: I 

h4 + 8a 

8 
- A 
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We are interested in the continued fraction inversion. In the case where all
h's have the same values Shieh and Chen (1969) developed a simple algorithm
to convert this kind of continued fraction into a rational function. 'In most 
cases all A's have different values. For the general case we can make a second 
observation. 

The rational function corresponding to this continued fraction can be 
obtained from H.i and HL if j terms of 's are given, i.e. the corresponding 
rational function is: 

=Hz'(I, 1)+HLI(1 , 2) S+HLJ(1 , 3)S2+ ... +HLY(I~J)Sj-I14 

H0(1,1)+f1 (1,2)S+Hj(1,3)S2+...+HRJ(1,j) J-. (14) 
Recall that HR or HL1 is a j-xj matrix which is obtained by taking the lower 
right-hand corner of the HR. or He matrix. 

The above two observations can be proved by induction. -The proof is
elementary and the check is easily made by performing the Routh algorithm 
to the Routh array obtained. This proof is omitted. 

Example I 
A numerical example is given for illustrating the above steps. Given: the 

first column of Routh's array: 
An = 120, 

=21= 120, 
As 1 = 60, 
A 41 = 20, 

A61 = 5, 
A61,= 1. 

Find: All the elements of Routh's array.

From eqn. (3) we have h1 
= 1, h 2 = 2, h3 = 3, h4 4 and h = 5, we are

given 5 h's therefore n = 5; formulate HR5 matrix by following eqn. (11): 

• h .Ah 1 1 
H~=h I 1 h
 

Has1 hI 1I
h1] hi 

3 1 

1 

h~hh~~ha(hh~3+hhs,+h h6h~h.) (+h 3 +AS) 0 00 hlh 3 3hl (hlhs+hlh4 +h3 h4 ) 1 00 +hhh, 0 3 (hl+h 3 ) 0 

0 0 0 hh 1 
0 0 0 0 h 

(15) 
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replacing h,by hj+,_I(j = 1,2,3,4,5; 1= 2,3,4,5) into each lth row of H5 
matrix we have: 

hlhh h3Ahh,h 6) (hh +hsh6 +3 4 h) 0 
h3 0 h,hhkhshh+h hs(++)) 0 0k2k+h, 

o hh (h3 +h5) 0 

[ 
0 0 h,h5 I 
0 0 0 h6 

then shift all elements to the left, and finally we have the required Routh array: 

1h~kkh 5 (h1h~k.+hjhgh5+hjk4h.+kh 4k3) (h1+h.+h,) 0 01 
h2 h h,ha (h h3 + h h5 + 4h A6 ) 1 0 0 
h hhs (h 5o+h) 0 0 [0 
h,h6 1 0 00
 
A5 0 0 0 o .
 

Substituting all h values into it the required Routh array is:
 

120 96 9
 

120 36 1 

60 8 

20 1 

5 

1 ORIGINAL PAGE 18 
Example Il OF POOR QUALRY 

Consider a unit step input applied to a pure time delay system. The 
Laplace transform of the delay function is the transcendental function e - . 
The approximate rational functions of this function are required. 

First we expand e8 as a Taylor series about 8 = 0: 
1 1 1 

I +S+ 82+1S3+1 +.. (16) 

then: 

-aI + OS+ + + " +.. (17)1+8 4-1/21S2 + 11/31 8 3 + 1/4!S 4 (17) 

we arrange eqn. (17) into the following Routh array 

1 1 1/2! 1/3! 1/4! ... 
1 0 0 0 0 0 .... 

Apply eqns. (2) and (3) respectively to-obtain: 

A,=1, A2 =1, A3 = -. 2, h4 =-3, 

Equation (17) can be expressed by a continued fraction in the form of eqn. 
(13 b) or: 

e-ACG[1,1, -2, - 3,2,5, - 2, - 7,...,2,2M- 1, -2, - (2M+1).., 
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if the first 4h's are taken then we formulate HR4 by eqn. (9) and construct 
H2 by eqn. (10): 

0a (A1A2+A1A4+A3h) (hi) 02 A4 

40R F 4ho
= 0 a1 a3 0 .. h]1 

OF POOR QUALITY 

and. 
h hh (A2+A4) 0 0 

HL= 0 
-

0a 
[4ko 

h2 ork--] "ORIGINAL PAGE IS 

since = 4; by following eqn. (14), we have: 
3HL4( 1 , 1)+H4(1,2)S+H2(, 3)S 2 +Hr4 (1,4)S

- HR4(1, 1)+HR(1, 2)S+H 4(1, 3)S2 +H 4 (1,4 )S 3 

hsAh 4 +(ki+i 4)S 
ha1 2sha4 +(a 2 +h 1 4 +A a)S+3

2

6-28 
6+4&+a2' 

if 3h's are taken, in this case 3 = 3: 
-- HL2(1,1,)+H+LN1,2)Sf+H 3 (1,3)S 2 

- - H2(1, 1)+H2(1,2)S+ H(1,3)S2 

A2 a3 + S 

=1k 2 as + (a + A3) S 

-2+S 
- -2-B' 

if only A1 and A2 are taken: 

H 2 (1, -1) HL2(1, 2)S2(1, 1)'+ Hjj(1, ?).e- H--"/ 

a2 

7k1 -- S 

Ezample III 
Consider a system where anirrational function [1/f/(s + 1)] is to be synthe­

sized. Expanding the irational function f/(8+1) into a Taylor series about 
8 = 0, we have: 

.(s+1) = (1+8)"/3 = 1+8_82 58314 (18) 
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assume that [1/1f(s + 1)] can be expanded into the following continued fraction: 

1 1 

S 
(19) 

S 

where the h terms are unknown with their values to be determined. Instead 
of evaluating these constants by the Routh array we evaluate them by the 
following approach which has a more significant physical meaning.

The left-hand side of eqn. (19) is a system. Equating eqns. (18) and (19) 
we have: 

1 1 

1+ (a/3) - (q2/9) + (M/81) - (10/243)a 4+... S 

- (20) 

let a = 0 and Al = I is immediately found. This can be interpreted as the 
addition of a unit step.function to the given system; then apply the final value 
theorem to the -system and from eqn. (20) we 'have the final value 1/1 = 1 
which is the reciprocal of h. 

Substituting 7A into eqn. (20) and taking the reciprocal of eqn. (20) wehave: 
8 82 W 1084 S 
3 -9+ 8 ' "1- . I-2 S1+a 

-a+L (21) 

Rewriting eqn. (21): 

8 82 Wj 10a84i 

3R1_243 h,± S ' (22) 

and adding a unit step function to eqn. (22) we have: 

S1 8~ 8 1083 

16+ S . (23) 

Again setting ,S = 0, we have A2 = 3. Repeating'these processes gives: 

.9 4
A 1, A= hs 
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Consequently, the complete expansion has been obtained: 

11 

. (24)3+ 

+ 

We see that eqn. (24) is in the form of eqn. (13 b), therefore we can apply 

eqn. (14) to find the corresponding rational function. For instance if h1 = 1, 

A = 3, hA -- 1 and h4 = § are given, and the corresponding rational function is 

required, from eqns. (7 c, d) and (14) we have: 

1 h2h37&4+(h2+h4) 

hA4+(h 1h2+h 1h4+A 3 4)8+S 2 
/(8+1) -hA 2h 3

13-5 + 7-5S 
13.5+128+82 ­

3. 	 Conclusions 
A chain of factored matrices axe developed to find the inversion of Routh's 

array. Once the first column of the Routh array is given, the whole Routh 

array can be formulated by these factored matrices, and these factored matrices 

can be applied to continued fraction inversion. 
It is believed that this approach is new and simpler than the methods 

(Chen and Shieh 1969, Chen 1969) mentioned above. 

Appendix 
Based on the second Caner form's continued fraction expansion, the approxi­

mated rational functions for the often-used, irrational function 48 and 

transcendental function et ard listed in the following tables. 
Define the symbol as follows: 

h, + 	 = h, + S(h,,h ., hj, ... )
Sh,+aS
 

h,+ .1
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Table 1. "Irrational function 48 

48= 1+(a-1)(2,2,2 ...2,2,...,) 181<co 

2 

38+1 
8+3
 

s+68+1 
48+4 

58'+ 10* + 1 
82+ 10a+5 

83+ 1582+ 158+ 1
 
568+208+6
 

70 + 35s2 + 21 s+ 1 
8+2182+35&+7 

8 + 28W + 7082 + 288 + 1
 
88+ 5682+568+ 8
 

9s+ 848 + 1262+ 36s+ I 
0 + 36W + 12682 + 84s+ 9 

a + 454 + 210s'i+21Oa +45s + I
 
108 + 1208#+,2528z+ 120e+ 10
 

llss+ 1650 + 46283 + 330s2+ 55s+ I 
ss+554+3303+46282+ 1658+11 

=8+ 660 + 495s4 + 92483 +495S2 + 668+ 1
 
128 + 220s4 + 792s + 79282+ 220s +12
 

136+ 2860 + 128784 + 17-160 + 7150+78s + 1 
-;!-+ 78a-+ 7158'+ 1716s'+ 128702+ 286a+ 13 

e + 910 + 101s +3003 + 30030-+ 1001a2+ 918+ 1
 
14a' + 36485 + 20028' + 3432s3 + 200282 + 364s + 14
 

15a?+ 45586 + 300386 + 643584 + 500582 + 1365s 2 + 105s+ 1
 

a7+ 105s86+ 13658 + 50058s4 + 64350 + 3003 + 4558 + 15­

ag+ 1200 + 1820' + 80088*+ 12 87084+ 8008s3+ 1820as+ 1208+ I
 
160 + 56086 + 43680+ 11 4408* + 11 440s + 436NO + 5608+ 16
 

1786+6808 +61886 + 19 4488*+24 3104+ 1237683 +238082 + 136s+ I
 
88+ 136a+ 2380s'+ 12 376*M+ 24 310s4 + 19 448s3+ 6188s+ 680s+ 17
 

a8+ 153sa+ 3060s7+ 18 5640 + 43 758*+43 758aM+ 18 564s3+ 306082+ 1538+ I
 
180 +81687+856881+31 8245+ 48 620'-+31 824s3+ 85 688 2+ 8 168 + 18
 

190+ 9698 + 11 628s + 50 388s' + 92 37885 + 75 582a4+ 27 1320 + 38760 + 171s+ 1 
;+ 17le+387687+27 132*5+75 5828'+92 378s'+ 50 388s+ 1162882+ 969a+ 19 

810+ 1908+ 48458 + 38 760s7 + 125 9708' + 184 7560 + 125 970' + 38 7608' + 484582+ 190 + 
208 +1140+ 15 504s + 77 5205 + 167 96085+ 167 96008+ 77 520*3+ 15 504s2+ 11408+20 

*1'
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Table 2. Transcendental function 
If e"' is required we simply replace all the 'S' in table 2 by 'TS' 

r=l1+s[1,-2,-3,2,5,-2,-7.2,2n-l,_-2,_-(2n+1),...] Iei< 

8a+ 1 

-a-2
 

s2+48+6 
-2s+6 

82+68+12 

0'-68+12 

s3+9e2+36a+60
 
3Sa-24&+60
 

-8;-1282-608-120 DRIGINAL PAGE JS
-12 '+608 -120 (P POOR QUALnY 

&*+ 1683 + 12082+4805+ 840
 
- 4a3+ 6082 - 3608 + 840
 

a+ 200 + 180a+840s + 1680
 
s - 20al + 18082 -: 840s + 1680 
8 + 25al + 300s + 21008 + 8400a +15 120
 

5a- 1203+ 1260s2- 6720s+ 15 120
 

-as- 30a'- 42083 - 3360 82- 15 120a-30 240
 
-
s- 309+ 4200 336082 + 15 1208- 30240 

0 + 36*' + 63084 + 6720s + 45 360* + 181 4408 + 332640
 
- 6$+ 210s4- 3360a3 + 30 240a2 - 151 2008+ 332 640
 

t6 + 42W + 8400'+ 10 080a + 75 600s2 + 332 640s + 665 280
 
- 4285 + 84084 - 10 08083 + 75 6002- 332 640s + 665 280
 

8 + 49s' + 1176o'+ 17 640a' + 17 64083+ 1164 24082+ 
 4 656 960*+8 648 640
 
7 - 336a5 + 7560s'- 100 800~s + 831 O002- 3 991 6808+ 8 648 640
 
- --s 568 - 1512V- 25 200s' 277 200as-1 995 840s - 8 648 640 - 17 297 280
 

87 - 56 + 1512 - 25 20084 + 277 2000 - 1995 840 + 8 648 640s ­ 17 297 280 

s + 64s' + 2016as + 40 32085-+ 554 400s4'+ 5 322 24083+ 34 594 56082+ 138 378 240 + 259 459 200 
-- 8s + 5040- 15 120ss+ 277 200*'-3326 400s'+ 25945 920s2- 121 080 960s+ 259 459 200 
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Project
 

(A) 	Project Title: Computer Aided Design and Economic
 

Evaluation of Chemical Processes
 

(B) Project Abstract:
 

Economic evaluation is the tool used to minimize the
 

risks involved in the development of projects. A computer
 

program was developed which makes the economic evaluation
 

for chemical processes. The program computes the cost of
 

the individual pieces of equipment and the fixed-capital
 

investment (±15%) by Miller's refined factored method.
 

Costs
Manufacturing cost is also computed by the program. 


of raw materials and 	catalysts must be supplied to the pro­

gram for this purpose; utilities costs are computed by means
 

of material and energy balance. These data are used to
 

compute a return on 	investment.
 

Routines were developed for the design and/or cost
 

estimation of the fo-lowing pieces of equipment: distil­

lation and absorption columns, heat exchangers (single phase,
 

condenser, kettle reboilers), reactors-, furnaces, pumps,
 

compressors, and tanks.
 

The program uses the-thermodynamic package contained
 

in CHESS. Flow rates, compositions and state of all process
 

streams must be supplied for the use of the program. This
 

information can be obtained by the use of a simulation pro­

gram such as CHESS. 	 It is possible to integrate the program
 



with CHESS so that the material and energy balance, and
 

the economic evaluation of the process would be computed
 

by the same program.
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(A) Project Title: Optimization Techniques in Cbmputer Aided
 

Design of Chemical Processes
 

(B) 	Project Abstract:
 

This work is a continuation of an earlier one developed
 

by J. E. Villalobos in computer aided process design.
 

It is a study about a chemical engineering design and
 

economic evaluation package named CHEEP, and optimization
 

techniques in order to incorporate the compatible ones to
 

the package.
 

The purpose of this project is to make available to
 

undergraduate students in chemical engineering process
 

design class, optimization techniques which can be used as
 

tools in obtaining a better design.
 

These optimization techniques written in FORTRAN-IV
 

are available either on the IBM/360 or the UNIVAC 1108
 

computers.
 

The optimization techniques selected were Golden sec­

tion search (SUBROUTINE MAD3) and Rosenbrock's method
 

(SUBROUTINE MAD2) for unidimensional and multidimensional
 

cases, respectively.
 

During the incorporation of the optimization subrou­

tines somemodifications and adjustments were made to the
 

design and economic evaluation package.
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(B) Project Abstract:
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II. System Description 

III. Equipment Module Descriptions 

IV. Coding Instructions 

Bibliography
 

Appendix A Logic Diagrams and Sample Calculations of
 

Equipment Modules
 

Appendix B 	Logic Diagram, Sample Calculations and
 

Subroutine Glossary for the System
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(A) 	Project Title: Mechanisms for the Removal of Sulfur
 

Dioxide from the Atmosphere
 

(B) Project Abstract:
 

The removal of sulfur dioxide from the atmosphere by
 

photochemical oxidation and by absorption into rain or fog
 

droplets with possible subsequent catalytic oxidation in
 

solution has been simulated. Photochemical oxidation of
 

sulfur dioxide is represented by a first order reaction
 

mechanism with a maximum rate constant of 10 percent per
 

hour. Absorption of sulfur dioxide into rain or fog drop­

lets is characterized using'conventional mass-transfer
 

mechanisms which account for the reversibility of the ab­

sorption and for the 	liquid phase mass-transfer resistance.
 

Catalytic oxidation 	is represented by a mechanism relating
 

oxidation rate to sulfur dioxide and metal oxide concentra­

tion in solution. The initial sulfur dioxide distribution
 

in the atmosphere was determined using the binomial contin­

uous plume equation 	and Holland's equation for plume rise.
 

Simulation of these 	mechanisms was made by use of a digital
 

computer.
 

Results of the simulation show that absorption of sul­

fur dioxide into rain droplets is a more efficient sulfur
 

dioxide removal process than is photochemical oxidation at
 

all rainfall rates and raindrop sizes studied. Absorption
 



of sulfur dioxide into liquid fog droplets was found to be
 

an ineffective sulfur dioxide removal process due to the
 

small mass of liquid water present in fogs.
 

Oxidation of sulfur dioxide in solution in the presence
 

of metal oxide catalysts is found to increase the overall
 

removal of sulfur dioxide from the atmosphere and to be a
 

reasonable mechanism to explain the production of sulfates
 

in precipitation.
 

It is proposed that the reported reduction in the rate
 

of catalytic oxidation in solution with time is due to the
 

reduction in aqueous sulfur dioxide solubility caused by
 

the sulfates produced in the catalytic oxidation reaction
 

lowering the pH of the solution.
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Chemical Engineering 
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Prof. C.J. Huang 

Prof, Dan Luss 

Prof. R.L Motard 

Prof. H.W. Prengle, Jr. 

Prof. F.M. Tiller 

Prof. F.L. Worley, Jr. 

2 

1 

3 

1 

1 

2 

4 

1 

-

1 

9 

1 

1 

7 

1 

4 

Civil Engineering 

Prof. N.H.C. Hwang 1 

Electrical Enginaering 

Prof, C.J. Chen 

Prof. L.S. Shieh* 

Prof. D.R. Williams 

Prof. J.F. Pasknsz* 

Prof. V.P. Schneider* 

6 

-

1 

Mechanical Engineering 

Prof. B.D. Cook-

Prof. Charles Dalton 

Prof, R.D. Finch 

1 

3 

2 
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EGR 630 HYBRID COMPUTATION
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UNIVERSITY OF HOUSTON
 

EGR 630 Hybrid Computation
 

System Identification Problem
 

A distributed parameter system receives as input three
 

variables A0 , B0 , C and produces as output Af, Bf, Cf.
 

The governing differential equations for the system are
 

assumed to be:
 

System _>Af
 
=
>B Xmax
C 00f 

C 0 ----> _x " Cf 

dA +c
 
d-A -klA + k2B.
 

c
dB 

= 
kA-k 2 B + k4 C- k3B
 

=k 3 B 
 k4c
 

where x is the scaled independent space variable.
 

The maximum values of A, B, C are all 1.0, but scaling
 

should be carefully considered anyway.
 

The unknown parameters kI, k2 , k3 , k4 are to be deter­

mined from a set of ten experimental runs on the physical
 

system.
 



OBSERVED DATA
 

Run Ao Bo CO Af Bf Cf 

1 .80 .10 .10 .0286 .1333 .8392 

2 .75 .15 .10 .0277 .1317 .8415 

3 1.0 0. 0 .0323 .1410 .8282 

4 .10 0 .90 .0111 .1032 .8860 

5 0 .50 .50 .0111 .1042 .8850 

6 .25 .50 .25 .0176 .1150 .8685 

7 .95 0 .05 .0317 .1390 .8300 

8 .40 .20 .40 .0200 .1192 .8610 

9 0 0 1. .0094 s0988 .8923 

10 .50 0 .50 .0211 .1200 .8600 

Develop a hybrid program which iteratively generates
 

the ten experimental conditions and computes a global error
 

criterion (y£ = Af, Bf or Cf)
 

E(y i obs - yi calc)2 

This error is transmitted through a DAC to the analog
 

computer digital voltmeter. DVM mode on PP and DAC output
 

is wired to DVM IN. Initial conditions A0 , Bo, C are reset
 

by the digital between every repetitive operation cycle.
 

The "best" set of ki can be found by manually adjusting the
 

pots which represent them and minimizing the error.
 

Develop a hybrid program which automatically searches
 

for the best set of ki..
 

e 
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EGR 630 HYBRID COMPUTATION
 

Problem 2
 

A chemical reactor receives a
 
controlled input of .a solvent,
 
and the flow of reactant is
 
controlled by the concentration Solvent
 

of product, B which must not Pou
 
exceed 1.3 lb/gal. Reactant Produ > A CB
 

C
 

cB 

SControl Delay 

.66 	min.
 

Dynamic-material balances on A and B are as follows:
 

-2V dCA
 
+QSCAo + PAQA CA (QS QA) - kcCAV = V dt- CB (QS + QA) 

2V dCB
 
+ 	kC V V -

A dt 

where:
 

QS = Flow of solvent = 50 gal/min
 

QA = flow of reactant = 10 gal/min
 

CA = solvent concentration of A = 0.4 lb/gal

CA0
 

PA = reactant density = 9.04 lb/gal
 

k = reaction rate constant = 0.1418 gal/(lb - min)
 

V = 	reactor volume = 600 gal
 



Problem 2
 
Page 2 
EGR 630
 

Steady State Values: 	 Maximum Values:
 

QS = 50 gal/min 	 QS = 70 gal/min 

QA i0,gal/min 	 QA = 20 gal/min 

CA 0.84 	 = 1.5 lb/gal
CAb/gal 


CB = 1.0 lb/gal CB = 1.3 lb/gal
 

CA = 0.4 lb/gal CA = 2.0 lb/gal
 
0 	 0
 

The controller is a derivative-integral controller where
 

M(s) KC(TDs + 1) 
E(-s)- (TIs + 1) 

and 	 M(s) = L {m(t)
 
E(s) = L et)
 

m(t) = QA - AA (steady state)
 

e(t) = CB(set) - CB 

Kc = 100; 	TI = 15. ; To = 3.3 

The delay due to sampling may be approximated by a second
 
order Pad6 form (p. 227 EAI Handbook of Analog Computation).
 

Plot the system response, CB , on a strip chart recorder 

for a step change in CB(set)' from 1.0 to 1.1 . Also for a 

change in solvent flow from 50. to 70 gal/min. 
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Engineering Systems Simulation Laboratory
 

Cullen College of Engineering
 

University of Houston
 



The Cullen College of Engineering at the University of
 

Houston houses one of the most advanced hybrid system in exis­

tence. The equipment is described in the following sections,
 

This facility has the hardware and software to allow computer
 

usage which covers the spectrum from pure analog to pure digital.
 

In general, the hybrid computer provides the following
 

advantages:
 

" Combines the speed of the analog computer with the ac­

curacy of the digital computer,
 

o Permits the use of system hardware or a"real world"
 

analog of this hardware in a digital simulation,
 

" Increase the flexibility of an analog simulation by
 

using digital memory and control.
 

Increase the speed of digital computation by utilizing
 

analog subroutines.
 

o Provides real time system simulation with man-made 

interfacing.
 

A partial list of the areas of application are;
 

O Simulation of physical systems.
 

o Analyses of sampled data systems. 

o Random process simulation. 

o System optimization. 

o Simulation of distributed parameter Systems, 

0 Analyses and studies in guidance and cohtrol of high
 

speed deVices.
 

o Simulation of man-machine systems. 

o Process control system analysis and optimization. 



The computing equipment in the Engineering Systems Simu­

lation Laboratory of the Cullen College of Engineering,
 

-University of Houston, consists of an IBM Model 44 digital
 

computer which has 128K bytes of core memory, two hijh-speed
 

multiplexer channels, a low-speed multiplexer channe-l and the
 

32-level priority interrupt feature. Three 2311 disc drives
 

are switchable between the two high-speed multiplexer channels.
 

The single-disc storage drive in the model 44 processing unit
 

is attached to a subchannel on one high-speed multiplex channel.
 

There are two 9-track tape drives, a card read punch, a line
 

printer, and a console typewriter attached to the multiplexer
 

channel. The digital computer configuration is shown in
 

Figure 1.
 

Communication between the 360/44 and the analg computer
 

is through a Hybrid Systems Model 1044 Hybrid Linkage unit.
 

Data transfer between tire linkage and the digital computer is
 

split between the two high-speed multiplexer channel. Digital
 

data for conversion .t the interface is transmitted from the
 

360 to the linkage over a subchannel of the sec6nd high-speed
 

multiplex channel. The "split configuration" of the linkage,
 

insofar as A-to-D and D-to-A activity is concerned is probably
 

unique to this installation. The purpose of such a split is
 

that much higher effective data rates are possible with the
 

input and output activity operating asynchronously over two
 

separate channels'.
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The analog computer is a Hybrid Systems Incorporated,
 

Model SSI00. Components of the analog computer summarized in
 

Figure 2 include 54 summer/inverter amplifiers, 36 summer/
 

integrator amplifiers, 80 servo-set potentiometers, manual
 

potentiometers, D-to-A switches, sample-and-hold amplifiers,
 

comparators, multipliers, sine-cosine generators and most of the
 

lesser analog and logic components associated with an analog
 

computer of this size and of recent manufacture. Presently
 

Analog output is being handled by photo-recording from an
 

oscilloscope or by digitizing and line printing.
 

Major software elements for .the system are shown in
 

Figure 3. The operating system for the 360/44 used in this
 

hybrid environment is the Data--Acquisi'tion Multiprogramming
 

System (DAMPS-II). This system is a rather elaborate extension
 

of the programming system for the 360/44,. 44PS and is furnished
 

by IBM for the 360/44 in real-time applications. The functions
 

of .DAMPS are supplemented and extendedby a system of programs,
 

run-under DAMPS, known as- the Hybrid*Executive. These exten­

sions were developed by Hybrid Systems, and serve to expand
 

the functions of DAMPS in a manner appr6pri-ate to hybrid
 

computation.
 

Two additional software packages are also available. The
 

first of-these is called ANASET. Facilities are provided in
 

ANASET for setup, static check, dynamic check, and execution
 

monitoring of programs for the hybrid computer, utilizing a
 

-9173,
 



Hybrid Systems SS-100 Analog Computing System
 

54 Summer-inverter amplifiers 

36 Summer-integrator amplifiers 

6 Dual inverter amplifiers 

80 Servo-set potentiometers 
(with slew control) 

12 Manual potentiometers 

16 Digital-analog switches 

16 Sample-and-hold amplifiers 

12 Comparators 

2 Sine-cosine generators 

5 Feedback limiters 

8 Quarter-square multipliers 

20 Log(x) diode function generators 

5 Bridge limiters 

12 SPDT-function relays 

8 Shift registers (32 flip-flops) 

50 AND/NAND gates 

2 Three-mode -timers­

2 Single'shot multivibrators 

8 Logic pushbuttons 

16 Logic-level indicators­

16 Analog to digital conversion multiplexer 
channels (13 bits + sign) 

16 Multiplying digital to analog converters 

16 Sense lines. 

32 Control lines 

16 Priority interrupts 

Mode and timer control features 

Analog address and readout system 

6 Channel recorder 

x-y Plotter 8 1/2" ,x 11" 

persistence oscilloscope
-_Variable 


FIGURE 2
 



HYBRID PROGRAMMING SUPPORT SOFTWARE
 

DAMPS - II
 

Hybrid Executive
 

ANASET
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FIGURE 3
 



specifically res'tricted FORTRAN-IV statement structure for
 

-reference to analog computer components. The second sub­

sidiary software package is called AutoTrak. AutoTrak
 

permits the display, monitoring and modification of variables
 

at execution-time in FORTRAN IV-coded programs at the console
 

typewriter. Reference to these FORTRAN variables may be made
 

either by variable name, absolute address, or by relative
 

address. Combination of ANASET with AutoTrak allows the
 

modification of potentiometer settings, scale factors, and
 

other variables pertinent to the analog computer from the
 

digital computer at the time the ANASET program is.being
 

executed.
 

The memory of the 360/44 under DAMPS is divided into two 

user partitions, a background partition and a real-time 

partiti-nDAMRS-fun c-t-i-on-s-a-re-s-ummartz-ed-ti--Figure 4. 

Processing in the background partition is in conventional 

bat-ch mode. 44PS jobs coded in FORTRAN-IV or assembler
 

language can be executed in the roughly 49,000 byte area
 

provided in'the background partition. ,All'the facilities
 

of 44PS including overlay are available to programs being
 

processed in the background under DAMPS. Activity in the
 

real-time 'partition, the execution of'feal-time jobs (RTJs).,
 

falls essentially in 'two categories. The processing associated
 

directly with priority interrupts is handled by so-called
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Identify RTJs
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Terminate RTTs
 

Enable PILs
 

Disable PILs
 

Terminate RTJs
 

Real-Time [nput-Output
 

Set up controls for RTIO
 

Perform (overlapped) RTIO
 

Check RTIO
 

FIGURE 4
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real-time tasks, (RTTs) one RTT being attached to each priority
 

interr-upt level (PIL). RTTs may te coded either in FORTRAN-IV
 

or in assembler language, but in either case are routines which
 

execute very rapidly in response to interrupts. More lengthy
 

computational tasks, such as non-real-time input/output, etc.
 

may be queued by RTTs for execution in the real-time partition
 

upon completion of all pending priority-interrupt processing.
 

These foreground tasks (FGT's) have all facilities of the
 

DAMPS supervisor available. DAMPS-II provides a teal-time
 

partition of approximately 37,000 bytes of core storage.
 

The batch jobs constituting the background job stream
 

are input through the card reader. In this two-partition
 

mode, the loading of RTJs is control-led from the console
 

typewriter, the programs making up the RTJ being loaded from
 

-a-prevoixsi~y-c-ompi-lded--and linkage-edited program library.
 

The initiation of an RTJ consists essentially of entry of
 

appropriate job control statements from the typewriter. In
 

the event that a real-time job requires more storage than
 

that available in the real-time partition,, DAMPS-II may be
 

operated in a single-partition mode, providing both the space
 

of the real-time partition and that of the background parti­

tion to the real-time job. Control statements for the real­

time job executed in this one-partition mode are then -entered
 

through the card reader.
 



DAMPS provides a number of functions to the real-time
 

problem programmer in the form of subroutines which, as are
 

appropriate, may be called from RTTs 
or from FGTs. Activities
 

falling into this 
category include the identification of
 

RTJs, the queueing, dequeueing, and termination of FGTs, the
 

enabling and disabling of PILs, the attachment of RTTs to
 

PILs, the termination of RTTs, non-real-time I/O from FGTs,
 

real-time I/O from RTTs, (both overlapped and not overlapped
 

with other processing), and the termination of RTJs. 
 Functions
 

provided in 
a similar manner by the Hybrid.Executive shown
 

in Figure 5 include the dynamic allocation of RTTs to PILs,
 

display of the FGT queues, the construction of so-called
 

uncontrolled RTTs, overlapped non-real-time I/O, manipulation
 

of the interval timer, programmable delay, internal triggering
 

of PILs, a set of pseudo-sense switches, and execution-t-ime
 

accounting. Time and space 
do not permit a detailed treat­

ment here of features and operation of DAMPS and the Hybrid
 

Executive, noc 
for that matter, of ANASET and AutoTrak.
 

The linkage interface unit, HSI 
1044, is described in
 

Figure 6. As mentioned earlier the 
lihkage for this particu­

lar system includes dual control logic and dual 
bi-directional
 

registers to allow independent, asynchronous operation of
 

analog input (A/D) and analog output (D/A). The control
 

functions shown in Figure 6 are 
actually duplicated in the
 

interface.
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The interface includes the control features for sequential
 

and random addressing of A/D multiplexer channels and the
 

multiplying D/A converters. In addition, these data trans­

mission activities can be operated with the CPU channel in
 

either the burst or multiplex mode. When the channel is in
 

the multiplex mode (essential for random addressing) the
 

transmission of A/D multiplexer or.D/A converter addresses
 

is interleaved with the input or output of analog-data. The
 

interface operation can also be controlled in either mode or
 

direction by external synchronization where the conversion
 

of each sample is under the control of a logic Signal from a
 

clock, gate, comparator or timer at the analog,console. In
 

the sequential, internally synchronized mode the data trans­

fer rate approaches 100,0_00 samples per second concurrently
 

on A/D and D/A channels. This is equivalent to a transfer
 

rate of 400,000 bytes per second.
 

Single bit data transfers for analog control (control
 

lines) or status sensing at the analog (sense lines) can also
 

be controlled through the interface. All other modes of
 

analog control, addressing and readout are available to the
 

digital program. Thus, all analog computer elements may be
 

addressed and read out over the A/D converter, the various
 

modes such as IC, OP, 'HOLD, POTSET, RATE TEST, STATIS TEST
 

can be controlled from the digital computer. Four decade
 

timer intervals, clock rate and mode such as 2-mode repetitive
 



operation (IC, OP, 
HOLD) can also be initialized from the
 

IBM 360. Analog read-out is 
done through the A/D converter
 

automatically without patching at 
the analog console in
 

preference to reading the 
digital voltmeter which would slow
 

down the process considerably.
 

The analog elements are designed with a band width of
 

roughly 100 KH for diode function generators (multipliers,
 

log and sine-cosine functions) and 300 
to 500 KH for the linear
 

equipment (amplifiers). Switching times 
are on the order of
 

one half micro-second or less 
for logic elements, D/A switches
 

and mode control switches. Noise levels, unfiltered, are in
 

the 1-5 multivolt range depending on component class. All
 

switching is electronic with liberal us.e 
of FET switches.
 

Two or three-mode repetitive operation at 
rates approaching
 

1000 problems solutions per second 
are available. Comparators
 

have latching controls, sample and hold amplifiers may be
 

used either as an 
interface between the A/D multiplexer or in
 

stand-alone operation, D/A converters may-be used ds digital
 

altenators. Sample and hold amplifiers may also be used 
as
 

high speed integrators.
 

Four capacitor selected integration time scales 
are
 

available; 1.0, .1, .01 and .001 microfarad.
 


