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Abstract: The motion of a satellite in orbit, subject to atmospheric force
and the motion of a reentry vehicle are governed by the same forces, namely,
gravitational and aerodynamic. This suggests the derivation of a uniform
set of equations applicable to both cases.

For the case of satellite motion, by a proper transformation and by
the method of averaging, a technique appropriate for long duration flight, the
classical nonlinear differential equation describing the contraction of the
major axis is derived. While previous authors, and in particular King-Hele,
integrated this equation using various heuristic methods, the present authors
present a rigorous analytic solution, with a high degree of accuracy, using
Poincare' s method of small parameters. Next, using Lagrange's expansion,
the major axis is expressed explicitly as a function of the eccentricity. The
solution is uniformly valid for moderate and small eccentricities. This is a
major achievement due to the discovery of a certain recurrence formula which
facilitates the long and tedious analytic process. For highly eccentric orbits,
the asymptotic equation :s derived directly from the general equation. To
obtain the same equation King-Hele must use an entirely different method.
Again, while King-Hele only succeeded in obtaining an approximate solut-,In
to this case using a heuristic method of integration, the exact solution to the
asymptotic equation has been obtained by the present authors. Numerical,
solutions have been generated to display the accuracy of the analytic theory.
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I

INTRODUCTION

The theory of satellite orbits in the presence of an atmosphere was

developed during the late fifties with the launching of the first artificial

satellite. With increasing knowledge of planetary atmospheres, especially

the atmosphere of the Earth, the theory has now reached a very high degree

f	
of accuracy. For a first estimation of the lifetime of a satellite and for a

correlation between the semi-major axis and the eccentricity of the orbit

while it undergoes a contraction due to the perturbing effect of atmospheric

drag, analytic theory is adequate. The classical theory was presented in

a monograph written by King-Hele (1464), who is among the authors who

have contributed the most to the development of analytical solutions.

There are two reasons for presenting this new study of a well

established and analyzed subject.

The first reason concerns the approach to this problem. In the

early days, development of the theory of flight inside an atmosphere was

conducted from two different approaches. On the one hand, researchers

analyzed the small perturbations of satellite orbits at very high altitudes.

The mathematical tools are perturbation theories in celestial mechanics

based on Lagrange's equations for the variations of orbital elements.

space object, usually referred to as a satellite, is not intended for recovery.

'•	 The main subjects of concern are its life expectancy and, while in orbit,

A	 the slow variations of its orbital elements. On the other hand, engineers

and scientists who were concerned with the safe recovery of an entry

vehicle concentrated their effort in the study of the deceleration and heating

during entry. Here the elements of prime consideration are the position
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and velocity of the vehicle, both varying rapidly. The smooth behavior

of near Keplerian orbit is no longer valid and strong physical assumptions

were made to such an extent that, although describing the same phenom.;non,

namely flight of an object inside a planetary atmosphere, the equations

became totally different. The gap got wider, as the two theories became

more and more sophisticated, so that now the two groups, one consisting

mostly of mathematicians, and one consisting mostly of space dynamicists

seldomly reference the other group's work. With the objective of providing

a unified theory for flight inside a planetary atmosphere, we have formulated

a set of universal, exact equations. These equations have been successfully

applied to the study of planetary entry of a space vehicle (Vinh et al. , 1977)

and even to optimization of such an entry (Vinh et al. , 1975). In this paper

we shall present the necessary transformation such that the equations can

be used for analyzing the slow variations of the orbital elements while the

vehicle is still in near vacuum. This successful wedding is necessary since

the future space vehicle is designed to stay fox an extended period in orbit

as a satellite, and also to be recovered safely after a fiery entry followed

by a glide, an approach and a landing on an airfield.

The second reason concerns an improvement of the existing theory.

Often, because of mathematical difficulties in the analytic integration of

the equations of motion, the types of solutions are artificially

classified. One can easily understand the classification of orbits into

hyperbolic and elliptic because the natures of the orbits are di{ferent, as

reflected by the Keplerian equations tivith e > 1 and e < 1 . However,

when it comes to different orbital phases with e very small and with e not



so small, then it is clear that the classification is purely for easing the

integration and usually the regions of validity of different solutions are

at best defined empirically. Our effort in going over the classical theory

is to remove, whenever possible, such an ambiguity.

FORCES ON A SATELLITE IN ORBIT

The satellite and the planet are assumed to be in two-body relative

motion. For a spherical planet, the gravitational force is an inverse

square force of attraction with acceleration

	

g ( r ) = 1	 (1)
r

The atmospheric force is in the form of drag, D A , acting in a direction
y

opposite to the velocity VA relative to the ambient air

A = Z p S CD VAZD 	 (Z)

C D is the drag coefficient measured using a reference area S and the

atmospheric density p . We shall use a strictly exponential law

(3 (rp -r)

P = P p	
e	 °	 (3)

0

where R is a constant

= H	 (4)

H is the scale height, and subscript P  denotes the initial periapsis condition.

The equations of motion are written with respect to an inertial frame

with the origin at the center of the planet. Let V be the absolute velocity

of the satellite.
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V = VA + V 	 (5)

where I  is the velocity at the point M, of the ambient air relative to the

planet center (Fig. 1). If w is the angular velocity of the rotating

atmosphere, then

V	 = r w cos 0	 (6)
•	 e

where 0 is the latitude of the point M.

Let q,' be the angle between V  and V. 	 Then by squaring Eq. (5)

VA	
V2 = 2	

2
+ Ve - 2 V Ve cos	 (7)

The vector V  is in the local horizontal plane. Also, near the periapsis

where the aerodynamic drag is most effective, the satellite travels in a

nearly horizontal direction and hence the angle y between the velocity V

and the horizontal plane is small. Then, the angle k,' between Ve and

V is nearly equal to the angle ^ between V e and the projection V  of V

on the horizontal plane. This angle 4j,  called the heading, it; related to

the latitude 0 and the inclination i of the orbital plane by the well-known

relation

cos 4^ cos ( = cos i
	

(8)

Therefore, we have approximately

Ve cos	 Ve cos W = rw cos ¢ cos ^j = rw cos i. 	 (Q)

Upon substituting Eq.a. (6) and (9) into Eq. (7) we have

VA  = V2 (1 - V os i) 2 + r2 w` (cos t - cos2 i)	 (10)
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The rotation of the atmosphere is generally slow so that the term w2

can be neglected. For the small term rw/ V, it is appropriate to use an

average value. King-Hele suggested using the value at perigee r 1 V
po po

to replace rj V. Finally i, which usually varies by less than 0. 30

during a satellite's life, may be taken equal to its initial value i0. Then

we have King-Hele's expression (King-Hele, 1964)

V A 2 = f V2	(11)

where the average constant value f is

r w

f =	 (1	 V °	 cos i0 
)2	

(12)
Po

Thus, in terms of the absolute speed, the drag force is

DA = 1 p S f C D V2	(13)

acting opposite to the direction of the velocity VA of the satellite relative

to the ambient air.

THE EQUATIONS OF MOTION

For the flight of an aerodynamic vehicle with a lift coefficient CL

and a drag coefficient C D , it is customary to use the equations of

motion with the notation in Fig. 1.

dr
dt	 =	 V sin y

dB	 V cos y cos

dt	 r cos 0

dd)	 V cos y sin u,

dt	 r
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dV	
p SCDV2

dtt = - 2m - g sin y

(14)
d	

p SC L V2 cos a	 V2

V dt i	 2m	 - (g - _ )cosy

d	 p SC LV2 sin a- V2V	 r cos y cos, tand t	 2m cos Y

where the bank angle T is defined as the angle between the local vertical

plane containing the velocity and the plane containing the velocity and the

aerodynamic force.

Using the dimensionless variables

u -
V2 cos 

2 
y

gr

= 
p SC 	 r
2m	 (15)

and a dimensionless independent variable

t
s	 f ( r ) cos y dt	 (lb)

0

we have derived the exact, universal equations for entry trajectories

into a planetary atmosphere assumed to be at rest (Vinh et al. , 1975)

^..
d s	 - -p r l	

p p
AE
dr

_
2p r + 1 2	 dr)

Z tan y

2p

du
Zcosr Zu

1
C si---n-Y- _ )

da	 - Y
(	 +

CL
D

cos s tan y +
I —

44P r 
Z

dcos Z L
Coss + CO---s-^ (1 -

 Cos
	 - )

Y CD pr
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d8	 coo 4)

do	 cos 40

(17)

sin V^
do

CL sin J _ c os ` Y cos ^; tangy	 i
ds	

cos` Y	 CD	 Z

We shall use the necessary transformation to obtain the equations

for satellite motion inside a rotating atmosphere.

First, stil? with the notion of an atmosphere at rest. we use the

transformation

cos 40 cos	 cos i

cos io sin	 sin i cos a	 (18)

cos a	 - cos 0 cos ( e - 0.)

to transform the last three equations of (17) into

da	 =	 1 _	 1(-r Z sin a ( CL) sin a-
ds

	

'	 C	 '
tan i Cos ` Y 	 D

(
d 1	 r Z sin a	 C(	 L ) sin s	 (1 )
d s	

sin i cos Y	 CD

di 	 Z Cos a	 ( C L )
sin r

d 	 C	 }
cos Y	 D

1	 From Fig. 1 we notice that i is the inclination and S. the longitude of the

ascending node of the osculating plane. The angle a is the angle between

the ascending node and the position vector. The angle s . as stated

earlier, is the angle between the vertical plane passing through the
3	 1
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velocity, the (r, V) plane, and the plane containing the aerodynamic
X 

I.force and the velocity, the (A, V) plane (Fig. 2). For satellite motion,

we have a simplification, and at the same time, a complication. The

simplification is that there is no lift. The complication is that the drag

force is modified by the factor f, Eq. (12), and it is directed opposite to

the velocity VA , not the absolute velocity V.

Figure 2 is the aerodynamic force diagram used in deriving the
r

ti	 equations of motion (14), to which we have added the velocity V A with

respect to the ambient air, and the drag force DA , opposite in direction

to VA . In the present situation, we remove the lift force L and replace

the vector drag D by DA . This force DA can be decomposed into one

component in the orbital plane and one component normal to the orbital

plane. Since V e is small, VA is nearly aligned to V and the drag

component in the orbital plane can be considered as directly opposite

to V, with magnitude DA as given by Eq. (13). To have the component

D  of DA orthogonal to the orbital plane we find the projection of

_	 V
DA = - Z p Sf C D V2	 VA	 (20)

A

By the vector relation (5), since V is in the orbital plane, and since

V  makes an angle +y with the orbital plane, the projection of VA on
w

the normal to the orbital plane is the same as the projection of V e which

has magnitude

V e sin 4 = rw cos (0 sin	 - rw sin i cos a	 {21)



Hence, the vector D N has magnitude

2
DN - I p Sf CD rw sin i cos a V	 (22)

A

By relation (I1), we write it as

p SfCDV
DN	

2 f 1/Z 	
rw sin i cos a	 (23)

and its direction is opposite to the vector L sin T in Fig. Z.

.

	

	 The end result of the analysis is that, in the Eqs. (17) and (19),

we replace C D by the modified drag coefficient f C D , we delete the

component C L COST and replace the component C L sin T by

C L	fsin T _ _ 1/2 CD ( rw ) sin i cos a	 (24)

Finally, the variable Z, the modified Chapman Z function defined

by Eq. (15), is most effective in analyzing the entry phase of the vehicle.

While the vehicle is still in orbit, we use it in the form

P (rP 
-r)

1pr
 Z= Zo ( r } e

	
0-

 (25}
Po

where the dimensionless constant Z is
0

Sf CDr

.	 Z	 -	

p PO	 PO	
(2b)

	

0	 2m

We can now rewrite the Eqs. (17) and (19), introducing the equation for

r1 r	 to replace the equation for Z
po

ds ( r r ) = ( --L- ) tan y
Po	Po

-9-
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p (r -r}2 Z u	 pdu
Ts-	

- u tan y - c— o-- $ — ( r ) e	 o
Po

L
do

do
do

dQ
ds

di
ds

cosha	 1 -
u

rpow Zo 5/2
= 1 + ---

r
(	 )

F+f / rp
rP

0
0

r	 w Z 5/L
PO	 0

µ f / rp rp
0_o

rPo w Zo 5/2r

µf/ rp r 00

P (r -r)
cos i sin a cos a	 p 

1/2	 eu	 cos y

2	 P (r -r)
sin i cos a	 p 

1/2	
e

u	 cos y

P (r -r)
sin a cos a	 Po
1/2	 e

u	 cos y

(27)

THE VARIATIONAL EQUATIONS

The equations (2 7) are the bridge between satell:ce theory and entry

theory. As a matter of fact, they can be used to follow the motion of a

vehicle subject to gravitational fore and drag force of a rotating planet

for its entire '__fe in orbit until the end of its entry and contact with the

planetary surface. The accuracy depends on the readjustment, for each

layer of the atmosphere, of the "constant value" P . The equations are

most useful for analyzing the last few revolutions and the entry phase.

The variables a, 0 and i which are orbital elements are related to the

entry elements 6 , 8 and W through the reiations (18). On the other hand,

the variables r, u and y which are the entry variables can be transformed

into the orbital elements through explicit relations.

Consider the osculating orbit, that is, the orbit the vehicle would

follow if at any time the drag force suddenly vanished. Putting Z 0 = 0

-10-
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in Eqs. (2+), we have

ds(rr ) = (rr
	

tan y

Po	Po

du
- u tan y

T's

d	 coo
- 1 u Y

d 	 =	 1
d 

d 	 = 0
7s

di	 o	 0
TS's	 (281

The integration is simple and we have the general solution

2	 u2
cos y =	 2 u - Cl

C2
r =

u

U	 =	 1 +	 1 - C 1 cos (s - C3)

s = o + C4

C5

i	 = C6
(29)

We see that s is equivalent to a and actually, we have only 5 constants

of integration. The last constant of integration is obtained through the

time equation, Eq. (lb), In the first three equations, we evaluate the

constants of integration b y taking the origin of time at the time of passage

through the periapsis. IV ,-r  have

- 11 -



2	 u2
C09 y

2u - (1 - eL)

U	 =	 l+ e Co. a(a -w)

a (1 - e2)
r	 1+ecos(a 	 (30)

These three equations provide the link between the entry variables

r, u and y and the semi-major axis a, the eccentricity a and the argument

of the periapsis w , which are the orbital elements used in the theory of

orbits.

During the phase in orbit, Z° is small and the orbital elements

vary slowly. By taking the derivatives of Eqs. (30), considering a, a and

w as varying quantities and using the Eqs. (.'.7) for the derivatives of r,

,; and y we have the variational equations for a, a and w .

First, for e, we have

de _	 o	 ( cos . Y - 1) ( r	
P

-) e	 °	 (31)ds	 3	 u	 re cos y	 p°

We present the equation in this form to show an intere:ating behavior of the

eccentricity of the csculating orbit. It is a general belief that the eccentricity

decreases continuou:, ly under the action of atmospheric drag. This,

howev--r, is only the secular effect. During each revolution, the flight

path angle passes through a maximum and a minimum as seen by the third

equation of (27), and by Eq. (31) it is seen that, at the same time. the

eccentricity passes through a minimum and a maximum respectively.

Next, we shall use the more familiar eccentric anomaly E to

replace s as an independent variable in the variational equations. The

following relations can be easily derived.

i

1

k

y



r (1•e2)_
a 1+ e cos (o -W 	 -	 1- e cos E

{1 -e2)U 1-eosE

cost y = (1 - e2)
(1 - e cos E) ( 1 +e cos E)

fl - eZd 
TE 1-e cos E

(32)

Hence, changing the independent variable from s to E, the equation for

e has the form

_	 R (r - r)
de	 _ 2Z ( 1-e2)( a	 1/2

)COS E ( 1+ ecosE )	 a	 p°	 (33)d 	 o	 r	 1-e cos E
po

Similarly, we have for the semi-major axis

R(r -r)
d a _	 — a2 	 ( 1 + e cos E) 3/ 2	 po2Z	 ()-	 edE	 o r 	 {1-e cos E)1/2

0

The last three equations of (27) become

da	 dw	 1 - e2	 2z  a	 1/2
dE	 dE	 1-ecosE	 1 + e ^r 'sinE ( 1-ecosE)

po	
R ( rp -r)

	

X (1+ecosE) 1/2 e	 o

r
df2	 po 

WE
 °	 a5/2	 5/2	 1/2

d E 	
2	

`r
f/rp	

^	 (1 _ e cos E)	 ( 1 + e cos E)

µ	 1 -e	 po
PO	 R (r 

PO- 
r)

X sin a cos a e

r w Z	 5/2
PO
	 o	 5/2	 /

dE	 o	
2

	
( -!-- )r
	 (1-ecosE)	 ( 1+ecosE)1 2

rp	 1 - e	 po
PO	 R (rp -r)

	

X sin  cost ae 	
o	

(35)

-13-

-; i
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THE CONTRACTION OF ORBITS

The Average Equation

Consider the variations in a and a, Eqs. (33) and (34). Under the

dissipative effect of the drag, the major axis decreases while the eccentri-

city, although having an oscillatory behavior, also decreases secularly

with the time.

For the radial distance we have,

r = a (1 - e cos E)
(36)

r	 = a0 (1 - eo)
Po

We write the exponential function in the equations

exp [ (i ( rp -r)] = exp [ 3 (ao-a-aoeo ) + 3 a e cos E ]	 (37)
0

Along each revolution a is nearly constant while the varying quantity

3 a e cos E provides the fluctuation in atmospheric density. This leads to

a natural choice of the dimensionless variable

x = 3 a e	 (38)

to replace the eccentricity. The equation for a is replaced by
2	 3 (r -r)

dx	 ZZopa	 1+e cos E 1 ^^	 po
dE	 r	 (e 	+ cos E}( 1 - e cos E) 	 a	 (39)

Po

The new variable x behaves like the eccentricity e; that is, during

each revolution x passes through stationary values when cos E = -e. On

the average, however, x decreases with the time. Since the decaying process

is slow we can use the averaging technique (Bogoliubov and Mitropolsky, 1961),

applied to the right h, nd side of the Eqs. (34) and (39) for a and x.

-14-
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For the equation for a, we have

da _ _ -- a2 	1	 (21T (1+e cos E) 3J 2
d E	 2Zo P exp[ p (ao - a - aoeo )^ 2n 3 

( 1 - e cos E) 1 j2
0

X exp (x cos E) d E . 	 (40)

For small eccentricity, the integrand can be expanded in a power series

in a and upon integrating, we have

2Z ada	
2

r 
o	

eXP {^ (Ko - a - aoeo?	 Io + 2 e I1 + 4 e2 ( Io+I2)

po

3	 4
+	 4 (3I 1 +I 3) + b4  ( 21I0+28I2 +7I4 ) + 0(e5)

where In (x) is the Bessel function of the first kind and of imaginary

argument, of order n

21r
In(x) = 2n f cos n E exp (x cos E) d E

0

Similarly, the average equation for x is

-2Z 8 a2dx
d E	 r 

0	 exp (i (a o -a-ao e o) ] I l + 2 e (3Io+I2)

po

2	 3
+ 8 (Ili1+I3) + lb ( 7 I o +8I2 +I4)

4

+ 128 (78 I
1 + 31I 3 + 31

5
) + 0(e5)

Let
a

Z	 a
0

be the dimensionless semi-major axis. By dividing the Eq. (41) by Eq. (43)

-15-

ii -_tea ;___..i --_1

(41)

(42)

(43)

(44)



and expanding the ratio in a power series in a we have

dz
R ao dx = yo + 2 e (4 3y0

2
-y

0
y2 ) + 8 e 2 [ 2y

0
(3y

0
+y2	..) Z 29yo y2-yoy3]

3
+ 16 [ -32+113yo2 +38yoy2 -YoY4+2yz +6yo2y3+2yoy2y3-2yo(3yo+Y2)3]

4

+ 128 [ 8yo(3yo+Y2)4- 8(3y o+Y2 ) 2 (9yo+y2 )-12yo o 2(3y+y)2(11+y3)

+2yo(l1+y 3 ) 2 +8yo (3y
o - y 7 )(+Yo+8y2 +y4 ) + I6(3yo+y2){19+y3)

- 12(y0
+y2 )(11+y 3) - yo (78+31y 3+3y 5 ) - 2(35yo+36y2 +y4 ) ]

+ 0(e5 )
	

(45)

where we have defined the ratios of Bessel functions

I

	

n	
n # 1	 (46)

yn	 I1

The equation (45) has been derived by King-Hele, to the order e3.

For x > 3 he integrated this equation by using the asymptotic expansions

of the function ynW. In this case the right hand side of Eq. (45) has a

very simple form and the semi-major axis a is obtained by quadrature.

Mathematically, the method of integration is not rigorous since on the

right hand side of Eq. (45), the eccentricity is a function of a and x by

the definition (38); hence, the equation is actually a nonlinear equation

in a. We shall arrange the equation in a form that allows Poincare' s

method of perturbations to be applied (Poincare, 1960).

The Bessel functions satisfy the recurrence formula

Zn
In-1 (x)- In+l (x) = X In (x)

so that any yn	 o
(x) can be expressed in terms of y (x) and x. For example

(47)
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2
Y2 	 yo - x

	

8	 4
y3 = 1 + 2 - x yox

	

	 (48}Y
Y4 = X - 43+y 0 +24 2

	

x	 x

Y	 z 1 + 72 + 384 - 12 Y
o
	192 Y

5	 2	 4	 x	 - 
"y - o,

X	 x	 x

Next, the eccentricity e, expressed in trrms of Zand x is

x
e = f i

where

E = P ^	 (50)
0

is a small quantity of the order 10 or less. Then, we can write Eq, (45)

dZ_	 Y
dx	 E yo +E.. Z(^-

4yo 2 +	 )

.^.	 y 2
+E3 Z2 (-dyo 	 ^ +3yo 3 +	 }

..
3

4 x

	

3	 YO 	 Y	 Y
+ E 	 ( -4 + 20y© - 10 x + 4 3 - 5	 + 20 ° _ 1 by 4 + 1, )

	

2Z 3 
	 x	 x`	 '`	 o	 t`

4	 Y ^	 Y	 Y5 x	 3	 o	 h	 o	 3	 0

+	
4Z4 (3`yo q

- -byo + 32 x -	 - 17 x` + a 3 - 24 Y3

3	 4

+ 4Q Yo, - 1 ri Yo - 104 }o + t>4yo 5 ) + 0(E b )	 (51)
x	 x

We see that the true nature of the equation is a nonlinear equation.

Since t is very small we need not go further with the expansion, and to the

order E 5 included, the solution of this equation can be considered as the

exact solution of Eq. (45) truncated to the order e 4 included. We shall

use Poincare's method of small parameters for the integration of Eq. (51).

-1+-
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c	 .

Integration by Poincare's Method of Small Parametersr

Poincare ' s method for integration ( Poincare, 1960) of a nonlinear

differential equation containing a small parameter is a rigorous mathematical

technique, proven to be convergent for small values of the parameter E .

It has been used extensively in analytic work in celestial mechanics

(Moulton, 1920).

We assume a solution for Z of the form

Z = ZO+EZI +E222+E3Z3+E4Z4+E5Z5+...	 (52)

Upon substituting into Eq. (51) and equating coefficients of like powers in

E , we have the equations for the Z 

d 

0dx 

d Z 

	

dx	 Yo

Y

0	 2
Y	 Y

	

Z3	
- xZI (2 + ^ - 2y2 ) + 

x2 
(1 - 8y - 7 ^ + 8y 3 )	dx	 Z 2	 x	 o	 2Z 2 x	 o	 x	 o

0	 0
2	 2	 2

Y	 Y

	

dx 	 _x 31(x 8yo-7 x +8y0 3)+- (2+XO-2yo2)( 1 2- Z2 )
Z	 o	 Z	 o
0	 2	 0

x3	 1Y0	 Yo	 Yo

2Z 
3	

Yo3	
4

+	 {-4+X2 +20y0  10 x +4 X3 - 5 o +ZO x _ lbyo }

0

3
	d Z7	 x	 z  Z2	 Z1	

Z3	 2 Yo

	

dx	 Zo { 2 Z 2	 Z	 Z0) { ` - `Yo + X )
0	 0

	

2	 2
x` 3 Z 1	 2	 yo 1	 3 1

+	 2 (Z	 2- Z ){-8y0- 7 x 8yo + X )
Z	 Z	 o
0	 0

-18-
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3x 3 	 2	 3
YO YO 	Y

Z,----^-^(-4+20yo2- 10 ^+4-3 -5 X2 +20 - - 16yo4 + 2 )
0

	

4	 y 2 	 YO
	 2

+ 42	
3(32yo-96yo+82 

x 
-X-17X + 3-24-3

0
3	 4

	

O+49 y-T - 16 Y4 - 104 YX + 64y o 5 )	 (53)
x	 x

with the initial conditions

	

Zo(x0 ) = 1 , Z 1 (xo ) = Z2 (xo ) = ...	 =	 0 .	 (54)

The integrations of Eqs. ( 53) is accomplished by successive

quadratures and its success depends on whether or not the integrals can

be expressed in terms of known functions. It has been found that the

following recurrence formula is very useful. We have

r p(x)y n+l dx
	 _,j	 o -	 P(x) Y n + f P(x)y n- I dx +

n	 o	 o
J LP(x) + p)(x)

x	 n
y ndx

o
(55)

where n # 0 and p(x) is any arbitrary function. To derive the formula

we use the well-known relation

I
XI n  (x) + n In(x) = x In-1 (x)	 (56)

so that for n= 1

I1	
I	

(57)y0	 I1	 + x

and for n = 0

I0'	 =	 I 1 (x)	 .	 (5$)

Therefore, if yo = I0 J II

-19-
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= 1 + X - yo`	 (59)
1	 I1

Now consider

n

f p(x) d ( 0 ) = p( o) y  - , f p ri x) yo n
 dx

or

Y

f p (x) yon-1 yo' d x = f p(x) yon-1 (1 + X . yoz )
 

dx

p(x) y n _ f	 y n dxn o	 n	 o

Rearranging the equation, we have the recurrence formula (55).

Using these relations, we proceed with the integrations of the

Eq. (53) using the initial conditions (54).

We have

	

Z0 (x) = 1	 (60)

and by Eq. (57)
XI (x)

Z 1 = Log xo_- ()
	 (61)

where x
0 

= pa 
0 0
e is the initial value of X.

With Z0 = 1, the equation for Z  is

dZZ	
Zx 

+ y _ Zxy Z .

dx	 o	 0

Integrating

ZL = x` + Log x I 1 (x) -	 ^^ x yo ` dx	 (b 2)

By the recurrence formula (55) with p(x) = x, n = 1

f xy0 `dx = Z x` _ xy0 + 2LogxI 1 (x)	 (b 3)

_gip_



so that, in Eq. (62) with the initial conditions, we have

x I1(x)
Z2 = 2 x yo(x) - 2 xoyo(xo ) _ 3 Log x-- j -(	 (64)

0 1 0

The integrations for obtaining Z 3 , Z4 and Z 5 are performed the

same way, but they are much more laborious. It is found that the

Z i(x) can be expressed in terms of two functions

I (x)	 XI (x)

A (x) = x I° ) = --Yo(x)  , Z 1 (x) = Log x I (x—)—	 (65)
1	 01 0

We have the final solution

Zo(x) = 1
X1 (x)

Z 1 (x)	 Log x  
1(xo)

Z2 (x) = 2 (A - A 0 ) - 3Z1

z
3 

(X) = Z (x 2 -xo2 ) - 12 ( A - A 0  - 2(A 2 _A o2 ) + 13Z 1 - 2AZ 1 + 2 Z12

Z4 (x) 	
32 (x2 -xo2 ) + 7? (A-A 0  + 3(A 2 -A o 2 ) + 3 (A3-Ao3)

+ 4A 0 (A -A 0 ) - 2(x2A -x 
0 

2A 
0 )

-(69+ 6A 0 +7x2 - 19A - 4A2)Zl 3
2 Z12

-Z 1 3 + 2AZ12

z 5 
(X) = Z 1 2 (162+6A 0 ) + 4Z Z l 3+4 Z14

+Z 1 (437- Z̀ xo2+ 1Z3 Ao+6Ao2) - 2Z13A - 6Z1 2 A2

62 Z12A+2Z Z 1 2 x2 -8A 3 Z1-21A 2 Z 1 +6x2AZ1

+AZ 1	o( -
343 - 

8A} + 127x2Z1

-21-



+ 4 (x4-xo4 ) + (14A 0 + $8 Xx2-x02)

+ (7x02 - 39 A 0 .4A 02 . -) (A-A0)

- 
23 x 2 A + 23 x 2A +( -97 - 8A )(AZ-A 2)
2	 2 0 0	 8	 0	 0

+ 4x2A 2 - 4x
0 

2A 
0 
2 + 2A 3.2A 

0 
3_ 4A4 + 4 A

0 
4	

(66)

The semi-major axis of the orbit under contraction is

= 1 + E Z 1 + C ZZZ +E 3Z3 + C 4 Z4 +C 5Z5	 (67)
0

Using x as a parameter, we easily express the other quantities

of interest. The eccentricity a is given by Eq. (49) while the drop in the

periapsis is obtained from

r -r
PO p

H	
= [rpo - a(l-e)] = p ao - p aoeo +p ae - p ao (1+E Z

or

r -r
po p	 2	 3	 4

H	 = (x-xo) - (Z 1 +EZ Z +E Z3 +C Z
4 +C Z 5 ).	 (68)

The ratio of the eccentricity can be obtained from

e = Z ( x )	 (b4)
0	 0

For each initial va l ue e = H/ a o , and eccentricity eo , we can

calculate the initial value x =
o	 a :^ 0e	 : 

0
e / E and evaluate the expressions

for a/ a
o , 

e/ a o and (r -r )1 H as a function of x. Then these functions
PO p

can be cross plotted in any combination.

The orbital period is



T3/2

T = (aa )0	 0
(Z(x))3J 2 (70)

Since the quantities a, e, r  and T are all easily observable, and the

integration has been performed toe included, for small and moderate

eccentricity, which is the case for most scientific Earth satellites, the

+	 equations can be used to verify the assumption made on the atmosphere.

i	 In general, the density, as a first approximation, can be assumed to be

locally exponential. That is to say, the parameter P , or H = 1 J 0 ,

can be assumed constant for each layer of the atmosphere. Since the

value of (3 enters the analytic solution, by adjusting for concordance

between theory and observation, p can be determined.

The expansions used to obtain the basic nonlinear equation (51)

are only valid for small and moderate values of eccentricity. To be

exact, expansions in elliptic motion apply to eccentricities which are

less than 0. 663. Above that value, the series are no longer absolutely

convergent. King-Hole used the equation, truncated to the order of e3

and showed that his theory is accurate for orbits with a less than 0. 2. 	 _-

Because of the difficulty he encountered in the analytic integration, he

divided the contraction of the orbit into two phases. For phase 1, the

eccentricity has the approi,:imate range 0.02 < e <0.2. In this phase

'	 the range of x is 3 <x< 30 and the integration is performed using the

asymptotic form of the Bessel ratios y i(x). For phase 2, the eccentricity

has the approximate range of 0 < e < 0. 02, and the range for x is

0 < x < 3. Simplification by asymptotic expansion is not available, but

-23-
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integration to the first order in a is feasible. Also, for the case of

large values of x, the integration by King-Hele involves a heuristic step

in that he assumes a certain. form for the solution Z on the right hand

side of Eq. (51) in its asymptotic form so that finally Z can lie obtained

by quadrature.

For the present formulation, the nonlinear Equation (51), to the

order of e4 has been integrated rigorously to the order of E 5 . The

artificial division of the contraction of the orbit into two phases has been

removed and the solution is uniformly valid for the entire lifetime of

the orbit for a in the range 0 < e < e  .

Explicit Formulas For The Orbital Elements

For small and moderate eccentricity (e < .4), the solutions obtained,

Eqs. (66)-(70), are very accurate. This has been verified by computing

the numerical integration of the nonlinear equation (51) and its analytic

solution, Eqs. (66) and (67). In this case, the solution was always found

to be greate.	 ' numerical integration with a maximum error of

approximately E e
0 

5/ 5(1-e 
0	 o2 ) for 0. 1 < e < 0. 99. It is interesting to— —

note that even as a
0 

-► 1 , which is outside the region of strict mathematical

validity, the maximum error is less than 1 / 10 13 r 
	 (of the order 10 3).
0

For small values of eccentricity the solution is extremely accurate. For

example, when e  = 0.1 and c = 0.008, Eqs. (no) and (b7) provide 7 digits

of accuracy, while for the same case King-Hele' s solution gives only 4

digits of accuracy. Thus, the present solution provides a major improve-

ment in that it is much more accurate and that it is uniformly valid for

all eccentricities, 0 < e < e .— o

..'34-
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The solutions obtained for the orbital elements, a/ a o , e/ eo,

etc. are expressed in terms of the variable x. It would be useful to derive

formulas to relate any pair of orbital elements. This amounts to the

elimination of x between any two of the equations (67) - (70). Because

of the transcendental nature of the solutions, the task is cumbersome.

Fortunately, since E is small, elimination of x through Lagrange' s

expansion is feasible.

To derive the explicit expression for the semi-major axis in

terms of the eccentricity, we write Eq. (67) as

Z = p + E 4) (Z)	 (71)

where, by observing that

X = Qae = Qa a (a
a	 e

)( e )
0 o 

o	 a

we can write

x = &Z	 (72)

with

a = x0..! )	 ( 73)
0

Then, explicitly

+(Z) = Z1
(a7) + E Z.,(a Z) + E 2 Z 3 (a Z) + ...	 (74)

If Lagrange' s expansion is applied to Eq. (71), we have

x E n	 d n-1	
n

Z = p + Ei n: (dpp )	 [ b (P))	 (-,5-1 
n=1

If we carry out the expansion, and then put p = 1 we shall have to the order

Of c 5

-25-



Z = 1 + c hl (a) + E 2 h2 (a) + E 3 h3 (a) + E 4h4(a) + E 5h 5 (a )	 (76)

where

hl =	 Z1

h ` = 2(A-A) + (A-3)Z0	 1

	

h3 = Z a 2 -xo 2 ) - (Z'A Q+ 13	 `)(A•-Ao)+(13+2a-4A-A`)Z1

+ 2 (3+a2+A-A`)Z12

h4 = - 2 (a 2 -x0 2 )(35+4A 0 - 7A)

+ a(A-A0)(213+42Ao+16A02+1Za2-9A+4A0A-8A`)

IZ1(138+25a2-46A-7A2-ZA3)

- 1 Zl (35+7a -6A 2+a A-A3)

+ 2(A-Ao)Z1(3+a2+A-A2)

e2 1 3 (6-a 2 +2a 2A+3A2 - ZA3)
(77)

h5 = - 4 (a 2 - xo2 )", $ (a 2 -x0` )(885+b8a 2 -92 A-1 ZA`)

-(a -x0`)(A - A0)( 19 +#A0+2A)

	

-(A -A 0) 	 33 a Z + 137 4+2a 2A+9 A`+ZA3)

	

0	 2	 2	 4	 ..

+(.^-A } (
409;

2a ` +23A+1 1 2 )-(A-A } (1G+	 A)

	

o	 $	 0 1)

14(A-A 0 } 4 + ^a 2 _x
0

)z (34-a 2+A-A`)

	

+ Z l (43	 Z	 47+88a+Za- 154A-5a "A-'2A - - 33A• 4A)

	

1	 32IA- A0 )Z l (143+29a
2
 +25A+13a

Z
 A-17A ` •12A )

+ Z(A-A0)2Z1(3+a`+A-A?)

	

1	 2	 2	 4	 ? 	 -A - -	
3

+ Z 1 (048+133a +4a -?bA+14a A-91A`-4c^1^A
1	

i.	
7	 ,

- (A-A 0 )Z 1 ` (6-a +Za `A±3A ` -ZA )

+ b Z 1 3 (1Z3+-^a"-a 4 -oA+l 3a ` AT15A ` +2a `A`-18A3-A41

+ 24 2
1 4 (18-a 2 -Za 4 -8a `A-3A-+t^aZA`+12A3-nA4)

Zb-



In the expressions for hi(a), we have defined

all{a)
A = a yo(a) , Z 1 = Log x I x	 (78)

0 1 ( o

Since a = x0 (e/ e0), the solution, as given by Eqs. (76) and (77) provides

an explicit expression of the variation of a/ a0 as a function of e/ e0.

The other orbital elements can also be expressed in terms of e.

The drop in the periapsis is

r-r

p0H p = (a -x0) - ( 1 - e ) (h1 +E h2+E 
2h3+E 3

h4+E 4h5 )	 (79)

For the apoapsis, we have

r -ra 

Fi 

a 
= (xo-a) - (1+e)(h 1 +E hZ+ E 2h3 +E 3 h4+E 4h5 )	 (80)

In addition, the following formulas can be easily derived

rp	
=	 ( 1

-Ea) 
Z (a)	 (81)r	 (1-ep	 )o

0

ra 	 (1 +E a) Z(a ;	 (8Z)r	 (1 +e )a	 o
0

T	 -	
Z3/ Z 

(CI

0

The last expression provides the orbital period as a function of the

eccentricity. As pointed out by King-Hele, such a relationship, if it is

accurate, which is the case in the present theory, provides a powerful

method of verifying the assumption made on the atmosphere from two of

the most accurate and easily measured orbital parameters, nam p iy, the

period of revolution and the eccentricity.
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The Contraction of Highly Eccentric Orbits

For the case of orbits with large eccentricities, King-Hole has

used an entirely different method to derive the basic equation for the

contraction. Using the present notation, we have his equation in the

form

d	 E ( 1 + Zx ) i- Z+Exx
	 2	

(84)

It is possible to obtain this equation from the basic equation (51).

Since x = (3a e, when a 1, a -+ oo , x becomes very large and the asymptotic

expression for Bessel' s ratio y0 (x) is

yo = 1 + 2x + ...

2
(85)

yo = 1 + x + ...

Using this form in Eq. (51) we have

2	 3	 4 2	 5 3
dZ_ E( 1 + 1 ) - E + E x - E x + E x -	 (86)dx	 2x	 Z	 Z2	 Z3	 Z4

an equation whic:! can be seen as the development of Eq. (84). While

King-Hele can only provide an approximate solution to the nonlinear

equation (84) by assuming that on the right hand side Z is approximated

by Z = 1 - E (xo -x) so that the equation can be integrated by simple

quadrature, it is enlightening to know that the exact solution to the

equation can be obtained. This is done by using the transformation

•

	

	 Z = E (x +q)	 (87)

and changing the independent variable from x to q to have the Bernoulli

equation

-28-



d x = 2x +	
24x	 (88)

dq	 q

Using the change of variable,
tq

X
K(q)	

(89)

we have after substituting into (88)

d K _ -4e 2q	 (90)dq -	 q

Integrating, we find that K can be expressed in terms of the exponential

integral.
2q

K = -4 f 2q d(2q)+C

-4 Ei(2q) + C	 (91)

Thus, we have the exact solution in parametric form.

2(q-qo)
X =	 e	 (92)

_2q
 + 4e ° [E,

x
( Zq.)  - Ei(2q)]

o

along with Eq. (87) and the initial conditions

Z(xo) = 1

(1-eo)
q	 = 1— - x	 -	 (93)

o	 E	 o	 E

To evaluate the exponential integral, we first observe that the

•	 argument 2q is large, hence its asymptotic form is adequate. In general,

we consider the integral

En(x) = fe x xn-1 dx	 (94)

By integration by part

En(x) = x n_1 e x - (n-1) En-1

-29-



By repeated application of this formula, we deduce the asymptotic expansion

for large x

En(x) 
_ xn_lex + 

1 _ {nX1) + {n-1)^n-2) - {n-1)(n32){n-3) .. , 	 (95)
( 	 x	 x

When n=0, we have the exponential integral and by taking 6 terms of the

series, for x > 5, the solution is identical to the numerical values tabulated
.

by Abramowitz and Stegun ( 1972).

Numerical Application

The accuracy of the present theory has been verified by comparing

the analytic solution and the exact numerical solution for a wide range of

orbits about the Earth' s atmosphere. The numerical solution is obtained

by integrating the basic nonlinear equation (51). The analytic solution

employed is either the solution Z = Z(x) as given by Eqs. (66) and (67) or

the explicit solution Z = Z(a) as given by Eqs. (76) and (77).

The parameters used are the initial eccentricity e0 and the initial

perigee distance r , or equivalently the dimensionless small parameter
po

1/Pr P . Then we have
0

{ 1-e0)
E =	 p r	 (96)

po

which tends toward zero as e0	1 . By using the three values r

p po= 0. 005, 0.01 and 0.02 we cover a wide range of perigee heights.

Figure 3 plots the variation of Z = a/ a 0 as function of x/ x0 for

different values of the eccentricity. Since the analytical solution has a

high degree of accuracy, its small deviation in the fifth or sixth digit

-30-



from the numerical solution cannot be detected in the figure. Initially

the solut' ,n is nearly linear with the slope in the figure approximately

equal to eo , but near the end, as x and a approach zero, it exhibits rapid

decay. This explains the difficulty encountered by King-Hele in his analytic

integration. It is interesting to note that the analytic solution Z(x) of the

truncated equation (51) remains accurate for high eccentricit y . For eo = . 99,

this solution and the exact solution (87) and (92) of the asymptotic equation

'	 (84) are nearly identical except for very small values of x / x  .

Figure 4 plots the solution Z = Z(a) = Z(e/ E ) as a function of the

eccentricity for several values of e o . The range of validity is limited to

e  = 0. 5 since the Z(a) solution is not as accurate as the Z(x) solution.

It was found that Z(a) exceeds the numerical solution by a maximum value

approximated bye
0	 0

6 / 15(1-e ), which still gives 7 digits of accuracy for

e  = 0. 1, but diverges as e o -► 1. For e  = 0. 5 the error is imperceptible

in the figure. The decay in the perigee distance r  versus the eccentricity

for e  = 0. 1 and e  = 0.4 is presented in Fig. 5. The ratio rp/ r  remains
0

nearly equal to one for a large portion of the decay process, but as e — 0

the drop in perigee altitude increases rapidly. For small values of

1	 (0. 005) the decay is much slower than for large values (0. OZ) as
rpo

evident in the figure. The fractional error in this plot and in the next two

I	 is kept to an imperceptible amount by considering the error formula

mentioned earlier.

The decay in the apogee distance r  versus the eccentricity for

several values of e  is presented in Fig. 6. It is evident that the ratio

-31-

LLL Li-i



•

raj r  decreases rapidly with the eccentricity. Initially the parameter
0

1
	

seems to have little effect, but as the eccentricity approaches^ rp
0

zero the larger values of	 yield more rapid decay.
rp

0
Finally the decay in the orbital period T as function of the eccentricity

is presented in Fig. 7. As pointed out by King-Hele this functional relation-

ship T = T(e, E) provides a powerful formula for testing the atmospheric

parameter E since orbital period and eccentricity can be accurately

measured.

-3"'.-



REFERENCES

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical
Functions , Dover Publications, Inc., New York.

Bogoliubov, N. N. and Mitropolsky, Y. A. (1961), Asymptotic
Methods in the Theory of Nonlinear Oscillations, Gordon and
Breach, New York.

King- Hele, D. (1964), Theory of Satellite Orbits in an Atmosphere,
Butterworths, London.

Moulton, F. R. (1920), Periodic Orbits, Carnegie Foundation
XXV No. 16Z.

Poincare', H. (1960), Les Me'thodes Nouvelles de la Mecanique
Celeste, Vol.l, Dover Reprint.

Vinh, N. X. , Busemann, A. , and Culp, R. D. (1975), Optimum
Three-dimensional Atmospheric Entry, Acta Astronautica, 2,
718, 593-611.

Vinh, N. X., Blestos, N.A. , Busemann, A., and Culp, R. D.
(1977), Flight with Lift Modulation inside a Planetary Atmosphere,
AIAA Journal, 15, 11, 1617-1623.

i	 -

I	 ^

-33-



Z	 --^
VV V

i
VA 	 I

	

r	 ^
t^r i
iVe

W	 ^.
r 	 M

n 4
0	 ^	 ^	 Y

8	 a.	 *17 _	 i	 V^	 .01e
004e

Fig. 1. Nomenclature.

x

i

-34-



Fig. 2. Aerodynamic Forces .
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