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CHAPTER 1

INTRODUCTION

The Research Grant NGR-06-002-147 is concerned with the system
analysis of collision-dominated and collisionless plasma centrifuges
and the theory of sputtering and deposition of sputtering products on
surfaces. The period of the grant extended from 1 November 1976 to
31 October 1977. This is the final report on the research carried
through in this peried.

In Chapter 1I, an analytical theory is developed describing the
deposition of sputtered atcms on system surfaces which cannot be seen
along straight paths from the emitting surface. The boundary-value
problem describing the diffusion of the sputtered atoms through the
surrounding rarefied electron-ion plasma to the "hidden" system surfaces
is formulated and treated analytically. It is shown that outer boundary~
value problems of this type lead to a Fredholm integral equation. The
latter is solved by the method of successive approximations. A quantun
theory of sputterin; of metal surfaces by low energy ions (<100eV) has
been developed and submitted for publication. This work will be commun-
icated at a later date.

In Chapters III and IV, centrifuge models employing ring electrodes
of different radil located in the end plates of a cylindrical discharge

chamber, are analyzed which avoid the boundary layers at the inner electrode

cylinder and (probably) the secondary flows and instabilities occurring in the

magnetohydrodynamic flow between concentric cylinders (Chandrasekhar
1961). Complete two-dimensional solutions are derived which show that
the Hall effect enhances plasma rotation (Chapter III) and that the
induced magnet:ic field does not interfere with the rotation due to the
external magnetic field (Chapter IV). These schemes exhibit velocity

end losses due to the boundary layers in the cathode and anode planes.
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For this reason, an improved centrifuge system is conceived, which
o essentially avolds the velocity end losses caused by boundary layers

at the electrode plates (Chapter V). In view of the circumferential

b et et o miam M a1 sl et

! electrode arrangement, a multidischarge counter-rotating centrifuge can

3
i

Jf? be set up in a long insulating eylinder to rotate large volume of isotope
mixtures. In Chapter VI, the theory is applied to the separation of

U238 and U235. The difficult problem of compressible plasma centrifuge

i

analysis is formulated in Chapter VII and solved by means of Lyapunov-
% Schmidt serdies expansions. In Chapter VII, a simple theory for a colli-
sionless plasma centrifuge is formulated based on the coupled Vlasov-

Maxwell equations for the electron and ion components.
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CHAPTER I
SOLUTION OF EXTERNAL BOUNDARY-VALUE PROBLEM
FOR DEPOSITION OF SPUTTERING PRODUCTS

In an ideal vacuum, sputtered atoms travel undeflected along straight
paths determined by their initial velocities at the point of emission.
Within this free particle flow, a system surface is reached by the sputtered
atoms only if it can be seen along a straight line from the emitting sur-
face. In reality, ion propulsion systems are surrounded by a very rarefied
plasma consisting of escaped beam ions, recombined ions, and electrons.
For this reason, always some of the sputtered atoms will be deflected cut
of thelr initial paths by interacting through long-range forces (polariza-
tion forces) with the plasma particles so that they can reach system sur-
faces which are not seen along a straight line from the emitter.

An idealized propulsion system exhibits an emitting plane
2=0, 0 <r <a (accelerating grid), the rocket surfaces r = a, -c <z < 0
and 2 = -¢, 0 < v £ a, and the plane z = -d, a < r < b of the solar energy
collectors. All these system surfaces can be reached by the atoms sputtered
from the emitter by diffusion through the rarefied plasma. The diffusion
coefficient D is determined by the Vlasov equation for the sputtered atoms
interacting through weak long-range forces with the plasma particles. In
view of the mathematlecal difficulties associlated with the solution of
boundary-value problems for this geometry, a somewhat simpler system is
studied here consisting of an emitting plane (z = 0, 0 < r < a), the upper
rocket surface (r = a, ~c € z < 0) and the plane (z = -c, a £ r < ») of
the solar energy collectors (Fig. 1). The latter is assumed to have
infinite radial extension.

Ordinary boundary-value problems are defined for a space bounded
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on the "outside" by boundaries, whereas external boundary-value problems
are defined for the space surrounding "inner" boundaries. In terms of
cylindrical coordinates (r,0,z), the space in Fig. 1 consists of the
adjacent reglons,

I: 0<z<w, 0<r

i
8

II: ~=c c2<0,asr<w

A

In this case, the "inner" boundaries are formed by the eylindrical wall
(r = a, =c <z <0) and the circular end-surface (0 <r<a, z=0)of
a cylinder of radius r = a extending from the plane z = -c to the height
z = (0. On the other hand, the plane z = ~¢, a < r < o rapresents an
sxternal boundary of the space II.

We consider herein the external boundary-value problem for the steady-
state diffusion (Laplace) equation and the space I + II shown in Fig. 1
when the end-surface (0 < r < a, z = 0) of the cylinder emits particles
at a given rate I(r). At the inner, cylindrical boundary (r = a,

-c £ z £ 0) and the bottom plane (z = -¢c, a < r < @) the particles are
assumed to be deposited by adsorption or absorption.

Various other transport processes for particles or heat in technical,
physical, and bilological systems lead to external boundary-value problems
of this type. We mention as examples 1) the emission of particles from
a cylindrical chimney into a gaseous atmosphere, and ii) the injection
of a liquid from a cylindrical probe into a biological medium.

Analytical or numerical solutions of external boundary-value problems
have apparently not been given in the literature. We will demonstrate
that the considered external boundary-value problem can be solved analyt-

ically by means of a Weber transform. In this analytical solution a

matching function ¢(r), a € r < @ (at the interface of the regions I and
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II), occurs which is determined by an inhomogeneous Fredholm integral
equation of the first kind. This integral equation is discussed and
transformed into an inhomogeneous Fredholm equation of the second kind,

which is solved by the method of successive approximations.l)
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BOUNDARY~VALUE PROBLEM
In the space z > -c, let the density of the diffusing particles be
designated by n(r,z) [cmﬁsl and the flux of emitted atoms at the emitter
surface by I(r) [cm—3-cm sec"l]. In steady state, the spatial distri-
bution n = n(r,z) of particles is determined by the external bouadary-

value problem for the Laplace equation (Fig. 1):

2 2
3n . 193n , a°n _
Tty t =0 (D
ar az
with
[8n(r,z)/32]z=0 = —I(r)D"l, 0<r=<a , (2)
n(r,2) __ =0, -c<z<0 , (3
n(r,z),__  =0,as<r=<e , (4)
and
ol(r,z) + 0, (r2 + zz) + o . (5

as the proper and improper boundary conditions, respectively. D
designates the diffusion coefficient of the particles.
The boundary conditions (3)-(4) imply that particles arriving at
the indicated surfaces are deposited there, i.e., do not return into
the diffusion space. The fluxes ¢i = =D ?in of particies arriving at the

system surfaces r = a, -c <z <0 and z = -¢c, a £ r <= are given by

(Fig. 1):

¢ (r = a,z) = -D dn(r = a,z)/3r, ~c <z<0 , (6)

@z(z = ~g,r) = ~D 9n{z = -c,r)/dz, a<rsw s (7)
' Accordingly,
- . 1]

Nr=a = ~2uaDd _{ {n(r = a,z)/3r]dz . (8)
5 B U U S —¢~mnzr+~—:—gﬁ e Sty
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= ~29D [ [on(r,z = -c)/dz]lrdr
a

» &)

Z==C

are the numbers of particles deposited per unit time on the system
surfaces r = a, ~c < 2z < 0 and z = -¢, a < r < =, respectively.

The above boundary-value problem cinnot be solved directly, i.e.,
requires a decomposition of the space 2z > -c into appropriaée'gupregions
I and IT for vwhich the associated boundary-value problems are solvable.

In this approach, a common boundary value [¢(r)] at the decomposition

plane is determined by an integral equation,

Let dimensionless independent and dependent variables be introduced

in accordance with:

¢

p=rfa, 0<p < t=zfe, -l2if<e , (10)
and .
ﬁ | N(p,Z2) = n(r,z)/no, 5(p) = I(r)/I0 s (11)
:k with
{ n, = cIOID, I0 = I(r=0), Yy = c/a . {12)
S The boundary-value problem defined in Egs. (1)-(5) reads in
: dimensionless form:
a°N . 13 2 3>
| 2l +2 ey 200 (13)
f ap” PP 3
E where
) [N(p,0)/3e] g = §(), 0 <p <1 . )
P
:A N(p)‘;)_ = 0! -1 < g < 0 » (15)
E’. p=1 -7 -
L* § = @
E-. N(p’C)§=-l o, l1<pz= ’ (16)
b and
2 2
N(psC) + 0, (" +07) += . (17)
In Fig. 1, the space is decomposed into the regions

ot
st
-
o

A T A R AR DD (D OIS U0 A S0 Aot S S S

PR " P -

edicice e O

[ ——
T .

et e o T e e e e T

R PR T I st rns” ety ETT S



o WL ¥ TV

XL

A

I(0<p €=, 07 <) and II(1 < p <=, -1 < ¢ < 0). At the interface

I

£ =0, 1<p <= the partial aN(p,¢

0)/3g = ¥(p)H(p-1) is introduced
as the common (unknown) boundary value ¥(p) of the adjacent regions I and
IT, 1 < p < ». Thus, the boundary-value problem in Eqs. (13)}-(17) can

be decomposed into boundary-value problems for the regions I and II.

I. In region I, N = NI{p,g) is described by the ordinary boundary-

value problem:

BZNI LW, aZNI
T2 TeH TY T30 Ozeze O0fize (18)
3 P ac
[N (p,0)/02] o = -S(p), 0<p<1-0 .

= ¥{(p), 1+0<p <= s {19}
N 0,8) + 0,  (oF +g0) v : (20)

where

S(p21+0) = 0, ¥(pcl-0) = 0 (21)

for physical reasons. Since region I is the upper half of the infinite
space (0 £ [ < =), the general solution of Eqs. (18) and (20) is given

by the Fourier integral,
Np(0:2) = [ A g Eod @
0

which satisfies the improper boundary condition for p + = and 7 + =,
The Fourier amplitude A(k) is determined by the boundary condition (19),

-y [ A(k) J_(ke) kdk = ~S(p)H(1-p) + ¥(p)H(p-1) : (23)
g

Application of the inverse Hankel transform to Eq. (23) gives

1 @
f S(a)Jo(ku) ade ~ Y_l f W(Q)Jo(ka) ado . (24)
0 1

AGk) = v

e i AT WM < g e ke cd e

R
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Substitution of Egq. (24) into Eq. (22) results in the solution for
region 1:
17 K L 9
Ny(p,2) = ¥ [ dk e V" 5 (kp)[[ S(e)d (ke) ade - [ ¥(u)J (ke) odal,
0 0 1 °
0<sp<wo, 0<L<= . (25)

II. 1In region II, N = Nn(p,z;) is described by the external

boundary-value problem:

2 2

3°N aN 3°N

?gl.,._l. 311+Y2 ;‘i:o, l<p<wm, =-1<g<0, (26)
3 p 3 i

1 = o

IBNH(p,c)IBC,C:D ¥(p), l<p=x ) (27)
Nu(p,;)p:l = 0, -1<2¢=<40 , (28)
NII("’C)g=—1 = 0, l<pz<e s (29)
NII(p,z;) + 0, p>rw, ~-1<pr <0 . (30)

According to Eq. (28), region II has an inner, cylindrical boundary
at p = 1 where NII(p,c) vanishes. TFor this reason, a Fourier integral
representation of NII(p,;) is needed for 1 < p < = which vanishes at

p = 1. According to Weber's integral theorem, an arbitrary function
g g

f{p), a < p <=, with f(p = @, =) = 0 satisfies the integral equation:z’é)
o kdk W (p) =
£(p) = [ 5 kz [ f(a)wz(a) ada, a<p<w ’ (31)
0 J (ka)+Y (ka) a
v v
where
v =
W (e) = 3 (ko)Y, (ka) = J (k@)Y (ko) , (32)

and Jv(kp) and Yv(kp) are Bessel functions of order v of the first and
second kind, respectively. In view of Egs. (31)-(32), a Fourier integral

solution of Fgs. {26)-(30) is sought in the form,

ST ETTUTT UL LT
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X

Ny (0,5) = [ BOOW, (0) sinhlyi(z+1)1dk : (33)
] 0

% - W (0) = 3_(k)Y (k) ~ J_ (Y (ko) , (34)

" y Lt y y - — ———
T v o AP

whichk obviously satisfies the boundary conditions (28)-(30). The

Fourier amplitude B(k) is determined by the boundary condition (27),

v | B(IOW, (p* coshyk kdk = ¥(p), 1<p<w s (35)
0

which gives

.;e B({ik) = {ycoshyk- [32(!{)-*-1"3(1:)]}—1 f‘é‘(a)wk(a) ado , (36)
) 1

] by Eq. (31}). Substitution of Eq. (36) into Eq. (33) results in the
solution for regicn II:
R I W, (p) @
M Ny (P.0) = ¥ 5 J dk S"“Z{)Zﬁiﬁ“” e — [ ¥(@)¥, (@) ode,

: 0 J )Y (k) 1

1 <p <, -1 <25<0 . (37)

i The solutiens NI(p,z;), Eq. (25), and NII(D,I;) Eq. (37), contain
the vet unknown boundary-value ¥(z), 1 < a < w. ¥(a) is determined

by the continuity condition at the interface of regiuns I and II,

which gives

@ i w@
[ dak J (ko) [fS(a)d (ke) edn - [ ¥(e)J (ke) adal
0 [ 4] 0 0o 1 o

® Wk(p) o
= fdk tehyk —5-—‘—-*2——-- f‘i‘(a)wk(a) ady, 1<p<m {39)
0 .Io(k)-l-Yo (k) 1

Eq. (39) indicates that ¥(a) is determined by an inhomogeneous integral

1)

equation.~

e = e =

S VO SR
haete 3
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Because of the boundary conditions (19) and (27), the remaining

continuity condition at the interface of regions I and II,

[aNI(p,;)lacIFO = [Ny (0,2} /02] s l<pte , (40)

has already been sati died. Indeed, substitution of Egs. (25) and (37)

into Eq. (40) yields
@ 1 . @
-f kdk J_(kp)[fS(a)T_(ka) ode - [¥(a)T (ke) ado]
0 =] 0 0 1 N o]

W (p) =
k [ #)W () ada, 1<p<e. (41)

= [ 5y
0 Jo(k)+Y°(k) 1

By means of the Hankel and Weber integral representations for the Dirac

function §(o—p),

K

g J (kp)J_(ke) kdk

8{a-p)/a R (42)

® W, (o)W, (@)

———5— kdk
2 2
0J o (k.)-!-Yo (k)

8(a-p)/a s (43)

Eq. (41) is reduced to

1 @
= [8(2)8(a-p) do + [¥(a)§(a~p) da
0 1

= [¥(a)6(ap) do, 1<p<w . (44)
1

Eq. (44) gives the expected identity, ¥(p) = ¥(p), since the first

integral vanishes by Eq. (21).
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INTEGRAL EQUATTON

By introducing the kernel K(a,p) and the source Q(p), the integral

equation in Eq. (39) can be rewritten in the convenient form:

J¥@)K(a,p) ede = Q(p), 1 <p<w , (45)
1
where
& ® W, (@)W, (0)
K(a,p) & [J (ka)J (kp)dk + [tghvk ———— dk . (46)
0 0 I U+ (k)
o 1
Qlp) = édk 3 (kp) [S(@)T_ (k) ade . (47)
0.

For simple particle emission distributions S(¢), e.g., in the case of
a homogeneous and a parabolic emission distributions, respectively, the

source integral Q{(p) is readily evaluated,

=2 e - (1 - k& w
Qe) = T PIEC) - @ pz)K(p)], l<o s )
for S(a) = 1, 0<a<l ’ (48)
and
20 e o 2vndy_eqn Ly o ek
Q) = g [4-207)ECH-( 923(3 207)KED ] ’
for S() =1 -a®, O0<a<l . (49)

KC%) and EC%D are the complete elliptic integrals of the first and
second kind, respectively [K(1) = =, E(1) = 1].&) Bq. (45) reduces
the external boundary-value problem to the resolution of an inhomogeneous
Fredholm integral equation of the first kind for the unknown boundary-
value ¥(p)}, 1 < p < =,

Comparison of the integrals in Eq. (46) with Egqs. (42)-(43)

jndicates that the kernel K{c,p) is the sum of two intagral functionals

{

L ]
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which are singular at « = p, similar to the Dirac function.® It follows
that the solution of the integral equation (45) is ¥(p) = ‘l‘o(p) = % Q{p)
in the lowest approximation. By means of Eqs. (42)-(43), we transform

Eq. (45) into the Fredholm integral equation of the second kind:y

() = AUp) +§ [¥(e) K(esp) da, L1sp e . (50)
1

where

- @ o W ()W (0)
K(z,p) = afd_ (k)T (kp) (k-1)dk + @ [ —=——— (k-tghyk) dk , (51)
0 0 Jc(k)+Yo(k)

1l

- 1

ae) =50 : (52)
It is seen that the parameter of the integral equation (50) is A = 1/2.
The kernel K{a,p) in Eq. (51) consists of two integrals, each of which

is the difference of two integral functionals which go to = for a + p.

Eq. {50) is solved by the method of successive approximations which

gives:y
¥(p) = im ¥_(p) , 1<p<e , (53)
n-
where
‘i‘g(p) = a(p) .
9.0) = ¥ ) + & [ Qe k@ o),
1 o 2 3 1/ 1 ’
*)

The singular behavior of K(®,p) is demonstrated by evaluating the

integrals in Eq. (46), e.g.,

f3, (e} I (kp)dk = @imye k@alp), O<a<p<e ,

0
= (zlﬂ)a-lK(p/a), D<p<a<e s

where
K(l) = .

W G

e e e e e
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v (e) = v (o) + B2 [ ] Qe k(w, a,)K(a, 0)da,da
2 1 IO T M A A R ’
¥ (o) =¥ (o) + B R ). Ry e )R p)da .. - da
n n-1 A A A N ARt Ms St S
. (54)
Combining of Egs. (53) and (54) yields the solution of the nth
approximation in the form:
n
\Pn(p) = I “i(p)a n=0,1,2,,.. = , 1 *psw ] (55)
i=0
where
G = Q) ,
u, (p) = (i)l‘fﬁ;)k(a yda
1P 2’ ¥ 1*P2e% ’
0,0 = &2 ] | Qa,)R(e, k(e ,0)da,da
2”21122"’&1’21 ,
u (p) = (-]*)najl3 }D;)(a YKle o ). Koo )K(e, ,p)de_...da (56)
n 21 101t s NG9 aGy IRAG, LR IR ol

it is readily shown that the Neumann series in Eq. (55) converges

1)

to ¥(p) in the limit n + .=’ It should be noted that Y(1+0) is not

necessarily §(1-0) in any approximation n, i.e. 3N(p,0)/3Z may be dis-

continuous at p=1. With ¥(p) given by Egqs. (55)-(56), the particle/f

density filelds NI(p,Q) and NI](D,C) are given by Egqs. (25) and (37),

respectively. Thus, we complete the analytical solution of the extevnal

boundary-value problem under consideration.
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CBAPTER TIIL

PLASMA ROTATION BY LORENTZ FORCES

IN A DIVERGING PLASMA CENTRIFUGE WITH HALL EFFECT

In this chapter, a gystem analysis for a collision-dominated
plasma centrifuge is presented in which the plasma rotates under the
Influence of the Lorentz forces due to the interaction of a spatially
diverging current density f£ield with an axial external magnetic field.
The associated boundary-value problem for the coupled partial differ-

ential equations, which deseribe the electric potential and the plasma

_Velocity fields, is solved in closed form. The electric field, current

density, and velocity distributions are discussed in terms of the

Hartmann number’ H and the Hall coefficient wt. As a result of the

Loxentz forces;bthe plasma rotates with speeds as high as 104 m/sec

around its axis of symmetry at sufficiently large values of H and wrt.

It is remarkable that the Hall effect supports the plasma rotation.
3.1. Model of Diverging Plasma Centrifuge

An electrical discharge in a cylindrical container rotates if the
Lorentz force has a nonvanishing component in the azimuthal direction.
For example, arc experiments in an axial external magnetic field Bz
indicate that the discharge plasma rotates (Schwenn 1970; Vedenov et al.
1961) since the current field lines T have a nonvanishing radial

component Jr so that (3 X ﬁ)e = - JrBz # 0. In a stable arc discharge,
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the J&—component is caused by the concentration of £ield lines C?) at:
the electrodes and a dilatation (repuléion of currents in the same
direction) of the field lines J iIn the interelectrode space,

A theoretical model for the production of a high-density plasma
centrifuge, which has a radial current density Jr which is in magnitude
comparable with the axial current density Jé, is shown in Figure 3.1.
The radizl spreading of the current field lines T is forced by means of
electrodes of considerably different radii R+ and R_ (R+ >> R;) in the
end plates z = #c of an electrieally isolating centrifuge chamber of
radius Rb' The field lines of the current density T and of the external
axlal magnetic field ﬁ; cross under a nonvanishing angle {except at the
chamber axis}) so that the resultant Lorentz force F x ﬁ; rotates
charged particles around its axis of symmetry. In the steady state,
the magnetic body forces in the azimuthal direction are balanced by the
viscous forces (boundary layers at the chamber walls). As opposed to
the centrifuge with radial electric current flow between an iInner and
outer eylinder electrode, the centrifuge scheme in Figure 3.1 avoids
the boundary layer and losses at the inner cylinder surfaca.

In the following, the steady-state rotation of the spatially
diverging plasma contained by an Insulating cylinder in the external
axial magnetic field 3; (Fig. 3.l1) is treated theoretically. The
analysis is based on the magnetogasdynamic approximation, in which two
characteristic dimensionless parametgrs occur, the Hartman number H
and the Hall coefficient wt. The magnetic filelds associated with the

discharge currents T = {Ji, J Jz} are neglected for small magnetic

e!
Reynolds numbers [0, = o/(1+u?72)],

[l
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Fig, 3.1. Scheme of plasma centrifuge of radius RO and

axial magnetic field ﬁ; (R,>>R ).
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Rf = O[BI/BO]

]

uomtclvo <<1 ,

Ry = O[B,/B_] |“01/2“Ro|’30 <<l , (3.1)

R2 = O[EZIBO} = uomruivoRo << 1 ,

where Vo is the characteristic velocity of rotation and 1 the discharge

current., These inaqualities are satisfied in many cases, e.g., if

Re<<1lfor i) wt > 1 and R §1or ii) R << 1 and 0 < wr < », where

R = uou; max (Rb;c).
3.2. Boundary~value Problem for Velocity and Electric Potential

For a purely azimuthal flow field V= {9, Vb(r,z), 0}, the plasma

behaves incompressible, V ¥ =0. From the continuity equation (2.2)

for the steady state, V °(pp§) =V . Vpp = 0, it follows then that the
density gradient Vpp is everywhere perpendicular to the flow field V.

These ideal conditions are realized if secondary flows are absent or at

least negligible (Schlichting 1960). In accordance with the steady-state

magnetogasdynamic equations [Eqs. (2.1), {2.7) and (2.8)], the rotating
plasma in 2 homogeneous magnetic field ﬁ; (Fig. 3.1) is described by
the following boundary-value problem for the azimuthal velocity Va(r,z)

and electric potential ¢(r,z) fields [induced magnetic fields neglected,
Eq. (3.1)]:

2v.  aB
B 10 o 9P 3¢
3r ‘v Br(rvﬂ)] * 372 ! ( 5r T vBBo) ’ (3.2
19 %, ,003% _. 138
r or (r 86) * 9y gz - Bo r ar (x VB) ’ (3.3)

o

e

TR TN

R T TR ]

e vrsmpe o 41 A 1

-

e e i L R

R I



?ﬁ{';:’iiﬁ'..';!t.";.:,--:E-. PR SERCTE TRRPYRIN U TR ST SR SR SN Y. -SIHDI MNP SUpSER BRI SR SR A A R ol

o " -
U AT

"

. -

24

where i
Va(r,z)r=R =0 ,-c<2<+c¢, (3.4) o
° |
- i
Va(r,z)z=ic =0,0=<r f-Rb , (3.5) %
and S
[3¢(r,2)/or] o =0, e szs+e, (3.6) .
o - Lo
- o[d¢(x,2)/3z] _, . = T 8(r - R)/27r , 0<r<R. (3.7 o -?

The boundary conditions (3.4), (3.5) and (3.6) consider that the plasma
| does not slip at the walls r = R.0 and z = *c, and that no current flows f}
into the cylinder wall r = Rb’ respectively. The boundary conditions

in Equation {3.7) imply that the cathode (R_) and anode (R4) are ring 'i

e ek AR e e E e e Wk A AS A . h A Ak

electrades of vanishing radial width, Ar -+ O[&(r - R }/27r = radial
Dirac function]. The net current flowing through the centrifuge is by
Equation (3.7).

R — R
=210 JL °~§i£%;E—=El rdr = j; o 6(r—Ri) dr =1<90, (3.8)

since the positive current (I < 0) flows from the anode to the cathode
(Fig. 3.1). . The pressure distribution P = P(r,z) is determined by the

r~ and z-components of the equation of motion,

e 2 :
.—g--.:._gg _Eﬁ’- '
pp = e +wt o) Bo ( e + VBBO) ’ (3.9a) |
58 - BE
P JrBa JSBr + 0, Br,B + 0. (3.9b) - i’?
il j
) L S
Agcording to Equation (3.9b), it is 9P/3z = O if the ’nduced fields B_ i
and Be are neglected [Eq. (3.1)]. This means that momentum caunnot be
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exactly balanced in the axial direction 1f Induced magnetic fields are
neglected (in absence of secondary flows). Equation (3.9b) is in
accord with the boundary-layer approximation according to which the
pormal pressure gradient is 3P/3z = O aé the electrode plates z = e,
0<r 2R,

In the absence of the Hall effect, wr << 1, it is V % B = u

(Jf, g, J?). Hence, Br = 0 and Bz = 0 because of the homogeneity of
the boundary conditions for B_ and B , whereas B, # 0 since J #

T z 0 r,z
O[Be(r,z=ic) = (uoIlzwr)H(r—R+)]. Consideration of the induced field
B = {0, Bys 0} leaves Equations (3.2) and (3.3) nnchanged. This weans
that the boundary value problem in Equations (3.2)-(3.7) and the
solutions Va(r,z} and ¢(r,z) derived from it remain valid even in

presence of a significant induced field B = {0, Be, 0}, RB 2 1, as long

as the Hall effect is negligible, wrt << 1 (Chapter IV).
3.3. Fourier-Bessel and Dini Series Solutions

The characteristic dimensionless parameters of the magnetogas-
dynamic centrifuge problem under consideration are obtained by

intorducing the dimensionless independent and dependent variables,

p = rlR0 s 0<p=1, (3.10)
g=zfe, -1<r<1, (3.11)
and
Vip,z) = Ve(r,Z)/VO, o(p,z) = @(r,Z)l@o (3.12)
where
= - 2
Vo = QOIRDBO s ¢0 £ Ir.:lZ'nchb . (3.13)
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In terms of the dimensionless space variables and flelds, the
boundary~value problem defined in Equations (3.2)-(3.7) assumes for

Vv{p,t) and ®(p,z) the form:

3 (1l 3 ~2 3%y .2 2 2

—_— N — o4 — — = ~H ot .

3 ‘p 9p PV ] N 3;2 HIV T , (3.14)

19 39 ~2 3% 1 3

o (o -ﬁ) + M ;—c— =55 (V) , (3.15)
where

v(p,;)p=1 =0, -1<7<+1, (3.16)
and

fas(p,z)f%] _, =0, -1<g<1l, (3.18)

p=1
-[315(9,1;)/3;];=i1 =68(-pJso , 0<p 21, (3.19)

with p, = R_,/R . The dimensionless constants M, N, and H are defined
+ + "0 n

by

M= (1+ mzrz)";’ (c/R), N=c/R ,

. .
(3.20)

H = (g /u);5 BR = Hl(l+m21:2);$
1 L oo

In view of the similarity of the left sides of Equations (3.14)

i

and (3.15) with Bessel’s differential equation, Z;r: + p— 21:1 +

(lv:.;‘!‘1 - p_zmz)zm = (0, for cylinder functions Zm(knp), partial solutions

of the coupled inhomogeneous equations are sought in the form,

v (py2) = 3, (k p)E (2) , (3.21)

¢n(p,c) = Jotknp)gn(c) . (3.22)
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(3.15) yields

£ - (&% + HONYE = k HON’g
n n 1 n n‘_ n

g; - ki M? g, = kn M; fn ’

J(k) =0, u=1,2.3,....

obtains by linear superposition as

E Ji(knp)fn(c) s
n=1

3? .
. ¢(p,z) = -2¢ + nil Jolkeds (2) -

g V(p,2)

the differential equations of 4th order,

4 2 2

n n n

ps ELLA NG A SOV ot s s Bemes e e

' = - -1 =
where Jb(knp) Jlfkhp) and Ji(knp) + (knp) Jl(knp) Jo(knp).

Substitution of Equations (3.21) and (3.22) into Equations (3.14) and

where the eigen-values kn > 0 are determined by the boundary conditions

(3.16) and (3.18) as the real roots of the transcendental equation

Thus, the general solution of the coupled equations (3.14) and (3.15)

In view of Equation (3.25), Equation {3.26) is a Fourier-Bessel series,
whereas Equation (3.27) is a Fourier-Dini series in which a zero-order
term, -2¢ has to be included, iIn accordance with the Fourier-Dini
expansion [Eq. (3.32)] of the boundary value in Fquation (3.19).

decoupling Equations (3.23) and (3.24) one finds for fn(g) and gq(c)

gun [kz(Mz + Nz} + Nzﬂz]f" +hkMN £ =0,

Tt
g - [ki(mz + N2) + Nzﬁi]g + kaMzNz g, = 0,

e 4k e e o
. TR
SRR P

T Lt

e s s
b g e vl D it

(3.23) i
L
(3.25) B
G
5
( :
3.26) g
-
b
i
.2 ;
(3.27) i
4
J
i
i
E
%
i
By %
[
]
(3-28) ]'-' | u‘
3
(3.29) -
i




o 25
i:‘
2 with :
B - (]
. 2 )
‘-gz;(;)cntl =2 Jﬁ(knpi}l‘j{}(kn) ' (3.31) -
: B
' as boundary conditions by Equations (3.17) and (3.19). In derdiving ,
Equation (3.31), the Dirac function in Equation {(3.19) has been ':.
h_‘._.“ - @xpanded as the Fourier-Dini series, |
_ o 2
1 §{p -~ p Mp=2+2 nil[JO(knpi)/Jo (k)13 (k p). 13.32) -
i :
b In addition to Equations {3.28)-(3.31), fn(z;) and gn(z;) have to satisfy :
q also the coupled Equations (3.23) and (3.24). With ’
| + _ - + - i
L “mn © “Yn> Y T® 2 Y3 T Up Y T Ty v (3.33) L
j :
I where e
J W = [%— (el + 85 + 8] = {202 + §) + ¥rl]> i
| o n L n L s
: 1. '
| - adw’y )t _ (3.34)
+ %
| N 4 Wt
3 the general sclutions for fn(z;)m e and gn( L)= e of Equations
{3.28) and (3.29), can be written as
4 Sinh m+z; cosh m+§
- a 1} -+ n
n D sinh w+ % cosh m+ i
43 n {3.35) P
) _ sinh w z _cosh w ¢ iy
+ A ——E B — B P
. : % ginh o B cosh u foop
. n |
|
T T L S T T T I S e R TR S . . — e . J e
- Y :
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¢
ﬁ?ﬁ’ 4{
S - 2 | |
- \'. ginh o'z cosh wit &
+ Il -+ p1 3 1 .
' g (8) = C ———-+D — ,:
' sinh cosh w i
. n n -
) - : - (3.36) o
_ sinh w g . cosh w n
+ G ———2—4Dp —2, :
R ginh w I cosh W
+ -
Only four of the elght integration constants Aﬁ,..., D; for any n > 1 B
are independent; by Equations (3.23) and {3.24),
tyo _ 22, E _ & -
| [wh2 - ka1 = kst ¥
(3.37) Ers ) :
: ‘ + 2 + 4 .
[ “v2 - ) -
[WhH? - k22107 = kaE:
t : and
: * 2 2. & 2 2 &
2 _ = -
1 [@WHZ - G + Hi)m 18 =k nlck J
';’F- 1 __(3.38)
[(wn) (kn + H.!.)N ]]3:n an Han ’
where the coefficient determinants of the pairs of corresponding
- equations in Equations (3.37) and (3.38) vanish owing to Equations (3.33)
il and (> 34).
' J »
{ Upon application of the four relations in Equation (3.38), which °
< ) ‘are equivalent to Equation (3.37) by Equatioms (3.33) and (3.34), and
A . the boundary conditions (3.30), which give .
s - + - + oo
}'\Jg | : 4=t za , B =4tz . (3.39) g
AL E: n ) ol n I n =
i o
~E] _ .
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Equations (3.35) and (3.36) become is‘~ o
sinh ©'z  sinh w g
£ (L) = An( = - = ) t
n sinh w sinh u i
n n ;
{3.40} H
cosh w't  cosh wg P
+ Bn( i - - )’ ? y
cosh w, cosh o l .
i
A . sinh m+c sinh w_z b
g, (0 = nzz(‘f'"_“‘i—" T b
k N°H T sinh w % sinh o S
T n S
(3.41) P
+ - ‘;’
B cosh w cosh w_Z L
ht3 -+ n’ - - .
%3 (ﬂn - Y,
k NZH cosh w cosh w b
n 1 n !
Lo
where ‘\ t
& .2 2 ,..2. .2 Pl
9= ) -+ Hl)N . 3.42) =
The boundary conditions (3.31) applied to Equat:ion (3.41) yield i -
Mww*‘““ '
k NH
oy Jo(knp_) + JO(knp +)
=73 T R (3.43)
Jo(kn) wu-ﬂn c:thmn - ﬂn cthmn
2
knﬂzH_[ Jolk p ) = Iyl p,)
B =+ T - - . (3.44)
Jo(kn) W, Rn 1‘;ghmIl -w ﬂn f:hlmnn
Ay
ot
g ..'
%'J
4
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Substitution of Equations (3.43) and (3.44) into Equations (3.40)and

(5.41) gives as solutions for fn(t_',) and g’n(z;):

+ +
g _ oY "= "0 n"+
%) T3 3 T ¥ F -- = . =
kNH w2 cghw  -w @ cthe sinh w sinh w
< o n nn n o u
J.(k p )-J.(k p,) cosh m+2; cosh us+?;
o\ nP-! "0 VP n b
¥ FoF tohw’ - w0 tghu \cosh of  cosh u /
Ut F8My, np C8HW,  \cosh oy co n
(3.45)
. -
9 B JD (knp_)-i-JO (knp +) ! + sinh w5 _ sinh ani;
gnCC) Jo{kn) - = & 3 S — gn “"""T bl ﬂn —_
w Q cthe - w @ cthw sinh sirh w
nn n nn n n n
Ik p )= (k p.) hwh osh w L
. okaP ) =Jglk o, n'*' cos wn; o cosh w
mnﬂn tghuan -w g tg w0 cosh cosh w
(3.46)

Equations (3.45) and (3.46) form, together with Equations (3.26) and
(3.27}), the closed form sclution of the problem of the plasma

centrlifuge in an axial magnetic field -ﬁ'o:

_ 2}[2 k‘l’iJl (knp) Jo (knp_) +JO (knp +)
V(p,;) = =N Z 2 S+ - - _X =
4 n=1 Jo(k ) w R cthm - w @ cthw o
n nn n nn n
+ -
(sinh w.k ) sinh mnl;)
sinh m+ sinh o
n n
+ . -
Jo(knp_)—JO (knp ") cosh u_z cah w5 s 47
TR F + o= - + = (3.47)
w @ tghw - w f  tghe cosh w cosh ® d
nin 13 nn n n n
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and N
~ @ Jy(k p) Jolk p Y+ (k p ) o
@(Q,C) = “-‘ZC ~ I P T+ o= - . X X
n=1 Jo(kn) wnﬂn cthwn—wngn cthwn i
(n+ sinh w b o sinh o ;) :
T cinh mZ ? sinh w” ‘
J. (k p )-J.(k_p,) cesh m+t cosh w ¢
U e i e s [ o n® _ o~ )]
wigt tghm+ -0 Q tghw.  \ " coshuw B cosh w_ .
nn n nn n n n
. I.;
a (3.48) :
- ‘d’ - - + .+ ‘
The remaining dimensionless ceuntrifuge fields E = - Vq:/Eo and § = J/Jo
are given in terms of the solutions for d(p,z) and V(p,L):
B = -2/, Eg=0, E = N tas/or (3.49)
1 3 et ., 3 _ 138 I
Jp TR+ witl ( 3p +V), JB T 1+ wit? ( 3p + V), Jg ~ N 9z {
(3.50) ;

where E = @ole and I, = UQole [Eq. (3.13)].

If the cathode is in the plane z = ~c{f = ~1) and the anode is in

the plane z = +c(r = +1), then the reference fields Vb and @0 [Eq. (3.13)]

where the anode is in the plane z = -c{z = ~1) and the cathode is in the
plane z = +c(z 4+ +1). In the latter situation, the reference fields Vb
and ¢o are positive, since I > J. These explanatiouns hold for magnetic
fields pointing in the positive z-direction, B0 > 03 Vh changes its :

sign 1f B_ < 0 [Eq. (3.13)].
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3.4, HNumerical Tllustrations and Results

As an fllustraticn the radial (p) dependence of the dimensionless
centrifuge fields V(p,z), 2(p,Z), Ep(ﬂ,;), ECCD,C), and Jp(D,C) has
been calculated for I < 0 in the cross-sectional planes i = -0.99
(cathode region), £ = 0 (central regipn), and £ = +0.99 (anode reglon)
based on Equations (3.47)i(3.50). The remaining fields Je(p,c) and
J;(p,g) are proportionalgto Jp(p,c) and Ec(p,g), respecﬁively
{Eq. (3.50)1. The characteristic dimensionless magnetie interaction
numbers are treated as parameters:

wr =1, 103 H=1, 10, 100,

The geometry parameter N is taken to be N = 1 so that M = (1 +.m212)"%
corresponding to R, =c¢ [Eq. (3.20)]. The radial positions of the
cathode and anode are assumed to be

p_ = 0.01 (R_=0.01 Ro) H = 0,9 (R+ = 0.9 Rb)'

O
The dimensional fields are negative everywhere where the dimensionless
fields are positive, and vice-versa [Eq. {(3.12)] since VO < 0 and
éo <0 for £ <0 [Eg. (3.13)].

i) Centrhal Region, t = 0: 1Iun the Figures 3.2-3.6, the aximuthal
velocity field V(p,0), the electric potential ®(p,0), the radial and

axial electric fields Ep(p,O} and Ec(p,0)=3§(p,0), and the radial current

* density Jp(p,ﬁ) are represented versus p, with (wr,H) = (1,1), (1,10),

{1,100}, (10,1}, (10,10), (10,100) as parameters. It is seen that |V|
increases considerably at any point 0 < p < 1 if either H or wr are

increased. In the region p 2 0 sufficiently close to the axis, {¢], .
‘Epl, lEC - 2N~1|, and |Jp] increase with increasing H or wt. The field

distributions move towards the axis p = 0 as wt becomes larger. The
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(10,100)

{1,100)

(10.10)

Fig. 3.2. V(p,g) versus p for § = 0, and (wtr,H) = (1,1) to (10,100).
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Fig. 3.3. ¥(p,z) versus p for g = 0, and (NT,H) = (1,1) to (10,100).
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Jp 4

(10,100)

Jp(p’t) versus [u} fOr 1: = 0, and (D)T,H) = (1’1) tao (103100).
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S ' "hump" developing at p = 0.9 (Figs. 3.4-3.6) with increasing wt shows

the influence of the ring anode (p = 0.9, ¢ = +1) in the plane g = 0.

11) Cathode Region, ¢ = -0.99: The Figures 3.7-3.11 show

Q.

v(p, -0.99), 2(p, -0.99), Ep(p, -0.99), Eg(p, —0.99)“J;(p, ~0.99), an
Jp(p, ~0,99) versus p with (wt,H) = (1,1),...(10,100) as parameters.
These fields increase in Intensity at any point 0 < p < 1 if H or wr
is increased. Since the ring cathode is at p = 0.01 (g = -1), the
field distributions are closer concentrated at the axis p = 0 than those
- . - 3n the plane ¢ = 0 (Figs. 3.2-3.6). HNote that the plasma rotates only
‘ . in the region p = 0.1 with a2 significant velocity, since the Lorentz

farce —JpBo decreases rapidly with iIncreasing ¢ + 1. A comparison of

the corresponding fields in Figures 3.2-3.6 and Figures 3.7-3.11

indicates that the discharge spreads sligatly in radial direction with

AT S |

increasing -1 < ¢ < 0. In particular, an increasing radial section of

the plasma rotates with a sigpnificant speed as ~1 < £ £ 0 increases. v

iii) Anode Region, r = +0.99: In the Figures 3.12-3.16,

V{p, +0.99), ¢(p, 40.99), Ep(p, +0.99}, Egtp, +0.99)mJ;(p, +0.99), and
Jh(p, +0.99) are plotted versus p with (wt,H) = (1,1),...(10,100) as

parameters. The dependence of these fields on H and wt is as in the

_previous cases for § = 0 and § = -0.99. The velocity distributions are

fully developed nearly through the entire chamber across section

0 <p g 0.9, since the Lorentz force —Jpqois strongest in the vicinity

“
i
£
i

p = 0.9 of the ring anode, p = 0.9(z = +1). As a result, 8 thin and

steep boundary layer exists close to the cylinder wall (p = 1) with
- backflows at sufficiently small wt~values (Fig. 3.12). The radial

distributions of ¢, Ep, E;=J§ and Jp (Figs. 3.13-3.16) clearly indicate
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that, in the plane g = +0.99, the electrical discharge has shifted to
the region p = 0.9 due to the influencé of the pearby ring anode,

Py = 0.9(z = +1). fThis shift occurs first slowly in the region

-l < <41 - AL, and then rapidly in a relatively thin layer AL << 1
close to the anode plane ¢ = +1l.

It is remarkable that the discharge remains concentrated in a
radial region close to the cylinder axis with little radial spreading
of the current density 3, except in a layer Af close to the ring
electrode of large radius (R+ >> R ) in which the radial current
component Jp dominates the axial current component J;. This spatial
concentration of the discharge is the more pronounced the larger H and
wt. The speed of plasma rotation V{p,;) increases with increasing
magnetic induction Bo by orders of magnitude over the reference speed
v& as the Figures 3.2, 3.7 and 3.12 indicate which show V{p,z) for
increasing wt and H. The theoretical electric field and current
density distributions are in gqualitative agreement with experiments
{(Schwenn 1970).

The graphs in Figures 3.2-3.16 are based on the Fourier-series
solutions, in which the first 100 terms were considered and the eigen-
valueslﬂlwere calculated up to the 10th decimal point. An even larger
number of terms in the Fourier series solutions has to be taken into
account if one wishes to compute (approximately) the centrifuge fields
extremely close to the ring cathode (p_ = 0.01, z = -1) and ring ancde
(p+ = 0.9, ¢ = +1) vhere 3%(p,z)/3r changes discontinucusly with p
due to the electrode boundary conditions. The Fourier-series represen-
tation may be highly unreliable for precise numerical work in the

vicinity of a discontinuity due to Gibbs phenomenon, i.e., the overshoot
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at a discontinuity. The Gibbs phenomencn could be suppressed
drastically by the use of Lanczos convergence factors, which also
accelerate convergence and are used as a means of data smoothing.

The system analysis presented indicates that extremely high
speeds of plasma rotation are obtainable already at moderate discharge
currents I and magnetic inductions Bo, presuming the magnetic inter-
action numbers are not small, H > 1, wt > 1.

As an example, consider

a plasma centrifuge with

" 1) = 107 amp . I8 1 = 10° Tesla,
= 10” ho/m , R = ¢ = 10 m.

Hence, by Equation (3.13)

3

_ 1
Yo Iclz'rchoRb = (5/%} x 10" mfsec,

and, by Figure 3.2,

OIVB] = 0[v5v1 = 104 m/sec , for wr = 10, H = 100.

Speeds of plasma rotation Ve, which are by orders of magnitude larger
than 104 m/sec, can be produced if the order of magnitude of the
parameters wt and H is increased. The viscous forces reduce, however,

the speed of plasma rotation always in the layers close to the walls

(z =%cs ¢ = Rb)°
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CHAPTER 1V

EFFECT OF INDUCED MAGNETIC FIELD ON DIVERGING PLASMA CENTRIFUGE

AT ARBTTRARY MAGNETIC REYNOLDS NUMBERS 1o
' |
I
1
i

This chapter deals with the boundary-value problem for the partial
differential equations, which describe the (azimuthal) rotation velocity ;é
and induced magnetic fields in the diverging plasma centrifuge with ring
electrodes of different radii and an external, axial magnetiec field.

The closed~form solutions of the Fourier-Bessel series are obtained

e - e WAL

based on the magnetogasdynamic approximation for dense isotope plasma :
with negligible Hall effect. The electric field, current density, and ] };é
velocity distributions are discussed in terms of the Hartmann number H ?g fé}
and the magnetic Reynolds number R. For small Hall-coefficients, . ff?ﬁ
wt << 1, thé induced magnetic field does not affect the plasma rotation. '

The rotating plasma with speeds as high és 103 m/sec 1s cbtainable at

typical conditions that can be realized in the practical application to

the isotope separation.
4.1. Boundary-value Problem for Velocity and Induced Magnetic Field

The plasma centrifuge model under consideration is the same as
depicted schematically in Figure 3.1 of Chapter III. The plasma is
sustained by a discharge current I, which enters the centrifuge chamber

of radius Rb through a ring anode of radius R+ in the anode plane
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z = 4c and leaves it through a ring cathode of radius R_ in the cathode
;lane 2z = =z. Accordingly, 2w'l;Rb Jéir,z) rdr = I j;Rb SCr—R&) dr = 1
for the axial current density Jz in any plane -~c < z < +#c. The external
magnetic field is axial and homogeneoﬁs ﬁ; = {0, O, Bo}' In view of the
symmetry of the system with respect to the axis r = 0, the plasma flow
field is azimuthal, V= {o, Vé(r,z), 0}, so that V - V= 0, i.e., the
plasma behaves incompressible. For negligible Hall-effect (wt<<l),

Jg = 0and V x B = uo{Jr, o, Jz} in accordance with Maxwell's equation
for the magnetic induction ﬁ: Hence, Br = 0 and Bz = 0 because of the
homogeneous boundary conditions for Br and Bz. However, Be(r,z) # 0,

since

) ) = f -
Be(r,z)r=Rb uDI.Zwa s <2<+ ,

10 _ _
ol [rBB(r’z)]z=iu = uDI 8(r RE)IZﬂr s 0<r1x E-Rb .

Since the induced magnetic field (Ba) is azimuthal, the induced
electric field (Er) is due to the rotation (Vé) of the plasma across
the external magnetic field (Ba)' The pressure distribution P(r,z) in
the rotating plasma is determined by the r- and z-components of the

magnetogasdynamic equation of motion [Eq. (2.1)],

v2 .
8 _ _ 3¢ ) 4
P T T 7% TBgr O 2z T 9B o (4.1)
where
oB
i3 = -8
r ar (rBe) quz! 3z qur . (4-2)

The current density, ._I)'(r,z)s and pressure, P(r,z), fields are

readily determined from the magnetic field B = {0, B

g° Bo} and the
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veloclty fileld V= {0, Ve, 0}, whereas the electric field is given by
Ohm's law, ﬁ = - ? x ﬁ + 3/6. In accordance with the equation of motion,
Mzxwell's equations and Ohm's law (Section 2.1), the plasma in the
centrifuge with homogeneous magnetic field ﬁ; (Fig. 3.1) is described

by the boundary-value problem for azimuthal velocity Va(r,z) angd

azimuthal induction Be(r,z) fields:

32y B 9B
2 13 - .0 _ 8
ar br 3r OVt 2g2 e oz (4.3)
32B ov
S S 8 __ _8
or [r or (rBB)] + az2 B uoUBo dz * (4.4)
where
V’e(r,z)r=R0 =0, -c<z<+c, (4.5)
Ve(r,z)z= e = 0, 0z2r <R, {4.6)
and
BB(r’z)r=RD = uoI/2nRo » ¢ <z <+4c, (4.7)
;-Ji-[rB tr z)] =u T 8(r-R)/2%r, 0 <r <R (4.8)
T 9r g z=tc o + ’ - =% ° *

Equations (4.3) and (4.4) are the azimuthal components of the
equations of plasma motion and magnetic induction [VZE = —uOGVX(% x E)]_
The boundary conditions (4.5) and (4.6) consider that the plasma does
not slip at the walls r = R, and z = *c. The boundary conditions (4.7)
and (4.8) follow from Maxwell's equations for a total discharge current
of III amps flowing from the ring anode (r=R+) to the ring cathode (r=R)

of vanishing radial width if I < 0 (Fig. 3.1).

- * . . .
el




52

4.2. Analytical Solutions in Terms of Fourler-Bessel Series

For physical and mathematical reasons (Section 1.3), it 1is
suitable to formulate the boundary-value problem for the coupled
plasma fields Ve(r,z) and Be(r,z) in dimensionless form by introducing

the dimensionless independent: and dependent variables,

p=r/R°, Of__p il 3 . (4.9)

t=2le, =1sp<H , (4.10)
and

V(p,2) = Vy(r,2)/V,, B(p,T) = By(r,2)/B, , (4.11)

where the reference values Vb and B0 are defined as (B0 £ external

1ﬁduction),

V = L/2%R B ogc, B
o oo o

Hi
]

(4.12)

In the dimensionless formulation, the boundary-value problem for
the azimuthal veloecity, V{(p,Z), and azimuthal induction, B(p,Z), fields

assumes the form

2
3 1 3 -2 3%y H® B
ne Lo + — = = ha 4-
30 [p 3% (pW1 +N " R 3z ° (4.13)
4
a 1 3 -2 32y R 3V
p p 2p ar2 N2 z
where
v(p,z;)p,__l =0, -lz2gs+# , (4.15)
Vst gy =0, 0 <p 21, 14.16)
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and
B(p,c)p=:L =R, ~l<g=<H , (4.17)
5—34-[3( )1 =R 6{p-p,)/ D<p <1l (4.18)
p ap pELip,L r=+1 P pi Py =P = » -

with

= : . . - >
H = (ofp) BOR0 , N= c/Rb’ R = uOIIZﬂRbBo = uoaVEc.<0. (4.19)

The Hartmann number H, N, and the magnetic Reynolds number R characterize
the ratio of Lorentz to viscous forces, the geometry of the centrifuge,
and the intensity ratio of the induced and external magnetic fields,
respectively. Equations (4.15), (4.16) and (4.17), (4.18) are the
homogeneous and inhomogeneous boundary conditions for the fields V(p,Z)

end B(p.,z), respectively. The linear statement,

B(QsC) = R[p + ¥(p,z5)] 5 {4.20)

rveduces the Equations (4.14), (4.17) and (4.18) for B(p,r) to equations

with a homogeneous boundary comdition (4.22) for ¥(p,Z)

8 1 9 ~2 32y -2 3V

—— ) o e 1\ —— R —_— .2

3 Ip 3 (p¥)] + XN o2 N s (4.21)
where

‘y(p,;)p___.} = 0: -1 i [ f_ 'i'l » (4:22)

1 3 ‘ 6(9"‘05__)

° 3o [p‘i'(p,c)]c,_.ﬂﬂ——p—" -2, 0<p<l , (4.23)
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.
Introducing Bessel's function Ji(khp) of first order, partial 3‘
Oy
solutions of the coupled inhomogeneous Equations (4.13) and (4.21) are f
in the form, 5
V(0.2 = 3, (k0) £(D) (4.26)
¥ (o, = I, 0 p) g () (4.25)
- i
where the eigenvalues kn > 0 are determined by the homogeneous boundary E‘f
conditions (4£.15) and (4.22) as the real roots of the transcendental ?é
equation, 3?7
3,(k) =0 ,n=1,23,... . (4.26)
Thus, the general solution of the coupled Equations (4.13) and (4.21)
obtains by linear superposition as the Fourier-Bessel series, :
.
V(p,2) = I J(kp) £ (2), (4.27) :
n=1 :
n=1
Substitution of Equations (4.24) and (4.25) into Equations (4.13) and
(4.21) yields ordinary coupled differential equatioms of second order
. for fn(c) and gn(g):
2 .2 2
Tty _ 1 = '
£ -k N £ =N g, (4.29)
2 .2
Ty _ 1
g k Ng =-f . (4.30)
n ,
By elimination, Equations (4.29) and (4.30) are reduced to decoupled
differential equations of fourth order,
T St S e S 20 s i v sk Bt A O N U OO R S N
. - s wl, o d

L
e
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AR (21;3‘1 + Hz)sz;‘ rr N £ =0, (4.31)

g’ - (2 + BN ”'”‘i Mg =0, (4.32)
with

fn(c)czil =0, (4.33)

Ba(0) oy = 2K Jo(kp M 1TA0K) (4.36)

as boundary conditions, by Equations (4.16) and (4.23), respectively.

In deriving Equation (4.34), the Fourier-Dini series representation of
the Dirac function [Bgq. (3.32)] has been used. In addition to Equations
(4.33) and (4.34), fn(c} and gn(c) have to satisfy also the coupled
Equations (4.29) and (4.30). With the four real roots of Equations

(4.31) and (4.32) [£_, g_=exp(u )],

= + = o = - + =
i = %p 2 UYop T Ug s W3y F UL 0 Wy, S0, s (4.35)
where
of = 277 wica? + whepad +wH? - ad B (4.36)

the general solutions for £ (%) and gn(c) of Equations (4.31) and (4.32)

can be written as

sinh w & + cosh v ¢
+ B

sinh w . B cosh w

+-ﬂ +

+
£.(0) = &

=)
H 4*5 +

(4.37)

1

_ sinh w L _ cosh w g
+ A 2+ B
sinh mn % sosh w

“

[~ |

e i
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.#&
. sinﬁ'm+c cosh m+§ v
e} -+ n .
gn(C) = Cn +‘+Dn +
sinh o cosh w
n n
{4.38)
sinh © ¢ cosh w ¢
+C 2+ p 5. )
sinkt w cosh mn

+ +
Only four of the eight integration constants A;, cen D; are independent.

Substitution of Equations (4.37) and (4.38) into Equation (4.29) and

Equation (4.30) yields

Ai [(mi)z - kiﬂz]/m: = _uly? tghm: sz , (4.39)
Bz [(mi)z _ kiNZ]/mi = -HZNZ cthmi Ci s (4.40) 65 
and gf
¢t 1whH? ~ K21k = - gl B2, (4.41)
B [Wh? - K1l = - ethe® £, (4.42)
respectively. The coefficient determinant of Equations (4.39) and (4.42)

or Equations (4.40) and (4.41) vanishes (condition for existence of

nontrivial solution),

a* = ) - 1) - W ed? =0, (4.43)

in agreement with Equation (4.36). From the latter or Equation (4.43)

one deduces the relatioas,

*, 2 2 £ . ji
[wh? - 1l = 2w, (4.44) -
[
which simplify the left-hand sides of Equations (4.39)-(4.42).
g'ﬁ% E
Hod 3
i »k"-; 1
18 i
f% :
18 |
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Application of the boundary conditions (4.33) to Equation (4.37)
L :
: shows that
- + R e . + .
-A <A EA, B =+B =3B . (4 .45)

Substitution of Equation (4.45) into Equations (4.37) and (4.38) gives

sinh m:t sinh m_;
fn(c) =4, + -
sinh W, sinh o
n (4.46)
cosh m+§ cosh m;c
_ cosh w cosh w
;} and
Sk + -
1 1 cosh w 5 cosh Wz
s 8,(2) = -A = +
1 n n Mg sinh m+ sinh w_
N n n 4.47) RS
& sinh 6 f sinh w.Z o
L -B _l__( n- o n o
i n NH + -/’ 1
: cosh w cosh vof
o n s
the latter under consideration of Equations (4.41), (4.42) and Egquation !:ﬂ'”
(4.44). Application of the boundary conditions (4.34) to Equation
(4.47) yields, upen elimination
o Jolgpd ¥ Iplke)
; n (cthmn + cthmn) Jo(kn)
;! ( ) ( )
LY J{k p ) ~ J.(k p
% B o=+t —Omo O st (4.49) ,
T (tghmn + tghwn) Jo(kn) o
oL v
\é By cembining Equations (4.46)-(4.49) the solutions for fn(g) and ‘{
: n, - ‘k
. gn(c) in final form are
éfic
ik
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+ -
¢ (oM - - Jo(knp_) + Jg(knp+) (sinh mnt,‘ ) sinh mn?;)
a -(cthm: + cthm;)kn Jg(kn) sinh m: sinh w;
+

H
tim 1

+

-

J.(k p ) -~ J.(k p.) cosh w g cosh w_g
0*mn 0" 'n "+ ( )9 (4.50)

(tghm:; + tghm;_:)kn Jg(kn) cosh w cosh

Nl
=]

B4
I

*+

g, (r) =+
sinh ®» sinh w

+

Jo(knp_) + JU(knp+) (cosh w g coshuw t;)

+ - 2
(cthmn + ci:‘nmﬂ)kn Jo(kn)

o
Bl

B4

+
cosh w cosh mn

(4.51)

+

Jo(knp_) - Jo(knp +) (sinh w_ £ siah w;?;)

- + - 2
(tghmn + tghmn) k.n J ﬂ(kn)

=]

Below, also the Z-derivative of gn(t;) is required, which is given by

+ w

+ ' -

Jo(knp_) + Jo(knp +) ( + sinh w,C _ sinh mng)
sinh m+ B ginh w
n n

gl () =+
n + - 2 n
(c':i:h.mn + Cthmn)kn Jo(kn)

B

Jolk p )} - J,(k p,) cosh w z _ cosh w T
I Sl e (w+- ru m.__a-) (4.52)

(t;ghm: + tghw;)lcn Jg{kn) T cosh w B cosh w_

=
=]

In terms of fn(?;)g gn(i;), and g:l(?;), the solutions for the
dimensionless fields V = {o,v,0}, B = {0,B,1}, 3= {Jp,O,Jz;} and

E = {Ep’O’Et;} of the plasma centrifuge are by Equations (4.20), (4.27)

e

ot o Sty

el -',1,'—". -.,.. Eoae :

7.4

and (4.28)
V(p,z) = & Jl(knp)fn(c) s (4.53)
n=1
B(p,z) = R{_p + nil I,k plg (D], (4.54)

4-
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Iolps8) = - N ngl Jl(kn")gﬂ(';)_ ) (4.55)
Jc(p,c) =2+ ngl k Jglk plg (5) (4.56)
Ey(os2) = - V(p,2) + N J (p,0), E (p,2) = NI (p,D). (4.57)

The reference values v, and Bo for V(p,z) and B(p,L) are defined in

Equation 74.12). The dimensionless fields Jp ;(p,g) and Ep ;(p,g) are
b ] 9

normalized with respect to

J
o

2 - _
/21, , E_=VB =1/21R c . (4.58)

It can be proved that the solution V(p.Z) derived here from the
boundary-value problem with a significant induced magnetic field ]3B
remains valid eﬁen for the boundary-value problem in Chapter III as
long as the Hall effect is negligible. Let VIII(p,g) and VIV(p,c)

designate the solutions for the dimensionless azimuthal velocity in

Chapter III for wt << 1 and the present chapter, respectively. The

Ohm'’s law for wr << 1, J = - 39—+ V,B_, and Faraday's law,
3B r or 80
i qur, give the following relation in dimensionless form
38 __l3:

Substitution of this relation into Equations (3.14), (4.13) and boundary

conditions for VIII and VIv yields a new boundary-value problem for

W(p,g) = VIII(D’C) - VIV(D’§)=

- 2
3 _l;i(pm] +N2ﬁ_l{ =0, (4.60)
3g?

3 “p O
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where
We,td,y =0, -1<pc<H, ' (4.61)
W(w,z:)‘:,g_&l =0, 0<p=cl . (4.62)

The general solution of Equation (4.60) has the form

(-]

Wp,t) = nil J, (ke p) [A, cosi(Nk £) + B sinh(Nk )] , (4.63)

where the integration constants Ah and Bn are determined by boundary

conditions (4.62):

Ah coah(ﬂkn) + Bn sinh(Nkn) =0, (4.64)
Ah cosh(mkn) - Bn sinh(Nkh) =0 . (%4.65)
However, W(p,z) should have only trivial solution (W = Vorp - VIV = 0)

since the coefficient determinant for A.n and Bn of Equations (4.64) and

(4.65) would not vanish, i.e.,

cosh(Nk ) sinh(Nk )

#0 . (4.66)
cosh(ﬂkh) - sinh(ﬂkn)

This means that VIII(p,c) [Eq. (3.47)] for wt = 0 should be identical

to Vi, (p,2) [Eq. (4.53)].

ERR S PR AOR. N, -




R L 1 Ll R S P REER S REPE FHNEE SR VST LR tre SN SRS SUNRE) SRR SNt AN R

61

4,3. Numeriecal Illustrations and Results . £3
1
|

As an illustration, the radial (p) dependence of the dimensionless r i

discharge fields V(p,z), B(p,Z), Ep(pgc), Jp(p,c), and J;(p,c) has been

compti.ed for I < 0 in the cross-sectional planes £ = -0,99 (cathode

region), ¢ = 0 (central reglon), and r = +0.99 (anode region) based on
Equations (4.53)-(4.57). The remaining field Eg(p,c) is proportional

to J;(p,c) [Eq. (4.57)]. The characteristic dimensionless magnetic

interaction number H is treated as a parameter: H = 1, 10, 100. The

- geometry parameter N = c/R0 is taken to be N = 1 corresponding to

Rb = ¢ [Bq. (4.19)]. 'The radial positions of the cathode and anode are

assumed to be
p_= 0.01 (R_ = 0.01 Rb) 3= 0.9 (R+ = 0.9 Rb).

With the exception of B, = BOB, the dimensional fields are negative

8

everywhere where the dimensionless fields are positive, and vice-versa

since V& < 0, Jb < 0 and Eo <0 for I <0 [Egs. (4.12), (4.58)]. Note
that the magnetic Reynolds R in Equatiom (4.19) is defined to change

its sign with the sign of Vﬁ’

The Equations (4.53)-(4.57) indicate that the velocity field

4 . V{p,z), the current density field Jp c(p,g), and the electric field
i ]

?5 ) Ep c(p,l;) are independent of the magnetic Reynolds number R, whereas

L) : _ ’

: the induced magnetic field B(p,r) is proportional to R. This is due to
the azimuthal direction of the induced magnetic field B(p,Z), which is

parallel to the velocity field V(p,z) of rotation. Accordingly, the

C(p,z;) depend only on

3>

- plasma fields V(p,z), B(p,C)/R, I, ,{(p,Z), and E
L]

the Hartmann number H, presuming that the Hall effect is negligible

(wt << 1).
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1) Centhal Region, ¢ = 0: In Figures 4.1-4.3, V(p,0),
[B(p,0) ~ RoI/R, E (0,0), 3 (p,0), and 3_(p,0) = E.(p,0) are shown
versus 0 < p <1 with H =1, 10, 100 as a parameter. It is seen that
|v| increases considerably at any point 0 < p < 1 as H is increased.

Similarly, (B -~ Rp)/R and the sources J of the magnetic induction

B35
increase in iutensity within the main central region 0 < p < 1 - Ap as
H is increased. TFor large values H > 10, B and Jp’; decrease in the
wall region Ap = Ap(H), so that the electrical discharge becomes more
concentrated in the center 0 < p < 1 - Ap of the centrifuge. The
intensity of Ep increases uniformly in the region 0 < p < 1 asg H is

increased, while E; = J;.

i1) Cathode Regdion, r = -0.99: The Figures 4.6-4.10 show
V(p,-0.99), [B(p,-0.99) - Ro]/R, Ep(p,-0.99), Jp(p,—O.gg}, and
J;(p,~0.99) S E;(p,-O.QQ) versus 0 < p <1 for H =1, 10, 100. The
fields V, E _, and Jb

p,c ,Q
with increasing H, whereas B/R decreases in 0 < p < 1 with increasing H.

increase in intensity at any point 0 < p < 1

Since the ring cathode is at g_ = 0.01 (¢ = -1), the field distribu-
‘tions are more closely concentrated at the axis p = 0 than those in the
plane £ = 0 (Figs. 4.1-4.5). Note that the plasma rotates only in the
region p = 0.1 with a significant velocity, since the Lorentz force

—JpBo decreases rapidly with increasing p -+ 1.

iii) Anode Region, ¢ = +0.99: The Figures &.11~4,15 present
V{(p,+0.99), [B(p,*0.99) -~ Rol/R, Ep(p,+0.99), Jp(p,+0.99), Jg(p,+0.99)
« E;(p,+ﬂ.99) versus 0 < p £ 1 for H =1, 10, 100. The velocity field
is fully developed nearly through the entire centrifuge across sectiom

0 < p <0.9, since the Lorentz force _JpBo is strongest in the vicinity

e e Dt TR WSRET, D
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- Flg. 4.1. V(p,r) versus p for £ = 0, and H = 1, 10, 100.
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Fig. 4.2, [B(p,z)-Rp1/R versus pfor £ = 0, and H = 1, 10, 100.
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100

50

Fig. 4.3. E (0,2) versus p for £ = 0, and H = 1, 10, 100.
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Figl 4.4'

1.0 p

Jp(p,z;) versus p for £ = 0, and H = 1, 10, 100.
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Fig. 4.5. Jc(p,;)-z versus p for £ = 0, and H = 1, 10, 100.
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Fig. 4.6. V(p,z) versas p for ¢ = -0.99, and H = 1, 10, 100.

H=100

...7.—" v




69
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Fig. 4.7. [B(p,t)~Rp]/R versus p for f = -0,99, and H = 1, 10, 100.
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Fig, 4.9, Jp(p,l;) versus p for ¢ = -0.99, and H = 1, 10, 100,
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Fig. 4.13, Ep(p,z;) versus p for £ = 40.99, and H = 1, 10, 100.
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p = 0,9 of the ring anode p, = 0.9(& = +1)., As a result, a thin and
steep boundary layer existz close to the cylinder wall (p = 1) with
plasma counter-rotation at sufficiently small H-values. The radial i
distributions of B, EP,E’ Jp,; clearly iIndicate that, in the plane N
; = 40,99, the electrical discharge has shifted to the region p = 0.9 -
due to the influence of the (nearby) ring anode at Py = 0.9(z = +1). }

In the graphical illustrations, the cathode radius R_ was chosen
to be small compared to the anode radius R+ to ensure a large angle T*
between the current £ield lines 3(;) and the external magnetic field

-t
Bo’ i.e., a significant Lorentz force. A comparison of the Figures

4.1 and 4.6 with Figure 4.11 indicates that this choice of electrode
radii results in a radial boundary layer of large width and low velocity
An the lower half -c £ z £ 0 of the centrifuge. Hence, R_ << R+
(or B_ >> Rq) is not the best choice for a centrifuge of maximum
efficiency.” Figure 4.l11 demonstrates that a veloecity cofile rising
unifo?mly with radius r and decreasing rapidly in a steep boundary
layer of narrow width Ar, is obtained by using a cathode and an anode
of the same radius R_ = R+ < Rb’ which is neasrly as large as the
centrifuge radius Rb' Although R_ = R+ in this case, the current field
lines 3(;} intersect with E; at a sufficiently large angle ;(3,3;) # 0
due to the repulsion of the current filaments. As a result, a net
Lorentz torque results for a centrifuge with R_ = R+ which is still of
the same order of magniﬁude as for a centrifuge with R << R+ (presuming *
that I, and B s ¢, and Rb are the same).

The centrifuge analysis presented indicates that extremely high
gpeeds of plasma rotation are obtainable as shown in Chapter III at

moderate discharge currents I and magnetic inductions Bo’ presuming the



Hartmann number H is not small, H > 1. As an example, consider an
isotope centrifuge discharge with the same values of III, ]Bol, o,
Rb and ¢ as those in Chapter IXI.

Hence, by Equation (4.12)
V; = I/2ﬂBbBocc = (5/m) x 10l m/sec,
and, by Figure 4.1

0[v,] = 0[V V] = 103 m/sec, for H = 100.

Based on these examples, one can assume with some confidence that
high-power plasma centrifuges are technically realizable employing dense,
collision-dominated isotope plasmas. The proposed high-density plasma |
centrifuge would use arc plasmas at pressures of about one atmosphere
so that the isotope masses separated are increased by orders of
magnitude. The large Hartmann numbers H = (t:ril.l);5 BoRo required for high
speeds of isotope rotation are achievable because of the (relative)
small viscosity p and large conductivity o of gaseous plasmas, Speeds
of plasma rotation, which are by an order-of-magnitude larger than thosr

in the above examples, can be achieved at realistic Hartmann numbers H.

ST ST <RI IPR ORI (ST RCR S Y P A SRR R S It A Shier SRR S S LT AR
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Since w = 1.76 x 1011 B sec., the Hall-effect is insignificant in dense
, plgsmas for B = 1 Tesla as long as T < 10_12 sec, In general, the
.Hall-effect increases the speed of plasma rotation for wr > 1, i.e., in
plasmas of lower density as shown in Chapter III. In developing a
plasma centrifuge, therefore, apparently a trade-off between isotope
density and rotation veloecity has to be made.
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CHAPTER V
PLASMA COUNTER-ROTATION IN MULTI-DISCHARGE CENTRIFUGE

This chapter is concerned with a plasma centrifuge between two i
ring electrodes embedded in the mantle of a cylindrical chamber, in
which the plasma in the anode and cathode regions rotates in opposite
directions under the influence of a'spatially converging and diverging
current density and an external axial magnetic field. The associated
boundary-value problem for the coupled partial differential cquations
describing the azimuthal velocity and radial current density fields is
solved in closed form., The difficulties associated with the complex,

inhomogeneous boundary conditions are overcome by means of Fourier

expansions for Bessel functions of complex argument. The velocity,

curvent density, induced magnetic induction, and electric fields are

presented for typical Hartmann numbers, magnetic Reynolds numbers, and

geometry parameters. The discharge is shown to produce anodic and

cathodic plasma sections rotating at speeds of the oxder 104 m/sec for
conventional magnetic field intensities. Possible application of the

LY magnetoactive discharge as a multi-discharge plasma centrifuge for

B isotope separation is discussed.

5.1, Model for Multi-discharge Centrifuge

The plasma centrifuge to be studied herein exhibits the interest-~

1
ewrs g R

3 ing effect of plasma counter-rotation, i.e., the plasma in the anodic
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and cathodic half-spaces rotates In opposite Adirections. As dep.-ced - f\; 
schematically in Figure 5.1, the centrifuge system consists of an

electrically insulating cylindrical chamber of radius Rb wich end walls

at z=+L. A perfectly conducting ring anode (r=Rb, z ==¢) and ring

cathode (r=Rb, z=ic) are embedded in the cylinder Rb (eventually in
form of thin, "hollow" slit electrodes). The electrodes are placed far
from the end walls (c << L) to reduce velocity losses due to the end
plates. The plasma is produced in the space -¢c < z < 4c, 0 < f-Rb

through a gaseous discharge resulting in a curved current density

e
distribution J(r,z) which intersects the axial, homogenecus magnetic

- . n

field Bo applied from outside., The 3 x ﬁ; foree rotates the plasma
counter~clockwise in the ¢.ode region -¢c < z < 0 and clockwise in the
cathode region 0 < z < +u (Fig. 5.1), since the F-1lines converge for
2 < 0 and diverge for z > 0. In the ceatral plane 2=0, the plasmsz is
at rest.

The purpose of the investigation is to evaluate theoreticaily the
electromagnetogasdynamics of plasma counter-rotation as a contribution

to the physics of plasma centrifuges. Furthermore, it appears that

) f/..ﬁ’"" . R L VI
. : L

this type of centrifuge might be useful for isotope separation, in
which the heavy isotope would be enriched in the anodic and cathodic
"layers" z = #c and the light isotope would be enrichked in the central
layer z = 0. The end spaces ~L < z < -¢c and +¢ < 2z < +L would serve as
reservoirs for the unseparated isotope mixture. For a proper choice uf i

the geometry parameters, Rb’ c, and L, well-developed azimuthal velocity

-

distributions can be expected. I view of the circumferential electrode N
e :
arrangement, a large number of such centrifuges can be set up in a long Pl

insulating cylinder to rotate large volumes of isotope mixtures, as P
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shown schematically in Figure 5.2. Each circumferential cathode or
ancde serves as a common electrode for the adijacent discharges. It is
geen that the volume of rotating plasma is nearly doubled in each

electrode region, compared to the single discharge centrifuge.

"1 &

- L,?) J‘_ ‘.1__‘ L-..

v POOR QU

(
d
f
[

B,

¥ig. 5.2. Scheme of multi-discharge centrifuge.

5.2, Boundary-value Problem for Velocity and Radial Current Density

The sﬁeady—state rotation of the plasma centrifuge shown in
Figure 5.1 is theoretically investigated based on the magnetogasdynamic
equations (Section 2.1) for demse plasmas. Laminar flow is assumed and
(conceivable) secondary flows superimposed on the main rotational flow-
are disregarded. Experiments indicate secondary flows in the motion of
incompressibie fluids between rotatiny cylinders (Chandrasekhar 1Y61),
but secondary flows have not been observed in plasmas which rotate
under the influenqk of eiectromagnetic forces. In view of the symmatry
of the centrifuge configuration with respect to z-axis, the plasma flow

field is then azimuthal, V= {0, Ve(r,z}, (¢}, so that the plasma behaves
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incompressibie (v.ﬁﬁg)_ It 1s assumed that the gyration frequency w
of the electrons is much smaller than the collision frequency T
between electrons and plasma particles (wr<<l). Imn this case, the
current density is of the form J= {Jr(r,z), 0, Jz(r,z)}, and the
Hall-effect is negligible (dense plasmas of low ionization degrees).
The magnetic induction is of the form B = {0, Be(r,z), Bo} in
accordance with Maxwell's equations and the homogeneous boundary
conditions for Br and Bz.

The counter-rotating plasmz centrifuge is described Ly the

boundary-value problem for the azimuthal velocity \Jf6 (r,z) and radial

current density Jr(r,z) £ields:

..a_[}.-.i(rv )]4..3_2_‘.!.3_339.3 (5.1)
er'r 9r* B az2 ¥ 'r °? *
5 1 3 323 32y
2= 3] = o3 , (5.2)
sr'r 9ar T j 322 o 8?2
where
o
Vo(rs2) . =0, 0SSR, (5.4)
and
3(m2) g =3 [8z-e) - 8(z0)], -L<zeH , (5.5)
) o
Jr(r’z)zr-iL =40, 0 <£r < Rl:‘l . (5.6)

Equations (5.1) and (5.2) are the azimuthal compomnent of the

equation of plasma motion and the induction equation combined with
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vxE= u&? and V-J = b, respectively. The boundary conditions (5.3)
and (5.4) specify that the plasma does not slip at the chamber walls
T = Rb and z = L. The boundary conditions (5.5) imply that a total
discharge current I flows from the ring anode (z = -c) to the ring
cathode (z = +4c) of vanishing axial width, Az -+ 0. The boundary
conditions (5.6) consider that mo radial current flows at the end
plates at z = *L according to Ohm's law, J. = a(Er+VeBo), since
Vé(r,z)z=iL = 0 and Er(r,z}z=iL =0 hy 3 x [E] = B.

The remaining centrifuge fields are consecutively determined by
using the solutions for Ve(r,z) and Jr(r,z). The axial current density

Jé(r,z) is obtained by the conservation equation for the electric

charge density (V - = 0):

3 (z,2) = -fz 2 i)z + o () , (5.7

where the integration constant cl(r) is determined by the boundary

conditions (no axial current flows into end walls),
0<r f-Rb . (5.8)

The induced magnetic field Ba(r,z) is obtained from the z-component of

- "

Maxwell's equation, V x B = uoj:
B.(r,z) = =(u_ [ 3 rdr + (5.9
g(rs2 ":“o_/ ,FAr + ¢y (2) 1, .9)

where the iantegration constant cz(z) is determined by the boundary
conditions [equivalent to the boundary conditions (5.3) wince

-336/32 = qur’ H(c—lz[) = Heaviside step function},

{5.10)

H(c~]z|), ~L <z <+4L .

_ 0
Bg(rs2)icp = 7mR
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The electric field E(r,z) 1s given by Ohm's law:

E(r z) = {J /o~ B V., 0, Jz/c} . (5.11)

e’
Finally, the pressure distribution can be calculated from the r— and
z-component of the equation of motion [Eq. (2.1)] of the plasma if
desired.
5.2. Tourier Series Solutions in Terms of Bessel Functions of

Complex Arguments

In order to solve analytically the boundary-value problem for the
coupled plasma fields Ve(r,z) and Jr(r,z), it is convenient to

formulate Equations (5.1)-(5.6) in dimensionless form by introducing

dimensionless independent and dependent variables,

=r/R, 0<psl, (5.12)
g=2lc, -L<g<+l, L = Lfe, (5.13)

and
V(p,z) = Vy(£,2)/V , Jp(p,c) = Jr(r,z‘)lJ0 , (5.14)

wvhere the reference values VB and JD are defined as

Va = I/ZﬁRchou, Jo uvoBD = 1/2anc . (5.15)

Thus, vhe boundary-vaiue problem defined in Equations (5.1)-(5.6)

becomes for V{p,g) and Jp(p,c):

-2 3%y _ .2
] + . .16
[p ap(p )] + N s =H Jp (5.16)
323 «2 32y
8.1 -2 p =N ~— , (5.17)
T -—(pJp)l + N © — ar2

ar2
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where
V(p,c)p=1 =0, -L=<gp<+l, {5.18)
I (0,0) ;= ~6(zHl) +6(c-1), -L<z <+l (5.20)
Jp(ps‘:);=il_ =0, 0<p < 1. (5.21)

The dimensionless parameters N and H are defined by

N=c/R, HE(o/w)BR . (5.22)

In view of symmetric geometry of the centrifuge configuration and
asymmetric boundary conditions (5.20) and (5.21), Jp(p,g) is asymmetric
about £= 0, i.e., Jp(p,;) = —Jp(p,-g). Accordingly, the radial current
densities at (r, *z) have opposite directions, but same magnitudes.
Consequently, as a result of the radial current densities normal to an
axially applied magnetic field, the Lorentz forces set the plasma in
rotation with an azimuthal velocity field which is also asymmetric,
i.e., V(p,2) = -V(p,-2).

In accordance with the above conclusions and the boundary
conditions (5.18)-(5.21), the general solutions of the coupled partial
differential equations (5.16) and (5.17) are sought in the form of the

Fourier series:

(-]

V(p,2) = I fn(p)sinlnc, (5.23)
n=1
©

Jp(p.c) = nzl 8n(9)81n1nc, (5.24)
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where

Ny (5.25)
e n
;} The p-dependent functions fn(p) and gn(p) are determined by the follow-
%? ing coupled ordinary differential equations and boundary conditions:
{? X
d (1d _omy2. 42 (5.26)
T [—p‘ Fr (Dfn)] (N) £ g,
¥ A )
: n2 _ n,2 5.27)
: 14 - (D2 = D%, (5.
de [p dp (og)) — ) 8y « 0
- g oeemm— me e avsLsns CAMS STLASD LU LU IDTEIvVal —-L S L < <+,
\ )
; ~8(L+l) + 8(z-1) = (2/L) = sind sin} . (5.30)
1 n=1
L
By elimination, Equations (5.26) and (5.27) are reduced to decoupled
! differential equations of fourth order,
| Ay HA ,°
J4 2,2 o (2
a {dp S dp(p)] ( N) g = -CE s (5.31)
! A HA
4 1, 2,2 _ n, 2
; The general solucious for fn(p) and gn(p) of the identical biharmonic
o ‘
: equations (5.31) and (5.32) are
£.(p) = A J, (x p) + B I (x¥p) , (5.33)
g,(P) = € T, (x o) + D J, (x¥p) , . (5.34)
: i i *
| where An, Bn’ Cﬂ and Dn are integration constants. Jl(k:np) and Jl(r:np)
-=1 'ff are complex conjugate Bessel functions of the first kind of order 1,
| since Kk and n;‘v‘l are complex conjugate eigenvalues given by
A A
N - B By apy1E o g tld
6 = b= R+t = g,
(5.35)
y. A A
* = --g- - ._.E'- — ;i - -id)
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where
A A
o, "o L2330k
= % arccos| _ 1 =% arcsinl—5——571l -
? 0 N(li/mz-iﬂz)% (Aﬁ/uzmz)*i

Furthermore, the solutions (5.33) and (5.34) have also to satisfy

original coupled equations (5.26) and (5.27) and boundary conditions

(5.28) and (5.29), i.e., the integration constants are interrelated by ;

NE sinhn % !
R AR I ?
n 1l n
sin} (3.37) o
n %* P

= oo = DY ., :
n LJl(Kn) n }

By combining Equations (5.23) and (5.24), Equatiomns (5.33}), (5.34) and

(5.37) and noticing that Jl(K:p) = J;(Knp), the solution for V(p,) and ,Ef

J;(p,c) are obtained in the final form ':@

_ N | .
Y(p,z) = —-2NHL uil ln sinln51nlnc Im[Jl(Knp)/Jl(Kn)] s (5.38).

ni]_ sind sinh g Re[Jl(K'np) /Jl(K'n) 1, (5.39) 7 \

3, (052) = T

where Re[Jl(Knp)/Jl(Kn)] and Im[Jl(Knp)/Jl(Kn)] refer to real and
imaginary parts of Jl(nnp)lji(Kn), respectively.
The dimensionless expressions of Equatioms (5.7)-(5.11) together

remaining dimensionless discharge fields J_{p,Z), B(p,%) and Ep z;(p,g)
3

g

i
i
|
|
!
with the solutions (5.38) and (5.39) for V(p,Z) and Jp(p,c) yield the \?
|
which are notmalized with respect to Jo =z GVOBo and Eo = VOBO, 2

respectively:
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3. (ps0) = anL ™t El A;lsin?\n[cos?\n?;-(—l).n] Relx 3¢k _0)/3, (e )1, (5.40)
B(p,z) = zm."lngl A "stnh_fcosd_t-(-1)™1 Re[3; (e p)/T ()1,  (5.41)
Ep(p,«:) = Jp(p,c) - V(p,Z) , (5.42)
E (ps2) = J.(p,0) . (5.43)

JO(Kn?) is z Bessel function of the first kind of order 0 with complex

argument, and R is the magnetic Reynolds number,
R E p00V6c = HOI/ZﬂRbBO . (5.44)

From all plasma fields, only the induced magnetic field B(p,Z) depends

on the magnetic Reynolds number. It is also noticed that Equation (5.40)

satisfies the integral conditiom,

j‘l

0

3.(p,0)pdp = WH(I-|Z]) , | (5.45)

which is proved with the help of the followiny Fourier series
expansions in tb2 interval, -L < ¢ < +L,

1

o3 n _ .
© (5.46)
_ -1 -1,
Ha-lgh = L1 + 2 n-E—l A_“sinh_cos 7).

Bquation (5.45) is vewritten in dimensional form as a non~vanishing

integral for any cross section -c < z < +¢c,
R
Z'n'fo ° 3,(xsz)rdr = TH(c- lz]) (5.47)

which shows that the plasma is sustained by the total discharge current I.
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5.4. Numerical Illustratioms and Results

As numerical illustrations, the axilal (r) and radial (p)
dependence of the dimensionless centrifuge fields V(p,Zz), Jp(p,c),
Jt(p,;), B{p,z), and Ep(p,c) has been calculated in some (interesting)
cylindrical regions (p = 0, 0.7, 1) and cross-sectional planes
(t =0, 0.9, 1, 1.1), respectively. The remaining field Eg(p,c) is
proportional to Jc(p,C). Since the centrifuge fields V(p,Z), Jp’c(p,q),

B(p,c) /R, and Ep c(p,c) depend only on H, L and N, the Hartmann numbers

3
are treated as parameters, H = i, 10, 100, and the geometry parameters
are taken as L = Lfc = 10 and N = c/Ro =1, 5, 10. The axial positions
of the anode and cathode are at £ = -1 and £ = +l, respectively. The
solutions in Equations (5.38)-(5.43) indicate that V{p,z), Jp(p,g), and
{p,T), B(p,r} and E;(p,c) are symmetric with

z
respect to the central planes (z = 0).

1) Velocity field V(p,z) [Figs. 5.3 and 5.4]: The oppositely
directed azimuthal velocity fields are asymmetric about Z = 0 and are
distributed over the entire system, 0 < p < 1, |z|<L, with zero
velocity at the central plame (g = 0) and end walls (z = L = 10). The
maxima of |[V| are at the electrode planes (z = +1), and move toward the
cylinder wall (p = 1) as either H is increased or N is decreased. It
is seen that |V| spreads more widely along the z-axis and grows
considerably at auny point 0 < p <1 and 0 < |g] < L as H is raised. It
is also observed that |V| stretches along ¢ and dwindles at any point

0 <p <1 as N is reduced.
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I3

i1} Cwnrcut density fields Jp C(p,;) [Figs. 5.5-5.8]: The

electric discharge becomes more closely concentrated near the cylinder

T

wall as H is increased. Backward curreat demnsity (Jg < 0) appears to
be abundant near the cylinder wall for |¢]| > 1 as either H or N is

d increased.

3? : 111) Induced magneiic gield B(p,r) [Figs. 5.9 and 5.10]: The 1

Induced magnetic field is denser near the cylinder wall at p = 1 than

the axis at p = 0 as H is increased. B(p,Z) widens over § as either H

is increased or N is decreased. Tor large N = 10 and small H < 10, B }

?i grows almost linearly with p in the interelectrode space, -1 < 7 < 1,

iv) Electrnic fLelds Ep . [Figs. 5.7, 5.8, 5.11 and 5.12]: The
>

intensity of Ep r grows rapidly near the ring electrodes (p = 1, g = 1) é
H] i

and the maximum of Ep z shifts to the cylinder wall ag H is increased.
2

Ep r extends more widely along the Z-axis as either H is increased or ] g@
4 ;o

S; N is decreased. ; f f

i

|

The graphs in Figures 5.3-5.12 are based on the Fourier series ?
sclutions for the Bessel functions of complex arguments, which are %
i

sumied up ton=n terms such that n satisfies
max [nax

1? ) lf(p’c)n L5 f(p’;)n ‘/‘ f(p‘z)n lf-10_3. The numerical values
. . max max max

=3 of complex Bessel functiomns JO and Jl in the series solutions are

computed based on the algorithms by Gautschi (1964). The Gibbs

phonomena at discontinuities and the tendency of oscillation are

suppressed by using the Lanczos convergence factors o (Arfken 1970), b
g sin[ar/(n + 1] .
| o_ = B e, Ca=1,2, ..., n__ . (5.48)
e n nr/(n + 1) + max
 _§ o
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The graphical presentations of tha plasma fields indicata that
it is desirable for the ring elecnrode§ to be located sufficiently
apart in distance compared to the cylinder rvadius (N = cle > 1), to
ensure a significant Lorentz force and plasma rotation. As long as the
end walls of the discharge chamber ave placed sufficiently far from the
ring electrodes (L = L/c >» 1), velocity lossas due to the boundary
layers at the end walls are insignificant. Ihe proposed centrifuge
schome results in supersonic rotational plasma velocities (which arve
not affected by the induced magnetic field) for moderate flow numbors
H, N, L that are realisable in practical applications. For example
1] = 10% awp, B, = 10° Tesla, o = 10% who/m and ¢ = 108 = 107,
the spead of plasma rotatiom is 104 n/sec in order of magnitude by
Bquation €5.13) and Figuras 5.3 and 5.4 for 0 = 100 and N = 10,

In & practical centrifuge design for isotope separation, the
multi-discharge centrifuge would be loecnted at some stage in a cascade.
The enriched and depleted isotope streams ave introduced at ona ond of
each centrifuge stage and removed at the other end. As long as the
inflow of the isctope mixture and the rewmoval of separated ioms occur
at a sufficiently slow rate, these flows can be neglected in the

analysis of the plasma rotations.

RTS8 TR MO VNN 0] U NI St AN SRS SIS SN ES R NI S S SE S




i

Y

104

CHAPTRR VI

APPLICATION 70 ISOTOPE SEPARATION

As shown in the previous chapters, the plasma centrifuge using
elactromagnetic forces permits to generate speeds of rotation of the
oxder 196 mfsec for ordinary steat -state conditions, which are by two
ordars of wagritude larger than the achievable speads of ahout
400 w/sec in the mechanical centrifuges, 4As a vesult of the high speed
of plasma rotation, the plasma centrifuges could be used with
advantage for the sepavation of isctopes., The spatial separation of
tha isotope ilon and atom components according to their particle masseos
is ensured by the strong ceontrifugal force acting on the isotope
claments at those high speeds of rotation. Two different kinds of
isotope componants get different xetational velocities according to tho
mags dug to the intervcomponent friction fovce. This frictional foxce
together with the magnetic field vesults in a vadial wotion of the
jsotope componants, the volocity of which is negligible compared with
the velocity of rotation. The heavier components wove outwards and the
lighter inwards in the plasma centrifuge. The diffusion for such a
malticompeonent plasma transverse and parallel to a magnotic field in
the prasence of a contrifugal force has baen discussed by Donnevier

(1966). For the plasma ceantrifuges, it is possible to apply his theouy

e

i
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to get approximate numarical rasults where the separation effect is
takan into account,

As an illustration to the plasma centrifuge, the isotope
soparationr ratio ¢ is calculated for two isotopes of lighter mass my
and heavier mass mj with the same charges. The separation ratio at
distances Q0 < r 5,&6 - §, whoere o is the viscous boundary layer
thicknass, is proportional to the power (mj-mi)vg(r)/kTa in both the
wechanical and plasma centrifuges (%5 is the tewmperature of the
isotope ions). The saparéfian ratio «y for the mechanical centrifuge
is oxprassed by Cohen (1951)

g x) /a0 ‘mﬁ—u\i)vﬁ(r)
% = nj(G “i(Q) = exp | szo 1, {6.1)

while the separation ratio mp for the plasma centvrifuge is given by

Bonnevier (1906)

9
n (T)/ni(r) (mi-mi}VG(r) R,
SE DR SO TR N W S )
“p ui(n)!ni(ﬂ) exp | KT L G § B (6.2)

As a specific example, consider an uranium plasma centrifuge
H
‘AN

; 238 235
containimy the beavier ysotope wngjd o st the Hipghrer(i) U

. 735 ‘ .
ro ebtaln enriched U ot about Voo tvom the natural abnondanece ot Q.07
as melear fuol for resviors,  For the enrichment of ndtural araunium

235 .
with U777, tho centrifuge discharge would be burnt ecither between solid
uranium electrodos or in an UFG atwosphere.  Such uraniuwm arc
discharges can be operated at temperatures as low as ~ 4500°K. In this
o —27 . . ~20

case, ona has Magg~Mags = 4,982 x 10 k8, kio = 6,213 x 10 Joule.

Hence, the isotope saparation ratio for v = Ru/2 is

PESNEEGS. SR TR
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4 ® 1,057 x 00 for Vy(x) = 10° misec , g
@ 4,013 % 207 for Vv (x) = 5 % 207 wfsee ¢6.3) ;

2,503 % 0% for V) = 10} misec .

It is scen that the plasma centrifuges could produce considerably

largor separation ratios ap than « of the meghanical cantrifuges for

N
= l
"
i
LA

the maximum achiovable velocity of about 400 mfsec. Consequently, the
plasma centrifuge requires significantly fewer stages in a cascade te
got desired concentrations of the isotopes in comparison with the

mechanical centrifuges.
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CHAP'TER VIT

COMPRESSIBLE PLASMA CENTRIFUGE WITH SECONDARY FLOWS

In this section, the theoretical analysis of the steady-state
dynamics of a plasma centrifuge employing concentric cylinder
electrodes and an axial magnetic field ﬁ; is proposed. The plasma is
produced by a radial discharge of current density 3 in the isotope
mixture, and the rotation of the plasma is caused by'the Lorentz-~
forces J x ﬁ;. Based ou the compressible magnetogasdynamic equations,
8 mathematical method is proposed which permits to calculate the
plasma fields, such as the velocity, mass and current demsities, and
the electromagnetic field in the centrifuge, as a superposition of
primary and secondary fields. In this approach, the critical Reynolds
nmumber for the onset of secondary flows is determined as the eigen-
value of thé boundary-value problem for the secondary fields. Attention
is given to the evaluation of the feasibility of plasma centrifuges as

it is affected by secondary flows and viscous boundary layers.
* 7.1, Plasma Centrifuge Model with Secondary Flows

The subject of the consideration is a two-dimensional theory for a
plasma centrifuge with electromagnetic and viscous forces, the Hall
effect and secondary flows., As a centrifuge modei, the previously
considered type is chosen with concentric cylinder electrodes and axial

magnetic field (Fig. 7.1). This centrifuge geometry is symmetric with
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Fig. 7.1. Geometry of plasma centrifuge with cylinder electrodes at
r= Rl 2 (Vb = primary velocity field, Jﬁ = primary
current density field).
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Fig. }.2. Qualitative representation of secondary flows.
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raapeag to the g-awxis and the plane o = 0. It should, therafore, make
the inelusien of sawve, ary flows into tha.anﬁlyeis peeaible. The
Leotope mixvture is contained in the lnterelectrode space R1 L3 S Rz
in form of a plasma sustained by a radial gas discharge betwaen the
cathoda at p = R2 and the anode v = Rl. The waﬁiél componant of the
ocuryent density ¥ rorms with the magnetic field ﬁg a volume foree

j e ﬁ; the asimathal component (3 X ﬁg)a & "Jrnu of which produsces the

rotation in the aircumferential diraection -0. In the steady state,
the 3 X ﬁg foreas ave balanced by viscous forces and inertia forees of
ghe plasma motion, The resulting veloaity fleld 3(r,a) of the plaswa
ecan be represented as a superpocition of a primavy rvotation field (v)

and secondary velooity fields in the v, 0, and » -diveations,
ﬁfr,a) = {O,vbB(r},O} 3 {vr(r,n), ve(r,n), vn(r,a)} .

Genarally, the axial extension A3 of the centrifuge iz large sempared
to the radial extension Rﬁ - Rl so that the primary fields (o) tan be
treated as one-dimonsional, @.8., vee(r,a) = vge(r). In particular,
thie assumption Is riporous for a hypothetical centrifuge of infinite
axial extension, Az =+ », Similarly, the plaszma density, pp e pp(r,z).
current density, 3 e 3(2,2), and eleetrie porential, ¢ = &®(r,z), are a
superposition of primary (o) and secondary fields.

The problem of gucondary fiows was filrst studied expevimentally
and theoretically for iuncompressible flow of ligquids betueen rotating
eyiinders (Taylor 1921), A qualitative pleture of the secondary flows

in liquids betwsen rotating cylinders Is given in Fig. 7.2, which

provides un impression of the cowplesity of these {lows. In this case,

vadial and axial fluid wotiouns have to be considered in addition to
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aznimuthal components of fluld motion, a0 that the Navler-Stokas
equations become highly nomlinear. Both experiment (Taylor 1923) and
bifurcation theory (Tudovieh 1967) indicate that a eritleal Reynolda
nuwber A, exlata for which the problem haa a unique aelution (Couette .
flow) for small Reynolde numbers A compaved with A,(A < A,), and
threamdim@naional solutlons of ateady secondary fleows after the loaa

of stability for A slightly larger than 3, {3; € M. As the Reynelda

runber A s further inereased, wove and move complicated typea (n) of

seoondary flows occur as soon ag A hecomaa larger than An {(bifurcation),

where Aa are higher order elgen-valuea. Finally, for sufficlently

large A, ne laminar flow aolutiona exiat and the rotating flow becowmes

turbulent, The problem of gecondary flowa in lunccompreastble £luida haa

not been reselved analytically or mumerically te date.

The proposed plasma centvifuge wodel containa all major effects
which 1) enhance the rotation (electrowagnetie foveces, Hall effect) and
11) reduce the votation {viacoua forcesa, boundary layera, aecondary
£lowa) of the ifsotope mixture. Secoundary flows oceur becauae the
centrifuge operates at high, superaonic apeeds of rotation for whieh
the Reynolds number A 1a probably larger than the critical wvalue \,.
The womentum and energy disaipated in the aecondary Tlows representa a
losg mechanlaw which reduces uhe speed of azimuthal plaama rotation and
the efficiency of the centrlfuge. For these vreasona, the secondayy
flows have to be included in the feaaibility analyaia of plaama ceatvi-
fugea. As important is the determinmation of the critical Reynolds
numbers A, at which bifurcation accura, which are important deaign

parametera for actual plasma centrifugea.
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d.2+  Analytical Method

The  two-dinensional f£ields in the plasma eentrifuge wich seeon=
gayy flowa are described by a nenlinear boundary-value problem for the
comprasgible, wmagnatogasdynamie equationa. Thia problewn is conaider=

ably more complex than that of the secondavy flows of an incemprasaible

liquid between votating cylinders, asinca the number of coupled,
nonlinaayr partial differentlial equations in comprassible maguetogas=
dynamices is wmueh lavger. Tha solution of the nonlinear wagnetogas-

dynamie equationa for the primary plaswa fields la firat sought, and

B B AL S NN S Sy

then the aolutlon of the total plaama flelds ae s guparposition of

primary and secondary fielda, The secondary £leldae will be expanded
in Liapunov=8Schmidt aexiea (Vainberg and Trenogin, 1962), o.8.,

«

-, -

Voum = 5O W e, eyl s,
e,

for the secondary velocity fileld, Thia statemant for solution permits
veal aolutions of the secondary flowa for Reynolda numbera \ > A,
Slnce }k - Aﬁl << 1 in the vieinity of the onnet of aecondary [lowa,
(\ = hﬁ)ﬁ aarvea as expanaion parameter. Thus, ifu tha viecinity of the

onget of asecondary flows, the nonlinear boundary-value problem for the

asacondary flelds can be treated by the method of successive approxima-
tiona. In this approach, the secondary {lelda iu the m=th approxiwma=

tdon (m = 1, 2, 3, ... ) are deagevibed by coupled, lineav differential

aquationg, with coefficlonta and gource terma which depend ouly on the

golutiona of the lowar approximations we ), 2, .+, m = 1. In each

approximation m » 1 to the coupled differential equationa, the evitical

eigen=valua A, appears ag an elgen-value, Thus, the higher

e R s T A e e e ST




approwinations give not only corvections to the secondary flow fiolds

but also to the cxitlcal Reynolds number A,. The secondary ficlds

hava to satlefy boundary condifdons at tho centyifuge walls, as well )
a8 paviodicity sonditions due to tho spatial  pordodicity of the
arrangemoent of the socondavy flows. Although this mothod of solutilon
is simple in principle, the actual intogration of saveral coupled,
fohomogoncous differentinl equatlons is difficult, and the degreo of
comploxity grows with cach approxl&ntion W,

It is proposed to anslymo the plasma contrifuge depicted in
Figura A.l aleng the lines discussod above, in order to obtain
golutions of the plasma flclds as a suporposition of priwavy and
gocondary flalds. For the wathematieal dotails, it is referred to
Sootion A3, which contains aleo physical oxtensions ko the plasma

cantrifugo problom with sccondary Llows,
7,3, Theovetical Formulation

I the theoroticul deseription of the rotating plasma in the

contvifuge, it is porwmitted the inclusion of axisymmotric secondary
- -
flows vr,s) suporiwposed on thoe main asiwmuthal plaswa flow voe(r) 8o

that the velocity ficld of the plasma is glvon by 3(r.a) = IvrCr,n).

vba(r) 4=ve(r,n). vE(r,g)}. In view of the extremo mathematical

gomploxity of tha analysis of socondavy flows for comprossible contyl-

fuge flows, the assumptions of an iszothormal partially-lonized plasma

and swmall magnotic Roynolds nuwbor ave made first. Accordingly, the

plasms tomperaturo is constaat (T = Th) and the induced magnetie filolds
aan ba noglaected, ﬁ; « {0, O, Bo} in this model. Thae proposod plasma

centrifuge is described by the (isovhormal) comprossible magnetogasdynamic
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equations and the conservation equation for the elactric current
density with Hall-effect (wt # 0), subject to the appropriate boundary
conditions and periodicity conditions for the secondary flows. After

normal ization In accordance with the following substitutions,

/R o+ 1y zfR + 2
e " e 7 h.1)

§7Vc -+ W, ﬁ;/Bc +-§;, 373c -+ 3, pp/pc - Py @/@c + 0,

where the characteristic reference values are defined by

R, E (Rl,Rz), v, S &Toh, B, =B,
' (7.2)
Jc = chBc’ o, =z po(r"Rl), ¢c z RcVEBc,

the dimensionless magnetogasdynamic equations for the mass density
(pp), velocity (V), current density (3), and electric potential ()

fields become

ppif-viF = g LR+ e - At I« E (L)

v-(upi?) =0, (.7.4)

Fuvot¥ud -ur¥xi , (7.5)

vedwo, (7.6)
where

A S "echc’“’ Bz Yo/u RB,

are Reynolds number and Hartmann number, respectively. The system

{7.3)-(7.6) nust satisfy the following boundary conditions,

L (e i
L T

ERR -
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ﬁtr!a}r'Rl ; » 3, - % om g ok ey \ {¢.7)

3" )

fng vx(r,a)rdr w 0, ni S (7.8)
’

where Rl,a and @132 ara now dimensionless constants normalized by Rc

L respectively, The boundary conditions (1.7) and (7.8) consider

that the plasma does not slip at cyiin&ar electrodos, and that there is
no valoclty flux through any transvarse plane & = constant, raspectively.
The boundary conditions (#.9) specify that an electric potential
difference @2 - @1 is maintainaed across the perfectly conducting

cylinder electrodes, Since the secondary flows are axisymueetric and

periodic along the cylinder axis {a = axial wava number) the periedicity

conditions for tha seccondary f£lows are

vr‘e(r, -5 +2Arfa) = vr’e(r,a) .
(7.10)
v, {r, -5 2nfa) = -va(r,m) .

The formal perturbation theory is employed to analyze the
behavior of the solutions in the vicinity of primary fields. ALl

centrifuge ﬁ(r,:) are tharafore sought in the form
Feye) @ £ () + Fee,z) (7.11)

Thea primawy fields %;(r) ara first considored and it is supposed that

&8 soall secondary field ?(u,:) is superimposed on tha initial steady-

state fileld ?;(r). Substitution of the expression (7.11) into
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BEquations {7.3)-(7.9) ylelds a boundary-value problem for the initial
steady state, and a linear elgen-value prbblam for the secoundary flows

' by retaining only the first-order terms in the perturbation fields.
f..4. Solutions for Primary Flelds

The following boundary-value problem for v, (r) and q\o(r)

describes the zero-order steady state of the plasma centrifuge:

d¢
d (1 d 2 w nd _oO
ar v ar ¢ voe)] - Hl Vab Hl dr ' (7.12)
d¢
1 4d o, 1 d
¥ dr (x dr) r dr (x Voe) ! (7.13)
where
= 7.14
voe(r)r_R1 . 0, (71.14)
3
¢ _(x)__ = ¢ .
G r R1,2 1,2, {:7.15)
and

ni = 53/ + wird) .

The remalning primary fields are consecutively determined by using the

golutions for v , and ¢ 3
of o
. d¢ \
jor(r) = (1 + m?"rz) 1(-~ —51.3 t v g) s (7.16)
Jop(xd =uv 3 . (7.17)
2
dp v
o _ .08 LAt
ar  r "o LR g ° (7.18)

T At g et b
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The steady-state solutlons of Equations ¢7.12)-(7.18) are obtsined in

the forms

vaafr) By 4 br"l + evénr €7.19)

¥ (x} = a(r ) + vy + efr 12 - u )}Zm -r M] +4d, ¢1.20)

Jgpl®) = 2en 2L . £7.21)
Jop (¥} ® o § (), (¥.22)
» v -1 oy o fE -hl 2 ~ - LA r -2 ~

P, C2) = [2nt\ chl r Toxp( él % voadx)dl + 1]uxp(£l ¥ vosdx) .

{7.23)
whara
a = e[ (RA0R, R22eR)/RE D]
b = cIRIRSEn(Ry /R /(RS -KD] (7. 28)

o™ —(@Rmﬁl)[(hz“ 1)f& - hlhgbn (hzlh )i(Rg—h y 4 2R tn(hle )]
d * 8 -aRo/2 bOR, -o[(RE/2 - M OLuR, ~R2/A] . ®
2%y 2 2 y Ry Ryl

Rquations (#.20)-(7.23) extibit clearly the effect of plasms rota

{7.19) on the plasma fields.
7.3, Elgoen~valuo Problem for Secondary Fields

Linecarization of Bquations {?.3)-(7.9) according to Bquation {2.11)

vields for the secondavy flows in the plasma the eigen-value problem:
o (B0 + TRy 4 o3 W)

. oTp + AR TaedverR T T (3.25)

o4

2 1]

A adea

e
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.

pcv v + v*Vpo-- ¢,

§'= -V + V% e -ut 3'x Iy ’
z z

v 3.“ 0,

where

6 s - < g <t

=Ry, ,

$(r,z)

R
j‘ v_(ryz)udr =0, ~-»<z<+®,
Rl z

$(xr,z)

D’ ..m(z(-}‘m‘

=Ry 2 ~

(2.26)

(*.27)

{v.28)

(7.29)

(7 .30)

@ .31)

3; designates the unit vector in the z-direction. Substitution of the

periodicity conditions (*.10) for the secondary flows intc Equations

(7.25)-(7.28) produces additional periodicity conditions in z for the

remaining perturbation fields:
jr’e(:, -z f2nfa) = jr’a(r,z) .
jz(r, -~z #2n/a) = —jz(r,z) .
p(r, -z ¥2n/)= o(x,2) ,
o(xr, -z *2w/a) = ¢o(r,z) .

In view of periodicity conditions (1.10) and (7.32), the

for the linearized system are sought in the form

(.7.32)

solutions
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vr'a(:,a) “ 9, o(¥) cos az, v (x,2) = 3=(r) sin ax ,
jr’e(r.a) " §r‘0cr) coy oz, J.(r,s) = §$(t) sin oz , {7.33)
o{x,x) = plr) cos ax, o{r,z) = §(x) cos % .

Ry substituting the above trial solutions into tho linecarized systom
{7.25)-(7.31), the problewm is reducoed to a set of coupled ovdinary

differential equations subject to homogencous boundary conditiouns:

" i 2 e »
(o, = o )v - .\[--I1 3 fzp + Dpl - B¢{mt{~D$ %‘va) - v&]

-3 (D0, + V) (7.38)
(D, -~ o2)¥, = Mgb + n 0§ + §, + 09 (7.35)
D, = )P, = -hep + 3 (0T, + b)) (7.36)
{(p.b - (1 -+ w212)021$ u D (v, + wtv’) (7.37)
® L] *
DY, + £y tad, =0, (7.38)
where
Voo B o o (7.39)
T D “1,2
mr(r)rﬂRl,?, «{ , (7.40) |
0,8 (), , =0 (7.41)
0 7.42 2
@(r}rmgl;a » ( } B
Y
w{x) 0 (7.43) '
e

- ———E ‘>
. "5 ;
WKM ol f= 4 M
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and
d d .1
Page » DFEYYES
- (7.44)
‘ 80 2 2p v oofr, £a00) Ewole, £4(0) T e Dyv o
£,(0) = o Mo, .
The perturbation ampiitudes of the curremnt density fields are
determined by using the solutions for Gr, Ge and &2
jrfr) a (1 +uw 1 ) ( -Dd v + mTGf) . (7. 45)
o0 = @+ A e 19 -V, | (7 .46)
o, &~

Bquations {7,34)-(%.38) with the corresponding boundary
conditions ¢7.39)-(2.43) comstitute an eigen-value problem for the
Reynolds nuwbar A. For glven system constants (Rl.a‘ n, o, @, v} and
operating parametevs (H, @1, @2), the eigen-value problem {7.34)-(7.43)
has a sequence of positive eigen-values A“(u) for any axial wave

numpber a. Among these eigen-values the smallest one, A (w,) =

min

Q<< “(u). for a certain value of ay, is the critical Reynelds mamber,

at which the secondary flows first set im.

Tha similar eigenvalue problems as showm here have frequently
occurred in the analysis of axisymmetric meutral stability for eilther &
hydradynamic Couwecte flow or an MUD Couette fiow. Indeed even in those

simpler cases, the problems have never been completely solved by

analytical methods. Bither case has been analyzed using some

techniques (Chandrasekhar 1961, Ovchinnikova and Iudovich 1966) of an

BN RrEa R S S Wiy Sicoun M AOPRE WA St i I O B B — N
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expansion in orthogonal functions, a varilational method and Green's
function solution or direct numerizal computations by employing the
Galerkin method (Kurzweg 1963), the Runge-Kutta method (Harris and
Refd 1964), successive approximations (éparrow et al, 1964) or a
finite-difference technique (Chang and Sartory 1965).

The solutions of the eigenvalue problem (f.34)-(7.43) correspond
to the first approximation (m=1) of the Liapunov-Schmidt series
expansion (Section 7.2). In a similar way, the eigenvalue problems
for the higher order expansion fields 3L(m3?) can be formulated to

‘obtain Iimproved series solutions and eigenvalues i for the secondary
fields. Along these lines, & quantitative theory of.the plasma
centrifuge with secondary flows could be developed with an accuracy
corresponding to the second approximation (m=2) of the Liapunov-Schmidt
éxpansion°

In the above theoretical formulation of the plasma cemtrifuge
problem, certain physical effects have been neglected in order to
reduce the qumber of equations and to reduce the formalism. In the
actual research, induced magnetic fields ;hould be taken into comnsid-
eration so that the results are applicable for arbitvary magnetic

Reynolds numbers, R = [Bind/Bo] = uochL. Because of the large therma;

. conductivity of plasmas, the heavy particle temperature Tb is quasi-

homogeneous over most of the centrifuge space R1 <r< R2’ i.e.,
temperature drops exist in the vicinity of the electrode walls. Thermal
energy transport and dissipation should be taken into account if this is
mathematically feasible. The theoretlcal approach proposed would make it
also possible to solve the dynamics of secondary flows in ordinary,

nonconducting pases, another still umsolved problem.

o N o R it S s

PR




121

CHAPTER VIIT

COLLISIONLESS PLASMA CENTRIFUGE

In this section, the problem of the collisionless plasma
centrifuge is presented within the framework of the (steady-state)
Vlasov-Maxwell equations. A one-dimensional configuration of a
multicomponent rarefied plasma in an infinitely long cylinder aligned
parallel to an external axial magnetic field is cons%dered. In the
charge-neutral approximation, a solution to the self-consisteant
Vliasov-Maxwell equations is obtained by assuming Maxwellian distribu-

tions for the plasma particles.
8.1, DModel

As a model for a collisionless plasma centrifuge an electrically
insulating dylinder Rb contgining a mixture of isotope ions and
electrons of masses ™, i=12,2,..,8 is chosen. The plasme state is
produced by switching on a strong axial magnetic field B(t) - BD ~1
Tesla so that the associated induced electric field E(t), which is in

"the azimuthal direction, breaks down the isotope mixture simultaneously.
The jons and electrons ave acecelerated by the induced electric field so
in the azimuthal direction.

i
The resulting centrifugal forces (in a system of reference moving with

that thay obtain mean mass velocities Vo

the particles) distribute the isotope ioms radially in accordance with

theilr different masses mg . The subject of the consideration is the

I
P e )

T .

EOE

o
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steady-state compnsition of the isotope mixture after the magnetic

fleld B(t) has reached its "plateau" value Bo (Fig. 8.1).

O D |

34
et

=

B(t) »+ B

Fig. 8.1, Model of collisionless plasma centrifuge.

This centrifuge has to be operated'at low particle densities
(collisionless system without significant viscous losses at r = Rb)’
but at still high enough pressures to avoid a compression of the plasma
immediately after breakdown by the Lorentz force JBBz which is
directed radially inwards (theta pipch effect). A pinech contraction of
the plasma with a radial velocity V would produce even higher azimuthal
particle velocities through the azimuthal V % B field but would render
a controlled extraction of the isotope ioms difficult within the typical

pinch times At - 10-6 sec. Another reason for avoiding 8-pinch
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6 og,

conditions is the shock heating of the lons to temparatures Ta « 10
At such high lon temperatures, the randem‘chavmal forcea would dominate
the directed centrifugal forces and make an efflclent isotope saparatlon
imposgible.

Accordingly, in an experiment the centrifuge would have to be
operated under conditlons where the radlal Lorentz Force ia amall
compared to the pressure gradient and the alactron temparature TQ
generated in the Induced electrical breakdown la lavge compared to the
lon tewperature, Tb, TQ EE] TQ - 103 °K. Nonisothermal plasmas avre
veadlly realized at low fllling prassure (Ta > TQ) gince only a
fraction~ méfmi of enargy is lost by an elactyvon e In eollislon with an
ion 1. Since ideal collision and lossless plasmas do not exist, only a
quasi-aquilibrium can be veached in the isotope ion dixture after B(t)
has risen to Bo’ which should last for about At - 10—3 sou, and parmit
extraction of the separated lsotope species due to the long thermal
relaxation time of the electroms. As a technlecal applicatlon, this
collisionless plasma centrifuge would have to be operated under
continwously repeated induction pulses B(t) = BQ, in order to separate

a significant amount of isotopes in a reasonable time,
8.2. Boundary-value Problem for Vlasov-Maxwell Equatlons

From the theorvetical polunt of view, one ls Intereated ia analyuing
the quasi-equilibrium state in the final external magnetie field BG
and the salfe-consistent electric, E= -V, and magnetie, B=vx K
flelds. For a quasi-infinitely long eentrifuge, all fields ave functions

of ¥ only, l.e., § " éﬁra¢i3r and ﬁsa?aa&aglra:. In the one-dimensional




SUND SN DR PSS S U S ST SO S0

124

steady state, the distribution functions £ 1(3;,1:) of the particles of
type 1 = 1,2,'..,e are described by the coﬁpled Vlasov-Maxwell

equations (Section 2.2):

2
af e Vs af
i § Ay 18 - .,_A i
v ar +[m Vera(""’\) n r] EAY)
1 i T
{8.1)
e v.V af
1 1 9 f'r i
"‘[m Vr?'é-;(rA) +“"—“]'§T=O,
i g
where
) N
[r ar(‘*“‘” M, i o5 {11 Vofy AV, (8.2)
24, My
-3 ar(r )= eo i ey {f{ fi av . (8.3)

relate the vector potential A(r) and the scalar potential ¢ {r) to its
current dengity and space charge sources, respectively (Vr’ Ve, Vz
are the cylindrical coordinates of the particles i in the velocity
apace) .

The equations of motion for each particle species i,

av v2

r _ dp 1 8
oFe C T8 dr T eiVer ar(”A) L

dv vy

0 1 3 ' rd
L Pl —eiv ;_-—5-—(11&) - my . (8.4)

de

g ~0»

have the three integrals of motion:
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By =g (V2 4 Ve R VD) hegd . . (8.5)
Pi 2Py = m Vor + eiAr , (8.6)
Piz = mivz . (8.7)
The Hamiltonian Hi’ the generalized angular momentum Pi E ?ie and the

generalized axial momentum P » 8Te constants of motion for each

i
isotope 1. Knowing the complete set of integrals of motion, the

general solutions of equations (8.1) are arbitrary functionals of Hi

~and Pi (Piz does not enter explicitly due te the absence of the mean

axlal velocity):

£, (Vir) = £, explayly - 8,P,) . (8.8)

i1

The arbitrary constants foi’ LN and Bi are to be determined by

Maxwellian boundary conditions at r = Rb’

m
- ] i .3/2
fi(‘;’r)rﬂ{o 0,1 GrET 1)

explm, [V + (V=v_)% + v21/2km,} (8.9)

T, 2T, i=wl,2,...00; T

s o i = Te >> Tog i=e,

Note that Tos and Voi are the particle densities and mean (azimuthal)
mass velocities (rotation) of the i-particles at r = Rb' Since

T, >> T, due to electron heating and T, - 10° °K is of the order of
the wall temperature, a distinction between temperatures || and l_to

-
Bo i3 unnecessaxry.
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Substitution of Equation (8.9) into Equation (8.8) yields

& /%y ‘
ﬁi = "mi/k'r ) (8.10}
m 32 nu ini
fr ™ noi(.?nk'ri) exp[-(—== - e;é, +e;uR AN/,
where
wy = voifRD, by = ¢(R°), A B ALRO) . {8.11)

The particle density and azimuthal mean velocity of each isotope are

glvan by
@
n () = m £ di?
w f (ﬂ&)a/z expl(——— i i i -e.p ke rA)/kT ] (8.12)
ol*m, 3¢ ey .
and
1 T o .-&-
":L(”) "51?")" ._r_fi Vefid = w.r . (813)

Substitution of Equations (8.12)and (8,13) into Equations (8.2) and
{8.3) yields a boundary-value problem for coupled nonlinear ordinary

differentisl equations for the self-consistent potentials:

o o, i Yoo Ml R B e
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where
1l d
3???E(rﬂ)lraab By » ©.16
Lty awn 412 3 N 8.17
v drei pe0 ™ By Ty q BigNg o (S.17)
R ¢8.18)
de "y e RS 3 LLC
%%1 © 0, ‘ {8.19)
=0
and
Ry
“i = ij;' ny i by {8.20)

is the total number of & particles per unit leagth. The boundayy
conditions (8.16)«(8.19) can be derived direetly from Rquations (8.14)
and Bguation (8.15) Ly integration, rvespectively. The boundavy
conditions (8.16) and (8.17) cousider that the requivements of
symmetry make the self-consistent magnetic field parallel to the
eylinder asis at points inside the centvifuge and that it approaclas
serd at points outside the centrifuge. The boundary conditions (8.18)
a20d {8.18) tuke into consideration that the radial electrie fiald is

due to the space charpes.

8.3, Quasi=neuiial zolutions

In the lLimiting case of chaege neutvality (3 en, = 0), thore are
& i
0o Internal space charges so that the electric field vanishes and only

a mapuetic £ield exists. In this case, by Bquation (8.12),
i éifaiﬁwggfﬁé exp[(w“ﬂﬁf“H = e, +~eimira)lkii] w0, {8,21)

o palhiady P R g e r. gt
R T ST S e . e -
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128

. from which
. 2
2,k
ﬁ%—g-a a = const, Z;EF b = const ,
1 (8.22)
. 2wkT
${x) = 0, ieioi( hwo.
Then, Equaticon (8.14) becomes
2nkT 1.3/2
dr : drlIrA)] = -u.r exp(br + ard) i e I N ) wy (8.23)
With the change of variables
¥ = hr2 + ard ,
(8.24)
A2
§8~—rx
e
wheve
2 znkmi 3/2
A=t I oegfyy G700 w9y (8.25)
o - 3 i
Equation (8.23) can be transformed to
&y,
—-%'i* e =( . {8.26)
dt .
The general solution of Eguation (8.26) has the form
Ax?
2
of w MR (8.27)
(Ltye™™ )

whare G, X and y are determined by Equation (8.25) and the appropriate

boundary conditions:

ot T e p e ok e g O a ey o o Pt o] s PR
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Yo o={p - Qlp+Q , . (5.28)

e.n
A w m’;g:i Q, (5.29)

whera

By By t e % % oe,un,N

p Q
aw 1 1 i ’ ¢s.30)

Qs 2, +80% ¢ 2 B oaggkt AL

B, s the magnetic f£icld which is necossary for particle 1 to rotate

with the cyeclotron froquoncy 0, =0 B*[mi. It is noted that

(2«)— b Qimini = T is tho total curvont por unit length, and that
£ n ikTi :I_m_s_\l'L vhovre V§ is a mean squaro velocity of cach i. By

tha above eap;asginnu. the gquasi-noutral solutions are finally given by

$(r) = 0, V (1) U PLTSN (r) 0 0 0,1,

2 A
0 {r) = w 3 49 e (831)
-(B +B*)“ (Iye )
Ard
Blr) = —B*‘PQ*—l‘-\—'—? .
Ttye’

It turns out, howover, that the radial distribution of the
isotope ilons doponds sonsitively on the clectric potential $(r) since
e d/kT > 1 for tha foms L B o(kT, ~ 7551077 valt for T = 100 °K),
€.y it is not dotommined selely by the contrifugal forees mivoiafr‘
For this veason, the thoory should bo extended to include space charge
aoffects and to obtain thoe exact potontial distribution ${r). In view
of tha comploxity of the underlylng nonlincar (transcondontal) diftev-

entiat equat fons, this extonsion has probably to be carried through

within the frame of an appropriate pevturbat lon theovy,
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APPENDIX: PREVIOUS RESEARCH ON ISOTOPE SEPARATION

For isotope separation, various methods h;ve been suggested such
as chemical methods (Urey 1939), diffusion methods (Furry et al. 1939),
electromagnetic methods of mass spectrometry (Swith et al. 1947), and
mechanical centrifuge methods (Huwphreys 1939; Cohen 1951). In electro-
magnetic methods, ions are moving in different orbits and are deflected
in a magnetic field according to theilr different charge to mass ratio.
However, because of difficulties in producing intense ion beawms and
neutralization of ions by electrons, this method was not widely used in
industry. In fact, it is used only for laboratory purpose for producing
limited amounts of pure isotopes owing to its high resolution. TFor
separation of isotopes with low wass, chemical methods are more effec-
tive than electromagnetic methods. When large quantities of pure
materials are required, it is industrial practice to use gaseous-diffusion
separation systems.

In recent years, other effective methods for isotope separation have
been studied. In particular, plasma methods are promising for high pre-
cision technology and in new technological developments. Plasme separa-
tors can be designed to operate on the basis of plasma streams (Becker
nozzle) and plasma rotation (plasma centrifuge). The Becker nozzle is
being developed as a commercial isotope separation device. In principle,
this device expands the isotope mixture through a supersonic nozzle and
along a curved wall so that extremely large centrifugal forces result
which separate the heavy isotope from the light (Becker et al. 1953).

M extension of this principle is applied in the jet scheme in which two
or more opposing supersonic nozzle flows deflect each other so that

centrifugal forces occur again as a result of stream line curvature

(Campargue 1970; Becker et al. 1973).
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Although the plasma centrifuge concept was first proposed by Slepian
(1956), a major research effort does not appear to exist in this field in
the United States. There is a significant fesearch program on plasma
centrifuges in the U.5.8.R. (Berezov et al. 1976; Belorusov eﬁ al. 1978),
which is classified. The interest of smaller countries, such as Sweden
{(Bonnevier 1966, 1971; Lehnert 1970, 1973), Japan {Okada et al., 1973),
and Australia (George and Kane 1972; James and Simpson 1974, 1976), in
plasma centrifuges appears to be due to the low cost of this type of
separation device. From the theoretical point of view, the basic mecha-
nism for plasma votation by means of crossed electric and magnetic fields
and Lorentz forces in rarefied and dense plasmas 1s understood qualita-
tively (Anderson et al. 1958; Gordeev 1959, 1961; Kessey 1964; Hanson
and Cchen 1970; Vrba 1971; Witalis 1974; Ban and Sekiguchi 19763 Marlier
1977).

Proposed plasma centrifuges employ either low-density collisionless
plasmas or high-density collision-dominated plaswas as working fluids.
Experimental evidence on isotope separation in plasma centriiuges has
been reported for both cases (Bonnevier 1971; James and Simpson 1974,
1976; Heller and Simon 1974; Berezov et al, 1976). FExact solutions for
collisionless centrifuge plasmas are not known, which require evaluation
of the self-consistent electromagnetic field Interactions (Komarov and
Fadeev 1962; Watson 1956). The disadvantages of collisionless centri-
fuges are relatively large electric power dissipation to produce high
degrees of ionization of the isotope mixture and the small amounts of
isotopes they permit to separata. On the other hand, collisionless
centrifuges have minimum velocity losses at the walls due to the absence

of ordinary hydrodynamic boundary layers. 1In high-density centrifuges,
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only a small fraction of isotope such as cesium with a low ionization
energy) has to be ionized to praduce a partially lonized plasma state.
The Lorentz force dua to the interaction of the current density and
mognetic field sets not only the charged plasma components but also the

neutral plasma components in rotation, which are coupled through the

intercomponent friction forces. The collision-dominated centrifuge
oxceals through relatively low energy dissipation and large isotope
densities. Tha velocity losses accurring in the viscous boundary layers

at the walls are, however, of some disadvantage.
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