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SYMBOLS ' 

A area of a histogram or fourier coefficient 

ARxy amplitude ratio 

ARG principal angle of a complex number 

a real number 

B fourier coefficient 

B e bandwidth of the estimate 

Bw half bandwidth for a bandpass digital filter 

b real number 

CXY coincident spectrum 

C x (z) autocovariance function 

1 expected frequency in the ith class for X2-statist 

e base of natural logarithms 

F fourier transform operator or F-statistic 

F - I  inverse fourier transform operator 

f frequency variable 

fa center frequency for bandpass filter 

fN Nyquist frequency 

fo0break frequency 

fl' f2 values of the frequency variable 

" X one-sided power spectrum of input X 

Gy complex-valued cross spectrum 



GyYone-sided power spectrum of output Y 

G (s) transfer function, S-plane 

G(z) transfer function, Z-plane 

ffx(f) frequency response function, X input, Y output 

H (e i ) I complex-valued transfer function 

H (z) transfer function 

Im imaginary part of a complex number 

i index., dummy variable, or 

j, k indexes 

m dummy variable or mean square 

mil, m2 ,, In3 , m4 first, second, third, and fourth central moments, respectively 

n number of samples, number of intervals, or order of a digital 

filter 

(?) combinations, n things taken j at a time 

n 1, n 2 degrees of freedom for the F-test 

0. observed frequency in the ith class for the X -statistic 

P (X < x) -probability the random variabre, X takes a value less than 
or equal to x 

P1' P2 Pn poles of a transfer function 

QXY quadrature spectrum 

RX (r) autocorrelation function 
I 

Re real part of a complex number 

R (-r) ensemble average of the RX (t) 

r dummy variable 
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A 
r 

rk 

confidence interval estimate 

roots of a trigonometric polynomial 

S 

s 

sX 

Laplace transform variable 

standard deviation 

sample standard deviation for random variable X 

X sample variance for random variable X 

T 

TF y 

t 

U() 

u 

u (k) 

sampling period, or total length (in time) of a sample 

transfer function gain, X input, Y output 

time parameter, dummy variable for integration, or Student's 

t-test statistic 

fourier transform of u (t) 

real variable 

discrete sinusoidal function 

u (t) boxcar function: u(t) = TO<thwse 

v 

X 

R 

Xt 

-

real variable 

random variable or input signal 

sample mean value 

input, at time t 

X1 , X2 ..... Xn collection of random variables 

X(f) 

X (z) 

x, y 

x t 

fourier transform of x(t) 

input as a function of z 

real numbers 

sampled (discrete) real-valued function of time 

x (t) continuous real-valued function of time 
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Y output signal 

Y(f) fourier transform of y(t) 

Y (z) output as a function of z 

Yt output (discrete) at time t 

y (k) discrete output 

y t) continuous, real-valued function of time 

Z Z-transform variable or standard normal random variable 

z complex variable 

areal number; coefficient of a-digital filter or a probability 
value 

real number or coefficient of'a digital filter 

r gamma function: r (x) = ftY-l e-tdt 
0 

2Xy coherence function 

A increment 

At time interval 

8(f - f 1 - f2 ) delta function at f - f1 - f2 

s _normalized standard error for power spectrum 

e phase angle 

0 Xy phase angle, X input, Y output 

Lpopulation mean 

LX population mean for random variable X 

Lw mean of a frequency domain parameter at frequency co 

v degrees of freedom for X2- or F-statistic 
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G population standard deviation 

a2 population variance 

2 

x variance for random variable X 

GCvariance of a frequency-domain parameter at frequency co 

lag variable for correlation functions; dummy variable for 
integration 

9 (f) phase angle 

X2 test statistic 

frequency variable 

o 0 break frequency for low-pass filter 

0)1- break frequency for high-pass filter 

Subscript: 

o initial term 

An asterisk indicates a complex conjugate.
 

A superscripted caret indicates an estimated value.
 

A prime indicates the addition of a dummy variable.
 



INTRODUCTION 

The statistical problems with which the spectrum analysis (SPA) program is con­
cerned arise when data come in the form of a time series; that is, a collection of 
numerical observations made at equally spaced.time intervals. These data can be 
analyzed in two ways. First, the time series can be examined for usual statistical 
properties, like mean, variance, form of the distribution the data come from, and 
so on. Such analysis is called time domain analysis; the time series is simply 
treated as a collection of independent observations. Secondly, the fact that the data 
were collected in order, at specified time intervals, can be used to examine the time 
series for periodicities. Further, more than one time series may be examined for 
possible interactions or cause-effect relationships. 

In almost all practical applications, the data collected are actually the sum of the 
desired signal and noise. In most cases noise may be represented (or, at worst, 
approximated) as stationary, normal, and random with zero mean. The noise-plus­
signal functions can be usefully studied in terms of the autocorrelation or power 
spectrum of this signal. 

To determine the properties of a process exactly, however, requires data to be 
measured perfectly for an infinite time and computing equipment of infinite precision. 
Such requirements are, of course, impractical. As a result, the parameters sought 
(mean, power spectrum, or whatever) are estimated from finite-precision, finite­
length records, and thus the results are actually estimates and their confidence 
intervals. Statistical estimation is what SPA is all about. The only difficulty is the 
extensiveness of the data required for highly precise estimates and the suitable 
interpretation of the estimated quantity. 

A function of time x(t) generated by some random, stationary process (stationary 
being the mean value and power spectrum independent of when a sample is taken)
has a value which may be viewed as a random variable with a probability distribution. 
A given x(t) may also be considered to be only one of an ensemble of random functions 
which might be generated by the stationary random process. A given x (t) is assumed 
to be representative of the entire ensemble. The importance of normality for the 
distribution of the error signal comes, of course, from the statistics of confidence 

2interval estimation. The usual statistical tests (t, X , and so forth) have at their 
foundation the normality assumption. Additional uncertainties in actual variability
due to either nonnormality in the error portion of the signal or to changing conditions 
among runs (or both) can often be alleviated successfully by prior treatment of the 
data. Such procedures as detrending and digital filtering can serve to make the 
time series more stationary. The final precision of an overall result is more wisely 
judged by the observed consistency of repeated measurements (as by analysis of 
variance) than by any purely theoretical variability argument based on a normal 
distribution assumption. 

As mentioned earlier, practical considerations in the estimate of power spectra 
can involve enhancing the stationarity of the ,data. The autocovariance function 
RX (r) defined at a lag value T is given by the following equation for a zero mean 

process, x(t): 
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X 

T
 

RX(t) = lim 2x(t)x(t + Odt
T- J T 

T 

In ensemble terms, R(t) is the average of the RX(0 for each ensemble. The auto­
correlation function is the normalized autocovariance function; namely, RX (O)/R (0). 
This autocorrelation function is used throughout this presentation. For a process 
with nonzero mean, the formula is given in the section entitled Program Use. 

The autocovariance and power spectrum are fourier transforms of each other. 
The autocovariance function is 

T 
R lim x(t)x(t + r)dt 

RxT)- liT= 

2 

and the power spectrum, Gx (f), is as follows: 

2 
1 r2T 

-i2nrft 
Gx(f) = linr T x(t)e dt 

T T 

= lim x(t)e-i2 ftdtf x(t)e i2 ftdt 
T-of T T

2 2 

where the complex absolute value is a number times its conjugate. Then, by letting 
u equal t-t' and v equal t', 

Gx(f) = inM T 2- x(v)x(v + u)d e-127fudu + 2 x(v)x(v 4 u)dV e-i2fUdu 
T-c0 JT T _T
 

2 u
2 


T 

= 11 -iUnfu
 
= - -TnTTx(v)x(v +u)e du
 

T
1 (2 -12 fu
 

= 11M' Rx(Oe du
 
T'--Y T
 

27 



At first glance selecting which of the estimates (power spectrum or autocorrel­
ation) will be used appears to be purely a matter of convenience. In fact, when both 
quantities must be estimated, the use of the power spectrum is preferred, since the 
statistical effects of random noise (confidence intervals) and finite time intervals are 
better known. 

The power spectrum 

2T 

G x fM= lir 1 x(t)e-i27ftdt 
T-o J T 

describes the contribution to variance of the original time series from f to f + df. 

Notice now that if the time series examined violates the stationarity assumption
by exhibiting trend (that is, the mean value is a function of time), the frequency 
spectrum will be contaminated by the summing into the spectrum of the original
signal the additional frequency components necessary to resolve the ramp or trend 
in the time domain. 

Digital filtering can serve to isolate frequency ranges and to examine the spectra 
of the filtered signal. But even low-pass filtering is not sufficient to eliminate the 
effects of trend completely; the frequency components above the break frequency 
(for the low-pass case) would remain. 

The examination of a finite time length series amounts to looking at an infinite 
fourier transform of a truncated function. Consider the function xT for a finite 

2T . 
iime1 2 -i2,tft

length of time im which is equivalent to 

f 1td2 <1<T 
x t 2 ft where u(t)= o2er 2 . We are, in point of 

fC x u~et 0Otherwise 

fact, transforming a product of functions. 

Let F be the fourier transform operator; then 

F[x (t)u t)]= FIF-[X (f)]F-[U (f)] I 

where X(f) =F[x(t)], U(f) =F[u(t)]. So we have 
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d h e n c e Lf . X(f U(f 2 )exp[-i21r(ft - fIt - f 2t)]dtdf 1df2 a n 

F[x(t)u(t)] j 4 X(f )U (f 2 )f exp[-i2(t - f1 - f2 )Ildtdf1 df2 

= X(f 1 )U(f 2 )8(f - f 1 - f2 )df1 df2 

where 8 (f) is the impulse function, which is the fourier transform of f(t) = 1. Then 

jthe above becomes X(fJ)_ U (f 2 )(f - f - f2 )dfjdf2 which equals 

jt X(f1)U(f - f1)dfl. 

This is known as the convolution of X and U; hence, the product of our original 
signal and the boxcar function in the time domain result in the convolution of the 
fourier transform of the original signal with the fourier transform of the boxcar 

function. If u(t) = T then 

U(f)=j u(t)e- 2Mftdt 

T 
f -i27tft d 

_ 1 -i2ift t= T 
-i2,f e t= -T 

= ~{f [cos 2itft - i sin 2,tft- cos (-27tft) + i sin (-2tft)] 

2 sin (21fT) 
2nf 
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Therefore U (f) resembles the sketch below. 

2T 

U W(-­

0 

TT 
Frequency, rad 

Hence we convolve the fourier transform of our original function with the above
1 

(sin x)/x function. The side lobes (beyond T area) amount to smearing power from 

one frequency to adjacent frequencies. To alleviate this smearing, the data are 
windowed. This amounts to lowering the power spread to the side lobes at the 
expense of wider resolution. 

U(f) 

T TT 

Frequency, rad 

As a final note, in the SPA program records of arbitrary length may be analyzed. 
If more than 2048 points are to be analyzed, the program does the fourier transform 
in parts. At most, 1024 points will be put in the frequency domain. The resolution 
in the frequency domain will be samples per second divided by the number of points 
in the time domain, unless the number of points in the time domain is greater than 
2048. In that case the SPA program will break up the record into parts and fourier 
transform each part. This is equivalent to frequency averaging an estimate to increase 
the number of degrees of freedom. The windows are then passed over the averaged 
spectrum. This will be dealt with more extensively in the following section. 
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INPUT 

Inputs to the SPA routine can be in either of two forms: data cards that indicate 
what type of analysis is to be performed on what parameters at what times, and 
actual data on a temporary or permanent file in a standard form (one expected by 
SPA). 

Data Card Input 

The data card input to the SPA program is described in detail in Program Use. 
Briefly, the input cards are: nanelist $CARDIN, namelist $FLTRIN, namelist 
$STATIN, namelist $RMSIN, namelist $PSDIN, and namelist $CSIN. 

Cards in all categories except namelist $CARDIN are optional, depending upon 
which tasks the SPA program is to accomplish. For example, if only power spectral
densities (PSD's) ,are required, there could be no nameli9t $FLTRIN, $STATIN, or 
$RMSIN cards. Namelist $CARDIN directs the main program in selecting what 
tasks are to be performed. 

Data Files 

When data files are used, the data input to the SPA routine is discrete (sampled) 
and the sampling rate is assumed to be constant. The sampling ratemust be at 
least twice the highest frequency present in the data. 

The user must previously have stored his data on a file in a format expected by 
SPA. The user may use his own program for this purpose or one previously
designed. An example of one of these programs, used in this case to read pulse,
code modulation (PCM) tapes, is shown in figure L. 

The SPA program then reads and takes data from this file (file 2) and puts it-on 
a working file (file 4) for the SPA program to analyze. The data are unformatted. 
File 4 is a temporary file and is lost when the job terminates. 

The data files managed by SPA are organized in the following manner (file 1 is
 
reserved for input and file 3 is reserved for output). File 2 contains all data to be
 
analyzed (multiple time intervals). File 4 contains a single time interval of data
 
(used for processing by SPA). File 5 contains the same time interval as file 4,
 
except that file 5 contains filtered data. All files are written unformatted.
 

File 2.-File 2 is created in the first job step. The file contains all the data to be 
analyzed; -the data are organized by time interval. There may be as many time 
intervals as desired. File 2 is written as follows: 
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TITLE
 
NCH,SPS
 
CID (1) , CID (2), .. , CID (NCH)
 
T1,T2,XMILLI,DATA (1),DATA (2), 

Ti,T2 ,XMILLI,DATA (1),DATA (2), 


T1,T2",XMILLI,DATA (1),DATA (2), 

EOF
 

... ,JDATA(NCH) 

...,DATA_(NCH) First time 

interval 

...,DATA (NCH) 

ST (1),ST (2),ST (3), ST (4) ,ET (1),ET (2) ,ET (3) ,ET (4)
 

TITLE
 
NCH,SPS
 
CID (1), CID (2), ...,CID (NCH)
 
T1,T2,XMILLI, DATA (1),DATA(2), 

T1,T2 ,XMILLI,DATA (1),DATA (2), 


T1,T2,XMILLI,DATA (1),DATA (2), 
EOF
 

...DATA (NCH) 

... ,DATA (NCH) Second time 

interval 

...,DATA (NCH) 

ST (1), ST (2),ST (3),ST (4) ,ET (1),ET(2) ,ET (3),ET (4)
 

TITLE
 
NCH, SPS
 
CID (1) ,CID (2) .. ,CID (NCH)
 
TI ,T2 ,XMILLI ,DATA (1) ,DATA (2), . DATA (NCH)
 
T1,T2, XMILLI,DATA (1), DATA (2),... ,DATA (NCH)
 

Last time 
interval 

T1,T2,XMILLI,DATA (1),DATA (2), ...DATA (NCH)
 
EOF
 
ST (1), ST (2), ST (3), ST (4) ,ET (1) ,ET (2Y,ET (3),,ET (4)
 
EOF
 

where 

TITLE eight-word array containing title information for that interval 

NCH number of channels being processed for that interval; 
are allowed 

10 or fewer 

SPS sampling rate (samples per second) 

CID (I) channel identification for the ith channel 
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Ti ,T2 time for those data in alphanumeric code; for example, 

HR-MN-SC-MSC --------

Ti T2 

XMILLI time for those data in total milliseconds, as follows: 

XMILLI = MSC + 1000(SC + 60(MN + 60HR)) 

DATA(I) data value for the ith channel 

ST four-word array which contains the start time (hours, minutes, 
seconds, milliseconds) for that time interval 

ET four-word array which contains the end time (hours, minutes, 
seconds, milliseconds) for that time interval. 

File 4 and file 5.-Files 4 and 5 are working files created in SPAMAIN from the 
master file (file 2). File 4 is made up of unfiltered data. File 5 is made up of filtered 
data. These files are-used by SPA for actual processing and hence must be conti­
guous in time. The form for both files is 

Ti ,T2 ,XMILLI ,DATA (1) ,DATA (2),... ,DATA (NCH) 
Ti ,T2 ,XMILLI ,DATA (1) ,DATA (2), ... ,DATA (NCH) 

T1,T2,XMILLI,DATA (1) ,DATA(2),... ,DATA (NCH) 

where Ti, T2, XMILLI, and DATA (I) are as in file 2. Figure I is the PCM front end 
(the job that creates a SPA file 2 from PCM input tapes). 

OUTPUT
 

The types and forms of output for the SPA program are many. Output is both 
listed (printed) and plotted. Each input card to the SPA program is printed so that 
the integrity of the input information can be verified. 

The first thing the SPA program does is to filter and/or detrend the input data. 
The filtered data may be listed (by specifying PRINT=T in namelist $FLTRIN). In 
addition, or as an alternative, both the filtered and unfiltered data may be plotted 
(on a common time axis) by specifying PLOTFL=T in namelist $CARDIN. The time 
domain statistical parameters that may be listed are mean value, variance, standard 
deviation, root mean square (rms), data maximum, data minimum, number of 
observations, skewness, and kurtosis. 

When a histogram is requested, a frequency histogram is produced and a normal 
curve with the same mean and variance as the data is fit to it. A statistic showing 
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PROGRAW PCMIO (INPUT,OUTPUT,TAPEi=INPUT.TAPE2,PCNi=8,PC2=8)
 
COMION/PGMCOI/KEYNFILE,NCHNFRLFRST.ET.AST,AET,OAY,RATESYSTEN
 
O1CNSIOJ CI3(iO),TITLE(8) ,DATA iOvi)
 
REAL MILLI(I)
 
INTEGER ST(4).ET(4),AST(4),AET(4),CH(iO),TV(i),TIME(2,i).EU(iO),

-SYSTEV
 

LOGICAL PFINTIT,ENDTIME
 
NAMELIST /PCMIN/ STET,NFILENCHCHPRINTIT,SPSSYSTEM
 
NFP = i
 

I REAO (1,itl) TITLE
 
i.0 	 FORMAT (BAlD) 

IF (EOF(i).NE.O.) GO TO 999 
WRITE (2) TITLE 
REAQ PCMIN 
PRINT FOMIN 
WRITE (2) NCH,S S 
REAF) 101, (CID(I),I=1,NCH)
 
WRITE (2) (CID(I),I=i,NCH)
 
ENOTIME = .FALSE.
 
LINE = 0
 

KEY = 0
 
RATP = SPS
 

2 CALL PCIOUT (DATA,CH,MILLITIMETV,EU), RETURNS(6,7,8)
 
3 	IF (.NOT.PRINTIT) GO TO 5
 

IF (MOO(LINE,55).NE.O) GO TO 4
 
PRINT 102. TITLE
 

1i2 FORMAT (iiBAID) 
PRINT 103 

103 FOPMAT (/T±5,"UNFILTEREO DATA FROM PCM TAPE-) 
PRINT 1041 (CID(I),I=iNCH) 

104 FORMAT (/T16,9(AiO,2X),AIO) 
4 PRINT 105, (TIME(J.i),J=.2),(DATA(I,I),I=I,NCH) 

105 FORMAT (±Y,A1O,A2.IOEi2.'5) 
LINE = LINF - 1 

5 	WRITE (2) (TIME(J,i),J=i,2),MILLI(i),(DATA(I,I),I=1,NCH)
 
IF (ENCTINE) GO TO 9
 
GO TO 2
 

6 ENDTIME = .TRUE.
 
GO TO 3
 

7 ORINT 106, ET,STNFILE
 
106 FOP'AT (" ENO TIE"9414," BEFORE START TIME',4149" IN FILE,1I4)
 

GO TO 999
 
8 PRINT 107, STNFILE
 

107 FORMAT (414,*" N3T IN FILE",I4." PASS ABORTED.")
 
GO TO 299
 

9 ENODILF 2
 
WRITE (2) ASTAET
 
GO TO 1
 

999 	ENDFILE 2
 
REWIND 2
 
END
 

Figure 1. Program that reads PCM data and writes data in 
standard SPA format. 

ORIGINAL PAGE IS
 

OF POOR QUALITY
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how well the observed histogram fits a normal curve with the same mean and variance 
(the goodness of fit statistics) is produced and listed. This statistic and the time 
domain statistical parameters listed above are included in the histogram plot. 

When output is printed (as opposed to plotted), the first 10 lag values of the auto­
correlation values are listed in addition to the parameters mentioned above. (The 
autocorrelation value for a lag of 0 is, by definition, 1.) 

If the full range of statistical parameters and histograms is not required, one may 
choose to print only the rms values and the variance by using the $RMSIN namelist. 
The data from which the root mean square is computed may also be listed. Both 
the statistical summary and the rms analysis may be done over any subinterval 
(or the entire interval) of the data; the data may be either filtered or unfiltered. 

The spectrum analysis parameters may be printed or plotted. Here there is a 
wide range of choices. Power spectral densities may be of raw or filtered data (any 
time interval). The data may be smoothed by a Hamming, Hann-Tukey, Bartlett, 
or moving average smoothing window and may be frequency averaged by specifying 
additional degrees of freedom for each estimate. They may also be left unsmoothed 
and unaVeraged, if desired. The number of points in the smoothing window (from 
three to 35) may be selected by the user. The same is true of cross-spectrum, 
transfer function, amplitude ratio, and phase angle estimates. 

Since the coherence function is meaningful only for smoothed estimates, it will 
be smoothed automatically. The user still has the option of selecting the window to 
be used for smoothing and of increasing the number of degrees of freedom of the 
estimate by frequency averaging. This is done simply by specifying the minimum 
number of degrees of freedom desired. 

The sections of this report entitled General Description of Spectrum Analysis
 
Program Options and SPECTRUM ANALYSIS PROGRAM TECHNICAL DESCRIPTION
 
provide more details about the above options.
 

PROGRAM USE 

General Description of Spectrum Analysis Program Options 

SPAMAIN. -The SPA program is driven by SPAMAIN. This routine reads the 
namelist $CARDIN with ,the parameters FILTER, DETREND, PLOTFL, STATIST, 
HGRAPH, RMS, and PSD. All these parameters are logical. DETREND=T if data 
are to be detrended; FILTER=T if data are to be digitally filtered; PLOTFL=T if 
filtered and unfiltered data are to be plotted against a common time axis; STATIST=T 
if a time domain statistical analysis of the data is to be made; HGRAPH=T if a histo­
gram of the data is desired; and PSD=T if any spectrum analysis is to be done. All 
these logical variables guide SPAMAIN in selecting the subroutines to be called. 
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Notice that if PLOTFL=T, FILTER must also be specified as true, and that if 
HGRAPH--T, STATIST must also be specified as true. This routine also takes the 
user's data one set at a time from file 2 and puts it on the temporary working file 
(file 4) for processing. 

Detrendinr.-TheSPA program can detrend the data before digital filtering. 
This option is exercised by specifying DETREND-T in the $CARDIN nanrelist. This 
operation is recommended for three reasons. First, linear trends introduce fre­
quency components across the entire spectrum, and high-pass digital filtering will 
remove only the low frequency components, leaving the high frequency components. 
Secondly, removing trend will remove the mean value from the data, thus eliminating 
a delta function at zero. Thirdly, spectrum analysis is predicated upon stationary 
data-data which have mean and autocorrelation functions that are not time dependent. 
Detrending will make the mean value less time dependent, thus enhancing the 
stationarity of the data. 

Digital filtering. -The SPA program has Butterworth design digital filtering

capabilities. It will high pass, low pass, or bandpass, and the filters available
 
are order 1, order 3, and order 4. The order of the filter is the number of pores 
the filter transfer function has in the left half of the Z-plane. (The order will-there­
fore determine the number of terms in the recursive filter'.) An order 3 filter 
resembles the following equation: 

3 
Yt = axt + ixt-i + iyt (1)

i=1 

where 

Yt output of filter at time t 

x t input to the filter at time t 

Yt-i output of the filter at time t - i 

xt- i input to the filter at time t - i 

The form of the transfer function of the ideal filters is as follows: 

Low-pass filter 

Amplitude 

Frequency
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High-pass filter 

Amp pdtuded 

o f 

Frequency 

Bandpass filter 

Amplitude 

o f-B w f f *Bf fN 

Frequency
 

where 

fo0 break frequency 

fN Nyquist frequency 

fc center frequency for bandpass filter 

BW half bandwidth for bandpass filter 

The order of the digital filter determines how closely the actual filter transfer 
function approximates these ideal forms. In other words, the order I high-pass and 
low-pass digital filters have transfer functions which resemble 

Order 1 low-pass filter 

Amplitude 

0 f0N 

Frequefcy
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Order 1 high-pass filter 

L 

Amplitude­

0 fo fN
0 

Frequency
 

and the order 4 digital filters have transfer functions which resemble 

Order 4 low-pass filter 

AmplitudeII 1i 

10f fN 

Frequency
 

Order 4 high-pass filter 

Amplitude 1[ 

o fo f 
0 0 "N 

Frequency
 

The higher-order filters have better frequency response characteristics, but they 
are more susceptible to stability problems; if the break frequency is set too close 
to zero or fN they require slightly more computer time, and they have a longer rise 

time. 

The Butterworth filters are down 3 decibels at the break frequency, f0 " Changing 

the order only affects the filter rolloff. Stability problems are the result of finite 
precision arithmetic. The number held in core is a rational approximation of the true 
value of the coefficients ai and Pi in equation (1). Hence, with a large number of 
recursive terms, the errors can propagate ext6nsively. 

The filter rise time is the time it takes the filter to begin outputting reasonable 

values. When the first data point is read in, the lagvalues (xt_lxt2 , ... Yt-l' 

Yt-2 .... ) are set to zero (for high-pass filters) or the first data point (for low-pass 
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filters), so the first few points filtered do not represent the time series being filtered 
accurately. The number of points the filter requires before it starts to produce
acceptable results depends upon the filter order and the break frequency. In 
general, the higher the order and the closer the break frequency to zero or fN 
the greater the rise time. 

Thebandpass filter is a cascaded fourth-order high-pass and low-pass filter. 
The transfer function resembles 

Amplitude 

0 fc- B f fe + B fN 

Frequency
 

The rise time for the bandpass filter is comparable to the rise time for the fourth­
order high-pass or low-pass filters; it also depends on how close f + BW is to fN 
and how close f - BW is to zero. 

c 

Data plotting routine,-The data plotting routine plots filtered and unfiltered 
data on a common time axis. The routine is called by setting PLOTFL=T in the 
$CARDIN namelist. There is no namelist for this routine. If this option is to be 
exercised, FILTER=T must also be specified in $CARDIN and there must be a namelist 
card $FLTRIN specifying how the data are to be filtered. 

Statistical analysis routines.-The statistical analysis routines are divided into 
three sections: rms analysis, general statistical analysis, and histograms. 

The rms analysis section produces only rms and variance values for either 
filtered or unfiltered data for any time interval. To obtain rms and variance values, 
one must specify RMS=T in $CARDIN and include a $RMSIN namelist.. The time 
interval specified in this $RMSIN namelist card specifies the time period for which 
the rms and variance values will be computed. For rms and variance values of 
unfiltered data, one specifies ND=4 on this card; for filtered data, ND=5. 

The general statistical analysis includes mean, mean square, rms, variance, 
standard deviation, skewness, kurtosis, data editing, and the first 10 lag values 
for the autocorrelation function. To obtain these parameters one must specify 
STATIST=T in the namelist $CARDIN and include a $STATIN namelist. In $STATIN 
one specifies the time interval desired and whether the data are filtered or unfiltered. 
One may also specify maximum and minimum values for data editing. Values beyond
the minimum and maximum are not included in the analysis, and no substitution for 
these points is made. 
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Histograms of the data are obtained by specifying HGRAPH=T in namelist $CARDIN. 
The histograms of the data are fitted with a normal curve (based on data mean and 
variance). In addition, when plotting histograms the SPA program will divide the 
range of the data into 20 intervals. More or fewer intervals may be specified in 
$STATIN. From one to 40 intervals may be requested for the histograms. 

The goodness of the fit of the normal curve to the histogram (the X -statistic) 
is printed above the histogram, along with the parameter's mean, mean square, 
root mean square, variance, standard deviation, data maximum and minimum, 
skewness, and kurtosis. 

Spectrum analysis routines.-The spectrum analysis routines are divided into 
two portions: autospectrum and cross spectrum. The autospectrum (sometimes 
called the power spectrum or power spectral density) sections produce only auto­
spectra. The cross-spectrum section produces cross spectral density, phase angle, 
transfer function, amplitude ratio, and coherence functions. These functions can be 
plotted, listed, or both. The spectrum routines are called by specifying PSD=T in 
namelist $CARDIN and by including $PSDIN namelist cards (for autospectra) or 
$CSIN namelist cards (for cross spectra). In these namelist cards one specifies the 
time interval desired, the type of data desired (ND=4 for unfiltered data, ND=5 for 
filtered data) and the parameters desired. The spectrum estimates may be plotted 
with linear log or decibel scales and smoothed with Hamming, Hann-Tukey, 
Bartlett, or moving average smoothing windows. For more details on spectrum 
functions, see the section entitled SPECTRUM ANALYSIS PROGRAM TECHNICAL 
DESCRIPTION. 

Job Card Setup 

The job card setup below is for two-step SPA execution using the PCM example 
shown in figure 1. 

PCMSPA,NT1,SSSS,FTN.
 
ATTACH (PCMFRNT ,ID=SPA ,MR=I)
 
REQUEST (PCMSj ,NTMF,PE,EVSN=XXXX),
 
LABEL-(PCMI ,R,M=PCMSj ,L=ZZZZ) RING OUT
 
FILE (PCMj ,BT=C,RT=W ,EO=AD ,MBL=5120 ,MRL=5110)
 
LDSET (FILES=PCMj)"
 
LOAD (PCMFRNT)
 
EXECUTE. 
ATTACH (SPALIB, ID=SPA,MR=I ,PW=RD) 
ATTACH (SPADIR ,ID=SPA ,MR=I ,PW=RD) 
UNLOAD (PCMSj) 
RFL(120000) 
LDSET (LIB=SPALIB) 
SEGLOAD (I=SPADIR) 
EXECUTE. 
REWIND (TAPE13) 
RETURN (TAPE2 ,TAPE4 ,TAPE5) 
LABEL (SPAPLT,W ,L=SPAPLOTTAPE ,D=HD ,VSN=YYY) RING IN 
COPY (TAPE13 ,SPAPLT) 
7/8/9 
[Enter PCM setup cards] 

71/8/9 
[Enter SPA setup cards]
 
6/7/8/9
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where 

SSSS subtask number 

XXXX volume serial number 

j PCM system number 

ZZZZ PCM tape label 

YYYY volume serial number 

Data Card Setup 

The data setup for the SPA program consists of six sections: namelist $CARDIN, 
namelist $FLTRIN, namelist $STATIN, namelist $RMSIN, namelist $PSDIN, and 
namelist $CSIN. 

Namehst $CARDIN. -Namelist $CARDIN is the input card to the SPA program that 
allows the user to select options. 

The namelist name must begin with the $ in column 2 of the input card. The 
$ must be in cblumn 2 for all namelists in SPA. 

The parameters in $CARDIN are DETREND, FILTER, STATIST, RMS, PSD, 
PLOTFL, and HGRAPH. All variables are logical, and all have default value false. 

DETREND is a logical variable used for decision on the call to the data detrending 
routine. DETREND=T will cause linear trends to be removed from the data written 
in file 4 (unfiltered data). DETREND=F will cause the data on file 4 not to be 
detrended. The detrending is done before any filtering is done. Hence, if the data 
are digitally filtered by SPA, the data filtered will be either detrended or not 
detrended, depending on the variable DETREND. 

FILTER is a logical variable used for decision on the call to the digital filtering 
routine. If FILTER=T, the data on file 4 will be digitally filtered; if FILTER=F, the 
data will not be filtered. If FILTER=T, namelist $FLTRIN must be in the setup. 

STATIST is a logical variable used for decision on the call to the statistical analy­
sis routine. If STATIST=T, either the filtered or the unfiltered data (or both) may be 
analyzed, depending on what is specified in the namelist card $STATIN. If 
STATIST=T, there must be at least one $STATIN namelist, and there may be more. 

RMS is a logical variable used for decision on the call to the rms analysis routine. 
If RMS=T, the rms analysis routine will be called; if RMS=F it will not be called. If 
RMS=T, there must be at least one $RMSIN namelist (there may be, more). Either 
filtered data or unfiltered data (or both) may be analyzed. 

PSD is a logical variable used for decision on the call to the spectrum analysis
routines. If PSD=T, the spectrum analysis routines will be called; if PSD=F, 
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spectrum analysis will not be called. If PSD=T, there must be at least one $PSDIN 
namelist card and at least one $CSIN namelist card. 

PLOTFL is a logical variable used fot decision on the call to the routine that plots 
the filtered and unfiltered data on a common time axis. If PLOTFL=T, a plot for each 
channel of the data will be made (each SPA channel, file 4, the working file). If 
PLOTFL=T, FLTER=T must be specified. 

HGRAPH is a logical variable used for decision on the call to the routine which 
plots a histogram of data (either filtered or unfiltered). If HGRAPH=T, histograms 
will be produced for each STATIN card as well as a statistical summary printout. 
If HGRAPH=T, STATIST=T must also be specified. 

The organization of the namelist SPA input, based on parameters in the $CARDIN 
namelist, is shown in figure 2. 

dtrending
No 

Read $FLTRIN 

FITR-?Yes namelist card, 

do fltering 

card (s),Figure 2 $namelist
2do

s 
statistical 

analysis
No 

Read $RMSIN 
Namelist card (s) ,

T2Yes
R S 
 do rms 

calculationsNo 

Read SPSDIN and 

$CSIN namelist
Yes cards, do spectrum 

analysis 

Figure 2. $SCARDIN namelist. 
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Namehist $FLTRIN. -If FILTER=T is specified in namelist $CARDIN, there must 
be one namelist $FLTRIN card. The parameters in $FLTRIN are HIPASS, LOPASS, 
BANDPAS, ORDER, BREAK, FC, BW,' and PRINT. ORDER is an integer, and BREAK, 
FC, and BW are real numbers; all the remaining variables are logical. 

HIPASS is a logical variable. HIPASS=T yields high-pass filtering; HIPASS=F 
indicates that high-pass filtering is not desired. 

LOPASS is a logical variable. LOPASS=T yields low-pass filtering; LOPASS=F 
indicates that low-pass filtering is not desired. 

BANDPAS is a logical variable. BANDPAS=T yields bandpass filtering; 
BANDPAS=F indicates that bandpass filtering is not desired. 

ORDER is an integer that indicates the order of the filter for high-pass or 
low-pass filtering. First-, third-, or fourth-order digital filters may be employed. 
For bandpass filtering the program automatically selects fourth order, no matter what 
value ORDER has. 

BREAK is a real number that indicates which break frequency, in hertz, is to be 
used whenever high-pass or low-pass filtering is selected. 

FC is a real number that indicates the center frequency of the band to be passed 
if bandpass filtering is selected. 

BW is a real number that indicates the half bandwidth of the bandpass filter. The 
frequencies passed by the bandpass filter are those in the interval FC - BW to 
FC + BW. 

PRINT is a logical variable. PRINT=T implies that filtered data will be listed.
 
PRINT=F suppresses such output.
 

The default values for $FLTRIN are HIPASS=T, BANDPAS=F, ORDER=3,
 
LOPASS=F, PRINT=F, and BREAK=3. FC and BW have no default values and must be
 
provided.
 

Namehst $STATII.-If STATIST=T is specified in namelist $CARDIN, there must 
be at least one namelist $STATIN card; there may be as many of these cards as 
desired. The last $STATIN card, however, must have the parameter STOP=T 
specified. The parameters in $STATIN are ST, ET, ND, TSTVAL, INTRVL, and 
STOP. All are integers, except for TSTVAL, which is a real number, and STOP, 
which is a logical variable. 

ST is a four-word integer array containing the start time in hours, minutes, 

seconds, and milliseconds for statistical analysis. 

ET is a four-word integer array containing the end time for statistical analysis. 

ND is an integer specifying whether filtered or unfiltered data will be analyzed.
 
ND=4 implies that the data to be analyzed will be taken from file 4, which contains
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the unfiltered data. ND=5 implies that the data to be analyzed will be taken from 
file 5, which contains the filtered data. 

TSTVAL is a real array with dimensions of 2 X 10. With TSTVAL, the user may 
censor data. TSTVAL (1,1) and TSTVAL(2,1) specify minimum and maximum values 
for data on the first parameter (that is, data outside the range from TSTVAL(1,1) 
to TSTVAL(2,1) will be censored). Similarly, TSTVAL(1,2) and TSTVAL(2,2) 
specify minimum and maximum values for data on the second parameter, and so 
forth. If no values are specified for TSTVAL, the program will do no data censoring. 

INTRVL is an integer array with dimension of 10, which specifies the 
number of intervals the data range will be broken into for the histogram. INTRVL (1) 
is the number of intervals for the first parameter, INTRVL(2) is the number of 
intervals for the second parameter, and so forth. The default value for each INTRVL 
array member is 20. 

STOP is a logical variable used to indicate that the last $STATIN card has been 
read. Thus, STOP is omitted from each $STATIN card except the last one, where 
STOP=T must be specified. 

The default values for namelist $STATIN are ND=5; STOP=F; TSTVAL(I,J)=0, 
I=1,2, J=1,2,...,10; INTRVL(I)=20, I=1,2,...,10. Once again, setting all TSTVAL 
values at zero implies that data censoring will not take place. 

Namelist $RMSIN. -If RMS=T was specified in namelist $CARDIN, there must be 
at least one namelist $RMSIN card; there may be as many $RMSIN cards as desired. 
The last card must specify STOP=T. The parameters in $RMSIN are ST, ET, ND, 
PRINT, and STOP. ST, ET, and ND are integers; PRINT and STOP are logical 
variables. 

ST is a four-word integer array that specifies the start time in hours, minutes, 

seconds, and milliseconds for rms analysis. 

ET is a four-word integer array that specifies the end time for rms analysis. 

ND is an integer disk number specifying whether filtered or unfiltered data will 
be analyzed. ND=4 implies that the data for rms analysis will be taken from file 4 
(the unfiltered data). ND=5 implies that the data for rms analysis will be taken from 
file 5 (the filtered data). 

PRINT is a logical variable. PRINT=T will cause the data analyzed for rms value 
to be printed out. PRINT=F will suppress such output. 

STOP is a logical variable used to indicate that the last $RMSIN card has been 

read. STOP=T should be specified only in the last $RMSIN namelist card. 

The default values'for $RMSIN are STOP=T, ND=4, and PRINT=F. 

Namelist $PSDIN.-IfPSD=T was specified in namelist $CARDIN, there must be at 
least one $PSDIN and at least one $CSIN card. All the $PSDIN cards precede all the 
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$CSIN cards. The last $PSDIN card must be $PSDIN STOP=T $, and the last $CSIN 
card must be $CSIN STOP=T $. The parameters in $PSDIN are ST, ET, XTYPE, 
YTYPE, ISMO, NW, PSDLSTR, PSDLSTS, PSDPLTR, PSDPLTS, CH, ND, DOF,
YMIN, YMAX, and STOP. YMIN and YMAX are real numbers, PSDLSTR, PSDLSTS, 
PSDPLTR, PSDPLTS, and STOP are all logical, with default value FALSE; and the 
rest are integers. 

ST is a four-word integer array containing the start time in hours, minutes, 

seconds, and milliseconds for PSD analysis. 

ET is a four-word integer array containing the end time for PSD analysis. 

XTYPE is an integer variable determining the type of X-axis (the frequency
axis) on the plotted output. XTYPE= implies that the frequency axis will be linear 
and XTYPE=2 that the frequency axis will be logarithmic. 

YTYPE is an integer variable determining the type of Y-axis (power) for auto­
spectrum, cross-spectrum, amplitude ratio, and transfer function plots. YTYPE=1 
implies that the Y-axis will be linear, YTYPE=2 that the Y-axis will be logarithmic, 
and YTYPE=3 that the Y-axis will be in decibels. 

ISMO is an integer variable determining the type of smoothing window on the 
frequency domain plots. ISMO=l will result in the frequency domain estimate being
smoothed with the Hann-Tukey window, ISMO=2 will result in the smoothing being 
done by the Bartlett window, ISMO=3 will result in the smoothing being done by the 
moving average window, and ISMO=4 will result in the smoothing being done by the 
Hamming window. 

NW is an integer indicating the number of points in the smoothing window. In 
general, the greater the number of points in the window, the smoother the frequency 
domain estimate will be (see Smoothing Windows). NW must be odd and may take on 
from three to 35 values, except for the Hamming window, which may have from 
three to seven points in it. 

Setting the following four variables equal to true, T, will cause the specified 
output to be produced. 

PSDLSTR is a logical variable determining whether or not the raw estimate of the 
power spectrum will be printed. Here raw means unsmoothed by any of the various 
windows. 

PSDLSTS is a logical variable determining whether or not the smoothed power­
spectrum estimate will be listed. 

PSDPLTR is a logical variable determining whether or not the raw power-spectrum 
estimate will be plotted. 

PSDPLTS is a logical variable determining whether or not the smoothed power­
spectrum estimate will be plotted. 
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CHis a parameter indicating the channel of data to be analyzed. Since this is an 
SPA parameter number, CH will be an integer value from 1 to 10. CH=1 will cause 
the first parameter to be analyzed, and so forth-. 

ND is an integer variable specifying whether filtered or unfiltered data will 
be analyzed. ND=4 will cause unfiltered data to be analyzed; ND=5 will cause the 
digitally filtered data to be analyzed. 

DOF is an integer variable indicating the minimum number of degrees of freedom 
of the estimate desired. DOF relates to bandwidth and number of points analyzed. 
With n data points, resolution will be SPS/n (where SPS is sampling rate, in samples 
per seconds), and there will be two degrees of freedom. To increase DOF, one must 
decrease resolution bandwidth. If SPS/n is greater than 1024, SPA will do some of 
the bandwidth decreasing (DOF increasing) automatically. There are practical 
limitations on DOF, of course; if a request is made for more degrees of freedom than 
can be derived, the program will yield the maximum number of degrees of freedom 
that is practical. 

YMIN is a real variable that indicates the minimum value for the power axis. 

YMAX is a real variable that indicates the maximum value for the power axis. By 
using YMIN and YMAX one can cause all the power-spectrum plots to have identical 
scaling, making them easily comparable. Values on the plot that exceed the range 
(YMIN, YMAX) are redefined to the limiting value. 

STOP is a logical variable used to terminate power-spectrum analysis. The last
 
$PSDIN card must be in the form $PSDIN STOP=T, $.
 

Namelist $CSIN.-All $PSDIN namelist cards must precede the $CSINnamelist 
cards. The parameters in $CSIN are ST, ET, XTYPE, YTYPE, ISMO, NW, ND, 
CSDLSTR, CSDPLTR, CSDLSTS, CSDPLTS, PHLSTR, PHLSTS, PHPLTR, PHPLTS, 
COHERL, COHERP, TFLSTR, TFLSTS, TFPLTR, TFPLTS, ARLSTR, ARLSTS, 
ARPLTR, ARPLTS, YMIN, YMAX, DOF, CHIN, CHOUT, and STOP. 

ST and ET are used exactly as in namelist $PSDIN. They specify the start and 
stop times for cross-spectrum analysis. XTYPE, YTYPE, ISMO, NW, ND, YMIN, 
YMAX, and DOF are also exactly as in $PSDIN. The exceptions are that phase 
angle and coherence have fixed axes. The phase angle axis runs from -180 to 180; 
the coherence axis runs from 0 to 1. The phase angle and coherence axes are always 
linear; specifying YTYPE does not affect this. Setting all of the following variables 
equal to true, T, will cause the specified output to be produced. 

CSDLSTR is a logical variable determining whether or not the unsmoothed cross­
spectrum estimate will be listed. 

CSDPLTR is a logical variable determining whether or not the unsmoothed 
cross-spectrum estimate will be plotted. 

CSDLSTS is a logical variable determining whether or not the smoothed cross­
spectrum estimate will be listed. 
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CSDPLTS is a logical variable determining whether or not the smoothed cross­
spectrum estimate will be plotted. 

PHLSTR is a logical variable determining whether or not the unsmoothed phase 
angle estimate will be listed. 

PHLSTS is a logical variable determining whether or not the smoothed phase 
angle estimate will be listed. 

PHPLTR is a logical variable determining whether or not the unsmoothed 
phase angle estimate will be plotted. 

PHPLTS is a logical variable determining whether or not the smoothed phase 
angle estimate will be plotted. 

COHERL is a logical variable determining whether or not the coherence function 
will be listed. 

COHERP is a logical variable determining whether or not the coherence function 
will be plotted. 

TFLSTR is a logical variable determining whether or not the unsmoothed 
transfer function estimate will be listed. 

TFLSTS is a logical variable determining whether or not the smoothed transfer 
function estimate will be listed. 

TFPLTR is a logical variable determining whether or not the unsmoothed 
transfer function estimate will be plotted. 

TFPLTS is a logical variable determining whether or not the smoothed transfer 
function estimate will be plotted. 

ARLSTR is a logical variable determining whether or not the unsmoothed 
amplitude ratio estimate will be listed. 

ARLSTS is a logical variable determining whether or not the smoothed amplitude 
ratio estimate will be listed. 

ARPLTR is a logical variable determining whether or not the unsmoothed 
amplitude ratio estimate will be plotted. 

ARPLTS is a logical variable determining whether or not the smoothed amplitude 
ratio estimate will be plotted. 

CHIN is the channel number (similar to CH in $PSDIN) for input data. CHOUT
 
is the channel number for output data.
 

The last $CSIN card must be $CSIN STOP=T, $. 
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SPECTRUM ANALYSIS PROGRAM ERROR PROCEDURES 

Computational Procedures 

In general, the SPA program is rather weak in terms of pointing out the location
 
of error interrupts to processing. Almost no checks of denominator (prior to
 
division) are made: When a processing interrupt occurs, the best approach is to
 
examine the loader map to determine what routine the interrupt occurred in.
 

Statistical Domain Computations 

The error messages described below are associated with statistical domain
 
computations.
 

If, when specifying the Y-axis (the statistical parameter) MAX and MIN values, 
the user specifies a MAX less than the specified minimum, the MAX/MIN values will be 
ignored. The message YMAX IS LESS THAN YMIN - SO THEY WILL BE IGNORED is 
produced, and processing continues. 

If the specified start time is later than the specified end time for a given -interval,
 
an appropriate error message is produced, and processing is terminated.
 

If the number of points to be analyzed is 0 (or if start time equals end time), 
an appropriate error message is produced, and processing is terminated. 

In the computation of the weights for smoothing windows, if an undefined 

operation occurs in combinations, (2), for example, an appropriate error message 
is produced. 

In estimates of frequency domain statistical parameters, if DOF=O, the frequency
domain parameters are meaningless. DOF is one of the $PSDIN namelist parameters. 

If there is an error -in the fourier transform, the message ARRAY BOUNDS 
EXCEEDED IN FET will be produced. 

The appendix deals with computing the confidence levels for the statistical 
parameters estimated in SPA. 

LIMITATIONS 

Only 10 channels of information (parameters) may be analyzed at one time. There 
may be as many time intervals (with possibly different parameters) on file 2 as 
desired. 

The SPA program will analyze arbitrarilymany points in the time domain and, if 
requested, plot a time history. This may generate a plotted output of unacceptable 
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length. As mentioned above, the program will put a maximum of 1024 points in the 
frequency domain (for spectrum estimate parameters-PSD, CROSS SPECTRUM, 
COHERENCE, and so forth). 

An estimate of the time required for a SPA run can be arrived at by using the 

following algorithm: 

TIME (SECONDS) = NCH X 100 + 20LN(NPTS) 

where 

NCH number of channels 

NPTS number of points being analyzed 

LN natural log 

If only a statistical analysis is being done, or if the data are not being filtered, 
the time estimate may be revised downward. 

SPECTRUM ANALYSIS PROGRAM TECHNICAL DESCRIPTION 

Smoothing Windows 

The estimates of the frequency domain parameters may be smoothed by any one 
of four windows: Hann-Tukey, Hamming, Bartlett, or moving average. These 
functions are called windows because they window the data in the time domain, or, 
equivalently, convolve the data in the frequency domain. 

Hann-Tukey smoothing window. -The first window we shall consider is the 
three-point Hann-Tukey window. In the frequency domain it amounts to the weighted 
moving average given by the following equation: 

X(f) = [X(f - 1) + 2X(f) + X(f + 1)] /4 

We can view this (and all the other windows) as a digital filter and analyze its 
effect on a frequency domain estimate by using the expression 

Y(z) = [X(z - 1) + 2X(z) + X(z + 1)]/4 

where Y(z) is the output from the X(z) input and z is the time lag variable. 

Then, from the real translation theorem, 

Y(z) [Xz)z'+2X(z) +X(z)z ] /4 

-This impliesthat Y (z) = X (z)( z + 2 + zi4, so H(z) + 2 + /4.
X2(z) 
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ico
 

On the unit circle, Z = e , so 

iH (ei ° ) = (e - +2 + eico)/4 

- i O=e' + e w 

=[2 + 2el 2te )l/4 

= (2 + 2cos o)/4 

= (1 + cos W)/2 

where -7c <cw <i7. 

Therefore, the transfer function of the digital filter with which we are 
smoothing is 

H(ew) = (1 + cos a))/2 

The result of this equation is real. 

It is common to plot the transfer function modulus squared (also called squared 
gain) as follows: 

H1(eio)I= [(1+ Cos w)2]/4 

T'able 1 lists the values of the squared gain of all the SPA smoothing window 
transfer functions at various frequencies. Figures 3 to 6 are plots of the same 
information. 

TABLE 1 -SQUARED GAIN OF SMOOTHING WINDOW TRANSEER FUNCTIONS 

Smoothing window 

Hann-Tukey Hamming Bartlett Moving average 

Frequency Number of points in window 

3 5 3 5 3 5 3 5 

Squared gain 

1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 
i/16 0 981 0 962 0 982 0 965 0 981 0 950 0 975 0 925 
W/8 0 925 0 856 0 931 0 867 0 925 0 812 0 901 0 727 
3x/16 0 839 0 704 0 851 0 724 0 839 0 621 0 788 0 470 
w/4 0 729 0 531 0 749 0.561 0 729 0 419 0 648 0 233 
5i/16 0 605 0 366 0 633 0.401 0.605 0 245 0 495 0 072 
3n/8 0 478 0 228 0 513 0 263 0 478 0 120 0 346 0 005 
7n/16 0 357 0.127 0 397 0 157 0.357 0 046 0.215 0 008 
w/2 0 250 0 063 0 292 0 085 0 250 0 012 0.111 0 040 
9i/16 0 162 0 026 0 203 0 041 0 162 0 002 0 041 0 061 
5/8 0 095 0 009 0 132 0 018 0 095 0 0 005 0 056 
11n/16 0 049 0 002 0 081 0 007 0 049 0 0 001 0.031 
3n/4 0 021 0 0 046 0 002 0 021 0 0 019 0.007 
13n/16 0 007 0 0 025 0 001 0 007 0 002 0 049 0 
7U/S 0 001 0 0 013 0 0 001 0 006 0 080 0 013 
15/16 0 0 0 008 0 0 0 011 0 103 0 031 

n 0 0 0 006 0 0 0 012 0 111 0 040 
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The one-half power point, or break frequency (which corresponds to down 

3 decibels) occurs at IH e')I = 1/2. Solving [(1 +c os 0 )2 /4 = 1/2 for a), the 

one-half power point for the three-point Hann-Tukey window is at 1. 144 radians 
(65.530). 

" The five-point Hann-Tukey window is given by the following equation: 

X(f) = [X(f - 2) + 4X(f - 1) + 6X(f) + 4X(f + 1) + X(f + 2)]/16 

and has a squared gain, IH(ei0)1 2, equal to [(3+ 4cos co + cos 20)2] /8, with a 

break frequency at 0.8206 radian (47.020).
 

Hamming smoothing window. -The three-point Hamming smoothing window is 
given by the expression 

X(f) = 0.23X(f - 1) + 0.54X(f) + 0.23X(f + 1) 

Deriving jH(ei0)j in a manner similar to that described above, we have 

H(ei (0 ) = 0.54 + 0.46cos o) 

where -n < co < x. 

The squared gain of the Hamming window, IH(e"0)I 2 , is (0.54 + 0.46cos co)2 

(table 1, fig. 4). The break frequency is at IH(ei(0 )j2 1/2. 

Solving (0.54 + 0.46cos co) 2 = 1/2 for co, the break frequency for the three­
point Hamming window is at o) = 1.1990 radians or 68.700. The Hann-Tukey window, 
unlike the Hamming smoothing window, does not completely eliminate the high 
frequency of the estimate. 

The five-point Hamming window is given by the following equation: 

X(f) = 0.0529X(f - 2) + 0.2484X(f - 1) + 0.3974X(f) 

t 0.2484X(f + 1) + 0.0529X(f + 2) 

This expression is algebraically equivalent to smoothing with a three-point Hamming 
window and then smoothing the smoothed estimate with the same three-point Hamming 
window again. 

equal toThe five-point Hamming window has a squared gain, H (eio) 12, 
(0.1058cos 2a) + 0. 4968cos ( + 0. 3974)2 with a break frequency at 0. 8578 radian 
or 49.150. 
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Bartlett smoothing window. -The three-point Bartlett smoothing window is the 
same as the three-point Hann-Tukey window. It is given by the expression 

X-(f) = [X(f - 1) + 2X(f) +X(f + 1)]/4 

and has a squared gain, IH (eic)1 , equal to [a + cos 0))2] /4. The break frequency 

is at 1.144 radians (65 530) (table 1, fig. 5). 

The five-point Bartlett smoothing window is given by the equation 

X(f) = [xr(f - 2) + 2X(f - 1) + 3X(f) + 2X(f + 1) + X(f + 2)] /9 

and has a,squaredgainI IH(e')j, equal to [(2cos 2co + 4cos co + 3) 2/9. The 

break frequency is at'0.7054 radian (40.420). 

Moving average window. -The three-point moving average window is given by 

X(f) = [X(f- 1) +X(f) +X(f+ 1)]/3 

2r
and has a squared gain, IH(eicc) equal to La + cos o' )] /9. The break frequency 
is at 0.9756 radian (55.890). 

The five-point moving average window is given by 

X(f) = [X(f - 2) + X(f - 1) + X(f) + X(f + 1) + X(f + 2)1/5 

and has a squared gain, IH(ei°)j 2, equal to[(1 + 2cos co + 2cos 2(o)2]/25. Thebreak 
frequency is at 0.63969 radian (36.65140) (table 1 and fig. 6). 

Linear Trend Removal 

A special correction may be required to remove trend from the data. Trend is a 
frequency component of period greater than record length. This component is 
only partially removed by high-pass digital filtering. Frequency components above 
the break frequency will remain. (Because the trend frequency is lower than the 
lowest, or fundamental, frequency, it will be expressed as the sum of the fundamental 
and its harmonics.) The SPA program will remove linear trend by a least-squares 
fit; a linear regression line for the entire data record is estimated and then sub­
tracted from the data. 
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Digital Filtering 

If a stable system with transfer function H (z) is driven by a sinusoidal input, 
u(k), is equal to sin(koT) where k = 0,1,2,... the resultant steady-state response 
is given by the expression 

y(k)= 1H(ei T) I sin(kcoT + 0) 

icoT 
where 6 equals ARG H e That is, the steady-state sinusoidal response 

can easily be obtained by evaluating the system's transfer function at Z = exp (icoT) 
where co is the frequency in radians of the sinusoidal input and T is the sampling 
period, l/sps. 

A filter that-severely attenuates sinusoids with frequencies outside the pass band 
is essential. The break frequency for the pass band is defined as the half-power 
point, that is, the frequency at which the amplitude of the system response is 
down 3 decibels. 

The design of the fourth-order low-pass digital filter in the SPA program is
 
predicated upon the assumption that the squared gain factor of the transfer function
 
H (z) is as follows:
 

1i (eWT) 12 S+ tan2 n (cT/2) 

tan 2n (cO0T/2) 

where c 0 is the break frequency and n is the order of the filter. The ideal low­

pass filter would have a squared gain factor which resembled the following sketch 

(form Uo T radians): 

Amplitude 

'I It r
0 7C T CT 

Frequency, rad 

For the fourth-order case (n = 4; that is, there are four poles in the transfer 
function) the actual squared gain factor can be computed from equation (1) by sub­
stituting various values of co. The actual squared gain,factor resembles 
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__ 

Amplitude 

93 
Frequency, rad 

The transfer function for the low-pass filter specified above is arrived at by the 
following substitutions: 

tan(V2_2) = cos(__ =o : +in/i 

Hence 

tan2 n (C 0T/2)IH (eOT)1 2 
tan 2n ( 0 1/2) + (-1 ) ' + 

W 0\e 1WT + 1 

RioTLetting Z equal e , with c 0 fixed, 

2 = tan2n (c 0T/2) 
tan 2 n(, 0 T/2) + (- 1 )n (z _ 1)/ (z + 1) 

Multiplying numerator and denominator by (z + 1) 2n, 

I(z)I2 = tan2n ((0 T/2) (z + 1) 2n 

tan2n (co0T/2) (z + 1) 2n+ (-1) n(z - 1) 2n 

Using then the binomial expansion for (z + 1)2n , the denominator of the above 
expression may be written as follows: 

(2n) z2n-i + (2n)z2n-2
[tan2n(co0tT/2) + (-l)n][z2n + (.) 2 n 

2 42(2n)z 2n-3 + (2) z n- + .+ 1 + '1 
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where 

tan 2n( 0 0 T/2) - (-I)' 

tan2 ' (o 0T/2) + (-1) n 

The 2n roots of the expanded form of the denominator are given by the following 
expression: 

1- tan 2 (O 0T/2) + i2tan (wo0T/2) sin Ok 
rk = 1- 2tan(m 0T/2) Cos 6k + tan2 (c( 0 T/2) 

where k=l,2,...,2n and 0 k equals _n) when n isoddand (2knl)7 

when n is even. 

Thus, the squared gain factor may be written in the following form: 

1 
- (z + )2n

IH(z)1 2 =_ tan2n( 0 T/2) 

tan 2n (OT/2)+ () n (z-r) (z - r2) (z - r2n) 

-i  
ic isa root of this polynomial, so are ae 1 e o, and1If r = ae

Hence, the function IH(z)l 2 will have n poles inside the unit circle and n poles 

outside the unit circle (for r X 1). Letting p,, P2 ... ,Pn denote the poles inside 

the unit circle, the transfer function that has the desired squared gain factor is 
found as follows: 

n
 

b (z + 1) 
(Z - pl)(z -P 2)..(Z Pn) (2) 

where b is selected so that the steady-state unit step response has a magnitude of 
one (that is, H (1) = 1). In other words, 

b: -Pl) (I-p2)..(1 - P1n)
 
2n
 

Having specified the transfer function H(z), we derive the associated difference 
equation by the real translation theorem, which says that Y(z)z equals Y(z + 1), or 

that Y(z)z - 1 equals Y(z - 1). Thus, H(z) equals Y(Z) , or X(z)H(z) equals 
Y (z), and using the translation theorem, the entire function can be expressed in 
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terms of X(z - m), Y(z - m), and M = 0,1,2,..., n. For example, suppose that H(z)_b(z+1!) z- Y(z) 

were given by b ( . Then b equals z2 1 H(z) equals X z equals 

b(z + 1) and finally Y(z)(z - pl) equals bX(z) (z + 1). Therefore
(z - pl) ,' ~)( i 

Y(z)z - pl Y (z) = b [X(z)z + X(z)] 

and 

Y(z + 1) -pY(Z) =b[X(z +1) +X(z)] 

or, translating 1 unit, 

Y(z) =plY(z- 1) +b[X(z) +X(z- 1)] 

This is the desired difference equation, in which X(z) is the current input, 
X(z - 1) is the last input (input lagged 1 unit), Y(z) is the present output, and 
Y(z - 1) is the last output (output lagged 1 unit). 

The design, procedure for the high-pass digital filter is, of course, similar. 
The squared gain of the transfer function is found as follows: 

2=IH(e(0T)2' 
1 + cot2n(wT/2) 

cot 2 n (( 1T/2) 

where, once again, (o1 is the break frequency and n is the order. What this 

amounts to is simply a rotation of the low-pass filter poles and zeros through an 
angle of n radians, where the half-power point for the low-pass design, c0 , 

is taken to be 7C - 01 The SPA program utilizes this information to use the same 

routine for high-pass and low-pass filter determination: As shown in the sketch 
below, the bandpass filter in SPA is simply a cascaded low-pass-high-pass system. 

Low pass bb y 

H(z) Bandpass b. Y 

High pass -*- Y 
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The fourth-order design of the filter cascade scheme was selected for the SPA 
program because it gives good attenuation outside the pass band without having so 
many recursive terms that word length contributes to instability or that rise time 
becomes a problem. 

The SPA program also has first- and third-order Butterworth design low-pass
and high-pass filters. The first-order designs suffer because the frequency 
response characteristics are not as square as in the fourth-order design. That is,
the distinction between the frequencies that are passed and those that are attenuated
is not as good as in the fourth-order case. However, first-order designs have a
rapid rise time and only three recursive terms instead of four. The first-order 
filter characteristics resemble the following sketches. 

First-order low-pass filter 

1 

Amplitude 

0fo fN 

Frequency
 

First-order high-pass filter 

1 

Amplitude 

fo fN
 

Frequency
 

The first-order filters are derived in the following manner. The S-plane form for
the first-order filters has only one pole, a. The transfer function, G(s), of the low­
pass filter is equal to a , and that of the high-pass filter is equal to s 

For the low-pass case (by the bilinear transform mentioned earler), 

G(z) - k(z +1) 
-aT z-e 
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=where k is selected so that G(z)fI z=l Gain = 1. Hence k = (1 - e-aT)/2 and the 

difference equation for the first-order low-pass case is found as follows: 

( Y(z) _ k(z + 1)
G(z) -X(z) z-e-aT 

Y(z) - k(1 + Z-l) 

X(z) 1 - e a T 

-Y(z) l-e-aTz-1] =X(z)k[l+z l] 

Therefore, 

Y(z) = e-aTy(z - 1) + k[X(z) + X(z - 1)] 

where, once again, the sampling period, T, equals l/sps. 

The design considerations and implementation for the third-order filters are 
similar to those for the first order. However, the transfer functions are three-pole, 
as follows. For the high-pass filter, 

s2G() - s 2 +b 2s+a (s +a) 

For the low-pass filter, 

G(s) a a + b 
2S (s+a)2 +bs+a 

where f0 is the break frequency and the transfer functions are derived by using 

the following expressions: a = 27tf 0 , a = 27tfcos 7c/3, and b = 2nfsin 7/3. 

The third-order filters expressed in the Z-plane as transfer functions are as 
follows. For the high-pass filter, 

G(z) =k(z - 1) (z 2 - 2z + 1) 

2aT)
(z - eaT)(z 2 - 2 e-aTcos bTz + e 

For the low-pass filter, 

=G (z) k(z + l)(z2 _2z + 1) -(z- e-aT)(Z2 - 2 e-aTeos bTz + e 2aT) 
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The transformation from the S- to the Z-plane is accomplished by the bilinear 
transform (ref. 1). The difference equations for the filters are then derived in the 
usual manner. 

Time Domain Statistical Analysis 

Summary of time domain statistical parameters.-The SPA program will compute 

the mean, X; variance, s 2 ; standard deviation, s; mean square, m; and root 
mean square, rms. It also lists data maximum, data minimum, and number of obser­
vations. All of the above may be produced for either filtered or unfiltered data. 

For example, let X1 , X .,.. Xn be n mutually stochastically independent 

random variables from a given distribution. Then 

n-i 

i=1
 

1 n 2 
m =-ZX. 

n 1 
il
 

rms = ti 

In addition, the SPA program will produce a histogram of the time domain data 
(with from one to 40 intervals), and, based on X and s 2 , fit a normal curve to the 
histogram by using the following expression: 

Area of histogram exp L !JX X)2] 

The following X2 goodness-of-fit test is performed to examine the hypothesis 
that the data are normally distributed: 

n (Oi -BE)22= 

i=1 

where 0. is the observed frequency in the ith class and E. is the expected
1. 1 

frequency in the ith class. 
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If the histogram is not different from a normal curve at the 0.05 level, an 

asterisk is printed at the x2-value. 

The skewness and kurtosis of the distribution are also computed. Skewness is 
the third moment about the mean divided by standard deviation cubed, or 

3/2 1 3 3/2m3 s n (xi 
1=1 

Kurtosis is the fourth moment about the mean divided by the standard deviation 
raised to the fourth power, or 

m4 -n2;(Xi -X2s 
m4/s= / 

Details of time domain statistical analysis.-Givena sampled data sequence 
Xi , i = 1, 2, . .. n, the mean value (first moment) of the data is computedas follows: 

in 
m= -L2X. 

n x 
i= 1 

The second moment, in2 , is defined as follows 

1 n 22- (Xi-x) 
i=1
 

and is computed by the formula 

S = i2tI Xi)21/n 

The variance of the data is defined as follows: 

2 n 2x 
2_ n 2ni-m 

= S vat n-1 n-1
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where we divide (X i - by n - I instead of by n because X is an estimate of 

the population mean, ji. 

In other words, the sampled sequence { i is taken to be a finite sample from 
i=1
 

a larger (and possibly infinite) population. As a result, X will be an estimate of 
V; that is, X - = 0, necessarily. Therefore 

n n(xi R) (xi - [I +it 
i=1 	 i=1 

n [x 
=j [(xi)- (X-kO] 

i=1 

n 

i=1
 

n 	 n n 

= 

n 	 22(R- 2)('- - 2pX t 

2 -2n(X - [)2 + n(X - pi)2 

i1
 

nn
i= 1 

which is to say that n (Xi _ is always less than or equal to n - 2 

i=1 i=1 

To correct for this bias, we divide by n - I instead of by n. 
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The third moment about the mean is defined as follows. 

n (Xi - Y)3 

m 3 = n 

i=l 

and is computed by the following equation: 

3 = L Eli 2xi+ n I /ni--ili=l 

Skewness is defined as m 3/s3/2. 

The fourth moment about the mean, m4 , is defined as follows 

n
 
i= 1 

m4- n
 

and is computed by using the following equation: 

In X 4 - X.3 X) + 6 Xi2) X) -X /n 

4ni=i 1ln n 3 i)J 

Kurtosis is defined as m4 /s4. 

The mean square value of the data is equal to i X2 and the root mean square 
i=l1 

1x i 2)
is equal to (k 

The autocorrelation estimate for the first 10 lag values is given by the following 
equation: 

[ -0 X(i)X(i +t)/Rx(0) 
RX() = -1 /xl 
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Xn
 
where t # 0 and $Xi }Inl is assumed to have a zero mean. Computing more than 

10 lag values by this technique would be time consuming. The autocorrelation 
function gives the same information the autospectrum does. Since the autospectrum 
is computed with greater resolution, more values of RX () are not computed. 

The autocorrelation function obeys Rx (c) < RX (0) for all values of t. All 

autocorrelation functions are normalized by dividing by RX (0). The formula used 

for data with a nonzero mean is as follows: 

Rx() -1 n-It ii + - (nlt)JI /Rx(O) 

so the mean does not have to be first subtracted from the data. In addition, frequency 
histograms are computed and plotted for the data. The ordinate scale can be parti­
tioned into from one to 40 intervals. Based on the area, A; mean, X; and variance, 
s , of the data, a normal curve is fitted to the histogram. The equation for the 

curve is as follows: 

A e \ / (3)2S 

where A is the area of the fitted histogram. 

The goodness of fit of the normal curve defined by equation (3) to the histogram 

is determined by the x2-statistic defined as follows: 

(O.-Bi)22 n 
- B1i=l1 

where 

0. number of observations in the ith interval 
I 

E. number of observations expected in the ith interval 

n number of intervals (number of degrees of freedom plus 1) 

The histogram plot prints out many of the time domain statistics (mean, variance, 
mean square, root-mean square, skewness, kurtosis, and so forth) and prints the 

X2X2 goodness-of-fit statistic. In addition, if the test reveals that the histogram 
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does not differ from the normal curve (with 	95 percent probability), an asterisk is 

printed above the X2-statistic. 

Table 2, which is used in the SPA program for the evaluation of the X -statistic, 
was taken from reference 2 for the first 30 degrees of freedom. For degrees of 

X2freedom from 31 to 39, the density function was integrated numerically as 
follows: 

X2 
x 	 TABLE 2.- TABLE 

P (X X)=1 	 v/2-1 e-o/2dw 
P x r(v/ 2 ) 2V/ 2 Probability 

0 

n 0 975 0 025 

2xTherefore, for 31 degrees of freedom at the 
0. 025 level, one would solve the following 

1 0 00098 5 02equation for x: 
2 0 0506 7 38 
3 0 216 9.35 

x 4 0.484 11.14 
P (X < x) 1 (031/2-1e-co/2do = 0.025 5 0 831 12 83 

6 1.24 14 45f (312)2 31/2 	 " 
0 	 7 1.69 16 01 

8 2 18 17 53 
9 2 70 19 02 

10 3 25 20 48 
Frequency Domain Statistical Analysis 	 11 3.82 21 92 

12 4 40 23 34 
13 5 01 24 74 

Summary 	of frequency domain statistical 14 5 63 26 12 
15 6 26 27 49analysis.-The Spa program computes power 
16 6 91 28.85 

spectrum, cross spectrum, coherence, phase 17 7 56 30 19 
angle, amplitude ratio, and transfer function. 18 8.23 31.53 
In addition, it produces the integral rms and 19 8.91 32 85 

maximum and minimum values of the frequency 21 9.59 34 17 
21 10 28 35 48
 

domain parameters. 	 22 10 98 36 78 

23 11 69 38.08 
Power spectrum: The theoretical power 24 12 40 39 36 

spectrum 25 13 12 40.65 
26 13 82 41 92 

T 2 27 14.57 43 19 
1 - 28 15.31 44 46 

Gx(f) = 2hm 1 2 x(t)e-2nftdt 29 16 05 45 72 
-
 46 98 

2 31 17 54 48 25 
32 18 29 49.48 
33 19 05 50.72 

T T JfT 	 30 16 79 

is defined by the fourier transform operation. 34 19 81 51.97 
35 20.57 53.20
 

The digital fourier transform is given by 	 36 21 34 54 44 
37 22 11 55 67
 

n-1 . 2 38 22.88 56 89 
Gx(fl) = 2At X x(t)e-12 7cflk/n 39 23.66 58.12 

= 	 40 .24 43 59 34 
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Time domain data of arbitrary length can be used to produce power-spectrum esti­
mates by fourier transforming the data in sections. This amounts to static averaging 
the full frequency domain estimate. 

Cross spectrum: The cross spectrum is defined as follows: 

Gxy(f) = X (f)Y(f) 

where 

X (f) fourier transform of x (t), the input signal 

Y (f) fourier transform of y (t). the output signal 

* complex conjugate 

Thus, the cross spectrum will, in general, be a complex-valued function. As 
a result, it is represented as a modulus and phase angle, as follows: 

6 XY (f)GXy (f) = IGxy (f) Ie­

where the phase angle, xy(f), is 

ta- I[QXY (f)l=SXYexy~f)(f) = anf[ 

Thus, Qxy(f), the so-called quad spectrum, is Im[Y(f)]Re[X(f)] - Re[Y(f)]Im[X(f)] 

and CXy (f), the so-called co spectrum, is Re[X(f)]Re[Y(f)] +Im[X(f)]Im[Y(f)] 

Both power- and cross-spectrum estimates can be smoothed. The smoothing
windows available are the Hann-Tukey, Hamming, Bartlett, and moving average 
windows. From three to 35 points may be specified in each window. 

Coherence function: The coherence function is computed as follows: 

GC (f) 
CFxy (f) = GX (f)Gy (f) 

It is meaningful, of course, only for smoothed estimates of Gxy (f), Gx (f), and 

Gy (f). This is automatically taken care of in the SPA program. 

Amplitude ratio: Amplitude ratio is computed as follows: 
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Gxy (f) 
ARy (f) -GX (f) 

Amplitude ratio is also computed with smoothed values of Gxy (f) and Gx(f). 

Transfer function: Transfer function is computed as follows:
 
TFxy (f) = Gxy 2 (f)/Gx2 (f)
 

where x (t) is input and y (t) is output. The value of TFxy (f) is also computed 

with smoothed estimates of GXY(f) and Gx(f) 

Details of frequency domain statistical analysis. -A time series or time history 
is a random (nondeterministic) function X of an independent variable, usually 
time. The most important assumption made about a time series is that the stochastic 
process from which the series arises is stationary; that is, that the first moment 
and the autocovariance function are independent of time. 

The autocovariance function is given by the following equation 

n-ri 

and the autocorrelation function is computed as follows: 

RX t) = Cx (t)/Cx (0) 

As we shall see, this equivalent to requiring the mean and power spectrum to 
be independent of time. 

At the heart of frequency domain analysis is the fact that it is possible to repre­
sent arbitrary periodic functions as a linear combination of any class of orthogonal 
periodic functions. Furthermore, with suitable interpretation it is possible to 
represent nonperiodic functions as a sum of periodic functions. In fourier analysis, 
the periodic functions used are sine and cosine functions. 

Thus, given an arbitrary function on the interval [0,n], which is a sampled 

function {X} we may express asflos 

A0 1 2 1Amcos (2inmk/n) + Bmsin (21rmk/n) 

m=1 
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where k = -n,-(n - 1).... 0 .... n - 1, n. This is to say that we consider .n sine 
and cosine components and express i as a sum of these components. 

Notice that each of these sine/cosine components has period n. The frequency
1/n is in some sense a fundamental frequency and corresponds to a period of a
length equal to the length of the record. The other frequencies are then harmonics 
or multiples of the fundamental frequency. 

Notice that this transformation (known in common parlance as a fourier transform)
reveals a considerable amount of information; namely, the relative proportion of the 
variance of the original time series that can be attributed to each of the harmonics, 
k/n where k=2,3,4...,n-1. 

Displaying the sum of the squares of Am and Bm versus frequency m/n is 
nothing more than the power spectral density at that frequency (or, as it is some­
times called, the autospectrum). 

Computing the so-called fourier coefficients, Am and Bin, is facilitated by 
the fact that the sines and cosines are orthogonal; that is, 

n k,m,integers,sin (2itkr\ co s (2mr_ .
 

r=-n 2n terms
 

n (2nmr D k)m 
n / /2 k=m,m0,nin / si n / 1a k=m=O,n

r=-n
 

n ( 2 7krN /(27mr) () k~tm 
Xcov-tcosK-) - 1/2 k=m,mxO,n

Y.- (n) k~m=O ,n-os 

Hence, the fourier coefficients can be estimated as follows:
 

X(m) = A0 + 2 A cos (2m Bsin 

k=1 
B sin(2mk cos(2nrkO 

,i
+ m \n-- \---n--i) 

By applying the above orthogonality relations, we get 
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n-i 
 /2mk) 
2 Xk cos-n--) = hA 

k=O 
and 

n-1 si /2 mk \ B 
2ZYXk sm !L= nE m
 

k=O 

This yields a convenient method for finding the fourier coefficients: 

n-i X Cos(2mkAm = 

k=O 
Bm 2 n-1 si (27cmk)

B= Xk s ntfl 

k=O 

Proceeding directly (as outlined on the previous page) has a significant drawback 
2n 2 

in that computing the coefficients A and Bm requires on the order of 

operations; for a large value of n this would be prohibitively time consuming. To 
alleviate this problem, Cooley and Tukey presented an algorithm for computing the 
fourier coefficients in a much more efficient manner-by decomposing n (ref. 3). 
This result is known as a fast fourier transform (FFT), and it makes the computation 
of the fourier coefficients practical for even a large number of data points. The 
SPA program uses the fast fourier transform routine written by R.C. Singleton 
(ref. 4). 

The fourier transform of a function X (if it exists) is as follows: 

X(f) = x(t)e-i2 cftdt 

Recalling the earlier formula 
im 

e =coso +i sin o 

this equation reveals that the fourier transform is nothing more than an extension 
of the method of computing fourier coefficients to the complex plane. Most theore­
tical discussions use the fourier transform, since it is easily specified and the 
complex plane is (algebraically) closed. The fourier transform, X(f), of a 
function x(t) exists if the square of x(t) is Lebesque integrable (ref. 5). 

The fourier transform of x (t) is given by 
00 

X(f) =F[x(t)] = J x(t)e-i27ftdt 
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and the inverse fourier transform is 

x(t) = F-I X(f)] = X(f) ei2ftdf 

Problems with the existence of the fourier transform have been handled largely 
with delta functions (ref. 6). 

In any case, finite fourier transforms always exist. Delta functions at a point 
are presented by the peak of finite height; this is because the finite fourier transform 

n-i 
1n x(k)ei 2nkf/n 

k=O 

has finite resolution, 1/n, rather than infinitesimal resolution, as in the infinite case. 

The parameters of interest in the frequency domain fall into two broad categories: 
those that concern a single signal and those that concern input/output relationships. 
For parameters in the first category, the power spectral density function or auto­
spectrum is the most important. For parameters in the second category the para­
meters of primary importance are transfer function, coherence, and phase angle. 

To estimate the power spectrum, first the fourier transform of the time series 
is taken. Then the modulus of the resulting complex-valued function is determined 
and normalized by dividing it by the frequency bandwidth of the estimate. Records 
of arbitrary length (that is, signals of arbitrary length) in the time domain are 
fourier transformed in parts and then averaged. Mathematically, this amounts to 
fourier transforming the entire record and then averaging over frequencies to 
enhance the statistical quality of the estimate. 

The power-spectrum estimate which is defined by 

2T 

1 2 i27rftGX(y) = 21im - x(t)e dt 

is actually estimated by a discrete fourier transform: 

AA n-i -i2nrft.In 2 

Gx (fi) = 2At[ rZl0 x(ti)e I 

The estimate produced by the SPA program is one sided; that is, powers at 
negative frequencies are expressed as their positive counterparts. All n values of 
X(f) 
SPS 

n 

in the time domain are used to compute each PSD value at the frequencies 
2SPS (n/2)SPS 

n n 
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The cross-spectrum estimate, unlike the power-spectrum estimate, is not a real 
quantity. Hence it is expressed as a gain and phase angle at each frequency, f.. 
The gain is defined as follows: 

GxY(fi) - x*(fi)Y(fi) 
1 

where X(f) is the fourier transform of the input signal, Y-(f) is the fourier trans­
form of the output, and * denotes a complex conjugate. 

The phase angle at f is given by the expression 

Oxy(fi) = 
taI _QxY (fid

a 5; Mf 

where QxY(fi) is the so-called quad spectrum, ImY(f )ReX(fi) - ReY (fi)ImX(fi) 

and CXy (f) is the coincident spectrum and is defined by the following equation: 

C y (fi) = ReX(f i ) ReY (f1 ) + ImX(fi)ImY (fi) 

Once again, for-long, time domain signals, the co and quad (C and Q) spectrum 
estimates are computed over subintervals and then averaged, just as with the power 

spectral density estimate. Coherence, yxy2(fi is given by the following equation: 

YXy 2 (f.) = Gy(fi) )2 

1 GX(fj)Gy(f 1I 

It is smoothed to increase the number of degrees of freedom, since a two-degree-of­
freedom coherence estimate is identically 1. 

Internal Data Arrays and Definition of Variables 

The definitions in the following section refer to the actual FORTRAN program. 
Copies of this program are available from the author. 

Common variaMbles. -The variables defined below are common to several sub­
routines in the SPA program. The line numbers mentioned refer to the line coding 
in the subroutines. 

COMMON/INFO/TITLE (8), CID (10) ,NCH,SPS ,JULIAN: 

/INFO/ - used in nearly every SPA routine.
 

TITLE - array of title information (alphanumeric) used in SPA output.
 

CID - array of SPA channel identification names in file 4 (unfiltered data) 
or file 5 (filtered data). The first parameter has the name CID (10), and so on. 

NCH - number of SPA channels in file 4 (or file 5). 
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SPS - samples per second, sampling rate of data in file 4 (or file 5). 

JULIAN - date of SPA run. 

COMMON/TAPEOP/OPEN: Logical variable used to determine whether plotter has 
been opened.
 

COMMON/TYMAXS/ST(4) ,ET(4): Start and stop times (integers) of data in file 4. 
Used for plotting time axis in filtered and unfiltered data plots. 

COMMON/FLTER/HIPASS ,LOPASS ,BANDPAS ,FC ,BW ,PRINT ,BREAK: HIPASS, 
LOPASS ,BANDPAS, and PRINT are all logical variables determining filter type and 
whether or not the filtered data are to be printed. FC is the center frequency, and 
BW is the bandwidth for the BANDPAS filter (FC - BW to FC + BW). BREAK is the 
break frequency for HIPASS or LOPASS filters. 

COMMON/PLTINF/RATE,BRK,ORD: These variables are used for output in 
SPA plots. RATE is the sampling rate of the data, BRK is the break frequency, and 
ORD is the order. 

COMMON/FINF/XARRAY (8): XARRAY contains alphanumeric information about 
the type of filter selected. 

COMMON/STAT/TSTVAL(2,10),STM,ETM,ND ,INTRVL (10): 

TSTVAL - array used for data editing in the computation of the statistical 
parameters. Data values from the ith channel less than TSTVAL(1,i) or greater 
than TSTVAL (2 ,i) will not be used in computing the various statistical parameters. 

STM - start time for statistical analysis (time of day, in total milliseconds). 

ETM - end time for statistical analysis (in total milliseconds). 

ND - integer disk number. ND=4 for unfiltered data; ND=5 for filtered
 
data.
 

INTRVL (I) - number of intervals the ith channel will be broken up into for 
a histogram 1 < INTRVL (I) < 40. 

COMMON/RESULTS/XMEAN(10) ,VAR (10) ,STDEV(10) ,MEANSQ (10) ,RMS (10), 
SKEW(10), KURT (10) ,XMIN (10) ,XMAX (10) ,XNPT (10) ,AUTO(10,10): 

XMEAN(I) - mean of the ith channel 

VAR(I) - variance of the ith channel. 

STDEV (I) - standard deviation of the ith channel. 

MEANSQ(I) - mean square value of the ith channel. 
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RMS (I) - root mean square of the ith channel.
 

SKEW(I) - skewness of the ith channel.
 

KURT (I) - kurtosis estimate of the ith channel.
 

XMIN (I) - minimum value of the ith channel.
 

XMAX (I) - maximum value of the ith channel.
 

XPNT (I) - number of points used in the statistical derivations of the
 
ith channel. 

AUTO (1,J) - jth value of the autocorrelation function for the ith channel. 

COMMON/FFTINFO/ST ,ET ,XTYPE ,YTYPE ,NW ,PSDLSTR ,PSDLSTS ,PSDPLTR, 
PSTPLTS,CSDLSTR,CSDLSTS,CSDPLTR,CSDPLTS,PHLSTR,PHLSTS,PHPLTR,
 
PHPLTS ,COHERL ,COHERP ,TFLSTR,TFLSTS ,TFPLTR,TFPLTS ,ARLSTR,ARLSTS, 
ARPLTR,ARPLTS ,DOF ,YMIN ,YMAX: 

ST - four-word integer array used for the start time of spectrum analysis 
(HR-MIN-SEC-MILLISEC). 

ET - four-word integer array used for end time of spectrum analysis. 

(HR-MIN-SEC-MILLISEC). 

XTYPE - integer variable used to determine frequency. 

YTYPE - integer variable used to determine ordinate axis type (choices are 
log linear and decibel). 

NW - number of points in the smoothing window. 

PSDLSTR - logical variable for listing unsmoothed power spectral density. 

PSDLSTS - logical variable for listing smoothed power spectral density. 

PSDPLTR - logical variable for plotting unsmoothed power spectral density. 

PSDPLTS - logical variable for plotting smoothed power spectral density. 

CSDLSTR - logical variable for listing unsmoothed cross-spectrum amplitude. 

CSDLSTS - logical variable for listing smoothed cross-spectrum amplitude. 

CSDPLTR - logical variable for plotting unsmoothed cross-spectrum amplitude. 

CSDPLTS - logical variable for plotting smoothed cross-spectrum amplitude. 

PHLSTR - logical variable for listing unsmoothed phase angle estimate. 
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PHLSTS - logical variable for listing smoothed phase angle estimate. 

PHPLTR - logical variable for plotting unsmoothed phase angle estimate. 

PHPLTS - logical variable for plotting smoothed phase angle estimate. 

COHERL - logical variable for listing coherence estimate.
 

COHERP - logical variable for plotting coherence estimate.
 

TFLSTR - logical variable for listing unsmoothed transfer function estimate. 

TFLSTS - logical variable for listing smoothed transfer function estimate. 

TFPLTR - logical variable for plotting unsmoothed transfer function estimate. 

TFPLTS - logical variable for plotting smoothed transfer function estimate. 

ARLSTR - logical variable for listing unsmoothed amplitude ratio estimate. 

ARLSTS - logical variable for listing smoothed amplitude ratio estimate. 

ARPLTR - logical variable for plotting unsmoothed amplitude ratio estimate. 

ARPLTS - logical variable for plotting smoothed amplitude ratio estimate. 

DOF - integer specifying minimum number of degrees, of freedom desired for 
frequency domain statistical estimate. 

YMIN - minimum value for ordinate axis of power spectral density or cross­
spectrum density plot. May be used to force many different parameters to have 
the same scale. 

YMAX - maximum value for ordinate axis of power spectral density or cross­
spectrum density plot. May be used to force many different parameters to have 
the same scale. 

COMMON/STUFF/PSD(1024) ,SMOPSD(1024): The common area /STUFF/ is used 
as a device for saving core. 

COMMON/ACTIME/AST (4) ,AET (4): AST and AET are the actual start and stop 
times for the spectrum analysis. 

COMMON/TRAR/A(2048) ,B (2048) ,AA (2048) ,BB (2048) ,TYME (2) ,MILLI ,Ul(50): 
This common area is used to save core; the A, B, AA, and BB arrays are used for 
doing fourier transforms. 

COMMON/LBL/T,ISMO,XNW: T is the bandwidth of the estimate; ISMO is an 
integer used to select the type of smoothing window; and XNW is the number of points 
in the window for plotted output. 
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COMMON/FRQ/FREQ(1024): FREQ is the array of frequency (abscissa) points 
for spectrum plots. 

COMMONCSPSD/PSDIN (1024) ,PSDOUT(1024): PSDIN is the power spectral 
density estimate of the input channel, and PSDOUT is the power spectral density 
estimate of the output channel. They are computed in subroutine FFTCSD and passed 
to subroutine CSDINF, where they are used to derive other spectrum parameters. 

COMMON/TRAR2/COIN(1024) ,QUADRA(1024): COMMON/TRAR2/ is used to save 

core. 

SPAMAIN. -The following definitions are used in the main program. 

NAMELIST/CARDIN/RMS ,PSD ,FILTER ,STATIST ,DETREND are all logical vari­
ables used for the selection of the SPA options to be exercised. 

Subroutine TIMARY uses the following variables: 

XMILLI - total milliseconds (real) passed in. 

ATIME - array passed out (real). ATIME(1) contains hours; ATIME(2) 
contains minutes; ATIME (3) contains seconds; and ATIME (4) contains milli­
seconds of the total millisecond time. 

N - integer variable used for truncation purposes in TIMARY. 

Subroutine TIMECON uses the following variables: 

I - integer input array, consisting of time (four words), I(1) denotes hours, 
1(2) denotes minutes, I(3) denotes seconds, and 1(4) denotes milliseconds. 

X - total milliseconds (returned). 

Subroutine DTRND uses the following variables, among others. SUMX is the sum 
of the values of the independent variable (in this case a dummy variable, a counter), 
and SUMX2 is the sumof the squared values of the independent (dummy) variable. 
SUMY and SUMY2 are similarly defined for the dependent variables (the data being 
detrended). SUMXY is the sum of the product of the independent and dependent 
variables. The A array contains the constants of the linear regression, and the 
B array contains the coefficients of the independent parameter. Notice that there 
are as many A and B values as there are data channels in SPA file 4 (NCH (number 
of channels), in fact). 

Subroutine FILTERS uses the variables described in common areas /FLTER/ and 
/PLTINF/. 

Subroutine BUTTERI is a first-order high-pass/low-pass recursive digital filter 
routine. One of its salient features is that as many as 10 channels may be filtered 
simultaneously. The variables ALPHA and COEF come from the derivation of the 
filter, as does K. Notice that K (in BUTTERI) is a real variable. 
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YO and UC arrays contain the lagged output and input of the filter, respectively. 
The variable SGN is set to +1 or -1, depending upon the type of filter (high pass 
or low pass). 

Subroutine BUTTER3 is similar to BUTTER1 except that it is a third-order 
recursive digital high-pass/low-pass filter. BUTTER3 also filters as many as 
10 channels simultaneously; A, B, K, COEF, COEFA, and COEF2A are all coefficients 
used in the actual filtering process. X1, X2, and X3 contain the lagged values of 
the input; Yl, Y2, and Y3 contain the lagged values of the output. 

Subroutine BUTTER4 is a fourth-order digital filter-high pass, low pass, or 
bandpass. As in BUTTER1 and BUTTER3, as many as 10 channels may be filtered 
simultaneously. 

XLAGL and YLAGL are the input and dutput lag values for the low-pass filter, 
respectively. 

XLAGL (7, 3) is the third lag value for the seventh data channel, and so on; 
XLAGH and YLAGH are similarly defined for the high-pass filter. BLOW and BHIGH 
are the arrays that contain the actual filter coefficients. 

XZ is the input to the filter (present value); YZ is the output; and YINT is an 
intermediate value held for the cascaded bandpass filter. 

Subroutine COEF computes coefficients for the fourth-order filter. The P array 
holds the (complex) pole locations of the filter (within the unit circle). The B array 
is the array of computed coefficients. 

Subroutines RECURH and RECURL are the actual recursion routines for the 
fourth-order filter. RECURH is the high-pass recursion routine; RECURL is the 
low-pass routine. 

X - input (once again, as many as 10 channels may be filtered simultaneously) 
to the filter. 

Y - output of the filter. 

B - array of coefficients. 

XLAG - lagged values of the input. 

YLAG - lagged values of the output. 

Subroutine PRINTO has two important variables-T (2), which contains time in 
alphanumeric code (two words), and Y (10-word array), which contains the data 
being printed. 

Subroutine OVERLAY plots the filtered and unfiltered data on a common time
 
axis. SPI is the number of samples per interval, and TS is the time scale (seconds
 
per centimeter).
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Subroutine DATAPLT plots data from either file 4 or file 5 (that is, filtered 
or unfiltered data'). 

U is the variable array for data read in. Z and W are used as (scaled) beginning 
location coordinates for moving the pen to do plotting. Each point is plotted sepa­
rately; no arrays are used for the actual plotting. Z and U are used for plotting 
the points. The variable INDX determines which of the SPA channels is being plotted. 

Subroutine RTMNSQ computes only the root mean square and the variance of 
time domain data; the P array contains the input data (as many as 10 channels). 
The CHT and CHS arrays contain the sum of the parameter values and the sum of the 
squared parameter values, respectively. The RMSVAL array contains the computed 
rms; the VAR array contains the computed variance. 

Subroutine HISGRAM is the driving routine for the (time domain) statistical 
parameter estimations. The important variables for this routine are described in 
common area /STAT/. 

Subroutine STAT5 does the actual parameter computations: mean, variance, 
mean square, standard deviation, root mean square, data maximum and minimum, 
skewness, kurtosis, and the first 10 values of the autocorrelation function. 
Variables THIRD and'FOURTH are used in computing the third and fourth moments 
about the mean. SUMX is the sum of the parameter values, SUMX2 is the sum of the 
squared parameter values, and so on. The SAVE array contains lagged values 
of the input. SAVE (I,J) contains the jth lag value of the ith channel. 

Subroutine STATOUT does the output for the statistical parameters. The 
important variables are described in the common area /STAT/. 

Subroutine FREQFIL computes the number of observations within the intervals 
for histogram output. Once again, many of the important variables are described 
in common area /STAT/. XLEN is the length of the interval in a histogram. 
FREQ (I,J) holds the number of observations in the jth interval of the ith parameter. 

Subroutine HG5 does the actual construction of the histogram. Array CH105 

contains the 5 percent critical values for the x2-statistic; CH105 (I,J) for 1=1 
contains the low value, for 1=2 the high value for J degrees of freedom. The PY 
array is used in a DO-loop to move the plotter pen to the correct position for printing 
the various statistical estimates. The array JIM is used in a similar manner to deter­
mine the number of decimal places in the output. The E array (two words) is used 
for scaling the frequency (vertical) axis. The D array (also two words) is used 
for scaling the data range (horizontal axis). The X, Y, and Z variables (lines 83 
to 100) are used to plot the actual histogram. Then the histogram produced is fit to 
a normal curve with the same first and second moments. The normal curve ordinate 
values are put in the array ORD. Three hundred values are plotted. The normal 
curve abscissa values are put in the array ABSS. The variable COEF is the scaling 
variable (area) that insures that the normal curve plotted has the same area as the 
histogram. The code in lines 160 to 180 contains the computational algorithm for the 

X2 goodness-of-fit statistic. XNORM (JK) is the average value of the normal curve 
in the JKth interval. 
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Subroutine SPECTR is the driver routine for spectrum analysis. CH is the 
channel number for power spectral density computation; for cross-spectrum compu­
tations, CHIN is the input channel and CHOUT is the output channel. 

Subroutine FFTPSD computes the power spectral density of the indicated channel. 
NPT is the number of points being fourier transformed at one time; NPT02 is the 
number of points in the frequency domain. As mentioned in the discussion of common 
area /TRAR/, A and B arrays are used to do the fourier transforming. XST and XET 
are the requested start and stop times (in total milliseconds) for the analysis. The 
power spectral density array holds the power spectral density estimate. The code 
between lines 119 and 140 does the frequency averaging to increase the number of 
degrees of freedom. The A and B arrays are used to do the actual averaging. 

Subroutine FFTCSD computes the principal components of the cross-spectrum 
estimates. As in FFTPSD, XST and XET are the (requested) start and stop times 
for the analysis (total milliseconds). A, B, AA, and BB arrays are used to do the 
actual fourier transform, NPT is the number of points being transformed at one 
time, and NPT02 is the number of points in the frequency domain. COIN and QUADRA 
are the arrays that hold the coincident and quadrature spectrum estimates, respec­
tively. The array phase holds the phase angle estimates. The code in lines 165 to 
189 does the frequency averaging to increase the number of the degrees of freedom. 
The A, B, AA, and BB arrays are used for the averaging, as is the cross-spectrum 
density array (line 175). The cross-spectrum density array first holds the averaged 
quadrature spectrum estimate; on line 182 it is filled with the crass-spectrum ampli­
tude estimate. 

Subroutine POINTS computes the number of time domain points to be fourier 
transformed at one time. This number is called NPT. 

Subroutine FACTR modifies the number of points to be fourier transformed to 
make the number compatible with the fast fourier transform routine. At most, 
2048 points will be transformed. Array IPRIME contains the prime numbers from 
29 to 1024. (NPT may have no prime factor greater than 23, lines 25 to 38). The 
IFAC array counts the number of times the prime factors appear in NPT; IFAC (1) is 
the number of 2's, IFAC(2) is the number of 3's, and so on. Lines 60 to 66 examine 
the square-free portidn of the factors; this must be less than or equal to 210 for the 
fast fourier transform routine. 

Subroutine CSDINF computes many of the cross-spectrum parameters, such as 
coherence, transfer function, and amplitude ratio. The array SMOPSDI contains 
the smoothed power spectral density estimate of the input channel; SMOPSDO 
contains the smoothed power spectral density estimate of the output channel; 
SMUCSD contains the smoothed estimate of the cross-spectrum amplitude; and 
SMOANG contains the smoothed estimate of phase angle. The COHER array contains 
the coherence estimate, AR the amplitude ratio, TF the transfer function, SMOAR the 
smoothed amplitude ratio, and SMOTF the smoothed transfer function. The myriad 
logical variables are discussed in the section in the common block, FFTINFO. 

Subroutine SMOOTHS smooths a spectrum estimate with any of four different
 
windows. N is the number of points being smoothed, and NW is the number of
 
points in the window. The end points of the estimate are smoothed by extending the
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raw estimate by linear regression. SUMX1, SUMY1, SUMX2, SUMY2, SUMXIY1, 
and so forth are various accumulated sums for computing the coefficients of the 
linear regression. A linear regression is done at each end of the curve being 
smoothed. Al and A2 are the constants of the linear regression; B1 and B2 are 
the linear coefficients. The W array holds the weights for the window. The R array 
holds&the lagged values of the raw input. SMOOTH is the output array. 

Function COMB computes , which equals .n In the routine, TP is thej 1(n - j)'numerator; and BT is the denominator. 

Subroutine OUTPT manages the output for the various spectrum routines. The 
logical variables LR, PR, LS, and PS correspond to listing the raw data, plotting
the raw data, listing the smoothed data, and plotting the smoothed data, respectively. 
The variable INTEG computes the (discrete) integral of the power spectral density. 
CUM and PCUM are cumulative and percent cumulative power for power spectral 
densities. The AFREQ array is the input frequency array. According to XTYPE,
the FREQ array is then filled as a linear, logarithmic, or decibel transform of AFREQ. 
The same is true for power spectral density and PPSD. The variables MINFRQ, 
MINPSD, MAXFRQ, and MAXPSD are used in the call to the logarithmic axis routine. 

Subroutine AX90 draws the vertical axes. The important variables are detailed 
in lines 5 to 11. 

Subroutine LABEL puts most of the written annotation on the spectrum estimate 
plots. ITYPE identifies the type of plot. XINC is used to reposition the pen for 
successive lines of output. 

Subroutine FFT performs the fast fourier transform. NFAC is the number of 
prime factors. NP, AT, CK, BT, and SK are used for temporary storage. The latter 
four are used for storing the prime factors in the FFT computation. For a detailed 
analysis of the way FFT works, see reference 4. 

Dryden FlightResearch Center 
National Aeronauticsand Space Administration 

Edwards, Calif., May 16, 1977 
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APPENDIX-CONFIDENCE INTERVALS FOR
 
THE STATISTICAL PARAMETERS
 

Random Error in the Estimates
 

The first section of this appendix deals with the computational formulas used 
in estimating the time and frequency domain parameters. This section deals with 
the confidence intervals for the various estimates. The number produced by the 
SPA program is, in some sense, the best estimate of a given parameter (mean 

A more meaningful interpretation of the SPA program's output can be obtained by 
examining an interval within which the true (population) parameter lies (with 
typically 95 percent or 99 percent confidence). These confidence intervals will 
be discussed for both time and frequency domain estimates. Confidence intervals 
indicate the uncertainty attached to a parameter estimate: Hence, they reflect the 
amount of random error (sometimes also referred to as sampling error) that 
accompanies the estimate of that parameter. The reason for this error is that a 
statistical estimate is made from a sample (not the entire population) and generalized. 
As a general rule, increasing the sample size lowers the random error in all 
SPA-estimated parameters. This is true of even the frequency domain estimates, as 
discussed in the next section. 

Confidence Intervals for Time Domain Statistical Parameters 

The time domain parameters for which confidence intervals will be specified 
are mean, variance (and hence the standard deviation), mean square (and hence 
root mean square), skewness, kurtosis, and autocorrelation function. 

Mean value.-The mean values, X, found on the statistical output are, as men­
tioned above, sample means. A confidence interval for the true (population) param­
eter, [X, can be based on the sample estimates X and sX , by using the 

t-test as follows. 

Let n be the number of samples, X the sample mean, sX the sample standard 

deviation, t the t-score (see table 3), and (I - a) the confidence level. n ,a/2 

n,1Lx + Sxtn'l-a/2'Sxtn/2 < 

which is to say that the true (population) mean value falls within the above range 
with a confidence of 100(1 - a) percent. Notice that use of the t-test is predicated 
on the assumption that the data are approximately normally distributed. 

Variance and mean square estimates.-For the variance, a 100(1 - a) percent 
confidence interval can be estimated by letting n be the number of observations, 
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TABLE 3 -PERCENTAdE POINTS OF STUDENT t-DISTRIBUTION 

[Value of v, such that Pro (t > t,) a] 

tv'a 

a 

V 0 100 0 050 00 25 0 010 0 005 

t-score 

1 3 078 6 314 12 706 31 821 63 657 
2 1 886 2 920 4 303 6 965 9 925 
3 1 638 2 353 3 182 4 541 5 841 
4 1 533 2 132 2 776 3 747 4 604 
5 1 476 2 015 2 571 3 365 4 032 
6 1 440 1 943 2 447 3 143 3 707 
7 1 415 1 895 2 365 2 998 3 499 
8 1 397 1 860 2 306 2 896 3 355 
9 1 383 I 833 2 262 2 821 3 250 

10 1 372 1 812 2 228 2 764 3 169 
11 1 363 1 796 2 201 2 718 3 106 
12 1 356 I 782 2 179 2 681 3 055 
13 1 350 1 771 2 160 2 650 3 012 
14 1 345 1 761 2 145 2 624 2 977 
15 1 341 1 753 2.131 2 602 2 947 
16 1 337 1 746 2 120 2 583 2 921 
17 1 333 1 740 2 110 2 567 2 898 
18 1 330 1 734 2 1O 2 552 2 878 
19 1 328 1 729 2 093 2 539 2 861 
20 1 325 I 725 2 086 2 528 2 845 
21 1 323 1 721 2 080 2 518 2 831 
22 1 321 1 717 2 074 2 508 2 819 
23 1 319 I 714 2 069 2 500 2 807 
24 1 318 I 711 2 064 2 492 2 797 
25 1 316 1 708 2 060 2 485 2 787 
26 1 315 1 706 2 056 2 479 2 779 
27 ] 314 1 703 2 052 2 473 2 771 
28 1 313 1 701 2 048 2 467 2 763 
29 1 311 1 699 2 045 2 462 2 756 
30 1 310 1 697 2 042 2 457 2 750 

40 1 303 1 684 2 021 2 423 2 704 
60 1 296 I 671 2 000 2 390 2 660 

120 1 289 1 658 1 980 2 358 2 617 

a = 0 995. 0 990, 0 975, 0 950, and 0 900 follow fromt, a = 
-t 

v , a 

s 
222 
2the sample variance, and X 2 the X2-statistic for n degrees of freedom 

at the a level of confidence. Then 
2 

nsx 2 2 
nsX 

Xv,a/2 Xv,(1-a/2) 

where v=n-2. 

The -X2 -value is, found from table 4. 

ORIGINAL V)AGN
 
(YOR QJALM
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2TABLE 4 -PERCENTAGE POINTS OF x -DISTRIBUTION 

2Value of X,,a 
2 

such that Prob (Xv > Xv a
2) ==a, iC 2 

x2 

a 

V 0 995 0 990 0 975 0 90 0 900 0 10 0 05 0 025 0 010 0 005 

Peioentago points foit X2-distlbution 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

6 000039 
0 0100 
0 0717 
0 207 
0 412 
0 676 
0 989 
1 34 
1 73 
2 16 
2 60 
3 07 
3 57 
4 07 
4 60 
5 14 
5 70 
6 26 
6 84 
7 43 
8 03 
8 64 
9 26 
989 

10 52 
11 16 
11 81 
12 46 
13 12 
13 79 

0 00016 
0 0201 
0 Its 
0 297 
0 554 
0 872 
1 24 
1 65 
2 09 
2 56 
3 05 
3 57 
4 11 
4 66 
5 23 
5 81 
6 41 
7 01 
7 63 
8 26 
8 90 
9 54 
10 20 
10 86 
11 52 
12 20 
12 88 
13 56 
14 26 
14 95 

0 00098 
0 0506 
0 '16 
0 18, 
0 831 
1 24 
1 69 
2 18 
2 70 
3 25 
3 82 
4 40 
5 01 
5 63 
6 26 
6 91 
7 50 
8 23 
8 91 
9 59 
10 28 
W 98 
11 69 
12 40 
13 12 
13 84 
14 57 
15 31 
16 05 
16 79 

0 0039 
0 103 
0 352 
0 711 
1 15 
1 64 
2 17 
2 73 
3 33 
3 94 
4 57 
5 23 
5 89 
6 57 
7 26 
7 96 
8 67 
9 39 
10 12 
10 85 
11 59 
12 34 
13 09 
13 85 
14 G1 
15 38 
16 15 
16 93 
17 71 
18 49 

0 0158 
0 211 
0 584 
1 06 
1 61 
2 20 
2 83 
3 49 
4 17 
4 87 
5 58 
6 30 
7 04 
7 79 
8 55 
D 31 
1 08 
ID 86 
II G5 
12 44 
13 24 
14 04 
14 85 
1566 
16 47 
17 29 
18 11 
18 94 
19 77 
20 60 

2 71 
4 61 
6 25 
7 78 
9 24 
10 64 
12 02 
13 36 
14 68 
I5 99 
17 28 
18 55 
19 81 
21 06 
22 31 
23 54 
24 77 
25 99 
27 20 
28 41 
29 62 
30 81 
32 01 
33 20 
34 38 
35 56 
36 74 
37 92 
39 09 
40 26 

3 84 
5 99 
7 81 
9 49 
11 07 
12 59 
14 07 
15 51 
16 92 
18 31 
19 68 
21 03 
22 36 
23 68 
25 00 
26 30 
27 59 
28 87 
30 14 
31 41 
32 67 
33 92 
35 17 
36 42 
37 65 
38 88 
40 11 
41 34 
42 56 
43 77 

5 02 
7 38 
9 35 
11 14 
12 83 
14 45 
16 01 
17 53 
19 02 
20 48 
21 92 
23 34 
24 74 
26 12 
27 49 
28 85 
30 19 
31 53 
32 85 
34 17 
35 48 
36 78 
38 08 
39 36 
40 65 
41 92 
43 19 
44 46 
45 72 
46 98 

6 63 
9 21 
11 34 
13 28 
15 09 
16 81 
18 48 
20 09 
21 67 
23 21 
24 73 
26 22 
27 69 
29 14 
30 58 
32 00 
33 41 
34 81 
36 19 
37 57 
38 93 
40 29 
41 64 
42 98 
44 31 
45 64 
46 96 
48 28 
49 59 
50 89 

7 88 
10 60 
12 84 
14 86 
16 75 
18 55 
20 28 
21 96 
23 50 
25 19 
20 76 
28 30 
29 82 
31 32 
32 80 
34 27 
35 72 
37 16 
38 58 
40 00 
41 40 
42 80 
44 18 
45 56 
46 93 
48 29 
49 64 
50 09 
52 34 
53 67 

0 0 

40 
60 

120 

20 71 
35 53 
83 85 

22 16 
37 48 
86 92 

24 43 
40 48 
S1 58 

26 51 
43 19 
95 70 

29 05 
46 46 
100 62 

51 81 
74 40 
140 23 

55 76 
79 D8 
146 57 

5q 34 
83 30 

152 21 

63 69 
88 38 

158 95 

66 77 
91 95 
163 65 

0=d 

For v > 120, 2 ( - za where z0 is desired percentage point for a standardized 

nogmal distribution 



Confidence intervals for the mean and variance estimates presented here are
 
two-sided; that is, the population parameter is as likely to be greater than
 
as it is to be less than the estimated value.
 

Skewness and kurtosis.-As mentioned previously in this appendix, skewness 
and kurtosis are related to the third and fourth moments about the mean, respectively. 

In general, skewness is a measure of how the distribution is spread about the
 
mean; positive skewness indicates a distribution skewed on the positive (right) side
 
of the distribution, while negative skewness indicates a distribution skewed on the
 
negative (left) side of the distribution. The skewness of a symmetric distribution
 
is 0. Kurtosis measures the spread of the data. A large kurtosis (a value greater

than 3) indicates that the distribution is pointed; that is, that there are more data
 
near the middle of the distribution than in the tails compared with a normal distribu­
tion of the same mean and variance. A small kurtosis (a value less than 3) indicates
 
that there are more data in the tails of the distribution than in the middle compared

with a normal curve with the same mean and variance. Of course, the kurtosis of a
 
normal distribution is 3.
 

In general, skewness and kurtosis are used as measures of how closely a given

distribution fits a normal distribution. When a distribution is estimated from a
 
sample, skewness and kurtosis are subject to random error. To determine (with

95 percent or 99 percent confidence) whether an observed skewness or kurtosis is 
from a normal distribution, consult tables 5 and 6, respectively. If, for example, 

TABLE 5 - PROBABILITY THAT SKEWNESS
 
EXCEEDS LISTED VALUE IN POSITIVE
 

DIRECTION FOR A GIVEN SAMPLE SIZE
 

Skewness with respect to a 
normal distribution at an a of­

n 0 05 0.01 

Critical values for skewness 

25 0.711 1 061 
30 0.661 0 982 
35 0 621 0.921 
40 0.587 0.869 
45 0.558 0.825
 
50 0.533 0.787
 
60 0.492 0.723
 
70 0.459 0 673
 
80 0.432 0.621
 
90 0 409 0.596
 

100 0 389 0 567
 
125 0.350 0.508
 
150 0.321 0.464
 
175 0.298 0.430
 
200 0.280 0.403
 
250 0 251 0.360
 
300 0 230 0.329
 
400 0.200 0.285
 
500 0.179 0 255
 
750 0 146 0.208
 
1000 0.127 0.180
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TABLE 6 -PROBABILITY THAT KURTOSIS EXCEEDS 
LISTED VALUES 

Kurtosis limits with respect to a 

normal distribution at an a of­

0 01 0.05 

Critical values for kurtosis 

Lower limit Upper limit Lower limit Upper limit 

2 37 3 98 2.51 3 57 
2 42 3.87 2 55 3.52 
2 46 3.79 2 59 3 47 
2 57 3 60 2.67 3.37 
2 68 3 41 2.76 3.26 
2.77 3 28 2.83 3.18 
2.85 3 17 2 89 3 12 

the statistical summary from the SPA program indicates the skewness for 500 points 
to be 0. 016 and the kurtosis to be 4.23, we may conclude with 99 percent confidence 
that the distribution sample is not normal. The skewness is not significantly 
different from 0 (0.016 is less than 0.255), but a kurtosis of 4.23 exceeds the 
0.01 level value of 3.60. These critical values come from table 5. In other words, 
the probability of getting a sample from a normal distribution with kurtosis greater 
than 3.60 is less than 1 percent. We may thus conclude with 99 percent confidence 
that the distribution sampled is not normal. 

Confidence intervals for autocorrelation estimates. -According to reference 7, 

the standard deviation of a single estimate of the autocorrelation function is V-n T 
where n is the number of values used in computing the autocorrelation value 
corresponding to t and t is the lag value. Thus, n is the number of points 
minus the lag value for each point of the autocorrelation function. 

Suppose the following autocorrelation function were derived for 1000 points from 
a series thought to be -random: 

c (lag) RX (I) 

0 1 
1 0.33 
2 0.01 
3 0.04 
4 -0.02 
5 -0.08 
6 0.06 
7 0.02 
8 0.09 
9 0.02 

10 -0.02, 
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The standard deviation -VWT would be as follows: 

Lag Rx (T) 'n - T 

0 1 0.032 
1 0 33 0.032 
2 0.01 0.032
 
3 0.04 0.032
 
4 -0.02 0 032 
5 -0.08 0.032
 
6 0 06 0.032
 
7 0.02 0.032
 
8 0.09 0.032 
9 0.02 0.032 

10 -0.02 0.032 

The limits for a single autocorrelation estimate for 95 percent confidence are
 
Rx(T) ± (0.032) (1.96), or Rx(T) ± 0.063.
 

We see that three of the confidence intervals (those corresponding to lag values
 
1, 5, and 8) do not include zero. Chance would dictate that 5 percent of the
 
10 values, or at most one of the above intervals, should not include zero; hence we
 
conclude that the series under consideration is not purely random, but rather
 
contains some periodicity.
 

Confidence Intervals for Frequency Domain Statistical Parameters 

Power spectrum.-The normalized standard error, which defines the random 
portion of the estimation error, is defined as follows: 

1 

where B e is the bandwidth of the estimate and T is the total length of the record.1 
Since the number of degrees of freedom is n = 2B T, S can be written as . 

e r Vn/2 

This equation indicates that for an unsmoothed estimate with only two degrees of 
freedom, the standard error of the estimate is as great as the quantity being 
estimated: 

1 
r r212 

This would be unacceptable in most applications. The random error of the power­
spectrum estimate is reduced by increasihg the number of degrees of freedom by 
smoothing or by averaging adjacent istimates.' 
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A curious fact about power-spectrum estimates is that, unlike most other statistical 
estimates, increasing the sample size (increasing the length of the time series) does 
not indrease the number of degrees of freedom of the estimate. The equation on 
page 46 for power spectral density reveals that as the length of the time series 
increases, the number of fourier coefficients increases; that is, the resolution of 
the estimate increases, not the number of degrees of freedom. As implied in the 
beginning of this section, the SPA program is designed to increase the number of 
degrees of freedom of an estimate automatically by frequency averaging; hence, 
in the SPA program, increasing the length of the signal being analyzed will result 
in an increase in the number of degrees of freedom at the expense of a greater 
resolution bandwidth than would otherwise be expected. 

Since the power spectrum shows the distribution of the variance of a time 
signal by frequency, the sampling distribution of a smoothed estimate is approxi-

X2 2. 
mately with n = 2BeT degrees of freedom. Hence, a 100(1 - a) percent 

confidence interval for a power spectral density function, GX (f), based on an 
A 

estimate Gx(f) with n degrees of freedom is given by the following equation: 
A A 

nGx (f) - nGX(f)
2 Gx(f) < 2 

Xn/2 n, (1-a/2) 

A similar expression holds also for the amplitude of the cross-spectrum estimate. 

Coherence function estimate.-The coherence yXy 2 (f) of an input/output 

relationship is estimated as follows: 

s txy (f)o 

aGX (f) Gy (f) . 
A 

where smoothed estimates of the cross spectrum GXy (f) and the power spectraA A 

GX (f) and Gy (f) are used. Reference 2 suggests that for a number of degrees of 
freedom greater than 20 and for confidence intervals from 0.35 to 0.95, Xy (f) 

can be estimated by using the following transformation: 

rn(f) = -l I -x----]­tln[ + 7XY (f) 

Then m (f) = Tanh IYXY (f) has an approximately normal distribution with mean 

t(0 =n- 1 2 + Tanh-({xy(f)) 
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and variance 
2 _ 1 

2
W(f) n-

where n, once again, is the number of degrees of freedom of the estimate. 

Hence the 100(1 - a) percent confidence interval for coherence, yXy 2 (f) 

can be estimated by using the following equation: 

ro[Zi-a2 c (f) - ''((f) 'z2J 
Prob :! (0 (f)< .
 

1Z 1-a/2 G(o (f) a2 

If, for example, coherence at 	a given frequency, yXy2(fo), is estimated as 

0.52 	for 32 degrees of freedom, then 

°'f)=2 L1- -Vo.52J = 0.9109= h'R.5JC_(f) n[1 

-L+ 0.91=0.94 

2 1 
2()= ±O 0.03am0 30 

which implies that 

c(f) = 0.18 

Thus, the 95 percent confidence interval for co(f 0) is 

0.91 + 1.96(0.18) = (0.56, 1.26) 

That is, 

0.56 < o(f 0) < 1.26 

Now w(f 0) is the transformed coherence. We obtain the confidence interval for 

YXY2(0) by inverse transforming, as follows: 

[n -yXy'(f)10.56 = 
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and 

1.26= -inI+YXY(f)-YXY () 

where 

YXy(f < Y xy(f) < YXy(f 

with 100(1 - a)percent confidence. 

The inverse transform is thus
 

2c° (f) 1
 

YXY (f) e2co (f) + I
 

so 
0.51< YXY(f0) < 0.85 

whence 

0.26 <x 2(fo) < 0.72 

We may conclude, with 95 percent confidence, that coherence at f0 is different 

from zero and that the degree of linear association between input and output at f0 

is 	 somewhere between 26 percent and 72 percent. 

Confidence intervals for phase angle estimate and gain.-The frequency 

response function IIxy (f) 2 is given by the following equation: 

A 	 f A 2 AHxyf = GXy (f)/Gx(f) 

We must then consider this complex quantity as a phase and gain, separately. 
Notice that, in keeping with the estimators for amplitude of power and cross spectrum, 

the gain factor follows a distribution that is a ratio of x2 -distributions-that is, 
an F-distribution. 

The F-statistic may be estimated as follows: 

F(2,n - 2) = (n - 2)Gxf HXy(f) - Hxy(f) 2 

2Gy(f) [1 7Xy (f] 
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Thus 
Hxy (f) Hxy( r 

where 
A 

-
A2 ,(2An-o2)[l 2 Y (f) 
r (f)l- - 1 Y (f)xA

2 XY Gx (f) 

and 

n number of degrees of freedom, 2BeT 

F (2, n - 2) 100a percentage point of the F-distribution, with two degrees of 
freedom in the numerator and n - 2 degrees of freedom in the 
denominator 

A(f) power-spectrum estimate of input signal, X, at f 

G (f) power-spectrum estimate of output signal, Y, at f 

YXy2(fM coherence estimate between input, X, and output, Y, at f 

The confidence interval for the gain (called amplitude ratio in SPA) is thus 

(f AKf) jhXy (f)~I Ay(f4 + AP(f) 

The confidence interval for the phase angle yp (f) is also given in terms of r (f), 
as follows: 

A(f) - A(f) p((f) <A (f) + A (f) 

where 

fA4A (f) = sin-I [4 3 

It is clear from the above expressions that the random error in both the gain 
and the phase of the frequency response functions (measured, in part, by AYp (f)) 
is heavily dependent upon the number of degrees of freedom of the estimate and the 
sample's coherence. 
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Example: Suppose that the following is true for an input signal X and an output 
signal Y at a frequency of 10 hertz: The power spectral density of the input is 
0. 1180; the power spectral density of the output is 0. 1052; the cross spectrum has 
an amplitude of 0. 0295; the phase angle is -6.2280; the coherence estimate is 0. 9404; 
and the amplitude ratio is 0. 9997. Further, each estimate is made with 64 degrees 
of freedom. 

First, the normalized standard error, sr is given by the equation, 

=- = 0.18 

The 95 percent confidence interval for the power spectral density of the input signal 
at 10 hertz is 

64(0.1180) < G(f ) <64(0.1180) 
83 30 - 40.48 

where X2 -values are for 64 degrees of freedom at the 0.025 and 0.975 levels of 
significance, respectively. Therefore, 

0.0907 < Gx(f) < 0.1866 

Similarly, the 95 percent confidence intervals for the power spectral density of the 
output at 10 hertz is as follows 

0.808 < Gy(f) 0.1663 

and the amplitude of the cross spectrum is given by the expression 

0.0227 < IGxy(f) 12 < 0.0466 

The coherence estimate at f = 10 hertz is 0.9404. When transformed by 

co (f) = Tanh-lXY (f) (a transformation sometimes called Fisher's 1-transform 

(ref. 2)), the estimate becomes Iw(10)= ln[1+ 0 =2.09 

Then, since n = 64 and P¢o( 1 0 ) 12 
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2 1S = - = 0.02
n0(10) 62 

and 

0 w(10) = 0.13 

Futhermore, 
<-Zl-a/2o (10) + [hn (10) co (10) < [Ln)(10) + Zu/2aCo (10) 

or 

1.86 < co(10) 2.36 

and 

A 2a (10)e -
YXy(10) Tanh[w (10)] e2 

e 
(10) 

+ 1 

Therefore, 

0.95 < yXy(10) < 0.98 

or 

0.91 < yXy2(10) < 0.96 

with 95 percent conficence.
 

The 95 percent confidence interval for phase angle is given by the expression 

4(10) - A$ (10) 1< (p(10) <4(0) + (1o) 

where 

A -1 F r(lO) 
AT (10) = sin -1 H1) 

and 

2 [F 0.95] [1 A 2(10) Gy(1O)/ GX (1 0 ) 

2 10.10521 = 0.0054
(3.15)[1- 0.94043[.10
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where 

A 2
A 2 coherence estimate 

A 
AGy power spectrum of the output
 

A
 

GX power spectrum of the input 

F,62; 0.95 F-score for two and 62 degrees of freedom at the 0.95 level of
significance 

Thus 

r 2(10) = 0.0054 

Hence 

A( = -1[ 0.0054 1. O[00541=0.310 
an-A ((10) = ()xy(ls)ij 0.9997] 

so that the 95 percent confidence interval for phase angle is 

< -5.92 - A$(10) tp(10) 4(10) + A$(10) - 6.54 < yp (10) 

The value of F was taken from table 	7 (from ref. 2). Finally the-95 percent 
H (10) is given by the expressionconfidence interval for amplitude ratio 

HIAx(l0) - r(10) ! IHXY(10)I ! jHX~y(10) 1 +r(0 

or 

0.9262 IIixy(10)l1 1.073 

73 



TABLE 7 -PERCENTAGE POINTS OF F-DISTRIBUTION
 

[valuesof Fvlv20 05 such that Prob(Fvl 2 >Fvlv 2, 0 5) 0.05]
 

/Amea= 0 05 

FvlV 
2 , 0 05 

Degrees of Degrees of freedom for numerator, vI 
freedom for 

denominator, 
v 1 2 3 4 5 6 7 8 9 10 

1 
2 

161 
18 5 

200 
19 0 

216 
19 2 

225 
19 2 

230 
19 3 

234 
19 3 

237 
19 4 

239 
19 4 

241 
19 4 

242 
19.4 

254 
19 5 

3 10 1 9 55 9.28 9 12 9 01 8 94 8 89 8 85 8 81 8 79 8.53 
4 7.71 6 94 6 59 6 39 6 26 6 16 6 09 6 04 6 00 5 96 5 63 
5 6 61 5 79 5 41 5 19 5 05 4 95 4 88 4 82 4 77 4 73 4 37 
6 5 99 5.14 4 76 4 53 4 39 4 28 4 21 4 15 4 10 4 06 3 67 
7 
8 

5 59 
5 32 

4.74 
4 46 

4 
4 

35 
07 

4.12 
3 84 

3 97 
3 69 

3 
3 

87 
58 

3 79 
3 50 

3 73 
3 44 

3 68 
3.39 

3 64 
3.35 

3 23 
2 93 

9 5 12 4 26 3 86 3 63 3 48 3 37 3 29 3 23 3 18 3 14 2 71 
10 4.96 4.10 3 71 3.48 3 33 3 22 3 14 3 07 3 02 2 98 2 54 
11 4 84 3.98 3 59 3 36 3 20 3 09 3 01 2 95 2 90 2 85 2 40 
12 4 75 3 89 3 49 3 25 3 11 3 00 2.91 2 85 2 80 2 75 2 30 
13 4 67 3.81 3 41 3 18 3 03 2.92 2 83 2.77 2.71 2.67 2.21 
14 4 60 3 74 3 35 3 11 2 96 2 85 2 76 2 70 2 65 2 60 2 13 
16 4 49 3.63 3 24 3 01 2 85 2 74 2 66 2 59 2 54 2 49 2.01 
18 4 41 3.55 3 16 2 93 2 77 2 66 2 58 2.51 2 46 2 41 1 92 
20 4 35 3 49 3.10 2 87 2 71 2 60 2 51 2 45 2 39 2.35 1.84 
22 4 30 3.44 3 05 2 82 2 66 2.55 2 46 2.40 2 34 2.30 1 78 
24 4 26 3.40 3 01 2.78 2 62 2 51 2 42 2 36 2 30 2 25 1 73 
26 4 23 3 37 2 98 2.74 2 59 2 47 2 39 2 32 2 27 2 22 1 69 
28 4 20 3 34 2 95 2.71 2 56 2 45 2 36 2 29 2",24 2 19 1 65 
30 4 17 3 32 2 92 2.69 2 53 2 42 2 33 2 27 2 21 2 16 1 62 
40 4 08 3 23 2 84 2.61 2 45 2 34 2 25 2 18 2.12 2 08 1 51 
50 4 03 3 18 2 79 2.56 2 40 2 29 2 20 2 13 2 07 2 03 1 44 
60 4 00 3 15 2 76 2 53 2 37 2 25 2 17 2 10 2 04 1 99 1 39 
80 3 96 3.11 2 72 2 49 2 33 2 21 2 13 2 06 2 00 1 95 1 32 

100 3 94 3.09 2 70 2.46 2 31 2 19 2 10 2 03 1 97 1 93 1 28 
200 3 89 3 04 2 65 2.42 2 26 2 14 2 06 1 98 1 93 1 88 1 19 
500 3 86 3.01 2.62 2 39 2 23 2 12 2 03 1 96 1 90 1 85 1 11 

o 3 84 3 00 2 60 2 37 2 21 2 10 2 01 1 94 1 88 1 83 1 00 



TABLE 7 -Continued 

Degrees of Degrees of freedom for numerator, vI 
freedom for 

denominator, 
v2 11 12 13 14 16 18 20 22 24 26 

1 
2 

242 
19.4 

244 
19 4 

245 
19 4 

245 
19 4 

246 
19 4 

247 
19 4 

248 
19 5 

249 
19 5 

249 
19 5 

249 
19 5 

254 
19 5 

3 8.76 8 74 8 73 8 71 8 69 8 67 8 66 8 65 8 64 8 63 8 53 
4 5 94 5.91 5 89 5 87 5 84 5 82 5 80 5 79 5 77 5 76 5 63 
5 4.70 4 68 4 66 4 64 4.60 4 58 3 56 4 54 4 53 4 52 4 37 
6 4 03 4 00 3 98 3 96 3 92 3 90 3 87 3 86 3 84 3 83 3 67 
7 3 60 3 57 3 55 3 53 3.49 3 47 3 44 3 43 3 41 3 40 3 23 
8 3.31 3 29 3 26 3 24 3.20 3 17 3 15 3 13 3.12 3 10 2 93 
9 3 10 3 07 3 05 3 03 2 99 2 96 2 94 2 92 2 90 2 89 2 71 

10 2 94 2 91 2.89 2 86 2 83 2.80 2 77 2 75 2.74 2.72 2 54 
11 2 82 2.79 2 76 2 74 2 70 2 67 2 65 2 63 2 61 2 59 2 40 
12 2.72 2.69 2 66 2 64 2 60 2 57 2 54 2.52 2.51 2 49 2 30 
13 2.63 2 60 2 58 2 55 2.51 2 48 2 46 2.44 2 42 2 41 2 21 
14 2.57 2 53 2.51 2 48 2.44 2 41 2 38 2 37 2.35 2 33 2 13 
16 2 46 2.42 2 40 2 37 2 33 2 30 2 28 2 25 2.24 2 22 2 01 
18 2 37 2 34 2 31 2 29 2.25 2 22 2 19 2 17 2 15 2 13 1 92 
20 2.31 2.28 2.25 2 22 2.18 2 15 2 12 2 10 2 08 2 07 1 84 
22 2.26 2.23 2 20 2 17 2 13 2.10 2 07 2 05 2 03 2 01 1 78 
24 2 21 2.18 2 15 2 13 2 09 2 05 2 03 2 00 1.98 1 97 1 73 
26 2.18 2 15 2.12 2 09 2 05 2.02 1 99 1 97 1 95 1 93 1 69 
28 2.15 2.12 2.09 2 06 2 02 1 99 1 96 1 93 1 91 1 90 1 65 
30 2 13 2 09 2 06 2 04 1 99 1 96 1 93 1 91 1 89 1 87 1 62 
40 2.04 2 00 1 97 1 95 1 90 1 87 1 84 1 81 1 79 1 77 1 51 
50 1.99 1 95 1 92 1 89 1 85 1 81 1 78 1 76 1 74 1 72 1 44 
60 1.95 1 92 1 89 1 86 1 82 1 78 1 75 1 72 1 70 1 68 1 39 
s0 1.91 1 88 1 84 1 82 1.77 1 73 1 70 1 68 1 65 1 63 1 32 

100 1 89 1 85 1 82 1 79 1 75 1 71 1 68 1 65 1 63 1 61 1 28 
200 1 84 1 80 1 77 1 74 1 69 1 66 1 62 1 60 1 57 1 55 1 19 
500 1.81 1 77 1 74 1 71 1 G6 1 62 1 59 1 56 1 54 1 52 1 11 

- 1 79 1.75 1 72 1 69 1.54 1 60 1 57 1 54 1 52 1 50 1 00 
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TABLE 7 -Concluded 

Degrees of 
freedom for 

Degrees of freedom for numerator, v 

denominator, 
v2 28 30 40 50 00 80 100 200 500 

1 250 250 251 252 252 252 253 254 254 254 
2 
3 

19 5 
8 62 

19 5 
8 62 

19 5 
8 59 

19 5 
8 59 

19 5 
8 57 

19 5 
8 56 

19 5 
8 55 

19 5 
8 54 

19 5 
8 53 

19 5 
8 53 

4 5 75 5 75 5 72 5 70 5 69 5 67 5 66 5 65 5 64 5 63 
5 4 50 4 50 4 46 4 44 4 43 4 41 4 41 4 39 4 37 4 37 
6 3 82 3 81 3 77 3 75 3 74 3 72 3 71 3 69 3 68 3 67 
7 3 39 3 38 3 34 3 32 3 30 3 29 3 27 3 25 3 24 3 23 
8 3 09 3 08 3 04 3 02 3 01 2 99 2 97 2 95 2 94 2 93 
9 2.87 2 86 2 83 2 80 2.79 2 77 2 76 2 73 2 72 2.71 

10 
11 

2 71 
2.58 

2 70 
2 57 

2 66 
2 53 

2 64 
2 51 

2 62 
2 49 

2 60 
2 47 

2 59 
2 46 

2 56 
2 43 

2 55 
2 42 

2 54 
2.40 

12 2 48 2 47 2.43 2 40 2 38 2 36 2 35 2 32 2 31 2.30 
13 2 39 2 38 2.34 2 31 2 30 2 27 2 26 2 23 2 22 2 21 
14 2.32 2 31 2 27 2 24 2 22 2 20 2 19 2 16 2 14 2 13 
16 2 21 2 19 2 15 2 12 2 11 2 08 2 07 2 04 2 02 2.01 
18 2.12 2 11 2 06 2 04 2 02 1 99 1 98 1 95 1.93 1 92 
20 2 05 2 04 1 99 1.97 1 95 1 92 1 91 1 88 1 86 1.84 
22 2 00 1 98 1 94 1 91 1 89 1 86 1 85 1 82 1 80 1 78 
24 1 95 1 94 1 89 1 86 1 84 1 82 1 80 1 77 1 75 1 73 
26 1.91 1 90 1.84 1 82 1 80 1 78 1 76 1 73 1 71 1 69 
28 1 88 1 87 1 82 1 79 1 77 1.74 1 73 1 69 167 1.65 
30 1.85 1 84 1 79 1 76 1 74 1 71 1 70 1.66 1 64 1 62 
40 1.76 1 74 1 69 1 66 1 64 1 61 1 59 1 55 1 53 1 51 
50 1.70 1 69 1 63 1 60 1 58 1 54 1 52 1 48 1 46 1.44 
60 1.66 1 65 1.59 1 56 1 53 1 50 1 48 1 44 1 41 1 39 
80 1 62 1 60 1 54 1 51 1 48 1 45 1 43 1 38 1 35 1 32 

100 1.59 1 57 1 52 1 48 1 45 1 41 1 39 1 34 1 31 1 28 
200 1 53 1 52 1 46 1 41 1 39 1 35 1 32 1 26 1 22 1 19 
500 1.50 1 48 1 42 1 38 1 34 1 30 1 28 1.21 1 16 1 11 

1.48 1 46 1 39 1 35 1 32 1 27 1 24 1 17 1 11 1 00 



REFERENCES
 

1. 	 Edwards, John W.; and Deets, Dwain A.: Development of a Remote Digital 
Augmentation System and Application to a Remotely Piloted Research Vehicle. 
NASA TN D-7941, 1975. 

2. 	 Bendat, Julius S.; and Piersol, Allan G.: Random Data: Analysis and 
Measurement Procedures. Wiley-Interscience, c.1971. 

3. 	 Cooley, James W.; and Tukey, John W.: An Algorithm for the Machine Calcula­
tion of Complex Fourier Series. Mathematics of Computation, vol. 19, 
Apr. 1965, pp. 297-301. 

4. 	 Rabiner, Lawrence R.; and Rader, Charles M., eds.: Digital Signal Processing. 
IEEE Press, c.1972. 

5. 	 Wiener, Norbert: The Fourier Integral and Certain of Its Applications. 
Dover Publications, Inc., 1958. 

6. 	 Lighthill, M. J.: Introduction to Fourier Analysis and Generalised Functions. 
Cambridge University Press, c .1958. 

7. 	 Jenkins, Gwilym M.; and Watts, Donald G.': Spectral Analysis and Its 
Applications. Holden-Day, Inc., c.1968. 

77 


