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CHAPTER I

INTRODUCTION

The Research Grant NGR-06-002-147 is concerned with the system

analysis of collision-dominated and collisionless plasma centrifuges

and the theory of sputtering and deposition of sputtering products on

surfaces. The period of the grant extended from l November 1976 to

31 October 1977. This is the final report on the research carried

through in this period.

In Chapter 11, an analytical theory is developed describing the

deposition of sputtered atoms on system surfaces which cannot be seen

along straight paths from the emitting surface. The boundary-value

problem describing the diffusion of the sputtered atoms through the

surrounding rarefied electron-ion plasma to the "hidden" system surfaces

is formulated and treated analytically. It is shown that outer boundary-

value problems of this type lead to a Fredholm integral equation. The

latter is solved by the method of successive approximations. A quantum

theory of sputterinL of metal surfaces by low energy ions (1000) has

been developed and submitted for publication. This work will be commun -

icated at a later date.

In Chapters III and IV, centrifuge models employing ring electrodes

of different radii located in the end plates of a cylindrical discharge

chamber, are analyzed which avoid the boundary layers at the inner electrode

cylinder and (probably) the secondary flows and instabilities occurring in the

magnetohydrodynamic flow between concentric cylinders (Chandrasekhar

1961). Complete two-dimensional solutions are derived which show that

the Hall effect enhances plasma rotation (Chapter III) and that the

induced magnetic field does not interfere with the rotation due to the

external magnetic field (Chapter IV). These schemes exhibit velocity

end losses due to the boundary layers in the cathode and anode planes.
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For this reason., an improved centrifuge system is conceived, which

essentially avoids the velocity end losses caused by boundary layers

at the electrode plates (Chapter V). In view of the circumferential
	

i

electrode arrangement, a multidischarge counter-rotating centrifuge can
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be set up in a long insulating cylinder to rotate large volume of isotope

mixtures. In Chapter VI, the theory is applied to the separation of

u238 and U235' 
The difficult problem of compressible plasma centrifuge

analysis is formulated in Chapter VII and solved by means of Lyapunov-

Schmidt series expansions. In Chapter VII, a simple theory for a colli-

sionless plasma centrifuge is formulated based on the coupled Vlasov-

Maxwell equations for the electron and ion components.

A	
f

r^



.:	 i_	 L	 1	 1	 X	 1.	 L	 i	 L .. 8	 L	 l	 1_.	 ! L s	 a	 _	 i	 1	 1

I`` 

A

1
J

CHAPTER II

SOLUTION OF EXTERNAL BOUNDARY-VALUE PROBLEM

FOR DEPOSITION OF SPUTTERING PRODUCTS

In an ideal vacuum, sputtered atoms travel undeflected along straight

paths determined by their initial velocities at the point of emission.

Within this Free particle flow, a system surface is reached by the sputtered

atoms only if it can be seen along a straight line from the emitting sur-

face. In reality, ion propulsion systems are surrounded by a very rarefied

plasma consisting of escaped beam ions, recombined ions, and electrons.

For this reason, always some of the sputtered atoms will be deflected out

of their initial paths by interacting through long-range forces (polariza-

tion forces) with the plasma particles so that they can reach system sur-

faces which are not seen along a straight line from the emitter.

An idealized propulsion system 	 exhibits an emitting plane

z - 0, 0 ,< r < a (accelerating; grid), the rocket surfaces r = a, -c < z < 0

and z = -c, 0 < r < a, and the plane z = -d, a < r < b of the solar energy

collectors. All these system surfaces can be reached by the atoms sputtered

from the emitter by diffusion through the rarefied plasma. The diffusion

coefficient D is determined by the Vlasov equation for the sputtered atoms

interacting through weak long-range forces with the plasma particles. In

view of the mathematical difficulties associated with the solution of

boundary-value problems for this geometry, a somewhat simpler system is

studied here consisting of an emitting plane (z = 0, 0 < r < a), the upper

rocket surface (r = a, -c < z a 0) and the plane (z = -c, a < r < -) of 	
w
y

i .

	

	 the solar energy collectors (Fig. 1). The latter is assumed to have

infinite radial extension.

Ordinary boundary-value problems are defined for a space bounded
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on the "outside" by boundaries, whereas external boundary-value problems

are defined for the space surrounding "inner" boundaries. In terms of

cylindrical coordinates (r,9,z), the space in Fig. 1 consists of the

adjacent regions,

I: 0 < z < -, 0 < r < oo;

II: -c<z <0, a<r<-.

In this case, the "inner" boundaries are formed by the cylindrical wall

(r = a, -c < z < 0) and the circular end-surface (0 < r < a, z = 0) of

a cylinder of radius r = a extending from the plane z = -c to the height

z = 0. On the other hand, the plane z = -c, a < r < - represents an

=axternal boundary of the space 11.

We consider herein the external boundary-value problem for the steady-

state diffusion (Laplace) equation and the space I + II shown in Fig. 1

when the end-surface (0 < r < a, z = 0) of the cylinder emits particles

at a given rate I(r). At the inner, cylindrical boundary (r = a,

-c < z < 0) and the bottom plane (z = -c, a < r < -) the particles are

assumed to be deposited by adsorption or absorption.

Various other transport processes for particles or heat in technical,

physical, and biological systems lead to external boundary-value problems

of this type. We mention as examples i) the emission of particles from

a cylindrical chimney into a gaseous atmosphere, and ii) the injection

of a liquid from a cylindrical probe into a biological medium.

Analytical or numerical solutions of external boundary -value problems

have apparently not been given in the literature. We will demonstrate

that the considered external boundary -value problem can be solved analyt-

ically by means of a Weber transform. In this analytical solution a

matching function ^(r), a < r < - (at the interface of the regions I and

t
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TT}, occurs which is determined by an inhomogeneous Fredholm integral

equation of the first kind. This integral equation is discussed and

transformed into an inhomogeneous Fredholm equation of the second kind,

which is solved by the method of successive approximations.i)
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[an(r,z)/az]z=0 = -I(r)D-1, 0 < r < a

n(r,z)
r=a 

= 0, -c < z < 0
--	 --

P.(r,z)
z=-c 

= 0, a < r < co
— —

and

n(r,z) r 0,	 (r2 + z 2 ) ->

(2)

(3)

(4)

(5)

with

7

BOUNDARY--VALUE PROBLEM

In the space z > -c, let the density of the diffusing particles be

designated by n(r,z) [cm-3 ] and the flux of emitted atoms at the emitter

surface by I(r) [cm-3 -cm sec-1 ]. In steady state, the spatial distri-

bution n = n(r,z) of particles is determined by the external boundary--

value problem for the Laplace equation (rig. 1):

	

2	 2

az +xar +az =°

	

Dr	 az
(1)

n	 jr

y I	 J'

t

1

i	
I

i	 f

`	 f
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i
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as the proper and improper boundary conditions, respectively. D

designates the diffusion coefficient of the particles.

The boundary conditions (3)-(4) imply that particles arriving at

the indicated surfaces are deposited there, i.e., do not return into

the diffusion space. The fluxes (P i = -D V in of partic^es arriving at the

system surfaces r = a, -c < z < 0 and z - -c, a < r < are given by

(rig. 1):

4)r (r = a,z) = -D an(r = a,z)/Dr, 	 -c < z < 0	 (6)

41x (z = -c,r) _ -D Dn(z = -c,r)/Dz, 	 a < r < oo	 (7)

0

r=a - 
-21raD ! [an(r = a,z)/ a r]dz 	 (8)	 i

-c

i
i

^_.

a

r
f

i
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Al	 - -21rD ! [ 3n(r,z - -c)/az]rdr (9)
z=-c a

are the numbers of particles deposited per unit time on the system

surfaces r = a, -c < z < 0 and z = --c, a < r < m , respectively.

The above boundary-value problem cannot be solved directly, i.e.,

requires a decomposition of the space z > -c into appropriate subregions

I and IT for which the associated boundary -value problems are solvable.

In this approach, a common boundary value [O(r)] at the decomposition

plane is determined by an integral equation.

Let dimensionless independent and dependent variables be introduced i

in accordance with:
t^

p= r/a,	 0< P a Go_	 4= z/c,	 -1 << CO	 ,	 (10)

^ and

}

I N(P,)	 n(r,z)/no ,	 S(P) = I (r) / Io (11)

with

} no	 cIo /D,	 Io = I(r--0),	 y	 c /a (12)
}`

i	 f IF	 !

I^
The boundary-valuevaluey-	 problem defined in Eqs.	 (^.)- (5} reads in F^ ^

dimensionless form: s

a_N	 1 aN	 -2 32N+	 + Y = 0
p ap (13)apz 	 a;2

where

(14)

N(p,^= 0,	 -1 < 4 < 0 (15)
E 1
r

N(P,C
)4=-1 _ 0'	

1 < P < (lg)

E

and ' '
ii

	 4
4

N(P , 4)	 0,	 (P2 +	 2 ) -} CO (17)

Fh•^ In Fig. 1, the space is decomposed into the regions

1
i

p

#.t
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a

I(0 < P < m, 0 < C < co) and II (I < p < -, -1 < C < 0) . At the interface

9 = 0, 1 < p < -, the partial aN( p ,C = 0)/a4 = T ( p )H(P-l) is introduced

as the common (unknown) boundary value Y(p) of the adjacent regions I and

II, 1 < p < -. Thus, the boundary -value problem in Eqs. (13)-(17) can

be decomposed into boundary-value problems for the regions I and II.

I. In region I, N =_ NI (p,^) is described by the ordinary boundary-

value problem:

a 
2 
N	 aNa2N

aP 2 + P ap 
+ Y

-2 a

	

= 0,	
0 < P	

CO
, 	 0 <	

< CO	
9	

(18)

DNI (P,0/3d C=0 = -S(P),	 0 < p < 1 - 0	 ,

= T(p),	 1 + 0 < p <	 (19)

NT (P,0 } 0 ,	 (P2 + 4 2 ) -I- I	 (20)

where

s02_1+0) = 0, ;Y( O <l-o) - 0	 (21)

for physical reasons. Since region I is the upper half of the infinite

space (0 < c < -), the general solution of Eqs. (18) and (20) is given

by the Fourier integral,

CONI (P,C) = J A(k)e
-yk4 J0(kp)dk

0

,	 (22)

which satisfies the improper boundary condition for p -} - and C 4 w,

The Fourier amplitude A(k) is determined by the boundary condition (19),

CO

-Y J A(k) J0 (kp) kdk = -S (p)H(l -P) + 'Y(p)H(P-1)	 (23)
0

Application of the inverse Hankel transform to Eq. (23) gives

I
_	

°

1	 _
A(k) = Y	 ! S (a)J (ka) ada - y 1 ! ^Y(a)J (ka) ada 	 (24)

0	 1	 °
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Substitution of Eq. (24) into Eq. (22) results in the solution for

region 1:

NI (p,0 = Y-1
CO	 I	 CO
 
1 dk e Yk^ Jo (kp)[J S(a)J 0 (ka) ada - f Y(a)J0 (ka) ada],
0	 0	 1

	

0 <P <	 0 < C <W	 (25)

II. In region II, N = NII (p,C) is described by the external

boundary-value problem:

2	 2
a N1I + P aNapl + -Y	 a NCI = 0,	 1 < P < a,^	 -1 <	 < 0,	 (26)
8p	 ac

LaNII (P,0/ad; =0 = Y(P),	 1 < p < 00	 ,	 (27)

NII (P,0 P=1 - 0,
	 -1 <	 < 0	 ,	 (28)

NIx(p,^} =-1 - 0,	
1 < P < m	

,	 (29)

NII (P, r.) - 0,	 p -b-	 -1 < 4 < 0	 (30)

According to Eq. (28), region II has an inner, cylindrical boundary

at p = 1 where NII (p,r,) vanishes. For this reason, a Fourier integral

representation of N II (p,^) is needed for 1 < p < - which vanishes at

p = 1. According to Webers integral theorem, an arbitrary function

f(p), a < p < -, with f(P = a, m) = 0 satisfies the integral equation:L D

	

kdk 14v(P)	 -
f (P) _ !	

k	 ! f(a) tdv	
(31)

(a) ada,	 a < p <	 ,
	0 12(ka)+Y2(ka) a	

k

where

Wk(p) E Jv (kp )Yv (ka) -- Jv (ka)Yv (kP)
	

(32)

and Jv (tp) and Yv (kp) are Bessel functions of order v of the first and

second kind, respectively. In view of Eqs. (31)-(32), a Fourier integral

solution of Fqa. (26)-(30) is sought in the form,

I
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00N11 (p ,^) = f B(k)Wk (p ) sinh.[yk(r+Z)Jdk	 (33)
0

^a . (p ) _ JO (kp ) Yc) (k) - Ja (k) Y0 (kP)	 ,	 (34)

which obviously satisfies the boundary conditions (28)-(30). The

Fourier amplitude B(k) is determined by the boundary condition (27),

a,
Y ! 8MIIk Wp coshyk kdk = T(p),	 I < p <	 ,	 (35)

0

which gives

BOO = {YCoshyk- j32 (k.)+Y2 {1;} a)-^ f y (aw ((%) ada	 (36)

by Eq. (31). Substitution of Eq. (36) into Eq. (33) results in the

solution for region II-
r

-1 	 sinhfyk(C+I) ]_	 1'k (P)	 °r°	 ^.
N T1 (P.0 = Y f dk	 coshyk	 2	 2	 J T (a) i+T O ada,

0	 J (k)+Y (k)	 1

	

o	 u

1 < P < m,	 --1 <	 < 0	 (37)

The solutions N I (p,g), Eq. (25), and N ll (o,^) Eq. (37), contain

the yet unknown Boundary-value T(a), 2 < a < -. T(a) is determined

by the continuity condition at the interface of regions I andd YT,

N1 (P,0 r=0 ' I3I10,0 =0 9 	 l < P < °°	 ,	 (38)

which gives

^	 l
f dk J^^ (kp) [ f S (a.)-J (km) ada - 1 Y(a)j 0  (ka) ada]

= fdk tgbyk	 !^Y(a)W (a) ada,	 l < P < M.	 (39)
0	 .10 (k)+Ya M 1	 k

Eq. (39) indicates that Y(a) is determined by an inhomogeneous integral

equation.—

ti

r'

t

r
1 f,
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Because of the boundary conditions (19) and (27), the remaining

continuity condition: at the interface of regions I and II,

ONI (P ' 0/ a Q 4=0 = [9X'Ij (P ' o/as1^=0 S 	 < P < m	 ,	 (40)

has already been sati fed. Indeed, substitution of Eqs. (25) and (37)

into Eq. (40) yields

CO	 1	 CO

-f kdk Jo (kp) l f s (a) J0 (ka) ada - 1T (a) J0 (kc:) adaj

CO	 W (P)
= f kdk	

k	
f Y(a)W(a) ada,	 1 < p < ^.	 (41)

0	 J2(k)+Y2(k)1	
k

By means of the Hankel and Weber integral representations for the Dirac

function S(a-p),

CO

f J 0 (kp)J0 (ka) kdk = S(a-p) /a

f 
Wk(P)Wk(a)

kdk = S(a-p) /a
0 Jo (k)+Yo (k)

Eq. (41) is reduced to

1	 CO
- f s (a) S (a--P) da + f'Y (a) S (a--p) da

0	 1

ca= f T (a) S (a-P) da,	 1< P < CO

1

Eq. (44) gives the expected identity, T(p) = T(p), since the first

integral vanishes by Eq. (21).

(42)

(43)

(44) '.I

rp

l

o	 '

6

I
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INTEGRAL EQUATION

By introducing the kernel K(a,p) and the source Q(p), the integral

equation in Eq. (39) can be revT itten in the convenient form:

0o

ft(a)K(a, p ) ada = Q(P),	 1 < p <	 (45)
1

where
co	 W	 W Ww ' (P)

K (a, p ) E f3 (k(x)3 (kp)dk + f tghyk 	 dk	 ,	 (46)
0 0	 0	 0	 12 (k)+Y2 (k)

W	 1

	

Q (p ) = f dk Jo (kp) f S (a) J0 (ka) ada	 -	 (47)
0	 0-

For simple particle emission distributions S(a), e.g., in the case of

a homogeneous and a parabolic emission distributions, respectively, the

source integral Q(p) is readily evaluated,

Q(p ) _ ^ p [E(-)  - (1 2)K(I)),	 1 < p
A

for S(a) = 1,	 0 < a < 1	 ,	 (48)

and

Q(p ) = 9-P [(4-^ 2p2 )E(p)-(1- 2)(3-2p)h(}j
A

fsr S (a) = l -a2 ,	 0 < a < 1	 (49)

K(1 and E(p) are the complete elliptic integrals of the first and

	

second kind, respectively [K(1) 	 E(1) = 11.A) Eq. (45) reduces

the external boundary-value problem to the resolution of an inhomogeneous

Fredholm integral equation of the first kind for the unknown boundary-

value Y(p), 1 < p <

Comparison of the integrals in Eq. (46) with Eqs. (42)-(43)

.	 indicates that the kernel K(a,.p) is the sum of two integral functional:,

A
i

f

1

y,

i
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which are singular at a = p, similar to the Dirac function. * It follows

that the solution of the integral equation (45) is Y (p) = 'Y O (P) = 2 Q(P)

in the lowest approx1mation. By means of Eqs. (42)-(43), we transform

Eq. (45) into the Eredliolm integral equation of the second kind:')

IF(P) = Q(p ) + 2
CO

 
f Y(a) K(a, p) da,	 1 < P < W ,	 (50)

1

where

IJk(a)Wk(P)
K(Q, P) = MfJ (ka)J (kp)(k-1)dk + a f	 (k-tghyk) dk , (51)

0 °	 °	 0 Ja (k)+Ya (k)

Q(P)	 Q(P)
	

(52)

It is seen that the parameter of the integral equation (50) is 71 = 1/2-

The kernel f:(a,p) in Eq. (51) consists of two integrals, each of which

is the difference of two integral functionals which go to - for a -^ p.

Eq. (50) is solved by the method of successive approximations which

gives:')

Y(P) = lira Yn (P) ,	 I < P < CO	 (53)
n-^

where

YO (P) - Q(P)

Y'1 (A) = Y'° (p ) + (2) 1 1 Q(aIWal,p)da1
I

The singular behavior of K(a,P) is demonstrated by evaluating the

integrals in Eq. (46), e.g.,

cc	

-1fj0 (km)J0 (kp)dk = (2/n)PK(ah),	 0 < a < P <
4	 0	 ti.

_ (2/n)a 1K(P/a) ,	 0 < P < a < CO	 9t

where

K(1) - m	 .

,.t

ti.

f

I	 ,

i

i

i.

{

i
r



15

T2 (P) = TI (P) + (^)2
ca CO

 f d Q(a2)K(a2,aIMalgp)da2dai
1 1

03

Yn (P) = `fin-1 (P) + Tin
f ... 

fQ(an)K(an'an-
1 	,) ...K (a2 1 aI ) K (al P)dan ...da1 .

(54)

Combining of Eqs. (53) and (54) yields the solution of the nth

approximation in the form:

n

T (P)	 E ui (P),	 n= D,3,2,... m	 I< P< m	 ,
i=4

where

u0(P) = Q(P)	 x

ul (P) = (2)l 
:t
Ipka I M al,P)da1

u2 (P) _ (2) 2 f f Q(a2)K(a9,al)K(al,p)da9daI
1 1

u (P) = () n f ... f Q(a )K(a ,a 	 )...K(a ,a )K(a ,P)da ., da	 . (56)n	 2	
1	

I	 n	 n n--1	 2 1	 1	 n	 1

It is readily shown that the Neumann series in Eq. (55) converges

to IP(p) in the limit n -} w.1) It should be noted that Y(1+0) is not

necessarily 5(1-0) in any approximation n, i.e. 3N(p,0)/3r, may be dis-

continuous at p= 1. With T(p) given by Eqs. (55)-(56), the particle ^

density fields NT (p,g) and NiT (p,^) are given by Eqs. (25) and (37),

respectively. Thus, we complete the analytical solution of the exte;.rnal

boundary-value problem under consideration.

(55)

i

i t

i

i
i
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CHAPTER III

PLASMA ROTATION BY LORENTZ FORCES

IN A DIVERGING PLASMA CENTRIFUGE WITH HALL EFFECT

In this chapter, a system analysis for a collision-dominated

1 If

plasma centrifuge is presented in which the plasma rotates under the

influence of the Lorentz forces due to the interaction of a spatially

diverging current density field with an axial external magnetic field.

The associated boundary- -value problem for the coupled partial differ-

ential equations, which describe the electric potential and the plasma

^	 LP velocity fields, is solved in. closed form. The electric field, current

density, and velocity distributions are discussed in terms of the

Hartmann number H and the Hall coefficient 43T. As a result of the

]Lorentz forces,9 the plasma rotates with speeds as high as 10
4
 m/sec

around its axis of symmetry at sufficiently large values of H and wT.

It is remarkable that the Hall effect supports the plasma rotation.

3.1. Model of Diverging 'Plasma Centrifuge

An electrical discharge in a cylindrical container rotates if the

Lorentz force has a nonvanishing component in the azimuthal direction.

For example, are experiments in an axial external magnetic field B 

indicate that the discharge plasma rotates (Schwenn 1970; Vedenov et al.

1961) since the current field lines J have a nonvanishing radial.

component Jr so that (J x B) S = - JrBx ^ 0. In a stable arc discharge,



18

the r- component is caused by the concentration of field lines (J) at

the electrodes and a dilatation (repulsion of currents in the same

direction) of the field lines J in the interelectrode space.

A theoretical model for the production of a high-density plasma

centrifuge, which has a radial current density Jr which is in magnitude

comparable with the axial current density Jz , is shown in Figure 3.1.

The radial spreading of the current field lines I is forced by means of

electrodes of considerably different radii R^ and R (R^ » R ) in the

end plates z = is of an electrically isolating centrifuge chamber of

radius Ro . The field lineq of the current density .1 and of the external

axial magnetic field Bo cross under a nonvanishing angle (except at the

chamber axis) so that the resultant Lorentz force x BD rotates

charged particles around its axis of symmetry. In the steady state,

the magnetic body farces in the azimuthal direction are balanced by the

viscous forces (boundary layers at the chamber walls). As opposed to

the centrifuge with radial electric current flow between an inner and

outer cylinder electrode, the centrifuge scheme in Figure 3.1 avoids

the boundary layer and losses at the inner cylinder surface.

In the following, the steady-state rotation of the spatially

diverging plasma contained by an insulating cylinder in the external

axial magnetic field Bo (Fig. 3.1) is treated theoretically. The

analysis is based on the magnetogasdynamic approximation, in which two

characteristic dimensionless parameters occur, the Hartman number H

and the Hall coefficient w-r. The magnetic fields associated with the

discharge currents J - (Jr , J8 , Jx} are neglected for small magnetic

Reynolds numbers [a ., = o /(I+jI7 2-)],
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R,r R O [Bx /Bo ] = powza1Vo « 1
F
i
i

1
R8 - O[Bg/Bol = 1pol/2nR0I/B0 << 1	 (3.1)	 -

j

it

a - O[Ba/Bob = V ToiVoRo << l
j

where 
a 

is the characteristic velocity of rotation and x the discharge

current. These inequalities are satisfied in many cases, e.g., if

R6 << l for i) WT >> I and R < l or ii) R « I. and 0 < WT < -, where

R = poav max (R ;a).

3.2. Boundary-value Problem for Velocity and Electric Potential

For a purely azimuthal flow field V = (0, V 8 (r,z), 01, the plasma

behaves incompressible, V • V" = 0. From the continuity equation (2.2)

for the steady state, 0 • (ppV) = V - VpP = 0, it follows then that the

density gradient Vpp is everywhere perpendicular to the flow field V.

These ideal conditions are realized if secondary flows are absent or at

least negligible (5chli.chting 1960). In accordance with the steady-state

magnetogasdynamic equations [Eqs. (2.1), (2.7) and (2.8)j, the rotating

plasma in a homogeneous magnetic field So (Fig. 3.1) is described by

the following boundary-value problem for the azimuthal velocity V8(r,z)

and electric potential. O(r,z) fields [induced magnetic fields neglected,

yy

Eq. (3.1)1i

82V	 a Bi
ar [p r(rV$) l +	 _	 ° (-	

+ V0110) 	
(3.2)

ez2 - u	 8r  

l e (r 8rb) +__	82
^ 

T B 
18 (r V} ,	 (3.3)

r er	 88	 aL 
8z2 	

o r ar	 6
1
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where

V0 (r,x) TR	- 0 , -c < z < + c, (3.4)
i

o

V (r,z)y=-ic. "" 0 , 0 < r < R (3.5)

and

;a^(r,z)/ar]r- 0	 -c < z < + e, (3.6)
=R

o

aj3c(r,z) /azj z = I S(r - R+)/21rr , 0 < r < Ro .	 (3.7)-±c i

The boundary conditions (3.4), (3.5) and (3.6) consider that the plasma

does not slip at the walls r = R	 and z = i-c, and that no current flows s
a 3

into the cylinder wall r = Ro , respectively.	 The
I

boundary conditions

in Equation (3.7) imply that the cathode (R ) and anode (R+) are ring

electrodes of vanishing radial width, dr -} 0 [6(r  -- R+) /27rr = radial

Dirac function].	 The net current flowing through the centrifuge is by
e

Equation (3.7).

-2na ^0 c 
a0(razz=±c)- 

rdr = f6(r-R+) dr = I < 0	 (3. 0)
i

0

since the positive current (I < 0) flows from thesince anode to the cathode

(Fig. 3.1).	 The pressure distribution P = P(r,z) is determined by the

r- and z-components of the equation of motion,
i

-P= --	 ' mz oy Bo (- ar + V$Bc) 4 (3.9a)
P r

-	 JB	 -JB	 -}0	 B	 -+0.
az	 r 9	 6 r	 r,6

(3.9b) ^=	 5
f

According to Equation (3.9b), it is aP/az = 0 if the induced fields Br

and Bg are neglected [Eq. (3.1)]. 	 This means that momentum cannot be

5
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exactly balanced in the axial direction if induced magnetic fields are

neglected (in absence of secondary flows). Equation (3.9b) is in

accord with the boundary-layer approximation according to which the

normal pressure gradient is 8F/3z = 0 at the electrode plates z = ±c,

0 < r < R .
0

In the absence of the Hall effect, WT << 1, it is V X B = p0

(J
r
, 0, Jz). Hence, Br = 0 and Bz = 0 because of the homogeneity of

the boundary conditions for Br and Bz , whereas Ba # 0 since 
Jr z #

0 [Be (r, z=i-c) = (uol/27rr) H(r-R.,X . Consideration of the induced field

B = 10, Be , 01 leaves Equations (3.2) and (3.3) unchanged. This means

that the boundary value problem in Equations (3.2)-(3.7) and the

solutions Va (r,z) and ^(r,z) derived from it remain valid even in

presence of a significant induced field B = (0, B e , 01 2 Re 2 1, as long

as the Hall effects is negligible, wT << 1 (Chapter IV).

1	 .4	 7

3.3. Fourier-Bessel and Dini Series Solutions

The characteristic dimensionless parameters of the magnetogas-

dynamic centrifuge problem under consideration are obtained by

7

p = r/R	 0 < p < 1,	 (3.10)o	 —

= z/c , -1	 < 1,	 (3.11)

and	
i

V (p ,C) = V®(r,z)/Vo, O(p ,C) _ O(r,z)/Oa 	(3.12)

where	 a

Vo = Io /RQBo , ^Q Ic/2iraRQ	 (3. 13)
i

Antorducing the dimensionless independent and dependent variables,

9

i



P8P 
(p

 alp + 
DI 2 a22 = A ap (P9)

a^

where

(3.15)

y a

d

23

In terms of the dimensionless space variables and fields, the

boundary--value problem defined in Equations (3.2)-(3.7) assumes for

V(p,^) and 0 (p,z) the form:

2a ^I a (PV) 3+ N-2 a v— H V= —H M
aP P dP	 BC2	 J	 1 up !

(3.14)

V(P ];) P_I -- 0, -1 < 4 < + 1 ,

V(P]0;_+1 - 0, 0 < P < 1 ,

1a'(PIO AP]P=1 - 0 , -1 < C < 1 ,

-[a1r(P] }1 3^^^^ l1 	 a (P-P ^)^r^	 0	 P r 1 >

a

and

(3.16)

(3.x.7)

(3.18)

(3,7.9)

with P 	 R /Ro . The dimensionless constants M, N, and H are defined	 #

A	
i

by

M = (1 + w2T2)
- 

(cj o), N = c/Ro

(3.20)

H M (a /u) 'B R = H/(I+m2r2)	
F

a

In view of the similarity of the left sides of Equations (3.14)

and (3 .15) with Bessel 's differential equation, Z" + P 1Z^ f

(k2 - P m-22)Zm = 0, for cylinder functions Z mNO , partial solutions 	 f
u

of the coupled inhomogeneous equations are sought in the form,

%(P") S Jl(knP)fn(;)	 (3.21) 

^n(P,C)	 JO ( RP) gn (^)	 (3.22)

Li LILL=

I
{

Y

y
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ZA

where JQ (knp) - -J1 ( gp) 	 and J' (knA) + ( n0 -1
 Jl (knp) = JO (k 1p ) .

Substitution of Equations (3.21) and (3.22) into Equations (3.14) and

(3.15) yi.eads

f -- (kn + H^) N2fn = knHiN2gn 	 (3.23)

gn - k2 t? gn = kn rig fn 9	 (3.24)

where the eigen-values kn > 0 are determined by the boundary conditions

(3.16) and (3.18) as the real roots of the transcendental equation

Ji(kn) = 0 , Ti = 1 9 2,3,....	 (3.25)

Thus, the general solution of the coupled equations (3.14) and (3.15)

obtains by linear superposition as

CO
v(p,U = E JI(knp )fn(O	 (3.26)

n=1

0(p ,;) = -29 + E J0(knp) gn(r.)	 (3.27)
nWl

In view of Equation (3.25), Equation (3.26) is a Fourier--Bessel series,

whereas Equation (3.27) is a Fourier-Dini series in which a zero-order

term, -2^ has to be included, in accordance with the Fourier-Dini

expansion [Eq. (3.32)] of the boundary value in Equation (3.19). By 	 6<^

decoupling Equations (3.23) and (3.24) one finds for fn (4) and

the differential equations of 4th order,

A	
1

f"" - [k2 (M2 + N2 ) + N2H2 ]f" + k M N2 f a 0 ,	 (3.28)n	 n	 1 n	 n	 n
iSuer - 

[k2 (M2 + N2) + 
N2H2]g,ti + k

4M2N2 g = 0 ,	 (3.29)
n	 n	 i n	 n	 n

^`	 1

T

i

r.

r

I	 -
a	 -

i
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with

fn(0) =±l 0 9	 (3.30)

	2 Jo( nP+;/J6(kn}	 (3 .31)

as boundary conditions by Equations (3.17) and (3.19) . In deriving

Equation (3.31), the Dirac function 3n Equation (3.19) has been

_._.._ __----..__eiTanded as the Fourier-Din.i series,

CO

d (P - P +) /P = 2 + 2 E [JO ( ,.P!:) /J' (k n} ] Jo ( np) •	 (3.32)
U7-1

In addition to Equations (3.28)-(3.31), f n(^) and gn(i;) have to satisfy

also the coupled Equations (3.23) and (3.24). With

win = wn ' W2n _ wn ' w3n ' '+ won _ -n '	 (3.33)

,where.	
-

w	 2 ( [k( +
2

t^) + N' 112]i { [k(1^ +) + N
2 

HZ ] 2
-	 1.	 1

4k4I-?N2) }	 ,	 (3.34)

	

+	 +

the general solutions for fn(^) a e a and gn(0- e 'a 	 Equations

(3.28) and (3.29), can be written as

sinh w+^	 cosh r +^n + $+	 n
aC) 

n sinh w+	 n cosh c+n	 n	 (3.35)

_ sinh w-4;	 cosh m-4
+A	 n' +S 	 n ,

n sinh wn	 'a 	 w

r

i

k
F
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a

sinh wn	 + cosh w^

a

- C+	
+ 

Dnga(4)	 n sinh w+	 cosh w+n	 n

(3.36)

Binh w4	 cosh w-c
n	 n+ C-	+ D-

n' sinh w
_
	 n cosh w-n	 n

Only four of the eight integration constants n,..., Dn for any n > i

are independent; by Equations (3.23) and '(3.24),
^	

22

.

n	 n	 n	 n	 n
(3.37)	 -

j (11W) 2 - k M2] D- = k D?B-
n	 n	 n	 a	 it

k	 and
x• '

[(w) 2 - tk2 +)N2]A = k N2H2C
i.

n	 n	 n	 n	 in

(3.38)	 .

L (to 2 - (kn + H ) N ] B± = knN2H D'

LL

where the coefficient determinants of the pairs of corresponding

_	 equations in.Equations (3.37) and (3.38) Vanish owing to Equations	 (3.33)	 i.t.

and (? 34) .

Upon application of the four relations in Equation (3.38), which

'are equivalent to Equation (3.37) by E quations (3.33) and (3.34), and

the boundary conditions (3.30), which give

s

t'

'	 -

7z +At	 A	 -B	 +B	 B-i,	 -
^t

(3.3 5t)
n	 A	 n
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Equations (3.35) and (3.36) become

sinh wng sinh wn

n sinh w+ 	sinh w
a	 n

(3.40)

cosh wn4 cosh w-^
..__^.

+ Bn cosh w+ cash w-
n	 n

A	 sinh w+^	 _ sinh w-

gn	 k N H	 sinh w	 sinh w-

	

1	 n	 n
(3.41)

B	 cash w+^	 _ cosh W- 1;

'+ n

	

+	
n - SZ	

a

k N^2 n + ncosh w	 cosh w
_

U A	 n	 n

Where

Stn	 (wn) 2 -- (kn + H2) IT	 (3.42)i
The boundary conditions (3.31) applied to Equation (3.41) yield

z

	

kn2Hi	 .1 {knP-} + JO(knP+)

n - - 2	 ^- +	 +	 - -	 --	 9	 (3. 43)
J0(kn} 

n 
Stn cthwn - wn itn cthwn

kn H2
2

JQ{ nP - JO ( p+)

Bn 
+ 12

 
(kn) wn+ Stn tgh n - wn	 Stn thhwn

(3.44)

i

^I
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4

k	 _

, Substitution of Equations (3.43) and (3.44) into Equations (3.40)and

(3.41) gives as solutions for fn(4) and gn(4):
G 

w+^ w+^sinh32
 ( n)	 JQ(knp_)+JQ(k 	

sinh
np+) 	 n	 n

z^	 2 2 - ++	 + - -	 -	 +kaN H	 c^U n cghwn -wnSIn cthwn 	sinh wn	 sinh w41

J0 (k 1p_)-J0 (k ^p+)	 cash m$4 co sh wn4

} w +d' tghw+ - w-$1 tgh% cosh w+ - cosh w-nu	 n nn	 n	 n	 n

(3.45)

	

J (k p )+J (k p)	 sink w+C	 sink w, C

g ") J2(k) =-	
Q n- Q n+	 ^+	 n _ n-	 n

n	 Q n	 co	 cthw+ -- w-9 cthw	 n	 +	 nnn	
sinh wSQn 	sixth w-

U.	 nn	 n	 n	 n

+	 J0{kip_)-JQ (knp+)	 n+ cosh wn - ^- cash wn^

w+n tghw+ - w..n_ tghw	 n cosh w+	 n cosh wnn	 n nn	 ri	 n	 n

(3.46)

Equations (3.45) and (3.46) form, together with Equations (3.26) and

(3.27), the closed form: solution of the problem of the plasma

centrifuge in an axial magnetic field $O:
- k ,l (k p)	 J (k P )-F,1 (k p )V(p 
	

-N2,,2 
E 

ri I n.	 Q n- Q n+	 X
J n-i J2 (k n)	 w+a+ cthwn - w- n cthw- 	°^ A

sinh wn^ sinh to

Binh w	 sinh wn	 n

JQ (k ip_)-JQ (k 
U

p})	 cosh n9 cZNh tin

WY t	 - w-Q- t	 h w-ghwn	 n n g
hw 
n 

cash 
wn	

co s n

HE
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and

JO NP)10(kap-)+JO(kap+)
§(p ,^) - -2c	 E 2	 + +	 +	 x

n=1 JO (kn)	 wri n cthw w1 Q- cthwn

i	 + sinh w+C	 Binh wn4

n Binh w+	 n Binh wn	 n

JO (k np-) --10 (k 
1-1 

p +)	 cosh J	 cosh wnC

	

_	 ( U	 - 92~ 	-
wnSZ tghwn - 

wn 
n tghw n 1 

n 
cosh w	 n cosh wn

(3.48)

The remaining dimensionless centrifuge fields E = - VOIE0 and J 'J/J0

are given in terms of the solutions for O(p,^) and V(p,4):

E  = - HAP , Ee = 0 7 E4 = ..^ Za^Ia^ ,	 (3.49)

1	 alb	 wT	 34) 1 a^
Jp = 1--	 (-^p+V), Je = 1--^4 ap + v), J^	 N

(3.50)

where E  = 
0

/R0 and Jo at0 /R0 [Eq. (3.13)].

If the cathode is in the plane z = -c(^ = -1) and the anode is in

the plane z = +c(^ = +1), then the reference fields 
o 

and 10 [Eq. (3.7.3)]

are negative, since I < 0. The results are also applicable to the case

:.

	

	 where the anode is in the plane z = --c(t = -1) and the cathode is in the

plane z = +c(4 + +1). In the latter situation, the reference fields Vo

"

	

	 and 0 are positive, since I > 0. These explanations hold for magnetic

fields pointing in the positive z-direction, S > 0; V changes its
a	 o	 o 

sign if Su < 0 [Eq. (3.13)].
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3.4. Numerical Illustrations and Results

As an illustration the radial (p) dependence of the dimensionless

centrifuge fields V(p,4), 41010 1 EP (p , g), E
r,
(P.4), and JP (p, 4) has

been calculated for I < 0 in the cross-sectional planes C = -0.99

(cathode region), 4 = 0 (central region), and _ +0.99 (anode region)

based on Equations (3.47) (3.50). The remaining fields J0 (p,4) and

14 (p,^) are proportional ito JP (p,^) and E^(p,C), respectively

[Eq. (3.50)]. The characteristic dimensionless magnetic interaction

numbers are treated as parameters:

wT = 1, 10; H = 1, 10, 100.

The geometry parameter N is taken to be N = l so that M = (1 + w2T2
)-k

corresponding to o = c [Eq. (3.20)]. The radial. positions of the

cathode and anode are assumed to be

p_ = 0.01 (R = 0.01 RQ) ; p^ = 0.9 (R+ = 0.9 Ro).

The dimensional fields are negative everywhere where the dimensionless

fields are positive, and vice--versa [Eq. (3.12)] since o < 0 and

©< 0 for I < 0 [Eq. (3.13) ] .

i) Centta Req.ton, 4 = 0: In the Figures 3.2-3.6, the azimuthal

velocity field V(p,0), the electric potential O(p,0), the radial and

axial electric fields E P (p,0) and E4(p,0)=Jr.(p,0), and the radial current

density JP (p,0) are represented versus p, with (wT,H) = (l,l), (1,10),

(1,100), (10,1), (10,10), (10,100) as parameters. It is seen that IVI

increases considerably at any point 0 < p < 1 if either H or wT are

increased. in the region p ;t 0 sufficiently close to the axis, 10,

JEP1, N ._ 2N-1 1, and JJP I increase with increasing H or wr. The field

distributions move towards the axis p = 0 as wT becomes larger. The

t

:i

j

r

t	 ^	 :

i^
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Fig. 3.2. V(p,;) versus p for ^ = 0, and (WT,H) = (I,1) to (10,100).
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Fig. 3.4. Ep (p,C) versus p for 4 = 0, and (wY,H) = (1,1) to (10,100).
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"hump" developing at p = 0.9 (Figs. 3.4-3.6) with increasing CaT shown

the influence of the ring, anode (p - 0.9, t = +1) in the plane r, = 0.

ii) Cathode R gton, 4 = -0.99: The Figures 3.7--3.21 show

v{P s -0.99) 7 W (P l, -0.99) , EP (P q -0.99) , E4(P, -0.99) aJ
r.
(a, --0.99) , and

3p (p, -0.99) versus p with (wz,H) = {1,I),...(IO,1QQ) ar, parameters.

These fields increase in intensity at any point 0 < p < 1 if H or mT

is increased. Since the ring cathode is at p = 0.01 (4 = -1), the

field distributions are closer concentrated at the axis p = 0 than those

in the plane 4 - 0 (Figs. 3.2-3.6). Nate that the plasma rotates only

in the region p m 0.1 with a significant velocity, since the Lorentz

force -JPB0 decreases rapidly with increasing p -*, 1. A comparison of

the corresponding fields in Figures 3.2-3.6 and Figures 3.7-3.11

indicates that the discharge spreads slightly an radial direction with

increasing -1 < 9 < 0. In particular, an increasing radial section of

the plasma rotates with a significant speed as -1 < ^ < 0 increases.

iii) Anode Region, r. = +0.99: In the Figures 3.12-•3.16 ,

V(Pa +0.99), ^(P, +0.99), Ep (p, +0.99), 
Er.
	 +0.99)-J^(p, +0.99), and

3P (p, -1-0.99) are plotted versus p with (WT,H) = (1,1) , ... (1.0,100) as

parameters. The dependence of these fields on H and UT is as in the

previous cases for C - 0 and a -0.99. The velocity distributions are

fully developed nearly through the entire chamber across section

0 < p s 0.9, since the Lorentz force -J p is strongest in the vicinity

p = 0.9 of the ring anode, p^ - 0.9(t - +1). As a result, a thin and

steep boundary layer exists close to the cylinder wall (p = 1) with

backflows at sufficiently small wz-values (Fig. 3.12). The radial

distributions of 4P, Ep , E4=J
4; 

and Jp (Figs. 3.13-3.16) clearly indicate
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38,

1	 'i

(D + 2t

1500

1200

900

60C

50C

c

CD+ 2^
500

200

100

0.2	 0.4	 0.6

c

0

Fig. 3.8. 0 (p. ^) versus P for 	 -0 .99, and (wT,H)	 to (10 , 100)



3 x10
4

_x104
X104

Lfi^ #1	
0

G .
r	 ,

4x10
3

3 x103

2 x103

1 x103

00
0.2	 0.4	 0.6	 0.8	 1.0 p



n	 4U

8 000

6000

4 000

2000

0.2	 0.4	 0.6	 0.8	 1 .0 p

Fig. 3.10. E
I;
(p,C) verses p for ^ - -0.99, and (a►r,H) = (1,I) to (10,100) .



0.2	 0.4	 0.6	 0.6	 1.0 p

2000

1500

1000

500

_0

41

L\L	 I ALI L- I	 TLI,

Fig. 3.11. J'p (p,^) versus p for y = -0.99, and (wT,H) = (1,1) to (10,100).

i



42

0.2	 0.4 	 0.6	 0.8	 1 .0 p

I A	 1

8 0

60

40

20

0
v

- 0.3

-0.2

-0.1

0^
v

-0.05

-0.02

-0.0 1

0-
0

l	 Fig. 3.12. V(A,^) vaxsus A for	 40.99, and (wz,H) - (I,I) to (10,100).

I



0.2	 0.4	 0.6	 0.8	 1.0 p

-2t

0

Fig. 3.13. $(p,^) versus p for 9 = +0.99, and (wT,H) = (1,1) to (10,100).



gyp)

(10,100) .

C

1

t

44

1



45

9
E^-

10

8

6

4

2

jo)
0)

0	 0.2	 0.4	 0.6	 0.8	 1.0 p

Fig. 3.15. E (p,C) versus p for c +0.99, and (wT,H)	 (1,I) to (10,100).



0.2	 0.4	 0.6	 0.8	 1.0 p

-10

jp

40

30

20

10

0

46



47

that, in the plane C = -0.99, the electrical discharge has shifted to

the region p = 0.9 due to the influence of the nearby ring anode,

P+ = 0.9(^ _ +1). This shift occurs first slowly in the region

< +l - A^, and then rapidly in a relatively thin layer AC << 1

close to the anode; plane 	 +1.

It is remarkable that the discharge remains concentrated in a

radial region close to the cylinder axis with little radial spreading

of the current density J, except in a layer 6r, close to the ring

electrode of large radius (R+ >> R) in which the radial current

component 3p dominates the axial current component J 	 This spatial

concentration of the discharge is the more pronounced the larger H and

tar. The speed of plasma rotation V(p,;) increases with increasing

magnetic induction Bo by orders of magnitude over the reference speed

V as the Figures 3.2, 3.7 and 3.12 indicate which show V(p,;) for

increasing w-r and H. The theoretical electric field and current

density distributions are in qualitative agreement with experiments

(Schwenn 1970).

The graphs in Figures 3.2--3.16 are based on the Fourier--series

solutions, in which the first 100 terms were considered and the eigen-

values knwere calculated up to the 10th decimal point. An even larger

number of terms in the Fourier series solutions has to be taken into

account if one wishes to compute (approximately) the centrifuge fields

{

;i
1

i

E

s-	 -

t

`i

C	 i	 -

s	 -

f..

^F

E

extremely close to the ring cathode (p = 0.01, _ -1) and ring anode-.	 i

(Q+ = 0.9, = +1) where 8D(p,;)Ja; changes discontinuously with p

due to the electrode boundary conditions. The Fourier-series represen-

tation may be highly unreliable for precise numerical work in the 	
r

vicinity of a discontinuity due to Gibbs phenomenon, i.e., the overshoot
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at a discontinuity. The Gibbs phenomenon could be suppressed

drastically by the use of Lancxos convergence factors, which also

accelerate convergence and are used as a means of data smoothing.

The system analysis presented Indicates that extremely high

speeds of plasma rotation are obtainable already at moderate discharge

currents 1 and magnetic inductions Bo, presuming the magnetic inter-

action numbers are not small, R > 1, wz > 1. As an example, consider

a plasma centrifuge with

III = 102 amp , I Bo 1 = 100 Tesla,

a = 102 mho/m , Ro = c = 10 m.

Hence, by Equation (3.13)

o = Ic/2naBoR3 = (5/w) x 101 m/sec,

and, by Figure 3.2,

0(V0 ] = 0[ 0V] = 104 m/sec , for wT = 10, H = 100.

Speeds of plasma rotation V g , which are by orders of magnitude larger

than 104 m/sec, can he produced if the order of magnitude of the

parameters m-e and H is increased. The viscous forces reduce, however,

the speed of plasma rotation always in the layers close to the walls

(z = i c; r Ro)

f.	 4 O
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CHAPTER IV

EFFECT OF INDUCED MAGNETIC FIELD ON DIVERGING PLASMA CENTRIFUGE

AT ARBITRARY MAGNETIC REYNOLDS NUMBERS

This chapter deals with the boundary-value problem for the partial

differential equations, which describe the (azimuthal) rotation velocity

and induced magnetic fields in the diverging plasma centrifuge with ring

electrodes of different radii and an external, axial magnetic field.

The closed--form solutions of the Fourier-Bessel series are obtained

based on the magnetogasdynamic approximation for dense isotope plasma

with negligible Hall effect. The electric field, current density, and

velocity distributions are discussed in terms of the Hartmann number H

and the magnetic Reynolds number R. For small Hall-coefficients,

wT << 1, the induced magnetic field does not affect the plasma rotation.

The rotating plasma with speeds as high as 10 3 m/sec is obtainable at

typical conditions that can be realized in the practical application to

the isotope separation.

4.1. Boundary-value Problem for Velocity and Induced Magnetic Field

The plasma centrifuge model under consideration is the same as

depicted schematically in Figure 3.1 of Chapter III. The plasma is

sustained by a discharge current I, which enters the centrifuge chamber

of radius 
o through a ring anode of radius R+ in the anode plane

^. N.
_C3

W

A



2
Ve	 aP

-Ap r _ W ar _ ^zBe ^

aB

r Tr (rBe )	 0Jz , -- 
8ze

where

0 = az
aP

+ Jr Be9	 (4.1)

!^

.r	
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z - +c and leaves it through a ring cathode of radius R in the cathode
-91

plane z = -c. Accordingly, 27r
J 

R° z(r,z) rdr = 1 Ro 6 (r-R4.) dr = 1
o

for the axial current density Jz in any plane -c < z < +c. The external

magnetic field is axial and homogeneous ^ = 10, 0, Bo}. 1ii view of the

symmetry of the system with respect to the axis r = 0, the plasma flow

field is azimuthal, ^ = W, Ve (r,z), 01, so that V • V = 0, i.e., the

plasma behaves incompressible. For negligible Hall-effect (WT «1),
4.

Je = 0 and V x B = uo{Jr , 0, 1Z I• in accordance with Maxwell's equation

for the magnetic induction B. Hence, Br = 0 and Bz = 0 because of the

homogeneous boundary conditions for Br and Bz . However, Be (r,z) ^ 01

since

B8 (r 'z)r=R = poI127rR0 , -c < z < +c
a

r
1 a [rB (r,z)I = u 1 6 (r-R )/2wr , 0< r< R
8r 8 z=-̂ ^^ o ± — — o

Since the induced magnetic field (Be) is azimuthal, the induced

electric field (Er) is due to the rotation (V0) of the plasma across

the external magnetic field (B ). The pressure distribution P(r,z) in

the rotating plasma is determined by the r- and z-components of the

ma.gnetogasdynamic equation of motion [Eq. (2.1)],

The current density, B(r,z), and pressure, P(r,z), fields are 	 4"

readily determined from the magnetic field B = [0, Be , Bo ) and the
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velocity field V = 10, Ve , 01, whereas the electric field is given by

Ohm's law, E _ - V x + J/a. In accordance with the equation of motion,

Maxwell's equations and Ohm's law (Section 2.1), the plasma in the

centrifuge with homogeneous magnetic field B 0 (Fig. 3.1) is described

by the boundary-value problem for azimuthal velocity V6 (r,z) and

azimuthal induction Be (r,z) fields:

a 1 a	 a2v	 Bo 9B 
ar

	

	 (rV	 +	
-	

(4.3)[r Br	 6) ]	
az2	 - 4110 az ' 

a2B	 aV
a [J. a (r ) I +	 a = - P aB	 $	 (4.4)ar r ar	 a	 az2	 0 o az s

where

v8(r'z)r=R = 0, -c z < +c ,
	

(4.5)
0

V0 (r ' z) z= +c 
= 0,	 0 < r < 0 9	 (4.6)

and

B0 (r,z ) r=R = 110I/2wR0 , -c < z < +c ,	 (4.7)
0

I a
r ax [rB (r , z) z=+c = uoI S (r--R}) /2wr, 0 < r < Ro	 (4.8)

Equations (4.3) and (4.4) are the azimuthal components of the

equations of plasma motion and magnetic induction [0 2B = -p aVx(V x B)J.
a

h.4	
The boundary conditions (4.5) and (4.6) consider that the plasma does

not slip at the walls r = 
a 

and z = ±c. The boundary conditions (4.7)

and (4.8) follow from Maxwell's equations for a total discharge current

of I I I amps flowing from the ring anode (r-R+) to the ring cathode (r=R )

of vanishing radial width if I < 0 (Fig. 3.1).

r

i

1:
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4.2. Analytical Solutions in Terms of Fourier-Bessel Series	
i
I

For physical and mathematical reasons (Section 1.3), it is

suitable to formulate the boundary-value problem for the coupled

plasma fields Ve (r,z) and B e (r,z) in dimensionless form by introducing

the dimensionless independent and dependent variables,

P = r/a	 0 < p <1	 (4.9)
i,

and

V(p >r.) = Vg (r,z)/Vo , B (p ,C) = Ba (r,z)/Bo ,	 (4.11)

where the reference values Vo and Bo are defined as (Bo external

i^duction) ,

Vo = I/2zrReB
0
ac, Bo = Bo	 (4.12)

In the dimensionless formulation, the boun

the azimuthal velocity, V(p,^), and azimuthal in

assumes the form

2	 2
a ^^ a 

(PV) ] + N
-2 a v = _ $ a$

'aP P ap	 3;2	 R a^

2[ a (pB) l+ 
N 

2 a B	 R aV
aP P ap	 392 = — N2 a

where

V(P,O P`l = 0, -1 < 4 < +1

V(P ' O	 = 0, 0 < P < I ,

A

4	 _

i	 r
r	 ..

r

k

i
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and

B(P";)P=l = R2 	--1 < C < +1 ,	 (4.17)

r ,.
P 8p CpB(p,^)14=^.1 = R S(p-p^}/a,	 0	 p	 1 (4.18)-. `.

J :1	 with

H =- (a/p)hBo o'	
N =- c/ ^, R = v 1/217 oBo = P aVoc	 < 0. (4.19)

The Hartmann number H, N, and the magnetic Reynolds number R characterize

the ratio of Lorentz to viscous forces, the geometry of the centrifuge,

and the intensity ratio of the induced and external magnetic fields,

respectively. Equations (4.15), (4.16) and (4.17), (4.18) are the

homogeneous and inhomogeneous boundary conditions for the fields V(p,4)

and B(p,^), respectively. The linear statement,

B (P,^) = R (p + IF(p . g )} ,	 (4.20)

reduces the Equations (4.14), (4.17) and (4.18) for B(p,^) to equations

with a homogeneous boundary condition (4.22) for 7(p,^)

aP Lp P ( p` ) I + 
+1-2 

a22 = — N^ a4 a	 (4.21)
a^

where

T(P.0} 
P=1. 

= 0 2	 -1 < 4 < f1 ,	 (4.22)

1 a S (P-P.-)
P aP [PT (P a 0 I ^=±1,	 P	 - 2 s	 0< p< 1	 (4.23)



f f - k2 N2 f = -112N2 gn (4.29)

54 r

Introducing $essel's function JI (knp) of first order, partial

solutions of the coupled inhomogeneous Equations (4.13) and (4.21) are

in the form,

n(P,0 = dl (knP) fn ( r') >
	 (4.24)	 .

Tn(P,^) = Jl ( np ) gn(^)
	

(4.25)

where the eigenvalues kn > 0 are determined by the homogeneous boundary

conditions (4.15) and (4.22) as the real roots of the transcendental

equation,

iI (kn) = 0 , n = 1,2,3,...
	 (4.2b)

Thus, the general solution of the coupled Equations (4.13) and (4.21)

obtains by linear superposition as the Fourier-Bessel series,

V(P>r) = E JI (knp ) f n W	 (4.27)
n-1

T (p >;) = E 31 ( QP ) gn(^)	 (4.28)
n=1

Substitution of Equations (4.24) and (4.25) into Equations (4.13) and

(4.21) yields ordinary coupled differential equations of second order

for fn(4) and ga(4) :

gam' - kn VL gn = -f	 (4.30)

By	 qelimination, Equations (4.29) and (4.30) are reduced to decoupled
d

differential equations of fourth order,
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f"t t t - (2k2 + H 2 A 2 f" + k4 N4 = 0 ,	 (4.31)
n	 n	 a	 n	 n

g t t t t - (2k2 + H2" )N2g 1 s .s. k4 PI4 g = D 	 (4.32)
n	 n	 n	 n	 n

F,	 J^

1

f

{

With

fn(0) ...: = D ,	 (4.33)

2 nl '3p( np k)/3Q( ^)	 (4.34)

as boundary conditions, by Equations (4.16) and (4.23), respectively.

In deriving Equation (4.34), the Fourier-Di.ni  series representation of

the Dirac function [Eq. (3.32)] has been used. In addition to Equations

(4.33) and (4.34), fn(0 and gn(O have to satisfy also the coupled

Equations (4.29) and (4.30). With the four real roots of Equations

(4.31) and (4.32) V gn exp (tu+0 1,

win - wn ' w2n = wa ' w3n -m3n	
w4n _ -ten 9	 (4.35)

where

2- N((2k2 + a2 ) ±[ (2k2 + H2} 2 - 401 } s	 (4.36)n	 n	 n	 a

the general solutions for fn(,) and gn(4) of Equations (4.31) and (4.32)

can be written as

sinh w + C	 cosh c+C
fn(^) - An	 + + B 	 +

sinh w	 cosh wn	 n	 (4.37)
Binh w-^	 cosh w-

+A	 n +B-	 n
U Binh m-	 n cosh w-n	 n

"T
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1 ,	 I

= C+ sinIi wn ^ + D
+

 cosh wn^

n	 n sink w+	 n cosh w+

	

n	 n
(4.38)

	_ sinh w 
n

-^	
_ cosh w C

i- C	 -f- D	 n	
-

	

n sinh w-	 n cosh w-

	

n	 n

Maly four of the eight integration constants A^, .., Dn are independent.

Su►istitution of Equations (4.37) and (4.38) into Equation (4.29) and

Equation (4.30) yields

A [(wi) 2 -^ kZN2 ] /w = -H2N2 tghw± D{ ,	 (4.39)
n n	 n	 n	 a n

T 4'

Bn [(wn)
2
 - knN2)/w- = -H2N2 ethw- C^	 (4.40)

and

	

Ci t (wi)
2 

-- kZN2 ]/w- = - tghwi Bi	 (4.41)n n	 n	 n	 a n

Di [(wi) 2 -- k2N2]/wi = - cthw} Ai 	 (4.42)
n.	 n	 n	 n	 n n

respectively. The coefficient determinant of Equations (4.39) and (4.42)

or Equations (4.40) and (4.41) vanishes (condition for existence of

nontrivial solution),

A = UWn) Z - knNZ J 2 - H2N2 (wn) 2 = 0 	 (4.43)

in agreement with Equation (4.36). From the Latter or Equation (4.43)

one deduces the relaticas,

r(w_) 2 - kZN2 ]/wi = i'NH ,	 (4.44)
Y!	 A	 n

which simplify the left-hand sides of Equations (4.39)-(4.42).

lr	 _	 -
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Application of the boundary conditions (4.33) to Equation (4.37),:
4

shows that

T-A = +A+ _ A	 -B	 +B+ = B (4.45)n	 n	 n	 n	 n	 n
f

Substitution of Equation 	 (4.45) into Equations (4.37) and (4.38) gives

sink wn^	 sinh wn^

n	 n	 +Binh w 	 sinh w
+	 n (4.46)

cosh wnC	 cosh wJ

cosh w	 cosh wn	 n
f

and -

1	
cosh w C	 cosh wn^

gnQ) - -An NH	 + +	 --
(sinhy . w	 sinh wnn {4.47)

?	 sinh w+^	 sinh m C
J	 n	 n

-B
n iii	

+	 -
cosh wn	 cash wn=

^.:

the latter under consideration of Equations (4.41), (4,42) and Equation

.`i
(4.4.4).	 Application of the boundary conditions (4.34) to Equation

(4.47) yields, upon elimination

NH	 1  
(knP-) + J0 (knp+)

A 

r -
(4.48)9

n	 k 	 (cthwn 	+ cthwn) J2 (kn)

	

J(kP)	 J0(kP)

	

B =+^ 0 n--	 n+	 (4.49)n	 n (tghwn + tghwn) J2 (kn)

By combining Equations (4.46)-(4 .49) the solutions for fn (i;) and

gn(O in final form are

o
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.
^.

y

J0 (khp-) + J0(knp+}	 sinh wn^	 sinh w-^`,

cthw	 + cth6i )k	 J	 sinh w-{	 k	 sinh wn	 n 0 (n	 n) 	n	 n r

JO (knp-) - JO (knp})	 cosh wn^	 cosh wn9+^^
1	 ry

+	 +	 .^	 9
(tghwn + tghw)k	 J0 (k}	 cosh w	 cosh wn

((^^
(4.50)

n n	 n	 n

JO (kup } + JO (knp+)	 cosh ng	 cos h wnC
?	 r

athw	 cthw	 k	 3	 k	 (Sinh  w	 sinh w

i	 -

JO (knp_) - JO (knp+)	 sinh n	 sinh w

- t hw+ + t hw	 k	 J2 k	 ( cash w+	cosh w^

CR

Below, also the ^-derivative of gn( } is required, which is given by ..

JO (knp-) + JO(knp+)	 sinh wn^	 sinh wn

E

i+	 w+	 + w-
n	 {cthwn + cthwn)kn J^(kn)	 n sinh wn	 n sinh wn

JO (knp-) -- JO (knp+)	 + cosh w ^	 _ cosh wn^

-	 +	 -	 2	 wn -	 +	 + wn	 ..
(tghwn + tghwn)lcn 30 (kn}	 cosh wn	 cosh mn

(4.52)

In terms of f Q), g Q), and g'(g), the solutions for the
n	 n	 n

dimensionless fields V = {0,V,0}, B = {O,B,l}, J = {Jp ,O,J} and

= {EP ,O,E } of the plasma centrifuge are by Equations (4.20),
.E

(4.27)
4

and (4.28)

V(Ps r') =
CO

 E J1 (knp)fn(^) a

n7-1

W

g (P 'O = REP + nEl 1l( np)gn (4)
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CO

J	 N	 Z J (k p) g'(^)	 (4.55)
P	 1 n n

n-1

2 + E k n 1 0 (k n p)g n	 (4.56)
n=1

Ep (p,4) = - V(p,C) + N Jp (p,4),	 E^(p,^) = NJ4 (p,^).	 (4.57)

The reference values V 
0 

and B 
0 

for V(p,^) and B(p,C) are defined in

Equation '4.12). The dimensionless fields J 
PIC 

(P,t) and E 
P14 (P,C) are

normalized with respect to

3 = 1/2wR 2
	 E0 = V B = 112wR c	 (4.58)

0	 0	 0 0	 0

It can be proved that the solution V(p,^) derived here from the

boundary-value problem with a significant induced magnetic field B 6

,remains. valid even for the boundary-value problem in Chapter III as

long as the Hall effect is negligible. Let V 
III 

(p,4) and V iv(p'O

designate the solutions for the dimensionless azimuthal velocity in

Chapter III for wT << I and the present chapter, respectively. The

ohm's law for w-r << 1, 1 = - -?A + v Bo g and Faraday's law,
DB 0	

r	 Br	 8

- -5— = poJ I give the following relation in dimensionless formZ	
r

A

WD + V	
I 3R

,5-p	 III	 R D4
(4.59)

Substitution of this relation into Equations (3.14), (4.13) and boundary

conditions for V 
III 

and V 
IV 

yields a new boundary-value problem for

W(P19)	 VIII(PIO - VIV(P,O:

I a	 -2 82W

	

-^P- [- -^P (pW)] + N —	 0	 (4.60)
P	 2
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where i

L
-

W(p ,4) p`l 	 0	 -^ < t < +1 (4 .61)

I

fa:'
,

J

-1
l

W(p, } ^	 = 0	 0 < p < 1 (4.62)

The general solution of Equation (4.60) has the form

i

CO

I

`d	 Y

W(p p ^) =	 E	 d (k p)	 [A	 cosie(Nk ^) + B	 sinh(Nk.	 ) ] (4.63)?y I	 n	 n	 n	 n	 nn7-1

'1 r
where the integration constants A

n 
and Bn are determined by boundary

conditions (4.62):

cosh(Nkn) + Bn sinh(Nkn) Q 0 , (4.64)
r. a

An cosh(Nku) 	 Bn sinh() - 0 (4.65)

however, W	 y(p,^) should have only trivia, solution	
W = VIII

- VIV - 0) .

r
>

? since the coefficient determinant for A 	 and B	 of Equations (4.64) and r	 -n	 n
y e

(4.65) would not vanish, i.e.,
i

r

cosh(Nk)	 sinh(Nk )n	 n 0	 . (4.66)
cosh(N a)	 - sinh(i n) -

This means that VIII(p,^)	 [Eq. (3.47)] for Wz = 0 should be identical.

to VIV(p.^)	 [Eq.	 (4.53)].

f'

i
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4.3. Numerical Illustrations and Results

As an illustration, the radial (p) dependence of the dimensionless

discharge fields V(p,l;), B(p,^), Ep (p,O, Jp (p,^), and J
r,
(p,^) has been

compu-ed for I < 0 in the cross-sectional planes 9 = -0.99 (cathode

region), 4 = 0 (central region), and ^ = +0.99 (anode region) based on

Equations (4.53)--(4.57). The remaining field E^(p,4) is proportional

to J^(p,;) [Eq. (4.57)]. The characteristic dimensionless magnetic

interaction number H is treated as a parameter: H = 1, 10, 100. The

geometry parameter N = c/Ro is taken to be N = 1 corresponding to

R 
= c [Eq. (4.19)]. The radial positions of the cathode and anode are

assumed to be

p- = 0.01 (R- = 0.01 Ro) ; p+ = 0.9 (R+ = 0.9 Ro).

With the exception of BO = B0B, the dimensional fields are negative

everywhere where the dimensionless fields are positive, and vice-versa

since Vo < 0, Jo < 0 and E  < 0 for I < 0 [Eqs. (4.12), (4.5$)]. Note

that the magnetic Reynolds R in Equation (4.19) is defined to change

its sign with the sign of Vo,

The Equations (4.53)-(4.57) indicate that the velocity field

V(p,r.), the current density field Jp'C (p,^), and the electric field

Epl ^(p,^) are independent of the magnetic Reynolds number R, whereas

the induced magnetic field B(p g) is proportional to R. This is due to

the azimuthal direction of the induced magnetic field B(p,^), which is

parallel to the velocity field V(p,^) of rotation. Accordingly, the

plasma fields V(p,^), B(p,C)/R, Jp3l^(p,^), and E p3c(p,4) depend only on

the Hartmann number H, presuming that the Hall effect is negligible

(WT << 1)

`I

E	 ^j
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i) Ce yttkat Region,	 = 0. In Figures 4.1-4.5, 'V(P,0),

JB(p,0) -- Rp l/R, Ep (P,0), Jp (p,0), and JC (P,0) - E^(P,0) are shoran

versus 0 < p < 1 with H = 1, 10, 100 as a parameter. It is seen that

IVI increases considerably at any point 0 < P < I as H is increased.

Similarly, (B - Rp)/R and the sources J pl ^ of the magnetic induction

increase in intensity within the main central region 0 < p < 1 - by as

H is increased. For large values H > 10, B and Jp3l^ decrease in the

wall region Qp = Ap(H), so that the electrical discharge becomes more

concentrated in the center 0 < p < 1 - Ap of the centrifuge. The

intensity of EP increases uniformly in the region 0 < p < 1 as H is

increased, while E^ - iC

ii) CctJwde Region, C = -0.99: The Figures 4.6 -4.10 show

V(p,-0.99), [B(p,-0.99) - Rp]/R, EP(p, -0.99), Jp(p, -0.99), and

J^(p,-0.99) - E;(p,-0.99) versus 0 < p < 1 for H = 1, 10, 100. The

fields V, Ep, ,, and J  , increase in intensity at any point 0 < p < 1

with increasing H, whereas B/R decreases in 0 < p < 1 with increasing H.

Since the ring cathode is at N- = 0.01 (4 = -1), the field distribu-

tions are more closely concentrated at the axis p 0 than those in the

plane = 0 (Figs. 4,1-4.5). Note that the plasma rotates only in the

region p = 0.1 with a significant velocity, since the Lorentz force

-JPB0 decreases rapidly with increasing p -} 1.

iii) Anode Region, 4 = +0.99: The Figures 4.11-4,15 present

V(p,+0.99), [B(p,+0.99) - Rp]/R, Ep(P,+0.99), JP(p,+0.99), J (P:+0.99) 	-

Et(p,+0.99) versus 0 < p 1 for H - 1, 10, 100. The velocity field

is fully developed nearly through the entire centrifuge across section 	 -

0 < p < 0.9, since the Lorentz force -J
p e
B is strongest in the vicinity

_ ..1
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Fig. 4.1. V{p, g} versus p for ^ = 0, and H = 1, 10, 100.



.- I	 . r



0Z	 0.4	 0.6	 0.8	 1.0 A

100

50

0

EF

150

65



ip

1.0

0.8

0.6

0.4

0.2

fib





- 0.0 4

-0.10

v

S4

-100

O

-_500

-1000

v

F 68
ir

0.2	 0.4	 O-F;	 n p	 I n D

Fig. 4.6. V(p,g) versus p for C - -0.99, and H - 1, 10, 100.



L

10

15

20

25

B— R
	€ ;^

--	 J

0.2	 0.4	 0.8	 0.8	 1.0 p

Fig. 4.7. LR(p,^)-Rp] /R versus p for	 -0.99, and H = 1, 10, 100.

i

F



OD.

r

Q

70.



71

,alp
2000

100-0

1500

500

U.?-	 UA	 0.6	 0.8	 1.0 R

Fig. 4.9. Jp (p,^) versus p for ^ = -0.99, and H = 1, 10, 100.

A



U 0.2	 0.4	 0.6	 0.8	 1.0 R./

7.2-

Fig. 4.10. J^(p,^)-2 versus p for = --0.99, and H = 1, 10, 100.

Olt- __ ..	 __s

f
4 ^^

i

it -

400

300

2001

100 1



A
v or

To--

0

A
17090-

Z-090-

0

f	 r

L-L=

'OOT `OT 6I = H Puv 6 66'0+ _ aoj d snsadn (^ I d)A " TV IV 62TH

A

Q9—

OV—

oz—

0



C3

-O*n	 P%--

VO+

,0+

a-

9L

-71

'OOT`T	 Puy01	 c66'0+	 aoj d sneagA
-ZT*V 12TLT



0.2	 0.4	 0.6	 0.8	 1.0 p

Ep

600

80

60

40

20

0

20a

75"

Fig. 4.13. Ep (p,^) versus p for 4 = +0.99, and H = 1, 10, 100.
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M
P ^ 0.9 of the ring anode p+ = 0.9(9 = +1). As a result, a thin and

steep boundary layer exist:z close to the cylinder wall (p = 1) with

plasma counter-rotation: at sufficiently small H-values. The radial

distributions of B, Ep,^, 
Jp ,, 

clearly indicate that, in the plane

- 40.99, the electrical discharge has shifted to the region p = 0.9

due to the influence of the (nearby) ring anode at p+ = 0.9(4 = +1).

In the graphical illustrations, the cathode radius R was chosen

to be small compared to the anode radius R+ to ensure a large angle

between the current field lines J(r) and the external magnetic field
4.

-	 Bo, i.e., a significant Lorentz force. A comparison of the Figures

4.1 and 4.6 with Figure 4.11 indicates that this choice of electrode

radii results in a radial boundary layer of large width and low velocity

.in the lower half -c < z < 0 of the centrifuge. Hence, R << R+

(or R >> R+) is not the best choice for a centrifuge of maximum

efficiency.' Figure 4.11 demonstrates that a velocity ofile rising

uniformly with radius r and decreasing rapidly in a steep boundary

layer of narrow width Ar, is obtained by using a cathode and an anode

of the same radius R = R+ < Re , which is nearly as large as the

centrifuge radius o. Although R = R+ in this case, the current field

-	 lines J(r) intersect with BQ at a sufficiently large angle Y(J,B0) # 0
due to the repulsion of the current filaments. As a result, a net

Lorentz torque results for a centrifuge with R- = R+ which is still of

the same order of magnitude as for a centrifuge with R << R (presuming

that I, and B 	 and 
o 

are the same) .

The centrifuge analysis presented indicates that extremely high

speeds of plasma rotation are obtainable as shown in Chapter III at

44

moderate discharge currents I and magnetic inductions Bog presuming the
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Hartmann number 11 is not small, H > 1. As an example, consider an

isotope centrifuge discharge with the same values of III. IB o 1, o,
{{

o and c as those in Chapter III.
t

Hence, by Equation (4.12)	 ;1

F

a m 
I/2n ^Bovc = (5/r) x 101 m/sec,

and, by Figure 4.1

0[VO ]	 0 [VoV] = 103 m/sec, for H 100.	 j

Based on these examples, one can assume with some confidence that

high--power plasma centrifuges are technically realizable employing dense, 	 E

collision-dominated isotope plasmas. The proposed high-density plasma

centrifuge would use are plasmas at pressures of about one atmosphere
i	

F

so that the isotope masses separated are increased by orders of

magnitude. The large Hartmann. numbers H = (a/p)^ BoRo required for high	 j

speeds of isotope rotation are achievable because of the (relative)

small viscosity p and large conductivity v of gaseous plasmas. Speeds

of plasma rotation, which are by an order--of-magnitude larger than thosr

in the above examples, can be achieved at realistic Hartmann, numbers H. 	 i

Since w = 1.76 x 10 1 B sec., the Hall-effect is insignificant in dense

_	 plasmas for B = l Tesla as long as T ^ 10 
12 

sec. In general, the
•	 ^	 1

Hall-effect increases the speed of plasma rotation for mT > 1, i.e., in 	 E	 4^

plasmas of lower density as shown in Chapter III. In developing a 	 I-
I

plasma centrifuge, therefore, apparently a trade-off between isotope

density and rotation velocity has to be made.
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CHAPTER V

PLASMA COUNTER-ROTATION IN MULTI-DISCHARGE CENTRIFUGE

This chapter is concerned with a plasma centrifuge between two

sing electrodes embedded in the mantle of a cylindrical chamber, in

which the plasma in the anode and cathode regions rotates in opposite

directions under the influence of a spatially converging and diverging

current density and an external axial magnetic field. The associated

boundary-value problem for the coupled partial differential equations

describing the azimuthal velocity and radial current density fields is

solved in closed form. The difficulties associated with the complex,

inhomogeneous boundary conditions are overcome by means of Fourier

expansions for Bessel functions of complex argument. The velocity,

current density, induced magnetic induction, and electric fields are

presented for typical Hartmann numbers, magnetic Reynolds numbers, and

geometry parameters. The discharge is shown to produce anodic and

cathodic plasma sections rotating at speeds of the order 104 m/sec for

conventional magnetic field intensities. Possible application of the

magnetoactive discharge as a multi-discharge plasma centrifuge for

isotope separation is discussed.

5.1. Model for Multi-discharge Centrifuge

The plasma centrifuge to be studied herein exhibits the interest-

ing effect of plasma counter-rotation, i.e., the plasma in the anodic



.. _^	
I	 }`

O 1

and cathodic half-spaces rotates in opposite directions. As dep_ ced

schematically in Figure 5.1, the centrifuge system consists of an

•	 electrically insulating cylindrical chamber of radius R  wich end walls

at z=±L. A perfectly conducting ring anode (r= o, z =-c) and ring

cathode (r= Q, z=+c) are embedded in the cylinder 
o 

(eventually in

form of thin, "hollow" slit electrodes). The electrodes are placed far

from the end walls (c « L) to reduce velocity losses due to the end

,^ e

E

plates. The plasma is produced in the space -c < z < +c, 0 < r < o

through a gaseous discharge resulting in a curved current density

distribution J(r,z) which intersects the axial, homogeneous magnetic

field Bo applied from outside. The J x $a force rotates the plasma

counter-clockwise in tho o"ude region -c < z < 0 and clockwise in the

cathode region 0 < z < -1-c (ig. 5.1), since the J-lines converge for

z < 0 and diverge for z > 0. In the central plane z=0, the plasma is

at rest.

The purpose of the investigation is to evaluate theoretically the

electromagnetogasdynamics of plasma counter-rotation as a contribution

to the physics of plasma centrifuges. Furthermore, it appears that

this type of centrifuge might be useful for isotope separation, in

which the heavy isotope would be enriched in the anodic and cathodic

"layers" z = +_c and the light isotope would be enriched in the central

layer z = 0. The end spaces -L < z < -c and +c < z < +L would serve as

reservoirs for the unseparated isotope mixture. For a proper choice of

D-

-
1

3.

T'

I

the geometry parameters, a, c, and L, well-developed azimuthal velocity
z	

:+

distributions can be expected. Iitview of the circumferential electrode 	
F;,.^ 

:1

r:
arrangement, a large number of such centrifuges can be set up in a long

insulating cylinder to rotate large volumes of isotope mixtures, as	 t
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Fig. 5.1. Counter-rotating plasma centrifuge model of radius a and length 2h with ring anode (r-Rn^
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shaven schematically in figure 5.2. Each circumferential cathode or

anode serves as a common electrode for the adjacent discharges. It is

seen that the volume of rotating plasma is nearly doubled in each

electrode region, compared to the single discharge centrifuge.

4 q 
po ()qL

w

Bp

-i

BO

Fig. 5.2. Scheme of multi-discharge centrifuge.

5.2. Boundary--value problem for Velocity and Radial Current Density

The steady-state rotation of the plasma centrifuge shown in

Figure 5.1 is theoretically investigated based on the magnetogasdynamic

equations (Section 2.1) for dense plasmas. Laminar flow is assumed and

(conceivable) secondary flows superimposed on the main rotational flow

are disregarded. Experiments indicate secondary flows in the motion of

incompressible fluids between rotatin„ cylinders (Chandrasekhar 1961),

but secondary flows have not been observed in plasmas which rotate

under the influence of electromagnetic forces. In view of the symmetry 	
e

•	 i

of the centrifuge configuration with respect to z-axis, the plasma .flow

a
field is then azimuthal, V = 10, V 0 (r,z), 0, so that the plasma behaves	 3

1
3
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incompressible (0• =0). It is assumed that the gyration frequency w

of the electrons is much smaller than the collision frequency T-^

between electrons and plasma particles (wT< <l) . In this case, the

current density is of the form J = {Jr (r,z), 0, Jz(r,z)), and the

Hall-effect is negligible (dense plasmas of low ionization degrees).

The magnetic induction is of the form B = {0, B0 (r,z), Bo) in
z

accordance with Maxwell's equations and the homogeneous boundary

conditions for B and Br	 z.
3

The counter-rotating plasma centrifuge is described by the

boundary-value problem for efte azimuthal velocity V B (r,z) and radial

current density Jr(r,z) fields:

2

	

(rV )^ + 

a V0 = B0 
Jr '
	

(5.1)
ar r ar 9	 az2	 11

	

a^J	 a2V

	

r  8r rJj ] l + 2r w 6B0 2	 (5.2)

	

az	 a?.

Where

V
9	 r=0
(r,z) 	 = 0, -L < z < +1, ,	 (5.3)-- —

V0 (r,z) z=±L  0,	 0 < r o	 (5.4)

and

r(r,z)r R - 2 R [ a (z-c) -- d (z+c) ), -L < z < +L ,	 (5.5)
0	 0

J(r,z) z=*L - 0, 0 < r < R	
(5.6)	 a

	

n	
S	 1

	

S	 j
Equations (5.1) and (5.2) are the azimuthal component of the

equation of plasma motion and the induction equation combined with 	 }

	

;.I	
33

1

Q
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V x B = 11 1 and V•3 = 'O, respectively. 	 The boundary conditions (5.3) #

and (5.4) specify that the plasma does not slip at the chamber walls
'

.	 r -	 and z = }L.	 The boundary conditions (5.5) imply that a total I1
I

o
If

discharge current l flows from the ring anode (z = -c) to the ring

i
cathode (z = +c) of vanishing axial width, Az -> 0. 	 The boundary

conditions (5.6) consider that no radial current flows at the end !

plates at z = iL according to Ohm's law, J r = a(Er+VaB0), since
i

V8(r'z)z= 0 and Er(r,z) =±L = 0 by n x [E]=iL	 z
The remaining centrifuge fields are consecutively determined by

I

{	 rasing the solutions for V 8 (r,z) and Jr (r,z).	 The axial current density t
f ^,

Jz(r,z) is obtained by the conservation equation for the electric

f	 charge density (V	 fiJ = 0) :

Jz (r,z) = f
z 

[r	 (rJr)]
dz + cl (r)	 (5.7)

5r

i

cohere the integration constant c1 (r) is determined by the boundary

'	 conditions (no axial current flows into end walls),

E

j	 Jz(r,z)z=+L - a t	 0 < r < o	
(5.8)

The induced magnetic field B 0(r,z) is obtained from the z-component of

Maxwell's equation, V x B = ua:

B^(r,z) 
_ z[uof 

r Jzrdr + c2(z7]^	 (5.9)

where the integration constant c(z) is determined by the boundary

conditions [equivalent to the boundary conditions (5.5) oince

-aBBfaz = paJr , H(c-!zj)	 Heaviside step function], 4

I ^	 a

_	
H(c—jzj),	 —L < z < +L
	 (5.10)

B6(r'z)r=R	 2nR0	 o ?
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The electric field E(r,z) is given by Ohm's law:

4.
E(r,z) = {J /a-B V 0, J /a}

i	 r	 o B	 z (5.11)

Finally, the pressure distribution can be calculated from the r- and

z-component of the equation of motion [Eq. (2.1) 1 of the plasma if

desired.

5.3. Fourier Series Solutions in Terms of Bessel Functions of
Complex Arguments

In order to solve analytically the boundary-value problem for the

coupled plasma fields V8 (r,z) and Jr (r,z), it is convenient to

formulate Equations (5.1)-(5.%6) in dimensionless form by introducing

dimensionless independent and dependent variables,

p = r/Ro, 0< P < 1	 (5.12)

z/c, -L <	 < +L,	 L L/c ,	 (5.13)

and

V(P,0 = V8 (r,z)/Vo , JP (P,C) = Jr (r , z
)/Jo 2 (5.14)

where the reference values V	 and J	 are defined as
0 0

V
	
= 1/2r ocBoa,

J 
	 = av0Bo = 1/21rR

0
c (5.15)

Thus, the boundary-value problem defined in Equations (5.1)-(5.6)

becomes for V(p,C) and Jp(P,C):

3p[ aP(PV)I + N 2
2a 
2 = H21 (5.16)

a^

PPp	
PJP)^ + N 2

a2J	 —2
= N

2
p

aZv

a^2
(5.17)

a



JP (p,O P=1 = -d(^+1) + 6(c-1), -L < ^ < +L ,

JP (P ' 4) C=+L 
= 0,	 0 < P < 1.

(5.18)

(5.19)

(5.20)

(5.21)

1

r'

V(P";)r
=
+L = 0,	 0 < P < 1 ,

The dimensionless parameters N and H are defined by

N = cf Ro , H = (c/u)hBoRo	 (5.22)

In view of symmetric geometry of the centrifuge configuration and

asymmetric boundary conditions (5.20) and (5.21), 1 P (P,0 is asymmetric

about ^ = 0, i.e., JP (P,O = -JP (P,-O . Accordingly, the radial current

densities at (r, ±2) have opposite directions, but same magnitudes.

Consequently, as a result of the radial current densities normal to an

axially applied magnetic field, the Lorentz forces set the plasma in

rotation with an azimuthal velocity field which is also asymmetric,

i.e., v(P, r-) = -q(P,-;). .

In accordance with the above conclusions and the boundary

conditions (5.18)-(5.21), the general solutions of the coupled partial

differential equations (5.16) and (5.17) are sought in the form of the

Fourier series:

l;
i,

Ej 4

is

fl

W

v(P ' 4) =

	

	 E fn(P)sinAnc^l
n^1

J (P, g) =	 E g (P)sinA c,
P	 n =l n

	 n



where

A = nr /L .	
(5.25)

n

The p--dependent functions fn(p) and gn(p) are determined by the follow-

'	 ing coupled ordinary differential equations and boundary conditions:

d l d	 n 2	 2dp Ip dp 
(p fn)1 _ ( N } fn K gnu	 ( 5.26)

I

d
( p gn) - (N) 2gn = -( }) 2fn ,	 (5.27)

dp p dp

--r - .--- —..	 ....a i..^ v LCac oci s ca JAI LLLC InLe Val — L.	 +L

RT

--6(9+1) + 6U-1)	 ( 2/0	 E sinAnsinAn^.	 (5.30)
n1

By elimination, Equations (5.26) and (5.27) are reduced to decoupled

differential equations of fourth order,

XHA

{ p t aP (P)) - ( ) 2 }2 fn = -( Nn)2fn a	 (5.31)

_	
d	

A	 HA

(dpp dp CA) ] -- ( } 2}2 gn = --( N ) 2gn	 (5.32)
a

The general soluci.ons for fn(p) and gn(p) of the identical biharmoni.c

equations (5.31) and (5.32) are

fn( p ) 5 A LJ1 (KnP) + BnJi (Kg*
	

(5.33)

gn(P) = CnJ,(rnp) + DnJi (Kn*P) i	 (5.34)	 =1

where A }, Bn, Cn and a 
are 	integration constants. Ji(y) and Jl(K*p)

are complex conjugate Bessel functions of the first kind of order 1,

since Kn and Kn are complex conjugate eigenvalues given by

IC

U	 N	 N	 1
(5.35), 1

Kr
 keN
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^.

Where

N ( A2

	
H2)] 
	 (5.36)

-A	 B
' arccos[ 2 n2 	 ^ - k aresin[	 1

N(X, 	+x 2 )	 (X2 2+x2}

Furthermore, the solutions (5.33) and (5.34) have also to satisfy

original coupled equations (5.26) and (5.27) and boundary conditions

(5.28) and (5.29), i.e., the integration constants are interrelated by

sinxn

$A n ^' iLA	 ^ca 11 ( n) ^ n

(5.37)
sinA

C "	 n = D'
n - Lil (Kn)	 n

y^

By combxrLting Equations (5.23) and (5.24), Equations (5.33), (5.34) and

(5.37) and noticing that Jl(K*p) = J*(KnP), the solution for V(p,C) and

J^(p,4) are obtained in the final form

m	
aV(p,C) = -2NHL

-1
 E An sinAnsinAn4 Imp I (KnP) 

/jl(Kn)] , (5.38)

n=1

3P CP:^) = 2L-1

CO
 
E sinAnsinx.& Re[J1 (KnP) /Jl (Kn)1 ,	 (5.39)

n=l

where R2[Jl (KnP)!Jl (Kn)] and Im[Jl (KnP)/Jl (Kn)] refer to real and

imaginary parts of J1 (Knp)!J1 (Kn), respectively.

The dimensionless expressions of Equations (5.7)-(5.11) together

with the solutions (5.38) and (5.39) for V(p,C) and J P (P,^) yield the

remaining dimensionless discharge fields J C (p,C), B(p,r.) and EPICO30

which are normalized with respect to Jo = o V0B0 and E  = V 0 
B 
C

respectively:
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3 (P,^) = 2NL
-1 

E h sinXn [cosXr=c- (-1)n] Re(Kn10 (K no) 1J'1 (Kn) ], (5.40)
n=1

B(p ,^) = 2RL
-1 

E X sinAn [cos:ln,- (-1)n] Re[JI (Knp )/Jl (+cn)] ,	 (5.41)
n=1

EP(P,;) = iP (P,O — v(P,r,) ,
	 (5.42)

EC(P.0 = 3^(P, 0 .
	 (5.43)

.30 (Knp) is a Bessel function of the first kind of order 0 with complex

argument, and R is the magnetic Reynolds number,

(5.44)R. = 11 OV	 pc =	 I/2zrR0'Bo	 o	 o .

From all plasma fields, only the induced magnetic field B(p,^) depends

on the magnetic Reynolds number. It is also noticed that Equation (5.40)

satisfies the integral. condition,

	

I1 
i ( p , r.) Pd P = NH(1-1 ^1) 	(5.45)

0

which is proved with the help of the following, Fourier series

	expansions in tb-a interval, -L	 +L,

--2 E (-1) n A:nlsin n
n=1

(5.46)
cc

#^(1-^^!) = L 1 (1	 l+ 2 E An sinkncosXnr') -
n7-1

Equation (5.45) is rewritten in dimensional form as a non-vanishing

integral for any cross section -c < z < +C,

R
2u ° 3z (r,z)rdr = IH(c- jz j) ,	 (5

0
47)

which shows that the plasma is sustained by the total discharge current I
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5.4. Numerical Illustrations and Results

As numerical illustrations, the axial (^) and radial (p)

dependence of the dimensionless centrifuge fields V(p,C), Jp(p,^),

Jr (p $4), B(p,^), and Ep (p,^) has been calculated in some (interesting)

cylindrical regions ( p = 0, 0.7, 1) and cross-sectional planes

(^ = 0, 0.9, 1, 1.1), respectively. The remaining field E^(p,O is

proportional to J^(p,C). Since the centrifuge fields V(p,^), Jpl^(p,O,

B(p,^)/R, and Ep't (p,^) depend only on H, L and N, the Hartmann numbers

are treated as parameters, H = 1, 10, 100, and the geometry parameters

are taken as L = L/c = 10 and N = c/ o = 1, 5, 10. The axial positions

of the anode and cathode are at 4 = -1 and ^ = +1, respectively. The

solutions in Equations (5.38)-(5.43) indicate that V(p,r,), J p (p,g), and

'Ep (p,O are asymmetric, J^0,C), B (p ,^) and Er. 0,0 are symmetric with

respect to the central planes Q = 0).

i) VetOcitY ji,eW V(p,4) [Figs. 5.3 and 5.4 1: The oppositely

directed azimuthal velocity fields are asymmetric about 	 0 and are

distributed over the entire system, 0 < p < 1, Itj<L, with zero

velocity at the central plane 	 0) and end walls ( C = L = 10). The

maxima of IVI are at the electrode planes ( _ il), and move toward the
•	

F

cylinder wall (p = 1) as either H is increased or N is decreased. It

is seen that IV] spreads more widely along the ^ -axis and grows

considerably at any point 0 < p < 1 and 0 < 	 < L as H is raised. It

is also observed that IV[ stretches along and dwindles at any point

0 < p < 1 as N is reduced.

-J

r^^



V(O.7q

H = 1 0.3

f^
3 ^---

.err

_

— 0.3— l^

V (0.71	 • r—w^s
'k

H	 1 0 — 2 0
rte`-

1	 2 3
°3	 —2 —1

T m

H	 100 -300

^tiyy^r^ r^

°300[N .. 5
N	 10

Fig.	 5.3.	 V'(p, 4) versus 4 for p	 0.7, N	 1, 5 9 10 and H = 1$ 10, 100. :^ ^^
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ii.) euv r mt density S i.etds Jp' ^ (Q , C) [Figs. 5.5-5.81: The

electric discharge becomes more closely concentrated near the cylinder

stall as H is increased. Backward current density (Jr. < 0) appears to

be abundant near the cylinder wall for ICI > l as either H or N is

increased.

iii) Induced magnetic 6ietd B(p,C) [Figs. 5.9 and 5.101: The

induced magnetic field is denser near the cylinder wall at p = 1 than

the axis at p = 0 as H is increased. B(p,C) widens over ^ as either H

is increased or N is decreased. For large N = 10 and small H < 10, B

grouts almost linearly with p in the interelectrode space, --1 < C < 1.

iv) Ef-eatkic 6ia-d6 E  
r. 

[Figs. 5.7, 5.8, 5.11 and 5.121: The

intensity of Ep' ^ grows rapidly near the ring electrodes (p = 1, ^ = ±l)

and the Laximum of Ep11; shifts to the cylinder wall as H is increased.

Eps ^ extends more widely along the ^-axis as either H is increased or

N is decreased.

The graphs in Figures 5.3-5.12 are based on the Fourier series

solutions for the Bessel functions of complex arguments, which are

summed up to n = n	 terms such that nnax 
satisfies

max

If(p,on -5 - f (p ' O n 	 1'1 folon	 f_ 10-3 . The numerical values
max	 max	 max

of complex Bessel functions J0 and J1 in the series solutions are

computed based on the algorithms by Gautschi (1964). The Gibbs

phenomena at discontinuities and the tendency of oscillation are

suppressed by using the Lanczos convergence factors a n (Arfken 1970),

sin[nir f (n	 -t- 1)
cn ^	 nor/ (n 

max 
1) 
	 ^ on = 1, 2, ... , n	 (5.48)

max
max

2

E

F	 l

4
t

'i

I

II
	 i
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Ue graphical presentations of the plasma fields Indicate that

it is desirable for the ring electrodes to be located sufficiently

.	 apart in distance compared to the cylinder radius (N	 1), to

ensure a significant Lorentz force and plasma rotation.	 As long as the Von 4,	 ^

end walls of the discharge chamber are placed sufficiently far from the

ring electrodes (L w L/c >1 l), velocity losses due to the boundary

layers at the and wells are insignificant. 	 The proposed centrifuge
i

scheme results in supersonic rotational plasma velocities (which are

not affected by the inducted magnetic field) for moderate flora numbers
k

VIM	 j

li, N, L that are realizable in practical applications.	 For example
4

III R 102 azmp, a	 A 104 Tesla, o - 102
 mho/m and c M IN 	 W 10 1 m,

the speed of plasma rotation is 144 m/sec in order of magnitude by

=	 S

f	 ^

Equation (5.15) and Figures 5.3 and 5.4 for U - 104 and N - 10,

In to practical. centrifuge design for isotope separation, the

multi-discharge centrifuge would be located at some stage in a cascade. ^"	 {

The enriched and depleted isotope streams are introduced at one end of
1	

i	

4

each centrifuge stage and removed at the tither end. 	 As long as the
k ^	 C	 ':	 r

^	 3

inflow of the isotope mixture and the removal of separated Scans occur

at a sufficiently slow rate, these flows can be neglected in the

analysis of the plasma rotations.

VIAk
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APPLIt'A T1 N TO ISOTOPE SUARA`1IGN

As shown in the previous chapters, the plasma centrifuge using
1

el,eatranagnetic forces permits to generate speeds of rotation of the

001%ler 104 m1sea far ordinary stern , -state conditions, which are by two s

oxfous of vagnitude larger than the achievable speeds of about

400 Wee In the mechanical centrifuges. 	 As a result of the high speed F

of plasma rotation, the plasma centrifuges could be used with

advantage for tho separation of isotopes.	 The spAtial separation of 'F

the isotope ion and atom components according to their particle masses

is ensured by the strong centrifugal farce acting on the isotope

elements at these high speeds of rotation,.	 Two different kinds of

?^Mtope components get different rotational velocities according to the

vass due to the intarcomponent friction force. 	 This frictional fore

together with the magnetic field results A a radial motion of the

isotope components, the velocity, of which is negligible compared with

tho velocity of rotation. 	 The heavier components move outwards and the

lighter luwards in the plasma centrifuge.	 The diffusion for such a

valticomponent plasma transverse and parallel to a magnetin field in

the presence of a centrifugal force has Damn discussed by Doneww1ur

(1966).	 For the plAsma centrifuges, it is possible to apply his theory* j



r	 ^

100

to get approximate numerical results where the separation effect is

taken into account.

As tin illustration to the plasma centrifuge, the isotope

separation ratio a is calculated for two isotopes of lighter ntnss mi

and heavier mass m  with the same charges. The separation ratio at

distances H < r o - S. where a is the viscous boundary layer
9

thicltness, is proportional to the poww Cm —tx W' Cr) AT in both the

mechanical and plastttn centrifuges (`t'' is the temperature of the

isetctgtr ions) . The saparas ion ratio apt for the mechanical centrifuge
+r

is expressed by Cohen (1351)

	

«	 n (r)1ni(r)to	 t
m^-mi )V (r)

	

iti	 n (0 fi (c)) 	 ' !^	 .2kT	
(6 .l )

while the separation ratio t:p for the pla s-ma centrifuge is given by

Bannevier (IN16)
4)

n (r)/n Er1	 (ut	 ; r)
^	

^^.	 n^ Ell luf tti]	
t.^i, ^...^ -kT; - c ._.__ t r; C-r') (&.2)

As a slle( ific trx.tnylo, tm%.ildtl r .ttt ttl:aitium plasma colitriftlAO
138

Contaiitlitle, 010 be,lviej lz otopt! loltt 1) E+^	 a kid i lls' lighterk t) tt-
, 
lS

W obta lu ettrielt4.l 
11J	

"t :about 4 '^ t rom tht , rt,lt taral ct I'll 11d aI%, ,%- ut tl. ;"v

as nuclear Fitt l Or t'C`tW LOV';.	 FOr tltr eIlV6C1lt1lt`tlt Of u;at.ttl'al llt:ttlLM11

23a
With U235 the centrifuge discharge ia)utd btu t 1 urlit. eitlier b iieoll !solid

uranium electrodes or in an UP  aitttto gliere, Such uraudum are

discharges can be operated at temperatturvs as low as - 4500°K. In this

case, one has m238"ntw35 ' 4.982 x lG `7 k8, kT0 - 6.213 x 10-20 Joule.

Honce, the isotope separation ratio for r - u/2 is
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C011PRESSIBLE PLASMA. CENTRIFUGE WITH SECONDARY FLOWS

In this section, the theoretical analysis of the steady-state

dynamics of a plasma centrifuge employing concentric cylinder

electrodes and an axial magnetic field B o is proposed. The plasma is

produced by a radial discharge of current density s in the isotope

mixture, and the rotation of the plasma is caused by the Lorentz-

",-

	

	 forces ^ x ô . Based on the compressible magnetogasdynamic equations,

a mathematical method is proposed which permits to calculate the

plasma fields, such as the velocity, mass and current densities, and

the electromagnetic field in the centrifuge, as a superposition of

primary and secondary fields. In this approach, the critical Reynolds

number for the onset of secondary flows is determined as the eigen-

value of the boundary-value problem for the secondary fields. Attention

is given to the evaluation of the feasibility of plasma centrifuges as

it is affected by secondary flows and viscous boundary layers.

ii

• 761. Plasma Centrifuge Model with Secondary Flows

}

The subject of the consideration is a two-dimensional theory for a

plasma centrifuge with electromagnetic and viscous forces, the Hall

effect and secondary flows. As a centrifuge model, the previously 	 i

considered type is chosen with concentric cylinder electrodes and axial

magnetic field (Fig. 7.1). This centrifuge geometry is symmetric with



Fig. 7..1. Geometry of plasma centrifuge with cylinder electrodes at
r = RI,2 ( o = primary velocity field, S = primaky
current density field).	

o
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Fig. 7.2. Qualitative representation of secondary .Mows.
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r€opatt to the Cwa,ci.a and Otte plant n ^ 0.	 It should, theri^Nvey :Make

At OWN= of Soto, ary flown into the analysis possible.	 The €

Mope mixture is contained in tht3 i atat.eloctrade spact A	 r a 'tt,^ r	 +	 ^

itt form of a plasma sustained by a radial gas discharge between the {£

cathode at r *1 k	 and the anode r 1* R	 `11io raAal component of the 4

Current density I fortes with the magnetic field Ri o a volume force 1} !	 k
R 10 the a2imuthal component C	 )^	 —00 of which produces the

rotation in the eireumArential. direction -0.	 In the steady state,

tilt	 x	 foreea are balanced by viscousforces and inertia forces ofrqV

tht plasma motion.	 The resulting v loai.ty field TWO of the plasma
i	 _`I	 'I

Y	 , 	 '

can be rapre.sonted as a suporpoui.tina of a primary rotation field (a)

and secondary velocity fitld;s in the r, 0, and n -directions=
t

^''^)	 (0'^'0^('')^0} `^• (vr (r,C), v (r,n), vaQ01

Wnoral#, the aerial extension Ass of the centrifuge is large compared

to the radial antusion R	 _ R	 so that the primary fields (o) can be
- r

treated as	 e.g., V	 WO- vQ (r) .	 to particular,
Poll

f

this aasumptton is rigorous for a hypothetical ceatrifuga of infinite

axial extension, An 4	 Similarly, the plasma density, p 	 a pp	 p

J

currtnt density,	 (•,a), and electric potential, I	 0(r,Q, are a
j

superposition of primary (o) and secondary fields.

The problem of secondary flows was first studied experimentally

and theorotically for incompressible floor of liquids botueen rotating

cylinders (TayloL 1923) . 	 A qualitative picture of the secondary flows

in liquids between rotating cy!indors is given in Fig. 1 .2, which

provides an Impression of the complexity of these flown.	 In this case,

radial and axial fluid muttons have to bo considered in addition to

vn

' :^'^..'_... ,..	 __.. .-.._	 -..	 ,.-. _..._Y.-et+^'^.'sort+..!+i.'_""+.^.e-......ssr:"—.+4.^..rr,+v m.-^--•--.-. _,«.,,,+ 	 ._.. ..	 _
5^y

i



parametrera for actual pl.aams contrituaaa.

110

aMImuthal aomlaonont g of flull zation, go Wat two NAVIer-St Ang

Mat~ M bocomg hi4hly nonl,lnear. Both vNporimput (Taylor 1923) and

blfwation theory (Y"Ovicb, 1967) Wipato that a Qrkival Wynaldo

PMUM 4 Wgug. for whioh the problem harp a vaiquo golutW (Cain S

Oval for gmAlI fpynol,dg number; \ voWPOrod with NAN < Nd ' and

threw d mong lanal golutiong of atoady gneoudary flvwp after the loan

of ataWi,tyx for A gl,ight;lyF largor than 1W (.1* I Q. Ao the Slaoldg

u abor l is further lncreaaed, wort and mare complUatod typ gn fin) of

ggoondary} f:lowa occur as goon as A bocame g War than XU Wfurovi.on) ,

wiIgro In are highor War ol,Son-Wuga. Wally, for auff Ount;ly4

lama A $ no l,amInar flow golut:long exist and the rotating floe bolaw4a

tuKulont, The probium of g000ndary flown In InoomprgaMble Ruida hag

not boon roaol_ved PAalytfcal.lyK or numor:lea:ll,yF to date.

Tate propoaed pl,agnia centrifuAn model, contains all major offoot;a

which ) enhance the votatlon (cloctrowapnot?ic for=, gall effect) and

11) reduce the rotation (viaeoua forcea, boundary layovers, secondary

fl.owa) of the iaotope mixture. Sucoadary flown occur Wcauae tho

oontr:ifuge operataa at hi h, auperaonic apeoda of rotation for which 	 ^^ Y	 t

the RayanIdg number A 
Is 

probably larder than the critical value *% TM
T,o momentum and energy dissipated in the aecondary flown reproaouta a

logo mechanigm which reduces the apond of aaimut hal p1gong MAW" and

the officie"oy of the centrifuge. For these reaaona, the aecondary
d	 fi	 J

flows have to be included % the feasibility analyals of plaama cantr&

fugea. As Important is the dotermluation of the critical. ReynoI&I	 Ĵ
numbora X at which bifurcation occurn, which are important donigtti
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Z n2, Analytkal lkitahotl

Tht two-dimm,ional_ Mlda in the plaomn centr;ifugn with aeeona

MY &A are de crib td by a nonlinear boundary—valuQ problem for the

eempreeaibl,e, magaetogaadynamie egu€ttionn. This prtataOm ;ia consider-

ably more eomplex than that of the secondar y :flown of an inccmpreaz:itala

liquid between rutatai.ng cyl-indern, oinza the Rueter of coupled,

uonl;ineav partial d i.ffornntial Oqu ations in comprot:nibl,o maguetogon-

dynami,co is much larger. The nolvion of tho nonlinear magn€atogan-

dynam c equations for the primary pla gma fie;ldo In first sought, and

then the aelution of tha total plasma fields as a oupor pnokion of

pri awry and secondary floldn. The : orondary f.lel.dn will be expandtut

In Liapunov-Schmidt aer:ion (Vainborg and `f'rennpiu, 1962), e.g.,

A

	

	
Q0	

IM a

UTI

for the secondary velocity field, This otatomaut for volution povmUn

Vogl volutio= of the secondary flown for Reynolds "timOra 1 a 1*.

Since K a 41 to I in the vicinity= of tho oaaot of secondary flown.

(N - X*)I a€arven as eKpunai.nn paramctor. `thug , in tho vicinity ot they

onset of secondary flowq the nonl,inoar boundary-value problem for the

aeuoadary flol.dra can bo treated by tho method of zauci?e aoOO approxima-

tlono. In thin approach, the 6oconddry Clold a In tho m-th approxima-

tion Q " I t 2, 3 1 .., ) are described by couplod, IS= Af foro"t iAl

nguati.ona, with cootficitants and woureo tormn t.tttctt depand only on tho

solutions of the lowtr approximatio"s m " 1, 2, .., m - 1. In each

approximation m Z, 1 to the coupled differoatial equations, tho ettt,l al,

ainan-vaal.ue .1 appeara an an K yu-value. `Ihun, tho higher

l

^	 f

1

9

f
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1
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approximations give not oul,y cai ections to the socondatry flow fieldat A,
r	 ^!

but asb to tlto critical l ca,►aoltls nuember x* .	 Mae secondary fiol,ds
E

haavo to satisfy laowda ry conditions at the centrifuge walla, as well }
as por;iodici.ty conditions We to At spatial	 pariodici.tay of the .:

arraangamant of the secondary flows. 	 Q1l.t;hough this mothad of soluti on

is sImple in priatipl.e, the ,natuaal integration of savex;atl coupled.
t

)	 -

inhomogeneous differential equa tions is difficulty and the dagrae of
s

complexity grows with each approximation W.

it is proposcd to atnatlyrsa the plasma centrifuge depicted in

Fi.gura A. 1 	 along the lines discussed above, in ardor to obtain i
^, r

solutions of 010 plasma fields an a suparponition of primary atnd

aacondary f;ial.d$. 	 ilia the naathemat:ical details, it is referred to
+'k

4
{

Section 4.3, Wich contains also physical extonolons to the Plasma

contl i fuge probl e a with secondary flown.

7.3.	 Theor a t: ioal formulation

aIn the theoretical description of the le gating plasma in tho

contri.faage, it is parmittY the inclusion of arxtsymmetric secondary

flows v(r,:) superimposed an the main azimuthal plasma flow vop (i) no
-i

that the vcl eci.ty field of the plasma is given by Sam) - Iv x f x a n) ,

vQg(,r) * vq(r,z)t v/r,Q.	 In viva of the cstroma mathematical

Camploxity of tho analysis of secondary flows for compressible contri—
•

}
i}

fuge flows, the assumptions of tali isothermal partially-ionized pl.asnl"t
r	 f

^
t

..	 ,i
and small magnetic Reynolds number are made first. 	 Accordingly, the  I ^.

plasma temperatures in conntant (T - T	 and the induced magnetic CAW

cant be 110gleacted, to, 0 1 B } lu thinmodel.	 The proponed placama
0

cantri,fuga is described by the (isothermal) comylreaasi.ble m agmatog ei.aWr mic s
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equations and the conservation equation for the electric current`.:{

density with Hall-effect (WT	 0), subject to the appropriate boundary

conditions and periodicity conditions for the secondary flows. 	 After

normalization in accordance with the following substitutions,

r/ C + r ,	 z/ C 	 z,
6	 _^

$g y
r

V/V	 +	 B	 I/3	 +^,	 pp/Pc -^ pp ,^,	 n̂ r c ^'	 ,

^

G	 0	 c	 C

x

where the characteristic reference values are defined by

G	
{itl ,P2),	 Vc -a 	 To m,	 $c = BO,

l

5

Jc s csVcBc ^	 P^ = po (r'^Rl), c = RcVcBc ,
t i

}

the dimensionless magnetogasdynamic equations for the mass density

{

(pp), velocity (1), current density	 and electric potential (gyp)

fields become

ppV• 17V	 -VP + A-1 [V 2V
 
 +	 (V -V)	 + 11 A

-3' ^ x
0

r

J

:[	 u

a^0,	 0.6)

where

a- A V R /p ,	 13 - ^R Bccc	 a
are Reynolds number and Hartmann number, respectively. 	 The system i

(7.3)-(7.6) must satisfy the following boundary conditions,

F:
w	

_.-
:
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Q'Q rma . " to
"112

R^ VZ (ra x)rdr t. b,

.,	 x	 + c^o r, 	{7..7)

-W e w < `i- O t	 C7.8)

0(r,Z) r- 	 = 420 -W 4 w < + W,	 (; -9)

where 
R1 2 and 01 2 are now dimensionless: constants normalized by lie

a	 a

Te , respectively. The boundary conditions (1.7).7) and (M) consider

that the plasma does not slip at cylinder electrodes, and that there is

no val.oUty flux through any transverse plane a m constant, respectively.

The boundary conditions (7.9) specify that an electric potential

difference 12 - 01 is maintained ;across the perfectly conducting

cylinder electrodes. Since the secondary flows are aaxisymmetric and

pexiodic along the cylinder axis (ca a axial gave number) the periodicity

conditions for the secondary flows are

yraQ W -z Oda) " vr, O (I. .0 f

(7.10)

The formal perturbation theory is employed to analyze the

behavior of the solutions in the vicinity* of primary fields. All

centrifuge Qj) are therefore sought in the form

fir, ^)	 o (r) + Ar, c) .	 (7.11)

IIA primary fields f0 (r) are first considered and it is supposed that

a Sall secondary field Q, c) is superimposed on the initial steady

strata field fo (r) . Substitution of the expression ( 7.11) into
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Equations (7.3)-(7.9) yields a boundary-value problem for the initial

study state, and a linear eigen-value problem for the secondary flows

.	 by retaining only the first-ardor terms in the perturbation fields.

#.A. Solutions for Primary Fields

The following boundary-value problem for v  (r) and ^ 0(r)

describes the zero-order steady state of the plasma centrifuge:

d^
d ( d 

(r v )) - H2 v	 -H2	
0	

(7, .12)
dr r dr

	
00

)
	 dr

40
(r
 (r dr ) '. r dr (r v

on } .	 (A.13)

where

vo8 (r) r 	a	 (7.114)^R i 2	 ^

%(r)r-
RJ,, 2 ® 01 , 2 ,	 (17.15)

and

H2 a 1I2/ (1 + w2rt2)
1

The remaining primary fields are consecutively determined by using the

solutions for 
v 
0 and 0a:

	

dI
	 ,

4r(r)	 (l + m2r2)-1(•• dr	 voB) ,	 (7or . 16)

Joe (r)- mr j or '	
(7.17)

2
dpa vo© 
	

(7.18)
dr	 r p o 	a	 a^

^,_,r,	 ^-^»-^., rs-- -T,-.^--.•ter,--r^-.a	 --^.^a^	 ac^w. -s^^^r.-rt.:.^^	
^ t
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Tho staady-stata soluti+ous of 9quations (7.1")-(iLIS) are obtained in

th'a fam.

7e0 (r) - ar + br`I + ertur ,	 (.3 .19)

a(r2/2) + b lir + ctr2/2 — 1172)tjzr — r2/4] + d ,	 (7.20)

, f or (•}	 2cII 2r-1 	 (7.21)

Joe 	 - wt ior (r ) .	 (T.22)

po (r) - [ 20TX-1e f r-1oxp (--fr r`lvo,dr) dr + 1) c±xp (
fr 

r-1v2Odr) s1 (?.23)
Where

b c[pillif:l(R2 /R,) /(	 —q) )	 (7.24)

c	 --(4' 2-° 1) I (	 ^ 1} 14 ^- V jK2 obt2 ( R2 /RI) / (T ^-R1) + 2I1 a 2t_jz(R2 /Rl ) ]ws,

Equations, ('.20)-(3.23) exhibit clearly the effect of plasw rotat;-x.

(7.19) on the plasma fields.

7.5. Sigea-value Problem for Secondary Fields

Uneariaation of Equations	 according to Equation (1.1.1)

yields for the secondary flogs in the plasma, the eigell -value probl,e:a:

+ X 1 [V'v + 3 7(G •v) l 
+ H?x_l, 

3 x
	 (x ,25)



^4ir^^'+'t	 < y^:^y	 .^*' '^'. ^` ^^......^	 ^.,°3"S`" 	 ^.^^	 .. .r.^^^^^-»3 ^ ...fTw-`_fib._.. ,..^+^:_.-.^.^......i! ^..__.. ^ ,ia_̂. ^- 
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^. +
pqv •v + v •Vpo ,^ 0 ,	 ( 7.26)	 f

+7

-G + v x e^ -WT x ez ,	 (x.27)	 I

q	 :	 (V . 28)

where

v(r,x)	 s	 < Z < + ^+ ,	 (7.29)
r-R1,2

f

R

	

2 vz (r,z)rdr = 0 , -m < z < + 	 (7.30)
R,

(r :Z)	 0	 z < + m,	 (7,31)
r=Rl

,2

designates the unit vector in the z-direction. Substitution of the

periodicity conditions (7.10) for the secondary flows into Equations

(7.25)-(7.28) produces additional periodicity conditions in z for the

remaining perturbation fields:

jr, 0 (r, -z 12ir/a) = 3 r,8 (r , Z ) ,

^ z (r, -z ±2Tr/a)	 -3Z(r,Z)
V.32)

p (r . -z ±2n/a)= P(r ,z)

^(r, -z ±2n/a) = ^(r,z) .

In view of periodicity conditions 0.10) and (1.32), the solutions

for the linearized system are sought in the form
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yr (r, z) a Ir, a (r) cos at, vzz r, s) a A
VS (r) sin ax

irto (r,x) .. 3r,a (r) cos a:,,	 J,(x,m) - 32 (r) sin am ,	 (7.53)

p(x,^) ^ ^(^) cos a^.	 ^€r^^) ^ ^,(r) cvs a^	 .

By substituting tho above trial solutions into thn linearized system

(7.25)--(7.31) 3, the problem is reduced to a sat of coupled ordinary

di£ftmutial equations subject to homagamous b auudary conditions t

Wj, — n )vr 1[— V — f + Dp] — x`Jeer( -DS + v6)
1Vr

x(DD ^ rr + a v s) ,	 ( 7. 34)
^ 

(DDS -- a )v8 1 3vr + ti (-ll + ^€^ + Wrvr) •	 ( 7.35)

(DDS - a )V" 	 + 3 
(D,^vr + ava) ,

(1311 -- (I + wai ^ h)a ^^ ^ D* (v0 4- wTV') .	 ( 7.37)

D*4,r + f4 Z'r + OLV^x Q ,	 (7.38)

Whore

Vr ^ 8 't(r)r-ll 2 
0 .	 (7.3p)

Dvr (r) rftR1a2 ft U ,	 (7.4Q)

DDO, (r) r.	 4 ,	 (r .41)

A	 U a	 (7.42)

Cr)r^..	 ae Q ,	 (7.43)

^J
,z
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a

^. (r) a 2P0 rod IV , f 2 (r) ^ '^©a rr
	

Yr) B PoDOCO ,
	 ( 7 .44)

f4 (r) (Dp0VPF .

and

The perturbatiou amplitudes of the current density Melds axe

determined by using the solutions for vr, V0 and

jr (r) A (l + w2T 2}" ^^ + Va + OT r)

J6 (r) M (l + ta2^2)(t^r (^	 v) a era a

jn(r)	 cx .

(7,45)

(7-46)

(7.47)

Equations (7.34)-(7.38)  with the corresponding boundary

conditions (7.39)-(7.43) constitute an e3igen-•value problem for the

Ft^wlds nuwber \. For gi<<e►t system constants M1 2 , 11, o, W, S) And
a

operating, parameters (11, tl a @ 2), the eai&on-vaiuiQ proble►rs (7.34)-(7.43)

has a sequence of positive eigen-values 'k (a) for any axi,-a wave.

VkUmber o. Among thane eigen-values the mal.l.est one, A (a }

win	 fin) a for a Certain values of ak* is the critical. Fayuolds number,

at Ahich the secoudary flows first set Ln.

The similar Qigenvalue problems as shown here: have frequently

ocourxed in the analysis of A-1,s})-tanetric neutral stability for either 41	 t °^'

hq+drodynamic CoueCte flow or an NAD Couette. flow. Inched even ict these

simpl.ar cases, the problems have nukes teen campl.et04- solved by

analytical methods. Either case has been auAly--ed using some

technIquos (Ghaudrasekhar 1961, tvchiuujt ova and Woeich 1966) of an
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expansion in orthogonal functions, a variational method and Green's

function solution or direct numerical computations by employing the

Galerkin method (Kurzweg 1963), the Runge-Kutta method (Harris and

Reid 1964), successive approximations (Sparrow et al. 1964) or a

finite-difference technique (Chang and 5artory 1965).

The solutions of the eigenvalue problem (7.34)-(7.43) correspond

to the first approximation (m=1) of the hiapunov-Schmidt series

expansion (Section 7.2). In a similar way, the eigenvalue problems

for the higher order expansion fields V (m>2) can be formulated to

obtain improved series solutions and eigenvalues A for the secondary

fields. ,Along these lines, a quantitative theory of.the plasma

centrifuge with secondary flows could be developed with an accuracy

corresponding to the second approximation (m=2) of the Liapunov-Schmidt

expansion.

In the above theoretical formulation of the plasma centrifuge

problem, certain physical effects have been neglected in order to

reduce the number of equations and to reduce the formalism. In the

actual research, induced magnetic fields should be taken into consid-

eration so that the results are applicable for arbitrary magnetic

Reynolds numbers, R = [B ind/Bo ] = oavcL. Because of the large thermal

conductivity of plasmas, the heavy particle temperature o is quasi-

homogeneous over most of the centrifuge space R 1 < r < R2, i.e.,

temperature drops exist in the vicinity of the electrode walls. Thermal

energy transport and dissipation should be taken into account if this is

mathematically feasible. The theoretical approach proposed would make it

also possible to solve the dynamics of secondary flows in ordinary,

nonconducting gases, another still unsolved problem.
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CHAPTER V111

CGLLISIONLESS PLASMA CENTRIFUGE

In this section. the problem of the collisionless plasma

centrifuge is presented within the framework of the (steady-state)

Vlasov-Maxwell equations. A one-dimensional configuration of a

multicomponent rarefied plasma in an infinitely long cylinder aligned

parallel to an external, axial magnetic field is considered. In the

charge-neutral, approximation, a solution to the self-consistent

Vlasov-1taaisell equations is obtained by assuming Matiwellian distribu-

tions for the plasma particles.

8.1. Model.

As a model for a collisionless plasma centrifuge an electrically

insulating cylinder 
o 

containing a mixture of isotope ions and

electrons of masses mi . i = 1,2,..,e is chosen. The plasma state is

produced by switching on a strong axial magnetic field B(t) -?- BO ^ 1

Tesla so that the associated induced electric field E(t), which is in

the azimuthal direction, breaks down the isotope mixture simultaneously.

The ions and electrons are accelerated by the induced electric field so

that they obtain mean, mass velocities VQi in the azimuthal direction.

The resulting centrifugal forces (in a system of reference moving with

the particles) distribute the isotope ions radially in accordance with

their different masses mi . The subject of the consideration is the
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steady-state composition of the isotope mixture after the magnetic

field B(t) has reached its "plateau" value Be (Fig. 8.1).

Fig. 8.1. Model of collisionless plasma centrifuge.

This centrifuge has to be operated at low particle densities

(collisionless system without significant viscous losses at r = Ro)

-	 but at still high enough pressures to avoid a compression of the plasma

immediately after breakdown by the Lorentz force 3 $B z which is

directed radially inwards (theta pinch effect). A pinch contraction of

the plasma with a radial velocity would produce even higher azimuthal

particle velocities through the azimuthal V x B field but would render

a controlled extraction of the isotope ions difficult within the typical

pinch times At - 10-6 sec. Another reason for avoiding 9-pinch
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ccndi,ticx;° is th_. shoot haating of the leans to umpi^iraturea Q y 106 'K.

At such high Ian tetapaar€atures a the random thermal forcea would dominate

the directed centrifugal forces and anakea an efficient isotope separation

impoaaaalbl.e .

Accor4 ngl,y, in an axperimont the centrifuS@ would have to bo

operated under conditions where the radial, Lorenta force in tamill

compared to the pressure gradient and the electron temp= aturo TO

generated in the Induced electrical brealtdoum is large compared to thka

icon, tomperaature, 'Pc , Te	 TQ	
l0$ 'K. Nouisotherilial plaaamns acre

readily rcal.i ed at low filling pressure (T. as To) s3,nce only a

fraactiou - mejmi of euergyt is lost by an electron €a in collision with an

:Lean i.. since ideal, collision and lossless plasmas coo not exist, only a

'quasi-oquilibrium can be reached In they isotope Ian mixture after B(t)

has arisen to B0 , which should last for about At - 10-3 tae:;, and permit

"traction of the separated isotope species due to they long thermaal

ralmxatloxa time of the electrons. Aa a technical aapplIcatioll, this

cQllisionless plasm centrifuge would have to be operated gander

continuously repeated induction pul,aes B(t) R- U0 , in order to separate

A significant amount of isotopes in as reasonable time.

8.2. Boutadaary--vaalue Problem for Vla aov-A^,̂ a:.̂ asell 	Equations

From the theoretical point of view, one is Interested in analyzing

the quaaal-equilibrium state in the finaal, external magnetic field Ao

and the saf -consi.atent alect;rl,n, R Q --V^, and magnetic, B .^ p A

i; ada. For a quasi-infinitely long centrifuge, 411 fields are functions

of r Italy, i.. e. , B M Bt,O/ Br and 11 A a^ r) (c A) /r aa; . in the one-c imonsional



-	 __

steady state, the distribution functions fi( ,r) of the particles of

type 1 1,2,..,e are described by the coupled Vlasov-riaxwell

equations (Section 2.2) 2	
. r

	

! 3	 ^ei	 1 a
+ m
	

^i a^ v9 ) af3.

	

vr a r	 ve r ax
(rA) 

^^ ax + z avr

*00
r go E	 ei IJ'f	 VBfi dV (8.2)(8,2)

-	 sot 	 Z e
i 

III fi dV ,
Tr

(8.3)x	 Dr
1	 CO

relate the vector potential A(r) and the scalar potential ¢ (r) to its °-

cu-rent density and space charge sources, respectively (Vr V	 V8 z
are the cylindrical coordinates of the particles i in the velocity

space)

The equations of motion for each particle species i,

'IV d$	 Z a	 +	 V$

• In, 7-t—	 wei dr + eiV9r ^r (rA)	 mi r ..

m cTVe r 

-e V	
a 

(rA) - mi 
V 
rV8

i d t	 i	 r	 rr (8.4)

dFz
-i.dt	 0 t •	 ^

have the three integrals of motion: i
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Pi w Pie = miVer + e jAr ,

Piz miVz

(8.5)

( 8.6)

(8.7)

The Hamiltonian H i , the generalized angular momentum P i = Pi9 and the

generalized axial momentum Piz are constants of motion For each

isotope i. Knowing the complete set of integrals of motion, the

general solutions of equations (8.1) are arbitrary functionals of Hi

and Pi (P
iz 

does not enter explicitly due to the absence of the mean

axial velocity):

fi(^.0 = foi exp(-aiH. - S iPi) .	 (8.8)

The arbitrary constants foi, 
a  

and Bi are to be determined by

Ma: 4ellian boundary conditions at r Q,

f3.( 'r) r=R	 %1 21rkT )3j2x
o	 i

eXp(-mi [V2 + (VS 
vai)2 + V

2jj2kTi}	 (8.9)

Ti = To , i M 1.12, a..^e ; Ti ° T  >a T0 , i - e .

Nate that not and Voi are the particle densities and mean (azimuthal)

mass velocities (rotation) of the i-particles at r = o . Since

T » To due to electron heating and To - 1.03 nK is of the order of

the wax] temperature, a distinction between temperatures 11 and I to

Ho is unnecessary.



Substitution of Equation (8.9) into Equation (8.8) yields

11  
M 3.IkTi s

01 W4 -to i/kTi a
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mi 3/2

X01 o1 21rkTi)

where

M w2 
exp [-^( i2i o - eio + eimiRoAi) Ik2il a	

;^ "°'?

The particle density and azimuthal mean velocity of each isotope axeII ;I

given by

+^
U:L (r)	 l,fJ` fide

^o

	

21rkT	 Tn w2x2
^01(

 , 0312 exp [ ( i - Y + eiwirA) /kTiI
i

and

+Ca

Vi(r) m n (r) Iff 
vefid^ wix

i	 _CO

Substitution of Equations (8.17) And (8.13) into Equations (8.2) and

(8.3) yields a boundary-value problem for coupled nonlinear ordinary

differential equations for the self -consistent potentials;

d I d (rA)  -u r E e w n( r)
t^tc x air	

o i.
i i i

I d (r, 4) U. 
-s-1 

E e n (r)r dr dr	 0 1 i



^d

Pon i ;11000 QAQ

vlme

r	 N r^ko

r iv	 21t 
i

A -	 I..._ ._
d 

rat	
2-ft% o

a

9A 	 t'0,
reiO

is the total number at i particl.eg per unit length. The boundary a

conditions	 aau he derived directly from Equations (8614)

tud Equation (8.15) by integration, rasprectivoly. The boundary

conditions (8.16) and t&17) considor that the requireme"ts of

syv=aetry make the self-consistent maguatic field parallel to the

c4ilind+er awis at points Aside At centrifuge and that it approaches	 t.
3

aero at points eutaide the centrifuge. Tht boundary conditions (8.13)

and (3.19) take into consi6aration that the radial. Metric field is

due to the space Charges.

Y.

S.S. jasi-neu Lal YclutiOns	
j

Q the limiting case of charge neutrality (Y eini 0). there :era
i	 s

too intornal space charges so that the electric Meld vanishes and only

a magnetic field exists. In wAs case, by Equation (3.12), r

^t
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from Which

a wt const> A, b ^ conat
kTj i

2nkT
,(X) arc (y	 E e3^ni( m ^) °` 0 .

.

(8.22)

Then, Equation (8.14) becomes

dr 	 d (rA)	 x -uor exp(br2 + arA)
21rkT

E	 eifai(	 )3J2 w3 (8.23)r 'Mii

With the change of variables

T =br2+arA

(8.24)

G j
y

where

2^'kT 3/2
4 uo E ei^ai ( .̂^) wi ^ (8.25)

Equation (8 . .23) can be transformed to

d.. •f• e	 o ( 8.26)
d^2

The general solution of Equation (8.26) has the Norm

2gyp-

(I"e	 )
vhare t:, A and y are determined by Equation (8.25) and the appropriate

boundary conditions;
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A	 Q .	 0.29)

^rherc^

`	 u

i t 0 + ) + 2vie 	 n oikI`i	 e

B* is the magnetic field which is necessary for particle i to rotate

vi.th the cyclotron frequency w c iN IMi. It is noted that

(20 -1 X a WiNi I is the total currant per unit length, And that

ncikTi	 noeivr where vi is a moan square velocity of each i. By

the above expressions, the q asi.-neutral solutions are finally given by

Y TO) "' 0 , ViM '^ wir,	 33(r) .. a niW r,
. i	

2	 az^
)	 (.sa)E	 not 2_{nc^-i^^)"	 ^^,.Q\rta'^

.-1IrA

j	 It turns out, howzvex, that the radial distribution of the
t:

isotope ions depends sensitively on the electric potential T(r) since

Q+1kTa ' 1 for the ions i 0 QkTo - 7500-3 volt for '!.'o o 103

i.e., it is not determined solely by the Centrifugal fOrCQS miVa,"rr.

For this reason, the theory should be extended to include space charge
,

effects and to obtain the exact potential distribution f (r) . In view
r

of the complexity of the y underlying nonlinear (transcendental) ditfer-

rn WI OqU lOM AS CUOtil: i " has y,rObablY to he . • arrka tl•CO"911

AM" the Name of a" appropriato pvvturbat to" theory.
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APPENDIX: PRlrVIOUS RESEARCH ON ISOTOPE SEPARATION
a

For isotope separation, various methods have been suggested such

as chemical methods (Urey 1939), diffusion methods (Furry et al. 1939),

electromagnetic methods of mass spectrometry (Smith et al. 1947), and

mechanical centrifuge methods (Humphreys 1939; Cohen 1951). In electro-

magnetic methods, ions are moving in different orbits and are deflected

in a magnetic field according to their different charge to mass ratio.

However, because of difficulties in producing intense ion beams and

neutralization of ions by electrons, this method was not widely used in

industry. In fact, it is used only for laboratory purpose for producing

limited amounts of pure isotopes owing to its high resolution. For

separation of isotopes with low mass, chemical methods are more effec-

tive than electromagnetic methods. When large quantities of pure

materials are required, it is industrial practice to use gaseous--diffusion

separation systems.

In recent years, other effective methods for isotope separation have

been studied. In particular, plasma methods are promising for high pre-

cision technology and in new technological developments. Plasma separa-

tors can be designed to operate on the basis of plasma streams (Becker

nozzle) and plasma rotation (plasma centrifuge). The Becker nozzle is

being developed as a commercial isotope separation device. In principle,

this device expands the isotope mixture through a supersonic nozzle and

along a curved wall so that extremely large centrifugal forces result

which separate the heavy isotope from the light (Becker et al. 1955). a

An extension of this principle is applied in the jet scheme in which two

or more opposing supersonic nozzle flows deflect each other so that

centrifugal forces occur again as at result of stream line curvature: 1

(Campargue 1970; Becker et al. 1973).

V
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Although the plasma centrifuge concept was first proposed by Slepiau

(1956), a maJor research effort does not appear to exist in this field in

.	 the United States. There is a significant research program on plasma

centrifuges in the U.S.S.R. (Berezov et al. 1976; Belorusov et a1. 1976),

which is classified. The interest of smaller countries, such as Sweden

(Eonnevier 1966, 1971; Lehnert 1970, 1973), Japan (Okada et al. 1973),

and Australia (George and Kane 1972; James and Simpson 1974, 1976), in

plasma centrifuges appears to be due to the low cost of this type of

separation device. From the theoretical point of view, the basic mecha-

nism for plasma rotation by means of crossed electric and magnetic fields

and Lorentz forces in rarefied and dense plasmas is understood qualita-

tively (Anderson et al. 1958; Gordeev 1959, 1961; Kessey 1964; Hanson

and Cohen 1970; Vrba 1971; Witalis 1974; Ban and Sekiguchi 1976; Marlier

1977).

Proposed plasma centrifuges employ either low-density collisionless

plasmas or high-density collision-dominated plasmas as working; fluids.

Experimental evidence on isotope separation in plasma centrifuges has

been reported for both cases (Bonnevier 1971; James and Simpson 1974,

1976; Heller and Simon 1974; Berezov et al. 1976). R.xact solutions for

collisionless centrifuge plasmas are not known, which require evaluation

of the self-consistent electromagnetic field interactions (Komarov and

Fadeev 1962; Watson 1956). The disadvantages of collisionless centri-

fuges are relatively large electric power dissipation to produce high

degrees of ionization of the isotope mixture and the small amounts of

isotopes they permit to separate. On the other hand, collisionless

centrifuges have minimum velocity losses at the walls due to the absence	
a

of ordinary hydrodynamic boundary layers. In high-density centrifuges,	 a
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1

i

i

1
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1,32

only a small fraction og isotope such as cesium with a low ionization

energy) has to be ionized to produce a partially ionized plasma state.

The Lorentz force due to tho interaction of the current density and

magnetic Meld sets not only the charged plasma components but also the

neutral plasma components in rotation, which are coupled through the

intercomponent friction forces. The collision-dominated centrifuge

c3 Qls through relatively Iola energy dissipation and largo isotope

densities. The velocity losses accurring in the viscous boundary pryers

at the walls are, however, of some disadvantage.
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