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ABSTRACT

We have used Monte Carlo simulation, lattice dynmamics in the harmonic
approximétion, and golution of the hypernetted chain equation to étudy the
classical two-dimensional one component piasma, We find a fluid phase for
T = ez(ﬁn)%/kBT < 125 + 15 and a solid phase for higher T. The solid phase
shows directional long range order. In the solid phase positional long range
order is lost as the thermodynamic limit is approached. We also present the

results of calculation of the thermodynamic functions and one and two particle

correlation functions.
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I. INTRODUCTION OF POOR QUALITY

This paper is concerned with the properties of a two-dimensional one
co;ponent plasma. Our system consists of a single species of charged par-
ticles immersed in a uniform neutralizing background. The particles interact
via a 1/r potential, where r is the two-dimensional separation. Our calcula-
tions are limited to ranges of temperature and density such that quantum
éffects are unimportant. We have made calculations of the equation of state
invthe'fluid phase using both the hypernettgd chain equation (HNC) and
ﬁonte Carlo simulations; Our calculations in the crystal phase were done
by Monte Carlo methods.

There are two reasons why we find such a system interesting. First
;t can be considered as an idealized model of a bound surface layer of elec-
trons above liquid helium four. Second there have been extensive simulations
af the properties of the three~dimensional one component plasma. The exten~-
sion to two dimensions may provide insight into the behavior of both systems.

We begin by briefly reviewing the state of our knowledge of the electron
s§rface layer above liquid helium four. Several years ago Crandall and
Williamsl suggested that under favorable circumstances electrons trapped on
the surface of liquid helium might crystallize to form a two-dimensional
electron solid. Since in most experimental situations the density of electrons
can be changed by several orders of magnitude, it was hoped that the so called
Wigner crystal2 might be within experimental reach. This led to a great deal
of theoretical and experimental activity in the following years, and Chaplik3
suggested that a similar crystallization can occur in the inversion layer
near the surface of a semiconductor. In the helium context a model of a charge-
compensated one component system of N electrons confined to an area 4 at a

temperature T interacting with 1/r potential can be and has been considered

-7
as the canonical model?



, In this paper we consider only the classical behavior of the mo&el.
This is appropriate for the electron surface layer above liquid helium
in the usual experimental regime. However, our model is not appropriate for
the problem of the metal-oxide-silicon inversion layer where the electrons
form a degensrate quantum system.

Although studies by Brown and Grimes8 of cyclotron resonance
in a tipped magnetic field have shown that the electron motion

on the surface of liquid helium is two dimensional, it is clear that !

for a strong clamping field (most experiments require a clamping field in order

to localize the electrons layer for a reasonable amount of time) one needs in principle
to take into account the coupling in the perpendicular direction, for example

the deformation of the helium surface? However, the characteristic dimensions

are such that the interelectronic spacing ( ~ 104§) is much larger than the

spread in the charge density in the direction perpendicular to the surface (ﬁlozi)
so that the system can be considered to be essentially two-dimensional. There-
fore the model of a two-dimensional electron gas, neutralized by a uniform
positive background, and interacting by a ez/r potential is probably a reasonable
first approximation to the experimental situation. The system is characterized

by the dimensionless quantity T = ez/akBT, where a = (ﬁn)é and n = N/A.

The simulations that have been made on the three-dimensional one component
plasma have established its equation of state, the phase boundary between the
crystal and liquid phases, and the two particle correlation function
at several densities and temperatures. In addition, Lindemann's ratio at
melting has been found to be 0,17---rather close to the values for other inverse
power potentials. The height of the first peak of the structure factor at
freezing was found to be close to 2.85~-~again close to the values for other
potentials. In view of these results it seemed worthwhile to carry out a

similar study of the two-dimensional one component plasma. In particular we



3 ORIGINAL PAGE I8
OF POOR QUALITY

were interested in determining whether the two-dimensional system would
undergo a phase transformation to a crystalline phase. To our knowledge
there has not been any calculation comparing the free energies of the solid
and the liquid phases which i3, after all, the basic method to locate this
phase transition. 1In this paper we presemnt such a calgulation. We employ
both the hyvernetted chain integral equation and the Monte Carlo technique

to calculate the free energies. We have cdomputed the thermodynamic functions
and correlation functions over a wide range of T, 1 S\T < 300. A recent
publication by Totsujilo contains Monte Carlo results for the thermodynamic
functions and pair correlation function for 0.15 < T < 50. Within the

range of I' our results are generally in good agreement with those of Totsuji.
On the other hand our results are quite different from a very recent computer
experimentll which employed a special type of mnlecular dynamics methdd
(PPPM: * Particle-Particle/Particle-Mesh). Contrary to the )\ point transition
obtained there we tentatively find a first order transition, our transition
being roughly 20% higher in I'; namely I = 125. Our results are qualitatively
similar to the corresponding three-dimensional calculations of Hansen12 and
Pollock and Hansanls. We find that the triangular lattice is stable and have
calculated the harmonic phonon disperslion laws for such a lattice. We also
find that the two-dimensional square lattice is dymamically unstable. Our
calculations for the harmonic solidare in agreement with a recent calculation
by Bonsall and Maradudin14.

Before proceeding further we shquld comment on the -existence of two-
dimensional crystalline order. Some years ago Merminls published a rigorous
proof, based on Bogolyubov's inequality, that twqfdimeQ§ional systems cannot
display long range crystalline order. The proof had two limitations. First,
and probably less important, the interaction potential was assumed to fall

2
off faster than 1/r”~. Second, the result conly applies in the thermodynamic



limit. When the same mathematical methods are applied to a large but finite
system one finds that no inconsistency arises from the assumption of crystalline
order. Thus any system that can be studied in the laboratory or in a computer
simulation can exhibit crystalline order. We do indeed find a stable crystal
phase in our simulations, however ,it does have unusual properiies. These

are described in sections VI and VII.

The plan of our paper is as follows, after formulating the problem in
section II, sections‘III andlqv are devoted to the calculations of the thermo-
dynamic functions in the liquid and solid phaées respectivély. In the liquid
phase we present results for both the HNC method and MC simulations; Section V
is devoted to the determinatioﬁ of the phase boundary between the crystal
and fluid phases. Lindemann's ratio and its dependence on the size of the
system are discussed in section VI. The one and two particle distribution

functions are presented in section VII.

II. TFORMULATION OF THE PROBLEM
Consider a system of N electrons obeying classical statistics, confined
to an area A, and neutralized by a uniform positive background. The Hamilto-

nian, apart from the kinetic energy, which does not enter into our considerations,

is then
2
H = I ;e- - #Nnv(0) (2.1)
i<j Tij

where, the last term, arises from the interaction of electrons with the uniform

-

positive background. Here rij = [ri - ;3 is the iwo-dimensional separation

2
and n = N/A is the area density of electrons. The Fourier transform of e /r

potential in two dimensions is given by
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. 20 V
v(k) = e[ - Py = >

(2.2)

Once again K = (kﬁ,ky) is a two-dimensional vector. For the problem of elec-
trons bound to the surface of helium four one should usée the " enormalized"

charg@7

"2 : - Py W
e " = ezrztal + €,) Y (2.3)

where we have assumed that uniform media with dielectric consgtants 21 and =,

£111 the adjacent half spaces. The thermodynamics of this one component

clasgical electron plasma i3 determined by a single dimensionless parameter,
- 2
D o=

_ . (2.4)
kBTa

where kB is the Boltzmann constant, T the temperature and a is the average
interparticla distance determined by n = 1J(na2)‘ The completsz solution of

the problem therefore reduces to the caleulation of averages of the kind

: ' ' 1l o ~ 2 2_ . R
<> = j?(r seexdexp [ = == T vir, )] d7r ..d r 0Q {2.3)
170N KTy oy 13 1 NN
whare
: P N | T2 2
- : i X g ame— b ¢y b H.—Q-t .. *
Qu = joovy O ng ;<j V(xij)ﬂ d £y d g

The two particle distribution funcilon ia given by

e - NON=1) > o T L o ‘ T 3. 2 o R

POy . 2 . ) .
For the liguid phase P<T1’rﬂ) = n g(rlz), where g(xr) is the pair correlation

function.
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Before we proceed any further we should point out that the summation of
the ring diagrams (random phase approximation) produces a divergent free energy
and therefore the result analogous to Debye-Hlickel limit in three dimensions

does not exist. In fact it is easy to mimic the corresponding three-dimensional

calculationls’%g obtain

Q GE IS
N _ ORIGINAL PA
T = Nlog(l/m) +1+W , OF POOR QUALITY (2.7
where W is the contribution of the ring diagrams
q 2 .2>
20 _ 1 ¢'m 2rme” 1 . (2me™\ 1
W=Wuing = T2 Io g l°g<l * ( kT q>] da (2.8)

kBT

which diverges as qm - ®, This is different from the behavior of the corres-

ponding three-dimensional integral:

@ 2 2 .
3D _ 1 2 [<4ﬁne 1 ( (41Tne'> 1 >]
wring - 4n2n fo q kBT > q2 logll + kT q2 dq

This high g (small r) divergence for the contribution of the ring diagrams -
to the energy has also beén noticed by Totsujils. He has, however,:shOWn~
thaﬁ if one inclﬁdes the simplest set of next order diagrams then the diver-
gence is cancelled. His results can be expressed as a small " expansion
for the excess intermal energy,

ex

ﬁ—,r-=1‘2(%+2y-1+%2)+
B

(2.9)
ri-s@m? + 81 - 2y)od + 41 - 2y) 221 + ...

where ¥ is Euler's constant.
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III. LIQUID PHASE CALCULATIONS

Given the pair correlation funection x(r) then the axcess internal energy U

i wiven ly,

s 7 PE(r) = Lldr = e dRUS(R) - L) 3.1
Nk, T 2y

where 3(R) is the structure faetor defined by

o3
S(RY & 1o 2 #F (RRY GRS = L de (3.2)
Q

where J _(x) 18 the zZeroth order Bessgel funetion. The presstre obtained Irom

the virdal theorem iy

ex
E“’\v - . e . (3.3)
Nkﬁf Ykar
and excesy free 2nergy 13 x¥lven hv
B o pld ™ e
R L R T 5.4
N T TR = 3.
Nksi % kkBF v
The ideal gas free ehergy gt is given by
Fié « 0 naw“ 1
Ne T KW“BT - (3.%)
ar, in oupr unite,
pid Lk T
e 20T L 4 gn (gl ) ~
et I W (3.6

, 4
BN ¢ E R TR S San e X T
\\’h@l [ R)_ = W iy i,ﬁ oaa thy u.dinl@ngi‘}“al R\pdb@l\; ota £ congtant.
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Equations (3.1) to (3.6) are the relations we use in our liquid phase calcula=-
tions,

A. The Hypernettad Chain Method

The hypemetted chain egquation has been very successtul 12 in predicting
the properties of the dense one component plasma in three dimensions, In
this subsection we shall present the results for the two-dimensional case.
The hypernetted chain integral equation for the pair correlation function is

defined by the following two equations

g(r) = 1 = clr) + nfd;‘[g(r‘) - l]c(]; - ;'!) (37)

. v(r)

KU

amg(r) = g(r) -1 - ()

where c{r) is the direct correlation function. This equatdon is difficult to
solve for long range interactions. Following the method used recently by
Springer,at 9120 Ve carry out a subtraction procedure to rewrite the equations
in terms of short range guantities. We decompose the original potantial

v(r) into long and short range parts

™ =™
ey - " - : :i_‘ R . :_. - PR e R 3.¢
vir) = vy (1) e v (r) = oerE(br) + T (1 - exz(bm] (3.9)

The parameter b is for the moment arbitrary. We denote the sum of nedal

diagrams by N(x):

N(x) = g(x) = 1 = o) ) (3.10)
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and decompose N(r) into short and long range parts
Nsr(r) = N(r) - vlr(r) (3.11)

Since at large r, N(r) ~ I'/r, Nsr(r) is short ranged. Similarly for the

direct correlation function c(r) we have
= ; . 3.12
csr(r) c(r) + vlr(r) | {(3.12)

It is now easy to see that Eqs. (3.5) and (3.6) can be solved by Fourier

transforms. The set of equations to be solved are

ar : ar. . ,
¢ (K)[e (X}=-=——Erfc(k/2b)] - —Erfc(k/2b)
ST sr r T "
- - o 2
1 [csr(k) :rErfc(k, b) ]
= - 3.14
g(r) exp(N_ () - v_ ()] ' ( )
csr(r) =g(r) -1 -N_ .(v) : (3.15)
where
ik-7 2 o
- P *r S = P ¢ 3.16
csr(k) =n; e csr(r)d r = g Jo‘kr)rcsr(xﬂ dr , (3 )
and
— 9 <
T “r = 4 3.17
N__(0) = n f Qik T N (r)d'r 4ﬁ£ I, (kTN () ar (3.17)

We also have for the inverse transform



»#

10
PE QY o By
. e ye ) (L hnh ¥ P J‘ Ys i = - - P 3
N, ) = L I N TR = RN 00T () dk (3.18)
3 l\,(m)d ¢ QD

It is clear from Jgs. (3.7 - §.18) that the original equation has been
cast into a form which involves only short range functions, and the numerical
transforms can therefors be calculated much more readily. The method is
similax to the Ewald technigue for calculating lattice sums, and Jepends on
an optimum cholce of the parameter b such that the functions are short ranged
in both X and x space. The remaining problem is to calculate the Hankel
transdormg accurataly. Since we will need to take transforms back and forth
betwgen @ and X space, it is important that the algorithm preserves the ortho-
gonality of Bessal runcrions. Such an algorithum has been worked out by
Laduz"l A sigpificant improvement or the accuracy was obtained by caloulating
the zares of the Bessel funcrtion to machine accurasy. Machine memory limdta=
tlong essentially restricted us to a maximum of 300 points in r and %k space,
Qur zesults are pregented at the aund of this section,

B. Monta Carlo Method

Quxr MC simulationg were perrormed in the time-honored manner pioneered

a2

by Metropolis et al™ . Each run had a given number of particles N, a given
area A, and a fixad value of 7. The axrea ) was chosen to he a rectangle
capable of accomedating a section of tiangular Glose-packed lattice with

pariodic boundary conditions. To minimizme surface esffects the rectangle was

chosan to bhe nearly square with the ratio of the x and y edges as

L t
A Now Ay,
i——- = = \\1\;19)
-
¥

Y
Mhis shape exabled us to make runs with 4n” (n = 1, 2, 3,...) particles.
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Due to the long range nature of the porvential, the intaraction of each
particle with the other (N - 1) particles in the basic rectangle, with all
images of the N particles, and with the uniform nautraliz=ing background must

all be included. This complete interaction can be written as

9
— ™ o " 4~
v(r) = L —m——— - L T (3.20)
VMFer X MYy IR0

«

wvhere A' 1is the set of vectors generated by the basis vectors (1,0) and .

(0, +3/2) and where r is the distance vector between the two particles. This

"

2]
interparticle potentizl may be atfificiently handled via the Ewald techuique“a.

2
The computation proceeds in a similar way to the 3D case;“. The result is

B e arfc(\;&!;{L‘ + X b . 3 o 1 NN
v(r) = = > > «}\:—‘-— +-:§ A = Q&’:C("'{"':L)
A\ |zen_ + Xt S S PUS v
2 (3.21)
x exp(-am 350 T

to
«

where the second sum 1s over a reciprocal lattice with basis (1,0) and (0,2&;3);
The prime on that sum denotes the exclusion of the term withui" = (0,0).

The parametar 3 smay be varied to achleve a balance in the rates of convergence
of the two sums.

Even with the application of the Ewald technigue esquation (3.21) is
unaccaptably slow for MC calculations. To make the calculation more efficient
V(;S is split into two parts. The first part consists of the sphexrically
symmetiic (K’ = 0) term which is tabulated with a 35,000 point mesh. The
remaining part of v(§3, which is invariant under reflections (x — =x, ¥ = -y)
and inversions (; - -;3, is tabulated on a 151 x 1Tl point grdd. with linear

interpolation applied to each part of v{gﬁ the potential energy of a configura-

T N R ' : o o
* -
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tion may be efficiently calculated with an error of approximately 0.001% ,

which we found to be negligible.

If we now include the interaction of each particle with its own images

we obtain the tofal interaction energy of a coniiguration of the N particles

and images as

v = % i-(rlj)-{-V'
I i~

Al rag {‘1 ‘8
OF BCKH§<QUAIJYX
(3.22)

The constant term is just half the Madelung energy of a rectangular lattice

with sides Lt and Ly. In our units

w- = =1.09653 T (
T T

(3.2

In our MC calculation the center of mass is not fixed. To correct for

this effect the diifference between the MC value for the excess intermnal energy

MC

U /NkT and the static energy Uo/NkT of a perfect triangular close-packed

2
lattice must be multiplied by NA(N - 1)'4‘

I{f we follow Hansen

12
and call

the difference between the excess internal energy and the static energy the

t
thermal contribution (U h) to the excess internal energy

Sth FC ) Un
“"NxBT @ NGT N-1

ex  _th
Uo_ U Y
- ,

kT T Nk] ST

i o e i} L U T Ry
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Hexe the static lattlce energy is given by half the Madelung energy of the
triangular close~packed lattice.
U

_-?-T:s -1.106103 T . (3.2)

B

[

The liquid phase Monte Carlo runs were made with 16, 36, 64, and 100
particles. These numbers of particles, whila small for three-dimensional
wvork, are reasonable for tvo dimensions. The astarting configurations for
the runs were aither atriangular close-packed lattice or a quasi-random
configuration. For each run approximately 13,000 moves per particle were
made and on the average 50% off these moves were accepted. Of these approxi-
mately 3,000 moves per particle were discarded in order to allow the system
to lose its memory of its original configuration and reach an "equilibrium
state." Since the amount of configuration space to be sampled is considerably
readuced in two dimensions over three dimensions these rung represent very
long Markov chains when judged by atandards normally applied in three dimensions.
Runs of this length are needed to accurataly determine the thermal portion of
the excess internal energy which is only about 1% of the total excass internal

energy. From block averaging we estimate that our caloulated excess thermal

anergies have errors of the ovrder of L%.

For the amall [" reglon effects due to the small numbers of particles are
not really signitficant; even the 18 particle runs show little effect due to
the small 3lze. TFor the largest values of " number dependencs bhecomes much
move important. Howaver, as cah be seen from Flg. 1 the number dependence,
in the anergy, is essentially eliminated by the time 100 particles is reached.

The most convenient way of dealing with the HNC and MQC results iz

with a gimple and acocurate fittiog Lunction.
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The small ' expangion of Tctaujilg, mentioned in section IX, givea us the low
I' hehavier of the excess internal energy, Howevey, this expansion is not
agourata fox I above 0.3, We have fitted our MC and HNC data up to a value
of " of 0.3 by tha asilmple expedient of adding a tarm QFG to equation (2.9).
The value of 4, and all other fitting parameters, is gilven in table I. We
have a dacond fitting formula for values of ™ in the range 0.4% to 130. It

13 basad on ﬁansan‘ala threa~dimensional work and the fagt that

ng UQ
Lim wor ® = -1.08 T (3.3

Ty ‘mB Nk
The formula ia

&a Elé . ﬁl? ..}
ey Gasaai “te GRS 3 e . : 4
(a, * m~ g * D (ag + I° =

b ?{ s “ (3.28)
ﬁﬁgT Ay o+ L (a
whare the value of A 1s fixed by squation (3.368), Thig formula aceurataly
reproducza both our MC and HNC vesulta withthe parameters given in table I,
Qupr MC results are preagnted in table IX and figure I,
We have caleculatad the excess free enavgy of the liguild phase by using

eguation (3,4) with equations (2.9 and (3.38). We awiteh between equation

(2.9)  and aquation (3.28) at T& = 0,43, OQur free energy iz then given by

5o o ?“E&P Y o= 1% &13]
» leaEn? » @eavid + Geav eaed - i) (3.29)
o L

tov 0 g T ﬁ.?g anel by
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a + r
4 L o
+a[@n( - + ]
3L \a4+ro ) a +[ a4+?°

K
a 4

+ 35[?? ((35+;)2‘- (a +P ) ) (l+a - 1+a:Fo )}

* 87[:1:';%( = - | ) - 3(—= _)_} (3.30)

(a8+1‘) (a +T ) (a +I" (a +1‘ )

for Po < T < 130, where F:x/NkBT is given by equation (3.29) ewaluated
for T = FO. Our results for the free energy are tabulated in table 2 and
displayed graphically in figure 2. We agree well with the results of
Totsujilo for the free energy. It should be noted
that our Monte Carlo rums are approximately ten times longer than his. For
this reason we believe our data iy more accurate.

The excess specific heat at constant a;ea may be calculated by differen-

tiating the excess internal energy

c -
A =_r2.§.r.3:._2e}1: (3.31)
Ne ar' LI Nk

In the region O < T < 0.45 we obtain

ax
CA
— - FQLZY + 1 +m4+ 2 %z}

td

F(ZY-1)4("-'~3271 2) + 8(B6y-1) &na T + 24@ D~ ]-s«:r (3.32)

and for 0.45 < T' < 130 we get
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(?x . a 2Aa S 4a
-\?ki S D '3 S, 1
N¥ . = -
B 8y + T (*..\_L + M (aﬁ « MY (as + I")l -
a n (3.33)
9 » a a.
- L, S S + LIS

2y + T <“4 + F)S (56 * fﬁs (ns + F)A .

The equation of state follows from the wvirial theorem, aquation (3.3).

Table 2 contains our results for the speacific heat, Figure 3 showsy our
results for CA using the filtting formala and from direct Monte Carlo calcula-
tions. ’The lattar calculation is difficult due to the large fluctuations in

the data and our results are preliminary in nature. We will discusg them in

more detall in sactlion V.

1V, SOLID PHASE CALCULATIONS

A combination of lattice dynamics and MC methods was used to computa the
properties of the solid phase. The lattice dynamics caloulation was performad
ir the manner of Bonsall and Maxadudin}A‘ The tachnique of special p@intsza’gﬁ
wvas used to sXficiently calculate various thermodynamic functions by averaging
functions of the Irequenciles over the first Brillouin zeome, The lattice dynamics

calculations provided us with approximations for the free gnergy and othey

thermodynamic functions and the root mean square deviation of particles from




theixr aquilibrium lattive aites, The MC caloulationg provided ug with
internal enevgieds, abd the one and two particle digtridution funotiona

for the ovystalline phage. From these resulta we valoulated the free energy
and gpegdtic heat, Thesae MC oaloulationg wepe pevrtformed in the same way

ag in the ligudd phage with the exception that all pung were started rom a
parfect lattive, Again rung were peviormed fov 1d 36, d4, and 100 paprticles.
For T & (20 we found that the Jdeviationa of the particles from their owiginal
lattice gites did not reach a ateady value duxing rvins, Thig value of 7 wag
taken ag a preliminary indication of the location of the phage trangition to
the liquid phage. 3Jolid phase MO rung were made for values of [ between 130
and 300,

A Canter of magg correotion was applied gt as in the ligquild phase. The
Jdependence of the thevmodynanmic quantitiea on the number of paprticlss in the
ginulation wag found to be less gevere than tn the high 17 liquid phasa with the
100 particle systam agnin wall vepresenting the iafinite particls gvatem, The

prediiotion of harmonio lattice dynamivcs for the excess intarmal enargy ia

SR ¢
u&m;m t\) ‘
e R R \*X 1
SKEX Nk, T
The pressure i3, of vourse, still given by equation (A3 Y,
VY
{0 the harmonic approagimation the total free enevgy is given by
Y.
Fﬂavm U“ N - e ) . L
‘ . o U0 ainh (gl (4,3
W TEQN L CESET
f ; T B

whetre the sum 13 vver frequencales tn the fivst zone and § i3 summed over the

wo branches.  In the classgical dinit we get

. s,
Harm v B M@
§ W 1 . j, Wt Y \ . N \
ot m ooeme pon VA eltweessay b W oR \Tﬂﬁ;‘ 4,3
N\\‘\‘ 1\ &‘\\‘1‘ N N \i‘\‘ \\‘\ X

1
\ ‘\‘
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where wi = —23 . In our units we obtain:
ma
FHarm Uo 1 wj(q) kBT
B B aJ o y

The values of the sums over frequencies is given for various grids in the
first Brillouin zone in Table 3.

The harmonic approximation for the excess specific heat is

A =1 (4.5)

We can also calculate in the harmonic approximation root-mean-square

-~

deviation of particles from their lattice sites, YH. It is given by

" o1 - hw(q)
- o~ coth ( T)
m 2N a wj(q) 2kB

(4.6)

2
B
b

i
A
)
[ \v]
~
v
"

where d is the near neighbor distance. 1In the classical limit this bhecomes

Ww 2

WH2 = <r?rd> = %%3% L (o) (4.7)
a3 Y

. This result is tabulated for varying numbers of points in the Brillouin zone

in Table 5.

' 14
An important point to note is that the small q behavior of wj(q) is
w (@) =/q
(4.8)
wz(q) = q

Thus, the harmonic approximation predicts a logarithmic divergence, as the

thermodynamic limit is approached, of YH due to the small q behavior of
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wz(q). This divergence has been seen in molecular dynamics studies
of crystalline systems of hard disks ranging in size from 100 to approximately
7,000. VWe have no reason to believe that it will not occur in our system.
This means that Lindemann's ratio is nof independent of the size of the system
in two dimensions. We give a more detailed discussion of these matters in
Section VI |
Our solid phase MC results are tabulated in Table 4, together with some

of the lattice dynamics predictions. Our MC results are well parameterized

by adding a small ankarmonic correction to the harmonic excess internal

anergy (4.1)

ex Harm
U U -1 .
NkBT= TNRT + ol =+ b0 (4.9)

The anharmonic contribution is the first part of an expansion in powers of
T or inverse powers of I'. The values of a and b which we find are 5.0 and
560. The internal energy i1s displayed in Figure 1.

Given our simple result for the excess internal energy the other thermo-
dynamic functions follow directly. We assume that in the infinite I limit the
harmonic free energy becomes the exact free energy. Hence, we may obtain the

free energy for flnite [ by integrating the anharmonic correction to obtain

tot harm T harm
F L - i
ﬁﬁ;g‘“ EE;T_ + S (8ri + b T) T = “¥eT al Ao (4.10)

The free energy is plottad in figure 2. By differentiating the excess internal
ehergy according to Eg. (3.31) we obtain the excess specific heat of the solid

phase,

»»IO
. » g

- -9
= 1+ 2a0 %t 4 36D . (4.11)

16>}

Figufé shows this function and also our result for C* from direct Monte Carlo

computation,
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V. THE PHASE TRANSITION

.Using the free energies calculated in the preceeding sections we searched
for a phase transition between the liquid and solid phases. Looking
at table 2 we see that for the 100 particle system the liquid free energy is
lower than the solid free energy for T below about 130. However, this crossover
point is extremely sensitive to the free energies. an error of only 0.04%
in the total free energy or 0.7% in the excess thermal free energy would shift
the melting point T by 15. Doing a double tangent construction to determine
the width of the two phase region shows that the melting and freézing éoints
are oﬁly separated by about 0.1 in T.

Since the free energies lie so close it is worthwhile to seek confirmation
of the location of the phase *“ransition by loocking at the behavior of systems
which were started from a perfect crystal and allowed to melt. The 100 parti-
cle system started at T = 130 achieved an equilibrium value of the root mean
square deviation of .158. This system was allowed to age for 13,000 moves per
particle. The I" = 120 particle system melted after about 2000 moves per
particle. In our N = 64 particle runs the same behavior was observed with the
™ = 130 system attaining an equilibrium root mean square deviation of 0.153.
Hence, the phase transition probably lies below a value of T' of 130 and above
a [ of 120. Since metastability appears to be much less of a problem with
softer potentials in two and three dimensions and the free energies are
difficult and expensive to compute for such potentials,monitoring the stability
of the crystal lattice is a sensible alternative for soft-potentials. The
quantity T is essentially a measure of the ratio of the potential and kinetic
energies of the plasma. We therefore seekthat the system crystallizes when
the potential energy is approximately one hundred times larger than the kinetic
energy. This, to us, somewhat surprising result is very similar to that found

in three dimensions.
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Hockney and _Brown11 found a second order phase transition at [T = 95 + 2
in a molecular dynamics simulation involving 10,000 particles. We have made
several careful runs in the neighborﬁood of " = 95 but have found no signs of
any anomaly in either the free energy or the internal energy. In figure 3
and table 2 we have presented the results of a direct calculation of the speci-

fic heat at constant area based on the fluctuations in internal energy:

ex
2

Tj - - 2
T 2vE ) )>-¢x vE ) (5.1)
NL. (i<j iJ ) i<y ij _

A"
o}
"

Calculation of the specific heat in this fashion is inevitably noisy but our
results are clearly incompatible with the results of Hockney and Brownll. They
performed their calculation by starting at a low temperature, or high value of
T, with a crystal with several grain boundaries and then increasing the tempera-
ture in steps. We interpret the discrepancy with our results as showing that they
did not give their system time to achieve equilibrium at the various tempera-
tures. It is hard to blame the discrepancy in the difference in numbers of
particles; we do not see how a system which melts at a value of T of 120 for
iOO particles could remain stable at a " of 100 for 10,000 particles. As the
next section will show, traditional indicators of crystalline order, such
as the mean square deviation of particles from their lattice sites, increase with
fhe number of particles for fixed I'. We know of no quantity which indicates
increased order as the number of particles increases, in two-dimensional_systems.

The order of the phase transition is an important question. A recent
discussion by Kosterlitz and Thouless29 argues that melting in two dimensions
for short range forces is caused by the appearance of free dislocations as a
result of the breakup of pairs (or higher combinations) of dislocations with opposing
Burger's vector. Their calculation results in an analytic specific heat at the transi-

tion but the approximations they make are of the type which could easily mask
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a’weak singularity. A recent calculation by Nelson?o, yields an essential
singularity in the specific heat. JAnother calculation by Holz and MedeiresSI
aftues for a first order phase transition with short range forces and gives a
rationalization for the second order phase transition observed by Hockney

and Brownll.

:Youngs2 has performed a calculation, similar to that of Nélsonso, paying
p;rticular attention to the angular forces between dislocation pairs, and finds
qualitatively similar results. Most recently Halperin and N‘elson33 have argued
that two-dimensional melting occurs in two steps. They propose that at a low
temperature the breakup of dislocation pairs leads to a transition to a "liquid
crystal' phase and at higher temperature the dissociation of disclination pairs
yields an isotropic fluild.

- We thus find the theoretical situation to be less than completely clear,
especially for long range forces. Our results are compatible with a first
order phase transition but our total free snergy curves cross with a differenca
in Slope of 0.03%. It may be argued thst fitting the esquation of state data
biases ane toward a first order phase transition and we are unwilling to state
nﬁ order for our phase transition. All we can say 1s that in the thermodynamie
quantities we have calculated we see no indication of any divergences.

It is our conviction that the way to proceed at this point is to attampt
té use molecular dynamics to investigate the méchhnism of melting and we are
starting further work along these lines.
VI. LINDEMANN'S RATIO AND SIZE DEPENDENCE

In table 4 we show values of the root mean square displavement of slectrons
fgom thelr original lattice sites. All of these values are for 84 or 100 particle
systems with periodic boundary conditions. Examination of these quantities

shows that melting occurs for a root méan square displacement of .16 + .01 in

terms of the near neighbor distance. This quantity is known as Lindemann's
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ratio. However, as we will see, this statement is an over simplification of the
situation in two dimensional crystals.

Qver 40 years ago Peiex:iss.gnd Landaus?xrgued that there would be no true
-lohg range two-dimensional crystalline order. Peierls produced an argument
ba;éed on the harmonic approximation and Landau used his theory of second order
15

phase transitions. Ten years ago these arguments were made rigorous by Mermin

who proved that, for every K # 0, the Fourier component pK of the density must vanish

the thermodynamic limit. More precisely he showed that

-3 o
P S @) , (6.1)

N -, -
where o= = Loy 1%y, (6.2)
k N , .
i=1 '
He also showed that
<|la® |3t 3 |
l ( )] const(ln N) (6.3)
where E(ﬁ) is the deviation of the particle from the lattice point at E
This proof is valid for potentials ¢@(r) for which
gy - Ar-lve@ | (6.4)

3;15 integrable at ; = ®» and positive and nonintegrable at ; = 0, pboth for
)\ = 0 and some positive ;:inite value of A. The 1/r potential does not meet
the first criterion. Hence, the question as to whether the two-dimensional
oné component plasma can display long rangecrystalline order has not been
rigoxjously answered at present. We do, howaver, find the Landau-Peierlss‘i’ss

argument very convincing.

To investigate this question we have performed a series of Monte Carlo
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calculations at a value of T equal to 200 and with the number of particles varying
froﬁ 16 to 1024. The root mean square deviation is plotted against G%KN))&
in figure 4. For comparison the result of a lattice dynamics calculation is
éhown on the same graph. Due to the extremely lengthy calculations required
éo achieve convergence of this quantity we were not able to obtain more than

a lower bound for the cases of N = 512 and N = 1024. It is seen that the

éoints from N = 16 to N = 256 are compatible with the Z(YN) behavior but
&o h;% definitely rule out the approach of the root mean square deviation
a constant value. We plan more work on this question in the near future.
| In figures 5 and 6 we have displayed plots of the distribution of particles
about their lattice sites for N values of 144 and 1024. The
increase in the mean square deviation can he clearly seen. The one particle
distribution functions are displayed in figure 8.

In his paper Mermin 15 pointed out that two-dimensional crystals, while
n@t possessing true long range translational order, may have long range orienta-

-

tional order. If R = nlzi + n,a, and T(R) = R + U(R) then in the harmonic

approximation

A2 = ((F(Rea)) - TR (F(Frap) - (D) = |3 1 %as |77 - = (6.3)
In figure 7 we show the results for Az at T" = 200 for various numbers of
particles. It is seen that this quantity rapidly approaches a constant
value independent of N.
We believe that we have establisted that the lattice displacements in
the one component plasma behave in a very similar way to those of the hard
disk systeng. There is a loss of translational long range order as the size
of the system increases. On the other hand there appears to be long range orienta-
tional order. The full implications of this observation must await a more

‘detailed investigation of larger systems.
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VII. ONE AND TWO PARTICLE DISTRIBUTION FUNCTIONS

In figure 8 we have plotted the distributinon function, n(r), for particles
about their lattice sites. The single particle distribution function is defined
so;that n(r)d; is the probability of finding a particular particle within a
voiume alement d; at a point removed from the lattice site by a displacement
;; The logarithm of n(r) has been plotted as a function of the distance from
t&e lattice site squarsd. Hence, if the distribution of particles about their
lattice sites were Gaussian, the points would fall on a straight line. The
normalization has been arbitrarily chosen so that n(r) = 1 for the point with
the smallest value of r.

Two effects are illqstrated in this plot. For the two plots with N = 64
we can see the effect of iowering ™ from 300 to 200. In addition, the effect
of changing N from 64 to 1024 for T" = 200 is evident. In none of the cases is
n(r) truly Gaussian. The result for I’ = 300 is approximately Gaussian but the
fesﬁlts for T = 200, although more spread out than n(r) for T = 300, appear to
Se cutoff more steeply than a Gaussian distribution. Our results contrast with
the results of Young and Aldergs who find that densely packed hard disks form
a éaussian distribution but that at lower density the distribution decays more
slowly than a Gaussian distribution. Thus, the considerable differences between
hafd disks and 1/r particles seem to produce opposite deviations from Gaussian
‘behavior as the melting transition is approached.

| The radial distribution function g(r) is definéd by the equation,

‘ N(N-1) 1 - -
g(r) = ——;5—— a;f...fexp[-g v(rij)]drs...dr

y (7.1)
1<

Wé have calculated values for g(r) function for T" = 36, T = 90, and I = 120.
These are tabulated in table 6 and plotted in figures 9, 10, and 11l. For " = 90

tﬁe HNC result for g(r) is plotted for comparison with the Monte Carlo result.

The perhaps surprising feature is that g(r) shows considerably more structure

T S e T . L g o e Syt et ey
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12
than the corresponding values of g(r) given hy Hansen =~ for the three-dimen-
sional case. This, however, may be a general reature of two-dimensional

, 36 . 37
simple fluids as both Fehdeyr and Tsien and Valleau® found the height of

the first peak in g(r) to fall between 3 and 4 for two-dimensional Lennard-

Jones fluids. The ANC result for g(r) shown for T = 90 also shows correspondingly

-

more structure than three~dimensional HNC results.

Finally, we have also calculated the structure factor S(k) which is

defined via
S(k) =2 < 90 => (7.2)
N Tk -k =
where
. N —-'-.
o = T o Ty (7.3)
i=1

The k vectors used are those corresponding with the reciprocal lattice generated
via the periodic boundary conditions associated with the N-particle basic

Mnnfa Carlo rectangle. To determine S(k) we directly used the definiticen

{7.2) with (7.3). In Table 7 and figures 12 and 13 our results for S(k) are
ili#strated for ™ =36 and 7 = 90, TFor T = 20 we also present the result of

gur HNC calculation. Just as in the case of g(r) these show more structure

thgh the three-dimensional results of Hunsenlg_ e Tound it difficult to get

a good @estimate of the height‘of S{k) at the first peak but it is clear that
itfwill be larger than the value of §;85 foundwat freezing in many three-

dimensional systems> .

The Debye-ﬂﬁckel result fcr‘S(k)8

provides the correct low k behavior for S{k). However, for our smallest values

of k the Monte Carlo values of S(k) have already risen abcwe the Debye-Huckel

i Tt - o s 5 e
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VIII. CONCLUSIONS

In this paper we have presented the results of a Monte Carlo calculation
of th: properties of particles interacting via the 1/r potential in two
dimensions. In particular, we have emphasized the nature of the ordered
phase and attempted to show how the dimensionality has influenced the nature
of the order. The second main point is the phase transition itself. WMuch
work is currently underway in two-dimensional melting and much remains to be
done. We hope that experimentalists will soon observe an ordered phase of two-
dimensional electrons. This sbould be possible with lower temperature experi-
ments as higher values of ™ can be achieved at lower densities. In addition,
as figure 14 shows, quantum effects, as measured by the ratio of rs and the
de Broglie thermal wavelength, will become less important in the neighborhood
of the phase transition if it is observed at lower temperatures.
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Center of Northwestern University for their help during the early days of this
work.
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Figure Captions

The excess thermal internal energy as a function of T'. The
points are the results of Monte Carlo calculations with the
triangles representing a 16 particle system, the circles a 36
particle system, the squares a 64 particle system and the

diamonds a 100 particle system.

The excess thermal free energy as a function of I'. The circles

—

give the results of a calcula£;on based on the hypermetted

chgin integral equation, the triangles show the results of the
Monte Carlo liquid state calculation, the diamonds show the
prédictions of lattice dynamics in the harmonic approximation,
and the squares show the results of our Monte Carlo solid state
caiculations.

The excess specific heat as a function of T'. The points give
the result of direct Monte Carlo calculation based on equation
(5.1). The solid line shows the result of calculating the
sﬁeciiic heat via equations (3.33) and (4.1l1l) which were obtained
from fitting the Monte Carlo results for the internal energy.

Tﬁe root mean square deviations of particles from their lattice
sites as a function of the square root of the logarithm of the
ngmger of particles. The root mean square deviation is measured
ié terms of the near neighbor distance, d. The solid circles

aée the results of Monte Carlo calculations for 16, 36, 64, 100,
144, 256, 576, and 1024 particles. The point for 1024 particles
répresents only a lower béund. The circles represent the predic-
tion of lattice dynamics in thé harmonic approximation. The
squares represent the results of a molecular dynamics calculation

for hard disks by Young and Alderzs. The hard disk calculations



have V/Vo = 1.20 where VO is the closge packed volume.

Fig. 5 This figure shows the superimposed positions of the particles
for 100 ditferent Monte Carlo configurations, each separated
by 4 passes. A pass 1s defined as one attempted move per
particle. In this simulation I' = 200 and N = 144. Roughly
speaking, this represents a short time picture of the crystal.

Fig. 6 This figure shows the superimposed positions of the particles
for 100 different Monte Carlo configurations, each separated
by 4 passes. A pass 13 defined as one attempted move per
particle. In this case T = 200 and N = 1024. If this figure is
compared with figure 5, the additional effect of the 1053 vave-
length phonons for 1024 particles may be seen. To see the long
wavelength oscillations in particle positions look down the
rows from a vantage point almost in the plane of the paper.

Fig. 7 The angular correlation Ag, defined in equation (6.3), as a
function of the distance, R, between pairs of particles for
T = 306. Both A? and R are measured in terms of the near neigh-
bor distance. The results are tor Monte Carlo calculations with
144, 256, 576, and 1024 particles. In each case AF differs only
very slightly from 1, thus demonstrating the angular order
observed in the crystal.

Fig. 8 The single particle distribution function as a function of r where
r is measured in units of the near neighbor distance. The triangles
are for 1024 particles with T = 200, the squares are ior 64
particles with " = 200, and the circles are for 64 particles
[ = 300. The normalization has been chosen so that n(r) = 1

for the first point.
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The radial distribution function, g(r), as a function of inter-
particle distance. _The points were produced via Monte Carlo
calculation with 100 particles and are for I' = 36. The distance
is measured in terms of the ion sphere radius, a = I/Cnn)i,
where‘n i3 the density.

The radial distribution function, g(r), for I" = 90. The triangles
are the results oif Monte Carlo simulation with 100 particles and
the circles were calculated by solving the hypernetted chain
equation. Distances are nmeasured in terms of the ion sphere
radius.

The radial distributionkiunction, g(r), for T = 120. The points
are the result of Monte Carle simulation with 100 particles.
Distance is measured in terms of the ion aphere radius.

The structure factor, S(k), for T" = 36. The points resulted
from Monte Carlo caiculation with 100 particles. The wavenumber,
k, 19 measured in terms of the inverse ion sphere radius.

The structure factor, S(k), for " = 80. The triangles are the
regult of Monte Carlo calculation while the circles were caleu-
latad via solution of the hypernetted chain integral equation.
The wavenumber, k, is measured in terms of the inverse ion sphere
radiusg,

A denslty versus temperature plot which shows the location of the

predicted phase transition. Only the region of temperature greater

o
4

than about 1°K and density less than approximately 2 x lﬂgcml‘
have been explorgd experimentally. The line where the de Broglie
thermal wavelength is one quarter of the near neighbor distance has
been’includéd to give an indication of the region where guantum

mechanical effects become important.




TABLE I

Fitting parameters for the liquid phase results:

c = ~9,.290414

a, -1.106103 -1.102071
a, .765873 .799066
a, . 775448 .951230
a4 .261904 .201743
ag -1.202048 -1.593872
2 | .957986 .131187
a, | - - .232854
ag - .536553

Solid phase parameters: a = 4,986, b = 561.1



TABLE II

¥ r ™t/ me T F*o% /M T cy /iy
64 1 .32 - .61 16
64 | 2 .43 - 1.46 .26
64 5 .61 - 4.30 .40
64 10 .75 | - 9.36 .52
64 20 .91 - 19.34 .66
64 30 1.01 - 30.52 .76
64 40 1.08 : - 41.28 ' .82
64 50 1.14 - 52.09 .89
100 60 1.19 - 62.93 . .94
64 70 : 1.23 - 73.81 1.00
100 80 | 1.25 - 84.70 .87
64 90 1.29 - 95.61 1.16
100 100 1.33 -106.54 1.06
100 110 1.34 117,47 1.36
100 120 , 1.32 -128.42 1.37

The thermodynamic functions of the liquid phase. The internal energy
has had the ideal gas and static lattice contributions subtracted from it and
the specific heat has had the ideal gas contribution subtracted. The number

of particles, N, is the number of particles in the Monte Carlo run.
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TABLE III
2 2 :
N W /o> <w /> W/ > Ulwsy )>
4 6.63 | 3.13 1.67 -.599
16 3.88 3.39 1.63 -.677
36 10.38 3.49 1.63 -.693
64 11.43 3.53 1.83 -.698 °
3 100 12.25 3.56 1.863 -.700
\ 144 12.91 3.58 1.63 -.702
196 13.47 3.59 1.63 -.702

PRSEL

The results of our lattice dynamics calculation are presented in the

following table. N represents the number of points summed over in the

Brillouin zone. The angular prackets denote the average of the various

9 2
functions of frequency. The characteristic frequency(n; = e“/mas.
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TABLE IV
¥ r Hfh/NkBT Ft°t{§§§3 C, /N T <2 /a5
00 130 1.06 -139.37 1.25 .16
100 ; 140 1.06 ~ -150.35 1.15 .15
100 i 150 | 1.03 . -161.34 .98 .14
100 170 | 1.04 -183.33 1.13 .13
100 190 | 1.04 -205.34 1.09 .12
64 220 | 1.03 -238.37 1.10 .11
64 250 1.03 -271.42 1.03 .099
64 300 1.03 -326.54 1.08 .092

The thermodynamic functions of the soiid phase. The internal energy
hés had the ideal gas and static lattice contributions subtracted from it and
t#e specific heat has had the ideal gas contribution subtracted. The number
of particles, N, is the number of particles in the Monte Carlo run. The
célumn headed <r2/d2> gives the root mean square deviation of particles from

their lattice sites.



TABLE V

X <r2/d%>MC <r2/d2>LD

16 .09 .11

36 ‘ .10 .12

64 11 12
100 .12 .13
144 .12 .13
256 .13 ) .14
512 .13 14
1024 >.13 .15

Thias table gives the root mean square deviation if particles from
their lattice sites for T = 200 and various numbers of particles in the
basi¢ MC rectangle. The predictions of lattice dynamics in the harmonic

approximation are also presented.
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TABLE VI

Monte Carlo

g(r; I'=36) g(r; I'=90) T g(r; T'=36) g(r; I=90)
.01 : .00 4,31 .89 : .71
.02 : .00 4.37 .89 : .71
.06 \ .00 4.43 4 .89 ' .71
.13 : .CO . 4.48 : .89 .72
.25 ' .01 4.54 : .91 .76
.44 .05 . 4.60 ; .93 : .79
.66 ; .16  4.66 ~ .95 ; .84
.94 , - .37 . 4.7 ? .95 1 .89

1.22 13 - 4.77 : .98 .94
1.46 ; 1.21 .~ 4.83 - 1.00 1.00
1.68 1.72  4.89 1.02 1.06
1.81 2.18 . 4.94 1.03 1.11
1.87 » 2.49 5.00 1.05 1.15
1.86 ‘ 2.63 .~ 5.06 1.05 1.18
1.81 : 2.55 - 5.11 . 1.06 1.21
1.71 i 2.33 5.17 1.07 1.22
1.57 2.06 . 5.23 1.06 1.22
1.44 : 1.75 . 5.28 1.06 1.22
1.30 ; 1.45 . 5.34 1.06 1.19
1.17 ; 1.20 5.40 . 1.05 1.17
1.06 g .99 5.46 - 1.04 1.14
.95 i .81 . 5.351 . 1.03 1.10
.87 ' .70 . 5,57 1.02 1.06
.79 : .60 . 5.63 - 1.01 1.03
.75 : .52 5.69 - 1.00 .99
.70 ; .48 5.74 .99 .95
.67 ' .45 - 5.80 .98 a2
.66 i .44 5.86 .98 89
.66 : .44 5.91 .97 .87
.66 : .45 5.97 : .97 .85
.69 .47 6.03 .96 .85
.72 : .52 6.09 .96 .85
.76 .56 6.14 ; .96 .85
.80 . .64 6.20 .97 .87
.87 71 6.26 .97 89
.92 : .80 6.31 .97 .91
.99 .91 6.37 .98 .93
1.04 . 1.03 6.43 .98 .95
1.09 1.14 6.48 1.00 .98
1.14 ~ 1.25 6.54 : 1.00 1.01
1.17 1.35 ' 6.60 ; 1.01 %.03
1.19 ; 1.44 . 6.66 1.01 1.06
1.21 ; 1.48 1 6.71 1.02 1.07
1.21 ' 1.49 6477 1.03 1.10
1.19 1.48 . 6.83 . 1.02 1,10
1.19 1.45 - 6.89 . 1.02 1,11
1.17 1.39 . 6.94 i 1.02 1.10
1.13 | 1.31 7.00 1.02 1.10
1.10 ' 1.22 . 7.06 1.02 1.09
1.06 1.14 7.11 1.01 1.08

1.03 1.06 7.17 1.01 1.06
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{continued)

r g(r; T'=36 g(r; I'=90) T g(r; T=36) = g(r; T'=90)
3.97 1.00 .97 7.23 - 1.00 : 1.05
4.03 .96 .90 7.28 ~1.00 ' 1.03
4.09 .94 .84 7.34 1.00 1.01
4.14 .92 .79 ' 7.40 1.00 .99
4.20 .91 .75 7.46 .99 .98
4.26 .90 .72 7.51 1.00 .97

Monte Carlo Hypernetted Chain

r g(r; ['=36) g(r; T=90) r g(r; I's120) r g(r; T'=90)
7.57 .99 .94 1.30 .01 1.17 .01
7.63 .99 .94 1.45 .20 1.30 .12
7.69 .99 .93 1.60 1.31 1.44 .67
7.74 .99 .92 1.75 2,72 1.57 1.53.
7.80 .99 .92 1.90 2.68 1.70 2,20
7.86 .99 .93 2.06 1.70 1.84 1.96
7.91 .99 .93 2.21 .90 1.97 1.61
7.97 .99 .94 2.36 .51 2.10 1.25
8.03 1.00 .95 2.51 .36 2.24 .98
8.09 .99 .97 2.67 .35 2.37 .80
8.14 .99 .98 2.82 .44 2.350 .70
8.20 1.00 .99 2.97 .63 2.64 .65

3.12 .94 2.77 .66
3.28 1.30 2.90 .72
3.43 1.56 3.04 .83
3.58 1.59 3.17 .99
3.73 1.41 3.31 1.14
3.89 1.12 3.44 1.24
4.04 .85 3.57 1.25
4,19 .66 3.71 1.19
4.34 .59 3.84 1.10
4,49 .64 3.97 1.02
4,65 .78 4.11 .95
4.80 .99 4.24 .90
4.95 1.20 4.37 .88
5.10 1.32 4.51 .88
5.26 1.31 4,64 .91
5.41 1.20 4,77 .95
5.56 1.06 4,91 1.00
5.71 : .94 5.04 1.05
5.87 ; .83 5.18 1.07
6.02 .77 5.31 1.08
6.17 : .78 L 5.44 1.06
6.32 ; .86 ~ 5.58 1.04
6.48 ; .98 5.71 1.01
6.63 a 1.12 5.84 .98
6.78 1.19 5.98 .97
6.93 1.19 6.11 .96

7.09 1.12 6.24 .96



TABLE VI

{continued)
Hypernetted Chain
T g(r; T=120) T s(r; T=90)
7.24 1.03 6.38 .97
7.39 .95 6.51 .98
7.54 .39 6.64 1.00
7.69 .87 6.78 1.02
7.85 .38 6.91 1.02
3.00 .92 7.08 1.03
8.15 .99 T.18 1.02
7.31 1.02
7.45 1.00
7.58 .99
T.7 .29
7.85 .98
7.98 .98
8.11 99
3.25 .99
8.38 1.00

Monte Carlo and hypernettad chain results for the radial distribution
function, g(r), for T’ = 36, 90, and 120. Distance is given in units of the ion

sphere radius.



TABLE VII

Monte Carlo ‘ Hypernetted Chain Equation
k S(k; I'=36) S(k; T'=90) k S(k; I=90)
1.40 .04 .02 0.75 01
1.69 .06 .02 0.90 .01
1.96 .09 .04 1.06 .01
2.16 .12 .05 1.22 .02
2.36 .16 .08 1.37 .0
2.55 .23 .10 . 1.53 .03
2.72 .32 .16 1.69 .04
2.86 .41 .21 1.85 .05
3.02 .63 .35 2.00 .06
3.14 .78 .52 . 2.16 .09
3.29 1.11 .83 ; 2.32 .i2
3.43 1.43 1.46 2.47 A7
3.52 1.80 ' 2.04 : 2.63 .24
3.66 1.94 3.37 : 2.79 .34
3.78 2.08 3.36 i 2.95 .51
3.88 2.05 2.89 3.10 .78
3.99 1.98 2.41 3.26 1.18
4.08 1.81 1.90 3.42 1.69
4,22 1.49 1.38 3.57 2.14
4.29 1.38 1.24 3.73 2.26
4.38 1.27 .95 3.89 2.07
4.50 1.10 .87 4.04 1.75
4.59 1.06 .75 4.20 1.45
4.66 97 .69 4.36 1.23
4,76 - .93 .67 4.52 1.06
4.84 .91 .64 4.87 .94
4.98 .81 .56 4.83 .85
5.03 .81 .60 4.99 .79
5.15 .78 .53 5.14 .75
5.27 .76 .57 5.30 .73
5.36 .75 .53 5.46 .71
5.75 .74 .54 5.62 .71
5.58 .74 .57 5.77 .72
5.74 .76 .62 5.93 .73
5.91 .76 .63 6.09 .76
6.10 .80 .71 6.24 .80
6.36 .87 .82 6.40 .84
6.77 .97 1.06 6.56 .90
6.72 .96
6.87 1.03
7.03 1.10
7.19 1.15
7.34 1.19
7.50 1.20

Monte Carlo and hypernetted chain results for the structure factor, S(k), for
T = 36, 90, and 120. Wavenumber is measured in terms of the inverse ion sphere

radius.
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