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SUMMARY
 

An investigation has been conducted in the Langley 16-foot transonic
 

tunnel to determine the induced lift characteristics of a vectored-thrust 

concept in which jet-exhaust nozzles were located in the fuselage at the wing
 

trailing edge. The wing had a supercritical airfoil section. The investiga­

tion was conducted at Mach numbers from 0.4 to 0.95, angles of attack up to
 

140, and thrust coefficients up to 0.35, and nozzle deflection angles of 0'
 

and 30. Separate force balances were used to determine both total
 

aerodynamic and thrust forces and thrust forces alone which allowed for a
 

direct measurement of jet turning angle at forward speeds. The Reynolds number
 

per meter varied from 8.20 x 106 to 12.80 x 106.
 

The results of this investigation show the configuration with the super­

critical wing to have generally better performance with respect to both lift
 

augmentation and drag reduction than the same configuration with a 64 series
 

airfoil. 

INTRODUCTION
 

A number of studies have indicated that thrust-induced supercirculaton
 

effects from thrust vectoring have a potential for not only increasing
 

maneuverability of fighter aircraft but also improving cruise performance
 

(refs. 1 to 6). These studies used a vectorable partial-span rectangular 

jet-exhaust nozzle located at the wing trailing edge to induce lift due to 

supercirculation similar to a jet flap. The configuration of references 

I and 2 had a highly swept wing, whereas that of references 3 and 4 used a 

wing more representative of current fighter aircraft. Reference 3 summarized 

a parametric investigation that included studying the effects on induced lift 



and drag of nozzle deflection angle, nozzle exit location, nozzle shape
 

(rectangular or round), and wing camber. References 4 and 5 present detailed
 

information concerning the effects of varying nozzle deflection angle, nozzle
 

exit location and nozzle shape.
 

This report presents results from that portion of the investigation
 

where the wing installed on the model had a supercritical airfoil section.
 

The investigation was conducted in the Langley 16-foot transonic tunnel at
 

Mach numbers from 0.4 to 0.95, angles of attack up to 140, and thrust
 

coefficients up to 0.35. The test Reynolds number per meter varied from
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8.20 x 10 to 12.80 x 10
 

SYMBOLS
 

Model forces and moments are referred to the axis system shown in
 

figure 1 with the model moment reference center located at 0.25c, which
 

corresponds to FS 117.64 cm. A discussion of the data reduction procedure
 

and definitions of the aerodynamic force and moment terms used herein are
 

given in the appendix. All aerodynamic coefficients are based on q S or
 

q Sc except at static conditions where pa is substituted for
 

Aase total cross-sectional area at nozzle exit including vane and
 

nozzle base area, 78.51 cm2
 

2
 
A maximum cross-sectional area of afterbody, 284.78 cm
max 

2
cm

Aseal cross-sectional area enclosed by seal strip, 266.00 


AR wing aspect ratio, 3.0
 

CA axial-force coefficient (see fig. 1 and appendix)
 

CD drag coefficient (see fig. 1 and appendix)
 

CD,i induced drag coefficient (see eq. (Al3))
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(D,min jet-off minimum drag coefficient 

C(FoA) thrust-minus-axial-force coefficient (see fig. 1) 

C(FD ) thrust-minus-drag coefficient (see fig. 1) 

C F, nozzle thrust coefficient along tailpipe center line (fig. 1) 

total lift coefficient (fig. 
1) 

CL,j jet lift coefficient (fig. 1) 

CL,O jet-off lift coefficient 

CL,P jet-induced supercirculation lift coefficient 

ACL incremental lift coefficient, CL,F + CL,j 

CMtotal pitching-moment coefficient (fig. 1) 

C 
m,j 

jet pitchng-moment coefficient (fig. 1) 

CN normal-force coefficient (fig. 1) 

CN,j jet normal-force coefficient 

CN,o jet-off normal-force coefficient 

CN, jet-induced supercirculation normal-force coefficient 

C 
p , aft 

afterbody pressure coefficient 

C T gross thrust coefficient along jet axis (fig. 1) 
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C mean geometric chord, 32.28 cm
 

e wing effrcindy factor at jet-off conditions 

FA axial force, N
 

FAmom momentum tare force due to bellows, N
 

FAMbal axial force measured by main balance along main balance axis, N
 

FA,Tbal axial force measured by thrust balance along thrust-balance axis, N
 

F 
j 

thrust component along tailpipe or body axis, N
 

FS fuselage station, cm
 

M Mach number
 

iI ideal mass-flow rate, kg/sec
 

imeasured mass-flow rate, kg/sec
 

NRe Reynolds number per meter
 

ambient pressure, N/m
2
 

Pa 


Pes average static pressure at external seal, N/m2
 

PI average internal static pressure, N/m2
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average jet total pressure, N/m
2
 

12t,3 


p free-stream static pressure, N/m
2
 

q free-stream dynamic pressure, N/m
2
 

S wing reference area including projection to model center
 
2
 

line, 2599.89 cm
 

Tre thrust recovery (eq. (AU2), appendix A)
 

Tt free-stream stagnation temperature, K
 

w half-width of body, 11.43 cm
 

X afterbody length (fig. 9), 24.82 cm
 

x,y body ordinate, cm
 

a angle of attack (fig. 1), deg
 

Jo jet-off angle of attack, deg
 

an angle of attack of tailpipe center line (fig. 1), deg
 

6effective jet turning angle, deg
 

design or nominal nozzle deflection angle, 
eg


d 
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APPARATUS AND PROCEDUE 

Model 

A sketch showing the external geometry of the model is presented in
 

figure 2; photographs are shown in figure 3. The wing had a leading-edge
 

sweep of 500, streamwise supercritical airfoil sections, an aspect ratio of
 
2
 

3.0, taper ratio of 0.3, and a reference area of 2599.89 cm . The wing had
 

no twist or dihedral. Airfoil coordinates are given in Table I.
 

The fuselage had rectangular cross sections with rounded corners and had
 

an effective fineness ratio of 7.28. As shown in figure 4,the body lines
 

were chosen to enclose the internal propulsion system and to fair
 

into the afterbody enclosing the nozzles. The afterbody boattall angle was
 

12.50. 	 The maximum width and height of the body were 22.86 cm and 12.7 cm,
 
2
respectively, and the maximum body cross-sectional area was 284.78 cm
 

Table Ilpresents ordinates for both the fixed nonmetric forebody and 	the
 

metric afterbody. A 0.16-cm annular gap between the forebody and afterbody
 

was required to prevent fouling between the nonmetric and metric portions of
 

the model. A flexible Teflon strip inserted into slots was used as a seal to
 

prevent internal flow in the model. (See fig. 4) The low coefficient of
 

friction of Teflon minimized restraint between the metric and nonmetric
 

portions of the model. Only that portion of the configuration aft of the
 

metric break at fuselage station 99.06 cm was supported by the main-force
 

balance and hereafter is referred to as the wind-tunnel model.
 

Twin-Jet Propulsion Simulation System and Exhaust Nozzles
 

Sketches of the twin-jet propulsion simulation system are presented in
 

figures 4(a) and 4(b); photographs without the force balances are shown in
 

figure 4(c). The propulsion system internal performance characteristics are
 

presented in reference 4.
 

An external high-pressure air system provides a continuous flow of clean,
 

dry air at a controlled temperature of about 306 K. This high-pressure air is
 

brought through the support strut by six tubes into a high-pressure chamber.
 

(See fig. 4(a).) Here the air is divided into two separate flows and is
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passed through flow-control valves. These manually operated valves are
 

used to balance the exhaust nozzle total pressure in each duct. As shown in
 

figure 4(a) the air in each supply pipe is then discharged perpendicularly to
 

the model axis through eight sonic nozzles equally spaced around the supply
 

pipe. This method is designed to eliminate any transfer of axial momentum as
 

the air is passed from the nonmetric to metric portion of the model. Two
 

flexible metal bellows are used as seals and serve to compensate for the axial
 

forces caused by pressurization. The cavity between the supply pipe and
 

bellows is vented to the model internal pressure. The tailpipes are connected
 

to the thrust balance, whose loads are then transmitted to the main balance
 

through the wing and thrust-balance support block. (See fig. 4(a).)
 

The air is then passed through the tailpipes to the exhaust nozzles as
 

shown in figure 5. A transition section, located between fuselage stations
 

122.44 cm and 124.97 cm, was used to transform the exhaust flow from
 

axisymmetric to two dimensional. The nozzle internal cross-sectional area
 

was held constant from fuselage stations 126.75 cm to 134.62 cm. Two sets 

of nozzles, each with a total exit area of 50.32 cm2 at fuselage station 

138.62 cm, were investigated with design turning angles of 00 and 300
 

as defined by 6d in figure 5. The aspect ratio of the twin nozzles was
 

5.99; the nozzle aspect ratio is defined as the maximum nozzle width divided
 

by the maximum depth including vanes. Nozzle mass-flow and static force and
 

moment characteristics are shown in figures 6 and 7, respectively. The
 

variation of measured thrust coefficient with nozzle pressure ratio is given
 

in figure B.
 

Thrust vectoring was obtained by using circular-arc turning vanes
 

located in the nozzle exhaust flow. These turning vanes were arranged so
 

that they would be completely washed by the jet flow in order to minimize the
 

influence of the external flow on vectored nozzle performance.
 

Wind Tunnel and Support System
 

This investigation was conducted in the Langley 16-foot transonic tunnel,
 

which is a single-return atmospheric wind tunnel with a slotted octagonal
 

test section and continuous air exchange. The wind tunnel has continuously
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variable airspeed up to a Mach number of 1.30. A complete description of the
 

wind tunnel and operating characteristics can be found in reference 7.
 

The model was supported by a sting strut with the model center of
 

rotation indicated in figure 2. The strut had a 45 leading-edge sweep, a
 

50.8-cm chord, and a 5-percent-thick hexagonal airfoil in the streamwise
 

direction. The model blockage ratio was 0.0015 (ratio of model cross­

sectional area to test-section area), and the maximum blockage ratio including
 

the support system was 0.0020. Strut interference effects were considered to
 

be small on this model afterbody because the boattail angle was 12.50.
 

Reference 8 indicates that strut interference may be large for models with
 

boattail angles in excess of 150 , depending on the proximity to the strut
 

trailing edge.
 

Instrumentation
 

External aerodynamic and internal nozzle forces and moments were each
 

measured by internal, six-component strain-gage balances (fig. 4(a)). Eight
 

external static pressures were measured at the sealed gap at approximately
 

fuselage station 100.00 cm as shown in figure 9. Four of these pressure
 

orifices were located on the nonmetric forebody and four were located on the
 

metric afterbody at meridian angles of every 90 . These pressure measurements
 

were used to correct the measured axial forces for pressure-area force tares
 

as described in appendix A. Four internal pressures were measured in the
 

vicinity of the sealed gap, and four internal pressures were located on the
 

top and bottom of the nozzles approximately at fuselage station 125.00 cm.
 

The internal pressures are also used for determining pressure area force tares.
 

One internal pressure measurement was made near the nose of the model.
 

A turbine flowmeter (external to the wind tunnel) was used to measure
 

the total mass-flow rate to the nozzles. In addition, the pressure and
 

temperature in each supply pipe were measured prior to the discharge of the
 

flow through the eight sonic nozzles; the measurements determined the
 

mass-flow rate to each nozzle. These flow measurements were used
 

independently to check the measurement determined by the flowmeter. Two
 

total pressures and one total temperature were measured at one axial location
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an each nozzle. These measurements were made at fuselage station 133.50 cm
 

or 5.8 cm forward of the nozzle exit. All pressures were measured with
 

individual pressure transducers. Temperatures were measured with iron­

constantan thermocouples.
 

At each test condition, approximately 10 samples of data were recorded on
 

magnetic tape over a period of about 10 seconds. The average of the 10
 

samples is used for computational purposes.
 

Tests
 

Two nozzles with geometric turning angles 6d of 00 and 300 were
 

tested at Mach numbers from 0 to 0.95 and at angles of attack from -20 to 140.
 

The average Reynolds number per meter, the free-stream dynamic pressure, and
 

the stagnation temperature are summarized in the following table:
 

NR per meter qkN/m2 Tt K 

0.40 8.20 x 106 10.14 302.6
 

.70 11.68 24.96 316.5
 

.80 12.30 29.78 323.1
 

.90 12 63 33.92 328 7
 

.95 12.80 35.71 331.5
 

Balance load limits on the pitching moment restricted the maximum angle of
 

attack at high Mach numbers; the maximum obtainable jet pressure ratio for
 

the nozzles with the larger deflection angles was also restricted.
 

All tests were conducted with 0.25-cm-wide boundary-layer transition
 

strips consisting of No. 100 silicon carbide grit sparsely distributed in a
 

thin film of lacquer. In accordance with the recommendations of references 9
 

9 



and 10, these strips were located 2.54 cm from the tip of the forebody nose
 

and on both the upper and lower surfaces of the wings at 5 percent of the
 

wing chord at the wing-fuselage juncture to 10 percent of the local stream­

wise chord at the wing tip.
 

PRESENTATION OF RESULTS
 

The results of this investigation are presented with limited
 

dscusson in plotted coefficient form in the following figures.
 
Figure
 

Basic aerodynamic characteristics:
 

ad = 00................... .............. .... 10
 

6d =300 ............... .............. .... .i.i. 11
 

Basic nozzle thrust characteristics:
 

= .0° 
d0............... ................. ....... 12
 

6d = 300.............. ................... ..... 13
 

Afterbody pressure distributions:
 

6d = 00.............. .................... ..... 14
 

6d = 300 ..................... .............. 15
 

Jet lift and induced lift:
 

= 0
6 d . ............ ................... ....... 16
 

6d = 300 ............ ................... ..... 17
 

Lift-augmentation factors:
 

6d = 300 ..... ......... ................. 18
 

Drag and aerodynamic lift characteristics:
 

6d = 00 .............. ................... ..... 19
 

6 d = 300 ............... .............. ....... 20
 

Drag polars ................ ............ .. ... 21
 

Thrust recovery characteristics:
 

6d =0 .......... 22
....... ......................
 

=
6d 300 ............ .................. ....... 23
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Figure
 
Summary of incremental lift characteristics ...... 24
 

Gross thrust coefficient characteristics . . .. . .. . ... 25
 

Summary of incremental drag characteristics .. ...........
 26
 

Summary of thrust recovery characteristics ... ...... .27
 

DISCUSSION OF RESULTS
 

Thrust-induced supercirculation effects from thrust vectoring have
 

indicated a potential for not only increasing maneuverability of fighter
 

aircraft but also improving cruise performance. References 3 and 4 indicated
 

that significant increases in thrust-induced lift along with substantial
 

decreases in drag were achieved by thrust vectoring. Since the results shown
 

herein are similar to those detailed in reference 4, only a brief discussion
 

is presented.
 

Lift Characteristics
 

The incremental lift characteristics of the present investigations are
 

compared to those of references 3 and 4 in figure 24. Incremental lift ACL
 

is shown as a function of Mach number (at scheduled pressure ratio) for
 

the 300 nozzle and a = 00. There is little or no effect of airfoil shape
 

up to M = 0.80. Maximum lift gain factor for the supercritical wing was
 

about 4.2 and occurred at M - 0.95. Scheduled nozzle pressure ratio varies
 
=
from 1.5 at M 0.4 to ,3.5 at M - 0.95 and is shown in figure 25. 

One effect of the interaction of the deflected jet with the wing flow
 

field is illustrated at M = 0.90 by the insert on figure 24. Here, the
 

variation of incremental lift with thrust coefficient for the 30 nozzle at
 

0° 
a = is shown for the three wings. As thrust coefficient is increased,
 

there is a sharp increase in incremental lift for the model with the 64A006
 

wing. A detailed comparison of afterbody pressure distributions shows an
 

abrupt rearward movement of the wing shock wave occurring for the 64A006
 

wing at thrust coefficient near 0.15. It is felt that with the rearward
 

shock movement, a smaller region of the wing is affected by flow separation
 

and hence more lift is generated.
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Drag and Thrust Recovery
 

Variation of incremental drag coefficient ACD with lift coefficient
 

for the three wings at M = 0.70 is shown in figure 26. Of the three wings,
 

the supercritical showed the greatest drag reduction. This drag reduction
 

may be a result of lower drag-due-to-lift for the supercritical wing with
 

the 300 nozzle.
 

This reduction in drag-due-to-lift for the supercritical wing is 

probably also a result of improved leading-edge suction and may be occurring 

at a lower nozzle deflection angle because of the basic difference in the 

type of flow over the top of the airfoil. With the region of accelerated 

flow over the top reduced because of the flatness of the airfoil, it is now 

possible for the deflected jet to influence flow completely around the 

supercritical airfoil. 

The variation of drag coefficient with Mach number at constant lift 

coefficient for the scheduled pressure ratio is also shown in figure 26. 

The poorer drag rise characteristics for the 64A406 wing may be attributed to 

a higher afterbody drag than for the other airfoils in combination with the 

afterbody. 

Thrust recovery characteristics for the three wings are summarized in
 

figure 27 at a + 6 = 300 at the scheduled pressure ratio. In general,
 

thrust recovery increases with increasing Mach number and the thrust
 

recovery characteristics of the supercritical wing are better than the 64
 

series airfoils.
 

CONCLUDING REMARKS
 

An investigation has been conducted in the Langley 16-foot transonic
 

tunnel to determine the induced lift characteristics of a vectored-thrust
 

concept in which jet-exhaust nozzles were located in the fuselage at the
 

wing trailing edge. The wing had a supercritical airfoil section. The
 

investigation was conducted at Mach numbers from 0.4 to 0.95, angles of
 
°
 attack up to 14 , and thrust coefficients up to 0.35, and nozzle deflection
 

°
 angles of 00 and 30 . Separate force balances were used to determine both
 

total aerodynamic and thrust forces and thrust forces alone which allowed
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for a direct measurement of jet turning angle at forward speeds. The
 

Reynolds number pet meter varied from 8.20 x 106 to 12.80 x 106.
 

The results of this investigation show the configuration with the
 

supercritcal wing to generally have better performance with respect to both
 

lift augmentation and drag reduction than the same configuration with a
 

64 series airfoil.
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APPENDIX A
 

DATA REDUCTION PROCEDURE
 

Data Adjustments
 

External aerodynamic and internal nozzle forces and moments were each
 

measured by separate internal six-component force balances as shown in
 

figure 4. The main balance measured total lift, thrust-minus-axial force,
 

and total pitching moment; the thrust balance sensed nozzle normal and axial
 

forces and pitching moment. The center lines of these two force balances
 

were located above and below the tailpipe center line (fig. 4(a)) and the
 

bellows flow-transfer system (fig. 4(b)). Because of this offset, an
 

interaction of loading one balance on the other existed; this interaction is
 

primarily the result of the main balance acting on the thrust balance.
 

Consequently, single and combined loadings of the normal force and the
 

pitching moment were made with and without the jets operating 
with the 00
 

nozzle. These calibrations were performed with the jets operating because
 

this condition gave a more realistic effect of pressurizing the bellows
 

rather than capping off the nozzles and pressurizing the flow system. Thus,
 

in addition to the usual balance interaction corrections that are applied for
 

a single force balance under combined loads, another set of corrections was
 

made to the data from this investigation for the combined loading effects of
 

one balance on the other. However, loadings were also made in the axial-force
 

direction with the flow system capped off and pressurized; these loadings
 

indicated no effect on the axial force measured by each balance.
 

In order to achieve desired thrust-minus-axial force (from main balance)
 

and thrust (from thrust balance), the axial forces measured by both force
 

balances must also be corrected for pressure-area tare forces acting on the
 

model and for momentum tare forces caused by flow in the bellows. The
 

external seal and internal pressure forces on the model were obtained by
 

multiplying the difference between the average pressure (external seal or
 

internal pressures shown in fig. 9) and free-stream static pressure by the
 

affected projected area normal to the model axis. The momentum tare force
 

was determined from calibrations prior to the wind-tunnel investigation
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APPENDIX A
 

using standard calibration nozzles (ref. 4).
 

Gross thrust-minus-axial force was computed from the main balance axial
 

force from the following relationship:
 

Fj A = FA,Mbal + (Pes - P)(Amax - Aseal) + (P - PJA seal - FA,mom 

(Al)
 

where FA,Mbal (positive upstream) includes all pressure and viscous forces,
 

internal and external on both the afterbody and thrust system. The second
 

and third terms account for the forward seal rim and interior pressure forces,
 

respectively. In terms of an axial-force coefficient, the second term ranges
 

from -0.0001 to -0.0007 and the third term varies ±0.0075 depending upon Mach
 

number and pressure ratio. It was previously stated that internal pressure
 

at any given set of test conditions was uniform throughout the inside of the
 

model, thus indicating no flow. The fourth term is caused by the momentum
 

tare correction and is a function of the average bellows internal pressure.
 

At an internal pressure of 1380 kN/m2 (corresponding to ptJ /p. 4 .0
 

at static conditions), this tare is approximately 5 percent of the maximum
 

static thrust and its repeatability is 0.25 percent.
 

Gross thrust from the thrust balance is computed from a similar
 

relationship-


F FA,Tbal - (p - p.)Abase - FA,mom (A2)
 

where FA,Tbal (positive upstream) includes nozzle thrust and the internal
 

pressure forces acting on the thrust system.
 

Since both balances are offset from the model center line, similar
 

adjustments are made to the pitching moments measured by both balances.
 

These adjustments are necessary because both the pressure area and bellows
 

momentum tare forces are assumed to act along the model center line. The
 

pitching-moment tare is determined by multiplying the tare force by the
 

appropriate moment arm and subtracting the value from the measured pitching
 

moments.
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APPENDIX A
 

External Forces Including Thrust
 

The adjusted forces and moments measured by the main balance are
 

transferred from the main-balance axis to the body axis of the metric portion
 

of the model where the body axis lies in the wing chord plane (fig. 1). Angle
 

of attack a, which is the angle between the wing chord plane and the relative
 

wind, was determined by applying deflection terms caused by model and balance
 

bending under aerodynamic load to the sting pitch angle. Calibrations were
 

made with the propulsion simulation system in place in order to account for
 

any restraints that might occur across the force balances. It should also
 

be noted that some difference in angle between the nonmetric and metric
 

portions of the model exists because of balance deflection. No adjustment
 

has been made for wind-tunnel flow angularity which is approximately 0.10 for
 

most sting-supported models in the 16-foot transonic tunnel.
 

The total force and moment coefficients, including thrust about the body
 

and stability axis, are shown in figure 1 where the moment reference center
 

is at the quarter chord of the wing mean geometric chord (fuselage station
 

117.64 cm).
 

Nozzle Internal Forces
 

The adjusted forces and moments measured by the thrust balance are
 

transferred from the thrust-balance axis to the parallel tailpipe center-line
 

axis (fig. 1). The tailpipe center line will be at some angle with respect
 

to the body axis because the thrust balance deflects, under load, relative to
 

the body axis. Accordingly, a is defined as the angle between the tailpipe
n 

center line and the relative wind. This angle was determined by adding
 

deflection terms to the previously determined value of angle of attack.
 

Calibrations with the propulsion system in place were made in order to
 

determine these deflection constants.
 

From the measured axial and normal components of the jet resultant
 

thrust, the effective jet turning angle, thrust coefficient, and jet lift
 

coefficient are defined, respectively, as
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= tan- 1 CN'j (A3)
CF,j 

CT -CN,2 + CF,2 (A4) 

CL,o CT sin (6 + a) CN, cos an +CF, sin a (A5) 

Thrust Removal 

Nozzle internal forces are transferred from the tailpipe center-line 

axis to the body axis and then subtracted from the external forces resulting 

in the following aerodynamic loads: 

CN,o + CNr = CN - [CN,J cos (a - n) -CF3 sin (a - an () 

= -C(F-A) + [CF,) cos (a - an) + CN, j sin (a - an)] () 

and transferring to the wind axis
 

CL,o + CL,r = (CN,o ,) cos a - CA sin a (A8)
 

CD = CA cos a+ (ON + N,r) sin a (A9) 

where the normal force or lift coefficient with the subscript o refers to
 

jet-off values and the subscript F refers to the jet-on normal or lift
 

force induced as a result of supercirculation on the wing. The quantity
 

CL,o + CL,r represents the total aerodynamic lift of the wings.
 

Lift Augmentation
 

Generally, the total lift component is broken down into three parts.
 

(1) jet-off lift, (2) jet-reaction lift, and (3) jet-induced supercirculation
 

lift. A gain factor is then defined as the ratio of supercirculation lift
 

plus jet lift to the jet lift. Jet lift (not measured at forward speeds) is
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then defined as CT,i sin (a + 6statc) where CT,i is an ideal thrust
 

coefficient determined by measuring the total flow momentum at the nozzle exit
 

(typical of two-dimensional tests). Other experimental setups usually have a
 

single force balance and, thus, are only able to measure thrust and turning
 

angle at static conditions. In this case, values of thrust coefficient at
 

forward speeds can be determined based on these static thrust measurements.
 

Since one of the purposes of the present investigation was to determine the
 

components of the total lift, jet lift is measured directly with the thrust
 

balance. However, first it was necessary to determine the jet-off or basic
 

wing lift coefficient C L,o . The basic wing lift varies with thrust coeffi­

cient and is different at each jet-on point since the model angle of attack
 

is decreased with jet operation because of balance deflections. Figures 10
 

and 11 show the variation of a with C . Therefore, in order to determine 

CL,o' the average jet-off lift variation with angle of attack at each Mach
 

number was fitted to a third-order polynomial curve as a function of angle
 

of attack; C L, was then computed at each power-on point for the particular
 

model angle of attack measured.
 

Incremental lift is then defined as
 

ACL = CL - CL,o = CL,F + CL,j (A10)
 

and the lift-augmentation factor based on measured jet lift is simply
 

ACL = ¢L,r + CLj (All) 

L,j L,j 

Thrust Recovery
 

Thrust recovery has been defined as that portion of the total gross
 

thrust, CT recovered in the streamwise direction or as the amount of pro­

pulsive gross thrust converted to aerodynamic thrust (ref. 4) and is given as
 

+
T Cfmin + CDL C(F-D) (A12)
 
rec CT
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where T is a thrust ratio. The average jet-off minLmum drag coefficient
 
rec
 

CD,min s determined by averaging the data for all the nozzles. The induced
 

drag coefficient CD,i for a jet-flap airfoil is
 

(AI3)
CD, CL,o + CLA' 2= 
 e~r + 2CT
 

where only the wing efficiency factor e determined at jet-off conditions
 
is used to account for nonelliptic loading effects. Another efficiency
 
factor can be applied to the entire denominator to account for jet effects;
 

however, its value is not known.
 

In terms of the propulsive and aerodynamic thrust terms, thrust recovery
 

is
 

CT cos( + 6) + CAF (A14)
 
rec CT
 

where CAF is the aerodynamic thrust coefficient and represents the change
 

in drag from the ideal jet-off drag polar. For zero thrust recovery,
 

CAF = 0, and then 

T = cos (a +&) (A15)
rec
 

For complete thrust recovery, Trec = 1 and then
 

CAF = CT[I - cos (a + 6)] (A16) 

The aerodynamic thrust term can also be expressed as a ratio to CT
 

which then can be easily converted to percent thrust coefficient or, in
 

ratio form,
 

0AF
 
- = T - cos (a+ 6) 
 (A17)

CT rec
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TABLE I. - AIRFOIL ORDINATES
 

Note-	 Airfoil ordinates are nondimensionalized with respect to local
 
chords perpendicular to the 50 percent chord line.
 

Chordwise Upper surface Lower surface
 
ordinate ordinate ordinate
 

0.00 	 0.0000 0 0000
 
.02 .0136 - 0140
 
.04 .0167 -.0179
 
.06 .0188 -.0205
 
.08 .0204 -.0225
 
.10 .0218 -.0240
 
.15 .0246 -.0267
 
.18 .0259 - 0278
 
.25 .0281 - 0294
 
.30 .0292 -.0299
 
.40 .0300 -.0296
 
.50 0292 - 0275
 
.60 .0267 -.0230
 
.68 .0233 -.0176
 
.75 .0191 -.0124
 
.78 .0169 -.0103
 
.80 .0152 -.0091
 
.82 0134 -.0082
 
.84 .0114 -.0075
 
.86 .0091 -.0071
 
.88 .0067 -.0073
 
.90 .0040 - 0079
 
.92 .0010 -.0092
 
.94 -.0024 -.0111
 
.96 -.0061 -.0139
 
.98 -.0103 -.0175
 
1 00 	 -.0150 -.0220
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TABLE II.- BODY ORDINATES 

z 

r 

K'r Zr 

x, cm y, cm z, cm r, cm ±Yr, cm ±Zr, cm 

0 0 0 0 0 0 
2.54 .914 .812 .812 .102 
5.08 1.816 1.603 1.603 .213 
7.62 2.695 2.360 2.360 .335 

10.16 3.551 3.078 3.078 .472 

15.24 5.192 4.379 4.379 813 
20.32 6.711 5.420 5.420 1.290 
22.86 7.417 5.814 5.814 1.603 
25.40 8.082 6.109 6.109 1.974 

30.48 9.268 6.350 6.350 2.918 
38.10 10.620 4.270 

45.72 11.338 4.988 
49.53 11.430 t 5.080 
55.88 4.618 6.812 1.732 
63.50 2.540 8.890 3.810 
98.90 2.540 8.890 3.810 

99.16 2.540 8.890 3.810 
119.38 v 2.540 8.890 3.810 
120.65 6.266 2.540 8.867 3.701 
121.92 5.994 2.403 9.027 3.592 

127.00 4.877 1.717 9.713 3.160 
132.08 3.749 1.026 10.404 2.723 
138.68 2.286 .127 11.303 2.159 



C N
 

Wing chord plane 

Relative wind 

(a)External forces 

Wing chord plane 

Taipipe center lineL 

a 

Relative wind 

(b)Internal forces 

CT 

Jet xi 

Figure 1 - Definition of model forces showing positive directions 
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6d w300, (a+6)- 300, at scheduled pressure ratio. 
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