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APPLICATIONS OF HYBRID AND DIGITAL. COMPUTATION

METHODS IN ARROSPACE-RELATED SCIENCE AND ENGINEERING

Final Report

NASA Grant NGL-44-005-084

SUMMARY

The Cullen College of Engineering at the University
of Houston has been actively developing its educational
. and research capability in applications of digital/hybrid

computation in solving engineering and scientific problems.

The Grant NGL-44-005-~084 from National Aeronautics and
Space Administration provided the funds for computer time
and personnel required for research projects applying new

methods in hybrid and digital -computation.

{Continued)



The accomplishments of this program may be summarized
as follows: .
1. The grant supported application of‘hybfid/digital
. computation. of 84 research projects in the following
aerospace related disciplines.

Departments.

Chemical Engingering
Civil Engineering
Electrical Engineéring
Industrial Engineering,
Mechanica; Engineering.
Psychology .

Interdisciplinary Programs

Acoustics -

Aérospace Engineering

Energy Sciences & Engineering
Environmental Engineering

Systems Engineering

There are altogether 21 faculty members and 68
graduéte students parﬁicipated in the programs. The
latter include 36 Ph.D. students and 32 M.S. students.
Tﬁe‘depaftmeﬁts, hémes-of faculty members and number of
graduate students of the above 84 projects are given in
Appendix A. The project abstracts and publications of

these 84 projects are given in the following chapters:

(&



2. Undex the sponsorship of this grant, a new courée in
hibrid computation’ (EGR 630) has been offered to
~graduate students in engineering. Typical laboratory/
- homework assignments of EGR 630 are included in Appen-
dix B,

3. The Engineering Systems Simulation Laboratory of the
College of Engineering is the focal point providing
asgistance to the ahove educational and research pro-
grams., The description of the Engineering Systems
Simulation Laboratory is given in Appendix C.

The College of Engineering of the University of
Houston gratefully acknowledges the NASA support which
made the above accomplishments possible. ‘Building upon
the progresses made under this grant, the College of
Engineering at the University of- Houston will continue
to make & st;ide-in,developing new techniques ‘in hybrid

and digital computation for' aero-space related research.
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Continued Fraction Inversion by Routh’s Algorithm

CHIH-FAN CHEN, SENIOR MEMBER, IEEE, AND LEANG-SAN SHIEH, STUDENT MEMBER, IEEE

Abstract—The operation of converting a continued fraction into
a rational transfer function of two polynomials is tedious. By the
use of state-space techniques and Routh’s algorithm, a new method
is established for performing the continwed fraction inversion.

INTRODUCTION

XPANDING a rational transfer function into a
E continued fraction and inverting & continued frac-
tion to a transfer function are two fundamentsily
important operations in network synthesis, control system
analysis, ete. Theoretically the two operations are trivial.
One involves many divisions and the other is related to
many multiplications. Practically speaking, however, when
the order is high, the heavy labor of doing the multiplica-
tions and” divisions is unavoidable. Facing the tedious
work, we naturally think of an algorithmic approach to
the problem in order that we can use the digital computer
to free us from drudgery.

Routh’s algorithm and continued fractions were first
associated by Wall [1] in 1945. Frank {2} extended and
modified his work further in 1946. However, they applied
Routh’s algorithm only to the expansion aspect, not to the
inversion problem. It is known that the latter is much
more difficult and tedious than the former.

This paper attempts to develop an algorithmie method
for solving the inversion problem. In other words, how do
we convert & continued fraction into a rational fraction of
two polynomials in the easiest way.

Turee Forms oF CoNTINUED FRACTIONS
Consider the following rational function:
92(8) . Az.nsﬂ-l + -+ Aziss + Azasz 4+ Azs + Azl

01(8) A"+ o F A8 + 418" + As + An
n

where A4;; are constants.

We can expand (1) into several continued fraction
forms. There are, however, three most important ones in
engineering applications.

1) The Stielties Form [3]:

gz(s) - 1
91(8) @ms 4 b +

a8 + b2 + 1 1 (2)

a8 + by +

Manuseript received May 15, 1968; revised August 15, 1968,
and September 11, 1968. This work was supported in part by the
National Aeronantics and Space Administration under Grant
NGL-44-005-084

The suthors are with the Department of Electrical Engineering,
University of Houston, Houston, Tex.

Wall developed a technique to expand (1) into (2) by
using Routh’s algorithm. Frank extended this work to
complex coefficient systems. Their main application is to
stability theory and the proof of Routh’s criterion.
Dudnikov [4] also used this form for identifying system
coefficients.

2) The Cauer First Form [8):

gzgs; _ 1
9 e+ 1
a; + L (3)

38 +

.

It is well known that this form is used to synthesize ladder
network driving-point impedances. We are, however,
particularly interested in the third form.

3) The Cauer Second Form.:

92(3) — 1
g:(8) by + 7 1‘ T
“<4 4
§ 1
ha + h 1
AT

This form can be obtained from (1) by first arranging the
two polynomials into the ascending order:

g2(8) - Ap + Aps + g8 + +o o + 4,87
0] Ay - Ass Amsn + oo Apenss”

and then expanding it into (4).

The second Cauer form on which we will concentrate
is not only important in RC network synthesis but also
plays a significant role in control systems analysis [5].

(1)

Exransion 37 RoUurH's ALGORITHM

It is known that Routh’s array can be expressed by the
following doubie subseript notation [6]:

Au Au AIB e
Azx Az Az v
Aal Asz. v (5)

Aﬂ.
and the elements of the thirﬁ, fourth, and subsequent

rows can be evaluated from the following relation I6]:

Ai-—2.1Ai—l.k+1
Ai—l.l

=384, 1 E=1,2 ",

Ai.k = Ai-—ﬂ,k-ﬂ -

(6)

4.4
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Equation (6) is also known-as the Routh algorithm.
Now, performing long division on (1a), we have

TOEB TRANBACTIONS ON CIRCUIT THEORY, MAY 1969

2208 _ 1
9'1(8) (A'zlAu - AnAzz)s + (AmAm _— AuAsa)sz _|_ aas (7)
An + Ay Ay
Aan Ag + Aas + A2332 + -+ Az,n&‘”_l
in which Clearly, the elements of continued fraction (10}, k,, can be
A4 Ad obtained by the quotients of members of the first column
( 212013 A_ 1 ”) in Routh’s array [7].
and 2 As an illustration, consider the following transfer func-

(Az;Am - Aqus)
~Aa '

ean be written as A;, 'and Ass, respectively, where Aa;
and Aj; are defined in (6)..
Therefore, we heve

g2(8) = 1 -
91(3) él_l_ + Az 4+ A‘.ns2 4 e
Az Ay + Ags + Ags® 4 -

Dividing again, we obiain

1
An 8

AN + (AzzAa; = A32A21)8 + e
Az Ag

Az . An + Ags 4 <=+

or
1

. ®

-A-2l.

+ 8

ﬁ _Ans + Ausa + e
. An Aa + Agg A+ + -
Finally, we have the expansion
- 1
An _ 8
Agr + _Aﬂ 3

An
A, T

@

Asl 8,

This ean be written in the form:

1 .
1 -

&

1 (10)
hs + h 1
...i..]_

S

where
Aps

h‘a—”—l—_— P=1-2.'

- , = 0.
A (?1-1) 1 h»

an

"szﬂ'l

tion.

360 -+ 171s + 10s°
F6) = 730 + 7028 + 717 £ & (12
A continued -fraction expansion like (10) is desired.
Write the first and second rows of the Routh’s array by
copying the coefficients of the denominafor and the
numerstor, respectively, and then use (6) to generafe the
lower rows:

720 702 71 1
360 171 10
360 51 1
120 9 (13)
T o4
4
1

Values k, are then found from (13) by teking the ratio of
the-neighboring terms of the first column:

o 720 702 .71 1
720 ‘
b= 350 = 2<
360 171 10
_ 360 _
h: = 360 = 1<
360 51 1
360 .
ha = 155 = 3(
120 9
L 12
h4 = 549' = 5<
: o 1
hs = %44‘ = 6<
4
hg‘— % = 4( ‘
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R ¢
G -
- -
Fig. 1. A typical feedback system.
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)4 ——

Fig. 2. TFeedback and feedforward controls.

Fig. 3.% Block diagram corresponds to continued fraction expansion.

from which the continued fraction is written immediately:
1

Fig = —
2+

1 1
TP —
5 1

1
6+—4
s

(14

Brock DiAGRAM REPRESENTATION

It is known that (10) in general or (14) in particular
can be interpreted as the driving-point impedance fune-
tion of an RC ladder network. However, we rather inter-
pret it as the transfer function of a general feedback
system.

Consider a typical feedback system shown in Fig. 1.
The elosed loop or overall transfer function is

c G ' as)

R 1+GH
Dividing the numerator and denominsator by @, we obtain
1% = — 1 (16)
H 4 G

Equation (16) can be considered as the simplest eontinued
fraction. If we have a feedback system with a minor feed-

forward loop, as shown in Fig. 2, the eorresponding over-
all transfer funetion is then

c G, + F,

E~TF @+ PHE 1
This can be rewritien as a continued fraction:
¢ 1
R 1 (18)
Itz i@

If the subsystem G, is expanded again, we finally get the
following general form:

= ' (19
by -+
h 1
= 3 -——————---—-1
ha +

=

&

which is exactly (10). Therefore, continued fraction form
(10) can always be interpreted as the block disgram shown
in Fig. 3.

STaTE-SPACE FORMULATION

In Fig. 3, after each integrator, if we assign a name as a
state variable, the state matrix equation and the output
equation can be easily written as

/X4
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2] = [Hlfz] + [P (20) Tt can essily be proven that the two forms are related by
¢ = QIE] @n the following linear transformation. L
where [zl = [P] [z] (31)
_h2h1 h;kl hahl hznhl. |
Rohy  Ra(hy + Rs)  Re(ha + Ro) hoa(hy + ki)
{H] = —| haly }?'i(hl + ks)  ho{hy + hs + hs) heo(hy + ha + Rs) 22)
_hzhl hd(hl + ha) hs(hq + ha + hs) ‘ h'zn(h': + ha + e + h2n—1)_.
[1] where
1 4y Aw As R
[D] =1 (23) 0 As As A.’:,n—2 As.n—':
: [P] = '0 0 A'Il ATE A7',,—2 (32)
n . . . . . .
and A2n-1,1
[Q] = [hm‘ hi, he « - hzn]- (24) 1 0 0 0 Aznsr1

Tt is seen that the elements in the state matrix (22) are
simple combinations of the quotients obtained from the
continued fraction expression.

Next we would like to find the relationship between this
state formulation and the phase variable form.

(2] = [Allz] + [BY @5
~ e = [C][2] (26)
where {z] is the phase variable vector, and
) 1 0 0
w- 00 LD ] e
! : : 1 J
I_—'Au _sz _A13 "'Am
0
[B] = |0 (28)
L1
[C] = IA‘A:_AHr Ty Aza] (29)

if the original transfer function is normalized as follows.

A; .8 ! + Az.n-lsn—z 4 o0 4 Aps + Y
s+ Al,nsn_l + Al.n-—lsn_a + -o0 + Aps + Ay

Ay + Ages + --- + Az_n-lsn—z 4+ 4,8 -t .
AI! + Al2s + . + Al.ﬂ—lsn_2 + Al,us - + 5"

(30)

4.4

F(g)

]

It is believed that the construction of (32) is new. The
proof of the similarity transformation (31) can be done
by using the Krylov transform matrix |8] with an input
constraint. :

The matrix [P] is an n X 7 upper triangular matrix.
The elements in the triangle are copied directly from the
elements of the Routh array. The elements of the third
row in Routh’s array is that of the first row of the [P]
matrix. In general, the (2n <4~ 1)th row of Routh's array
is the nth row of the [P] matrix. i

ExamMPLE FOR OBTAINING THE [H]} MaTrix
Consider (12) again:

C(s) 360 + 171s + 108
R(s ~ 720 + 7025 + 715 + 5

12

The second Cauer state form is required. The phase vari-
able form of (12) is

& 0 1 0 iz 0
g | =] 0 0 1 a4 (0
&a —720 —702 -—-Tlll= 1
o]
C = [360, 171, 10} =- |-
z

From these state and output equations, we formulate
the Routh array:
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720 702 71 1
360 171 10
360 51 1
120 9
24 1
4
1

and then use the third, fifth, and seventh row to form the
[P] matrix.

360 51 1
"Pl=|0 2 1| (33)
0 0 1

Substituting this [P] matrix into (31) and then into (25)
and (26), we obtain

[ = [PI[AIP][] + [PI(BIr (34
= [H][E] + (DY (34a)
¢ = [CHPI"' (35)
= [QI[1. (35a)
For this problem, numerically we have
- 2 10 8 |2 1
=2 25 20[zp+|1l (34b)
2 2 25 4| 2 1
.zl
c= (1,5, 4] 2 (35b)
%3
where ]
-2 —10 —8
(H] =|—~2 —25 —20]-
—2 —25 —

Tre InvERsION PROCESS

We restate the inversion problem here. If the elemenis
of a continued fraction are given, or k, are known, what is
the corresponding rational function. .

Based on the block diagram (Fig. 3), we can write the
state equations immediately.

é1 '—thl _h-ihl
b | _ | ~hahs  —RuC + ha)
il L—h —hilh + ko)

“‘han(hl + kb th—!) Z
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Laplace transforming gives
s[Z(s)] — [2(0)] = H][Z(s)] + [D] R(s). (37)
The determinant of the system matrix will give the char-
acteristic equation [9]
ls{1] — {H]| = O. (38)

The coefficients of this equation are the elements of the
first row of the required Routh’s array.

The next step is to let k, and ks equal to zero, and we
have a reduced system whose state matrix is

r '—}hhs —hauhs
(), = I iy cer —halhs o+ b (39)
L_hshz "'h2a(h3 "1‘ e + th-l)

The corresponding characteristic equation of this system
is-found by [9]

" sl — [H]g| = 0, (40)
which gives the elements of the third row of the Routh's
array. - .

Following a similar ressoning, we find the fifth row, -
seventh row, or (2n — 1)th row by evaluating [9)]

ls{Z] — [Hls| = 0 (a1
is{I1 — [H}} = 0, {(42)
respectively, where [H]s, [H];, ete. are defined by [Hls | ks,
kﬂ) hB: h4 - 0: [H]'J' I hl; h?: ha) h-h h-‘i) h& - 0
Onece the values of the elements of the odd rows have
been found, the [P] matrix is determined.

The values of the even rows ean be evaluated from
the output equation (35).

'EXAMPLE FOR INVERSION
" A continued fraction is given as follows:

F©) = = &)
14—
4 1
st 1
2+
3 1
T
il
. E
Find the corresponding rational function.
First we form the [H] matrix using (22):
"'-hg.,‘ 1 F2 ’ 1 '
—h'.’ﬂ(hl + ha) 2 1 (36)

+_r.

L1

¢. 70
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—4 -3 -5
[H] =|—4 —9 -—15 (44)
—4 -9 -20

from which the characteristic equation 'is evaluated by
substituting (44) into (38):

|slI} — [H]| = 120 + 129s + 33s* + §°.  (45)
The third row is found by
(H], = _[mh.., heha ] _ [—-6 -1o]
Rz Re(hs -+ By —6 —15
and this gives ’
[sl7] — [H]s| = 30 + 21s + 6" = gs(s).  (46)
Similarly, the fifth row is found as
[H]s = _U"shs} = [—5] (4-7)

and
Islf] — [Hlsl = 5 + s = gu(s)-

The linear transformation matrix [P} is then formed:

30 21 1
Pil=|0 5 14 (48)
0 01

The elements of the second row, ga(s), are found from the
output equation (21) and (31}, or

30 21 1
[has he, BllP] = [4,3,5]) ¢ & 1
) 0 01

= [120, 99, 12]. (49)

IEEE TRANSACTIONS ON CIRCUIT THEQRY, MAY 1969

Therefore, the required rational function is obtained from
(45) and {49) as ’

120 4 99s 4 125°

F&) =150 + 190 + 335 + & '

CoNCcLUSIONS 2

Based on the staie-space formulation, an algorithmic
method for inverting & continued fraction to a rational
fraction of two polynomials is established. This completes
Wall’s, Frank’s, and Fryer’s work on the application of
Routh’s algorithm to continued fractions. It is believed
that the results are very useful in eircuit theory and system
analysis.

Two digital computer programs {one for expansion and
one for-inversion) have been written and can be obtained
from the authors.
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I. Intreduction

Control engineers often encounter a large number of
control systems which involve distributed parameters.
Thermal processes, hole diffusion of transistors and elec-
tromagnetic devices are typical examples [1]-[3]. Cor-
respondingly, the mathematical descriptions in the
Laplace transform domain for these elements usually con-
tain the operator “S” under the radical sign. To analyze
or synthesize an isolated irrational transfer function is not
particularly difficult; however, when the element in ques-
tion is represented by am irrational function’in a closed
loop system, the problem becomes very complicated.

Historically, the first irrational transfer fanction in engi-
neering was noticed by Heaviside [4]. He observed that

"the impedance of an infinite RC cable is 1/+/S. Subse-

quently, many kinds of irrational functions have been
derived from mathematical models. Some typical ones are
listed as follows [5]:

1 1
) 1) —_— —_—
| VB Vi
9 | o | exf (V)
SVer1l| S
3) ~—-—-——'___1 Jo(®)
v+ 1 0

If any one of these functions is contained in a closed
loop system, the analysis is indeed quite tedious. For
overcoming this difficulty, several methods have been
developed: Thé historical developments will be reviewed
first.’

The Mefhod Based on the Logarithmic Potential

Lerner [6] used a method for constructing the broad-
band impedancé which is similar to potential analog ap-
proximation methods. He found that an-infinite array of
alternating poles and zeros placed along the negative real
axis in the complex frequency plane produces a goo
approximation. .

The Method Based on ¢ Regular Newton's Process

‘The main contributors are Carlson and Halijak [7].
Their approximation is to predistort the algebraic expres-
sion f(S)=5"—a=0. The resulting approximation in real
variables has the unique property of preserving upper

* and lower approximations to the nth root of the real num-

ber-“‘a” By using this regular Newton’s process, they gen-
erate rational functions for the appfoximation.

The Method Based on Substitution

Kilomeitseva and Netushil [8] conceived a novel ap-
proach to this problem. They substituted +/S by p. An
irrational transfer function of S then becomes a rational
one of p. The regular Heaviside expansion is performed

NOVEMBER 1969 967
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on the new transfer function, and the inverse process is
taken by using certain typical irrational function tables,

In reviewing the methods mentioned above, one finds
that the first is for driving point impedance approxima-
tion only, while the second method is limited to fractional
capacitors. The third method required predetermination
of the roots and many necessary graphs for computing
the behavior of the system Therefore, the applications
are limited to very special cases and procedures involved
are rather complicated ]

i, The Continuved Fraction Approach

This paper attempts to use the continued fraction
expansion to approximate the irrational function first,
then truncate the unimportant parts under a reasonable
error tolerance, and finally perform the inverse process to
change the truncated continued fraction into a ratio of
two polynomials

There are several problems involved in this approach.

1) Why should we use the continued fraction expan-
sion? There are many forms of continued fraction
expansions. Which one do we have to use?

2) Either the expansion or the inversion is tedious, if
more terms are desired. What technique should we
develop, such that the methods become practical. In
other words, the method must be computer oriented.

According to Lerner’s theory, we can answer the first
question immediately. If the poles and zeros are alter-
nately distributed, a good approximation can be achieved.
The following continued fraction usually gives a satisfac-
tory solution.

f(S) = by +

S

b: + 5 (1)

S
by A+ ——

ba +

The accuracy of an approximation depends on where
we truncate the function, of course. In general, if more
terms are taken, a better result can be obtained. In view
of the availability of high speed, large capacity digital
computers, one can take as many elements as desired.
However, two new problems arise:

1) expanding an irrational function becomes increas-
ingly tedious;
2) the inversion process becomes very laborious.

These two fundamental problems must be solved. This
paper will develop a new approach to solving these prob-
lems, one by one. ’

fll. Continued Fraction Expansion

In control system studies, some particular irrational
functions are usnally of interest. The following examples

568

are well known:

) VS

2) VS+1

3 VS+1 @
1 /R

These functions can be considered as special forms of

+/S+a. If we want to approximate this function by a

continued fraction, a simpler technique can be applied.
Let

vV8+a=8B (3)
or
S+4+e=B.
Adding B to both sides, we have
S+a+ B =B+ B).

Rewriting gives

_S+ae+B
~ 1+B
. 4
_14+B+8+ @~ 1)
- 1+ B
or
N S+(a~—1)
S =1 . 5
Vv8+a=1-+ > (5
Continually substituting (4) into (5), we obtain
I S ~1
ETai-14—2te-D
PRI o
14+ B
S+{e—1
~14 =D ©
S+ (a—1)
2+
o4 S+@~-1
If a=0, (6) becomes
VS=14——2"1
B gy S=1
3 S—1 (7
S—~1
24—
If a=1, (6) is reduced to
— : S
VEFI1I=1+4 3
2+
2+ 5 — @
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The third function of (2) is easily seen to be

S 41 =2
T ©
i 8 —1
2+
1
Replacing S by S? in (6) and letting a=1, we have
. 82
V8t 1=1+- I
2+ - (10
2+

It is seen that to expand an irrational function into a
standard continued fraction form (1) is relatively easy
and the technique is simpler than the existing methods,
for example, Auslander’s differentiation method [9].

Comparing (7), (8), and (10) with (1), we see that 5, =1,
and bpo=bs=Db, - - - =2. This regularity helps in develop-
ing an algorithm for the inversion process.

IV. Continued Fraction Inversion

_ Inverting the continued fraction (1) info a ratio of two
polynomials, we would like to take the advantage of the
fact that by=1 and b=bs=b, - - - =2, We modify (1)
into the following form by adding a unit to each side and
taking the reciprocals:

T 1
8 +1 b 8
8 ©oan
S -

b+
b+

b=2 in this case, :
If we truncate (11) and only keep two b’s, we have

1 1
= 12
W1 b+ @ 2
| =- b 12
R (122)
Keeping three b°s gives
1 o -1
&)y +1 bt N (13)
b+ (S/b)
b2+ 8
T )

In general, the function 1/[f(S)+1] can be approx-
imated by a ratio of two polynomials

SHIEH AND CHEN: IRRATIONAL TRANSFER FUNCTIONS FOR DISTRIBUTED-PARAMETER SYSTEMS

i P®,S8)
CAS)+1 QB8

where P and Q are polynomials of S,-and the coeffidients
are in terms of b.

If the order of the continued fraction is high, particular
consideration should be given in finding the correspond-
ing polynomials, which means solving the inverse problem,

For performing the inversion process, Table I is estab-
lished from which we can read the coefficients of the two
polynomials directly. The table is constructed in the fol-
lowing way.

1) the eclements in .the “0” row are (S+a—1)4
{(S+a—17, (S4-a—1), - - - as indices, or B(0, k)
 =(SHa—1F, k=12, - - - n.

2) the elements in the “0”’ column are b, 0%, - - - as
indices, or B(j, O=¥, j=1, 2, - - - 2n.

3) the element B(j, k)=ao[B(j—1, k—1)]/(k)3b,
J=2,3, - -2, k=12, - -+ m, j>k.

4) the element B(j, B)=0, j=1,2, + - - 20, k=12, - - -
n, j<k where B(j, k) is an element at j row and X
column. .

The fesult obtained after the differentiations have been
performed is shown in Table II.

The table is ready to be used as an aid in the inversion
process. We take the following example for an illustra-
tion: find several rational transfer function approxima-
tions for the irrational function v/S¥a.

1) Expand +/S+a into continued fraction (6) or

. S -1
iFa=14 ‘-1
S'{“(G,T 1)
2+ S84+ w—1) (14)
9+ :

2) Because the first quotient of (14) is 1, instead. of 2,
modify (14) into the standard form in order to use the
table:

1 1

vﬁ+a+1=2%_ St+wa—1
2+‘S+(a—1)- (15)
‘ 8 -1
54 + (@ — 1)
3) Truncate (I15) by keeping two quotients,
1 - (162
———— = 2,
VEfa+1l 2+ [S+ (@~ 1)/2]
: (16)
- . (16
4+ [S+.(a— 1]
969
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TABLE |

; k (s+a— 10 S+a-—1 s4a—1p 8 +a— 1)
b ~ 0 0 4] 0
1
b2 aey 0 "0 0
ab
apy a%{bh)
b ab 2lobt 0 0
3 b2 33 (bY
N
i 3 ~
b alhh) a2(b®) a3(h%) d4(b1})
b 213b* 3lab® 41ab*
TABLE i
f -
) (S4-a-13 (S+a—1) (S+a—1p (S+4a—1)
i

H 0 0 0 0
& 1 1] 0 0
fid 2b 0 0 0
b 35 1 0 0
B 45 3b 0 0
b 55t 6h® i 0

When we use the table, the coefficients of (16b) can be 4) If we truncate (15) by keeping.six quotients,
read directly from row 1 and 2, or

1
E v8+ae+1 ORIGINAL PAGE IS
AN AL OF POOR, QUALITY
bi 0 «— lst row 24+ S+@—~1)
5 1 S+ e—1) (17)
% 1 — 2ndrow ‘ 21 St+e-D
94 S+ (a—1)
Therefore, where b=2 we have 24 §+@—-1
C b _ 2 2
R+IS+@@—1] 4+[S+@-1)] Inversing (17) gives
970 IEEE TRANSACTIONS ON ABEROSPACE AND ELECTRONIC SYSTEMS NOVEMBER 1969
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1
VBFa+1
N bS-+4b3(S+a— 1)+ 3b(S+a—1)? _
= B 508 +a—1)'+6b*(S+a— 1) +(sta—1)7
By substituting b=2 into (17a) we have
1

S+at-1

N 32+32(8+e—1)+6(S+a—1)2

= 64-+80(S+a—1)+24(8+a—1)2+(s+a—1)*
Then +/S-a can be easily obtained by using (17b):
V8+e
N32+48(S+a—1)+18(5'+a—1)’-|-(S+a—1)"‘ (I8
= 32+32(S+a—1)+6(S+a—1)? '

(17a)

(17b)

In general, if j quotients are taken, then
VS8+a
Npolynomial at jth row —polynomial at (j—1)th row

volynomial at (j—1)throw - 19)
' =23 - 2n.

V. Applications

We consider the error function 1/(S+/S1) as the first
application. From (8) we haye the expression , .
1 1 1
SvVS+1 S Kl
v8S + 1+ .

54 ) (20)

2+

If Table I is used, we simply substitute a=1, b=2 into
Table I} and obtain :

erf(x}
1.07
R=1/s 1 C(s}
i ——
JS511
Standard Curve
n=2
n=3
n=4
; X
4] 6.5 -1 z 3

Fig. 1. Response curve of 1/(sy/s+1) (even number quotients being
taken).

If j=4, we have
1 4854+8 1
VBTl S +85+18 8
48+ 8
Ifj= 6, the result is

1 e4+38+32 1
SvS+1 S 4189 +485+32 8
68328+ 32
= 8%+ 185° + 4857 + 325

The corresponding time curves are indicated by n=3 and
n=4, respectively. Of course, we obtain a better result if
higher quotients are taken. The comparison of data is
shown in Table III.

Fig, 2 shows the different approximation when an
odd number of quotients are taken. In other words, if

1 . i)olynoin:'ial at {(—1)th row 1

l

. m—— e

Sv8+H1 T polynomial at (f)th row-polynomial ‘at {(j—Lithrow S

when j quotients are taken. )
Let j=2 as a special case in the approximation; then

1 2 1
SvE+1 S+2 8
8+ -+ @
— 2 .
T 8249

The time domain [10] curve of (21) is shown in Fig 1 (the
curve marked by n=2). We see that even though j=2, it
is a very good approximation to the original curve.

SHIEH ANDy CHEN: IJRRATIONAL TRANSFER FUNCTIONS FOR DISTRIBUTFD-PARAMETER SYSTEMS

i=3, 5,7, 9, I1, the corresponding time curves are indi”
cated by n=2,3,4,5,6 - -.

For an automatic control system which, in addition to
components with- lumped parameters, contains ong or
more elements with distributed parameters, the transfer
function is written in the following form:

WiW.

- @
1+ W.Ww.

Ws

where W, is a transfer, function containing distributed

971
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TABLE Il

_ Exact Approximations
X t=xt erf (+/7) n=2 n=3 P n=4 n=35 n=6

0 0 o . 0 0 0 0 0

0,02 0.0004 0.0226° . 0. 0008 0.0016 0.0024 0.0032 0.0039
0:04 0.00i6 0.0451 0.0032 0.0064 © o 0.0095 0.0126 0.0156
0.06 0.0036 0.0676 - ° 0.0072 0.0142 0.0211 0.0277 0.0339
0.08 0.0064 0.0901 0.0127 0.0251 0.0369 0.0478 0.0576
0.1 0.01 0.1125 - 0.0198 0.0388 0.0564 0.0719 0.0851
0.2 0.04 0.2227 0.0769 0.1424 0.1895 0.2172 0.2295
0.3 0.09 0.3286 0.1647 0.2796 0.3319 0.3426 0.3377
0.4 0.16 0.4284 0.2739 0.4178 0.4468 0.4374 0.4252
0.3 0.25 0.5205 0.3535 0.5363 0.5349 0.5215 0.5185
0.6 0.36 0.603% 0.5132 0.6293 0. 6096 0.6016 0. 6024
0.7 0.49 0.6778 0.6247 0.7007 0.6775 + 0.6756 0.6775
0.8 0.64 0.7421 0.7218 0.7575 0.7394 0.7409 0.7423
0.9 0.81 0.7969 0.8021 0.8045 0.7941 0.7967 0,7972
1.0 1.0 0.8427 0.8647 0.8445 0.8408 0.8429 0.8428
1.2 . 1.44 0.9103 0.9439 0.9074 0.9101 0.9105 0.9103
1.3 1.69 0.9340 0.9659 0.9310 0.9341 . 0.9341 0.9339
1.4 1.96 0.9523 0.9802 0.9497 . 0.9526 0.9523 0.9523
1.5 2.25 0.9661 0.9889 0.9642 0. 9664 0.9661 0.9661
2 4 0.9953 0.9996 0.9954 0.9953 0.9953 0.9953
3 9 0.99%9 1.0000 0.9999 0.9999 0.9999 0.9959

Fig. 2. Response curve of 1/{s1/s+1) {odd number quotients being Then

taken). ) 100
oz L'+ 8) [1 +0.63 g"LS)]
e " gu(S)
W:; =
100
1+ S
148 [1 +0.637
( ) g1(8).

100g:5)
" o1+ S)gl(S) +0.63(1 +8)g:(8)
and when a unit step input is applied, we easily obtain

the ouiput
s = 1008? -4 10008 + 500
- 41584 + 120.458° + 1021.938? + 505.638
If ;
parameters and W, is the element involving lumped B g:(S) 5824108+ 1
parameters. . = =
Now we study the given feedback systern of (22) The qi(8) S+ 108+5
transfer functions are defined as The corresponding time curve is shown in Fig. 3 by n=4
100 Ifa better approximation is used, or letting )
W T14063v8 o g2(8) _ 98% -+ 848° + 12687 4- 368 + 1
1 qi(8) S+ 368% + 12682 + 848 + 9
We= 1+ 8 ' the corresponding cutput will be

1008* 4+ 36008 + 1260082 4- 84008 - 900

C(8) =~ - .
® 8.678°% + 195.598° 1 3894.,35* 4 12912.065° 4 8516.318% + 909.638
Assume that we can approximate /S by ) VL. Conclusion
) ' A method for approximating irrational transfer func-
8 = g2( . : tions by rational ones through continued fraction expan-
g1(S) sions and inversions is established. Compared with the
972 IEEE TRANSACTIONS ON AEROSPACE AND.ELECTRONIC SYSTEMS ~ NOVEMBER 1969
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ORIGINAL PAGE I§

P=1/s c
— " I'—I w,

OF POOR QUALITY

e

oy 100
Ly T,

1+0.63[=

1 + 87 1 +5

2

o 0.1 n.2

Fig. 3. Response curves of o closed loop system.

existing techniques, the new approach is algorithmic in
nature and digital computer oriented. Two examples have

been included for illustrating the accuracy and power of
the method.
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the sum of n signals in Lzl'm(-w,t], one-dimensional sub-

th function from a set

spaces of L2(-w,t] spanned by the m
of time reversed orthogonalized real or complex exponential
functions, where m = 1,...,n. A system mapping L2(—m,5]

into itself is associated with a system mapping Lzl'm(-W,t]
into itself; the latter system is characterized by a gain -
real or complex exponential describing function. The approx-

imate response is found by adding n approximation components

resulting from multiple one-dimensional mappings where n
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is the order of the nonlinear differential equation
describing the system's behavior.

The contraction-mapping fixed-point theorem is also
used to determine conditions for the existence of a solu-
tion prior to the use of the exponential describing func-
tions for obtaining an approximate response.
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This paper presents & new procedure for the general medtriz Heaviside expansion.
The transfer matrix to be expanded can have many eigenvalues, each of which can
have any multiplicity. The derivations of the formulas are based on Krylov’s matrix -
and Vandermonde's transformation, and take advantage of using the partieular
nature of the inverse Jordan matrix. The results are extremely simple.

1. Introduction

The general formulation and solution of state equations in dynamical
systems analysis is based on the following two postulates :

{1) The method of aﬁalysis and form for an n-degree system of any complexity
is the same as for a 1-degree system of the same general type, provided
each quantity is replaced by an appropriate matrix.

(2) A matrix equation true in-one reference frame remains invariant in-form
upon ftransformation to a new reference frame of the same type.

These two-generalization postulates (Kron 1939, Bewley 1961) in fact, were
introduced by Kron for the tensor method more than 30 years ago.

Heaviside’s expansion (Van Valkenburg 1964) is a fundamental operation in
transfer function analysis. It should be extended and applied to a transfer
matrix without any theoretical difficulty. With a proper interpretation,
Sylvester’s expansion formula (Gantmacher 1959), can bhe considered as the
matrix Heaviside expansion for the distinct eigenvalue case. For the general
case, Chen and Parker (1966) have generalized the Heaviside expansion by using
complex algebra, which can be considered as an extension of Goldstone’s tech-
nique (Kuo 1966) from the scalar function to the matrix function. However,
it is well known that Goldstone’s approach is not very suitahble for digital compu-
tation. Recently, Rao and Ahmed .(1968) developed a recursive formula for
solving the multiple eigenvalue problem. Unfortunately, their recursive
formula is only good for the transfer matrix with one high-order eigenvalue.
Therefore, there is a-lack of a computer method for solving the matrix Heaviside
expansion of a transfer mafrix with several multiple eigenvalues, In other

T Communicated by; Professor Chen.

I.Permanent address: Electrical Engineering Department, University of Houston,
Houston, Texas.
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432 C. F. Chen and R. E. Yates

words, the matrix Heaviside expansion problem in general has not yet been
completely solved.

This paper, based on Kron’s two generalization postulates, develops a
procedure for the general matrix Heaviside expansion. The transfer matrix to
be expanded can have many eigenvalues, each of which can have any multi-
plicity. The derivations of the useful formulas. are.straightforward and the
rvesults are particularly simple and especially suitable for digital computation.

2. Derivation of transfer matrix

Transfer matrices come from many formulations in systems analysis. In
the state space approach, usually, a transfer matrix comes from the Laplace
transform of a transition matrix. )

Consider a set of state equations in the matrix form :

[£]=[4][z], (1)
where [4] is an 7 x 7 constant matrix. Laplace transform (1) and then solve.
for [X(s)]:

[X(s)]=[sI — AT [(0)]

. = [@(s)[{0)],

where [©,(s)] is an 7 x n matrix, each element of which is a transfer funetion
the ratio of two polynomials of s. The inverse Laplace transform of [®@_(s)] or
[#,(£)] is usually called the transition matrix-of (1) )

To take the inverse Laplacetransform of this # x # transfer function is very
laborious. We would like to develop a new approach to solve the matrix
Heaviside problem. The ifiverse transform problein then can be solved readily.
We will use [D_(s)] as & vehicle to develop the method of expansion; of course,
the matrix Heaviside expansion technique can be dpplied to other fransfer
matrices as well. It is readily seen that .

[(6)] =[] ~ 4]

(2)

_Adj(sI-4) 3)

g det (s —4)’

where Adj means the adjoint matrix, and ‘
det (s — A)=s"+ a1+ asm 24 ... +a, s+a,. (4)

If the characteristic equation of [®,(s)] involves distinet roots, only, the
regular Heaviside expansion technique can be applied: .

Adj(sI-4) =z [&]

[2.(s)] T det (sI—4d) ;50— A ?
where . o : ' o
_[Adj (sI = 4) i '
N 1= ety o= o -
Hence ' 4 |

[$s(t)T= 3 UTexp ()

This extension is clearly explained in Chen and Parker’s (1966) paper.

{2y



A mew approach to matriz Heaviside expansion 433

When multiple roots are involved in the characteristic equation, the regular
Heaviside function differentiation technique can be extended; however, it is
very cumbersome. We will use two similarity transformations to find the
equivalent primitive systems in the Kron sense first and then evaluate the
transfer matrix by expansion.

Our problem, therefore, is to expand the transfer matrix, (®.(s)], into
partial fraction matrix; or let

AN
O] = 2 e 2o

_ Adj[sf-4]
C(s=A)E(s =2 (7)

where [K] and [@,] are n x 7 constant matrices which are to be determined.

3. Krylev’s transformation

The first similaity transformation we want to perform on (1) is Krylov’s
transformation. :

Krylov’s transformation is a particular matrix which can transform a
general matrix [4] into a standard form. Kron’s second postulate justifies
this transformation.

Krylov’s transformation is as follows:

[H]z]=1y], (8)
where [£] is formed by a set of chain vectors :
U]
4}
[Hl=| 114p (9
AP

in which 7 is any row vector such that the determinant of [H]is not equal to zero.,
Substituting (8) into (1), we obtain;

1= [HIANHT 1= [)fy), ~ (10)
where [«] is 2 standard form or the companion matrix. Then (10) becomes:
-gl-,ro 0 L. 0y 7

| s 0 0 1 o .. . 0 Yo
. - . . . . . (11)
Ll L, —a,, . . . =@ =& L Yy,

in which the elements of the last row of [a] correspond to the characteristic
equation coefficients of [4] respectively.

The [H] matrix was first proposed by Krylov (1981); Gantmacher (1959)
modified it and used it to find the characteristic equation of a general matrix.

fos



434 C. F. Chen and R. B. Yates

The same matrix with an input constraint then was rediscovered and extended
by Wonham and Johnson (1963, 1964).

Krylov’'stransformation not only simplifies the computa.tlon of the coefficients
of the characteristic equation but also offers a link connecting a general system
and a primitive system in the Kron sense,

It is very easy to prove that the [H] matrix does indeed transform.a. general
matrix into its companion form in the following manner.

Start with the Cayley—Hamilton theorem which is that any matrix [4]
satisfies its characteristic equation :

s ta st 4 L ta, s+a,=0, (12)
ie.
(AT + (AT G AT + .. +a, [A]+a,[I]=0. (13)
Both sides of (13) are multiplied by a row vector [I1:
HAT +a ATt al[AT2+ ... +a,_i[A]+a,l{I]=0. (14)
Rearranging: )
AT = —a,i[1]—a, J[A]— ... —al[A]* (15)
We also write some trivial identities: ' v
HI[4d]1=14], )

HANA]=1[A],
IAR[4]=UAP,

(18)
AI-2{d]=I[4]-
Writing (16} and (I15) together into a matrix form, we have:
iy - 0 1’ 00 0 0 1]
1[4] 0 1 0 0 4]
[4]1=] "0 +0 o0 0. . , (17)
. 0 0 0 0 0 1 .
Ay ~Gy —Gpy ... —ay —ay ] | 4
which is:
 HIANH =[] - (18)

Therefore, we have proven the Krylov transformation.

4. Vandermonde's transformation
Once the system described by a general matrix differential eqn. (1) has been
changed to the companion matrix form (10) by using Krylov's transformation
matrix, we can diagonalize (10) immediately by the well-known Vandermonde
transformation.
Letb .
E1=[V]1, (19)

#.24



A new approach to matriz Heaviside expansion 435

where
Tr1 1 R S
Ay Ay A,
Al A2 .2
12 ) T R (20)
| )l]_“'_l Azn—l . . Anﬂ_'l _
if the system has only distinet roots.
Or, let
ly]=[W1lz], (21}
where
! 0 0 0 1 ]
0
il 0 A
A En A) . 0 .
b3} 1 g2 ! : |
A2 (A2 e (AR . 0 A2
| A, mm b,
2] 1 gmt ' 1 gm0
—1___fyn-1 - n—1 . n—1 —1
A]_n aA (A ) Al 2! aam_l (A ) Pq . (m"" 1)! ah(m—l) (A ) Al A Aa i
(22)

if the characteristic equation in question has a multiple root A; of multiplicity m
and a root A, of multiplicity 1. This is a typical example from which there is
no loss of generality in writing [W].

Then the system is described in z coordinate as follows:

El=[V1«][V][z]=[Ali=] (23)
for the distinet case, and _
1= W] [«][W][z]=[J][z] (24)
for the multiple case, where [A] and [J] are:
As
Ag
[A]l= . (23a)
L. Al’l

$.2-7



430 C. F. Chen and R. E. Yules

and
- A 1 -
AL
A
[71= T (240)

A

A

respectively.

In Kron’s terminology, eqn. (23) is called the corresponding primitive
-gystem. Pubting a general system into this form not only helps us solve the
equation easily, but also gives us much insight.

It is very interesting to note that the Vandermonde matrix [V] and the
modified Vandermonde matrix [W] can be derived from Krylov’s matrix.
Here we only derive the [V] matrix from the [H] matrix,

Consider z coordinates as a special case of x coordinates. From (23) we have :

[VIAIP] = [«]. (25)

Comparing (10} and (25), we see that the {¥] matrix is only a special case
of [H]. )
Let us assume in (25) that

Ag
[A]_=
n A,
Then
RS y
A2
[AP=
" e
and
Aaﬂ.—l
[AT-t=

B hn'n.—l i
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The [H] matrix is formed accordingly :

-1 -
I[A]
HAP
[H}= . , (9)

L AT
and let

1=[1,1,1,...1],
we have arrived at: -

-1 1 1 1
hl AE A3 A'n

[H}=

B )‘l'n-—l Azﬂ.—l A3"_1 . Anﬂ.—l |

which is exactly the Vandermonde matrix.
¥ 2 similar reasoning is followed, the { W] matrix can also be derived from the
[H] matrix.

5. General Heaviside expansion

Because the Krylov matrix and the Vandermonde matrix are so easy to form
and to use, we would take the advantages to perform the similarity transfor-
mations on a general system in order that we will naturally obtain a simple
procedure for the general Heaviside expansion.

Consider the general system again:

[21=[4][z], (1)
whose transfer matrix is:
(D (s)]=[s]— AT, (2a)
as we derived before. :
Now, we use the following two similarity transformations:

[x]=[H][y],

[y1=["]z],
to change (1) into a primitive system finally :
A= IWPEIAIET ] (26)
or
=6, | (26a)

b.24

ORIGINAL PAGE IS
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where
! }
A 1
X Exk
/1= - )
A, 1
A, 1
Ay
N ¥,

L gx g

(27)

Laplace transforming (26a) and solving for the transfer matrix defined in 2
coordinates: .

The inverse of (28) can be directly written :

[®.(s}]=

(@, (s)]=[sI =TT

-1 1 1 1 A
(s—Ap) (=21 (8- A (s —2)" -
1 1 1
(s=A) (=X (s—A) .
1 1
A A L kxk
1
(s—2)
) _
1 1 4 )
('3-:1\_2) (s—A)* -
1
G=n) 11979
*t )

(28)

(29)

The simplicity of (29) helps us solve the general Heaviside expansion problem.

ﬂ. 320
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When changing [@,(s)] back to [®,(s)] by use of {8) and (21), we easily find
that they are related by:

(@)1= [HI WP NIWTHH] (30)

Equation (30) is our bagic formula for the expansion.
Substituting (7) and (29) into (30) we obtain:

- ORIGINAL PAG
k [Kk] 2 [Qq] E IS
2 gt OF POOR QUALITY]
1 1 1 ) ]
s 8= (s—A)
1 1 ,
(s—Ay) (=72 - ik
— [HTW] . (W),
(s—4)
e R —— — (31)

I+ is noted that both [H] and [W] and their inverses are all constant matrices
while [K,] and [@,] are to be determined.

We multiply both sides of (31) by & scalar (s—A;)*, then letting s = Ay, [E] s
determined : .

0 0 0 1 Ny
00 . . 0
00 . . 0 0 pkxk
0000000
0
K. ]=[H]*
{k][]‘[W] 7xq
0!
)
N 0

% [WTHH). (32)
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Only the element at the first row and kth column has a value of unity; all other
elements are equal to zero. Similarly : .

=~ 1 0 0 0 . . 0} T
0100 . . 0
00190 . . 0 L L%k

(& =[H][W] (W1 H].  (33)

In eqn. (33) only the elements on the diagonal of ‘the first Jordan block have
values of unity; all other élements are equal to zero.
Next, we find [K,]: .

Lo T e B o}
o o -
S H o
-_ o o

kExk

(=T =R

[E]=[H WY ", . o . C|IWIH] (34)

§ J

Only the elements just ahove the main diagonal of the first block are unity; all
other elements.are equal to zero.

The matrix coefficients from [&,] to [K,] are determined by the above
simple procedure. It is interesting to note how suitable this procedure is for
digital computer programming.

Following the same process, we find :

}kxk

0 0 . .1
Q1= [H]*[W]| 00000 [WI[H]. (35)
0

0-0 . 0;99%¢

o
o .
<
o

Only the element at the right upper corner of the second Jordan block equals
unity. All.other elements equal Zero. :

i
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Similarly :
B n ORIGINAT, PAGE
bxk OF POOR QUALITI1§
]
[€:]=[HI*[W] 1 [(WIT[H], (36)
' gxq
| i) i
ete.

Therefore, all [K,1[@,]... have been evaluated by simply changing appro-
priate elements into unity or zero. These simple results are believed to be new.

If we degenerate the problem into the distinet eigenvalue case, the formula
is simpler. = Expanding (30) for this case, we have:

[B1] | [Ro] LY

§—A; &=,
-1 -
s—X
1
8""1\2
1
= [H]2[V] PR (VI [H] (37)
1
B §—A, |
The unknown constant matrices are: '
1 ¢ .0 0
000 . . .0
[By)=THTPIf o 0 o . . . o }[IVI'UH] (38)
| 00 0 0 0
=0 ¢ . 0
01 0
[B=[HI'[VI] 0 0 o o fLVI'([H], (39)
L 0 0 0 0 |

ete.
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It should be noted that we have two by-products in the approach; first, in
the use of the [H] matrix for performing the similarity transformation we auto-
matically find the characteristic equation. This way is simpler than Newton’s
formula (Chen and Haas 1968) or Faddeev’s method (Chen and Haas 1968).
Secondly, it is easily shown that the product of [H1-![V] is the modal matrix,
each column of which is an eigenvector. Therefore, this is an easy way o find
eigenvectors. “The arbitrary constants in the tegular approach to the eigen-
value problem become an arbitrary vector [1]..

6. Conclasions

A procedure for the general matrix Heaviside expansion is established. It
is particularly suitable for digital computation in state variable analysis..

Historically, researchers in the control engineering field have long been
investigating the relationship between the inverse Vandermonde matrix and
the residues of the regular Heaviside expansion. Tou (1964}, Brule (1964) and
Reis (1967) have presented their results. However, they always restrict them-
selves to the distinct eigenvalue case. No general or multiple eigenvalue case
has been given. On the other hand, in the areas from the companion matrix
formulasion to the controllability and observability tests (Kalman efol. 1963)
we have long been interested in Krylov's matrix; however, we have never
obtained a united picture. This paper presents the general view and points out
the essential applications and their relations. .
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N = DIMENSION OF TRANSFER FUNCTION HATRIX

A= N x N HMATRIX OF GENERAL FORM (xD8T) = (A){x}

VECTRL = ANY ROW VECTOR SUCH THAT THE INVERSE 8F THE KRynLev
TRANSFORMATION MATRIX (H) EXISTS

PH1Z = SIMPLIFIED PHIZ(S) MATRIX ALL ELEMENTS UNITY OR ZERO

H = GENERAL VANDERMBNDE MATRIX

SUBROUTINES

MATX(M:A:B,CY RETURNS (CY = (AX(BY ALL N X N
MINV = LIBRARY DDUBLE PRECISION MATRIX INVERSE SUBRBUTINE

DOUBLE FRECISION UJAfWJHJPE;TJPiJHIVlVIHfDJPHIZ
DIMENSION P1llssa),LL 48 M0024
DIMENSION VECTRLi#1:A(4:4)1H[4:4)1FEIQJ#)JT{#;#);HIV(#I#’:VIH(4JQ)
1 sH{5: %Y, PHIZ{}44)
10 FORMAT(4F10+Q}
11 FERMAT(4E16+7)
13 FORMAT (13}
READ (S,13) N
READ {S,s10){VECTRL{I)+1=1sN])
READ (5,10) (¢ A(lsJlad=lsM)aluataN)
READ (5,10} ({W(loJdysJslaN}sI=isN)
WRITE (6,208)
205 FORMAT(///, TGENERAL STATE EGN (XDGT) a {(AV(X)1,77)
WRITE (é:11} {0 A{I,0)sJdsisNYs12LsN)
08 27 1 = 1aN
DB 87 J =14N
27 F2ilaJYy = Allej)
pe 24 1 = laN
2% HU1,11 =yECTRL{I]
DB 28 | x 24N
D8 25 J =1sN
Hilsd} = D«
8 25 K a2l4HN
25 H(IsJ) = VECTRLIK)Y*P2(KaJ) + H({I2J}
CALL MATX(NsP22ASTY
pe 28 111 = LJN
po 28 JJJ =1.N
28 F2UITT,JJ0) = T{11]I,J3JJ)
WRITE (6,206}
206 FORMATY (/774 'H MATRIY TB TRANSFORM (A) T8& [ALFA}://)
WRITE (6011) ((H{laD)aJslsNYs121,N)
DO 28 | = 1N
08 P9 J-=isN
29 PL(1:d) = HUL,D
CALL MINVIPLIN,DsLLsM}
CALL HATX{N,PL,WsHIV)
CALL MATXI{NIASF1.P2)
CALL MHATX(NsH,P2.7) -
WRITE (6.208)
POB FORMAT (/77,7 {YDDT} = (ALFAY(Y) WHERE (ALFA) = CﬂHPANIﬁN FGBRM 2/ /)
WRITE(G211) 0 TiloJdYadatsNYs i1}
D& 33 1 = 14N
DO 33 o =14N
33 PEILLY) = WiladY

ORIGINAL PAGE IS
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WRITE {6,212}

FORMAT { ///1 VGENERAL VANDERHONDE MATRIX s /7)
WRITE (6:11000 WlleD)aJdstaNYaLelaN)

CALL MINV{PL:NsDsLLsM)

CALL HMATX({N,PisHaVIH)

CALL MATYINsPi,T,AY

GALL MATXINsAIW,P1)

WRITE {6,210}

FERMAT (///,'JORDAN BR DIAGENAL FORH1.//)
WRITE (6:11) ({PL(I,J1sJ=1sN)aI=2sN}

DO 80O KK 214N

READ (5,100 ((PHIZ{1,J)aJd=1sN)s1=1sN)

CALL MATX{NsHIV,PHIZ,A}

CALL HATX{NsAIVIH,P2)

CONTINUE

WRITE [6:803) KKiKK

FORMAT (/775 'K{", 18,1} MATRIX FOR RAGT{V,13,1}1,47)
WRITE (6,11) ({P2(I,J) »JsisN)sI=1,N}

sTOP

END

SUBROUT INE MATX{NsA,B,L)
DBUBLE PRECISION AsB,C
DIMENSION A(NsNIsB(NsN}2C{NsN)

pe 10 1 =i.N

pe 10 J =ziwN

Cllad) = Qe °

DB 0 K =1sN~ )
Cllrd) = ACIsKI=B{KsJY + CLIsd)
RETURN

END

PROGRAM END
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Appendix
The method is best illustrated by the following example.
Consider a given system :

[#]=[4][=], (A1)
where
-5 2 0 0
‘ 0 —4 0 0
[4]= 3 2 —a 1| (A2)
—3 2 0 —4

We use the similarity transformation :

y1=[H]l=], (A3)
where
10I 11 1 1
- 4] | | -1 oz -4 -5 "
A 82 —48 16° 24
] oap 530 436 —64 —112
to transform (A 1} into y coordinates:
[§]=[HIANH ] [y] = [«]ly] (A5)
inwhich
0 1 - 0 0
0 0 1 0
Le}= 0 0 o 1| (48)

—320 —-304 -—-108 -—17
Performing another similarity transformation, or letting
Wliz]=1], (A7)
where [W] was defined in (22), we obtain:
[]= W HIAIH W]

= [J]{z], (A 8)
in which [/] is the Jordan matrix. For this example which has & multiple root,
—4, with multiplicity 3 and a root, — 5, with multiplicity I. The corresponding
Jordan matrix is:

[J]= (A9)

$.37
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The Laplace transform of the transition matrix in z coordinates is readily seen:

Cs+4 -1 0 0T
[ el J 1= 0 s+4 —_1 0
"’(8)]—_[8 F= 0 0 s+4 0
0 0 0 s+5
- 1 1 4
(s+4) (s+4)% (s +4)°
1 1
s+4) (s+4)?
_ ZEwy (si ) A10)
0 0 m 0
1
i 0_,_ -0 - 0 (_—s-i-\ﬁ) |
‘We return to the 2 coordinates and have:
[@4(s)]=THI WO (s)I[W][H]
1 1 1, .
(s+4) (s+4)P (s +.4:)3
1- 1 0
GFD GraR -
=[H]W] b+h) b 1 ) [(WI{H]. (A1)
. ° 0 :
(s+4)
, . 1 .
] 0 0 . 0 (3—'—"—55 '__
Assuming constant matrices [K,], [K,], [K;] and [@4], we obtain:
K (K], 1K) (@]
[@.(9)]= 7 +14)+(8+1)2+ (8+34)3 (s+15). (A 12)
Equating (A1l) and (A 12) gives:
Ky, 1K) | [K) | (@]
(s+4) (s+4)* (s+4)® (s+5)
-1 1 1 0 N
(s+4) (s+4)? (s+4)p?
S S
4 4)2 -
=[HI[W] G+e) ('H; ) [WI[H]. (A13)
’ )
0 0 1
B (s+5) |
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Now, to evaluate the constant matrices of (A 13), multiply both sides by (s+5)

‘and then let s= —5. We have [@,1:

R Y

0 0 00 i -2 00

. "0 0 0 0 0 0 0 0
LA ] I I -4
00 0 1 3 —6 0 0

Similarly, we multiply both sides of (A 13) by (s+4)3, and letting s= —4:

001 0 000 0 0
00 0 0 0 0009
wy=mrl oo oo |
0 06 00 0 0 0 0

Similarly, [K,] and [K] can be obtained by inspection. Thus, we have:

010 07 0 00 o
1o o 1.0 0 00 o
K=H"1 - W_l'H:‘. -
LAV 4] R |6 3T I
000 0 0 -4 0 0

By similar reasoning, we obtain :

“ 1 ¢ 0 0 0 2 0 0

1 0 0 0 1 00

b an (41 BN 1 lv: ST B
0 0 0 0 -2 6 0 1

Once the matrix coefficients have been determined, the transition matrix can be
directly written as follows: .

[$2(8)1=[KTexp (—48) + [K,Jt exp ( — 4¢)
‘ + [Ka](fjal 2)exp (—4)+ [@ ] exp (—52.)
A digital computer programme for the general Heaviside expansion is included.
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The only difficulty involved in the Newton-Raphson method is how to make the
initial- guess. This paper presents a two-transformation technique which enables us
to make the initinl guess unnecessary. Several characteristic equations are tested.

1. Infroduction .
~ The scalar Newton-Raphson method for solving a high-order algebraic
equation:

J(8) = 6" +a, 6" 1+ a,8" 2+ ... +a, =0 ) (1)
is written as: .
81 = 85— (871 f(s,)- (2)

If we make the right guess for s,, after the ith iteration, we will obtain one
of the roots, s;y;. However, if the guess is not good, we may never obtain a
solution. There is no systematic method to use as a guide line to meke the
initial guess.

2. The multidimensional Newtorn—Raphson ritethod
If there is a set of simultaneous algebraic equations:

fls)=0 (3)
or )
f:l.(‘gla 82-5 "':Sn) =0,

f2(31» S, :":Sn) = 9:

(4)

fn(‘gj.:'gz: ey 8y) = 0.

and it is desired to find s, s, ... and s, we can use the general multidimensional
Newton—Raphson method (Bellman and Kalaha 1965 or Childs 1967):

_1 . ~
Siy1 = S;+ — [g] f; (5)

T Cornmunieated by Professor Chen. .
1 Permanent.address: University of Houston, Houston, Texas.

# #2
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where s is a vector and
[ oh o %]

08, sy, ds3
af _?_-E 5f2 3f2

2= | 08y Bsy 88y |, (6)
% o Us

8s, Osy afy

which is usually called the Jacobian.

3. Equivalent equations
Instead of solving the characteristic eqn (1) by using (2), we would rather
look at the problem from a different angle.
First, the equation:
Ff&) = st ta,sv 14 a8" 2t ... +a, =0
can always be decomposed into a set of equivalent equations:
) ‘ et+Bdyt...=ay

BBy ... = ay

cxﬁ'y e =y,
where —«, —f8, —v, ... are the required roots. Therefore, finding the solution
of (7) is equivalent to finding the roots of (1). We can use (5), or the multi-
dimensional Newton—Raphson formula to obtain the values of «, 8,7, ..., ete.
This new viewpoint is similar to that of changing a high-order differential
equation into a set of first-order state equations. Because of this change, new
light is shed on the problem.

4. First transformation

The roots of the characteristic eqn. (1) are distributed in the s-plane. If we
consider-that each root is a unit mass, the s-plane must have a centre of gravity.
From Evans’ root-locus method (Chen and Haas 1968), the centre is determined
by the arithmetic mean-of the roots, or

Gg. = — =k (8)

If we move the origin of the s-plane to the centre of gravity, we would have a
more balanced picture.

It is well known that the centre of gravity can also be determined by the
second coefficient of the characteristic equation. Therefore, we perform the
first transformation by letting:

Yy =s—k. ; {9)
Substituting (9) into (1) yields:
Pt by 2+ by y 4. +b, = 0. (10)

pr3
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It is noted that the second term is missing from the y equation.
Let us use an example for illustration:

834135742654+ 12 = 0.

The value of % is found by:
k=12 = 4.33,
Letting:
y=s—4-33

and substituting into (11) gives:

y3—30-33y + 6207 = 0.

275

(11)

(12)

(13)

(14)

The root distributions in the s plane and in the ¥ plane are shown in fig. 1.

Fig, 1
834+135%+265+12 Im
{s+10.67} {s+1.65) (s+.682) X 2.5
s-plane
$ > PR R : Re
=T -5 =5 * 2035
'|' -2.5
¥3-30.33y+62.07 . L“‘
{y#5.33) {y-2.68) {y-3.65} T z.5
¥=plane
9 s 4 M e Re
T35 . =2,5 EEN I
4 -2.5
Im
£7n1.93241.0 ¥ 2.5
(z+1.60) (z~.68) (z-,52}
z-plare
;. 3 i3 /\“ £ n— RE
-5 2.8 " \ j 2.5
1 -2,5

5. Second transformation

The first transformation is a general practice for solving equations.

It

coincides with the techhique used in the cubic equation formula and in the

quadratic equation formula. :

X
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The geometrical interpretation of the first transformation, of course, is to
relocate the origin at the centre of gravity.

However, after the first transformation, the root distribution is still not
very uniform. Some roots in the y plane are too for away from the origin
while others are too close. We can changoe this by using another transformation
and letting

y = /()2 (16)

¢

In our example we use:
Yy = ¥ (62-07)z. (16)

Equation (15) can be called the geometrical mean transformation. The charac-
teristic equation of our example becomes:

(¥/(62-07) 2)% — 30-3. (/(62-07)) .2+ 62-07 = 0
or
28-193z+1=0 {17)
and, in general, g
... +1=0, . (18)

For eqn. (18), we can always make the initial guess by simply omitting the
middle terms. In other words, the first guesses for the roots are:

z = 4/(~1), ‘=—1£.
Because we have used the geometrical mean to normalize the last term and
make the roots redistributed more uniformly around the unit circle, we call
our approach a normalized multidimensional Newton—Raphson method.
For this exampleproblem, fig. 1 shows the root distributions in the s plane,
y plane and z plane,

(19).

6. A fifth-order example
For the equation:

Jls) = 54+ 16-25%+ 97-255% + 359-652+ T2-Ts.+ 17 (20)
we use the new method to find the solution.

First, take the following linear transformation:

y=°"7%

Then we have:
o — 7133 4 94-5Ty® — 847-83y + 1676-88 = 0. (1)
Performing the second transformation by letting: .
y = 5,J(1676-88) 2
we have:

25— 0-3962% + 1-09922—2-232+1 = 0. (22)

f.vs
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Now we can solve for the roots of (22). - The initial guess is the following
veotor:

' 360°3
23 =_1é z

for i =0,1,2,3,4,

or
2, = —0-30901 +j0-95106, 2, = —1-0000, 2z, =—0-30902—40-951085,

"2y = 0-80901 —30-58779 and 2; =0-80902 +40-58778.

Fig. 2
89+16.25%497.25:74359, 62472, 75417, 0 -~
{s+31j5} {s+.1%7.2} (s+10} ® 5
s-plane
¥ '3 +—Re
LAY !‘5 k3 5?
x 4 =5
L= Im
¥7-7.7397 498, 5752847, 63y 41676, 88 s
(¥£6.76) (y-0.24235) (y~3.1447.2)
Y-planc
¥ f—i*xa
.
X -5

=9-0.3962%41, 099222, 232¢1.0

m
(2+1.53) (z-.054£51,13) (2. 71125, 045) %1

/ ~plane
5 x

- 1

3

Figure 2 shows the root distributions. in the s plane, y plane, and # plane,
It is evident that our five values of the first guess are uniformly distributed
on the unit circle in*the z plane. They approach the actual roots by several
iterations as shown in fig. 3. ) ‘
b
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Fig. 3
85416, 20%497,2533+359,65%472, T8 +17,0 - Initial -0.31£30,95
5

3 2, Guess -1.0
27-0,3962"+),099182~2,23206241. 0 . 0,81£40.59

Im

Pivat 0,213231.0L
-0 Iteration -1.75

) 0.67230,33
Segond 0.05231.14

Iteration ~1.54

0.72£30.13

Third 0,05+j1.13

N Re Iteration =1.53

KQ =

Fourth 0.05%j1.13
Iteration =1.53
0.71130.05

FL. Finzl 0.05431.13

Value ~).53
0.71%£j0.05

7. Computer program

The normalized multi-dimensional Newton—Raphson method was conceived
by the first author and the computer experiments were performed by the
second author on the SDS Sigma 7 computer. The programme was written
using double-precision complex variables to allow accurate processing of
complex roots. ’

The necessary inputs to the programme include the order of the equation,
the tolerance for solution and the coefficients of all terms of the equation. The
coefficients are read in as real numbers and divided by @, to normalize the
highest-order term.

The first transformation is performed by using eqn. (9) and then solving
for the new coefficients in the y plane. The second transformation is performed
by using eqn. (15) and then solving for the new coefficients in the z plane.
The initial estimate for the roots is made by using cqn: (19). This leaves the
first guess for the roots uniformly distributed around the unit circle.

The iteration technique of eqn. (5) is used to converge to the actual roots
of the equation in the z plane. The process is stopped when each of the
equations of (7), after subtracting a; from the ¢th equation, is close enough to
zero to be within the tolerance specified for solution.

8. Other examples )
- The method was tested for a tenth-order equation:

810+ 1249 4 68-755% + 249-5s7 + 63755+ 1187555

+1613-7554+ 156353+ 994552+ 3735+ 60 = 0
with roots at:

310 =— 1441, Sgq = 0-5 ijJ3'75, 86 = _2ij13

§p=—05, s=—1, §=—18 s§y=—2.
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The followiné roots were calculated with our method:
815 = — 0-99997 +50-99998, sy, = — 0-49999 1 j1.93649,
856 = — 199977 +41-00027, s, = —0-50000;
85 = —1:00005, s, =—1-49904, s, =~ 2-00145.
An equation with repeated roots: -
854+ 5-dst+ 11-64s%+12-5252 + 6-728+ 144 = 0
was also tested. The actual roots were:
. S19a=—1, §g=—12
The following roots were calculated with the normalized method:
815 = —1-00633 £50-01398, s, = —0-98671,
845 = — 1-20032 £ §0-00809.
It is interesting to note that the method is so good for a repeated root case.

9. Conclusions : :

A normalized multi-dimensional Newton—Raphson method is established.
After two transformations, we solve the normalized equation and then perform
the inverse transforms to obtain the solution. The' initial guess which is
the most difficult part of the original Newton—Raphson method becomes
unnecessary.
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technigques originated by Letov, Kalman, Bass and Tyler
start with a certain functional--the quadratic performance
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suitable for using the industrial specifications. 1In other
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To synﬁhesiza a desirable transfer.function-baéed on the
hybrid_specification: After finding the closed loop trans-
fer function with an assigned compensétor and simplifying
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Simple methods for identifying linear systems from
frequency or time response datat - .
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A decomposing method is derived for identifying linear system transfer functions if
response data in either the frequency domagin or time domain are known. The method
is based on the application of the second Cauer form or contmued fraction ex-
pansions The dominant factors of an unknown system can be systematically identified.

1. Introduction

Tn 1965 Chen and Philip, suggested a method for transfer function fitting
from the frequency response data and in 1968 Chen and Knox extended the
idea to the time domain., Their methods are based mainly on Bush and
Caldwell’s (1945) transfer function decomposition.

This paper based on the second Cauer form continued fraétion expansion
proposes-two methods; one in the.frequency domain and the other in the time
domain, for constant coefficient linear system identification.

Consider 4 system transfer function of the form:

Ots) _ Ay s 14 4 Agy s+ Aggs+ Ay
o B8 Ay F o+ Ayt Apst Ay’

(1)

where B(S) is an input, C(s) is an output and 4, are-constants. Rearrange
the numerator and denominator polynomials.of eqn. (1) into ascending order:

Clsy Ag + g8+ Agys?4...+ 4y, 82

' R() ~ Ayt Aggs+ Asg oo F Ay (1 a)
then using synthetic division on eqn. (1 ) we have:
Ols) ., -1 )
R(s) [(4121 Ajp—Ayy Azz) ) (Am Ayy—An Azé) ]
. 8 - : + s+...
. Ay L Ay Ay
Ay . o Ay +Agp s+ Apastt . H Ay, st
— ' 1 ' ‘ -
© dn S(Ay+Azpst...) - ’ (1)

:A";+A21+A223+A2332+ v b Ay, 571

t Communicated by Associate Dean of Faculties, Dr. C. J. Huang,
 Permanent address: Electrical Engineering Department, University of Houston,
Houston, Texas 77004. R
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in which:
4, = Andn—dndy,
! 21 ’
Agy = _43;_‘&13_*4114‘123'
3 A?.l
Dividing repeatedly, we have:
C(s) 1
= 2
B(s) ili e 8 ] ? (2
Ay Ay §
I e
w Ay 5
Ay
where
Y PR P .
Aj,k=A,-_z,k+1——-J~%_;_1é’i’, j=3,4,..., k=12, ... (2 a)
71,
An alternate form of eqn. (2) can be written in the form:
C(s) _ ; 1
o) ", 1 ’ )
Ty I
24
8 Bt 1
3 h_i_ 1
ha,
8
where

b, = Aps , p=12..,2n, h,#0.
{p41),1
Equation (3) is the second Cauer form.

Based on this form, Chen and Shieh (1968) constructed a linear model
simplification technique. This revealed the fact that a transfer function is
dominated by the first several quotients of %,. Indeed the high-order transfer
function can be reduced to & low-order model by simply taking the first several
quotients of the continued fraction expansion. Tiater Towill and Mehdi (1970)
compared this method (Chen and Shieh 1968) with several commonly used
low-order models and investigated their sensitivity problems.

2. Identification based on frequency response data

For illustration and no loss of generality we consider a second-order system
with its transfer function as follows:

Ols)  bys+b,
R(s)  st+as+a,’

4.53

(4)

where a,, b; are constants.
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The continued fraction expansion of the second Cauer form for eqn. (4) is:

C(s) 1
R(s) 1
bt fy 1

+
8§

(3)

1
hg+ E@
§

The block diagram representation for eqn. (5) is shown in fig. 1. The rational
function for the continued fraction inversion of eqn. (5) is:

Cls) (hothy)s+habshy

= . 5
R(s) ~ s®+ (hyhg+hyhy+hohy)s+hehyhghy (5a)
RIS),
Synthesis of transfer funetion.
Comparing eqns. (5 a) and (4) we have:
&y = by by Ry byt 5hy,
= hyhohghy,
by by highy 5b)
bl ='h2 + h4,
by = hyhghy.

Our goal is to identify the unknown quotierits A, %y, %, ahd 2y. The procedures
are shown by the following steps.
(1) Identifying by

Suppose an unknown system which can be decomposed info a continued
fraction of the form of eqn. (5) is put in the solid line block as shown in fig. 2.

. Fig. 2
Unknown system to be identified

R(S) 44 r“E‘{E% C4(9)
'
; % '

Identifying h,.

5%
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The unknown quotients %y, ky, kg and %, are to be identified. We-add a positive
feedback gain &,” to the unknown system; the block diagram of the modified -
unknown system is shown in, fig. 2. The corresponding mathematic equation
can be written as:

Gyls) _ 1

1(8) (”‘1 hl’) t k
2
8

- . (®)
1

8
The rational transfer function of eqn. (6) is:

Cils) _ (ho+hy) s+ Ry hghy ™
By(s)  s2+[(Ay—Ry) Ry + (hy—Ry) by +Rghyls+ (hy—hy'Yho by ;"g '

Equation (7) is a particular system in which its denominator has all coefficients
if By—~h'5#£0. It is similar to the type ‘0’ system in the feedback system
terminology. We simply call eqn. (7)-type ‘0" system. The frequency response
data in the low-frequency region on the Bede plot shows the 0-slope response;
however, if h, —%,' = 0, egn. (7) can be simplified as:

'ol(,g)-= (ho + o) + g Beg By ®)
B,(s) s(s+hyhy)

Equation (8) is a type 1 system. The frequency response in the low-frequency
region on the Bode plot shows the —1 slope character. Due to the fact that
the factor |1/s| is more affected in the lower frequency region than the other
factors in eqn. 8, the change of & system from a type 0 to a type 1 will show
the eminent difference on the Bode plot. This peculiarity easily lets us judge
the accurate value of %,. In other words, in the lower-frequency region, we
adjust Ay’ until the frequency-response data of the modified system changes
its slope from 0 to —1. Then we have the. accurate %, value. Therefore, the
h, value is-unique.

(2) Identifying b, .
From ‘step (1), if A, —%;" = 0, the corresponding transfer: function of the
modified system can be written as:
N .01(3) _ by 1

)5 (9)
’ 4
8
We add an integrator on the feed-forward link with negative gain k,’ to the

modified system of fig. 2. The block diagram of the new modified system is
shown in fig. 8. The-transfer function is: - s

220 _ hy—hy 1
B s T

(10)
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The rational transfer function becomes:

Cyls) _ [(he— Ry ) +Ra) s+ (e — Do) Rg By
Rofs) 3(s-+hghy) ’

(11)

Fig.-3

Unknown system to be identified
N - -
o K0 o P e T I
+
[
1
T laemce- h s H
P ;
! 1

Ry(S) 4+

|
%
&

Identifying k.

Equation (11) is a type 1 system if ,—h,'#0. The frequency response in the
low-frequency region of the Bode plot has the — 1 slope feature; however, when
we adjust k' such that ,—h," = 0, then eqn. (11} changes fo:

Cyfs) - by
By(s)  s+hghy”

(12)

Equation (12) is a type 0 system again. Of course the frequency response in
the low-frequency region of the Bode plot.shows 0 slope peculiarity. Therefore
by adjusting %, we transfer the modified type I system of eqn. (9) to a type 0
system of eqn. (12). “When the 0 slope appears in the low:frequency region on
a Bode plot, we have the correct %, value.

(8) Identifying hy

From step 2 we obtain a correct b, value, and the transfer function of fig. 3
becomes: : )

Ofs) 1
Ry(s) - q
byt
Ay Y (13)
_ &
_
T sthyh,

Equation (13) is a type 0 system again. Following step 1 we add & positive

feedback gain to the system of fig. 8. The block diagram of the new modified

system-is shown in fig. 4. The transfer function is:
Cyls) _ hy - i
By(s)  s+(hg—hy') by

3.s¢

(14)

ORIGINAL PAGE IS
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Using the same procedure as step 1, we can identify the A, value correctly.
The final systern can be written as:

Cy(s) _h
fi@ = f (15)
]

h
h

. 4
7]
|7_|
[

1
3
1
Unknown system to be identified

[

Rats)lty C5(s)

r
1
'
1
|
i
1
> ]
L]
1
|
t
[5Y
- e

Identifying k.
(4) Identifying &,
Equation (15) is a type 1 system. Again, we add a feed-forward link with
a negative gain ;' to the system of fig. 4. The block diagram of the new
modified system is shown in fig. 5. Then the corresponding transfer function
becomes: .
Ode) _ by
R,(s) s
In the Jow-frequency region, if we choose the correct %,” then the 0O-slope
feature of frequency response will appear on the Bode plot,
Since for any value of %, —k,#0 we have a straight line with slope ~1
which passes through the crossover frequency at h,—h,. For the case

(16)

Fig. &
[0}

R (S) + ¥ & i - +4 € 48)
47 A 8 1 T3 + 4, 4
o GO L R R RN S

Identifying &,.

452
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hy—h,' = O the amplitude of the frequency response on the Bode plot is-0 ds.
Then the process of identification is completed.
Finally, we have all quotients &,, ks, h; and Rk, The required transfer
funetion is:
Cls) _ (Ro+hy) s+ Rohghyhg

BG) S Uyt b+ gl 8+ by B Tiglig” an

Ezample 1
Consider the following transfer function which has a pair of complex poles
to be identified:
Ofs) _ —2s+6
B(s) s+4s+6°
Assume eqn. (18) can be expanded into the following continued fraction
expansion: :

(18) .

Cls) _ 1

RE) )
R r—

(18 @)

where k; are unknown quc}tients to be identified.
Following step 1 and comparing the frequency response data of fig. 6 we

Fig.6 -
Cl(ju)
Ry (3u)
daB
N 10
I
1 = 1.0
s
Hy = 6.9
2 —7‘%\
me \
—
0
Radrans/sec.
=20
'l 1 i s3I 1L i 13 1 1.2 ]
0.01 0.1 1.0

Frequency response obtained from step 1.

y 274
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find that with a slight change of the exact %, value we have a very clear eminent
difference of the amplitude on a Bode plot. In other words, on the Bode plot
if k" is 0-9 or 1-1 we have a type 0 system which shows the 0 slope character.
But if )’ = 1, then we have a frequency response data which shows — 1 slope
feature on the Bode plot. Of course the system hes been changed to a type 1
system, therefore ; = 1 is the required value.

Following step 2 and comparing the frequency response data of Fig. 7 we
can easily obtain k,. Since in Iow-frequency region if &,’ is 0-9 or 1-1 the two
curves in fig. 7 almost coincide; however, if A, is 1 then we obtain a type 0
system with its 0 slope character on a Bode plot. Therefore the required %, is 1.

Using the same procedures as step 3 and compering the frequency response

curves as shown in fig. 8 we can easily figure out b, = — 2.
g 7 ORIGINAL PAGE I§
= -OF POOR QUALITY]

1]

20

\\9.2 =1 ar
o N h( - CK Radians/sec.
3 = 4.

Nh, = 1.0 %*h

2 I S TN A 1 L I S S B
0.0) .1 1.0

Freguency response obtained from step 2.

Following step 4 and comparing the frequency response curves of fig. 9, we
obtain the required %, = —3. Based on fig. 9 we observe that when hy=-3
the magnitude in ds on a Bode plot is zero but if h,—h, 0 a straight line
with slope -1 passes through the crossover frequency at fy—h,". Then we
have completed the identifying process. :

3.9
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C:‘ljw) Fig. B

Ry Jw

"‘° \
40
\Qj - 20
20
’\'ﬁhfa = -2l
h‘! = =1.9
"

o Hadians/sec. \

-20 3 ....--. t PR
Q.01 0.1 10

Frequency response obtained from step 3.

The required unknown system is:

C(s) _ 1
R(s) 1
1+£+ T
s 1
T3
— 2546
=S s i (19)

3. Identification based on time-response data

Suppose we have an unknown system which can be decomposed into
continued fraction expansion as eqn. (5) and the bléck diagram is shown in
fig. 1. The rational function corresponding to eqn. (5) is

0(3)= - (R4 hy)s+hyhshy
R{s) 32+(h1h2+h1h4+h3h4)3+h1h2h3h4'

(20)

Our problem is to identify all these #’s in the time domain. We have the
following steps:
ﬂ&a
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Fig. 9
€4 tow) l
Ry0)
an
40
20
Hy = -3.1
!;'4 = =2.9
° \h4 = ~3.0 Radlgns/sec.
~20
YT T 7% ¥ e

Frequency response obtained from step 4.

(1) Identifying k,

A unit step function is applied to the unknown system or eqn. (20). The
output equation can be written as: ’

(hyt+hy) s+ Ry ks by

1
Cls) = 8 st (hyhog+hy b+ hohy)s+hyhoho by

(20 a)
Apply the final value theorem to eqn. (20 @) to find the steady-state value of
C{t),, or:
),y = lims.C(s)
>0

(ho+Rgys+hyhgh,

=s]—1>1113w-8[32+ (Ry o+ Foy oy + Pog Rog) 8 + By By g oy ]
1
-1 (21)

From eqn. (21) we find that the first feedback gain %, can be obtained by
taking the reeiprocal value of the final values of the unit step response, and
adding a positive feedback gain %, to the unknown system. The block diagram.

.67
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is shown in fig. 2. The corresponding modified transfer function is:

Gulo) By ! (22)
Bas) sy Ll
3 h‘
s
— h2 h4
T8 sthghy

{(2) Identifying h,
‘Taking the unit impulse function as en input and applying it to this
modified system which is shown in fig. 2 the resulting transfer function becomes:

1

Cule) =2+

or:

(23)

and the final value is measured.- It is evident that the second term in eqn. (23)
cannot contribute to the final value of the impulse response of eqn. (23). Only
the first term decides the final value of the response. From the final value,
we obtain the %, value. We then add an integrator with negative gain %, on
the feed forward link as shown in fig. 3. The resulting transfer function becomes:

Cals) 1
E,(s) - 1
et
8
or.
.h4
- 8§ hs h4 ) (24:)

(3) Identifying kg
A unit step input is applied to the modified system which is shown in fig. 3
or the corresponding eqn. (24) and the final value is measured. We then have:

-1

Oz(t)s.s =%

From the final value, we_calculate its reclproca.l value and get ha Again,

following step 2, a positive feedback gain 7, is added. to the system of fig. 3.

The correspondmg new system is shown in fig. 4 and the resulting transfer
function is:

Cyfs) - ﬁ :

Bifs)y s~

f

(25)
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(4) Identifying by

Following step 2, applying unit impulse function to the modified system of
fig. 4, the final value is the required %,. Again, adding an integrator with
negative gain %, to the system we will, at last, obtain a horizontal line only.

All ; are determined. After substituting these values into eqn. (20) we geb

the desired transfer function of the unknown system.

(26)

(26 @)

Ezample 2
Consider the same example as shown in example 1. Rewrite eqns. (18):
Cls)  —2+6
R(s) 82445+ 6
. 1
B 1
?‘i'

Assume that eqn. (26) is the unknown system to be identified. Following
steps 1, 2, 3 and 4 we have the time response data shown in fig. 10. From the
final value we can easily obtain the required unknown quotients of &, =1,

h2=1,h3=—2,k4=—“3.

Fig. 10
clt)
Step (2) F-= 1.0
1.0 A _ {5
) N
[ hy = 1.0
Step (1)
1.0
1 (sec.)
u‘ L F t 1
9.5 1.0 1.5 aols 20 R,
i
\Step Eh \ L=oos
3
-%.0
1
-3.0
-2.0
Step (4) by = =3.0
-3.0 ¥ {

Time responses obtained from steps 14,

4¢3
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Substituting all of these kb values into eqn. (26 b) we have: _

C‘(s)= 1
R(s) 1"'“1“ ------- —li—— )
LR S (27)
8 —ot 1 .
=3
8
or:
—25+6
=—_— 2
$2+45+6 (28)

4. Discussion

So far the examples we have discussed are only the second-order system
with four inknown quotients; however, we can apply the same procedures
for high-order systems. Theoretically, we can find all the A; values of an
unknown system. After all %; factors have been found a method (Chen and
Shieh 1969) of continued fraction inversion can be used to convert the continued
fraction into a rational function.

To illustrate the above processes in a convenient way the response data, in
the frequency and in the time domain of the above two examples, are obtained
by calculations from the digital computer. Several assumptions were made to
get the exact solution; for instance, in example 2, we have assumed that we
can seb up an ideal unit step functlon and unit 1mpulse function as inputs and
also that we should have prior knowledge that the linear system is constant
coefficient and stable.

5. Conclusion

Based on the second Cauer form continued fraction expansion, two methods
for identifying a transfer function are discussed. No prior knowledge of the
order of the numerator and- denominator is necessary. No complex pole
problem is involved. It evaluates the parameters of the system from the
frequency response data as well as that of time. Integrators are mainly used
instead of differentiators. Due to the fact that the most important. quotients
can be identified first; these methods give us a satisfactory accuracy.
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(A) Project Title: BAnalysis and Design of Multivariable Systems

via the Krylov Transformation

{(B) Project Abstract:

The analysis and design of automatic control systems
may be divided into thé classical an& the modern approach.
The modern or state variable approach has been the result
of earlf work by Kalman, Bucy, and others. This modern
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The determination of transfer function coefficients of a
linear system from the system impulse response was
shown by Kekre [1]. Bellman, Kagiwada and Kalaba [ 2]
applied a method of Legendre-Gauss quadrature approx-
imation to identify linear systems from observed samples
the input and output. Later, Cook, Denman, and Carr [3]
proposed an alternate method by using Laguetre-Gauss
quadrature approximation for the same problem. These
methods lead one fo the idea that the Laplace transform
is applicable not only to certain classes of explicit time
functions, but also to sampled time response data which
are obtained from Laplace transformable implicit time
functions. This paper proposes two methods: one for
identifying transfer functions in “s” from the input-
output time response data, the other for identifying state
equations in the time domain from the zero input time
response data.

. Identifying Transfer Functions
from Time'Response Data

" Consider a constant—coefﬁcmnt Cz"-type nozs&free
linear system whose transfer functlon is

bls”_l + bzs"'2 + -+ b,

X)) = .
6= + a5t as" T e g, (1?
An alternate way to represent (1) is
Xtax" a4 ax=0 2
with a set of initial conditions
[ x(0) ]
x'(0)
. 1 -] - ©)
L x""1(0)
wherea,, b,,i = 1,2, -, n are constants.

Differentiate (2) » — 1 times and the resulting equa-
tions become .
. x"+l + alx" + azxn

tpertax' =0

X" ax"t ax” + ot ax” =0

ORIGINAL PAGE.1S
-OF POOR QUALITY

2n~1 T34 e tgx" =0, (&)
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Rearrange (2) and (4) into 2 matrix form:

where

[x] =

and

[x]

-

2n—-2

{a]

2n-3

[x] = (- D[X][a]

- al 1
a;

xPxn - 1

ORIGINAL PAGE IS
OF PO

()

(6)

Both sides of (5) are premultiplied by the inverse matrix
[X]of(6); thenthen x 1constant vector [a] can beeval-

uated as follows:

0,

as

(- 1)

n—2

g
H

22— 3

XX

AF T

b

T_l - " —
xn-l-l
x2n—1

ol hoe.

N

If al?&e gyn%%tlsrrg [X7]and [x] in (7) at specific time are
known, then the denominator coefficient of a transfer
function can be immediately obtained.

The order of the unknown system can be determined by
checking the determinants of partitioned matrices from
[X] in (6); in other words, j X j, j = 2, 3,*, n square
matrices can be sequently partitioned from [ X'] by taking
from the upper right-hand corner of [X] in (6). If one of
these j x jsquare matrices is the largest matrix such that
its determinant is nonzero, then the order of this un-
known system is j. This is because a jth-order differential
equation with j terms’ unknown coefficients requires only
jlincar independent equations.

Stanley [4] linked the relationship between both coeffi-
cients of the denominator and numerator of a transfer
function with a set of initial conditions. The relation is

rp1 f1 o 070 7
bz a, 1 0 x’(O)
= da a;_ 1 0 (8)
b, L g, t]]x10

We expand (8) and rearrange it into the following form:

b, [ x(0) 0 oir 1 7
b, x'{0) x(0 - o}| a

T = . . . (9)
15, Lx'@ o XOxOU] an-y ]

Substituting (7) into (9), we obtain the complete transfer
function.

In the above description an assumption has been made
that we can differentiate the given response curve2n — 1
times such that 2n values at a specific time. can be ob-
tained. By using these values we can formulate (7) and (9);
then the required transfer function can be constructed.
However, any numerical differentiation will generate
errors and the result will be inaccurate. In other words, if
we can obtain all the information from this given re-
sponse curve without any numerical modification, we
will get the correct solutions. The Z transform and its
inversion are used to achieve this goal.
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Consider a response curve x(1)'is given; a sample func-
tion with sampling period T is added to the response
curve. The sampled function x(} can be written as x*().
Then,

x*(1) = x{0¥8(1) + x(T)d(t — T)
) + xT)( — 2T) 4 . (10)

Performing the Laplace transform on (10), we have

X*s) = x(0)e® + x(T)e™ ™ + x(2T)e™ ™ + -
(10a)

Following the definition of the Z transform by letting

s==1Inz ore™ =z, (10b)

L
T
and substituting (10b) into (10a), we have .

X*(%_ Inz) = X(z) = x(0)z° + x(T)z~}

+ xQ@T)z"% + = + xfn — IT)2" "D 4 e (1)

Equatiiin (11) can-be considered as the result of the long
division of two polynomials, or

Z(eyz" '+ 2"+ -t )
D+ diz Tt +dy T e+ d,

X(z) = (12)

where d; and-e;, | = 1, 2, ---, n are unknown constants to
be determined. Equation (12) can be represented by a dif-
ference equation as follows:

x(t + nT) 4+ dyx(t +n — 1T) + dyx{t + n — 2T)
4+ -+ dx()=0 (13)

with a set of discrete points

- x(0) -
T
(14)
Lboxin — 1T

SHIEH ET AL : IDENTIFYING LINEAR SYSTEMS

Applyingthe E operatorn — 1timesto(14), wehave

“x(t + 1+ 1T) +dyx(t + nT) + dox{t + n — 1T)

+ o +dx(t+T)=0

X4+ 0+ 2T dyxtt + 0 + 1T 4 dyxtt + nT)
dorertdx(t 4 2T) =0

x(t 4+ 2n — 1T) +dyx(t + 2n — 2T)
+ dyx(t + 3n — 3T)

o+ dxt+n-—-1T)=0. (15

We then rearrange (13) and (15) into a matrix form, and
set 1 = 0, which yields

" 4, ]
d, _ ‘
== . ‘ :
d,
- -
@ —1T) . x(e =3T) = x(T). x0)
x(nT) x(n — 17T) x(2T) x(T)
Jfx@n - 27) x(2n — 3T) x(nT) x(n — 1T)
i x(nT) 7
x(n + 17
x@n—1T)

(16)

' ¢‘7a . 813



Thecompact form willread

4] = (- nlxJ* [xzi (17)
where S
X 7= ORIG]NAL PAGE
;] OF POOR QUALITY!
Cx(n — 1T) - .x(ZT) 'x(T)  x(0) 9
x(nT) | X(T) 1 x2T) x(T)
:x(4T) x(3T) x(2T)
| x(2n — 2T) =+ x(n + 1T) x(nT) x(n — 1T)
uy)

The coefficients of the numerator of (12) can be obtained
by the Chen and Shieh [5] algorithm, or

Again, the order of this unknown system can be obtained
by checking the. determinants of the square .matrices
which are taken from the upper right-hand corner of [ X ]
of (18). Finally, we have the required pulse transfer func-
tion

z{e;2” ! 4 2" + o + &)

- -

& x(0) 0 - 0T 1

ey x(T) x(0) - . d,
x2T) x(T)

e Lx(n— 17) «7 ol la.,

- T

C[&"-’ Ci‘
—

z- . ¢ s — -%lnﬂ.,
Taking the partial ftaction expansion of (20} yields
Ciz Caz C,z .
= 22).
X z—ll+z—112+ +z—‘.l,, 22)

where the 4,,i.= 1,2,:-,n are the eigenvalues of the char-
acteristic equation of (20), and C; are the residues corres-
ponding to poles 4,. Apply the transform pair of (21) to
(22); the required transfer functior then is

X(s) = f‘ + Clz + ——%—
§ —j__—,lnftl § — —;]_[n).'z b —',1—,.‘ ln;’»"
bys""! +.bys""? + - + by

A (23)

TS a0+ ags 2+
Example 1

A sin w1 function with @ = 1 is applied as an input to
an unknown system. The time response data with sam-
pling perlod T = n/2-are recorded 2s follows >

_sm
2

(24)

x*0) = 16() + 05(: - -2-) + 15( — 7)

+ 26(: — 32—“) + 15t — 2m) + 05(:

+ 18(t — 3x=) + =+

The transfer function in “s” of this unknown system is
required.

The following steps are followed.

1) Write the discrete equation for (24),

X(2) = x(0)2° + x(T)z™" + x(2T)z"2

E

-+ x(37)z73 +

=120 +0z7"' 4 1272 + 22_3

+127% + 02'5 (25)

where the sampling period T'= /2.
2) Construct the [X_] matrix and check the order of
this transfer function. The [X.] matrixis

xBT)} x2T) 1 (1) x(0) ]

X(2) = . (20)
P+ di " e+ d x(4T} x(3T) 1 xQ2T)_X(T)_
Since we have prior knowledge that the system is a C*"- ¥ 7= 5 4T 3T
type noise-free system, the required transfer function in [X.] *ST) .Ji(_ - _) - ,x _(_ - )_ - fgﬂ.ﬂ)_ (26)
“s” can be obtained by the Z transform and.its inverse - x(6T) x(5T) x(4T) x(3T,
transform [6]. One of the most commonly used transform |
pairsis - : . : -
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Checking the determinants of j x j,j = 2, 3,*+, n square
matrices which are taken from the upper right-hand cor-
ner of [ X_] of (26),ifj = 2,

(T}  x{0) 01
det = det + 0,
x(2T) x(T) 10
andifj = 3,
x(2T) x(T) x(0) 1 01
det | x(3T) x(2T) x(T) | =detf 2 1 0| <+0
x@4T) x(3T) x(2T) 1 21

Whenjis higher than 3, and all the determinants obtained
from the upper right-hand corner of { X} in (26) are zero,
we conclude that the order of this transfer function is 3 or
n=3

3} Substitute 2n discrete values of x*(#) into (16) and
(19), giving

d, ) | x(2T) x(T) x(0) | !

d, | =(- 1| x37) x@T) x(T)

dy x(4T) x(3T) x(27)
[ x(3T).
x(4T)
x(5T)
tosfrf2] [-1
(=210 1| =1 1
1 21 0 -1
and
e x o o |[1]
g |=1x(I x(00 O o,
23 x2T x(T) x(0) ZR
1oo) [ 1] 1
=101 0 -] = -1
1 01 A 1_ 2
The puise-output function is
z(eyz% + e3z + e3) z2(z2 —z 4 2)

X(2) =

23+d122+d22+d3=23—22+z—1.
(27)

SHIEH £7 AL.: IDENTIFYING LINEAR SYSTEMS

4} Transform (27) from the z plane to the s plane by
performing (21). The required output function is

sf—s5+1

CETR @8)

X(s)

5) Since the input function R(s) of this unknown system
is (1/s? + 1), the required transfer function for this un-
known system is

X(s) s*—s+1

R(s) 5 (9)

Hl. Identifying Zero-Input State Equations
from Time Response Data:

The same methods mentioned above can be extended
to a system whose zero input response data, at each state,
is known. By observing the time response data, the state
equation in the time domain can be identified.

Consider a system whose state equation is

[x] = [4][x] (30)
where ‘
i Xy ) i Xy ]
X3 X3
K= -} =
Xy X,
- o v -
and
I a1 a3 al,,-
Ay Qi dzp
[4] = (1)
N an!. an2 o am: p

Differentiate (30}n — 1 times and rearrange into a matrix
form. Wethenhave

%. 72 T



a g Fr , n—- 17
ay; " dya Qyy Xy X X
" -1
a3 Adzz Qzn Xy Xz X3
) n—1
L @y Qpa Ay hxﬂ Xn Xn -
- -
Xpox” x,"
Xy Xg" x3"
= . . (32)
- ” n
i"-ﬂ xﬂ x" v

The unknown coefficient maitrix [4] can be obtained by
rearranging (32), giving '

— . -
a1 4y Ay
az;1 4z Qzp

- a, anz Qpy .
. - -1 -
Xy ox" o x) Xp- X oo oxpTHpE
XZ xZ” x; X3 xZ x';_ !
= (33)
# S o4 vea n—1
X, x, X" X, X Xy o]
o ol _—

Ifall x, valuesi = 1,*-,n,j = 0, 1,-**,n can be evaluated,

then the unknown constant coefficient matrix [4] can be

. obtained. But we are interested in using the given infor-

mation x{t},i = 1,---,n only. Again, the Z transform and
its inverse transform [6] can be applied.

Based on the given x{f), { = 1, -+, n curves we can ex-

press this system by the following discrete state equation:

[x(e + 1T)] = [DI[x(T)] (34)
or

816

x2(k + 1T)

EXZEV)

L Xk 4 1T)

diy

d21

I Fx,em)

x,(kT)

L x,(kT) .
(35)

Apply the E operator on(35)n — 1times:then

xa(k + 2T)

£ 27) 1

L ¢,k + 2T) |

#73

T x, e+ 1T

xZ(k 4 nT)

| x,(k +nT)_}

i dl 1 du
dll d22
- dnl dnz

 dy,

d21

dnl

din

d2n

dz;

dnz

(xylk + 17) ]

xsk + 1T)

G
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Rearranging(35)and (36), we have

—‘dl 1 du d!.n
d21 d22 d2n
e dnl dnl drm_

X kT) x,(6 +17)

X2k TY xo(k + LT)

%fkT) xfc + 17T)

)k + IT) x,(k + 27T)

“xyk + 1T) xok + 27T)

| Xk + 1T)  xk + 27)

 xyk +n—1T)]
xZ(k +n - IT)
(36)
| xk+n—1T) J
xl(k+ HT)
Xz + nT)
Xk +nT) | )
1-1
xyk +n—1T)
xflc +n — 1T)

= (37

Rewrite (34):

[x¢ + 1T)] = [D] [x(Ty]. (38)

This tifne we take the Z transform on (38), which yields

AL X@) — xO)] = [D] [X(]]
or
[X(@)] = 2[2I ~ D}~* [x(O)]

Evalvating z[zI — D]7!, the resulting matrix can be
shownas follows:

(39)

z[zI — D]™?

o b $ b b
J=lz_'2fj =1 z_ij J=1z—itj

S bayy & bayy o bay
;12‘% :Ziz—lf J‘;z—}‘f

=4 (40)

i by j 5 by
-J‘=lz—)“-’ 12— A

where 1, is an eigenvalue of |z — D/, which can be dis-
tinct or repeated. b,;;located at the ith row and /th column
of the [zI — D]~ matrix is a residue corresponding to
pole ;. Again, using(21), the resulting matrix yields

[P] can be obtained by substituting the sampled values

of X *(#),i = 1,---,ninto (37).

SHIEH £T Af : IDENTIFYING LINEAR SYSTEMS

X (s)
X(s)
| X9
i an i 5123 ' i bw n
=1 1 . =1 _J=1 -
s —=nd, 5 — =jni, s — =jni;
H bZlJ . i bg,u
Fls——;—jnlj J=1_s—-—-mlJ
i bnl] n ‘_ bnnJ
s ——ind, s~ =ik
x4(0)
x,(0)
A B GOV
xq(0)
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The compact form of (41) is

[X6)] = [T — A" [x0]

The required state equation is

(42) k] = [A1[x].

(49)

where [A4].is the required system constant matrix such

that

(x] = [41[x1-

Comparing (41) with (42), the transition matrix [®(z)] of .

(43)can be written as

(@] = L*[sI - 4]

Example 2 " ORIGINAL PAGE IS

OF POOR QUALITY

A set ofinitial conditions

(43)

x,(0) 1
x2(0) 1

-  isadded to an unknown systemto generate the zero input

i bme“/n”""‘ Zn:bu Je‘fm"’*—‘ ib 1y TmEs response. The response data with sampling period Tis
= = =t recorded as follows:
n [ 7 [~
szue“m'"“ ] e Jibzme(m!ng, *(T) — 3¢~ T 4 4727
i=1 =1 =
xA{T) | 3¢ T — 2e7%7
ey | [-3e 2T+ deeT
) . = (50)
n -2F _. -47T
;L by €Dt zn: b,,,,je‘m’""‘f _J_C:(ZT) | | 3e 2e
L =1 1=1 d  The constant coefficient matrix [A] and the transition
(44) :
matrix [®()] in (49) are required.
The solution of (43)is First, follow (37) to obtain the [D] matrix,
[x] = [20] (<O} @9 gy [T T
From(43)and (45), we can easily find that . 3~ T — 2727 32T — 2747 |
[A] = [(i?(t)] [@(t)]-l. (46) - e 1 T 3¢ T+ 4e” 2T |-1
At this point, we can make the following observation: . 1 3e”T = 2¢7%7
The [ 4] matrix can be directly formulated from equation
{40), by using the Z transform and its inverse transform 2e72T — 7T 2¢727 — 2277
table [6], or by performing the transform pair = (51)
: —e 2T T — g 4+ 277
bz . b Ini 4
zZ — lj T r
. Then, followi
The required [ A] matrix en. 1o meg (40),
" & obygyind; & biadnd; 2 bygyind; - :
* — -1
XA T AT | -
2 bzulnlj bzmlnlj 3 —aT - _ _ _
g lz-0e2T—en) -2 *T—e 1
AT AT )
[d] = : e 2T — g7 z 4 (72T —2e”7)
- 2 -1 2 -2
5 b ind; 2, b, inl -
.J; I.JTJ JZI .:Fn J- _ 7 — —2T+z“"e_T z e~ 2T z—e T
(48) ~1 1 -1 2
| z — 7?7 T T T et t eI T
Recall that Tis a sampling period. (52)

818
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The required [A] matrix can be obtained by using (46)
or (48). Theresult is

[4]

2—;111(3‘2") - —;a]n(e""‘) 2%111(8—27) _2 nte~T)

- —I,jln(e"“) + %]n(e"") i %ln(e““) + %Jn(e")

-3 -2
1 0
The stateequation is
!'(1 -3 =2 X1
= (53)
.XZ 1 0 X2

By using (44)and (52), the transition matrix is

2e7H gt 2e73 — 2¢7F
[@(] =

—e ¥ et — U 4 27

IV. Discussion

So far the methods we have discussed involve a mul-
tiple-valued logarithmic function. Unless the branch cut
of this function can be determined, many solutions can be
obtained. How to choose a suitable sampling period T'so
thai the principal values of this multiple-valued function
can be used is a very complicated problem. In sampled
data systems many people attacked this, problem; for
example, Mitchell and McDaniel’s [ 7] adaptive sampling
technique and Taits [8] sampling criteria, etc.

For the following numerical example, T = 0.02 is used.

Given:

x,(0) {
= . (54)

x,(0) 66.7

SHIER £ AL : IDENTIFYING LINEAR SYSTEMS

xl(T) 1.24

x4(T) 57.075
x,(2T) 2.2759 |
x,(2T) 46.383

and
x,(3T) 3.092 ]
S (54)

x,3T) 35.183

Following the procedures mentioned above, we obtain
the required state equation as follows:

X, — 0.000087 0.9999769 | § x3
= (55)
X, — 10653339  — 6.669395 X2
The original generating equation is
il : " 0 1 Xy
= i (56)
X, | | -1065 —6671} ] x,

Compared with (56), the answer is quite satisfactory.

V. Conclusion

Two methods, one for fitting transfer functions, the
other for estimating state equations, are discussed
through the use of the Z transform and its inversion.
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A state space procsdurs for the formulation and solution of the mixed boundary velue
problems is esteblished. It iz & natural extension of the method used in the initial
value problems; however, certain special theorems and rules should be developed.
The seope of the applications of the approach includes the beam, arch, axisymmetrical
shell problems in structural analysis, boundary layer problems in fluid mechanics and
eigenvalus problems for deformable bodies, ete. Many classical methods in these
fields developed by, for example, Holzer, Prohl, Myklestad, Thomson, Love-Meissuer,
ete. can be either simplied or unified under new light shed by the state variable
approach. A beam problem 1s included as an illustration.

1. Introduction

The state space formulation for a one-dimensional linear system can be
expressed as follows (Chen and Haas 1968) :

[8]=[4()]{z]+ [B=)], (1)
[2(6)] = [%], (2)

whers
[#] =state vector,
[ A{z)] = property matrix of the system,
[B(z)]=input vector,
[k} =state vector evaluated at the boundary.
The solution of eqns. (1) and (2), when [B(z)]=0, represents zero input res-
ponse, and.it is.given as follows :

@] [l - b [ o
) W PR
I7)= [$(@)]ic) (3 )

where [¢(2)] is called the transition matrix and [c] is 2 vector denoting the n
arbitrary constants.

or simply

T Communicated by the Authors.
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864 G. F. Chen and M. M. Chen

For [B(z)]# [0], the response appears to be

()]= [¢>(w)][6]+l; [¢@)][$() [B(r)} d= (4)
in which the last term is the matrix form of a convolution integral.
For
[A@)]=14], ()

where [4] is a constant property matrix, we have the following relationship

for [¢(r)]:

[p(r)17 = [$(—7)]. (6)
Then (4) is vewritten as follows :
[z(@)] = [${@)}{c]+ [w(=)], (7)
where
[ul(z)]={${z) ]I [(r))2[B(r)] dr.
2. Partition .
By partitioning eqn. (7), we obtain. o
3 % 1T ‘}5;1 95_1;- 951,_r+1 ¢;n 1 ! 17 Uy i
Z,. 951'1 '?grr 561', r+l1 ﬁbrr 0,. u’r
= + (9)
Zr41 ¢r-i:1, 1o 'ibr-n:L r 9"’r+1_, L e ¢r—1:1, n Cr1 U1
L. Zn - i lqsnl "?Sm‘ ?f"n,n-l-l b gé,,m I Cr I S Uy, =
or briefly, we can write eqn. (8) as
Zy [ Pu Q] G ] T UL
+ : (10)
Zy J| | P il C U,
At the boundaries, eqn. (10) can be written as, for z=«
12271 Q| P [ .CL ] [ Us*]
= : + s (11).
L 25 | L @y Dp* JL Gy | L Uy
and for z=p§ .
(2] [ $f i O [ O ] —'U1ﬂ
= +|—], - . (2)
| Zof | L @oif | @of )| O | L UL

where ( - )2 and ( - )# designate the value of the appropriate matrix or vector ( - )
at ¢ =« and z=§ respectively. '
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C L
Eliminating l: 0‘] from eqns. (11) and (12), we obtain either

ORIGINAL PAGE IS

[ 2/~ U] [ @ | O [ P1a* | Pua* T [ Z5 U] (?g‘ POOR QUALITY
- = +
| Z U | [ Onf | P L Ppy® | Do® | Z,*—
or
25— U ] [ Op® ;i O WO i | Zlﬂ“ U#T
: = + | (14)
2=Ug | [ @yl Do || Paorf | D | | ZF— Uy |

in which two of the matrices [Z,%], [Z,%], [Z,#] and [Z,"] are prescribed.

3. Classification and solution
Three cases in general can be classified.

Case I. [Z:%] and [Z,%] are known or {Z#] and [Z,#] are glven the problem
is degenerated to an initial value problem.

Case II. [%,*] and [Z,f] are known; a cantilever beam is a typical
example. Then [Z,*]is interpretated as the displacement and slope of the beam
ab fized end « and [Z,f] is the bending moment and shear at free end B.

Case III. [Z%] and [Z,#] are known. A snnply supported beam is a
typical example. We can consider that [%,%] and [Z,#] are the displacement
and bending moment of the-beam at « and B respectively. Both Case II and
(Case IIT are classified as the mixed boundary value problems.

Because Casé I is the initial value problem, the solution is readily seen as

[21]' I:‘Dn%'(pzzj'[ yy% | Oyy” l_l[ K.-Us ] [ U,
I=|-|-— ¢ —]
Z, Dy | Dy || Dop®} D™ | | K- Up® U,

where [?:l = [%], the given boundary conditions.
2 .

(18)

Then we consider Case II.
When [Z,~] and [Z,#] are given and equal to-[K,] and [K,] respectively, the
corresponding solution can be derived from (10)-(18). The result is

[Z1 :l I- (Dn ' (Dlz Tna . 11:-121 K1" Uf’c
Z, |.®21'§(D22 0 ! 0 JI Kp—Ug®

0 M 0 Kl U p Ul
+ - +[ , (16)
’ Yol i Vo || Ko U A U,

where the [¥'] matrix is defined asfollows :

(Dnai D3]\ [ Yo | T .
——l ] = | (17
AL @o | @z 1] For® | Fo®

CON, . 31
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866 C. F. Chen and M. M. Chen
Case III is with the following conditions.
(Z,5]=[K;] and [Zf]=[K,] which are known,

Matrices [Z,%] and [Z,/] should be evaluated first. This can be done by the
combination of (11), (12) and [K,] and [K,]. We have

l:ZE] [\I’n“; -¥,.7 :I'_l‘l: -V IIJ‘11‘6' _?12“'5“1’12‘6 -:l.r_ K, -Up#")
e == i y i i i

Zz ‘Fzz "Tzzﬁ “Ile“ E‘leﬂ “ana E"Feaﬁ

Substituting (18) into (11) and (12} we find C, and €, and then use (10) to
obtain the solution. .

4. IMustrative example
The state equation, eqn. (1), for a cantilever beam subjected to a lateral
pressure Joading, p(x), is as follows :

[£]=[4][=] + [8], (1)
where -
2 W 01 0 0 0
1 .
) I B V7O L7 A N (19)
2 MO 00 o0 1 0
7y 4 00 0 o o)

and EJI denotes the bending stiffness. The state variable W, 6, M, V are
displacement, slope, bending moment and shear respectively (Timoshenko end
MacCullough 1940).

Taking the Laplace transform, we obtain. -

o= (s-141) (e1- 186 - (20)
or ‘
8 gt Eif 1
Zel=x] 0 & 57 2 |1+ BED. (21)
0 0 & g2
‘0 0 ¢ s
The inverse Laplace transform of eqn. (21) yields the following :
[&(=)] = [$(=)][C1+ [ula)], ' (22)
where
T(e)] = [$(2) { [H(=)] 2 [b(o)] dr (23).

po
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Ba={0 1 = E-1.

: EI 2ET
0 0 1 x
0 0 O 1

For constant [ 4] and uniform pressure p,, eqn. (23) yields

The boundary conditions for a cantilever beam can be expressed as

2,(0}] )
' [ &[Ky]=[0],

[(2] =[—g—j = (40 | [4(~ No(e)) dr =gy C5T

S
2481
v x8

x*

2

L = ]

o [Yal=10],

2o(0) |
C -
2g(f)
& [K,]=[0]-
2y(1) <)
Thus ’ I
(U= (U =10], [Usf]=p, | 2
l
The submatrices-of [¢(x)]L are as follows :
T wﬂ _m3
I SEI 6EI
f\Faa] = FF11] = ’ [?12] = 2
0 1 A |
BT 2EI}
By egns. (26), (27) and (28), the solution {egqn. (16)) yields
Z, [—‘ 0, Vo U U,
— = + s
Zz - ‘I’zz Tzzﬁ Uzﬁ Ué
where a:_z T : h
2Bl 6EI 1 %
[@12] =, 2 » [Pas]=|. ’
roF 0 1
| BI 2EF
- . >
a 1 -]
? [¥aef]= :
U=, . 01
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(26)
(27)

(28)
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Upon substitution we obtain

-7 122 Izt ] ™ oyt 7]
2z,
1 15T BBl 34E1
—l2x Iz ) a3
% o —
Bl ' 2EI 6EI1
==D|. Do -
__12 xz
z3 _+l$ ?
x| N ! | | &

which is the solution of a cantilever beam.

5. Conclusions

In general, the mixed boundary value problems are less amenable to
numerical computation. It is seen that our systematic procedure established
as well as simple formulae derived make the modern powerful ool of engineering
—digital computers—more suitable for analysing this class of problems.

ACKROWLEDGMENTS

This work is supported in part by the National Aeronautws and Space
Administration Grant NGL-44-005-084.

REFERENCES
Crew, C. F., and Hass, 1. J., 1968, Elemenis of Control Systems Analysis (Englewood
Chﬁ's, New Jersey : Prentice-Hall Co. )

TimMosHENKO, 8., and MacCorroveH, G. H., 1940, Elements of Strength of Materials,
2nd edition (D. van Nostrand Co. Ine.).



(A)

(B)

(C)

(D)
(E)
(F)

Project

Project Title: A New Formulation of the Hermite Criterion

Project_Abstract:

The Routh algorithm is used to generate the parameters
of the Hermite criterion. The new formulation is simpler
than the original. The relationship among the Hermite, the
symmetrical Hurwitz, the Kalman-Bertram, and the Routh
criteria is naturally established.

Publication: International Journal of Control, 19, 457

(1974)

Year: 1974

Department: Electrical Engineering

Author: ' Professor C. F. Chen

7553’



INT. J. CONTROL, 1974, VOL. 19, xo. 4, 757-764

A new formulation of the Hermite criterion

C. F: CHENY

The Routh algorithm is used to generate the parameters of the Hermite criterion.
The new formulation is simpler than the original. The relationship amongthe Hermite,
the symmetrical Hurwitz, the Kalman-Bertram, and the Routh enteria is naturally
established.

1. Introduction

The Hermite matrix (1854} is formulated in terms of the coefficients of a-
characteristic polynomial. The parameters of the form are determined by an
algorithm which is not very convenient, and the matrix itself appears very
complicated.

Sinee Parks (1962) rediscovered Hermite’s matrix and Ralston (1962)
independently established the symmetrical Hurwitz criterion, the Hermite
criterion has played an increasingly important role in system analysis.
Recently, Jury and Anderson (1972) discussed the simplified stability criteria
and Anderson (1972) also developed the reduced Hermite form. They,
however, have not overcome the basic difficulty : the elements generated by
the algorithm are too complicated for general use. '

This paper will give a new form and anew derivation of the Hermite criterion.
The form is simple and the derivation is unified.

2. Canonical forms and canonical ‘transformations
It is known that a general linear system
x=Ax (1)

can be changed into a companion form by the use of Krylov’s transformation
(Gantmacher 1959)

BEx=y (2)
q’f
where K=| 9 ;A (3)
q'Ar-1

in which ¢’ is any row vector such that X is not singular. The prime means
transposition. We then have :

y=KAK-ly Loy ’ (4)
0 1 0 . . . 0
0 0 1 . . . 0
where .= 0 0 0 ! o ) 0 (5)
1
—-a, —a,, . . ]

" "Received 30 April 1973. _
T Department of Electrical Engineering, University of Houston, Texas 77004.
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The characteristic equation can be directly obtained from (5} :

Mg, A4 4a, Ata,=0 (6)
Based on (6) we now write the Routh array :
L @ & . . | en n Cy
L a3 a; . . Bap  Cag Cog
(alag— a3> .o - .
% T (7)
c’n, 1
O Cnt1, 1

The right-band side of the verticle line of {7) is the corresponding double

" script notation of the Routh array. By the use of the convenient notation the
Routh algorithm (Chen and Haas 1968) is simply as follows :

Cig, 1051, k2 (7 a)

Cr, bk =Cjug, htl™
- Gy,

Then we perform another linear transform by lefting

Ly=z ' (8)
where
[ 1 0 e, ceeerenin, 0 0]
0 1
Cp—i, 2 0
Cp1,1
0, ™. z
L=| ns.s™, Sl 0o 0 0 (9)
Cr-s,1 ™
0 01 0 0
S T S S N
: S
O o, bn o5 f2 o
| Co1 . Ca1 i

This transformation was found by Chen and Chu (1966). For convenience, we
call (9) the Chen-Chu transformation. Then the system becomes

z=LaL 'z T{10)
L3z

#-¢7
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_ Car1,1 .
Cu1,1 O
'_“. 0 -.'-.
W9
where " B= Ca1 ) : (11}

¢
-4 0 1

O

S

‘n C11 |

Form (10) is the Schwarz form (1956). The fact that its elements in (11)
are in terms of the Routh elements is due to Chen and Chu (1966). Schwarz
originally used computer techniques to search this matrix. Bellman (1970),
Kalman (1960) and others followed him.

We perform one more transformation, letting

Mz=w (12)
A/ (€12001) |

— v/(621031)
where M= {13)

1V (€a1841)

o (—' 1)p+1'\/(cn. lc‘n.-l-l . 1).

where p is the row number index of M.
Then we have

w=MBM~-lw ‘ {14)
Lyw

Co1 31

€1y tn T O

-2 \/2_1
11 Cm

; —\/"—“i o |2 S
where y= ‘2 NG (15)

Ca1
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Form (15) was first found by Puri and Weygandt (1963) and M was dis-
covered by Power (1969). The fact that all the elements are in terms of the
Routh array is:due to the author. ’
Let us summarize the transformations as follows.; ORIGINAL PAGE IS

W=yw . {Puri-Weygandt coordinates}}  OF POOR QUALITY
i=M-1yMz (Schwarz coordinates)
¥ =L-IK-lyMLy (phase variable coordinates)
x=K-IL-1M-1yMLEx (general coordinates)

where . r
K is the Kyrlov transformation
L is the Chen—Chu transformation
M is the Power transformation |

(16)

It. was very unfortunate that Puri and Weygandt formulated (ML)-! as one
matrix and that matrix is in terms of the characteristic coefficients; therefore
they made the formulation very complicated : Butchart (1965), on the other
hand, formed (L-1) first, and the elements are expressed by Hurwitz determi-
nants ; he, therefore, made the transformation unnecessarily comnplex. If we
form M and L first and write their terms by the Routh array parameters as
we did,, the whole process is much simplified. '

3. Liapunov functions .
In the Puri-Weygandt coordinates, we synthesize a Liapunov function

v, =wTIw (17)

where I is the identity ma'trix.,
In the Schwarz coordinates, the function is

© u,=z’M'IMz . (18)
47'Gz
cn, 1‘.11;-1. 1_
where G=M'IM= €31Cqy . - (19)
21051 ‘
€111 | -

(19) was discovered By Kal_maln .a.nd Bertramt ; Chen and Chu (1966) express
the elements by the Routh array parameters while Kalman and Bertram
(1960) used Schwarz’s elements. '
In the phase variable' coordinates, the same function becomes
v, =y'L'M'IMLy
=y'Hy. (20)
where : H=L'M'IML (21)

t Kalman and Bertram (1960) used Schwarz parsmeters to form (19); their
matrix is somewhat complicated than the present form. For details, see Chen and

Chu (1968).
$-89
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The elements of the matrix H are in terms of the Routh parameters ;
when we convert them into characteristic coefficients, the matrix H is identical
with the Hermite criterion. Therefore, Hermite’s criterion can be considered”
as a Liapunov function in the phase variable coordinate. Parks recognized
this fact and Anderson used this fact to prove the reduced Hermite criterion.
However, each of them fdiled to express it by the Routh parameters; and
therefore they kept the Hermite criterion as complicated as it was. Now,
not-only-do -we have a simpler-form but also we sée the links among Routh’s,
Kalman and Bertram’s and Hermite’s criteria.

4. A new form of Hermité_criterion
For illustration, let us consider a fourth-order system :

] fo 1 0o 0w
Jo | | -0 0 1 0 Ya
1=l 0 0o o 1 ||y (22)
Y —@y —@3 —dy —& 4 |Ys
Performing the-Chen—Chu transformation
LY‘ =Z
where -
[1 0 O 07
0 1 0 ¢
Ca
0 2 g
» Car A
in which ¢;; are evaluated from the Routh array, or’ ,
1 PN ) @y | i C1s C1s
@ 3 Co1 Caz
i N M
-ty &y ."'31 32
by — (L. ’ (24)°
(a1 : 2y — “1“4)
A .
Ca
@yly— Gy
o,
Oy - €51

4.90
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The Liapunov function in the Schwarz coordinates is

v, = y’E’M’IMLy

=y'L'GLy
- . o - -
‘10 20 || eyen i 0 00
Ca1
c
01 0 2| 6 1 0 ©
, Co1 €310
=y Yy (25)
¢
00 1 0 Ca1Car: ;*-‘E 0 10
31
00 0 1 0o ‘2 g 1
] €119 .
L . gL 81 .
_ oule -
C41Ch1 + 3: = 0 Caslay 0
a1 . R
. €a9%C1y
=y’ 0 Cy1lay -+ " 0 eylyy y (25 a)
Co1Cag 0 C21€a1 0
5 Y C11Can 0 611627 |

The matrix (25 a) is the new Hermite form for the fourth-order system which
is neater than the original Hermite formulation. Instend of using the
cocfficients @, of the characteristic equation, we describe all the elements in
terms of the Routh parameters. However, the expansion form of (25 «)
that is (25) is even simpler ; the core matrix appears as a combination of three
matrices. We, therefore, claim that the product of three matrices in (25) is
a new form of Hermite’s criterion. From this special form, we generalize to
the Hermite eriterion for the nth-orier svstem as follows -

11

0

Cp-1, 2

Cp1,1

., Car-

Cag

Cn1ns1, 1

C21631

Cp1, 2

Cp1,21

Cy1Ca1 |

e

Ca

y (26)-
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Examining (26) we see that it is a product of three simple matrices : namely,
the transpose of the Chen-Chu matrix ; the modified Kalman-Bertram matrix ;
and the Chen-Chu matrix.

5. Derivatives of Liapunov functions
Assurhe that for the system
W=yw (14)
we have a Liapunov function
w

v,,=wIw . (17

Substituting (15) into the derivative function of (17} gives

—2% g9 . . 0
n
0o 00 . . 0
V=W 0 0o . ... 0 w (27)
L o 00 . . 0

This-semidefinite function can be described in the Schwarz coordinates

8,=2'M’(y +y")Mz

000 . . 0
000 .. 0

=z'|0 00 . . 0 |z (28),
000 . . . =2,

Function (27) was used by Puri and Weygandt, while function (28) was fre-
. quently applied by Kalman and Bertram and Parks. Of course, they used
Schwarz’s elements to express them.

In the phase variable coordinate, the derivative of the Liapunov funetion
is easily found :

000 O

. {000 o

W=YL1o 00 o |1
0 0 0 —2,°
0 0 0 0

_ur 10 =207 0 —2eo0y

=Yio o o o |7 .9
0 =204905 0 —20y°%

Inspecting either (27), (28) or (29) we see that they are.always negative semi-
defined if ¢, is not zero. The definition of ¢,, is @, which is indeed a positive

ﬁ?z



704 A new formadation of the Hermite criterion

real number. Therefore, when we use Hermite's criterion, as a Liaputiov
function in (29), we never worry about the definiteness of its derivative. It
1s also evident that the central matrix of {26) which is Kalman and Bertram’s
matrix is positive definite, if and only if .c;, are all positive. Obviously, this
statement is simply the Routh criterion.

6.~ Conclusions

For Hermite’s criterion of stability, we derived a new form (25) which is
less complicated than its original formulation. The derivation is simple and
new. The relationship among Hermite’s criterion, Kalman and Bertram’s
criterion and the Routh eriterion is naturally shown by the use of canonical
forms of companion, Sehwarz, and Puri and Weygandt through the applica-
tions of canonical transformations developed by Krylov, Chen and Chu, and
Power. It should be emphasized that this new development is based on the
repeated applications of Routh’s elements instead of using characteristic
coefficients or Hurwitz determinants.
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The analytic methods for evaluatmg the time response of irrational transfer funetions
are incomplete. The graphical a,pproaches for solving the problem sre inaccurate.
This paper attempts to attack the general inverse Laplace transform problem under
the new -light shed by the Fast Fourier transform, An a.lgomthm for the inverse
Laplace transform is developed. Several typical but difficult cases are studied and
the results are extraordinarily satisfactory.

1. Introduction

A large number of circuits, processes or systems have distributed para-
meters andfor delay elements. (1) Thermal processes, (2) hole diffusion of
transistors, (3) electromagnetic devices, and (4) transmission lines are typical
examples.(Truxal 1955, Campbell 1958, and Bohn 1963). The -mathematical
models in the Laplace- transform domain for these elements contain either
the operators s under the radical sign or other irrational or transcendental
functions. To find the inverse Laplace transforms of these functions is an
extremely important topic in analysis and a very difficult problem in general.

For solving the problem, the methods so far developed can be summarized
into.three schools :

(1) Approximation methods

Let a rational transfer function approximate an irrational or transcendental
transfer function. The main contributions include Pade’s approximation
developed by Stewart (1960), Carlson and Haljak’s approach (Carlson and
Haljak 1964) to use a regular Newton’s process generating rational functions,
Lerner’s work (Lerner 1965) on potential analogue approximation, and Chen
and Shieh’s exhaustively calculating the approximate high order rational
transfer functions (Chen and Shieh 1967) for typical irrational and tlansc_(,n-
dental functions by using a dlgltal computer approach.

(2} Analvtic methods

Among the available analytic methods the most nota,ble one is developed
by Netushil and Kilomeitseva (1965). The) use special functions to make the
transform table-serving the particular purpose. .

(3) Graphical methods
Convert the irrational transfer function in the Laplace domain ‘into the
frequency domain, then use Laguerre po}.ynomiaJS or Chebyshev polynomials
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204 . F. Chen and E. F. Chiu

to caloulate the inverse function numerically. - Chen’s Inverse Laplace trans- -
form formula in terms of Laguerre polynomials is a typical method (Chen
1966) in this area.

The approximation approaches in the first school are lacking accuracy,
while the analytic method is not complete. (For example, Kilomeitseva and
Netughil cannot treat the repeated root case.) The third school is a practical
method. However, if we convert it into a computer-aided approach, we will
face either speed or storage problems.

This paper solves the problem by using the Fast Fourier transform
techniques.

2. Difficulties in analytic approach

Kilomeitseva and Netushil’s (1965) theory can be summarized below in
order to examine the difficulties involved.

An irrational transfer function is usually given as follows :

8™+ a4 ey,
bo/STH by /8PP 4 By

Let 4/s=2z; eqn. (1} becomes"a". rational transfer function of z; or

W(s)=

(1)

a?™ + a2 4ay,
b+ b2+ by

Wz = (2)
or simplify -
% a g2 =0
=%;z;: ‘ | (3)
i=0

This rational fraction may be expanded into .partial fractions

2a+l 4.
i

Wiz)= X

shz—g —

()

If there ‘is no repeated root in the characteristic equation of (2), the inverse
Laplace transform of the typical term..(4) with & unit step as input can be
derived by using the well known pair :

1) L F

exp (b ~a crf (ay/)] b exp (%) oo (b‘/"'(é?j_:)?z?a_:ﬁ

and: letting a=0 o get the reduced form

2
b—b exp (b¥%) exfe (b+/1) I w’;—_{_b—) ’ (3)
This inverse formula finally can be written as follows :
4 A g
L_1 == _ 2 .
[s( '\/S+£3):| - [3 —exp (%) erfc (a4/8)]. (6)

YSrS
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Bvaluation of irralional and transcendental Iransfer funciions 269

If complex roots are involved, pair (5) cannot be difectly applied.
Kilomeitseva ‘and Netushil’s approach is to reform the pair into a new
function.

For example, assuwrne the complex conjugate roots are z, and 2, | |.

A + Agn _ o 1)z
2=z 2—Zpa E-)E-2Z) EosE-sgy)

The inverse Laplace transform will be

where p and f are defined by 2, =p exp (j0), and m, and m, are-given by very
special graphical forms in terms of very complicated special functions and
their approximations.

The difficulties involved in their approach are as follows :

(1) If there is a repeated root appearing in the transfer function, no
corresponding inverse formula is available.

{(2) If there is a pair of complex roots involved, the inverse formula, cannot
be evaluated without a particular table or curves.

" (3) Even all roots are real ; because the inverse formula is not in terms of

elementary functions, it does not reveal too much information without plotting
the corresponding curves again. -

'Wl(:) =

(7)

3. Difficulties in graphical methods

We start with a general transfer function which could involve irrational
clements andfor transcendental elements.

¥ (s, /5, exp (= 75)). , (9)

The stability of the system is examined first. It can be easlly done by one
of the existing methods ; for example, Brim’s &pploa,ch After knowmg the
system is asympfotlcally stable, we can substitute ‘s’ by © jw’. (We note
that when the system is not asymptotically stable, we can make it to be
asymptotically stable by choosing a suitable positive number ¢ and substituting
s with s+ ¢, and time the final result by exp (cf).)

Then we have

) Y[jw, v/ jw, exp (—rjw)): (10)

The magnitude and phase versus frequency curves can be drawn.. Based
on those curves, one can obtain the time curve numerically. The well-
known method along this line are Floyd's method (Brown and Campbell
1948), Guilleman’s method (Truxal 1955) and Chen’s method {Chen 1966).
The basic formula they used is -

ENEE
ot g ¢

y(t)= R(w) cos fw dw

where E(w) is the real part of ¥(w).

Because those three methods are basically . gra,phlca,l it is difficult to
obtain accourate- answers.

$.97
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270 C. F. Chen and B. F. Chiu

4. Principle of the new approach

We rather look at this inverse problem from a different angle. Consider
the given frequency response as in fig. 1. First, we take N poinis in the
frequency axis as shown in fig. 1. It is noted that in the negative frequency

Fig. 1
Yizwf)}

~ kA N,

m]é

part, we truncate ab (IV, /2 Af, while in the pos1t1ve frequency part, we trun-
cate at [(N/2)—1]Af. We divide the intervals in this way, because N has
to bie even in the Fast Fourier transform. When N is large, this kind of
dividing is justified. N )
Then
(¥2)—-1

y(t)= Z YmAf)Afexp(ﬂmrAﬂ 0<t<Aif. (11)

It can be written ihfo two parts.;

—1 .
y(t)= . Z,N . Y (2mnAf)Af exp (2nmAft)
no (- -t .
+ ¥ Y(2mnAfAfexp (j2mnAft). (12}
#=0
Let n'=N+n ;
n=n"—N.
The first term of (12) becomes
¥-1
.= Y Y[2(n —N)mAfIAf exp [§2a(n’ — N) Aft]..
w =2
We change the dummy variable »’ back to »
¥-1

= n::(zmz) Y2(n—N)aAf]Af exp [i2m(n—N) Aft]
or
(¥/2)-1
yt= 3. Y(emmaf)Afexp (jommafe)

N-1

+ Y Y2n(n— .N JAfIAf exp [j2(n— N)mAft],  (13)

ﬂ'=(N12)
2T
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when

b (.\-f:_i)‘_l o . A- ORIG’DIAL P.A.GE IS
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N-1 lﬁ
dF — NYAJ |AS e 190 — NyrAf ——
+ "=§12) Yi2n(n YAfIAf exp I:JZ('n yr fNA]‘:I
-1
= ¥ Y(2mAf)Af exp [§(2nkn[N)]
#=0
+ Y Yonta— AN exp [Gnkn/Y)].  (4)
n={N[2)
Let

8, =Y (2anAf)Af, Ogn< %

= Y[2n(n— N)Af]Af,
and

4= ()

Then we tinally have
N1 .
dp= Y, 8, exp (§2nk#n/N), k=1,2,..,N—1. (15)
n=0

Bquation (15) is the standard form on which the Fast Fourier transform is
based.

5. Proof of the fundamental formula

The fundamental formula of our approach is (11). Its proof is shown as
follows :

Let the inverse Laplace transform of the transfer functions ¥(s, 278,
exp {(—7s)) be y(f). If it is asymptotically stable, we can write

s0=§ YO exp (j2at) 0.
Define '
THer)= 3 YEemADARY-nf)
and )

y)= | VHEnf)exp (j2nft ),

.99
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then
YHomf)= % Y(2mnAfALS(f-nlf]
- Y(2wf)Afi_Z_2 8(f—nA)
= V(e 3 exp (j2na/a)
= 3 Y(onf) exp (j20nf]A)
and .
0= | 'S ¥erf) oxp (jonnf]af) | exp (et &
w0 4 0
= % I Yenf) exp (j2afe+ A df
=2y (t+Af)
I y(£) is O or negligible when t<0 and i3 (1/Af), then y*(f)=y(t) when
0<t<(1/A7).

Because most control systems are low-pass filters, ¥(2xf) can be neglected
when |f| is very large. Leb us truncate Y(2xf) at f=[(N/2)—1]Af on the
left hand and at f=(—N/2)Af on the right hand side, then Y*{2rf) becomes

n=(N[2)-1
Tr@f)= (Z‘ Y(2mnAH AL —nAf)
and ) ’
Yoo n=(N2)-1 - - ]
yHi= % Y(meADAJS(—nAf) ekp(jenfi.df,
or ‘
n=(N/2)—1

yity= Y,  Y(2mnAf)Af exp [321r(nAf
' a={—2N/2)
when 0<t<(1/Af).
Therefore, (11) is proved.

6. Irrational transfer fﬁnctiun evaluation
Based on (15), a computer programme.for evaluating general transfer
functions is written as.shown in the appendix.
-The example shown in flg 2 has been tested.,
In the example, there is an irrational function element in the open loop
transfer function.
100

W)= G 0835 11y

¢ 700
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Fig. 2

[~

100 1
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The corresponding closed loop transfer function is

o . 100
T G0 e T )+ 100

The computer programme evaluates the impulse response first by taking
212— 4096 points from the frequency response as the first step and then -cal-
culating 4, by (15). If the unit step response is desired, we simply perform
numerical integrabion on the unit impulse response. The resultant curve is
shown in fig. 8. This example was taken from Kilomeitseva and Netushil,
and we found that their answer had a slight error.

Fig. 3
|
10+
o5l
1 1 1 i
oo 01 o2 03 o4 t

7. Repeat root case
Theoretically, there is no analytic formula available for evaluating a
svstem which has repeated root, for example, the transfer funetion

1
s(+/8 —exp [j(m[3)])*(\/s —exp [ — j(x[3)])*

is a difficult case for Kilomeitseva and Netushil’s method. However, if we
use our new approach, we don’t face any particular difficulties at all. We

take 218=8192 points from the frequency response and then obtain the
answer as shown in fig. 4.

[.E.

B.ref
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g, 4
L elt)

ct=L7p 1 ]

5 (Ve T3 )2 (v5m-19/3)2

8. Transcendental transfer function

If a delay element is either in the feedforward loop (fig. 5¢), or in the
feedback loop (fig. 6 ), and their responses are desired, the problem is very
difficult. However, with our approach to solve, it is still routine. We
take 213=8192 points, the results are shown in fig. 5b and 6 b respectively.

Fig. &
c(t)
10F
1
5 1
*T_ X3 e™®
os}
00

)

o
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Fig, 6

elt]

M[-‘.

1 C(s)

- s+1
10
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(b}

9, Conclusion

The Fast Fourier transform technique was originated by mathematicians
for evaluating Fourier coefficients and has been extended by communication
engineers for application in spectra analysis and design. This paper estab-
lishes a technique for pefforming the inverse Laplace transform of irrational
and transcendental transfer functions via the Fast Fourier transform.

RErERENCES

Boux, E. T., 1963, The Transform Analysis of Linear Systems (Reading, Mass. :
Addison Wesley Publishing Co.), p. 28L.

Broww, &. 8., and CameBrLn, D. P., 19048, Principles of Servomechanism (New
York : John Wiley and Sons), p. 334

CameseLs, D. P., 1958, Process Dynamics (New York: John Wiley and Sons),

104

CARLSOPN G. E., and I’IALJAK C. A, 1064, T.E.E.E. Trans. Gircuit Pheory, 11, 210.

‘Crex, C. F., 1966 1.E.E.E. Int. Conv. .Re(, Part 7, p. 281.

Crenw, C. F., a.nd Sares, L. 8., 1967, Analysis of Irrational Transfer Functions,
ILE.B.E. Region IIT Record.

CmExw, C. ¥., and Hass, 1. J., 1968, Elements of Control Systems Analysis (Prenfice
Hall Publishing Company)

Coorran, W. T., , 1067, I.E.E.EB. Proc., 55, 1667,

Coorry, T, w., and TU’KEY J. W, 1965 An Algomtkm for the Mackme Caleulation
of G’om'plex Fourier Sertes of C’omputer Vol. 19.({Association, for. Computmg
Machinery), p. 297.

DusnEer, H., and Amatr, J., 1968, Numerical Inversion of Laplace Tmmforms by
Rehztmg Them to the Finite Fourier Cosine Transform, VoI 15 (Association
for Computing Machinery}), p. 115.

.03



276 Bualuation of irrational and transcendental transfer functions

Kmomerrseva, M. B., and NerysHIL, A. V., 1965, English Translation of Awtomatika
¢ TPelemekhanika, 28, 359.

LernNER, R. M., 1965, I.E.BE.E. Trans. Circuit Theory, 10, 98,

Porouwnis, A., 1984, The Fowrier Integral and its Applications (New York : MoGraw-

Hill Book Company).
Sreware, J. L., 1960, Inst. Radio Engrs, 00, 2003.
TRUXAL, J. G., 1955, Automatic Feedback Conirol System Synthesis (New York :

McGraw-Hill Book Co.), p..546.

Appendix )
¢ A COMPUTER PROGRAM FOR GOMPUTING THE INVERSE,-LAPLASE TRANSFORN
COMPLEX A,Tl,DES,CFUN,EA,EB,S
DIMENSION A(8200)
READ{5,1) M,T
1 FPORMAT{I10,F15.5)
WRITE(6,2)
2 FORMAT(10X,*TIME', 10X, 'SQRT(T)*,10X, *X(T}")
N=2x#M
DET=T/N
DES={04,1¢)%2.%3.1416/T
NH=N/2
DO 100 I=1,H
NA=I-1
NN=0
D0 200 J=1,M
NN=NN#2
NB=NA-NA/2%2
NA=NA/2
200 NN=NN+NB
IF(I-NH) 250,250,260
250 A(NN+1)=CFUN((I-1)2DES)
. GO TQ 100 -
260 A{NN+1)=CFUN({-N+I~1)}#DES}
100 CONTINUE -
TO 300 I=1,M
TA=2#=(M-T)
Tr=2a% (1-1)
DO %400 J=1,IA
DO 400 K=1,T
TA=A( 2% (J-L)#T+LH ) #CEXP({ 0., 1.)#253.1826%(K-1)/(2%+1I))
A(2%( =1 ) #LDL+K)=A (2% (J-1)*L+K) ~-T1
3OO A(R%(J-Y)#T+K)=A(2#(J-1)=L+K)+T1
300 CONTINUE
NHH=(N-1)/2
AL=0
B0 500 I=1,NHH
TM=2 . # I #DET
TR=SQRT ( TH)
AL=AYH(REAL(A (2#1-1) )+ »REAL{A( 25 I ) Y+REAT(A (2% T+1) ) ) /( 3.%N)
500 WRITE(6,501) TM,TR,AL
501 FORMAT(10X,3F16.6)
SPOP
END

COMPLEX FUNCTION CFUN(S)
COMPLEX S,EA,EB
EA=(04,1.)%253.,1016/360.470.

EB=EA .
CFUN=CSQRT (S)/((CSQRT(S)-CEXP(EA) )% (CSQRT(S) -CEXP(EB)))

RETURN
END

B
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In non-inear systeme analysis, mulkiple dimensional Laplace transform iz often
applied in solving the volterra model. The special technique for the inverse Laplace
transform solution is called the association of variables. Three new theorems are
developed for the theory of associetion. Compared with the mapection method of
Brilliant, the pair listing method of Lubbeck, the new approach is much simpler
end easier and more systematic. Several illustrative examples are included.

1. Introduction
- Suppose we have a function F(s,s,, ...,s,); its n-dimensional inverse
Laplace transform can be found by

1 ay i an+je0 n
(TR 79 tn)=W Lm v § exp( Y 31'51)

an—3c0 i=

n
- F(Sl, Sy wvey 'Sﬂ) l_Il ds‘r‘,' (1)
1=

Formula (1) is & general one. In certain types of analysis, particularly in
Volterra series applications (Volterra 1930, Wiener 1942) on non-linear
systems (Brilliant 1958, Barrett 1963) we are only interested in the special
cage : fy=f,=...=t,=t We denote this time function of the special case

by ¢(f), or - _ ,
gty 21y, by, 5., taltimtiz .. ctn=t. ’ (2)
In single-dimensional Laplace t.'ra,nsform,‘ there must be a corresponding
Laplace transform of g(t), G(s). Then we have the correspondence
G(s)=Lig(t)]. (3

Our problems in the special case can be restated as follows®
For given F(s, 85,...,8,), find f(,¢,¢,...,t). There are two ways to
accomplish this purpose : .
1. Using (1) to find f(y, %, ..., ¢,) first and then substitute Bir by eeey by
by &

2. From F(sy, 8y, ..., 8,) to find G(s) first and then evaluate the gingle
dimensional inverse Laplace transform g(¢) which is the answer.

'ﬂ-ra.;
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The second approach is called association of variables. The function G{s)
is called the associated transform.
The following table can easily illustrate the relationship.

Fsy, 6 v 83) o T i, ta - )
An lt=ty mt ORIGINAL PAGE IS
single Lt OF POOR QUALITY
G(s) _ g(t) .

where 4, means the association process for finding G(s} form F(s,, 83, ..., 8,)-
Before developing the associate variable theory, let us familiarize ourselves
with the inversion process by using the-direct inversion formula (1).

Ezample 1

-z (iven

e “'_u ' - (81, 82)—(31+1)(322:i-7382+ 2), .
find . , ) . @
) F(f1, ta) |, =t,=1 OF 9'(}5)- J
By (1) '

flty, & )[ _ 1 ¢1'+J'oa ayt3 o exp {85t +858) dslldsa
10 baf =t =t (274)2 -'-!1—'5-03 wyjoo-(8y+ 1)(825_&_33\2_}_2):
_( 1 9% exp (s4f) dsl)( 1 %+ exp () czsz) ) ‘
B 277.7- wy—=foo 31+1 271'3 a—fo 822+382+2 *

,Each one is a single-dimensional inverse Laplace transform. Therefore
the inversions can be evalnated individually and we obtain

—[exp (~#)] . [oxp (—#)—exp (—2f)] =exp (—2#) —exp (~ ) =g(t). (6)

For this simple. example, we did not encounter difficulties, however, for more
complicated problems, the direct inversion method becomes laborious.

2. Theorems of association of variables

To find @(s) from F(s,, 8,, ..., 8,) directly-is by no means easy as we have
seen in the previous example. Originally, George (1958, 1959) used the method
of inspection which is not a systematic method at all. Flake (1962) followed
Gleorge and still used the inspection method to do the work. "Recently,
Lubbock and- Bansal (1969) developed a set of pairs to show the association
correspondence. However, Lubbock and Bansal’s method is by no means
general. Particularly, in all their- association pairs, there is no one with
numerator dynamics. In other words, they cannot solve the problems
.involving initial conditions.

ﬂ./of



Multiple dimensional Laplace transform 649

In this paper, we shall develop the basic theorems for the associate vari
ables. Once the fundamental theorems have been established, we ecan
produce as many associate pairs as we want, and use them flexibly.

3. Complex translation theorem
If F(sy, 85, ..., 8,) can be written in the following factorial form

1 -
F(sy, 85y «ony sn).—.;m I i(51, Sy waes Spyy Sty Snls (7
and if
o An—l
Fi(81s 89y oons S5 Sppqs Sp) —— Gy(s), (8)

we have the theorem as follows :
Fl81083, ey 85) —— (s) = G5 +) (%)
Praof -
By eqns. (1} and (2), we have

O =F1 tay oo Bp) [tymtymmtame

1 aytieo [ = (

=

J o § Flay, sy ...,8,)exp

@ die T i

i

7
s,;t) II ds,
i=1 i=1

1 «tiw 1
" @) ol e O )
1 ay+foo ardfeo en—jco
' W cz;'!‘J'tD o aijjno " nm!_‘iw F(SD o S'k-:'l',' Sk S'n) .

’ .exp( i s,,t) i{l ds;=exp (—at)gy(t). (10)

i=1
(2]

iek
Laplace transforming both sides of (10) yields
G(s)=Lfexp (—at)g; ()] = Gy(s+a).

Theorem is proven.

Ezample 2

Let us consider the previous example again, but use the assoviation vari-
ables to solve it.
Given

1
(8 +1)(3.2 ¥ 35,4 2)

G.r08

F(sy, 83) (11)
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find ORIGINAL PAGE IS
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Let
1
Fifsy)= PRI (12)
Association transforming yields
A, 1
F&Ba)——~>§g;35;;§. (13)

which is identical to (12), because there iz only one va,na,ble mvolved
We then rewrite (11) as follows :

1 1

8, +1 " (8,24 28, + 2)
1

s +1

F(sls '52) =

Fy(s,). (14)
" This is the standard form for applying the complex translation theorém.
Performing the association process gives :

LA 1
- S (s 41243+ 1)+ 2

Simplifying
1

- 15
§24- 586 (15)

This is. a. single inverse Laplace transform problem, the answer is easily
obtained as follows :

g(¢)=exp (—2t)—exp (—~ 3),

which i8 also the answer of our problem.

FBaample 3
Find the inverse Laplace transform of

1

@rLU@f+3%+2x%+zy (16)

.F(Sl, 32, 33) =

if :
b=ty =ty =t
Agdin, we use the association of variables by writing (16) in two.parts :

1 1
(814 1)(8:2+88,+2) S+2

fuwi

F(s 53 95) = )
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or

=Fy(8y, 85} - St 2

Based on the results obtained in the previous example, we know

1

A
Fy(8y, 85) —— Ti5s 16

then

F(sy, 83y 83)= F,(s45 53)s

8+2

4, 1
T (8 +2P+5(5+2)+6

1
T 2195+ 20

(18)

The single-dimensional inverse Laplace transform of (18) can be easily obtained
even by inspection.

4. Complex convolution theorem .
Suppose the function F(s,, 35, ..., 8,,) can be factored out into the following
form,

F(8y, 89y vves 8) =F1(81, 85y wvvs 8) o Fof81i11s Bty voes S (19)

The complex convolution theorem states that

G{s)= G4(s) ®G(s), (20)
where G,(s) and G,(s} are defined as )
Am An-m
Fi(8y 8 cvvy 8) —> G1(8) 3 Fol8puyas «ovs 85} —— Gois), (21)
and ® means complex convolution
1 edjoo !
Gl(s)®(;2(3)=§“- f Gils—w)Gy(w) duw,
7 e=jiw

with a suitable c.

Proof
g(t) =f(t1’ b3y euns by) |l.==t,=- LT AT

By definition

1 wybfo | antjeo

R T T

S’
m "
a%

4.100
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Substituting the ¥ function by its product form, we geb ORIGINAL PAGE 1S -

' @tfo amtio " m 154 UALITY
=[——1— 3' jtg Fy(81, oevs 8,)-0Xp ( h s,,t) Il dsi:l OF POOR Q
i)™ Sy amlie ish i=1 :
1 gy FFe0 en+ foo
: [—_( IS CHPR

7

xexp (3 o) 11 do]=00 .00

t=m+1
Laplace transforming both sides of (22), we obtain the result
B(s)= Gy(5) @ Giy(s).

The theorem is proven,

Example 2

" Use the Complex Convolution Theorem to take the inverse Laplace trans-
form of the previous example

. 1
Flow 8,)= (81 + 1) (555 + 38, + 2)
under the special condition, ¢, =¢,=t.
(8, 8,) =-—— - .
($1+1)(853+ 38,4+ 2)
Writing into the product form
_ 1 1
. (81+1) " (52433, +2)
Deﬁning
=F1(81) « Fyfsa)y (23)
where
Py ==y = =640 24)
and

__' 1 A, 1 ¢
T (s D +2)  +)(s+9) 2(.

For

Fyfs) 25)
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Applying the complex convolution theorem
i et
G(s)= P c_j;w Gy(s —w)Gy(w) dw
=—1_— e+joo 1 . 1 dw.
2§ oo s—w+1 (w1} {w+2)

Using the standard residue method yields

1 . 1 -1
% (3+1+1+3+1+2)’
1
Co) = oy
git) =exp ( —2t) —exp { —3¢t).

Example b

653

(26)

(27)

Use the complex convolution theorem to find the associated transform of

the following :

i
(814 L){(82+ 88, + 2)(85 + 2)

F(sv Sas 33) =

We define
-1 Ay
Fl(sl’ '92) = (81 + 1)(822 + 382 + 2) Gl(s)!
1 .4-1 1
Fa(ss)=83+2 s+2=G2(8)'

Applying the theorem, we have
G(s) = Gy(s) @G(s).
From the previous example, we found that
. 1
Gi(8)=—e— .
)= 6T
Convoluting G,(s) with eqn. (30), we obtain

_F'(s)_ 1 a+j1uo 1 1
T 2rg oo s—w+2 (w4 2)(w+3)

da.

Using the residue method again, we finally have

1 1 -1 1
F(8)=—— . 2mj = .
() =G - 277 (s+2+2+s+3:|—2) "G+ 4)(s+9)

7. (72

(28)

(29)

(30)

(31)
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If a given function F(s,, s, ..., 8,) has the following particular structure :

F(s1, 89, o0y 8u) =H (8, + 8a+ .0 +8,) F1(84, 8 -0y Sp)s (32)
and
Adg
Fl(sp 82, eney 81;) — G]_(S), (33)

the real convolution theorem states that
An
Flsy, 83, 1.y 8,) —> 6(s) = H(8)G4ls)- (34)

Proof
In multiple Laplace transformation theory it can be shown that (Chiu 1971)

H(sy+ 85+ ... +8,)F1(81, 8 «ovy 8,)

=2}

f .. | exp (— Zﬂ: s,-,t@-) fte tay oo b)) 1 dbis  (35)
] 0 i=1 T8

I

where

min (&, &, ..oy In)

ity cat=§ MrVfolt =7, by oo by —7) A, (36)

and (£}, f1(t1, ts, ..., £,) are the inverse Laplace transforms of H{s) and F,(sy, 85,
.us 8,), Yespeciively. '
Based on the inversion formula (1), we have

f(t ; ) 1 o +feo aa}jm i ;
s bay venn k)= - ex 8
17 it (217.7)"' a;jjm an—fco P ( i ¥ i)

i=

"
(s, 855 0u0y 8,,) I'[1 ds;
1=

min {8y, £z, vouy In)

= { Moty — 7, to— 1, oy ty—7) A7 (37)

0
By definition
gli) =Fltss bas covs B =ty m oot et
:
=f{t, t, .o, t)=-§ M(=)lt— 7,8 =7, ..o, t—7) dr
D
. .
= 6‘. R{x)gy{t—7) d7. (28)

By the theory of convolution, we have

G(s)=Llg(t)]=L{r(H)] . L{g:())] =Iﬂi(8)91(8)- ‘ (39)

4ur3
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FBxample 6
Find the associated transform of
i 1
F = .
b o) = s T B o) 1 (o Do+ 3557 5)
=J(8; 4 6,) F1(8y, 85), - (40)
where
Fy(8y, 85)= 1
BTz _(314‘1)('922""35"2'{‘2)‘1
and
H(s,+52) -
s = .
U oy 80P+ 20+ 85) +1
We have found G,(s) in Example 4 as
Flog, 80— Gy(s) = o (41
S1: 8g) —> [ —mo )
Applying the real convolution theorem, we have
F(s,, 8,) —> ——— Qy(s) = L 42)
b % 8242841 13)_(.s‘-l—1)2(.s-f-2)(.s,'+3)' {
Ezample 7
Find the associated transform of
F(sy, 85, 85) = !
VBT o+ syt 85)+ A(8y + 8y 85) + 3
1
" (85 1){(8,2+ 38, + 2)(5,+ 2)
= H(s, + 85 +83) F'y (55, 54, 83), (43)
where
(81, 85, 65)= 1
T 0 e+ 1)(8,2 + 38, + 2)(8, + 2)
His; +8,+8)= 1
LT e ¥ 8yt 80P+ {5y + 5, 4 85) + 3
We found in Example 5 that
F (8, 85y 85) & Gy(8) ! 44
» Oy —— T T
1\%1y 925 O3 1 ' (8+4)(8+5) ( )

fros
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By applying the real convolution theorem, we have

A, 1 1 1

T Ftdst3 G1(8)=(3+ 1)(a+3) " (5+4)(s+5)
1

TErDE+3) s+ 4)(s+5)

F'(84, 83, 85)

(43)

6. Conclusions

The three theorems established in the previous sections are rigorous and
powerful in performing the inverse Laplace transform under the special
conditions. Because they consist of a systematic approach to the problem,
the guess work, inspection work and tedious tables can be eliminated. For
the user’s convenience, we still derive some pairs as an appendix which are
mainly derived by using the three theorems.

To apply the technique is not a difficult matter, once we grasp the idea
and flexibly use the theorems. .Several simple as well as complicated examples
are included.

P
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Appendix

Multiple dimensional Laplace transform

Associated transform

1y K
(s, + a',)(s.2 +B)
(2) K
als )P4 b{sy +8;) +o
(3) S K
_ [elsy+85)% 4 d(sy 4 8) + €](sy +a)(s, +b)
@ K
(81 +a)(s; + b} (s + a)(s, +b)
(6) K y 1
[o{sy +82)2+dlsy +55) + €] (s, +a)(8; +b){s, +@)(s,+D)
{6) K(s,+¢)(sy4+c)
(8, +a)(s, +b)(sp +a)(s,+b)
() _ Ksyrolste) B
(81 +52)% + e(sy +85) +f - (53 +@)(s; + D) (3 + @), + D)
(8) K
(8 485+ 85)2 + (8 + 8, + 83) ¢
(9) K
(81 + a}(8, +b){(s; +¢)

K
(s+a+b)

K
ast1bs+c

K
(cs®+ds+e}s+a+b)
2K
(s+a+b)(s+2a)(s+ 2b)
2K
{cs®+ds+e)(s+ a+b)(s + 2a)(s + 2b)
K (c—a) 2(c—a)c—b) (c—b)*

b—a)2| s+2a s4-a+b s+ 2b

K 1 (o—-a)z_Z(c—a)(c—b) (e—b)*
(b—a)® ds?tes+f | s+2a s+a+b s+2b
K
as®+bs+c
K
s+a+b+c

uLL0fswnLy 39DADT JOUCISUIWID ALY JT
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Multiple dimensional Laplace transform -

Aassociated transform

(10) K ‘ 1
(5, + 82+ e(8; +80) +11 - (3 + @S5 + B85 +0) .
(11) K
. (Fe(3y -+ 85+ 85)2 + p{8y + 85 4 85) + ¢
1

| " Bor+ 57+ 28, +5) T FT(o1 & @){55 1 ) (55 + 0)
(12) K

[
,'1;‘[1 (8‘ +a’)(3i + b)

(13) i S,i'l"c :
v=1 (8;+a)(s;+D)
(14) K - 1,
({81 + 85+ 85)* + d( sy + 85+ 83) + €] ﬁ si'_*_ a)(é;-b)
i=1
(15) K R % 3 3i+G
[A(s1+ 85 +85)% + €(5y + 85 +85) + F1. i1 (5 + @){s; +Db)

(18} K
(81 +a)®(s, + @)?(sg +a)?

) K
[d(s+c)2+e(s+c)+fl(s+a+b+c)

K
(hs®+ps+q)[d(s +c)2+e(s+c) + fi(s +a+b+e)

K 1 3 + 3 1
(@—b \8+3b s+2a+d s+a+2b 8+3a)

K (@—cP 3(a—c)*b—e)  3{a—c)(b—c)? _fe—bp®

(G—bP|_s4i3a s+2a+b s+a+2b s+43b

K 1 1 3, 3 1
(@b cs®+ds+é\s+3 s+2a+b s+a+2b s+ 3a

K 1 [la=of* 3@—cpp—0)

(s+a)t

(@—bp "ds®+es+f| s+3e §4+2a+b
3a—c)b—c)® (c—b)?
s+a+2b s+ 3b

6K

ALTTVAD ¥0Od 40
81 ¥OVd "TVNIPIEO
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Multiple dimensional Laplace transform

Associated transform

(1) Koy +b)is, +D)sa D) . -
81+ a)%(8y +a)2(s; + a)?
(18) K 1
[B{sy +sa+85)%+ (81 + 55+ &3) + d] ﬁ (s, 4 @)?

e

-,

3
(19) Ie 1_-! (s,+5)
' N [3(31+32+@3)2+3(8i+'§2+33)'Fe]x

1

1

(s:+ap
=1

(20) K

[+ ) + oy 83) ] [T (o5 (s £0)

(21} K
[f(81+ 85 +83)2 4 g8, + 85+ 83) + )
1

X

x [8 1 3a=b)

6la—b)2 6(a— b)*‘]

+3a (s30)2 (s+3a)® (s+3a) .

6K

(bs2+cs+e)(sa)t

K

cPtdste

2K

1 3(@a—b) 6{a—0b)? _6(a—b)®
[s +3a T (57 3a)2 (s+3aP® (s+ 3a)4:|

1

a—b L [o(s+ )+ d(s 1 5) + elis + 2a + B)s L.a 1 9B)(o + 35)

2K
a—b

1

TTe(s+ @l +d(s+a) +e](s + 3a)(5 + Ba+ B)(s + o+ 20)

]
fo(sy +65)* +d(s, + 8) + €] Hl (8;+a)(s; +b)

1
s rgsth [ [6(s T 0+ (s ¥ D)+ €]

1
X (s+2a+b)(s+a+ 2b)(s+ 3b)

1

o [e(s + a)®+d{(s+a) +e](s + a)(s + 2a +b) (s +a -+ 2b)

]

wiofsuny a0vjduT ruowusup dym iy
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A general frequency stability criterion for multi-input-output,
lumped and distributed-parameter feedback systems

C. F. CHENYt and Y. T. TSAY%

The original Nyquist eriterion 1s based on the comparison of the encirclement of the
frequency plot of the return ratio function with the number of poles and the number
of zeros of the same function to determine the closed-loop stability of a feedback
system. The extensions of the return ratic idea to the stability study of multi-
variable feedback systems have used the same termunology and followed & similar
course. For the multi-input-output case, the use of the Nyquist criterion or its
extension is by no means a simple matter, This paper establishes & new frequency
stability eriterion which eonverts the Nyquist eriterion from a return ratio oriented
approech to & return difference oriented one. Instead of examining the encircle-
ment of the return ratio function to n critical point, we examine the phase change
of the positive frequency of the return difference function, and the number of zeros
of the positive frequency of the return difference function. This result simplifies
the stability study of multi-mput—output lumped systems tremendonsly, and covers
multi-input-output distributed-parameters systems naturally. For illustration,
several typical examples—single-input-cutput feedback systems with minimum
phase or non-mmimum phase “open-loop transfer functions, multi-input-output
feedback systems with stable or unstable open-loop transfer matrices, multi-input-
output feedback systems with irrational or transcendental type distributed-parameter
open-loop transfer matrices—are included.

1. Introduction

Since Chen (1968) and Hsu and Chen (1968) generalized the scalar return
difference formula to a matrix form, much light has been shed on the analysis
of multivariable feedback systems. Indeed, the return difference idea is
fundamental for all feedback theories, serving as a quantitative measure of
the various consequences of the use of feedback (Truxal 1955).

Historically, Bode (1945) originated the return difference ides. -Kalman
(1964) showed that the return difference gives the simplest presentation of
the optimal condition. Chen and Tsang (1965, 1967) established a stability
criterion for a single-input~output feedback system based on- the return
difference. It is known that Nyquist's original work is based on the return
ratio, and not on the return difference. For the single-input—output case, the
differentiation between using the return ratio or using the. return difference is
trivial and insignificant. Researchers and engineers, therefore, have followed
Nyquist's derivation, terminology and formulation closely and faithfully.
For several decades, the return ratio has always been used ‘and the return
difference has only been mentioned. For the study of multivariable feedback
systems, it has been the same tradition. Rosenbrock’s (1969) investigation
of the Nyquist method, which starts with the return difference but ends with
the return ratio, is a typical example. MacFarlane’s (1970) paper on the
return difference, which is entitled the return difference but essentially uses

Received 27 June 1975.
T Electrical Engincering Department, University of Houston, Houston, Texas
77004 .

$.12v
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342 C.F.Chenand Y. T. Tsay

return ratio, is another. However, to extend the return difference from the
single-input—output case to the multi-input—output case is natural but fo
generalize the return ratio is artificial: Although Chen’s establishment of
the matrix return difference formula gives a fresh starting point, there is no
proper development for investigating the stability of multivariable feedback
systems. Because of this, Pontryagin’s stability criterion for time-delay
feedback systems cannot be generalized to multivariable systems. Desoer’s
stability theorem (1975) has limited applications, Brin’s (1962) stability
criterion is applicable only to a very special class. In the meantime, practical
engineers badly need a unified stability criterion for a general multi-input-
outpub feedback system.

This paper establishes a frequency stability criterion which uses the
comparison of the number of poles of the open-loop transfer matrix with the
phase change of the return difference. The criterion is applicable to (1) single
classical feedback systems, {2) multi-input-output feedback systems, (3) feed-
back systems with non-minimum open-loop transfer matrices or with minimum
ones, (4) feedback systems with irrational transfer elements andfor trans-
cendental transfer elements. In all, it'is a general frequency stability criterion
for lumped and distributed-parameter multi-input-output feedback systems.

2, Stability criterion based on return difference

Consider the typical feedback system shown in F}g 1 in which g(s} is the
feedforward tfransfer function; #&(s) the feedback transfer function. The

product gbis) 2q(s) , M
is cglled the refurn ratio and

2(8)=1+q(s) )

is called the return difference.

Figure 1. A typical singie-input—output. feedback system.

" The differences between (1) and (2) are. trivial indeed for the single-input—
output cdse. ' .

Assume that als)
4(s) %) (3)
where a(s) and b(s) are relative prime polynomials.
Then a(s)+b(s) '
2(s) =W (4)

ﬁ, /23
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The closed-loop transfer function is given by

g(s)
1+ g(s)k{s)

_ g(s)b(s)
als)+b{s)

If there is no common factor between the denominator g(s) and the numerator
of h(s), then g{s)b(s) is a polynomial. Therefore b(s) is the open-loop charac-
teristic polynomla,l or the open-loop characteristic function in general ; -and
a(s)+b(s) is the closed-loop polynomial, or the closed-loop characterlstlc
function in general. The return difference is then

fis)=

(6)

a{s)+b(s) closed-loop characteristic function
(8)= b(s) open-loop characteristic function

(7)

The multi-input-output case is shown in Fig. 2.

Tigure 2. A typical multi-input—output feedback system.

Chen (1968) published and then proved (Hst -and Chen 1968) the classical
formula which states that the return’difference of a multi-input—output
system is
closed-loop characteristic function

open-ldop characteristic function

=det {1+ GH}= (8}
where G(s) and H(s) are forward and feedback transfer ma,tnces respectively.

If the return ratio of the multi-input-output system is defined from an
extension of the simple-input—output case, we have

g(s)=det [GH] {9)

We see that the relationship between the return difference and the return
ratio for the multi-input-output system is not as trivial as that for the single-
input—output system.

Therefore, when we analyse a multi-input—output system by using the
Nyquist eriterion, it will make a-great difference whether we use the return
difference or the return ratio. Unfortunately, Rosenbrock and MacFarlane
although extending the return difference formula to design, they really used
a return ratio approach. Desoer established a-theorem to use the return
difference in the stablhty study t0 a rather larger class; ‘however, he still
mayps the whole imaginary axis and semicircles as Nyquist did and also limits
the scope of applications. Apparently all these deviations are .caused by the
long-time influence of Nyquist’s way of thinking.

4.1y



344 : C. F. Chen-and Y. T. Tsay

3. Modified Nyquist stability criterion

We would like to modify the original Nyquist criterion first: the funda-
mental change is that instead of using the return ratio, we use the return
difference ; instead of mapping the whole imaginary axis and semicircles,
we map the positive freguency segments. ’

Chen and Tsang (1965, 1967) derived a frequency stability criterion for a
single-input—output system based on the return difference. Here we rigor-
ously generalize the criterion for both single-input—output and multi-input—
output cases. The modified Nyquist criterion is mapping the straight line
along the jw axis for w=0% to w = co and then count the total phase change
of the corresponding mapping as shown in fig. 4. Because the original
Nyquist eriterion is known to map the whole imaginary axis and the right-
half plane circle as shown in Fig: 3, the modified criterion is much simpler,
even from the very beginning. )

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3. Nyquist criterion uses the whole imaginary axis and riéht-half cirele,

Figure 4. New criterion uses the positive imaginary axis 6n1y.

gm

w(2)
wi1}

4
-1}
wi-7}

" Figure 5. Definition of open segment. -
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Definition 1

The open segment on the jw axis from w=w, to w=w, is the open
interval (jo,, jw;,,) on the jw axis (see Fig. 5). If thereis a B,-ple zero of
b(s) at the origin and B,-ple zero ab w; for 4= +1, £2, ..., +p, then the
mapping segments are (0, jw), (Jo,, jw,), (fws, jwg) ... ( Jepy jug).

Definition 2
The phase angle change of the mapping of an open segment I({)=(juw,,
Jw;yy) on the jo axis by a certain complex function 7(s) is defined by

Al = OJ(w407)] — B[ {0, 1)) (10)
where .
Bjew;_y)= liﬂg Oiwipr— )l 8(fw )= HH; jw;+ )]

and f(jw) is the phase angle of the complex function 5(s) for s = jew.

Definition 3
If the open segments are (0, jo), (jeog, Jowg) ... (g, Jevss) .o (o Gio)s
the total phase change of the mapping of all these open segments on the
positive jw axis by a certain complex function of (s) is defined by
pt+1 )

A= 3 Afyy (12)

where Afly,) is the phase angle change due to the ¢th operi segment niapping.
Let the return difference of the system have the following properties :

[1] »(je) is finite and non-zero. :
[2] There are B poles. of p(s) on the jw axis and y poles of p(s) in the

Fd
right-half plane, where 8 and y are finite integers, and = ¥ B
[3] p*(s) =p(s*) where * means complex conjugate. =2
For deriving the modified Nyquist criterion, let us start with the corres-
ponding Nyquist econtour of Fig. 5 as shown in Fig. 6.

From the principle of argument, it is known that the total phase change
of P(s) along the contour I' is given by

Abp= — 2a(M ~ ) B (12)

Figure 6. Nyquist’s original contour.

b.rs
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where M is the number of closed-loop characteristic roots with positive real
parts, y is the number of open-loop characteristic roots with positive real
parts. In detail, the total phase change of P(s) along the contour T' is
evaluated by the summation of individual phase changes .along Iy), i=
+1, +2, ..., semicircles ¢, =0, £1, +2, ..., +p and c,. .

In other words,
I+1 [

Abr= .21 [AHI([,+A8,(_“]+ . Z Al + A8y (13)
i= i=—p
since p(jw) is non-zero finite, therefore 6,(,,=9.
Assume that -

Plju)=U(w)+jV(w) (14)
where U(w) and V(w) are real functions of w. ORIGINAT, PAGE 18
From property [3], we have OF POOR QUALITY
' PHjw)=Ulw)— 1V (w) (15)
=P(—jow) '
=U(-w)+jV(-w) (16)
The phase angle of P(jw) is given by )
| 8(jw)=tan1 ZEZ; (17)
and $hat of P{— jw).is given. 1‘)y .
| B(jer) = tan-1 gt - :; (18)
However, from egn. (15) and (16), we have = -
V()=U(-w) : (19)
and
V{w)=—TF(—w) (20)
Therefore,
: Ijw)=—0(~juw) . (21)
Now we consider the phase angle.change due to I :
Abygy = 0(jw,q) — 8(j;™) ‘ (22)
and that along I_;: )
- Ay =0(~joo)— O — jewyy17) (23)
Combining with (21), we can rewrite (23} as follows : '
AB:(- n= Ojwsyg™) — B(jeos) (24)
then we have
, Abyy=Abp (25)
Substituting eqn. (25) and the relation Afl,)=0-into eqn. (13) yields
Afr=2 pii Al i+ iip Abe _(28)

Next, we consider the phase angle‘change due to semicirclesc;). Assume
that there is §; poles of p(s) ab w=w;. Then

Aboy=—Bim (27)

Aray
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Then I3 L .
X Abp=-7 Y, B . (28)

t=—p i=—p

From property (2), eqn. (28) becomes

i}p_; Abpy= —pm . (29)
Then combining eqns. (29), (12) and (26) we have
p+1 .‘JT
_;1 Af’zm=§ [-2(M —-y)+B] (30)
== [B+2(y— )] (31)

Now we obtain the modified Nyquist stability criterion.

Criterion )

If the return difference of a general feedback system, single-input-output
or multi-input-output has the properties [1] to [3], the system is stable if
and only if the total phase. angle change along open segments (50, o),
(jews, Jws) ... (fw,, joo) is equal to (=/2)(B+ 2y) where § and. v are the number
of open-loop poles on the-imaginary-axis and in the right-half plane respec-
tively. .

It is easy to prove the critefion by substituting M =0 into (31), because
the system is stable if and only if the closed-loop characteristic polynomial
has no rqots in the.right-half plane. ’

Therefore, we have

20-7 (g +2y) )

4. General case
. Let us then consider -the general case, which means that

P(joo)=0, P(—joo)=0 or P(jeo)=co and P{—joo)=co
In this case f,,)#0: Assume that

lim P(s)= lim as* -

] . ] .
where @ is non-zero. and 'k:is real. This. means that the phase a;l_lgle‘of Pje)
a8 w—co is equal to [—km/2]. Then the previous, case in which p(jo0) and
P(~ joo) is non-zero finite becomes a special case: k=0, )

For this general case the phase -angle change along the semicirele.of infinite

radius ¢(co) is T T e ’
- Aoy = 6( —joo)—8(jo)

W ko

=k (34)

in2
24
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Equation (13) should be rewritten for this general case as
p+l
A2, Abyy—Prtkn (35)
i=1

Therefore, from eqns. (12) and (35), we have

p+1 T
T Ay = [B~k+ 2y~ )] (36)
=

Thus we state the modified Nyquist eriterion for the general case as follows.

If the return difference p(s) of a single-input—output or multi-input—output
system has the following properties :

[1] the numbers of poles of P(s) on the jw axis-and in the right-half plane
are  and y respectively ;

[2] P*(s)=P(s*1;

[3] P(jw)}=0 for finite w.

The system is stable if and only if the total phase angle change along the
segments (0, jo,), (Jwy, jws) ... (Jeo,, joo) is equal to (7/2)(B %+ 2y) where

-2 . :
o= [8(je0)] (37)
ki3 .
Tt is easy to prove this criteria : simply substituting M =0 into (36) yields
p+1l T
Af= '2'1 AB,(,;)=-§'(ﬁ—k+ 2y) (38)

The most important feature.of this criterion is that we never bother with
the number of roots of the numerator of the. open:loop transfer function
while the original Nyquist criterion has to examine it all the time. This
feature makes the stability determination of a class of infinite dimensional

multi-input-output feedback systems possible.

5. Application to lumped-parameter feedback systems
5.1. Single-inpui—output system with non-minimum open-loop transfer function
“Consider a feedback system with the following open-loop transfer function :

—(s—1)(s+4)
9(3)5(3)_—w—“ (39)
which is a non-minimum phase. Investigate the stability of the system.

If we use the original Nyquist criterion to study this problem, we have to
start with the return ratio {39) and count the right-half plane roots of the
numerator. ’

If the new stability criterion is used, we start with the return difference
function : o .
§48

(s_+2'5§' . (40)

T PE)=1+ gks)ﬁ(s) =

‘7./‘2-9" :


http:importantfeature.of
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Then plot the phase angle of the return difference

aJe

L P(jew)=tan—! %“’— 2 tan-1 L 41)
as shown in Fig. 7.
LB S e | ¥ T 1 71177 T T T vy T ||IIIIII T T § 11
o0 10 —_—— 10 100 1000

o°

&= /1-gljwhiju}

Where
--20°
e ={S=11{S *4)

{s)ht
gisnis (52

L-40°
--60°
- - 80"

-~ 100"

Figure 7. Phase change of the return difference function of a single-input-output
system with non-minimum open-loop transfer function.

Examining the open-loop polynomial or the denominator of (39), we find
that there are no roots on the imaginary axis or in the right-half plane. Then
we have

=0 and y=0
Also,

lim P(s)= lim
£—>cD g0 8

Therefore k=1.
The criterion for stability is

T w
Af=3 (B+2y—k)= -2

From Fig. 7 we see that at w=0% the phase angle is zero degree while at
w=co the phase engle is negative 90°. The phase angle change is therefore

ks

we then conclude that the system is stable.

%.{30



350 C. F.Chenand Y. 1. Tsay

It is interesting to note that we never count the number of right-half
plene roots of the numerator of the return ratio function. This is a great
advantage of the new criterion. This problem cannot be solved by DeSoer’s
criteria since inf|P(s)| =0 for Re s> 0.

5.2. Single-inpui—output systems with oscillating open-loop transfer function
If the open-loop transfer function of a.feedback system is as follows::

2(s+ 1)%s+2)

OUORES > fox (42)

we are then interested in the stability of the system. The retum ratio func-
tion has two roots at the origin and two roots on the imaginary axis respectively.
For applying the new criterion, we find the return difference function
firsh
s44 253+ 9524 105+ 4
(24 1)

P(s)=1+g(s)h(s) = (43)

Inspecting (43), we have B=4, y=0, and :2=0. Therefore the’ stability
criterion is Af=2sr." -

We then plot the phase curve of the return difference function as shown
in Fig. 8. We have the following observation :.

w [

o+ —180°

1- —63-4°

1+ —243-4°
w0 0°

The phase change is found as follows :
Ab= i 010)=[— 63°4° — ( — 180°)] 4 [0° +243-4°]
=1 -

=360°

Based: on our new criterion, we conelude that the system is stable.

The interesting parb of this example is the discontinuity of the phase curve
8t w=1. "Even with this discontinuity, the total phase change still meets
the stability criterion. . .

This case has been excluded by Chen and Tsang when they established
their criterion. In this sense, the new criterion has a larger scope of applica-
tion, although the criterion for the special .case is the same eriterion derived
by Chen and Tseng in 1965. )

¢. /27
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- . 40
[ 83 ZPQ(INFHIW) oe-638°

Where

25-1F{3+2)

b~ 80
giahisix 57{s?41)

[~ =120

28,=263 8

AR, =1165°

- ~200

- =20 -— 2618
e (2}

01 10 10 0o . * 10004
ot el 111 prased et aresl Lo 3 g Leeit 1.0 318

Figure 8. Phase change of the return difference function of & single-input-output
system with oscillating open-loop transfer function.

5.8, Multi-input-output feedback system with peculiar return difference function
Consider the following multi-input—output system with

—3 )
¢—1 e¢+41 )
GQ(s)= (44)
1 =2
g1
and .
H(s)=1
Tet us examine the return difference first :
P(s)=det {1+ G(s)H(s)} .
=1 - (45)

There is no phase angle change at all or the phase change is equal to zero.

According to the stability criterion, however, the system is stable if and
only if Af=(w[2)(8+2y)=7, because B=0, y=1. We therefore conclude
that the system iz unstable. )

The problem is taken from C. T. Chen’s book (1968) where he warned that
the return difference function sometimes does not offer stability information
and his remedy was to pose more restrictions or conditions on this peculiar
situation.

Our new criterion, on the other hand, works fine and need not pose any

new restrictions.
?. /32
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5.4, Multi-input—output feedback system with unsiable open-loop transfer meairiz
Consider the following multi-input-output feedback system :

—§%4g41 1
E+DE-1) -1 |
G(s) = (46)
1 1
GFE-1 G-1)
and H(s)=1. (A7)

Firgh, we find the return difference function :

P(s)=det [1+ G
) eé;ﬁ)wﬂ IORKHNAJJPAG?£§
= -0 UALITY.
oG w_fg‘POOR.Q (48)

from which we have =0, y=1 and

6(joo)= = lim tan—* 2=.2 (49)
W—+0D - 1 2’
Therefore r=1.
Substituting these data into (38) we obtain
Ag:’_; (2y —k+B)
s i
=— (2~ == 0
‘ 5 (2-1+0)=3 (50)
I II!IIII[ T TTTTH] LI TS LLLELILLLL [ ELLLLA
01 10 e W 00 10008
=80
& =4t 11+ Glsl]
YWhere
-52.5.1 1
100 grele| TSN B
GweT o

L -120°

Figure 9. Phase change of the return difference function of & multi-input-output
gystem with unstable open-loop transfer matrix.
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Then we draw the phase plot of the return difference function (48). The
phase angle change is #/2. Therefore we claim that the system is stable.
This example is also posed by Chen in his text ; he warned that (48) should
be carefully examined, otherwise we could easily arrive at a wrong conclusion.
To use our new criterion, however, this example is simply a routine exercise—
there are no particular difficulties.

It is known that DeSoer’s recent work is also based on the return difference.
But for this simple example, his criterion is.not applicable, because-of the-fact :

inf | P(s)| =0.
Res =0

6, Application to distributed-parameter 'systems

The stability criterion given in § 3 and § 4 can be extended o the study
of the stability of feedback systems with distributed parameters as far as g
and y of the system is finite ; there i§ no restriction on the return difference
being a rational function of s in the proof of the criterion. Of course, the
mapping of the return difference along the jw axis should be taken in the
principle sheet of Riemann surfaces. " '

6.1, Multi-input-output feedback systems involving exp (— 7s)
Consider the. multi-input—output system with

exp (—s) 1
s—1
&(s) = . (eD)
1 2 exp (—2s) .
s+ 2
and
H(s)=1 (52)

First of all, we find the return difference funetion :
Plo)=deb [1+6(s)] o
oxp .~ 8)(s+2)+2(s~1) exp (—28)+ 2 exp (-~ 3s)
: e £ 0-5(s—1){s+2)
(s—1j(s+2)
The open-loop characteristic: function is the denominator of (53), therefore,

we have 8=0, y=1.
Then we find

. (83)

im P(s)=0-5£0
§00
Therefore £=0. The total phase change should be
A9=2 (B—E+2y)
T .

if we expect its sta,bility.a

%Jéy-
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Figure 10. Phase change of the return difference funetion of a multi-input-output
feedback system with exp (—s).

When we plot the phase angle of the return difference function, we have
the graph shown in Fig. 10. It is very interesting to note that when w=0t%,
the phase is 180°; when w= co, the phase is 0°. There are many oscillatory
types of various starts with w=2 and beyond. Based on our new criterion,
we are only mterested in the phsse angle change between the two ends.
That is

A9 =0°—180°= —180° (54 b)

From a comparison of {54 a,) and (54 b), we \conelnde that the system: is un-
stable.

While Pontryagin’s technique for a-time-delay system has not been extended
to multi-input—output systems and Desoer’s criterion for this type of time-
delay system does not work {because there is an unstable pole in the open-
loop characteristic function), by using our new criterion, the problem is
easily solved. )

6.2. An equivalent system

There is a very important theorem on block diagram equivalence for
negative feedback systems. The theorem states (Chen 1974): as far-as the
input-output properties are concerned, the block diagrams shown in F1g 11
are equivalent.

It is.easy to prove the equivalency as follows
The closed-loop transfer matrices-of the left system is

Fls)=[1+ G@HHIGs) - (55)

F 135
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If the inverses of G(s) and H{(s) exist, we have
F(s)=[G(s)}H(s)(H(s)G1(s) + 1)]72G(s)
=[1+H )G [G(3)H s} G{s)
=[1+H8)G )L H(s) (56)

Comparing (55) with (66}, we have the proof of the equivalence.
Asg far as the stability of Fig. 11 (g} is concerned, we can test the stability

of ().

Figure 11. Equivalent systema.

This equivalent block diagram makes the following fact obvious. The
inverse Nyquist plot is an unnecessary complication and so is Rosenbrock’s
. inverse Nyquist arrays. We use the equivalent block diagrams of Fig. 11

to deal with a class of problems in the next section.

6.3. Feedback systems involving +/s
Consider the following system :

100
1) = Gea /s e+ (67)
h(s)=1 , (58)

This problem has been studied by .Chen and Chiu (1973) by the fast Fourier
transfer form, and we know that it is stable. We would like %o use the new
criterion to reach that answer. . .

Since there is 1/s in the denominator of the open-loop transfer function,
it is not easy to count the number of open-loop poles.

Instead of dealing with this problem direetly, we can determine the
stability of an equivalent system with the following :

g1fs)=1 - (89)
hy(s) = (0-63\/.2-({)-01)(s+ 1) @0)

Then we examine the return difference of the equivalent system :

Pls)=1+— (0634/s +1)(s+1) (61)

100
}./34
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We find that
=0 and y=0
because there is only & constant in the denominator of (60) and
lim P(s)= lim 0-0063s%/2
Bur =200

from which we have
k=-} ‘ (62)

Therefore, the stability criterion is given by

AB:%(B—k+2ﬂ

(+$)=135° (63)

ol 3

When we plot the phase angle function of (61), we see that the phase change -
is 135° as shown in Fig. 12. Therefore the equivalent feedback system is
stable ; so is the original system.

¥ VT VTTH] ] ] lIIIlII ] T 1 LAY T T lllllll T L LR

* 10 100 a0 T
- 120° .
L 120° ]
106 109, haw)

Where
- 80° g (st by, (s)}= M{W
L 50°
- m‘ OR
° TGN,

20

Figure 12. Phase change of the return difference function of a single-input—output
feedback system with /s,

6.4. Feedback systems involving exp (—+/s)
Consider the feedback system with the following element :

5(s+0-3) exp (—+/s)

g(s)=32+40(3+0-3) exp {=+/8)

(64)

and
_100(s+ 0-1){s +0-2)
M) = Soye 1 20)

7127

(65)
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When we use our new criterion, we need to count the number of poles of the
open-loop characteristic function in the right-half plane and on the imaginary
axis. In other words, we have first to know the rocot numbers of the
denominator of (64) in the right-half plane. There is no direct way to know
the root situation of the equation :

82+ 40(s +0-3) exp (—+/s)=0 (66)

However, we can set up an auxilliary system with a return difference function
as follows :

+ 40(s + 0-3) exp {—1/9)

1 = (67)
That means the open-loop transfer funection is
40(s+0-3) exp {—+/9)
82
Examining the auxilliary system we find
. =2, y=0 and k=0
Substituting these values into (36), we have
Ae=g (2= 0+2(0— M)
Af ’
M=——+1 (88)
m .
T L LILEY] T 1 Iillll[ ‘l— T I]Illll ] T T7TTITH] [] T T TFTITY
oor o1 10 10 100,

g W

- 200°

Leo® @

[ 149400}

-120° Where

: s0(5-031e%5
fr

Figure 13. Phase change of the return difference function of an auxiliary feedback
system for problem shown in § 6.4. )
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The phase curve of (67) is then plotted as shown in Fig. 13. By inspection,
the phase change is Af= —180°; substituting this Af into (68), we have
M =2. This means there are two roots of the original g(s). in the right-half
plane.

Now we deal with the original system shown in (64) and (65). The return
difference function is

500(s + 0-1){(s + 0-2)(s + 0-3) exp {—1/9)

(8+ 20)(s+ 30)[s% + 40(s + 0-3) éxp (—+/8)] (69)

1+g{s)h(si=1+

From (68) we know there are two roots of the open-loop characteristic function,

or the denominator of (49), in the right-half plane. The phase curve of (69)

is then plotted as shown in Fig. 14. The phase change is 27. The stability
criterion is obtained by using 8=0, k=0, and y=2 and we get

A9=Ir2-{0+0+2><2)=27r (70)

Therefore, the system is stable.

T -1 Illllll [| iil-lllll T lllllllli T T Illllll -I T LR LN LLE)
01 10" 10 } 100 1000
—_— !
oo §
ZI'Qh([w)
-60"  Where .
ahise S00(5+0 150 50 ETS
(S+20(5°300(57+40(5: 03V V5
120" ’ )
-180°
--240°
. ~300°

Figl;re 14. Phase change of problem § 6.4.

7. .Conclusions . .

A new frequency “stability criterion for feedback systems, single-input—
output or multi-input—output, is established. The criterion is applicable to
lumped-parameter systems as well as to distributed-parameter systems. The
procedure is to compare the number of non-left-half plane open-loop poles
with, the phase change of the retwrn difference phase plot.

F139
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Compared with the original Nyquist criterion, the new criterion uses the
reburn difference instead of using the return ratio of Nyquist. This allows
an extension to multi-input—output system as & routine exercise.

Compared with the Pontryagin stability criterion, the new eriterion is not
only applicable to systems with time delays but also to systems with irrational
funetions.

Compared with the Brin stability criterion, the new ecriterion is for a
general system while Brin’s criterion is for a very-special narrow class. Because
Brin’s criterion is an extension of Mikhailov’s criterion, therefore the new
criterion is naturally better than Mikhailov’s. i

Compared with the Desoer stability eriterion, the scope of application is
much larger. Examples in §§ (5.1), (5.4), (6.1) and (6.4) cannot be solved by
Desoer’s criterion.

The only restriction to our criterion is that the umstable open-loop poles
must be finite, or reducible to finite.
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Walsh series analysis in optimal control

C. F. CHENt and C. H. HSIAOf

This paper 15 concerned with the determination of suboptimal feedback laws for the
linear systems with quadratic performance criteria. The time-varying gaing are
approximated by the piecewise constent gains which are naturally determived by
using Walsh functions. An inerease of the number of intervals of Walsh functions
enables us to approximate the true optimal control more closely ; and s decrease of
the number of intervals makes the implementation eafier. Therefore the proposed
method 13 simple in theory and flexible in practice. The beginning part of the paper,
being tutorial in nature, is on Walsh functions, the middle part developes an opera-
tional method for solving state equations and the final part is concentrated on the
Walsh functions approach to the solution of piecewise constant gains of optimal
control.

1. Introduction

The control of a linear system with respect to quadratic performance
criteria often involves time-varying gain design. In theory, the methods are
well established and documented. In implementation, however, it is still a
difficult task. Kleinman ef al, (1968), Kleinman and Athans (1968) and
Fortmann (1967) proposed a very elegant approach to the problem by taking
practical engineering constraints into consideration: It was done by pre-
specifying the structural form of time-varying feedback gains, while leaving
various free parameters to be chosen in an optimal fashion. Regarding the
theoretical investigation, their thinking showed certain similarities with the
direct method of Ritz in the caleulus of variation. .

This paper presents a new approach to the optimal problem by using the
Walsh functions (Proceedings 1970-1972, Harmuth 1969, Corrington 1973).
The approach should be olassified as a direct method but is more powerful
than the direct methods of Ritz and Euler (Elsgole 1961) or Gelerkin (Schechter
1967) on the one hand and is much simpler than the procedure proposed by
Kleinman and Athans (1968) on the other. "The piecewise constant gains so
obtained by the new approach are naturally formed, equally distributed and
therefore can be easily implemented.

We shall start with the introduction of Walsh functions.

2. Fourier series and Walsh series

In the direct methods of the calculus of variation, we often use Fourier
series, power series, ete. with coefficients to be determined as the initial step.
Our new approach starts with Walsh series. )

It is well known that a function which is periodic may be expanded into
Fourier series. Analogously speaking, a function, f{¢), which is absolutely
integrable in [0, 1) may be expanded into Walsh series

H{t)=coole) + 016:(8) + Cagalt) + ... + CuhulB) + .. - (1)

Received 18 December 1974,
T Electrical Engineering Department, University of Houston, Houston, Texas
T7004. S0 :
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where
1
O, = g Pa(0I(E) di (2)

are determined in the following sense

m f l:f(t)‘— E ngbn(t)] dt=0 (3}

n—~e 0 n=0

The functions ¢g(t), ¢,{f), qbn ) are a set of square waves which are ortho-
normal. ¢, to ¢;5 are shown in Fig. 1. We call ¢,(f), 1=0, 1, ..., n, the set
of Walsh functions in the dyadic order.

However, the regularity of the set of Walsh functions in the dyadic order
is not very easily seen. It is usual to decompose each Walsh function into
more elementary square waves, or Rademacher (1922) funetions.

Rademacher function, r,(t), are a set of square waves of unit height with
periods equal to 1,4, %, %, ..., 2679, Al‘bematwely, we can state that the
number of cycles of the squa,re waves of r,(t) is 251, The first five waves of
Rademacher are shown in Fig. 2. It is seen that

ol)=rold) : ’
du(t)=71(8)

$aft) = (rae))rs(£))°

8ol = (OO

$alt) = (ra0)) Hra(0))°(ra(®))° v (4)
$s(t) = (ra(E))Hra)ralt))!

Blt)= (3 Hral) ra(6))°

$alt) = (16 (ra(8) 0y (0))
f;s,;(t)=(rk.(t))bk(rk.q(t))bx—=(esk_2<t>)bk~=,... )

where
k=[logsi]+1 (5)

where [ - ] means ta.kmg the greatest mteger of “+’, and b, b,_y, ..., by is the
binary number expression of <.
" To draw the wave form of any Walsh function is.a trivial matter by using

the above-mentioned decomposition techniques.

Let us then return to the Walsh coefficient evaluation of a Walsh series
for a function.

Consider a given function f(t) =t It is desired to expand it into Walsh
series.

4.re3
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Substituting f(¢) =¢ into (2), we h
ubstituting f(¢) = into (2), we have ORIGINAL PAGE IS

[ 3, 2=0 OF POOR QUALITY
-1, ==l
1 —% n=2 (6 a)
Cp= I t¢n(t) di =+
0 0, n=3
~—11_6—, =4

...............

or

ey =t2:3do(8) — 1bs(t) — §bo6) — Frbat) — By dolt) — Feuslt) .. (6 D)

The original curve f(t)=¢ and its Walsh series approximations are shown in
Fig. 3. They are stairwise waves. The most crude representation is obtained
by taking one term of the Walsh series, or 3¢,; the second one consists of
two terms }¢,—4¢;. The figure shows up to the four-term approximation
which is

f@) =ty — 1y — dho— Fr by (6 ¢c)

From the coefficient determination process, we see that the similarities
between Fourier series and Walsh series are obvious.

A
4 =t~
A 1[2¢°-1/4¢‘-1/8¢2—1/165§,
VAT edsrjah-1fed,
e Y 1/29?510—1/4v,251
172 Vi

v L\ 1[2950

e = e et

Y

Figure 3.

3. Discrete formula

When we deal with the Fourier theory, if the given function is not in its
analytic form but in tabulated data or in its graphical form and its Fourier
series is desired, we would use a set of discrete formula. Similarly, we can

Fres
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derive a corresponding set of discrete formula for Walsh series. They are

m—1 .
o= Tt  k=0,1,2 ., (m=1) (7a)
n=
n—1 1
€= 3 burfr-— m=0,1,2 ..., (m—1) (7 b)
k=0 m

where f,, is the average value of the function in question in the kth sub-interval

and ¢,; the value of the nth Walsh function in the Zth sub-interval and m is

the total number of sub-intervals from 0 to 1. It can be shown that i, = ¢,
For illustration, consider the given data shown in Fig. 4 or

k’0I1|2|3
rlalelels

Its Walsh series coefficients are required.

k i}

fa

f2

178 -
ng 1 1 L 1 1

174 172 3/4 {

Figure 4.

Equation (7 b) can be written in s matrix form, once m is assigned. TFor
example, for m=4, (7 b) becomes

[l [ b di o |[Fo]
o | b0 $u i ¢ui|f
ol | w0 bu bu buif|fe
[l Léswo P $o2 Pssilfal

h e

(8)

[H4
e
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where f, are the given data in Fig. 4; .¢,, can be defined clearly by -using
Fig. 2. For example, if we-divide ¢,(f) from 0 to' 1 into. four sub-intervals,
we can describe ¢o(f) by 1, 1,1, 1, Similarly, ¢,(¢)is described by 1,1, —1, —1,
etc.

The coefficients ¢, ¢;, ¢, and ¢, can be evaluated by substitutions

6] [1 1 1 19737 T 17
01 1 1‘ —1 —'1 'g' —"é
. 1= (9)
Cy 1 -1 I =14 4| -3
les] L1 —~1 =1 1]{%] | 0]

This means
[ty =t=23dy—1d1— .

It is seen that the Walsh series coefficients evaluated from (2) analytically
or from (9) numerically are the same.
- Equation (7) can be written into mattix form

c=®f. 1jm . (10)

where' @ is called the Walsh matrix and can be easily denved from the Walsh
wave. conflgura,tlon as shown in Fig. 5,

$ . : - S

i I B oo
4,'. -;-i :> ] . | -|. .
égjk—_-__i s R
i N e RS (PR

_ Figure 5,

Similarly we can write (7 @) into matrix form .
f=Wc - ‘ ‘ (11)
Apparently ’
‘ Ol =W A (12)
Once @ is ‘defined from the basic definition of Walsh functions, ¥ follows.

Equation (12) is one of the nice properties of Walsh functions. Formulae
(10) and (11) are comparable to the discrete formula of Fourier series.

4. Integration and operational matrix

Through using (10), the evaluation Walsh coefficients can be obtained by
multiplying a constant matrix by the discrete samples, and vice versa. In

$.1%7



Walsh series analysis in optimal control 887
this section we derive a method by which we can perform any integration by
multiplying a constant matrix also.

Let us take ¢, ¢y, ..., ¢, and integrate them, we then have various
triangular waves as shown in Fig. 6. If we evaluate the Walsh coefficients
for these triangular waves, we will easily arrive at the following :

fhE] [ 2 Lk -F 0 f-% o0 0 0o T4
fd@tf | ¥ 7 01 0 —Fi 0 —% 0 0o |l¢
§$o i 1 0 0 0 0 0 —F 0 R
fgsdt| | 0 3 Lo 0o i o0 0 -0 —% || ¢
foedt| | 4 0 o 0 0 0o 0 0 b4
§ b5 dt 0 & o0 o i o o o o |[[lg
T e dt o o & 0 0 0 0 0 e
_Hffl{ [ o 0 0 i 0 0 0 0 J"qg,,_'
(13 a)
or
) § o) Bt =Pg, 5 (13 5)

The subscript means the dimension taken. It is preferable to take 2%, where
) is an infeger; as a dimension number.

I+ is noted that
‘ § o di=t

therefore the Walsh coefficients of | ¢, d¢ are found in (6 b) Wlnch is smlply
the first row of (13 @) times the-(t) vector. :
Equation (13) is for m=8; a general formula Py, can be wrltten as

) follows :
o .
1
N 7 Xose) «
: 1
1 ‘:‘E I(mf4)
— Lna Omis)
mf2 .
P(mxm)= 1 __2:-_;_2, I(miz) (14:)
—~ Temia) Otmin) )
1 . 0
—2_% I(m 12) (ml2)

It is interesting to note that if we partition (14) into four parts as shown, the
left; upper pa.rt of P(,...ny Is identical to P(mf2xm1'2)? and the-left upper-corner of
P(mfzxmla) is, P(memM) Therefore ‘this regulanty of -the structure- of the P

Prree
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4’0 A
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Figure 6.

madtrix enables us to write the reduced Nth enlarged matrices to any dimension,
as far as the dimension number is equal to 2%, where Q is an integer number.

5. State equation solution by the Kronecker product formula
Consider the following state equation :
x=Ax+Bu
(18)
x(0)=x,
where x is a state vector of » components, u is an input vector of [ components.

A and B are n x n and n x ! matrices respectively. We would like to establish
a procedure. to solve the state equations via the Walsh series.

4. /¥9
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First of all, we approximate the rate variable vector x by a set of m-term
Walsh geries whose n x m coefficients are to be determined. Let

&y €o Cua Gz - Cmed) || Po
Ty Cagg Cay1  Cgp .- : ¢
= co (16 o)
%y Ca9p O3 Cgp .- : P2
_x.n_ . Cno €yt Cnz -+ Cplm—1) ] _‘ﬁn_
or simply written as
I4
<
s ? Fay
X=16¢ 4’ = C(‘nXm!d’(m) (16 b)
y r’
cﬂr

[ ]

where means transposition.

It should be noted that this initial step is quite different from that of
the regular procédure of a series solution of a differential equation. We
assume the rate wvariable % as an undetermined vector series, instead of
assuming the state vector itself.

The state variable x may be obtained by integration,

i
x(t)=C | $(2) dA+x, (17
0
The integration can be performed approximately by using the P matrix :
:
f &) aa=P() (18)
The input vector can also be expressed by the Walsh series :
by by R . hl(m—ﬂ
U= 7{20' LIV YRR N (19 a)
Pio by Pig o Bggnn:
or-
uidHd (19 b)
where H is a constant matrix, the determination of which can be achieved

by the techniques illustrated in § 2.
Substituting (16 b), (17), (18) and (19 b) into (15), yields

Cod =A{CPd +x,}+BHP (20]
Ax, can be written as a form of veetor, or
Ax,=Ax,dy=[Ax,, 0, 0, ..., 0l¢=Go (21)
e —

(m—1) column

B 157
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Finally we have © ORIGINAL P AGE IS .
C=ACP+G+BH OF POOR QU

The last two terms on the right-hand side are,given and can be combined
into one term, by letting ;

G+BH=K
Then
C=ACP+K (22)
It can be shown that
< | T e Ky
S |=[P'®A]) ¢, [+ k, (23)
‘;n_. c.ﬂ l('ﬂy
where P'®A is a Kronecker product defined as
[auP apP’ o 4P
P’@A A a21P' avzzP’ ves a}zn ' (24)
a’an' a’n2P’ t""’nﬂ'r.P’

< . ky
& [=[I-P'RA]| K, | (26)
P

n n

¢ -

Once C has been decided, the rate variable Walsh series representation is

determined. The state variable vector is then found by substitution :
x=CPd(t)+x, (26)

A high-order differential equation with constant coefficients can always
be written ‘as a state equation. Therefore eqns. (25) and (26) enable us to
solve linear time-invariant systems elegantly and completely. Of course, the
answer ig in terms of Walsh functions,

3

6. State equation example

A gate function shown in Fig. 7(b) is applied to a circuit shown in Fig.
7{a). Find the response of the circuit.
The parameters of the circuit are

R=50Q, C=5uF
and the initial condition is

v(0) =1 volt

;. 757
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a(t)
- i R i . J
e c==—¥

{a) 02505 1 msee
{b)

I =
L Exact  solution
\\ — Siteen submterval
Walsh solution
[s] 1 T
o | msec

(e)

Fignre 7.

The governing equation of the system is

dofdi= — 4 x 10%+ 4 x 10% (27 a)
First we would like to normalize the equation by using
+=1000¢
Then the governing equation is changed to
dvjdr= —4v44e (27 5)
Let us assume that
O=Codo+Crpy+ oo +Crshis=C' (28)

where both ¢ and ¢ are vectors with 16 components.
The input function e(r) can be decomposed into a Walsh series

e(f) =[é: é’ _'ii _é: 0, .., 0}4’ (29)
12 zeros
=H¢

The G matrix is written as
G=[A»(0), 0, ..., 0]
LS
18 zeros

=[—4,0,..., 0]

‘¢/§2_
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and the K matrix becomes

=k’

K=BH+G

C. F.Chen and C. H. Hsigo

=[-3,1, —~1, ~1,0,0, ..., 0]
| S —

12 zeros

The coefficient vector ¢ is determined by

where

P'QA=

DO Ok Ok = D

OO ON O O N

O O OO O O

O O S O O O

c=P'RAc+k

SO O OO @ OR

[

CO OO0 OO

OO0 o OO QOO

OO oRRO OO

URIGINAI, PAGE IS
OF POOR QUALITY]

(30)

I
]
]

o+
b= - Gl

— @

<

o oo

oof

]

The answer is obtained from solving (30) for ¢ first,

" —0-9022495-]
— (0-4476435
— 1-8779225
—0-7389225
—0-2220921

0-1092045
—0-3391808

c=| —0-1818889

—0-1127811
0-0554554
—0-1722403
—0-0023653
0-0136505
—0-0423976

| —0-0227360 |

7 Wiy

0(8)

[ e e S e Y v e B o ]

(31)
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The required #(7) is obtained by substituting ¢ into (26)
v(7)=<'Pd(7)
= 0-4701407¢y + 0-1417552¢, + 0-0861996h, — 0-0697089¢h,
+ 0-0555230¢h, — 0-027301 1 b + 0-0847951 b, -+ 0-04547214,
+0-0281952¢; — 0-01383805, + 0-04306004,,+ 0-02309084,;
+0-0069403¢h,, — 0-003412648;5 + 0-0105994b,, + 0-005680¢h,.

The comparison between the Walsh series solution and the actual result is
shown in Fig. 7 {c).

7. Optimal problem with constraint
The optimal control of a linear time-invariant system

% =Ax -+ Bu (32)

with guadratic performance index

5=1 5 (X'Qx+ w'Ru) it (33)

is well known to be
u*=R"1B'p(¢) (34)

where p(2) satisfies the following canonieal equation :

AR

plt;) =0 (36)
x(0)=x, (37)

an

Equation (36) is the transversality condition,
It is more convenient to change the independent variable by defining

r=t,—1 (38)

[xMJ
-M (39)
p(7}

Then (34) becomes

[x(T)] [ —A - BR-lB] [x(T)
o] |- & phJ

The transition matrix of (39) is~

M-

‘[”In(f ) ’?126“)]
exp (—Mi)= : (40)
Naal7)  Naa(7)
Sinee p(r=0)=0, the solution of (39) can be written as
x(7) = (7)x(r=0) (41.2)
P(7) =95 {7)x(r=0) (42)

¢. /5%
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From (41}, we have
X(7=0) =n;~Hr)x{r) (41d)

Substifuting (41 ) into (42), yields
P{) =1 ()1 {7)x(7)
Then .
u¥(g) = R1Bnyy (g — Oy (6 — E)x(tr —~ 1)
& — gty —t)x(t, 1) (42)

where g(r) is the optimal feedback gain matrix.

8. Walsh series solntion to the problem

Because the Walsh series is defined from the 0 to 1 interval, we normalize
the problem first by using

A=t3 (43)
€
Then (89) becomes
*(A) x(A)
[ }=__th[ ] 0<A<] (44)
B(A) P{A)

N ext, sssume X(A) and p(A) to be expanded into a Walsh series whose coefficients

are to be determined :
I

<
x(A)
= o' |4 (45)
P(2) :
cml‘

where ¢; and ¢ are vectors with m components.
Then use (18)

A
J {v) dv=P(A) (18)
to perform integration on {45) : (
. o
x(N)7 ] x(A=0). :
[ ]_—-_ ' P¢(A)+[ ] (46)
p(A) : 0.
) can' )

Substituting (46} and (45) into (44) gives

c,’ ¢’ x(A=0)
c?’ b(A)=—t;M C_P.’ 1P+ Ozs - O | 1 () (4701)
c2n’ c2nl 01;

4 55
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Defining
x(=0) P1
— M Opps vos 02w |2 Py (48)
R e P M
0, {m—1) columns Gon

Then (47) is simplified into

< P1
& |=[1+4LPRM]]| p, (475)
c2n Pan

Solving (47 b) for ¢;, we obtain the Walsh coefficients of the rate variable
%(A) and the rate co-stable variable p(A). Then substitute them into (46).
The answers to x(A) and p(}) in terms of the Walsh functions are finally
found.

9. Example-of feedback gain determination

Consider the system-
0 0 [l -
x= x+| lu . (49)
1 0] |o

with
0
x(0) =
10
x(t;) unspecified {50)
The performance index is
i
J=% [ (x'Qx+u'Ru) dt - (51)
I

where

0 0
Q= ' » R=1
0 4
the terminal time I, is w/é.

The canonical equation for the system is then

0 0 —7f2 0
x(A) — 72 ¢ . 0 0 || x(A)
= l: :' (52)
0] | o 0 o ap|lew
| 0 —f2 0 0 |
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Express x and -p with the Wa.lsh geries of 16 terms whose coefficients are to be
determined :

€ Cx - €, 15| Po
x(A) Gp Cp1 .. ©Cp 35 $1
- 1 (53)
B(A) €3 C;1 .- C3,15 :
| Ca0 Cq1 -+ G4, 15 | 15 ]

using: (53), (18) to. find C from (47 b). Then %(A) and p(A) are determined by
(45); so are x(A) and p(A) by (46). Finally, we have the optimal feedback
gains as follows :

X 4 : s
1/32 0-2011657 x 10~ 0-9639859 x 10-2 ORI
3/32 0-3784019x10-2 . 0-04818776 GINATL
5/32 00189553 : 0-1251763 OF POOARL PAGE IS
7/32 005276887 0-2400212 QUALITY:
9/32. 01122418 0-39094938 :

11/32 02028542 0-5740402

13/32 03275995 07822832

15/32 0-4855795 1005100 -

17/32 06710423 1:228877

19/32 08735645 . . 1438799

21/32 1-079056 .. 1621599

23/32 1-275569 1768202

25/32 1-450156 1-875617

27/32 1-506604 1-945752

20/32 1712762 1-984705

31/32  1-800200 2000170

The analytic solution of this prohlem is

" gy = [sinh.(7 — 2¢) —sin {7 — 2t)}-/|:cosh2 (§ - t) + cos? (—2 —_ t):|
go=[cosh {z— 2t) — 08 (17 2t}] / [cosh2 ("é - t) + cos? (- — t):l

The compa,rlson of the ana]ytxcal solution and the Walsh solution is shown
in Fig. 8.

10. Conclusion -

The Walsh function method for determining the optimal piscewise constant
gains for-a linear system is established. The basic formuls is (47 5). Com-
pared with the method of Kleinman ef al. (1968), the proposed approach is
much simpler in analysis and easier in implementation. It is believed that
this is the first time in using the Walsh series to approach the niost interest-
ing and highly important problem in optimal confrol.

/}.ls";
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git)
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Figure 8.
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Design of Piecewise Constant Gains for
Optimal Control via Walsh Functions

CHIH-FAN CHEN, SENIOR MEMBER, IEEE, AND CHI-HUANG HSIAOQ, STUDENT MEMBER, IEEE

Abstract—This paper presents a technique for determirating time-
varying feedback gains of lnear systems with quadratic performance
criteria. The gains are approximated by the piecewise constants which are
nsturally determined by Walsh functions. After introduelng Walsh func-
tlons In the beginning we develop an operational matrix for solving state
equations. Then using the operationd] matrix we solve the plecewise
constant gaing problem,

I. InTrRODUCTION

IT I8 known that the control of a linear system with
respect to quadratic performance criteria often involves
time varying .gain design. Kleinman, Fortmann, and
Athans proposed a very elegant approach [1]-{3] to the
problem by taking practical engineering constraints into
consideration: it was done by prespecifying the structural
form of time varying feedback gains, while leaving various
free parameters to be chosen in an optimal fashion. Re-
.garding the theoretical investigation, their thinking
showed certain similarities between their approach and
the direct method of Ritz.in calculus of variation.

This paper presents a new approach to the optimal
problem by using the Walsh functions [4]-[6]. The
approach should be classified as a direct method, -but is
more powerful than the direct methods of Ritz [7], Euler
{7], or Gelerkin [8] on the one hand and is simpler than
the procedure proposed by Kleinman, Fortmann, and
Athans on the other. The piecewise constant gains
obtained by the approach are naturally formed, equally
distributed and therefore can be easily implemented.

As a start, we will briefly introduce Walsh functions. - -

Il. FOURIER SERIES AND WALSH SERIES

In direct methods of calculns of 'varié.tio_n, we often.use
Fourier series, power series, etc., with coefficients to be
determined as the initial step. Our new approach starts
with Walsh series.

It is well known that a function which is periodic may
be expanded into Fourier series. Analogously speaking, a
function, f(r), which is absolutely integrable in (0, 1] may
be expanded into Walsh series.

Manuscript received August 30, 1974; revised January 29, 1975, Paper
recommended by D. L. Kleinman, Chairman of the IEEE §-CS Optimal
Systems Comumittee.

. C-F. Chen is with the Department of Electrical Engineering, Univer-
sity-of Hous'ton, Houston, Tex. 77004. ’

C-H. Hsiao was with the Pepartment of Electrical Engineering,
University of Houston, Houstan, Tex, 77004. He is now with Cheng
Kung University, Taiwan, China. -

J(O)=cobo(t)+ 1 (1) + Cpy(D)+ -« + e, () + -+ -
(1)

where

o= [ 0O @

are determined such that the following integral square
error is minimized: .

1 N 2
e= [ {f(t)— )y c,,qb,,(r)] d. ©
0 ne={}

The Walsh functions ¢y(f), ¢,(f),-,9,(¢) are a set of
square waves which are orthonormal, Fig, 1. shows the
Walsh functions from ¢, to ¢,; in the dyadic order.
However, the regularity of the set of Walsh functions in
the dyadic order is not very easily seen. Each Walsh
function can be decomnposed into more elementary square
waves, or Rademacher-functions [10]. :
Rademacher functions, #,(f), are a set of square waves
of unit height with periods equal to 1, 4, 1, 1,---,20-9,
Alternatively, we can state that ‘the number of cycles of
the square waves of 7,(f) is 2¢~'. The first six waves of
Rademacher are shown in Fig, 2. It is seen that

bo{ ) =ro(?)
o(H)=r(8)
: 4)

$i(1)= (e ()™ (re— (D) (re— o))+ - -

where

k= [log,i]+1 (5)

where [o] means taking the integer part of “e” and
by by _ 1, -+, by is the binary number expression of /.

To draw the wave form of any Walsh function becomes
a trivial matter if we.use the above mentioned decomposi-
tion technique.

Let us then return to the Walsh coefficient evaluation
for a function. -Consider a given function f(#)=1. It is
desired to expand it into Walsh series. Substituting f(f)=1

Copyright ©1975 by The Institute of Electrical and Electronics Ragimeers, Juc.

Printed jn U.S.A. Annals No, S10AC002
4r56
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Fig. 1. Dyadic ordered Walsh functions.

into (2), we have

J(O)=t=Loo(t) = ()= Lolt)
— f0i(1)— oe(t) = drdie(t) . (6)

The original curve f(¢)=¢ and its Walsh series approximia-
tions are shown in Fig. 3. They are stairwise waves. The
ctudest representation is obtained by taking one term of
the Walsh series, or 1¢; the second one consists of two
terms 1¢,~ 1¢,. The figure shows up to a four term
approximation which is
F()=t=1dg—dd,— 4y — Fby. (62)

From the coefficient evaluation process, we easily see
that the similarities between Fourier series and Walsh
series are obvious,

III. INTEGRATION AND OPERATIONAL MATRIX

In this section we will derive a method by which we can
perform any integration by multiplying a constant matrix,

597

Mnonnnn
oooooooy

Annnnononnnnnna..,
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Fig. 2. Rademacher functions.

Let us take ¢y, ¢, -, ¢; and integrate them; we will
have, various triangular waves [6]. If we evaluate the
Walsh coefficients for these triangular waves, we will
easily arrive at the following formula for approximation:

- . IGINAL, PAGE 18

ﬁ;ﬁ : %1';‘ POOR QUALITY
, _

f byt

f $adt

f bqdt

f $sdt

Pedt

$dt
iziw e o 0 ol
[f70i 010 @ 0 o
P 010 010 0 fF 0fle
=10 #1410 0,0 0 .0 il
& 00T 0 00 0%
0 & 0. 0,0 0 0 0| e
00 X 010 0 0 0 || ¢
0 0 0 % ,0 0 0 0
()

or

f ddt=PxaPe); (7a)

The subscript means thé dimension taken, It is preferable
to take 29, where § is an integer, as a dimension number.
Making this choice will enable us to obtain simpler results
and to have a much.easier calculation.

It is noted that

7' /‘/ f¢odl=t;
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Fig. 3. Expanding a ramp function into Walsh functions.

therefore the Walsh coefficients of f¢ydt is found in (62)
which is simply the first row of (7) times the $(f) vector.

Equation (7) is for m=8, a general formula P, can
be written as follows: :

Pl m)
ER T
. T L
I . :
=1 %f(:i/s_) :_ Yo _: _____ _E 2_,,1 Loy |, (8)
;i;f wa OQmm |
__ i%nbf(m/z) E Onr |

It is interesting to note that if (8) is partitioned into four
parts as shown, the upper left part of Py, is identical to
P7iwmys; and the upper left comer of Pz, 773, is
P 7ixmysy Therefore, this regularity of the structure of
the P matrix enables us to write the mth enlarged matrix
to any dimension, if the dimension number is restricted to
2% where @ is an integer number.

IV, STATE EQUATION SOLUTION BY KRONECKER
ProbUcT FORMULA

Consider the following state equation:

x(0)=x, ®)

where x is a state vector of n components and # is an
input vector of / components. 4 and B are nXn and nXx/
matrices, respectively. We would like to establish a pro-
cedure for solving the state equations via Walsh series.
First of all, we assume the rate variable vector £ tobe a
set of m-term Walsh series whose n X m coefficients are to

k=AdAx+ Bu,
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be determined. Let

X €10 1 C12 Crim-1) ¢
X3 .Cp €21 Cx;2 Cam—1) )
Xn o Cal Cuz ) Calm=1) Dln—1)

(10)

We write each column as a vector and define the rect-
angular matrix as C. Then (10) becomes

k=[epep16n1] = Co. (10a)

It should be noted that this initial step is quite different
than that of the regular procedure of the series solution of
a differential equation. We assume the rate variable & as
an undetermined vector series, instead of assuming the
state variable itself.

The state variable x may be obtained by integration:

x()=cf "o(s)ds + %, (i1

The integration can be performed approximately by using
the P matrix.

[ #(s)s=Pa(o). (7a)

Also the input vector can also be expressed by Walsh
series:

(12)

where H-is a [ X i matrix; the determination of which can
be achieved By the techniques illustrated in Seéction II
Substituting (10a), (11), (7a), and (12) into (9) yields

Co=A(CPd+ x;)+ BH. (13)

Ax, can be written as the product of a matrix G and the
vector ¢.

u= He

Axy=Axopo= [4%,0,0,:-- 016 2 Go.  (14)
{m—1)columns
Finally we have
C=ACP+G+BH. (15)
The last two terms of (15) can be combined by letting
G+BHZK. (16)
Then
C=ACP+K. (152)

%. /o2



CHEN AND HSIAD: PIECEWISE CONSTANT GAINS FOR QPTIMAL CONTROL

If we rearrange the n X m matrix C as an am-vector ¢ by
changing its first column into the first » components of
the vector; the second column, the second n components
of the vector, etc.; and rearrange K in the same manner;
we finally obtain an even simpler form in terms of a
Kronecker product for (15a);

c=[A®P’]c+k (17

where A® P’ is 2 Kronecker product defined as

A pud P4
A@p 2 Ped  pnd PrzA (18)

leA PZrnA ) pmn.A

and P’ is the transposition of P.
The solution of ¢ comes from (17) directly,

c=[I-A®P' ] k. (19)

Once ¢ has been decided, the Walsh series representation
for the rate variable is determined. The state variable
vector is then found by substitution.

x=CP¢+ x,, (20)

When m is large, the computation of (19) becomes a
difficult problem, we take advantage of the special pattern
of matrix P and develop an algorithm for calculation. The
details are shown in the Appendix,

A high-order differential equation with constant coef-
ficients can always be written as a state equation. There-
fore (19) and (20) enable us to solve linear time invariant
systems elegantly and completely. Of course, the answer is
in terms of Walsh functions.

A subroutine WALDE ‘has been written in Fortran
-anguage for solving an nth-order differential equation.

V. OptiMAL PrOBLEM

The optimal control of a linear time-invariant system

i=Ax+ Bu (21)
with quadratic performance index
s={_£) ¥x' Qx + u’ Ru)dt (22)
is well known to-be .
w*=R"IB'p(1) (23)

where p(t) satisfies the following canonical equation:

(M ) e
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and the boundary conditions are specified as
x(M)=x, (25)

=0,
P() OF POOR Q

Equation (26} is the transversality condition.
It is more convenient to change the independent vari-
able by defining

T=4—1 27
then (24) becomes
¥(1)] [-4 —BR7B | x(r) } 5 _p x(7)
Py |- & p(7) LON)
(28)
The transition matrix of (28) is
—Mi_ M) (1) 29
‘ [nm('r) o) | @

Since p(r=0)=0, the solution of {28) can be written as

x(7)=1ny(r)x(r=0} (30)
P(7) = (7)x(7=0). (Y
From (30), we have
x(r=0)=n5'(r)x(r). (30a)
Substituting (30a) into (31) yields
p(r)=nn(r)ny ' (r)x (7). (31a)
Then optimal control is reduced to
w ()= R™'B'nu (4= iy (4= x4~ 1)
S —L{t—0)x(t,—1) (32)

where L(,— ¢) is the optimal feedback gain matrix.

VI. 'WaLsH SERIES SOLUTION TO THE PROBLEM

Because Walsh series is defined in the 0 to 1 interval we
normalize the problem first by using

A=7/1g (33)
then (28) becomes
| 2R 3 x(A)
0 D] vacr o

Next, assume £(A) and p(A) to be expanded into Walsh
series whose coefficients are to be determined.

[ x(A)
pN)

where C is an 2n7X m matriX, and ¢{)), an m-vector.

= C¢(A) (35)

;7- /43
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Then (7a) is applied to perform integration on (35):
[ x(\) x(A=0) ]
p(A) o, |
Substituting (36) and (35) into (34) gives

x(;\=0) ] 02!1" " ’02::] }¢(A)'

(36)

] = CP$(A) +

Co(A)=—1yM { CP+

0,
(37)
Defining k as
— 1 Ax(A=0)
—5,0x(A=0)
k= 02, (38)
— 02" -
then (37) is simplified into
=[I+;M®P |7 'k, (37a)

Solving (37a) for ¢, we obtain the Walsh coefficients of
the rate variable &(\) and the rate co-state variable p(A).
Then substitute them into (36). The answer of x(\) and
p(A) in terms of Walsh function are finaily found.

VII. ExaMpPLE OF FEEDBACK GARY DETERMINATION

Let us consider Kleinman’s example [1], [2],
x()=Ax(t)+ Bu(t)

-1 0 0
= 0 0 -2|x(O+
0 2 0

The performance index is specified as

2

2 (u(t), x(0)=x,.
|

(39)

8“1 2 r !R d
mzj;(xQ.\H-u u)dt

2
2
] 0

Since ;=2%1, weieed to normalize the time scale.

-2 0
2 0 |x+2udr (40)
0 0

A=(4—1)/t;=1-051. (41)
The-canonical equation then becomes
2 0 0 -4 -4 2
) 0 0 4 -4 -4 2
N o -4 0 2 2 —1][=®
P(A) -4 4 0 -2 0 0l pN){
4 -4 0 0 0 —4
0 00 0 4 0
“)

Assuming that the Walsh expansion of %(A) and p(\)
may be approximately expressed with 16 terms, we have

x(A)
PR}

where C is a 6X.16 matrix to be determined and $(A) a
Walsh. vector of 16 components. Letting X (A=0)=1 and
all other initial conditions (A =0) equal to zero, and apply-
ing (37a), we obtain the first colurn of %,;(A) and 7,,(A).
Then, letting x,{(A=0)=1, we obtain the second column of
N1(A) and 5,,(A); and letting x;(A=0)=1, we obtain the
third column. The optimal gain is evaluated with (32),
which is a multiplication of matrices. The waveform is
shown at the lower right hand corner of Fig. 4.

Taking the average for eacly pair of consecutive values
of the above obtained optimal gains with 16 subintervals,
we obtain a new set of piecewise feedback gain for 8
subintervals. Continuing this procedure, we obtain con-
stant feedback gain for 4, 2, and 1 subintervals. All of
them are shown in Fig. 4.

The cost matrix associated with the gain matrix L(7) is
a unique solution of the following:

]=C¢o\) “3)

V(f)=~V(1)[4-BL(%)]
~[A-BL(OV(1)— @~ L(DRL() (44)
V(4)=0 (442)
and p is defined as the trace of ¥(0), namely
=tr[ ¥ (0)]- (45)

For a detailed explanation of ¥ (f) and p, the reader is
referred to [1].

We evaluate V(O) and u for-each control law we have
previously derived. These p’s. are-tabulated -below.

Wumber of Subintervals 16 8 4 2 i
I 1.7125 L7115 17114 1.7471 1.9063

These values are slightly larger than those of Kleinman,
but our method is much simpler.

VIIj. CONCL}ISION

A Walsh function method for determining the optimal
piecewise constant gains for a linear system is established.
The basic formula is (37a). Compared with Kleinman,
Fortman and Athans method, the proposed approach is
much simpler in analysis and easier in implementation,

APPENDIX

Algorithm for Salumg C Via the Kronecker Product For-
mula

In this Appendix we derive a recursive algorithm to
solve C from (19) instead of inversing [I— A® P’
directly, Let us illustrate the procedures for m—23—8
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Fig, 4. Solving Kleinman's problem via the Walsh function method.,

Step 1: Equation (15a) may be rewritten explicitly for
m=3,

o |4 (B4 B4 0 (4 0 0 0 (o] k]
ol [G4 0 0 (B4 0 (&4 0 o ol Kk
<, (zh)4 o 0 0 0 0 (¥4 o ¢, k, |
o | 0 {(z1)4 0 0 0 0 0 ({5)4 e | ky (A1)
c, ('?TSL)A 0 0 0 0 0 0 ) 0 - Cq k4 ) .
<5 0 ()4 o 0 0 0 0 0 cs ks
¢ 0 0 ()4 0 0 0 0 0 % | | K
& 0 0 0 ()4 0 0 0 0 e | [ ]
It is obvious that ¢, ¢;, ¢, and ¢, may be expressed in -
terms of ¢, ¢;, ¢, and ¢, [c2 (51 + 4% 4 0
. _ cG ]= -1
¢ (53)4 0 0 0 0 (:‘%)(“‘2’3‘42) 4
4
cs 0 ()4 0 0 ¢ Tk
- =1 B2,
S 0 0 ( )A 0 [ ]+(I+ Az) [kamJ. (A9)
“ 0 0 0 ()4 _ _
4 This may be put into recursive form by defining
: k

ORIGINAL PAGE IS 2 (k‘ £1- Fs I+ 347 (A10)
OF POOR QUALITY To (e A2 2 -

ol i B2 G- (F k) s ()

L7 then

In order to keep a consistent notation, we may define

G =1 (A3)
Ry = ~(1/2*)6'4; (A4)
then
CLs=Ric+k oy, i=0,1,2,3. (AS)
Substituting (A2) mto (Al), we have
o] |@4HEA (+D4 B4 o
ol | @4 Ge o B4
§= (34 0 (@4 0
’ 0 ()4 0 (gha?
co k0+(%)Ak4
& ky+(5)Aks (A6)
& k+(&)4k, |
k;+(45) 4Kk,

Now the diagonal elements are no longer null matrices.
We may define the new diagonal matrix as F,, and the
new inputs as k; 1y

_ |
£ = '25"%'-42= 23+IAR3 (A7)
1 .
ko = k,+ 23HAG"3 ‘Kep  i=0,1,2,3. (A8)

Step 2: Eliminating c,, ¢, from the lower half of (A6),
we have

(A12)

4 Sés~ Gv2= Ryt G kg, m, i=0,.1.
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Substituting (A9) and (A12) into (A6), we have

<]

()4 +FhA(I+ 4% 4 (1)4
()4 Fy3iA (I+ 2547 '4
: [ 20 ] + | Kot %‘AGz: :kz,m . (A3)
ot ki + §4G; Ka,m
For recursive operation, we should define again
1 -1
(Al4)
K, = K+ 22+,AG2 zup =01 (Al5)

Step 3: Eliminating ¢, from (A13) and (A14), we have

—1 - - -
°l=(T)([_F2) 'Acy+(I-F) 'lki,l.léRlcﬂ"'Gl &,

- (A16)

where G,, R, are defined in the same form as G,, R,, G,
R,

G &I-F (A7)
N s
R = _EFTG' 4. (A18)

Substituting (A16) and (A14) into the upper haif of (A13),
we have

= [(é)A +Fp+ ({)ARI]%"'I‘O,H"'G)AGFIk;,u

Therefore
= Go ko1 (A19)
where -
G, 2 I-(})4-F, {A20)
k= Fz 2114-1 AR, (A21)
ki 2 kot 21+, —— 4G 'k 1. (A22)

Step 4: ¢, is obtained by substifuting ¢, into (A16).
Similarly, ¢, ¢y, and ¢,, ¢;, ¢, ¢; are obtained by applying
(Al2) and (AS5), respectively. This completes the deriva-
tion of the algorithm for solving ¢ from (28), with m=38§,

In general, for m=2% e is any positive integer, we start
with

_ 1 _ 1
G,,-?I, Rﬂ"""zau"d’ F«—zanARa
a+l 0 k e+l k;' (A23)
Then, we can calculate R, and k, B=a,a—1,-+,1,

i=0,1,---,2271 from the following recursive formulas:

1EEE TRANSACTIONS ON AUTOMATIC CONTROL, OCTOBER 1975

Gy=I-Fp,,
Rﬁ = —-2——5_16,8_ lA
Fp=Fp, +27F R,

k. p=K; go1+2 PG Koy pir. (A24)
Then we obtain. ¢
=Gy 'k, Go=1— 14— F,. (A25)

All the other vectors c.j=0,1,---,(m—1) are found by

substituting them with
€42 B—1=Rye, + Gy K 428,84 10

i=0,1, - (A26)

B=1,2,"',a ’(2,3—1_1).

In the above algorithm, we always work with matrices
(G,F,R) of nXn. Therefore there is no need to operate
with larger matrices. For instance, if we wish to apply 128
Walsh functions to solve a 6th-order differential equation,
we only work with matrices 6X6. The calculation of
matrix inverse of [I—A®P’], which is of 768768, is
avoided. Therefore, we have saved computing time and
storage. In addition, we have- reduced round-off “errors
significantly.
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A state-space approach to Walsh series solution of
linear systems

C. F. CHENt and C. H. HSIAO]

A state-gpace procedurs for solving linear dynamie systems by the Walsh series is
developed. A now operational matrix plays the main role and a new Kronecker
praduet formula is established. The laborious use of Corrington’s tables is eliminated.
Several examples illustrate the process and demonstrate the power of the approach.,

1. Imfroduction

Walsh’s series has been widely used in the analysis of communication
theory (Harmuth 1969, 1972, Lee 1970, Jones 1972, Dust 1972), optical engineer-
ing (Gibbs and Gebbie 1969, Pratt e¢f ol 1972, Kennedy 1971), bioscience
(Milne ef al. 1972, Thomas and Welch 1972), data processing (Andrews 1972,
Kuhn e al. 1963, Shanks 1969, Ahmed 1972, Chen 1972), electromagnetic
radiation (Harmuth 1970, 1972, Pearlman 1970), pattern recognition {Ito
1970, Andrews 1971, Carl and Kabrisky 1971, Clark et al. 1972), and control
systems {Dinh et al. 1972, Picher 1970 a, b, Gibbs and Millard 1969). In a
recent paper {Corrington 1978), Corrington applied it to a more fundamental
problem : the solution of linear or non-linear differential and integral equations.
His technique is (1) to assume a Walsh series whose coefficients are to be
determined, (2) to perform integrations by using » tables for an nth order
differential equation, and. (3) to iterate to a convergent answer.

This paper presents a state space formulation, in which only an: operational
matrix is involved. For the linear case, iteration steps are eliminated. The
new approach is much simpler in theory and more suitable for digital com-
putation.

1.1. Rademacher functions

Notation of the Walsh function approach has not been unified. A brief
introduction is summarized as follows. .

Tn 1922, Rademacher (1922) developed a set of functions shown in Fig. 1
which is & set of square waves of unib height with periods equal to 1, %, 4, 4, ..,
20-%) respectively. In general the number of cycles of the square wave of
r,{t) is %1 (Fig. 1). Obviously, it is & set of odd functions about t=4%and an
orthonormal system. For example

1
g ry(E)rat) dE=0 . (1a)

1

g r 2ty di=1 (1d)
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Figure 1. Rademacher functions.
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Figure 2. Walsh funetions.
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A state-space approach to Walsh series solution of linear systems

Or, in general

1 0 ifm#n
J rnlOra(t) de =
0

J1l iftm=n

835

(1)

Because the Rademacher set consists only of odd functions, it is incomplebe
In 1923 Walsh (1923) mdependently developed a complete set: which is known

as Walsh functions (Fig. 2).

1.2. Derivation of Walsh functions

The set of Walsh functions is similar to and derivable from Rademacher

functions (Paley 1932) ; and it is a complete set of orthonormal systems.

The

relationship between Rademacher functions and Walsh functions.is as follows :

Po(t) =75(t)

P1(t) =74(t)

,'?5'2(3)‘= (”'2(“’))}("1@)0

Pslt) = (ral£)) 1 re(E))*

Palt) = (ry())H{ro(£))°(r:(0))°
B5(8) = (ra(E)H{ro(0)) (ry (EN)*
Pe(t) = (r3(0)) (ro ()} (ry (D))°
¢7(t) = (r3(8))(ra(E)) (ry (2))*

9%(*) (1) rgua ()P rgea) ..

where
g=[log, n]+1

in which [ - ] means taking the greatest integer of - .

And,

o 201 B 2024y 2084 . =0

Or afy ...is the binary expansion of n.

1.8. 1llustrative example

Express Walsh funetion ¢;(t) by Rademacher functions.

=9
g= [Iogzn]+l
=4 ) L.
Om1-2040-224 02141920
) T T T
o B y. 3

1

J

OF POOR QUAI?T%‘
(2)
(3)
@

(4a)

Substituting the values of «, B, y and & of (4 a) into the general expression of

(2), we obfain

$alt) = (7alE)) (a0 (v2(0)° (12 ()

which means that Walsh function ¢4(f) is decomposed into Rademacher

functions as shown in Fig. 8.
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t;(f) ]

0

r, (1)—,

(x)
$,(1),

Q

=1

Figure 3. Walsh function ¢y{t) is obtained from the produet Rademacher functions.

By inspection, we have the following corresponding rvelationship.

Polt) =70t
Palf) =74(t)
Balt) =74(t)
Pa(t) fﬂ(t) '

$alt) ;Tq(ﬁ), n=2¢1 (2a)

It is seen that the Rademacher functions are contained in the Walsh functions ;
while the latter is a complete orthonormal set and the former is not.

2. Walsh coefficient evaluation
A function f(¢) that is absolutely integrable in [0, 1) may be expanded as a
Walsh series.

f)=coo(t) + 1y () +caolt) + ... up(B)+ ...

= X cubult) : (5)

=0

where {¢,} are called the coefficients of Walsh series.
Our problem is to determine the coefficient ¢, so that the integral square

error satisfies,
N

1
\'lirg J {f(t)— E C’nﬁén(t)]z dt=0 {6)

n=1{

Multiplying &,(¢) on both sides of (5) and then integrating from 0 to 1, we have
1 1 1 -
J 10800 di= [ Ol dbt T exps(O8200) i ..

% iL[ c, b2 di+ ... (1)
-0

7- /?;-
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Tvery term on the right-hand side of (7) is equal to zero, due to the orthogonal
praperty, except the square of ¢, {f) term ; therefore

1
Cpn= g ﬁf’n(t)f(t) dt (8)

2.1. QGute funclion exainple
Let us expand the gate function shown in Ifig. 4.

1 gsi<}
f@)={

0 otherwise
a5 a Walsh series.

Assume ©
f(t) = ﬂ;ﬂ cnq{’n(t)
ORIGINAL PAGE IS
f(i)l B OF POOR QUALITY
° 3 3 3 i

Figure 4. A gate function.

The Walsh coefficients can be obtained by substituting into (8)

1 I V-
Co= jo‘ F(E) * () dE== 154 1-1dt=3
1 12
c = I f(ﬁ)'gﬁﬂﬁ)dﬁ: “‘ 1'1dﬁ=-‘1~
[H] 1/4
1 1§28
o= § 10 dol)dt= f 1-(~Ddi=—1

1 12
ca= § f£) - $alt) = § 1 (=1)di=~—1
0 Ti4

Cy=cCs=cCg= ... =0
Therefore

1(8) =%o(t) + 21 (8) — 24208) — 33(8)

2.2. Sine function example

Express a sinusoidal wave form
ft)y=sin (wt}, O<i<l

into Walsh series (say, only taking the first eight terms).

ﬁ. 173
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Assume 7

J@t)=sin (wl) = Z CaPnlt)

n=0

Substituting inte (10), we obtain
I

1
Co= j' sin (wt) d’t:—[-—cos (mt)}f=—=0-637

E A

1.’.;
€= j sin (=t) dt+ j' —sin (wt) dt=0

II-L 1!,, 34

Co= j sin {ot)-df — _[ sin (f) + I sin () df — j' sin (#t) di=0
34

€;=2 {lj# (i) dt— lj sin (wf) dt}—z {—ﬁ—l)—ﬁ}
° 14

w2 9
= —{-263
Cy=
1/8 114 3/8 1f2
05_2{ { sin (at) di - j sin (wt) df 4 _f sin (wt}— j' sin ()} dt}
=—{0-126

1s 38
63=2{ § sin () df— _[ sin (wt) dt - j sin (mt) dt}

= —0-0573
¢, =0
The resultant of the eight components is tabulated below and the comparison
of the original curve and the partial sum of the Walsh series.is shown in Fig. 5.

|1/16 3/16 5/16 7/16 9/16 11/16 13/16 15/186
) (T1)

10 |0-196 0-55 0-825 0-976 0-976 0-825 0-55 0-196

2.3. Ramp function example —_—

Let us expand a unit ramp function ¢ which is shown in Fig. 6 into Walsh
series ; ie. =t

Substituting into (8) yields
1
o= [ 4olt)t-dt=
’ T [ -
01='.£ $y(8) £ -di= 1}
9

v

1
= [ $ift) -t di=—}

Cg= f $a(t) ¢ - di=0
) :

J

Peddoll) — s () — debal) + ...

ﬂ.mﬁ

Thérefore
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f(t)§ £t}
10+ g
1 // ‘\\\
is /// \\\
1 4 N ORIGINAL PAGE IS
1 / AN OF POOR QUALITY
os-- 7 A
/ \
4 // A\
1 \
/ \
7 \\
_-// \
o5 % i f I’z‘ t ; f —t

Figure 5. Sine function and its Walsh series approximation.

(1)

P e ————

o ot s e e ey i o b e o

—

= —————

L
-4
Figure 6. Unit ramp function.

3. Discrete formula

If the given function is not described in a closed form and its Walsh series
is desired, we can easily modify (5) and (8) into their discrete forms :

_ m—1

fk: 2L’) QSkﬂcm k=0,1,32, .., (m—1) (5a)
n=
m-1 - 1

ep= % bufr = 7=0,1,2, .., (m—1) (8 a)
k=0 m

where f;, is the average value of the funotion in question in the kth.subinterval,
#1158 the value of the nth Walsh function in the kth subinterval, and m is the
total number of subdivisions.

7- {25
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3.1. Ramp funclion example aguin

For illustrating the use of diserete formulae, lot us evaluate the Walsh
series for the ramp function again. The given set of data {/:} is as follows :

A
oo

1|14 (T 2)
2 |24

3 |3/4

4 |44

We convert the table into a discrete form by taking the average value over
each interval and obtain the following corresponding table.

i+i)=¢% (T'3)

Substituting (T 3) into (8 a) and writing it in a matrix form, we have
o] f 1 1 1A

s 1 1 -1 -1
o|7[1 -1 1 -1 J{“: E (10 a)
Cs 1 -1 -1 " 1{lf
In a compact form . 1
c==w¥-E : (10)

where W is called the Walsh matrix and is obtained from the definition of the
Walsh functions. Figure 7 shows the correspondence.

959(?)“
-~
° {S 1 T | ?—'_—|>r! Lo
z g
95,(?)‘
t - -
‘?"z(f)l
° =l 1A
9%(1).
t - -
— ::>: [ |
-t N .J

Figure 7. A set of Walsh functions and its Walsh matrix corre.spondence.

‘ /’b.né
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Substituting f;. of (T 3} into (10 @) and evaluating c,, we obtain the same
results as shown in (9) of the previous section.

8.2. Triangular function example

Let us consider a triangular function shown in Fig. 8. The given data are
in numerical form, or

(T 4)

}Fli—lOl o
cw-».»—-m&-np}aolg."“

The Walsh coefficients of this function are desired.

ORIGINAL PAGE IS

£1)
OF POOR QUALITY

|
I
I
|

!
| 1
! ]
1 1

¥

1
I
|
ll T - ]
] z 4
Figure 8. A triangular funetion.

First of all, we take the average values of what in each interval and have
the following,

k T
0 | 30+d)=1% (T 5)
U | iG+D=1
2 | 1G+D=4
3 | 3G3+0)=¢%
Substituting (T 5) into (8 &) yields,
Co 11 1 17 T4 1
alal we 1|1 1 -1 —1] 8. ,_[o
=W —=|1 —1 1 —1|'|z|"%| o
Cs i -1 -1 1] [} -3

3.3. Double triangular function example

The double triangular functions shown in Fig. 9 are of our particular
interest. Their Walsh coefficients can be evaluated routinely by first taking
the average numerical values and then substituting into (8 a).

411
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(1)

C.F, Chen and C. [, Hsiao

Figure 9. A double triangular funetion.
k| f I
0|0 1
1 s{0+2 T6
o | 5| 1a+0)= 9
&y 1 1 1 |l i
AfC| ']“1 1 -1 -1 -};_1_0
e (=W ==l _; o1l 50
€3 1 -1 -1 IRIE; 0

3.4 Alternating triangular function example

The alternating triangular function shown in Fig. 10 is nearly the same as
that of Tig. 9 except with the second triangle inverted. The sampled values
of the alternating triangular function and its average value in each interval are

tabulated below :

(1)

|
z

0
-1

1

Tigure 10.  An alternating trizngular funetion.

k /!.: .fk
0 9 WO+ 1 =1

+ - M
L3 el @
5 |—3 H0-D=-}
alo| H-E+0=-3

Substituting (T 7) into (8 a) again, we have

1 1 0

S S | B O R !
-1 1 -1l -3 = 0
-1 —1 1| -3 0
4. 128
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4. Derivation of operational matrix

We recall that Walsh functions are a set of rectangular waves. Their
integrals are various triangular waves. We summarize the facts as shown
in Fig. 11.

N AN N,
i
i
1
%(1 i
i
) - e 1 Al ID t— 0 1
¢,(1) ’ ﬁhﬁ’tdt |
! |
|
[} 3 I -t
¢z(tj: é__zdi___
i ;
¢ ° '1 ] [3 T 1’
. 4 z 3
20N | ( fbdt
3 7 T 3 T o ’% %\'%/' t

Waish function First integration of
) Walsh functions

Figure 11. Four-interval Walsh functions and their first.integrals.

The first integration of Walsh functions are expressible by Walsh funetions
and each one has been evaluated in the previous section. Therefore, we can
write the relationship between Walsh functions and their integrals in the matrix

form (@] T2 —1 —% O[] .
I‘f’l di || % 0 0- =%i| ¢s (11 a)
Jéadt | 7| % 0 0l ¢

0
f?sadf' 0 El;' 0 0 553

or in compact form, .
' § @ di=Pumdw (11)

P is called the opérational matrix. which relates the Walsh functions and their
integrals. It is chosen as a square matrix for convenient computation and its
dimension depends on the number of components chosen.

4.1, 8x 8 operafional mofrix

Equation (11) is an approximate formula, its accuracy depends on the
dimension of ¢ or P. We can follow a similar reasoning stated in § 3 to derive
alarger P matrix. If-we have 8 subdivisions between 0 and 1, we have eight
components of the Walsh series. The Walsh components and their integrals

are shown in Fig. 12.
4.125
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b ’ﬁb?dt
o= tp== dr""f

$, é S, at

(=]

o e E. —1
a7 g
0 ! f : EI /!;\1 t
3 z 5
8, ' J9,41

T
=
e
L@JE

O ot~
'

L]
[
<
<

fo,at
t of VAN t
NN

¢ fo,4t
."— . ’_' 1 i y
T e

Figure 12. Eight-interval Walsh functions:and their first integrals.

|
I

O Oi—

Evaluating analytically or numerically of the triangular functions, we
obtain the following matrix” -

(Tdodt] [ & [=2[—F 0 {=% 0 -0 .0 T[4y
\fgoa| | 3

}0 0 -3 0 —4 0 0 -_961.
[ byt P 0i0 0:0 0 —% o0 . s
;04

§gadt | 110 0i0 0 0 —%||4
: =} - et o 12 a)
[ ¢yt & 0 0 o0iPo0o o0 0 o | ¢4
[§dsat| | o fg‘o‘olo. 0 0 0 ||
fdedt] 4 0 0 % 0io o 0 o [|g

Lfga] [0 0 0 %10 o o o [
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Or,
{ e =P b (12)

Tt is interesting to note that the upper left cornor of Py is exactly Pyya)
as shown in (12). The upper right corner matrix and the lower left down
corner matrix are diagonal matrices, and the lower right cormer matbrix is

simply a null matrix. ] ORIGINAL PAGE IS
' OF POOR QUALITY
4.2. 16 x 16 operational matriz

Following a similar reasoning line, we can easily establish the 16x 16
operational matrix as shown in eqn. (13)

P(lsxm)
P -H-3 0f—% 0 0 O0i-% 0 0 O 0 0 0O 0 ]

31 010 —3i0—%0 0§{0 %0 0 0 0 0 0

1 0i0 0{0 0 —-x0l0 0—-%0 0 0 0 0

0 3i0 0j0 ¢ 0 —-%0 0 0 -%0 0 0 O

40 0 0{0 0 0 0i0 0 0 0 —%0 0 .0
04 0 0i0 0 0 0i0 0 0 0 0 —4 0 0
0 0—-%0{0 0 0 0i0 0 0 0 0 0 —g 0

00 0 —-%0 0 0 0i0 0 0 0 0 0 0 -4

(13)

This looks like table (2) of Corrington. However, he did not pr(;sent his
table (2) as & matrix nor used it as a matrix.

P el
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Ii we partition 16 x 16 operational matrix, we observe that the upper left
corner is the same as P, and then partition the submaitrix P gy, the upper
feft corner of which is Py,,,,), ete. Therefore we have

-1 i~
meetet —
P10 )
T b — 5l .
P(16x16)= %‘I(z) 0(2) -gZI (14)
— 3zl )
Tl Oy
L 35l Og

This regular pattern.enables us to construct an operational matrix with any
large dimension. Because Corrington used the arrangement of (13) as a table,
he did not recognize the regularity of the pattern shown in(14).

4.3. General operational matriz

When we assume the undetermined coefficients series matrix in the first
step of solution, we chose m terms ; the value of.m is assumed to be-

m=2= ’ (15)

where « is a positive integer. This assumption which is only for the convenience
of computation, of course, is not absolutely necessary.

If we do choose m so that {15) holds, the general operational matrix can be
wriften as follows : )

b 1
> ~ 2 Lonta)
.
_ 1y
N = Lmia
- 1
1 : S RS
2 Lonts) L o ~On1®)
P sy = ‘ (16)
1
—1 0
m i) . (mfa)
1
o Loni) Oz

5. Solution of state equations

Corrington derived n different tables for solving an wnth-order differential
equation. It is tedious and unnecessary. From a state space viewpoint,
any nth order differential equation can be converted into a set of n state
equations, and one table suffices for the solution. The new approach is to
take advantage of the state space formulation and derive a unique Kronecker
product formula for the solution.

Jrge
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5.1. Dertvation of solution formula
Given & set of state equations

k=Ax-Bu, x{0)=x, (17)

where x is a state vector of n components, u is an}mput. vector of ] components. G'E 18
A and B are # x » and n x I matrices, respectively. For solving this problem b@B]_GmMJ QU PJJTY
the Walsh series approach, we assume the rate vector X instead of state vectopyp P00 OR

x as a set-of Walsh series. Let

%y =Cy0¢0F CuPy + Craba+
5&.2 =CopPotCuds 75"322‘?2 + o (18)

¥y, =Cpotg + Cpyby + Cpapa+

where ¢;; are constants to be determined. Once we know the solution X we
can obtain the solution x in a straightforward manner.

Becatise Walsh series is not only-orthonormal but also convergent fast, we
can use a finite number of terms, say m terms, to approximate the actual
solution. In other words, it is justified to assume.that

Tew tue G| % 1 [
€2  Ca1 - Cotmu) [} P1 , €
kel . é 2] ¢ |e (19 a)
Cno  Cn1 <+ Cnim—1) ‘ib(m-l) ‘cn"
or ©ot - '
% 22 Cnirn )P m) (19)

where Cg,ym) 18 410 2 % rectangular matrix and ¢y, is & vector with m com-
ponents, or

€10 S Ciz--- Citm—1)

. Cag  Ca1  Cog--- Cofp—1)
C(’nxm)= (20)

€ao Cnz  Cng -~ Cnim—1)
21 © € .. Cepl
4’(m)l=[550s 951! 9"2: ) ¢m—1] ) . (21)

Prime means transpose.
The state variable x may be obtained by integration

x(t)=C g SNy dA+x, (22)

However, the integral can be evaluated approximately via the operational
matrix P as we mentioned in the previous section. We then have,

‘.Jl' (). EA=Po(?) (23)

4183
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The input.function u(f) can be also expressed as a Walsh series
u(f) by hy Ry Byg g bo

Uy(t) hyy kg ey kol b
a2 : |l :
'H(") ,"'lll ,"ll ]}’12 ﬁ'"m- 1) 'ﬁm-l
~Ho (24)

u(t) is a known vector, i.e. all the elemenis of H matrix are known.
Substituting (20), (23), and (24) into.(17), we have

‘Cp=ACPd + Ax,+BHd (25)
However, Ax, is 4 constant vector and is expressible as Ax by, or
‘ Ax,=Axydy=[Ax,, 0, ..., 0] £ G {26)
it

(m—1) columns

Then substituting (24) into (23) yields
C=ACP+G+BH2ACP+K (27)

where K2G+BH is an % xm matrix. The first column of K may be defined
as kg ; the second column, k;, ete., as we defined for C'in (20), then eqn. (27)
is expressible in terms of these vectors,

g € .. €ppp]=Alg, € ... c(m—l)}P_l'i:kﬂ Ky oo Kimeny] (27 a)

If we re-arrange C as a vector with nm elements by changing its first column
into the first » components of the vector and then the second column, ete. ;
and re-arrange X in the same manner, finally we obtain an even simpler form
in terms of a Kronecker product for (27)

S o F © ‘ - ko '
o [=AQP] « |+| ki |AA@PIle+k (28)
Cim-1) T LCmen] LK

where. AQPF’ is the Kronecker product defined as

(PuA DuA L. DAY

DA DA L PaA| i
ARP =] .ivveiirinininen.. JOUP , T (29)

...........................

_leA .p2mA b pmmA'
The solution of ¢ comes from (28) directly
c=[I—-AQP'Tk - 80)

After C iy determined the solution x is obtained. The solution x is eé,sily
found by substituting C into (22), namely

x(t) = CPH(t) +%, . . (31)

4.8
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5.2. Free system example )
For the free system for which

g=—dw, z(0)=1

we should like to get the solution via the Walsh series approach.
First of -all, we assume % has a Walsh expansion with m =4 undetermined

coefficients,

()= _ﬁo cabilt) _ ORIGINAL PAGE I8
- b OF POOR QUALITY
=[eg, €1, Cqy Cs] i: = c'd(f)
' ¢

Next, the expression of x in terms of ¢ is obtained through integration

x(t)=c’f[ (A dA+z,=cPdb+2,. '

P -3 -3 0
= i g g ——g ¢+[l:0=0:0]¢
o ¥ o o

Combining 2(t) and @%(f) with the differential equation, we have

¢d=—4¢Pd+[—4,0,0,0]d

—4 3 1 % 0] -4 -8
0| -1 10 3 0 —5%
—_ 1—1 1= — 81
e=I+PTH o173 o0 1 of| of7| -4
0 0 =% 01 0 —§
x({t)
tox .
"\\ —=—T"Exact solution
\ Four subintarval
N\ 2 Walsh solution
LY 3 *
<
\\ .
.5+ -
\\
N\
1N
\\ %
~
..--"-
[~ %
—_— 2
s , . X . i e g1
T F % T ¥ 7 3o oo
Figure 13. Walsh series.solution-of a-free system.
8.8, ' 3M
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Therefore,

B{t) 2 'P(t) = —F2po(t) ~ §1y(8) — §3ba(t) — 35bs(t)
(t) = PP (E) +x0 = Po(t) +456:() + 334a0) + Frbalt)

Figure 13 shows the result of the solution and the following table is the com-
parison between the Walsh approach and the exact solution.

¢ /8 3/8 5/8 15
c'’Ph(t)+z, 0-667 0-222 0-0741 0-0247 . (T'8)

exp (—4f) 0693 0-223 0-105 0-03

5.3. Forced system example
Consider a set of differential equations to be given as

a:‘1= —w1—1-8x2+ 1'8’15, m1(0)=0
tEy = 52, — 1, s %(0) =0,
u(t)=unib step input

It is required fo find solutions for z,(¢) and =,(t).
The A and B matrices of this system are as follows

-1 —18] - [18
A= , B=|
5 1 0{

The rate vector X(f) may be assumed as thé Walsh series form.

lj 5&1(’5):' [010950 +0ubit Crada+ - jl
xt)=]  |=

Z5(2) LapPo+ Cor by + Coppat ...

Tor easily showing the procedure let us take only 4 terms of Walsh series for
cach state variable, namely m=4. -
’ _‘Fl’o~

:’((t)=|:cl° . "1;] %1 é‘c¢

Coo Co1 Cag Coa || 3
é3

For unit step function, H may be written as
~ H=[1,0,0,0]

The G mataix is a null matrix for zerd initial condition ; then K becomes

) 1.8 0 0 0] )
K=BH+G= =[ko; kp kz: ks]

0 0 0 0
Substituting A, P’ and K into (28), we have -
o] T3 1A 1A 07[¢] [k,
ol | —-4A 0 0 iAlle + k;
& [~ 0 0 0 |le|T| K
¢ 00 —3A 0 0 |le| ik,
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x ()
054 ——
/’ ~
\_\
044 // \5
/- N
, \
031 /’ \\
/
/ ———— Fxact solution
ez / Four subinferval
// Wailsh solution
ot f
|/
/ .
o ; : : } ; ; t H t
b F % 1 % 71 %

Figure 14, Walsh series solation of a forced system.

Xz(ﬂ
//
g
Ve
L/
1o+ Ve
N
rd
v
/7
Y/
/7
,/

o5 / ————Exact solution

// — Four subinferval

/ Walsh solution

A
/

ol //
o /: 7 ¢ i ] ; I t
TP Y % f % 3§ 71 "

Figure 15. Walsh series solution for X.(#).
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Solving for ¢ and multiplying C with P, we have
[0'3717155 — 00637155 —0-0381155 — 0-001 13'77:'
CP=

0-6240888 — 0-3640888 — 0-1543111 — 0-0056888
Finally, the solution of x; and a, ave :
2y = 0-3717156¢, — 0-0637155¢, — 0-03811554,~ 0-0011377d,
5, = 062408885, — 0-36408884, — 0-1543111¢,— 0-0056888,

The conventional solution and the Walsh series solution of z; and x, are drawn
in Figs. 14 and Fig. 14, respectively,

- 8. A circvit example (Huelsman 1972)

& s

Let us:consider the circuit shown in Fig. 16. The initial conditions are

zero and uni$ step function is applied. The governing differential equation is :

&y —-G4/C, 0 0 -}, 0 —~1fC; N[ 10,
&y 0 — GofCy 0 0 -1/, 1/C, Ty 0
@3 | _ 0 0 o 0 0 0 - 1/C, Xy + 0 "
Z, 1)L, 0 0 0 0 0 T, 0
5 0 1L, 0 0 0 ¢ R 0
xe ']'/Ll - 1IL3 - l/L3 0 ) O' - R3/L3 Evﬁ 0
=A,x+Bu
X6 o " 3
X4 La Ry _'c; %,
+ .
v L& G e LEg 'Cg"l:'xz

Figuré 18. A circuit of sixth order.

If each parameter of the cireuit is assumed to have a numerical value of 1,
A, and B, become

-1 0 0 —-I 0 -1 17

0 -1 0 0 -1 1 0

. 0 06 0 ¢ 0 1 0-
Al_, 1 0o o o o of BT
6 1 0 0 o0 0 0

1 -1 -1 0 0 =1 0

Suppose we are inferested in applying the Walsh functions to obtain the
solution for each state variable in the interval 0<t<12-8 sec. The first step
is to normalize the time scale by letting,

r=t{12-824ft, dt=t,-dr

e
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Then
de de dt A
T d_-r_t‘ Ajx+tBusAx+Bu
Next, expanding u(¢) into & Walsh series with m terms and applying (19), (24),
and (27), we have

x=Cd ORigpy
u=Hé ' - OF POOﬁLQg. AGE 1g
C=ACP+K ]

where K is related to H through (27).

-A question arises here. ¢ How many terms should we use ¢’ If we wish
to obtain-a quick answer and to sacrifice accuracy, we can use smallnumber for
m, say, leb m<8. On the other hand, if we want accurate answer and do not
care about computation time, we can use very large value for m, say, m > 128.

Let us investigate both cases. Try m=128 first. The matrix C will
contain 768 elements for m =128, n=6. If we use (30) directly, some diffi-
culties might ocenr in. obtaining the inverse of a square matbrix of 768 x 768.
But, recall that the P matrix has the special form as shown in (16). We can
take advantage of the properties of P and use Gauss’ method to eliminate
€y, €5, --vy €, Bhen calculate ¢y, finally caloulate ¢, through ¢, ; via substitu-
tion. For detailed explanation, the reader is referred to Appendix.

The evaluation of x(t) via (31} should cause little trouble. Shank’s (1969)
algorithm may be applied here to speed the computation process. Using
UNIVAC 1108 computer, we obtained 128 points for each of these state
variables. The execution time including normalization of A; and B,, trans-
formation of u(f) into Walsh series, and inverse transformation of Walsh
cocfficients for x into time function is 617 millisce. The waveform of z, is
drawn in Fig. 17 which is checked with Huclsman’s Fig. 6-7.7; his result is
obtained by using the Runge=Kutta method..

Noxt, let us try m=8. C contains 48 eléments. We may use (30) to geb
the inverse of a square matrix 48x 48, Or, we may dpply the algorithm in

XZIH

01

[ 12

Walsh ser!es‘solutton with 16 sublntervals

0

exgct solution

Tigure 17. Walsh solution. compared with the Runge-Kutta solution.
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Appendix. The following values are obtained with the Gauss elimination
algorithm, . ;
J 1 2 3 ¢
Cp,; | 0-00941 —0-24960 0:48335 — 0-04008
il s 6 7 8
Cy,; | —0-00091 —0-21712 0-44308  0-04254 '
After multiplying C with P and taking the inverse Walsh transform, we have
¢ 0-8 24 4.0 56
g(t) | 0-62942 0-05480 —0-03593 —0-12136
[ 72 8-8 10-4 12-0
@o(f) | —0-03264 0-06517

values of z,(t), =,(f), 2,

omitted here.

0-04748 0-01442

The solution: a,(f) is drawn in Fg. 17 as stairs for comparison. The other

(&), @5(), #6(f) have been obtained also, but they are

" For comparison, we have tried to solve this problem with Runge-Kutta's
method by letting subinterval of integration equal to 1-6 sec. Then, we
obtain,

¢ 0 16 3-2 48 64
Zo(t) 0  —013653 —1.0352 —1.5209 2-5396
t 8:0 9-6 11-2 128
2, (8) 10+499 12778 19-543 107-79

In this case, Runge-Kutta’s method fails comp
because of numerical ihstability,

h%o

o1

0 025

letely as shown in Fig. 18

3 ' ‘ L 1 L / L | L P
1 =] 10 - -
EX
- 5
L) »
[ e £
A <
e B,
E)

o (32,1 03)

8 subintervals

Figure 18. Runge-Kubta’s method fails.
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6. Conclusion

A simple procedure for solving stute equations of lincar systems via Walsh
sories is formulated. It involves (1) to assume the rate variables as Walsh
series whose coefficients are to be determined; (2) to use an operational
matrix to perform the integration ; (3) to develop a new Kronecker product
formula for the rate variable and (4) to determine the state variable from the
rate variable so obtained and the given set of initial conditions.

Compared with Corrington’s procedure, the new technique has several
advantages : (1) while we only use an operational matrix he must use several
tables. The tables so far he derived are only for solving low order differen-
tial equations. In other words, if the order is relatively higher, additional
tables are not awvailable. (2) We derive an exact formula which involves
the Kronecker product only.

The disadvantage of our approach is that our answer is slightly less accurate
than Corrington’s. However, this shortcoming can be easily overcome by
using more subdivisions and digital compubation.

Appendix
Algorithm for solving C via the Kronecker product formula

In this appendix we derive a recursive algorithm to solve C from (28)
instead of inversing [I—- A®P'] directly. Let us illustrate the procedures for
m=28=8, '

Step 1
Equation (28) may be rewritten explicitly for m=S§.
el [ 3A 1A (A 0 FHA 0 0 0 [e]| [ke]
< ~3A 0 0 A 0 KA 0 o0 |le| |k
| |—3 0 0 0 0 0 XA 0 |[le| |k
c | ¢ —-3A 0 0 0 0 0 KA ||y k,
G|l -4A 0 0 o0 0 o o o |le|f|Kk|®V
C; 0 —%HA O 0. 0 0 0 0 <5 ks
€ 0 6 —4&A O 0 0 o 0 < kg
e ¢ 0 0 —4A O 0 0 0 JLe| kgl

It is obvious that ¢, ¢;, ¢; and €, may be expressed in terms of ¢, ¢;, ¢; and ;.

C, — A o 0 0 [N I,
ol= 0 —EIEA HS%A 0 o+ 712 (42)
[ 0 0 0 — A || e Its |
In order to keep consistent notation, we ‘ma,y define
G; 21 (A 3)
Rg 2 — (1/2°+)G;~2A . (A4
then Cipa=Ryc;+k, i=0,1,2,8 (A 5)
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Substituting (A 2) into (A 1), we have

G| [3A ~ztsA® 1A A 0 e [kethk,

e |_ —-IA —uisAl 0 1A G, k+ i Akg (A G
< —3A 0 —zlzA® 0 € | [ kvl | T

S 0 -—3A 0 —3sA% [ ¢ k4 iy Ak,

Now we may define the new diagonal matrix as ¥, and the new inputs as

k;, 111

1 1
Fa¥
F3=—‘2EA2=§§E AR3 i (A 7)
. 1 )
ki, i1 2 kit AG gy, 0=0,1,2,38 (A8

Step 2
Eliminating ¢,, ¢; from the lower half of (A 6), we have

¢] [—3I+skeA?) A 0 &)
LJ _[ 0 - %(Iﬂ%—eAz)"lA} H

‘ . Ka, 111
T (L+ ghA?) L (a9
S kg, mor |

This may be put into recursive form by defining

G, 2I—F,=I43lsA2 (A 10)

Ry £ oo G A= — §(I+335A0) A (A 11)
then, ) . )
o Cia=Ro€;+ Gy kg 1y, =0, 1 (A 12)

Substituting (A 9), (A 12) into (A 6), we have

[cu] 1A+ Fy— AT+ A% A 1A &
cl -1 Fy— A +2isA%) A || ¢

’ ko, 111 + %AG’z_lkz, v
- ) (A 13)

ky, 1r +F$AG,? ks, 1v

For recursive operation, we should define again

1 o
Fp £F;+ oo ARy = —of5A? — AT+ whvA%) A, (A 14)
. 1 n
ki, n2k;, mrt e AG ™ Keye, 1, 9=0, 1 (A 15)

¢- /92
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Step 3
Eliminating ¢, from (A 18), (A 14), we have
¢, = — }I-Fy)'Ac,+ (I-F,)?k; 1 2R+ Gk, 1 (A 16)

where Gy, R, are defined in the same form as G,, R,, G;, R,.

G,LI-F, (A 17)
1
R 2 —5em GA (A 18)

Substituting (A 16), (A 14) into the upper half of (A 13), we have
So=[3A+F+1AR ¢+ ko, 11+ 3AG 7k 1y

Therefore .
€=Gy 'k, (A 19)
where.
G,21-A-F, (A 20)
1 S ,
F1£F2+ﬁ ARI (A 21)
1
ko, x2ko, 11+ FYes) AG Ry, (A 22)
Step 4

¢, is obtained by substituting ¢, into (A 16). Similarly, ¢, ¢, and ¢, ¢,
<;, €, are obtained by applying {A 12) and (A 5), respectively. This completes
the derivation of the algorithm for solving C from (28), with m=8..

In general, for m=2%, « is any positive integer, we start with

1 1
- G&:I, Ru='_‘2_='ﬁ A, Fa:‘ﬁ ARa (A. 23)

Then, we can cafculate'R;; and k; 4 ¢=0,1, ..., 261, 0<B<a—1 from the
following recursive formulae. : ’

Gﬁ = I - Fﬂ+1
Rp‘= - 2_ﬁ—lGﬁ_1A

Fp=Fz;+2777AR, ( A
_ ki, =K, pa+2FTAG Ry 41y
Then we obtain «,
=Gy, 1, Go=T-}A—F, (A 25)
All the other vectors ¢;, =0, 1, ..., {m~1) are found by substituting with
Pt =Ryi;+ Gk efy, 4 . (A28

In the above algorithm, we always work with matrices (G, F, R) of nx=.
Therefore there is no need to operate with larger matrices. For instance, if we
wish to. apply Walsh functions to solve'a sixth-order differential equation, we
need only work with matrices 6x 6. The calculation of matrix inverse of
[I-A®P'], which is of 768x 768, is avoided. Therefore, we have saved
computbing time, storage, and have reduced round-off errors.significantly.

4.1%3
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Abstract

. . The paper deals with the application of Walsh functions to the tune-domam—synthes;s problem, i.e., the determination
of a shitable internal ‘structure for a system from its prescribed external (inputfoutput) behaviour. The method is
based on rt_apeated integration, and a new operational matrix, which relates Walsh functions and their integrations,

15 defined, Examples of transfer-function and state-equation synthesis are used to fllustrate the technique.

List of symbols
¢, () = Walsh function =
re(f) = Rademacher function L° . L
bybg-y = binary expression ofn - Of———— ey
(r) = an arbitrary function -
¢, = Walsh-series coefficient
fix = discrete value 6f f(f) at k VA
W = Walsh matrix =0
P(ux o) = operational matrix with:o x o dimensions ~ ~ - ° t i
*, = truncated Walsh vector with o elements '
m = order of operational matrix
»({¢) = output variable '
u(f) = input variable 4 y '
J; = input variable Walsh-series coefficients 50 4 2 K
¢ = output-variable Walsh-coefficient vector P 5] i 1
h = input-variable Walsh-coefficient vector
@' = rectangular matrix 2n X m
a = coeffictent vector to be deterinined
b = coefficient vector to be determined
Y{s) = Laplace transform of y{f) - . odh Bodh Be PR 19
U(s) = Laplace transform of u(z) =0 o {4 J'a % |'s |' |'a
- = [0101,...,6,,]' - ° t !
¥, = average value of x,
X, = average value of x,
ORIGINAL PAGE IS S ROFEORED
OF POOR QUALITY  -Sof 1l L 14 | | |5 4
1 Introduction . : “ LI I_J L L l_ =L I_ Ll

. Finding the simplest system that will realise a prescribed
Inputfoutput behaviour has been a fundamental problem In systems Fig, 1
theory since Guillemin’s time.! Only a few techniques are generally Rademacher functions
known, and they. including the one developed by Guillemin himself, '
are based on repeated differentiation and contain all the inherent 1
disadvantages involved theremn.>? 2 - -
In searching for a new direction, the question naturally anses: wh s 0
4 » the g y y 4
not use a principle based on integration mnstead? Walsh-function
theory,® when used in the solving of differential equations, 1s such-a
prnciple. Corrington® used this approach on the solution problem.
This paper proceeds in the inverse direction, attacking thé time-
domain-synthesis problem via Walsh functions.
Let us first briefly review Walsh func’nons
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In recent years, Walsh-function theory has been innovated
and applied to various fields in engineering and science.®* 7 The
original papers were published 1n 1922 and 1923 by Rademacher® and
Walsh,” respectively.

Rademacher’s function is a° set of square waves of unit height with
periodsequal to 1,4,4,4, ..., 29" respectively. The first four
square waves are shown in Fig. 1 It is noted that the set involves only
odd functions, and therefore it is not complete. In-1923, Waish inde-
pendently developed.a complete set-knovwn as Walsh functions. The
set of Walsh functions and the set of Rademacher functions have the
following relations:
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$u(8) = ro(9)

$1(1) = 1)

$:0 = {nOF HOYP

3:(8) = {r2 (1} (O

$a(0) = {HOF {0OF (n®Y
#s() = {r:(OF {(0}° (O}
#s(f) = {ra(OF O} r.@O)F

4y

¢ () = O O RO

En(®) = {rg @I {roo 1 (OF-1 {ro-a(}}Pe2. .. @
where

g = [logzn] +1 (€)]

in which [+ ] means “taking the greatest integer of’ . Therefore,
= bg2T b p 297 L5y 20 @

where byb,_; .. by is the binary expression of 1.

‘Therefore, if a particular Walsh function ¢,{#) 15 given and its
Rademacher function components are required, we simply change
into binary form and then substitute in eqn. 2. For example, to find
the Rademacher-function components of Walsh function ¢ (f),

q = [log; 10] +1
=4
1x22+0x22+1x2'+0x2°
t t t 1t
by bs by by
and therefore
P (@) = {ra@} I OF {n@OF n@)°

The Walsh functions, like the Rademacher functions, are casy to draw.

10

3 Walsh-coefficient determination

A function f(¢) that is absolutely integrable in [0, 1} may be
expanded into a Walsh series:

f(f) = co¢u(t)+c;¢|(t)+...+cnqb,,(t)+... (S)

where ¢, are coefficients of the Walsh series of £(f).
It is desirable to determine the coefficients ¢,, such that the
integral-square error sitisfies the following relation:

Jim_ [ 10— 2 cda@Pde = 0 ©

Multiplymg by ¢, () on both sides of eqn. 5 and then integrating each
term from O to 1, we obtain

ea = 1) 0.(AFD dt Q)
- This 18 because of the orthonormal property of Walsh functions.

Let us illustrate the Walsh-series expansion by the following simple
ramp-function example:

=1t
Substituting f(¢) into eqn. 7 and taking only four terms, we obtain
co = fo gty ede = %
er = [y () rdr = —}
e2 = [y o tat
cs = [y ¢ edr
After substituting these coefficients into eqn. 5, we have

t=1¢(®)—16:() —1 (D +0:(0)

il Il
<o |
o

31 Discreta formula

If the given function is not in its analytic form but in
tabulated-data or graphical form, and if its Walsh-series expansion Is
desired, we would modify eqns. 5 and 7 into discrete forms:

m=1

fi = Y, frntn £F=101,2,.,m—1 {5a)
n=0
m-1 1

€ = 2 oufh n=012.,m—1 (7a)
ke m

where f;, Is the average value of the function in question in the kth
subinterval, ¢y, 5, is the value of the #th Walsh function in the kth
subinterval, and m is the total number of subintervals.

To illustrate the use of a discrete formula, let us evaluate the Walsh
series again for the ramp function in its tabulated form. Given

klo 1 2 3
hlt 814

‘The corresponding graphical form is the ramp function.
Eqn. 7a in its expansion form for m = 4 is as follows:

o G0 fo1 Pm  Pos| |fol

€1 - $ du P d13 f %} ®
cz b0 P21 P P23 fa

des] | ¢ dm dn $m]| |3

Substituting the tabulated data of the ramp function into eqn. 8, we
have _ _ _
Co 1 1 1 1 3

¢y 1,1 —1 -1 3
e2 N R 1 =1 H x} (9a)
es] (1 -1 -1 1 |3
- .
3 ORIGINAL PAGE IS
=l OF POOR QUALITY (%)
0

The square matrix defined'in eqn. 8 and the numerical values shown
in eqn. 9 are easily recognised from the definition of Walsh functions.
It is seen that the Walsh' series of a unit ramp function obtained
from a discrete formula, or from egns. 9, and that obtained from the
analytic formula are, of course, the same.
Eqn. 8 can be written into a general compact form:

o= Wf;] (10)

where-W is called the Walsh matrix.

3.2 Operational matrix

In the preceding Section, we showed that the ramp function
can be expressed by a Walsh series, or

2 de()—3¢ (B —34:(0) (11)

However, a ramp function can be considered as the first integral of
a unit step function, or ¢, (f). Therefore, we write the following

fo
&
2

$3

The firstintegrat of ¢,(z) is a triangular function, and if we expand
the triangular-function into a Walsh series by using discrete formula
with m = 4, we have

Iedo()dx = [§,—4,~401 . (12)

Jo 91 dx = [, 0, 0,—4) (13)

Which is the four-term Walsh-series expansion of the ramp function. 7 /? 7 ¢s


http:0,1,2,.rn

Similarly, we can evaluate the Walsh-series coefficients of the first
integration of ¢, (¢} and ¢3(¢) and easily obtain .

@0
t &1
.ro ¢2(x)dx = {é) 0! 03 0] ¢ . (14)
2
Rel
and -
oo
: . . &1, _
So 6:(x)dx = [0; 4, 0, 0] {15
@2
Combining eqns. 12-15, we have
Foyax] [1 -1 4 o [ao)
Lt@a| |3 0 0 = [60 ©
Ledx| |8 0 0 o |60
fo#sax| [0 0 "0 |6
or in compact form
I3 () dx = Py sy ay(®) a7

Py x4y is called the operational matrix of dimension 4 which felates
Walsh functions and their integrals. It 1s chosen as a square matrix
for the reason of convenient calculation.
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Walsh functions and'thelr first integrals

By the use of eqn. 17, integration becomes multiplication, there-
fore, we consider P as an operational matrix.

If we drvided the unit [0, 1) into eight subintervals instead of four,
and evaluated [ ¢, dt, § $14dt, ..., | ¢7 dt by either an analytic method
or a discrete formulz, we would obtain a group of triangular waves as

shown in Fig. 3. Then we could expand the triangular waves into
Walsh functions, amvmg at the following formula

eodt] [ - =4 o—% 0 o o] [4]
Sede] 14 0 0 —&: 0—% 0 Of 14
fédt| {3 0 0 010 0 —% of |¢
fesar] o & 0 0,0 © 0 —&| e
—— =gl Q=——=—————- ---{ (18)
feadt] & 0 0 0, 0 0 O O (¢
[ ¢sdt 0 % o o: 0o 0 0 o0} |os
[ pedt 0 0 % 0: 0 ¢ 0 o |¢e
f¢:dz O 0 0 %1 0 O O 0 |¢]
which is
I;?(B)(x)dx = Paxaf@d) (182

It is interesting to note that the upper left corner of Py ) is exactly
P4 xq) In eqn. 17, the upper right corner and the lower corner are unit
matnices multiplied by —1; and 5, respectively, and the lower right
corner is simply 2 null matrix.

Following a similar reasoning hine, we can write a general expression
for the operational matrix # of order i (which is a positive integer
power of 2) as follows.

ER) ; ' ]
Tl
- )
=TI\ - !
oL 8 1,
| |- 2m(§)
Lo lop | ®
L A

This operational matrix will play an important role in the time-
domain-synthesis problems.

=

4 - Principle‘of transfer-function synthesis

Consider the foIIowmg differential equation:
Yy 4 g, yins Dy cpa ytapy= blu(" l)-I- R Y +b,,u
(20)
where ay,8;, ooy tty, b1, b2y ., by are unknowns while input u and
output y are given analytlcally or numenca]ly. Also, assume all mltlal
conditions are equal-to zero.
Infegrating both sides of eqn. 20 # times, we have

YO hay S yOdt+ gy o fy(O)dt

e e
n

. @
=by fou@ydt + ..+ b, [ .. fu(f)dr
n

Both given ¥ (¥} and u{#} may be expanded into Walsh senes. We write
Y = c'?(t) = coto Ty F 2 22)

u(t) = B'e(t) = hoto + iy ¥ haghyt ... (23)

As explaned 1n Section 3, the first integration of a Wa]sh function
may be expressed approximately by

and

Sy $)dx = P9 (249
Substituting eqns. 22, 23 and 24 into eqn. 21, we have
' I+aP+ra PP+ .. +a, P e
= B[0P+ byP2 + ... +5,P ] 9 (D) (@5)

Eqn. 25 must be satisfied for any valueof.r. Let us take, say, 2n
samples, at ¢y, £y, ..., t2,- We have
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S+ a\ P+ o, PP+ o0, P e (t) =R [B P + by PP+ .5, P 0(ty)
I+ a,P+a PP +..a, P (t;) =R [5, P+ b P+ ...+ 5, 19 (r;)

(."I_!"I‘ H|P+a2P2 +...ﬂ'n.P"]9(fgn) =h‘ [b]P+b1P2+...+ann]9(fzn)

(26)
We ¢an solve the 2 equations for the 21 unknowns @ and b. Then
let us define a matrix Gof 2n X m as

o (e) |

@! é 9' (t 2) , . 27
: ORIGINAL PAGETS &7
: OF POOR QUALITY]
9' (t 2n)

Eqn. 26 is then simplified to

a
(@' [—P'e,— P'%, ..,.— P"c,P'h ... P‘"h}}[b] = ¢'c (26d)

Performing inversions on the 24 x 21 mafrix in the {-}, we obtaina
and b:

3

[‘;] = {®'[-P'¢...—P"e,P'h .. P'""h] Y '0c (28)

Eqn. 28 is the basic formula to fit eqn. 20; if input/output behaviour

is given.

4.4 Illustrative example

Suppose the input to a system is a unit step and the output
data are as follows:

elo 4 3§ 1
7 |0 0632 086 095 0982

It is required to find the differential equation or the transfer function
of the system.
Let us average y (f) of each subinterval first.

kj o 1 2 3
e |0316 07485 09075 0966 .o

Applying the discrete formula shown in eqns 9 with iz = 4, we obtain

r:=W}'rl
m .

1 1 1 i] {osis 07345
|t 1 -1 1] jo74ss|t | —0-20225
11 -1 1 —1]| loso7s | —012275

1 -1 =1° 1} [0966 —00935

Suppose the linedr system is defined as -
y+ay = bu
u={1,0,0,0] {0

and chooset; =% and £, =#. Then
NENEEE
¥ @) 1 1 -1 -1
Applying eqn. 28 with P deﬁnt;d in eqn. 16 yields
o 348
- L

The required differential equation is therefore .
(29

y+348y = 3-63u
or the required transfer function is
Y(s) _ 363
UG)  s+348 (290)

For the same problem, if we took more samples we would obtain a
bétter result. To demonstrate this statement, let.us take nine samples

tlo 4 ¢ ¢+ 8 4 & 3 1
»(®)| 0 0394 0632 0789 0865 0918 0950 0970 0982
Vi | 01197 0513 0710 0-826 0889 0934 0960 0-976

Using eqn. 9 again with m = 8, we have

¢ = Wy} = $[6-:063,—1-511,~0-941, —0-711, —0495,

~0-369, —0-231, —0-169]
choosing #; = 13/16 and £, = 15/16, we find
L4503 l1-1-11 1-1-1 1
o= [r'({é)] N [1 -1 -1 1-1 1 1 ml:'

Applying eqn 28 with P = F , 5y, we finally obfain

a 39287759

u - L-gmsssJ
Therefore the differential equation of the system is *

. y+39287759y = 39243553u

When we took five samples, the differential equation fitted was
eqn. 29; for nine samples, we obtain eqn. 30. The umt step response
is actually taken from the following system:

F4+4dy = du

(30)

It is interesting to note that the result obtained by the five-point
approach is acceptable, and that by the nine-point approach is quite
satisfactory. '

5 Principle of state-equation synthesis

Suppose we are interested in realising the following system:

X = Ax @n
from a set of zerc-input response data x(#;),i=0, 1, ..., m.
First of all, we expand-=x(r) into a Walsh senies with a2 terms
€ do
|e ¢
=" | | =ce0 (62)
Cn Brm-1

where Cis ann X m matrix; (), anm x 1 vector.
Integrating both sides of eqn. 31 and using the expression of egn. 32
and the operational matrix P, we have

SEE00EN = AT x(0dN = ACT 2NN (33)
x(t) —x(0)= ACP%(®)
Co(H) — [x(0), 0, .., 0] 9() = ACPR(D (33q)
Eqn. 334 must hold for any value of ¢. Let us take z samples.
Define
®L [9(11), 2(t2) - 2(e)] €2
{€—[%(0),0,0,...0]}® = ACPO® (35)
Then the system matrix A4 can be evaluated by
A = {€—[x(0),0,0, .., 0] }o {CP®}™ (36)

5.1 I'Ilustrative axanpla
A zero-input-response of a system is tabulated as follows:.
t () x() *, *,
0 1 -1
1 07545 —oodoa —oor72 09737
06433 —08852

4 045321 =08231
% 03454 —06676 04388 —0-7453

e 02720 —0-5879
1 01985 —0-0508 -




Using the discrete formula, we find

o1 1 1|[osr]  [223153
_ 1 I 1 —1 —1{| 06433 0-809797
P xi= x3
m {1 —1 1 —if| 04388 0-4007092
1 -1 —1 1] | 02720 (00671214
o1 1 1} [—08737] [—3-192311
- -1 {1 1 —1 —1]|—08852 —{-525631
ey = Wx3_= X & =
m 1 =1 1 —1{{—0-7453 —0-2458685
11 -1 =1 1]]|—05879; | 00689903
1 1
-1
Let = [*(}), *@)] = )
1 1
The initial conditions are given as
-1
x(0) =
-1
We use Py y 4y formula, or
biAr4 o
» 1 E 0, 0 —%
@x» 711" o) 0 0
o 4, 0 0
Substituting C, x(0), P and ¢ into eqn: 36, we have
(€~ [x(0), 0,0 0]}0' 4 —04908416 ~-2-911856
b x 3 ¥ ] =
l 0-1051796 1:6481788
3-5091584 16-764101
CPo = b4
—3-8948204 —23-186666
Therefore
_ —0-4908416 —2:911854 35091584  16-764101]7!
0:1051796  1-6481788 | |—3-8943204 —23-186666
00198261 09903525
= (BT
—1-9962949 —2:0061511
The samples actually are taken from the zero-input response of a
system
X = Ax
where
A4 ¢ 1 (38)
v_ﬁz —

Comparing eqn. 37 with eqn. 38, we see the power of the method.

6 Laboratory test

The common excitations usuaily used in a laboratory are
neither umt-step-input nor initial conditions, but rather gate functions.
When'the input is a given gate function and the output is measured, 1t
is desired to find the transfer function of the system. The classical
approaches for the domain synthesis are not easily apphed. The new
Walsh-function method, however, can fit the transfer function as usual.
The following example will demonstrate the procedure and thé aceu-
rate results.

Suppose a gate function 1s applied to a linear system, and the out-
put is recorded as follows.

t 0 3 3 3 1
y» o 0245 0222 0-1867 0-1469
i 01225 02335 020435 0-1668

The gate input is defined as
1 or 05r<y
u(f) =
(U] elsewhere
Using a discrete formula, we can find the Walsh senes for the output.

yHzc'e = [eo,c1,02,03]9

o' = Wy— = 1[0-72715,—0-01515, —0-07345, —0-14855]

B

X ““, The Walsh-series expansion for the gate input can be easily shown as

uld) = [4.4.4.41 ¢ =‘fz'9
B = 401,1,1,1]

Using operational matrix P, we can find the first and second integrations
of p(7) and u (). For a second-order system, theze are four unknowns,
two as and two bs, and m = 4 for five discrete data. Therefore

T o1 1 q
1 1 -1 -1

o= W=

i 1 -1 1 -1
1 -t -1 1

Substituting ¢, &, P and ¢ we obtain

-

That means the system may be approximately described as
¥+ 1-8173251 y + 1-8531946 y ‘= 1-0107953 i -+ 1-7734002 u

1-8173251
18531946
1-01079353
1-7734002

To obtain better results, we may take more data, say 17 points as
follows:

t 0 % 4 i i & 1 % 4
(/) 0 00624 0-1244 0-1855 0245 0241 0236 0230 0222

t % & # i £ 3 # 1
y(® 0214 0205 0:1962 0-1866 0-1768 01669 0-1569 0-1469

And choose ¢, = 25/32, t; = 27[32,t; = 29{32, t; = 31/32, namely

¥(25/32)
o' Y@132)| _
v(9/32)| .
?'(31/32)
T -1 =1 1 1 —1-—=1 1 1 =~1-1 } 1—-1-1 1
I -1 1 1—=1—-1 t=1 1 t=1-1 1 1-1
i1 =11 1 1=1 1-1-1 1-11 1=t
1 -1 —11-1 1 1 —F—=1 1 1—-1 1=1-1 1
Then we obtain
2050781
a 2039063
b 0-9930469
2:042969

y + 2050781 7 +2:039063 y = 0-9980469 it + 2 041969 u
The actual system is
pE2p+2y = g+ 2

7 Conclusions

A new time-domain synthesis method based on the Walsh
functions has been established. With zero-state response given and the

3. 200



transfer function of the system desired, by using the Walsh-function
preiple, we derived eqn. 28 to {it the transfer function. On the other
hand, with zero-mput response given and the state equation desired,

- we derived eqgn. 36 to fit. Three examples are included for illustration.

If the order of the transfer function assumed is too high, the inverse
of eqn. 28 daes not exist. Then we can decrease the order and solve the
problem again. Similarly, if the dimension of the state equation 15
assumed too high initially, the inversion of the matrix i eqn. 36 does
not exist, and we should lower the dimension.

If what we fitted is a high-order transfer function and what we want
is a lower order one, then we face a new problem, namely, the model
reduction problem. The first author has suggested continued-fraction
methods to solve this problem effectively.

It is seen that the Walsh-function approach belongs to the school
of least-squares identification. In general, however, least-squares
identification is to use orthogonai polynomials or

Zo O V@

C.i:n__ i= 1,---,m
o VLG
where ¢/ (#) is an orthogonal polynomial, and C; and f'(£) are coefficients
and the given data, respectively, as defined before.
The advantages of the Walsh-function approach are apparent:

(a) 1t is still least-squares 1dentification, (&) the denominator becomes
1, because Walsh functions are not only orthogonal, but also orthonor-
mal, (¢} the fast Walsh algorithm®!* *2 is available.
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1. INTRODUCTION
It is well known[1-4] that optimizing the linear plant

£=Ax+Bu : M
for a quadratic performance index
J= % ,L (17Qx +4™Ru)dt ' @)

where Q and R are symmetri'c matrices, we obtain the following optital control law: ]

w@)=-R"B(@) ©)

where qé(t) is the vector related to x(t) by

114 -5

in which C = BR™B7, sibject to the boundary conditions:
x(0)=xo ()
z ' ¢(=)=0 6

Solving (4) and then substituting the result into (3), the optimal control will be found.
An alternative consideration is to use the following linear transformation;

¢ =Ex . - M
Substituting (7) into (4), . we arrive at

= gBR"B"‘P = (P4 + T};)—Q (8)

-~

w

which s called the matrix Riccati Equation. Solving for P and then substituting it into (3)-(7), we
will obtain the same control law, of course.

2. DIFFICULTIES IN OBTAINING SOLUTIONS

In soIvmg (8) if the dimension of the equation is high, to expand it into a set of s1multaneous
differential equatioris is by no means an easy task. Considering the difficuities involved in it, many
pioneers use (4) directly. MacFarlane[5] and Potter[6] use the eigenvector solution, while
Vaughan[7] offers a negative exponential solution. Fath[8] establishesa procedure which involvesa
particular decoupling matrix, etc.

. ?,;a 3
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The technique established in this paper is to obtaina set of simultaneous component equations of
(8) by a digital computer with the original symbols preserved.

3. STATEMENT OF THE EXPANSION PROBLEM

In the matrix Riccati Equation (8), the matrices 4, B, Q and R are constant matrices;
dimensionally they are n Xn, n Xm, n Xn and m X m matrices respectively; P is an nxn
matrix. Also, P, Q and B are symmetrical matrices.

Let us regroup eqn (8) first,

B=(BER"E'D)-(B4+47D)-Q e

Because B and R are given, we simplify (8a) again
E=(2CP)-(B4A+A'P)-Q (8b)

where

C='=

uby

—lBT . - ‘ (9)

™ r
- -

as we defined before.
C is still an n X n symmetrical matrix.
Then arrange the elements of P into a vector g suc_:h that -

o P"L':[PII:P12:P13-""PIAHJPZ_I?)-?ZES""'Pﬂ‘!s“;‘?ﬂflr

Also, organize another vector £ to express the quadratic elements

_15" =[PP, PitPrz,. . -PllP{n- «. PPy, Pi2P12,
PIZPIS;----PIZPIH,---Plzpm,aooop(n—l)n
'P(u-l);uP(n—I)HPM’PMPJ;::']T-

For matrix (), we arrange it info a vector such that

4 =[Q1, Q2 Quzs ... Qi Q2; Qs, - .. Qin-vom, Qn:;’]T-!

It is desired to change the matrix Ricatti Equation (8b) into the following set of simultaneous
eomponent differential equations
F=Qp-gp -4 (10)
The problem is to find  and a. ‘
. Thedimension of the vector § or p is n(n +1){2 and that of E is[n(n+1)(n*+n+2)/8]- ¢ is
an [n(n + 142] x [n(n + 1f2] square matrix while Qisa rectangular matrix with dimensions

n(n ‘+1)xn(n +)(n*+n+2
2 8 -

4. SIMPLE EXAMPLE FOR THE EXPANSION

To -illustrate the notations in (10), we give a simple example as follows:
Werewrite ® . . - - ’

E=PCE-(PA+A"P)-Q. (8a)
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Consider that the order of the equation:is two. The equation becomes

[Pu Ptz]_[Pu P:z] [c.. cu] [Pu 13.2]
Pu Punl tPu PzllCe CullPi: Pz

o PR it B ol | ] L

Expanding (11),.and arranging it into component equations, we have

Pul |Cu 2C 0 Cn 0 0 PPy |
P10 Cu Ci2 Cu Can 0 PPy
Pul |0 0 0 Cu 2Cn Cnl| |PuPa
) PPy |,
PuPzz
PnPp

24, 2Ax o . Pu JQn
—lArz An+An Axn 2| —|Qu|
0 2Au 2An]|, | P2}, 2

u 202 0 C2 0 0
C0=10 Cu C Ca Caz 0
: 2

0 0 ¢ Cu 2C12 C

In this example

and

{240 2Axn 0
g = Ar An+An Axn

0 2A:2 242

195
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(12)

(13)

(14

The example is the simplest problem of its kind because the dimension is two. Even 50, we can
see the complication of its Q and its a. When the dimension increases to a higher order, to find the

g and q matrices is extremely difficult.

This paper attempts to establish two sets of rules for writing  and a. Of course, they must

constitute a computer oriented:procedure.

5. RULES FOR FINDING a

In egn (10), we defined o as an n(n +1)/2 square matrix. This matrix coincides with the
Liapunov function matrix. In a previous paper[10}, an algorithm was developed-for expanding
the Liapunov matrix. After slight modification, that algorithm can be directly used for finding o_z.'

We use (K, L} and (I, J) as the row and column subscripted indices respectively. The
following formula should be followed when forming the o matrix directly from the é matrix.

O fK=IL#J, AL, 1)
if K#1, L=J, >AK, I)

(2) ifK#£I L£17,
K=J, LI »A(L, D)
K#LL=1I-AK, I)- "
K#L L#I'-0 -

@ : ifK=LL=J ‘
{K=J,L=I—+A(K,D

K#K, L#FI > AKX, D+ AL, 1)

prres
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(4) After the first three steps have been considered if T=J
all elements at row I should be multiplied by 2.

If the A is a 3 X3 matrix following the rules shown above, we will have a as follows:

K-L

i-1 1-2 1-3 2-2 2-3 3-3

1-1 24u- 2Ax 2Aa 0 0 0

I-J 1-2 Az Au+tAz Az Az Az 0
1-3 A Az AntAs 0 Az Asi

2-2 0 2412 ¢ 242 245 0
2-3 0 A Agp An  AntAs Az
3-3 0 0 2A1 0 2Ax 243

where Ay are defined by
"[Au An A
A = AZI Azz A23
= A Az Asnf

Here the subscripted index K —~ L and I —J are the comparing indices. Each element in the
table can be directly written by inspection. For Example, if we want to find the element Z

K-L
Z=17

I-r

we examine
NDEK=IL#I then Z=A(L,J)
Dif K£IL L#J, and K#J, L# I then Z =0.

6. RULES FOR FINDING &

Matrix .Q. can be found in a similar way; however, because _ff is a much higher dimension
vector, the rules for finding {} are lengthier than those for finding o.
Examine (10) again; we only consider the first term of the right hand side this time.

For convenience and clarity, we write- the elements of _5' horizontally and still write j
vertically. Namely, the arrangement is as follows

PyPy, PuPy PyPs.....

I:’ll
Py
PIJ

Then we write the subscripts symbolically

P(K,L)P(M,N)
Y=1

P(LT)

The value of Y is found by two steps.
(1) Organize a subindices matrix

[ 2]
¢ 264
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first by following the rules indicated. below:

®

(i1)

i I#K,
I#M,

if J#K,
J# M,

The element Y is found by

ii I=K,

I=L,
I=M
I=N

if J=K,

J=L
J=M
J=N

I#L

I#L

J#£L,
J#N,

N
=M
Then a=0

b=0

c=0
d=

4

Y=C(a,d)+C(b,c)

subject to the following two conditions:
@) if a, b, ¢ or d equal to zero, the corresponding C term is equal to zero.

@) ifK=ML=N
Then

How to use these rules can be illustrated by the Tollowing 3 X3 example.

Y

_Cla,d)+ Cb,¢)

2
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K —LYM—-XN
PaPa PuPu PuPa PuPn PuPs PuPn PuPu PuPy PuPu PuPa (P.,P,.xp..m, ,.Pupu PuPss PuPns PuPn PuPu PuPy PuPu PuPs PuPs
Pu € 20 20n Ca 20s Ca
P Cu Ca Co C: Cs Cn € Ca ©On
B Cu Cu Co cu Ca €n o €s Cn
1-J
Pa Cn e W ] C: 0» Cu
Pu Cn Ca Ca Cu Cu Ca Can C€n ©Cn
Py ’ Cu Cn  1Cn €n 2n On

written.

. 7. COMPUTER PROGRAM
Based on the rules for finding the component equations, a computer program has been

The part of the expansion of the PA +A"P matrix is written as a subroutine called

SUBROUTINE PA.

The part of the expansion of PCP is written as a subroutine called SUBROUTINE PRP.
The main program is to use the Runge Kutta four step-formula to carry, out of the evaluation
of E Of course,the negative time increment is used. When the steady state values of the
components of E vector have been reached, we use only those values to substitute into eqn (3)
and (7). The optimal gains are obtained.

#4227
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The details-of preparing the input cards can be summarized as follows
N—dimension of x
M—dimension-of R
NM—points of solutions of Runge Kutta Program
TN—starting time
DELT—time increment (negative values should be.used)

Then the following cards are the row elements of matrices 4, Ig, Q, R. The last card is for PIN
which means the initial values of the Runge Kutta Program, or the final values of ¢ ().

_ 8 ILLUSTRATIVE EXAMPLES

C_[0 AT TO.
£=o —1]’5+[1["

and for the quadratic performance index

L2 0yt
J_ZJ; (qc_ [0 2]35+u (2)u)d_t

For the given plant

the input data cards read
N =2,M =1, NN = 100, TN =0, DELT = -0.05.

The P matrix is found from the computer output,

-[i 1]

When the order of the plant is higher, we can see the advantages of using the program. The
following example will demonstrate the point. ’
A plant is given as follows

|

{01000 0
00100 0
A=[0 0010 B=|0
"o 00 0.1 0
00000 1

Following Fuller[11), we formulate the plant matrices A and. B as shown. As far as the state
feedback design problems are concerned, the example form is a very general one. Then we
assigned the constants of Q and R as foliows: -

1 6 o 0 .0
¢ 61 0 0 0

¢=lo o0 o001 0. 0 R=1

{0 0 0 0001 0 PIN = nulimatrix5 X 5.
© 0 0, 0 00001 . -

The input card should be'punclied as follows
N=5,M=1,NN =200, TN =0, DELT = - 0.05.

 F.2ex
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The resuit obtained is:

3219 5152 5128 3185 0.996

11592 13482 9338 3218
P= 17597 13463 517 ORICINAL, PAGE ISi
’ 11497 5.168 OF POOR QUALITY
(Symmetry) - 3209 b
CONCLUSIONS

A new technigque for expanding the matrix Riccati equation is established: From the given
equation of the problem, groups of rules are formulated and based on theserules acomputer program
is written. It makes various well known numericalmethods directlyapplicable to the problem.
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SOLUTIGN 70 RICCATI EQUATIONS
P(DOT)=—PrA=A{ TRANSPOSE ) ¥P—C+P#B#R{ INVERSL I'#B [ TRANSPOSE ) &P
NeN DIMENSION OF & OGR Q@ DR P OR PIN HATRIX
N#*M DIMENSION OF B MATRIX, HM=M DIMENSION OF R MATRIX
NNess NO. OF PLOT PRINTS. THeos STARTING TIME
MAIN PROGRAM BEGINS HERE
OIMENSION PNUS55),4P(55),00(55,5],PD0T{55),A(10,10),68(10,101,
IR{10:10),Q(L0+10)sPP(55),CL10,10),PPL{55),QQQ(55) +R&L{10,10),
ZPIN{10:10})4PP2{55})sD(20510)sE{10,10)
1000 READ(S,500) N, My AN, TN, DELT
500 FORMATI315,2F10.3)
WRITE (62600} NeM NN, TN,DELT )
600 FORMAT{4HNaessT396H MewerI3sTH HNNowosI3,7H TNu..:Fl6.5,
19H DELT...:F16.6}
WRITE {65610}
610 FORMAT{//22HA«.N¥N SYSTEM MATRIX/)
DO 10 I=1sN
READIS5,510) {A{Y,J)sJd=1,N}
10 MRITEL6,631) [A{IsJ}.d=14N)
510 FDRMAT(4F20.6)
WRITE{b65611)
611 FORMAT(//21HB.. N&H  INPUT HATRIX/)
00 11 I=14N
READ{5,510) (B(ls+J}sd=1yl}
11 WRITE(6:+43L1) IB{I,d)4J= 1M}
HRITE(&,5612)
612 FORMATI//25HQ .. NEN SYMWETQIC MATRIX/S )
DO 12 I=1,N
READIS5,510) [QLIad}d=14N)

12 MRITE(646317 {QUI,+J),J=1,N)
HRITE{6,613)
613 FORMATUI//25HR...M&H  SYMMETRIC HATRIXI)
DO 13 I=i,.M
READ{S4510) (R(I,J):Jd=1,0)
13 HRITE(6,631) (RIIyJ)sd=],M)
WRITE{6,614})
614 FORMAT(//35HPIN...N¥N INITIAL SYMMCTRIGC MATRIX/)
DO 14 I=I.«N
READS,510) {PINI(LIsd)sJ=1,N)
14 HRITEL6,631) [PIN{I,J) J=1,N)

$.209
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NR=Nz{N+1}/2
LL=0
DO 20 K=1,N
DO 20 J=K,N
LL=LL+1
PNILLI=PIN({K,J)
20 QQQILLY=Q{K,J)
IF {M.6T.1) 60 7D 21
RU1s1ImL /R LI, 1)
60 TO 22
21 CALL INVER (R,MyRR,0,DET}
22 CALL MALTPIN,M,;B,M, R,C)
00 150 K=1,n
00 150 J=1+H4
150 £(J,K}=BIK,J}
CALL MALYP{N,M:C,N,E,D}
NNP=0
DO 30 I=1,NR
30 POOT(1)=0.
WRITE(64630)
630 FURMATI/?X.lHT.12x,2HP1,llx,ZHPz.llx'ZHPs,le,zﬂPﬁ.llx'ZHPS,llx,
12HP&: 11X 2HPT)
HRITE(6:631) TN {PN{1),)=1,NR}
631 FORMAT{1X,9E13.5}
1 L=l -
T=TN
DO 40 K=14NR
40 P{KI=PNI{K)
G0 TO 101
100 D0 50 K=1,NR
50 -QQ(K;L}=DELT*PDOTIK) -
T=TN+DELT/2.
DO 60 K=1,AR
60 P{KI=PN{K)+QO{K,L)/2.
L=2
60.70 101 |
200 DO 70 K=1,NR
70 QQiK,L)=DELT#PDOTIK}
T=TH+DELT/2.
DO 80 K=1,NR
80 PIK)=PN{K)I+QQ(K,L¥/2.
L=3. - N
€0 YO 101
300 DO 90 K=1,NR )
90 QC(KsL)=DELT&PDOT{K)
T=TN+DELT
D0, 110 K=1,NR
110 PLKI=PNIK}+OG(K,L}
L=4
GO TO 101
400 DO 120 K=1yNR
120 QQIK,L)=DELT#PLOTIK)
., 60 T0 7 .
101 CONTINUE i
CALL PA [N;A;NR,P,PP1})
KL=0 .
Jd=0 )
HN=D
D0 130 K7=1,N
DO 130 L7=K7sN
KL=XL+1 -
LN=LT
D0 131 M7=K7iN
DO 13} NT=LN,N
HN=MN+1 | -
JI=d2+1 . .
. IF INT.EQ.N) EN=M74Y
131 PPLJJI=PLIKLISPIMN]
130 MN=KL .
CALL PRPIN;D:NR, PP, PP2)
DO 160 K=1,NR .
160 PDOT{K)=PPZ2{K)-PPLIK}~QQQIK]
GO TU'{}OO,zoo,BOD.GOOJ,L
7 TN=TN+DELT
DO 170 K=1,NR .
170 PRIRI=PNIR)+11/6, 1% (QO1Ky1 1+ 2.5QQUK, 21 +2.%QQ(K, 3) 400K, 4) )
HRITE(S5,4631) TN [PN{K),Ksl,NR) .
ANP=NNP+1
IF (NNP.GT.NN) GO TO Loog
G071 -
END -

SUBROUTINE INVER [A,N.sBsM,DET)
DIMENSION A{10+10),B{10+10),IPVOT(10), INDEX{16,2],PIVOTLL0)
EQUIVALENCE (IROW,JROW);(ICOL,JCOL)

57 DEI=l.
4.210

DO A7 J=14N
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17

12

43
83

73

12

33

109

205
66
52

347

21
B9
18
68

134

135
222

19

549
3
81

21
22
23

24

A techniquefor expanding the matrix Riccati Equation

1PVOT{J)=0

DO 135 I=1.N

T=0.

DR 9 J=1,.N

IECIPVOTIJ)}=1) 13,9413

DO 23 K=L.N

IF{IPYOT{K)-1} 43,23,81

IF (ABSITI-ABS{A{J,K))} 83,23,23

1RDH=J

ICoL=K

T=ALJ4K)

CONTINVE

CONTIRKUE .
feVOTLICOL)=IPVOTIICOL) +1

IF[IRCHW-ICOL) 73,109,73

DET=—DET

DO 12 L=14N

T=A{IROU,L)

A(IROM,L)=A{IGCCL,L}

ALICOL,L)}=T

IF{M) 109:109,33

DD 2 L=1.M

T=BlIROW: L}
BLIROW,L)=811COL,L}
BOICOL,L)=T
INDEX(I,1)=IR0OW
INDEX{I,2)=ICOL
PIVOT{I}=ALICOL,ICOL]}
DET=DET»PIVOTII}
A(ICOL,ICOL)=1.

DO 205 L=14N
AIICOL,L)=A(ICOL,L}/PIVOT{I]
IF{M) 347,347,606

DO 52 L=1.HM
B{ICOL,L}=8(ICOL,L)/PIVOTII}
DD 134 LI=1,N

IF (LI-1COL) 21:134,21
T=A(LI,1COL)

A(LI,ICQL)=0.

DD 89 L=14N .
ALY, L)=A(LT,L}-A(TICOL,L)%T
IFIHM] 134,134,418

DD 68 L=1.,M

BILT, L)=B{LI,L}-B{ICCL,L)*T
CONTINUE

CONT I NUE

DO 3 I=1.N

L=N-1+1
TF(INDEX{L,1)-INDEX{L,2)) 1943,19
JROW=INDEX(L.1}
JCOL=INDEX{L, 2]

DD 549 K=1,N

T=A (K JROW)
ACKyJROWI=ALK; JCOL)
Af{K,JCOL)=T

CONT I NUE

CONTLNUE

RETURN

END

SUBRDUTINE PA(N,A;NT X4PPL)
DIMENSION A(10,10)4X{55),PPEIS5),P[1 ,55}
M=l .

KK=0

‘D0 10 I=1.N

DO 10 J=I.N

H¥sKK+1

LK=0

DO 20 K=1,N

D0 20 L=K,N

LEsLM+]

IfF (K.EQ.I1.AND.L.NE.J) GO TO 21
IF {KuNE.I.AND.L.EQ.J} GC TO 22

IT (K NE.I.AND.L.NE.J.AND.K.EQ.J.AND.L.NE. I} GO 7O 23
IF {KoeNEsI.ANDoLoNEaJ o ANDWKNE.JLAND.L.EQ.T) GO YO 24
IF (KoNE.T.ANDLL.NE.J+AND.K.NE.J-AND.L.NE. 1) GO TO 25
IF (KoEQel.AND.L,EQ.J.AND.K.EQ.J.ANDLLLEQ.E) GO TO 26
IF [(KeEQuToAND L EQeJ e ANDKoNEJJ+ANDAL.NELI) GO TD 27

PN, LR)=A{L J)

IF {1.EQ.d) P{M,LMI=2.%P({M,LH])
G0 TO 20

PIM LHI=AIK,T)

If (L.EQ.J) P(MLMI=2 2PIM, LK)
GO0 TO 20

PIM,LM}=A(L, 1)

IF (14EQud) PIM,LM)=2.%P{M, LM}
G& TO 20

P{MsLMI=A(K, )

m
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25
26

27
20

31
10

41

31
30

51

21
20
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IF (1.EQ.Jd) P{M;LMI=2.%P[H,LN]
6O TO 20

P (M LMI=0,

G0 To 20

PIMsLMI=ALK, I}

IF [1.EQ.J) P{H;LM)=2,%P{H,LH)
60 TD 20
PLHyLEI=A(K, 1) +ALL, I}

IF (1.EQ.J} PIMsLMI=2,%P(N,LM)
CONTINUE

5=0, *

D0 31 JJ=1,NI
S=P(Hy0J)4X{JSI1+S

PPL{KK}=§

CONT INUE

RETURN

END

SUSROUTINE PRPINN, PBRBP,NR, PP,PP2)
DIKENSION HIL , 770)sKN[2,2),PBRBPI10,10},PP(55),PP2{55}
NC=NNX[NN+1} % [RN3=2+NN+2)/8

11=1

KK=0

Jd=0

DO 20 I=1,NN

DO 21 J=1,NN

KK=KK+1

DO 30 K=1,AN

DO 31 E=K,NN

LR=L

DO 40 M=K NN

DO 41 N=LNyNN

JI=43+]

IF {1.EQ.K} KN{1,1}=L

IF [T.EQ.L} KNIl ,1)=K"

IF (1.EQ.H) KN{1,2}uN

IF (1.EQ.N) KN{1,2}=M.

IF (J.EQ.K) KN{2,1)=L

IF (J.EQ.L) KN{2,1)=K

IF {J.EQ.M) KN(2,2)=N

IF {J.EQ.N} AN(24+2)=H

IF (I.NE.K ANDJ.I.NE.L) KN{l,1l}=0

IF {T.NE.M.AND.T.NELN) KNCL,2}=0

IE (JJNE.K.AND.J.NELL) KN(2,1)=0

IF {JNE«M,ANDLJLNELNY KNE2,2)}=0

IF({KNT), 1)EQ.0.OR.KNI2,2).EQ.0) o ANDLKN(142) . NE.O.AND.KN{2,1}.NE.
14) HITI,JJ}=PBRBP(KN(L1,2),KNI[2,1)} -
TF{{KN(1:2).EQ.0.0R.KNI2,1).8EQ,0) JANDJKN{1,1).NE.O.AND.KN(2,2) .NE,
10) AlifsdJ)=PBROP{KK{1+2) JRN{2,2})
IFUEKNT{Ey1)2EQ.0.ORLKNI2+2} JEQ.Q) . AND. (KNL152).EQ.0.0R.KM{241).
IEQ.01) H(IT,JJ}=0.

IF (KN{Ly1}.NE.OLAND.KN{2:2)4NELOLAND. KNI 122} NE.O.AND.KNL2,1).
INELO) HIII,JJI=PBRBPIKNIL L1}, KN{2,:2))+PBRABP (KN{1,2},KN{2;1))
IF (KJEQuM.ANDLSEQ.N)} RIII,J)¥=H{IIJ4)/2.

IF {N.EQ.NN) LN=M+1

CONTINUE

CONTINUE

CONTIKUE

CONTINUE

JJ=0

$=0.

DC 51 LL=1,NC

S=H{IT,LLI%PPILL)+S

PP2(KK)=5

GONT INUE

CONTINUE

RETURN

END

SUBROUTINE MALTP([N7MsA,L,8,C)
DIMENSTON A{10,10},B(10+20),C[L0,10)
DO 10 I=I,N

D0 10 J=1,L

5=0.

DO 10 K=1,M

S=S+A(I:K)3B(K,J)

ClIsd)=8§

RETURN

EMD
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Project

Project Title: On the Stability of Poiseuille Pipe Flow

Project Abstract:

The problem of the stability of Poiseuille pipe flow
was studied numerically. The finite~difference equations
which were solved are approximations to the nonlinear,
axisymmetric, Navier-Stokes equations in cylindrical co-
ordinates subject to a stream function perturbation. The
disturbance to the stream function which was used is
axisymmetric,‘oacillaﬁory and fixed in space. The result-
ing solutions shoy the experimentally observed instability
of. the stream function and vorticity at Reynolds numbers
of 10,000 .and 10Q,000. The experimentally obsexved sta-
bility at a Reynolds number of 1,000 is also found.

Pub}icatibnr Ph.D..Dissertation in Mechanical .Engineering

Year: ;969

Department: .Mechanical Engineering

Stu@ent Names- Henry JohnstQn Croéwder’

" Faculty Advisor; .Prof. Charles Dalton




{KY

(B)

Project

Project Title: The Fluid Resistance of Shrouded and

Unshrounded Circular Cylinders in an
Oscillatory Flow

Project Abstract:

This investigation concerns itself with the measure-
ment of a strain-gage signal responding to a sinusidal
variation of tension and compression brought aboﬁt by a
circular cylinder osgillating with simple harmonic motion
in a tank of water, 6thefwise at rest. The strain-gage
is transformed into the fluid resistance acting on cir-
cular cylinders.

A series of plots of force coefficient versus Reynolds
Numbeér were developed té_gain a better understanding of
the phenomenon. The experimental appardtus is analogous
to the distribution of wave forces present on a single
fixed leg of an offshore structure.

The fundamental -variables involved were thé diameter
of the cylinder (0.625~, 1,0, 1l.5-inch) and amplitude and
speed .of oscillation, one- to six-inches and 10 to 0.60
rpm, respectively.

The effects on the fluid resistance acting on the two
smaller cylinders enclosed in a concentric perforated

shroud of the same outside diameter as the largest cylinder
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were determined relative to the fluid resistance acting
on the largest unshrouded cylinder. The effects of the
shroud were investigated to-ascertain the feasibility
of reducing wave forces on the structural members of an
offshore platform.

Publication: M.8. Thesis in Mechanical Engineering

Year: 1973

Department: Mechanical Engineering

Student Name: John P. Hunt

Faculty Advisor:; Prof. Charles Dalton
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" Project

(A) Project Title: Model Investigation: Effects of a Reef

on Oceagn Waves

(B) Project Abstract:

An obstruction in the path of a water wave will change
the profile, energy and forces of the wave. In some case
it is difficult to tell exactly what effect a particular
geometry will have. A model was constructed for use in a
wave tank to investigate a section of the flower gardens
for a possible site of an offshore platform. A series of
waves varying in height and period were used. It was
foﬁnd that the reef increased the wave forﬁes dune to in-
creased mass transpoxt and shoaling. The decision was
made to choose a different location. —

(C) Publicatien: M.S. Thesis in Mechanical Engineering

(D) Year:; 1973

(E) Department; Mechanical Engineering

(F) Student Name; Paul G. Johnson

(G) Faculty Advisor: Prof. Charles Dalton




Project -

(A) Project Title: A Four-Equation Model for Numerical

Solution of the Turbulent Boundary Layer

(B) Project Abstract:

In this study, a. four-equation model of turbulence is
presented in order to solve the steady, incompressible two
~dimengional turbulent boundary layey flow field. Those
four equations are the continuity, momentum, turbulent
kinetic energy, and the réte of dissipation equations.

The solution ig obtained in termg of the mean vayxiables
of -the flow field.

Closure is obtained by assuming for each equation that
all those terms containing fluctuating quantities are some-
how related to the mean variables of the mean flow field.

A new tw-layer eédy viscosity model is used. Near the

wgll, the eddy viscosity ls assumed to be proportional to

"the ‘second power of .the vertical .coordinate; For the outer

layer, it.is assumed that it is propdrtional to the ratio
of the sgquare of the-turbulent kinetic.energy to ‘the rate of
dissipation.

The model was solved numerically by a finite-diffexence
technigue, using a variables mesh system in order to have
small ‘increments near the wall. An implicit numerical pro-

cedure was used in order to speed the computation in the

ﬁ.:&/g
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downstream direction.

The model was applied to the computation of the in-
compressible turbulent boundary layer over a flat plate,
and agreement with the Wieghardt data is excellent. Three
cases with varying pressure gradients are also computed;
they are based on the Ludwieg and Tilmann data. Those
three cages were chosen because they are for boundary layers
on flat surfaces with different pressure gradienté, mild
adverse, strong adverse, and favorable pressure gradient
flow-:

The calculation procedure requires that starting pro-
files be known for u, g, and D. These starting profiles
are obtained from Ludwieg and:Tilmann. "The eddy viscosity
model at.a given station in the outer region is based on
the calculated values of g and D at the previous station.

Publication: Ph,D. Dissertation in Mechanical Engineering- .

Year; 1974

Department: Mechanical Engineering

Student Name; Hyppolito de Valle Pereira Filho

Faculty Advisor; Prof. Charles Dalton
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Project

(A) Project Title: A Nonlinear Diffraction Study of Inertia

Forces on a Vertical Circular Cylinder

(B) Project Abstracti

Tn this study the inertia coefficient for a vertical
circular cylinder subject to wave action in a finite depth
of water is analyzed with respect to its iindependent vari-
ables. The primary purpose of the investigation is to
develop criteria for choosing values of the inertia coeffi-
cient .for use in wave_ﬁorce'caiculatiqns‘ This is done
keeping in mind that changes in.wave height, wave period,
water depth, elevation, phase, and-cylinder diameter will
effect the coefficient chosen. .

The ahalysis begins by assuming an invisgid, irrota-
tional wave.of small amplitude.which can be described by
linear wave theory. The wave is allowed to diffract around
a vertical circular cylinder. The pressurxe distribution
around the cylinder iS'caléulated by application of Ehe
complex potential for the-incident and'spattered wave
systems. . The force per unit léngth,oﬁ*thé cylinder is de-
termined by integration of the pressure around the eylinder.
The expression for the inertia coefficient is then derxived
from the known water particle acceleration and wave force

equations. Drag forces are -not considered in this investi-
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gation. The resulting equation for the inertia coeffi-
cient is applicable to cylinder and wave combinations
with large diameter to wave length ratios. This provides

an improvement to an existing diffraction study. The

nonlinear velocity terms in the pressure expression are

retained, thus providing still another modification to
existing diffraction theory.

The results from this investigation indicate that the
inertia coefficient ig mainly a function of the ratio of
cylinder diametexr to wave length, Contributions made by
the influence of depth and wave height are small compared
to that made hy the diameter to wave length ratio.

Publication: M.S. Thesis in Mechanical Engineering

Year; 1975

Department; Mechanical Engineering

Student Name: Jerry Lee Borrer

Faculty Advisgor: Prof. Charles Dalton
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(B)

Prbject

Project Title: Numerical Solutions for Recirculating Flow

Project Abstract:

Numerical solutions have been obtained for the steady
two-dimensional flow of a viscous incompressible fluid in
rectangulax cavities by solving various implicit finite-
difference approximations of the Navier-Stokes equations.
The gets of implicit differencé equations were solved
using a recently introduced iterative numerical procedure
called the strongly implicit procedure (SIP). fThe strong-—
ly implicit procedure was found to be an effective and |
economical numerical procedure for obtaining iterative
numerical golutions for sets of -linear and/or .nonlinear
finite~difference equationsg. - Various qualitative and
quantitative comparisons have been made to determine the
efﬁgqts of the Reynolds number, the grid size, and the
difference approximation on the numerical solutions and
computational procedures. The results show that one
differenge scheme was particularly accurate for Reynolds:
numbers and grid sizes which satisfy the stability reés-
triction: Streamline pattérns and equivorticity plots
for a range of Reynolds numbers. are shown for various.
diffefenée approximations and grid sizes. Changes in the

principal features of the flow field have been discussed
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and correlated with changes in the Reynolds number of the
f;ow.

(C) Publication: M.S. Thesis in Mechanical Engineering

(D) Year: 1975

(E) .Department; Mechanical Engineering .

(7) Student Name: Jerry Lee Borrer

(@) ~ Faculty Advisor; Prof. Charles Dalton
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Project

Project Title: The Effect of Inclination of a Conduit on

Power Spectra of Wall Pressure Fluctuations
in Two-Phase Flow

Project Abstract:

The two-phase flow regime characterization by use of
wall pressure fluctuation power spectra was broposed by Dr.
M. G. Hubbard and Dr. A. E. Dukler to deal with horizontal
flow. 1In this work, the power spectra of various flow
regimes of two-phase flow with different inclinations were
obtained and analvzed. The effect of inclination of a con-
duit on power spectra and flow mechanisms was .investigated.
Also a method of decomposiqn of power spectra was proposed.
The results suggested that a two-phase flow process could
be decomposed'into several simple .processes each of which

was represented by an individual spectrad’ component.

Publication: M.S. Thesis in Chemical Engineering

Year: 1871

Department: Chemical Engineering

Student Name: Jeng-Shong Liaw

Faculty Advisor: Professor A, E. Dukler
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(B)

Project,

Project Title: Hybrid Computer Simulation of ‘Turbulent
Diffusion in the Atmosphere by Monte Carlo
Methods

Project Abstract:

Turbulent diffusion in the atmospheré was simulated by
implementing a new Monte Carlo method on a hybrid computer.
The new method involved the development of a stochastic
Langevin eqﬁation which required the instantaneous wind
velocity as inpu; information. to stimulate the -diffusion
process,

Although several established models were available for
the mean wind profile, there were no models available for
the fluctuating component of the velocity. Thus a model
was develbped by using empirical equations to describe the
rms value as a function of position and by using independent
Gaussian white noises of proper_frequency range and power
spectral densities.

The present method was evaluated by comparing the re-
sults to the theoretical dispersion in a homogeneous flow
and to experimental concentration profiles in a boundary
layer and in the atmosphere. All of the experimental flow

fields were nonhomogeneous. Good agreement was ‘found in

"all cases. The simulated concentration-distributions were

found to have a 95% statistical reliability by a chi-sguare

4.326



goodnessgs-of-fit test.

A few of the major advantages of the present method
are (l) since the current method simulates the diffusion
process directly, it has great flexibility and the concept
of eddy diffusion coefficients is not used, and (2) esen-
tially all meteorological effects can be fully utilized.
The present method is also applicable to multiple sources

of almost any type.

(C) Publication: Ph.D. Dissertation in Chemical Engineering

(D) Year: 1975

(E) Department: Chemical Engineering

(F) Student Name: Jerry A. Bullin

(G) Faculty Advisor: Professor A. E. Dukler
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Project

{A) Project Title: Studies on Turbulent Diffusion

{(B) Project Abstract:

Turbuient diffusion was studied both theoretically and
experimentally. The purposes of:this study were (1) to de-
velop and test a new statistical model for turbulent diffu-
sion which was reasonable in both theory and implementation,
(2) to include the  effect of shear stress on diffusion, (3)
to extend the new model to a particulate system and (4) to
obtain experimental data for particle dispersion to test
the proposed model.

A Langevin equation model was developed by considering
the fluctuétiﬁg velocity as a stochastic process. The same
model was also derived from a one dimensional lagrangian
Navier-Stokew equation. ‘This model was physically realistic.

The present model was implemented on a hybrid computer.
The simulatea fééults of turbulent diffusion were compared
with the theoretical "predictions. for a homogeneous flow and
with experimental concentration profiles_in a boundary lay-
er and in the atmosphere. Good agreeﬁent was found in all
cases.

A technigue to generate two random processes which are
correlated with each other to any degree was developed.

This method was used to investigate the shear effect .on

turbulent diffusion. 1In the presence of both -medn velocity
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gradient and shear, diffusion was shown to be independent
of shear for long and short diffusion times but to be
strongly dependent on shear for intermediate times.

The langevin equation model was extended to permit the
modeling of particle dispersion. This was accomplished by
deriving a relation between the power spectral density dis-

tributions of a particle and the background fluid from the

equation of motion of a particle in a turbulent flow.

A series of experiments was designed and executed in
a large wind tunnel using glass beads as diffusing par-
ticles. A solid feeder and a particle dispenser were built
and a special sampling nozzle was designed for isokinetic
sampling. Hot wire eqguipment was used to measure the fluid
dynamical properties.

The conditions of the experiment were simulated using

the developed model. Agreement with experiment was good.

Publication: Ph.D. Dissertation in Chemical Engineering

Year: 1976

Department: Department of Chemical Engineering

Student Name: Naugab Lee

Faculty Advisor: Professor A. E. Dukler
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Project

(A) Project Title: On the Transmission of Sound Through

Finite, Closed Shells: Statistical Energy
Analysis, Modal Coupling, and Nonresonant
Transmission

(B) Project Abstract:

An investigation of sound transmission into small
enclosures congiders the effects of acoustically induced
coupling between shell modes. Using an integral equation
approach, the trangmission loss into a small rectangular
box is computed and the level of.cavity reactance examined.
The noise reductions for a closed cylinder and a rectangular
parallelopiped enclosure (with a single flexible panel)
gsitting in reverberant acoustic fields are computed and
experimentally checked. The transmission by resonant and
nonresonant shell modes is examined, especially in relation
to the statistical energy analysis approach., The naturé of
the predominance of one type of transmission over the other
is considered in relation to shell and cavity configurations
and structural damping levels. A technique is. given for
estimating the predominance of resonant or nonresonant-modes
as the basis for computations of sound transmission by flat

panels and cylindrical shells in reverberant acoustic fields.

(C) Publication; Ph.D. Dissertation in Mechanical Engineering
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Project

(A) Proiject Title; Feasibility Study of Flaw Detection in

Railway Wheels Using Acoustic Signatures

(B) Project Abstract:.

The research is a feasibility study gn the use of
acoustic asignature for detection of flaws iﬁ railway
wheels. The ultimate objective is the development af a
wayéide device capable of indicating defective wheels on
moving cars or locomotivesg. A test stand was constructed
so that wheels could be excited by random noise under
simulated loads, and by impacting with various devices.
Analytical and experimental determinations of the natural
modes ‘of vibrating wheels are reported. Differences in
acoustgc signature were found Eetﬁeéﬁ good and flawed
whells, including gpectral changes and variations in the
time decay of sound.. Pattern recognition techniques were
used for selecting good and bad wheels with ‘a data process-
ing scheme using a minicomputer.

(C) Publication; Ph.D. Dissertation in Mechanical Engineering

(D) Year: 1974

(E)’ Department: Mechanical Engineering’

(F) Student Name: FKornel Nagy

(G) Faculty Advisor: Prof. R.D. Finch.
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Project

Project Title: Respiratory System Dynamics

Project Abstract:

The understanding of physiological mechanisms, involved

in the dynamics of respiratory adjustments, and their quan-

titative representation is of major concern in physiology
and medicine. A necessary prelude to any analysis of
respiratory regulation is the construction of a respiratory
plant model which accurately mimics changes in the various
state variables following an external disturbance imposed
on the system. Most,investiga?ors in the past have attempted
to uncover the control hierarchies inherent in respiratory
regqlation without asséssing the validity of their plant
representations. As a result relatively little has been
accomplished in the delineation of the actual transport
processes within blooc-and tissue fluids.

This report describes a first attempt at a detailed
examination of the various aspects-invoived in the adjust~
ment of 0, and CO, stores as well as the maintenance of
acid base balance in the body. Our approach is a pyramidal
one focusing first on the different subsystems themselves,
using experimental data wherever available to assess the
representation, -and then examining the over all plant model
predictions.

To assess the general validity of the blood gas inter-
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actions and relationships used in the study, we derive a
theoretical co, dissociation curve for blooc in vitro and
compare its predictions with experimental data. The kine-
tics of blood.gas transport and reaction processes are
considered in the analysis of pulmonary gas exchange.
Several different alternative transport hypothesis are
implemented in our description of the muscle subsystem and
appropriate conclusions drawn using open loop experimental
data for muscle tissue. A multicompartmental description
is presented for the brain which allows examination of the
various transport hypotehsis presented in the physiological
literature. Finally, by specifying the necessary elements
for the entire closed loop flow path, simulation studies are
presented for the overall respiratory plant under open con-
trol loop conditions.

Good agreement is obtained with the available experimen-
tal data for the individual elements as well as the overall
plant. Needless to say, this study does not constitute the
last word in analyses -of the respiratory system but the more
basic approach and evolutionary framework used here, hope-
fully represents an important step ‘toward a meaningful’
description qf respiratory system dynamics.

Publication: Ph.D. Dissertation in Chemical Engineering

Year: 1975

Department: Chemical Engineering

Student Mame: Akhil Bidani

Faculty Advisor: Professor R. W. Flumerfelt
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Project

(A) Project Title: A Transport and,Thermodynamic Properties
Package for Simulation and Design

(B} Project Abstract:

Transport and thermodynamic properties such as
vigscosity, thermal conductivity,.enthalpy, ete., are fre-
quently needed in chemical process computations. A compu-
ter program was written which calculates these and many
other related properties rapidly and efficieﬁtly.

The system cgnéists of an executor or main subroutine
called ROADMP plus 36 subroutines. ROADMP décides.what‘
éﬁgroutines have to be used to calculate a given property
from input data provided by the user.. .

‘ All thé subroutines, except ROAPMP, consist of small
programs that use physical property cdorrelations taken from
the literature. Extensive tests and error checks were made
and are included, where possible, in the system.

The entire progrgm”consistg of 3,200.FORTRAN statements
and occupies‘;;K words of memnory .

(C) Publication: M.S. Thesis in Chemical Engineering’

(D) Year: 1969

(E) Department: Chemical Engineering -

(F} Student Name: Roberto Mariano Beirute

(6) Paculty.Advisor: Professor.E. J. Henléey
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Project

(A) Project Title: Multicomponent Vapor-Liquid Equilibria

Computation

(B) Project Abstract:

This thesis is concerned with the development of a
coﬁﬁrehensive computer program for the estimation of multi;
component vapor-liquid equilibria in two phase systems at
low to moderate pressures. The system which has been
developed is referred to as "the KVALUE routines® and it
fulfillg its intended purpose in that it conséitutes a
versatile, convenient, and efficient vapor-liquid equilibria
package which is suitable for use either aione or in conjunc—
tion with other computer programs. The KVALUE routines con-
sist of approximately 2,000- FORTRAN instructions which
require 21,454 words ‘of storage when loaded into ‘an IBM 360
Model 44 computer.

. The KVALUE routines exhibit a number of very desirable
‘features. ' The most désirable feature of the system lies in
its versatility. Multiple routes leading to each of the
major thermodynamic and ‘physical properties allow the user
a considerable degree of freedom with respect-td the type
and quanpity of input data which ‘he may provide. The sys-
tem structure, and the data structure as_%ell, are designed
so as to make the package conveniently integrable with

other computing systems. An auxiliary program, CURFIT,
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which is included in the package, should serve as a valu-
able aid to the user in performing tasks related to data
preparation and organization.

The techniques used are such that the computations are
based upon a sound thermodynamic approach. The text con-
tains a discussion of the theory which is incorporated in
the estimation techniques that constitute the wvarious
algorithms. Included in this discussion are the following
topics: the thermodynamic criteria for equilibrium, the
computation of vapor phase fugacity coefficients using both
the virial and the Redlich-Kwong equations of state, the
correlation of activity coefficients to liguid phase compo-
sition via the eguations of Wilson, Van Laar, and Hildebrand,
the calculation of standard-state fugacities from thermo-
dynamic cpnsiderations and from the Chao-Seader correlation,
and techniques for evaluating the necessary physical proper-
ties and parameters. Also included in the text is a dis-
cussion of Marquardt's method and the manner in which this
algorithmic process is implemented. to obtain a solution to
the system of nonlinear equations which must be solved ‘when
estimating multicomponent vapor-ligquid equilibria.

The KVALUE routines have been thoroucghly tested and
have been shown to produce reliable results in most cases.
Several examples are included in the text to illustrate the
applicability of the KVALUE routines in typical situations

and indicate the guality of the results obtainable.
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The appendices include information pertaining to the
use of the KVALUE routines as well as schematic diagrams,
listings, and documentations fof the various subroutines.
Also.included in the appendices are computer output list-
ings for the example problems which are discussed in the
text.

Publication: M.S. Thesis in Chemical Engineering

Year: 1969

Department: Chemical Engineering

Student Name: Raymond Alan Williams

Faculty Advisor: Professor E. J. Henley
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" Project

Project Title: Optimization by Signal Flow Graph Method

Project Abstract:

Five related objectives were realized in this research:

A modified linear programming technique was developed.

_ The procedure follows the simplex algorithm, but sig-

nal flow graph (SFG) methods rather than matrix manip-
ulations are used.

It is shown that all the ordinary post-optimum analysis,
including sensitivity analysis, may be performed by the
BFG method using the final graph instead of the simplex

final tableau.

The SFG methods to solve linear equations were used to

obtain the gradient wvectors of objective functions with
equality constraints:

The techniques developed in 1. and 2 were incorporated
into the method of "feasible directien" (MFD), one of
the most powerful methods of constrained optimization.
Two large, nonlinear, heat exchanger networks were
studied, and the total heat exchanger area was .mini-
mized using the MFD in conjunction with the LP system
déveioped.

This -research points to the possibility that signal

flow graph methods can be a useful tool for solving linear

and nonlinear constrained optimizétion problens.
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Project

Project Title: Applidation of a Generalized Urban Model

to a Specific Region

Projject Abstract:

The purpose of the research was to take the generalized
urban model of Professor J. W. Forrester and apply it to a
specific area, namely Harris County, Texas. The only vari-
ables changed were those considered to be "region dependent.”
The model was initialized with data from the year 1950.
Sta;istical data for 1960 and 1970 was used for checking the
validity of the model. The statistical data used was ob-.
tained from‘the 1950,_19§0, and 1970 census, along with
data from various planning agencies in the county.

The results revealed that the.model could undoubtedly,
be used aé a planning tool for a specific region, as the
final model appeared closely tuned .to ‘the mdjor statistical
variables. The lack of variables in the model which c¢ould
be directly correlated with statistical data was thought to
be the reason for any fluctuations ip the subvariables.
Sensitivity of the model to a large number of Variables was
a byproduct of the research.

Publication: M.S. Thesis in Mechanical Engineering

Year: 1971

Department: Mechanical Engineering
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Project

(A) Project Title: Systematic Flow Graph Analysis and

Applications

{B) Project Abstract:

A generalized technique for the solution of engineer-
ing problems which can be represented in the form of flow
graphs has been developed. The fundamental algorithm is
one whereby the paths and loops in a flow graph can be
systematically and selectively enumerated. This algorithm
serves as the basis for a procedure whereby Mason's rule
can be efficiently applied to generate characteristic egua-
tions, system determinants, transfer functions defining
input-output relationships, sensitivity functions, and
other important network functions related to signal flow
graphs.,

The theory developed provides the basis for a compre-
hensive computing system which is instrumental in solving
many types of flow graph problems. The value of flow graph
analysis in engineering science, and the diversified utility
of the technigues developed herein areé illustrated by six
example problems: sensitivity analysis of a‘heat exchanger
network, simulation and analysis of a chemical reactor con-
trol system, generation of closed-form expressions describ-
ing the steady-state performance of an absorption column,

ordering of recycle calculations for a chemical process
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simulation, computation of eigenvalues, and the solution

of a typical transportation problem.

Publication: ©Ph.D. Dissertation in Chemical Engineering

Year: 1971

Department: Chemical Engineering

Student Name: Raymond Alan Williams

Faculty Advisor: Professor E. J. Henley
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Project

Project Title: Numerical Integration of Stiff, Sensitive

and Multivalued Egquations

Project Abstract:

A technique for the numerical integration of stiff and
multivalued ordinary differential equations has been deve-
loped. Any of the standard numericél integration methods
(i.e., Runge Kutta, Adams-Moulton, etc.) may be employed.
The technique utilizes a changeable independent variable
of integration to congquer the numerical difficulties
usually encountered in the integration of certain equations.
Applicatioﬁ of the method to .several problems of interest
to chemical engineers was made. In general, the technigue
works to incréase accuracy and efficiency of solution.

Publication: M.S. Thesis in.Chemical Engineering

Ygar: 1971

Department: Chemical Engineering

Student Name: Patrick Hugh. Shannon

Faculty Advisor: Professor E. J. Henley

ﬂi%r



(A)

(B)

Project

Project Title: Simulation of Multicomponent Separation by

an Adiabatic Cascade Technique

Project Abstract:

Advances in the ability to estimate thermodynamic
physical properties and the demand for solutions to dif-
ficult multistage separation problems have warranted fur-
ther research to develop suitable computer algorithms.

Use of composition-dependent vapor-liquid equilibrium
ratios and enthalpies preclude the utilization of all but
the most recently developed algorithms and as yet no cur-
rent technique is widely accepted as were the historic
Thiele~Geddes and Lewis-Matheson algorithms. Additionally,
no algorithm is able to solve all sepa;ation problems- with
a single technique. Thus, stability of convergence on
classes of problems or specific examples, and inaﬁiliﬁy to
use composition dependent properties are major areas for
improvement.

The proposed algorithm uses a complete‘éhao;Seader
physical.properties package as modified‘by Grayson-Streed.
Liguid phase z-factors are computed by Yen-Woods coefficients.

Two major causes for instabilities in.convergence are
numerical round off error an& structural ordering of egua-
tions fof solution via successive approximation techniques.

Both of these problems are largely éliminated in the
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proposed algorithm.

Inherent instabilities of other algorithms due to
structural arrangement are avoided by computing physical
oﬁtput gquantities from physical inputs and round off is
avoided by regquiring the outputs to sum to the inputs.

A unique first order acceleration scheme was deve-
loped that is stable for absorption, reboiler absorption
and distillation problems.

Publication: M.S. Thesis in Chemical Engineering

Year: 1973

Department: Chemical Engineering

Student Name: Larry J. McNiel

Faculty Advisor: Professor E..J. Henley




Project

(A) Proiject Title: Reliability Optimization of Process Systems
Using Intermediate Storage Tanks

(B) Project Abstract:

The purpose of this study is to create a model that
) ﬁill predict process system reliability when storage tanks
are used as back-up units.

The model is nondeterministic and only requires a
knowledge of the probability of failure and repair of each
unit. It assumes that the tanks will fail according to a
step function; when empty the probability of failure is-
uni£y and when full it is zero.

Based on this model a computer program for optimizing
the size of intermediate stbrage tanks in a process system
with and without recycle was developed. The method of
Paviani, et al. was used to find the optimum for a process
system composed of ‘three units and three tanks.

It was found that the benefits of having tanks de-~
creased from the end to the beginning of the system and
that the last tank in the syétem plays such an important
role- that the optimum will generally be obtained by sizing
the product tanks as large as possible. .

(C) Publication: M.S. Thesis in Chemical Engineering

(D) Year: 1973

(E} Department: Chemical Engineering
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Project

(A) Project Title: The Optimization of Urban Systemns

Objective Functions

(B) Project Abétract:

A generalized computer program has.begn developed
which enables the representation of the interaction of
social segments of an urban structure.  This program is
presented in detail such that it can be adapted to any
particular ufban system of interest. However, the adapta-
tion presented herein is to Harris County, Texas. The
calibration has been accomplished utilizing daté extracted
from magne%ic tapes..produced by the Census Bureau, U,S.
Department of Commerce (1970 éensus). This model is the
Housing Allocation and Location.Optimiz%tion (HALO)‘model.

The model functions in a dynamic mannér over a selected
global analysis period. The aséumption is made that the
glbbal anaiysis period may be représentgd by a series of
discretized analysis periods. During each of these periods,
a certain portion of the households is assumed to entér the
market seeking to relocate. The model must satisfy a set
of qgantitative constraints pertinent to thQ'particulér geo-
graphical region of interest to achieve equilibrium.

Several features of this model are @nique and provide
significant improvement over previoius models:

The tremendous problem of evaluatihg preference
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factors by regression technigques is completely
eliminated by the inclusion of generalized

weighting factors.

A multi-dimensional array is incorporated to
control the supply and demand of the housing
market. This feature reflects the various

- degrees of dependency of construction upon
the economic situation experienced by dif-

ferent types of housing units.

The capability of selecting an optimum location
within the geographical region is provided. A
generalized user sbecified objective function is
optimized in the global analysis period. fThis
facilitates the selécﬁion of optimai sites for the
‘Location of various installations.

After the model is éaiiﬁrated to any area of‘interest,
it can be.used to evaluaté various-policies. .

Two different policies.are implemented in ‘this paper.
A new school distrigt is_crgated fron én,exigting school
district qn@ the affect on the housing Qistribﬁtion is
presented. The housing pattern ch&nge‘daused‘by the
completion oﬁ a neﬁ\frééwéy is aisé presenéed. In each
case, the impact caused by the.policy implementation is
evident:

Publication:- Ph.D. Dissertation in Electrical Engineering

Year: 1973

Department: Electrical Engineering

Student Name: ' Joe W. Pyle

Faculty Advisdr: Professor E. J. Henley
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Project Title: Reliability .Analysis .and Optimization of

Complex Systems

Project Abstract:

Most of the earlier literature on system reliability
optimization consider only the simple series-parallel
systems subject to one or two constraints. Practical sys-
tems have complex rather than the simple series parallel
configurations. With a view towards solving these complex
system reliability optimization problems., an efficient com-
puter algorithm based on the path enumeration method has
been developed. An important feature of the method is the
module repreégntation of the reliabilify graph which consid-
erably simplifieé the calculation of reiiability and sensi-
tivity functions of  complex systems. A modified integer
gradient method is used for system optimization. Although
the method does not insure a global optimﬁm; i£ does find
various néar-optimum éolutions. From a practical considera-
tion, this could provide for a wider choice during the
design phase.

In this‘research an effort has also been made to ‘apply
basic reliﬁbility*éoncepts to process plants. A new formu-
lation of the optimal reliability desiéﬁ of process plants
which takes into ‘account the quantitative aspects of systems

throughout is proposed. It is based on the k-out—-of-n
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configuration instead of the conventional parallel redun-
dancy configuration. The problem is so formulated that
determining the optimum configuration also determines ‘the
optimum capacity of units to be used at each stage of the
system. A computer program based on a pseudo-Boolean
algorithm is used to solve this non-linear integer

programming problem.

Publication: Ph.D. Dissertation in Chemical Engineering
Year: 1973
Department: Chemical Engineering

1

Student Name: Satish Loonkaran Gandhi

Faculty Advisor: Professor E. J. Henley

4.253



(A)

(B)

(cy

(D)
(E)
(F)
(G)

Project

Project Title: .Synthesis -of Erocess—?iowsheets by a

Theorem Proving Method

Proiject Abstract:

Events occuring in chemical processing systems are
described in terms of an axiomatic second-order éheorf.
The axioms of the theory are mixing, splitting, reaction,
change of pressure, change of enthalpy and equality axiom.

Theorem proving method based upon the resolption prin-
ciple is used to teét the hypothesis that a reéqired.slate
of products is a logical consequence of the axioms and
available raw materials. The proof, if it exists;'yields
the process plant flowsheet.

The computer implementation of the procedure is in
LISP.l.S programming language. An example of flowsheet
synthesis. is given.

Publication: M.S. Thesis in Chemical Engineering

Year: 1974

Department: ‘Chemical Engineering -

Student Name: Vladimir Mahalec

Faculty Advisor: Professor E. J. Henley
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Project Title: A Study of Iﬂtegration Algorithms in
Chemical and Physiological System Dynamics

Project Abstract:

Solution of many chemical engineering problems regquires
the use of numerical integrétion techniques. The most
popular integration technique for such problems is the
classical fourth order Runge-Kutta that in some cases can
be used only with very low efficiency.

In the last few years new methods have been developed
Which_Seem to be.efficient for regular and stiff problems.
Some of these new methods were compared in the solution of
chemical and physiological'systems. -The program written by
C. W. Gear, whigh_;ncludes two slightly different algorithms
for stiff systems and a third algorithm for regular systems
was found to-be the most:$table ‘and .efficient in 411 cases.

To increase accessibility of the Gear program for
general engineering-usage, a set-of subroutines was written.
These subroutines were designed with-the-following objec-
tivgs:‘

é) Minimization of input fequiréments.

b) Minimization .of interaction between user and

integration program. -

c) Giving the:user “the option of calculating. the

values of the dependent variables -at certain
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specific values of the independent variable.

d) Giving the user the option of dynamically
sélecting the algorithm to solve the problem in
gquestion efficiently. ‘

The behavior of the different algorithms in the

solution of selected problems is also discussed.

(C) Publication: M.S. Thesis in Chemical Engineering

(D) Year: 1974

(E) Department: Chemical Engineering

(F) Student Name: Francisco §S. Castellanés,.

(G) Faculty Advisor: Professor E. J. Henley
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Project Title: Water Vapor, CO, and Particulate Effects

On The Atmospheric Temperature Profile

Project Abstract:

A new approach is developed for the determination of
the atmospheric temperature profile. Various concentrations
of carbon dioxide, watér vapor, and scattering particles are
introduced to determine the perturbing effect on the temper-
ature distribution in the atmosphere.

The solution is gained through the .combination of the
Edwards exponential wide band model equations and the Curtis-
Godson transformation. The Curtis—Godsqn techrniqgue allows
a transformation f£rom the gquations for a nonisothermal
medium to those for the isothermél case while the Edwards
band model equations provide a means of .finding the absorp-
tion characteristics of the carbon dioxide and water vapor.--
?he basic*rgdiation equation of transfer. is coupled with an
energylbalanqe eguatiop tﬁrough;the use of a wide band
model derivative approximation which reduces the complexity
of the analysis considerably.

An approach is developed for the inclusion of particle
scattering. The simple case of elastic scattering is con-
gidered and: the equations are treated ' in a mianner which
allows the wide band model derivative approximation to be

utilized adain.
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The doubling of the carbon dioxide concentration pro-
duced a 1.89°K increase in the ground level temperature.
Halving the concentration caused a decrease of 1.94°K in
the ground level temperature. These results agree reasonably
well with those obtained by other investigators. In addition,
since only a 25% increase in the concentration of carbon
dioxide is expected from AD 1900 to AD 2000, there is no
threat of a significant ground level temperature change due
to the increase of the carbon dioxide in the atmosphere. In
fact, the introduction of water vapor and scattering can
negate the effects of the carbon dioxide completely.

Publication: Ph.D. Dissertation in Mechanical Engineering

and Proqeedings of the 1972 Heat Transfer and Fluid
Mechanics Institute, page 146-162.
Year: 1971

Deparitment: Mechanical Engineefing

Student Name: Ross E. PFerland
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Project

Project Title: Thermal Modelling of a Plate with Coupled

Heat-Transfer Modes

Project Abstract:

The thermal system considered here is!a'flat plate’
subjected to all three modes of heat exchange. The plate
also has a constant rate of volumetric internal energy
genération. According to the method for thermal modelling
proposed here, the volumetric energy generation rate in
the model is varied in a'mannef.depending upon its geo-
metric réduction and othexr parameteré. The model theén
has the same dimensionless temperature profile as does
the prototype. The experiments conducted give confirma-
tion of theoretical .results .obtained earlier and also-
giyejencourag%ng-results-for the prpposed.modelling
procedure.

Publication: Ph.D. Dissertation in Mechanical 'Engineering

?ear; 1972

Department; Mechanical Engineering

StudentiName; Manohar S. Sohal - -

Faculty Advisor: Professor J.R: HoweIl
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THERMAL MODELING OF A PLATE
WITH COUPLED HEAT-TRANSFER MODES

Manohar S. Sohal* and John R. Howell?

University of Houston, Houston, Texas

" Abstract

The thermal system considered here is a flat plate sub-
jected to all three modes of heat exchange. The plate alsc
has a constant rate of volumetric internal energy generation.
According to the method for thermal modeling proposed here,
the volumetric energy generation rate in the model 1s wvaried
in a manner depending upon its geometric reduction and other
parameters., The model then has ‘the same dimensionless tem-—
perature profile as does the .prototype. The experiments con-
ducted give confirmation of theoretical results obtained
earlier and also give encouraging results for the proposed
nodeling procedure.

Nomenclature
Cq, = constant for a laminar flow, -0.623 Pr 1/3 Rep, 172
Ce = constant for a turbulent flow, 3.323 Pr 0+ Re; 0.8
I = current flowing in the plate
i =1,2,3, ...n+1;1izg3]j
j =1, 2, 3, ... 2+ 1
kg = thermal conductivity of the fluid

Presented as paper 73-~748 at AIAA 8th Thermophysics -Con—
ferenge, Palm Springs, Calif., July 16-18, 1973.

Research- Fellow, Dept. "of Thermodynamics and Fluid
Mechanies, University of Strathclyde, Glasgow, Scotland.

tProfessor, Department of Mechanical Engineering.
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= thermal conductivity of the plate

nondlmen31onal thermal conductivity parameter
kp/eoT 3

a p051t1ve integer

Prandtl number of the fluid

total internal energy generation in the prototype

total internal energy generation in the model

= uniform volumetric internal energy generation rate

nau

+

[LI T | |}

m

in the prototype

convective heat-transfer rate per unit area at the
plate surface

varying volumetric internal energy generation rate
in the model

electric resistance of the plate

Reynolds number of the fluid

series for laminar flow:

1 8 17/ 4o (i)W

Tt ey

2 15/2_ je1 ' 5/2
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series for turbulent flow:

1 80 i19/10_¢427y19/10
317171 G-1) 19710

160 114/5_¢4-1)14%/5
567  (j-1)18/5 .

temperature of the plate surface

freestream temperature of the fluid
potential .drop across the plate

width-of the plate

nondimensional plate Iength parameter x/L,
0<c<X<1

dimensional Tength of the plate
nondimensional plate ‘thickness parameter t/L
nondimensional dummy variable for lemgth £/L

Greek Lerters

T D @i m

[ I 1O 2

total hemispherical emissivity of the plate

the second derivative of’nond1mens1ona1 temperature
nondimensional plate .temperature T,/T.

relectrical resistivity of ‘the plate

dimensional dummy variable for plate length .
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= Stefan-Boltzmann constant, 5.680 x 1012 w/cem2-0x®
nondimensional energy generation parameter,
qt/edTml+

© Q
|

TI. Introduction

The satisfactory design of many systems requires thermal
analysis and thermal testing of the hardware. Thermal scale
modeling is a useful tool for the design of many systems.
Scale modeling gains even more importance with the increasing
size of space vehicles.

The two common approaches to modeling are dimensional
analysis and thermal similitude. In the former method, cer-
tain dimensionless groups are equated which must contain all
of the.physical quantities and constants involved in the
system., This approach has been used by Katz,l Vickers,Z and
MacGregor3 to study the thermal behavior.of the walls of the
spacecraft. In the theory of thermal similitude, it is
essential to know the explicit governing equations of the
‘system. The model criteria are established from the govern-
ing equations. Then, if a gimilar but smaller-sized model
is constructed, its thermal behavior would be given by the
same governing equations at homologous locations in the model.
This approach has been examplified in the works of Jones,
Rolling,> and Chao and Wedekind .6 Jones’ also has given a
brief account of the theory of similitude applicable to
spacecraft.

In this work; an attempt has been made to demonstrate,
analytically and experimentally, a method of thermal modeling
based upon the theory of thermal similitude. After solwving
numerically the. governing equation for the temperature of
the, prototype, the dimensionless temperature profile of the
model is forced to be the same as that of the prototype.

From that, the local internal heat generation rate in the
model is calculated for scaling purpose. The procedure of
numerical solution and the scaling method are confirmed by
testing geometrically similar models, The particular example
chosen is a flat. plate having internal thermal energy genera-—
tion and subjected to-all three modes of heat exchange.

IT. Analysis

. The thermal system considered here is a' thin, semi-in-
finite flat plate placed in a stream of transparent air. The

7.261
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plate (see Fig. 1) has uniform volumetric internal energy
generation and has one face insulated while the other rejects
heat by convection and radiation. It is assumed that the
properties of the plate and air are independent of any tem—
perature variation, that the plate is a gray surface, and
that the surroundings are black and isothermal at T,. The
conditions on the surroundings can be relaxed by accountlng
for the emission and reflection of radiant energy from thenm.
This can be done for a known geometry znd known temperature
of the surroundings. The nondimensionzl plate temperature in
4 laminar flow can be obtained by combining the governing
energy equation for the plate with the equation describing
the convective heat transfer from the plate. These are given
by, respectively, .

‘ s _ kpt(dsz/dxz) - ec(Tx“ - qu) + qt (1
- - x 3su"2/3
- = 1/3 1/2 - £ o 11
T, = T, = (0.623/k.) Pr Y3 re "V J[.)[l (x) ] 4y de

(2)

Combining Egs. -(1) and (2) and nondimensionalizing gives
i/ o BN '
- 5 405 1+ Bt
By 1+clkfx [3.530(N) Z(Ya _si:.I -(3)
. ) Y i=1 o
Details of' the analysis are given in Ref. 8. The various non-

dimensional parameters for a plate of Iength L are defined as
follows:

Uw , T
E—— ORIGINAL PAGE IS
OF POOR QUALITY,

—+
4 t-
T

X

>

r ¥
x ¥

X=0

Fig., 1 h?flatfpiate thermal system.
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X = x/L Z =¢&fL

by = T, /T 8, = T./T,

Y = t/L ¢, = 0.623 pr-1/3 ReL'1/2
N = k_/&5T 3L ¢ = qt/eoT

p -
8 _ 1, 8iY(-DVt  21%2-(1-1)5/2
5137571V @GDr s T9T (G-D /2

160 i13/‘+_(i_l)13/'+ +
+ 7053 G-y 1378 F ¢

If n is taken to be a positive integer, then i = nZ + 1 and
§ =X + 1.

Similarly for a turbulent flow, the plate temperature is
given by

-] L
k- % 6 t
- Xp ¢0.2 Asa) -t
8y = LHC, T X [9.827(N + ) |8, A (4)
i=1
where Ct = 3.323 Pr 0.6 ReL_UJB, and

£ 1 80 119/10.¢4_7)19/10 4 160 $20/5_¢q_1y14/5 .
S =31t 1Th G-119 10 T 567 G- 75+ e

For thermal modeling, 'in order to avoild numerous changes,
it is proposed here that only one dimension of the prototype
be changed. Therefore, in order to have the same tempera-—
ture at homologous locations of ‘the prototype and the model,
all physical properties are kept ‘constant except for the
reduced length of the model. By solving Eq. (3).for the
volumetric energy genmeration q, we obtain

. _ s =L -
Kl § (65-1) _% B i) e|_1
17Tt )3.530 Cy (e, /kg)XO-S 17N fPu| T

i=1 (5)

Next, we define r = prototype length/model length. If
we apply Eq. (5) for a model, the varying volumetric energy
generation along the length of the model dpys for the same
temperature profile as in the prototype, would be given by

kplo ) 1 (x-1)z0-5 Iy = By
- e = 3 [ p2vE kYo 2|_ 1
R ENCE [cl(kp/kf-):gﬂ-s izl‘r,“i N 15w

4.2¢4
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IR YT [Cl(k Jiy 7.5~ L GHDYE 8y ©
£ .
i=1
Sinmilarly for a turbulent flow, we have
T n_a [Gexbeezy Jo s ¢
Tq Tty 987 [Ct(kp/kf) 707z~ L (DTS 5y g

i=1

Note that, for no internal generation in the prototype {g=0),
the equation must be modified by multiplying through by q,
which then will cancel with part of ¢. The method, however,
will still apply. The qp, necessary to produce a temperature
profile in the model similar to that of the prototype with
q=0 is then predicted by the modified Eq. (7).

III, Experimental Procedure

Before confirming the modeling procedure as just
developed, an experiment was performed to see the validity
of the numerical results of plate temperature as given by
Egas. (3) and (4). A 279.4 x 152.4 x 0,0508-mm 303 stainless-
steel plate was tested ina 4L.9 'x 41.9 cm suction-type wind
tunnel.. The plate temperature was measured by installing 13
30-gauge chromel-alumel thermocouples on the lower side of
the plate. The thermocouples were. attached at the center-
line of the plate width (279.4 mm) and aleng its leagth
(152.4 mm), at equal intervals, except close to the leading
edge, where the spacing was decreased. This centerline
placement eliminated multidimensional conduction errors.
The thermocouples were held in place by Borden Mystik Tape,
no. 7366, which aldo insulated the thermocouple hot junctions
from the electric current heating the plate. To insulate
the lower face of the plate, it was attached by Dow Corning
silicon adhesive to a 25. 4-mm-thick Mar1nite—36 plate with
a wedge-shaped leading edge machined at 10, This material
manufactured by Johns-Manville, New York, has an average
thermal conductivity of 0.967 Cal/hr—cm—ac'and specific heat
of 0.27 Cal/g-YC. Two copper electrodes were bolted to the
base plate, with the -test plate sandwiched between the,
electrodes and the base plate. This setup was then installed
in the wind tunnel and connected té the various instruments
needed to supply power and record the temperature. and velocity.

f. 245
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The experiment was run for the maximum and minimum
Reynolds numbers available from the tunnel; 15.6 x 10% and
4.92 x 10%, based on the total length of the plate, Varia-
tion in Reyholds number was accomplished solely by changing
the freestream velocity. For a current through the test
plate of 100 amp, temperature datz were recorded when the
readings became approximately reproducible. Changes in
electrode—plate resistance and plate surface emissivity due
to high plate temperatures caused some initial fluctuations
in the temperature readings. The interior surface of the
test tunnel met the condition of being at T (room ambient
temperature). The tunnel walls were probably near-black in
the infra-red region, but measurement of the tunnel-wall
absorptivity was not made. The temperatures recorded for
lamipar and turbulent flow cases are shown in Fig. 2, along
with the theoretical results. The property values for 303
stainless steel, averaged over the experimental temperature
range and obtained from Ref., 9, are total hemispherical
emissivity € = 0.70, electrical resistivity p = 73.5 pohm-cm,
thermal conductivity kp = 142.9 Cal/cm~hr-"C. ’

The experimental temperature profiles were smoothed to
pass through the experimental data results as indicated on
the figures. The ratios q../d, shown in Fig. 2, were cal-
culated by using these profiles in Eq. (6) or (7) for a model
of % full size, i.e., r = 2. The varying volumetric internal
energy generation in the model qp, was obtained by varying
the resistance in the electrical path., Therefore, for an
infinitesimal length ds of the plate ‘(model) of electric
resistance dR,, resistivity p, and for a voltage drop of V
across its width,

= vy = y2
DU Wx tdx =¥ /de v /(pr/t dx)

o | ORIGINAL PAGE IS
w-vwiga ~ OF POOR QUALITY

Let W, = W for x = 0, and, noting that dmo/q = 1, we obtain

W =W, /Yq_/q ®

" This equation gives the profile  of the modél plate for
the corresponding values of qp,/q for laminar and turbulent
fiows, respectively,’ assuming one-dimensional .current ‘flow

-



106

MANOHAR S. SOHAL AND JOHN R. HOWELL
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¢y =7257 x 107 o
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N =101273
é = 18.388
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Fig. 2 Determination of Amy/ a4 from
experimeqtal temperature
profile .
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across the test plate., In actual practice, the copper elec-

trodes were shaped to give the desired width of the plate,

as shown in Fig. 3 for W, = 292.1 mm. The. total energy re-

quired to produce the desired temperature profile in the ORIGINAIL, PAGE I8

model is then OF POOR QUALITY -
L
Q =4qtW, J qux/q dx ¢)]

[}

On evaluating the right-hand side of Eq. (9) graphically,
the total energy required for laminar and turbulent flows is
obtained as 157 and 14B.2 w, respectively. Thus, the pro-
posed method demands a specific emergy input, as calculated
previously, and then examination of the resulting temperature
profile for the model as compared with that of the prototype.
But, as no method was available to check the actual distri-
bution of volumetric energy generation along the length of
the medel, an attempt was made to adjust the total power in-
put to the model /so that the temperature profile matched
with that of the prototype.

IV, Discussion of the Results

Figure 4 presents the results of the experiments for the
prototype, the model, and the theoretical results for the
corresponding experimental data. Except for the leading
edge and the trailing edge, comparison is reasonable within
the experimental errors, the maximum deviation from the
theoretical results being 7.0%. For the plate temperature at
the leading edge to be.equal to the freestream temperature,
i.e., 8, = 1, the convective heat-transfer coefficient should
approach an infinite value. This means that the boundary
layer thickness at the leading edge and hence the leading
edge itself should have zero thickness., This not being the
case, the flow is 1likely to separate at the leading edge,
giving rige .to a separation laminar bubble; as reported by
Tanill and Chang.il The boundary layer then begins at a
point dovwmstream of the leading edge, and the convective
heat-transfer coefficient near the leading edge hds some
finite valde, which in turn results in a higher temperature
close to the leading edge. Similarly, the trailing edge
separation, and formation of a vortex wake behind the
trailing edge, could be the cause of plate temperature being
below that predicted theoretically.

h-269
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Fig. 3 Geometric profile of the plate (model) width.
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Fig. 4 Comparison of theoretical results and
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For the plate (prototype), the total energy imput for a
current flow I can be obtained from Q = IZpW/Lt,

It can be seen from Table 1 that the actual energy input
as measured during the experiment is more than the corres-—
ponding value as calculated analytically. Some energy was
lost by conduction through the imsulating base plate, which
had its lower face in the shape of a wedge with a reduced
thickness near the leading edge. A thick leading edge would
hamper the formation of boundary layer on the plate. The
magnitude of the energy loss by conduction is of the order
of 70 w, The electrical resistivity of the steel plate also
increases with increase in temperature. This has not been
accounted for in the theoretical analysis. The contact re-
sistance between the copper electrodes and the steel plate
also contributes somewhat to the energy unaccounted for.
Therefore, either a much more accurate estimate of energy
distribution is desired, or the present approach of model
testing may be used. To correct for the energy loss, the
actual energy input in the model is obtained by increasing
the theoretically calculated values for the model by the same
factor as in the case of the prototype. This is essentially
the procedure used in the present case. Figure 4 shows
encouraging experimental verification of the theoretical
results of plate temperature.and the modeling technique.

In an actual modeling of a prototype, this problem
should be avoided by monitoring the true energy input into
the model. Voltage taps that measure the ‘actual drop-across
the model and avoid electrode contact losses are necessary
when prototype data are not availsble.

An idea-of the discrepancies caused in the plate (model)
temperature because of its inaccurate curved boundaries can
be had from Fig, 2. If the curved boundaries &f the model
test plate, as shown in Fig. 3, were replaced by straight
ones, we would have a constant volumetric internal energy
generation ¢, in place of varying energy Ayx+ Therefore,
for a model in laminar flow and for a constant qu/q = 1,27,
the temperature profile calculated from Eg. (6) is also
shown in Fig, 2a. The difference between 8, for constant
and varying energy gemeration, although not severe, is
noticeable. :

V. Conclusions

The experimental. results of plate temperature profile
tompare satisfactorily with those predicted earlier by the

fore
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Table 1 Theoretically calculated and experlmental
" values of energy required

A B (A-B)/A

Energy
Actual Energy required unac—
energy input, as per calcula- counted
W tion, w for, %
Laminar &
Prototype turbulent 10DATP, 440V 965 5 39.65
flows B *
?iminar E? amp, 4.45v 157.0 41.6
Model oW = 253.5
Turbulent 62 amp, 5.04V 148.2 596
flow = 312.5 : :

theoretical method. For scaling purposes, the method of
varying the intermal energy generation does work. More so-
phisticated imstrumentation to allow a complete energy .logs
analysis is necessary in order to use the method better.

The same method can be employed for different fluids and .
for different flow regimes. Study of two-dimensional and
three-dimensional problems would be most desirable to make
use of the method presented here. Further research is neces-
sary in such cases to determine whether the method can be
applied. It may be necessary to provide locally variable
heat sources rather than Joulean heating controlled by boun-
dary shaping. 8till, the change of only one parameter, in~
stead if changing many parameters as is the case in dimen—
sional analysis modeling, lends itself as a valuable technique.
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Abstract—The singular, integro-differential equation for the temperature of a flat plate with internal
energy generation and a fluid flowing over one of its faces, is solved numerically using the method of
iteration. The present results compare well with those of Sparrow and Lin, except for the leading portions
of the plate. Tt is also seen that the relations given by Cess for similar problems may.not give converged
solutions for all cases. The importance of conduction in a plate of high thermal conductivity and of
radiation in cases of laminar flow has also been demonstrated.

NOMENCLATURE

constant,0 <a < 1;
consiant_s;
constant, 0 < b < 1;
constants;
constant for .a -laminar flow,
0623 Pr~* Re[ %;
constant for a turbulent flow,
3323 pr06 Rey%8;
Yo, — M ;

N
convective heat-transfer co-
efficient;

s 0 14+
L A

i<j1,2,3...,n+1;
1,23,...,n+1;

thermal conductivity of the
fluid;

thermal' conductivity of the
plate;

length of plate;

* Now, Research Fellow, Heat Transfer Section, Tech-
nische Hogeschool, Eindhoven, The Netherlands,

" a positive integer;

nondimensional thermal con-

: k
ductivity parameter, —£— :
: e T

dummy variable for z;

"Prandtl number of the fluid;

volumetric internal energy
generation in the plate;
convective heat-transfer rate
per unit area at the surface;
Reynolds number -based on
length L, (U L/v);
Reynolds number based on
length x, (U, _x/v);
series for a laminar flow,

1 8 i¥—-(i— 1)
J=1"21 (G-1F

2 (i—1)2

gﬂ;—-l-...;

series for a turbulent flow,
1 +80 i =@k

=1t G-
L 160 % — (- 1%

T T m o 1t
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L thickness of the plate;

T, temperature of the plate
surface;

T, freestream temperature;

U, freestream velocity of the
fluid;

X, length co-ordinate for the
plate, 0 < x € L;

X, nondimensional plate length,
xLO< X <1;

4 nondimensiona! plate thick-
ness, t/L;

A nondimensional dummy vari-

able for length, £/LOKZ< X.

Greek letters

B, B(l,m), represents the Beta
function of [ and m;

T, (I, represents the Gamma
fanction of (J);

AX, 1/n;

€, hemispherical total emissivity
of the plate;

6,—, 8, 1st, 2nd and 3rd derivatives of
nondimensional temperature;

8., nondimensional temperature,
TJT,;

6., '.Q/Tw;

v, kinematic viscosity of the
fluid;

g dummy variable for the plate
length, 0 € £ < x;

G, Stefan-Boltzmann constant,
5680 x 1012 W/cm? °K*;

b, nondimensional energy gen-
eration parameter, gt/es T2, ;

Y, nondimensional length para-
meter, (k/k) [1/N(Re))]
a(X)y.

1. INTRODUCTION

WiTH the increasing use of complex thermal
systems, analysis of coupled problems becomes
very important. In most such systems, heat
exchange by only two of the three possible

MANOHAR §. SOHAL and JOHN R. HOWELL

modes is considered. Some problems of com-
bined conduction and radiation have been
examined. Viskanta and Grosh [1] analyzed
heat transfer by simultaneous conduction and
radiation in a gas between two parallel plates.
The nornlinear integro-differential equation was
solved numerically by an iterative method after
reducing it to a nonlinear Fredholm integrai
equation of the second kind. Howell [2] solved
a combined conduction and radiation problem
by a finite-difference technique, considering the
radiant exchange terms involved in the equation
to be independent of the conduction process.
Doornink and Hering [3] gave numerical
solutions to the transient simultaneous conduc-
tive and radiative transfer ina plane gray medium
bounded by black walls. The singular nonlinear
integro-partial differential equation was solved
by representing its nonlinear function by a
finite expansion in terms of elementary functions.

Other coupled problems of heat transfer have
also received some attention. Oliver and
McFadden [4] solved the problem of simul-
taneous convection and radiation in a laminar
boundary layer on an isothermal flat plate by
reducing the governing equations to the familiar
equation of Blasius. Sparrow and Lin [35]
carried out an analysis to determine the distribu-
tion of surface temperature on a flat plate
undergoing heat exchange with the environment
by both convection and radiation and having an
internal heat source or sink. The nonlinear
integral equation was solved numerically by
changing the integral into a series summation
and using a predictor—corrector numerical tech-
nique. Cess [6, 7] presented an analysis to
determine the influence of radiation heat transfer
upon the forced convection Nusselt number.
Though the solutions presented by Cess do not
converge for all the values of plate length, the
results were used to find under what conditions
radiation may be neglected.

The present study is aimed at determining the
temperature profile of a thermal system involving
internal energy generation and conduction
Externally, heat is rejected to a flowing trans-

g
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parent gas by convection and to constant
temperature black surroundings by radiation.
Similar problems are encountered in thé design
of aircraft and missiles, hot wire anemometry,
cooling of electronic instruments and other
areas.

2. ANALYSIS OF THE PLATE TEMPERATURE
DISTRIBUTION

Derivation of the governing equations

Consider a vety thin flat plate of finite length
and infinite width with uniform internal genera-
tion of thermal energy. Let there be a flow of
transparent gas over one face of the plate and
let the other face be insulated (see Fig. 1). It is
assumed, here, that the thermal conductivity of

e , To
—
— .
