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FOREWORD

This report describes a nonlinear rotorcraft mcdel and associated
computer software which has been developed and documented for NASA, Langley
Research Center, Hempton, Virginia under contract NAS1-14570 (July 1976).
This work has been performed by the Lockheed-California Company, Burbank,
California.

P. H. Kretsinger (Lockheed) performed the software implementation.
W. D. Anderson and Fox Conner (both of Lockheed) ascisted in preparation of
the progranm.

iii






TABLE OF CONTERTS

Section
FORBWORD . & « & « ¢ o o o 2 ¢ o o o 2 o = 8 2 5 & o« «
LIST OF ILLUSTRATIONS . . . ¢« =« = ¢ s « o s o = & o o
LISTOF TABLES . . + & ¢ 2 ¢« = o a = o o o = s = .. e
SUMMARY . . & v ¢ s ¢ =« o« o s 2 o« o o s s s s v » « o
LISTOF SYMBOLS . « +. « « = = 2 o o « o » o s » = = «
1 IRTRODUCTION . . . & & & 2 ¢ = o o o « s & o s o o a =
1.1 Scope of the REXOR II Program . . . « - « « « . « &
1.2 REXOR II Capabilitjes . . . . . . . . . . ¢« . . ..
1.3 Improper Application REXOR IT . . . . . . « « « ¢« «
1.k The REXOR II Report and Its Use . . . . . . « « « &«
2 BASIC COMPUTATIONAL IDEA . . . & + « « o o = = o = & »
2.1 Modal Solutjon - Overview . . . . . . . ¢ . « o . .
2.2 Energy Methods Development. . . . . . . . . . . . .
2.3 Calculation of Rotor Mode Displacements, Velocities
and Accelerations . . . . . . . 4 4 4t e s e e s o a
2.k Output. . . « ¢« v & ¢ ¢ o ¢ ¢ = o o e e s s s .
3 SYMBOLS. + + « 4 « ¢ « o ¢ s 2 s a o 2 o ¢ s o o 2 s &
3.1 Subscripting Notation . . . . . . ¢« ¢« ¢ ¢ ¢ & & + &
3.1.1 Blade number . . . . . . ¢« 2 ¢ ¢« ¢ s o o = 2 & o
3.1.2 Mode number . . . . . c e e & s s s % s v e s s
3.1.3 Mode typPe . ... ¢« ¢ ¢ ¢ ¢ 2 s s o o 2 s e s s
3.1.4 Generaljzed mass, damper, spring, forces . . . .
3.1.5 Forces and moments . . . . « « « ¢ o« « o o s o &
h COORDINATE SYSTEMS AND TRANSFORMATIONS . . . . « . . .
h.1 INtroduction .« « 4 = o + & o o o o e o o o a e o .
4.2 Coordinate Set8 . . . « ¢ ¢ = « o o ¢ s o o s & o &
.2.1 Fuselage coordingtes . « « o« o « o o o « o o o o
2.2 Hub coordinates. « « « ¢« ¢« o o o o s » ¢ o o o &«
4.2.3 Shaft coordinates. « « « v ¢ ¢« ¢ o o ¢ ¢ o o o o
h.2.4 Rotor coordinates. . . . . . . . . ¢ v . ¢ o o &

iii

o
- B

S5555RRBR MK

XRXABRRRRRERESI888EL S



Section
k.2.5
4,2.6
h.2.7
§.2.8
4.3
k.31
L.3.2
4.3.3
k.3.4
k.3.5
k.k
L.L.1
L.k.2
k4.3
L.5

L.5.1
k.5.2
4.5.3
L.5.4
L.5.5
4.5.6
L.5.7

5.1
5-2

9.3
S.h
5.k.1
5.h.2

TABLE OF CONTENTS (Continued)

Blade coordinates . . . . . ¢ s . ¢ s 4 s e e e
Blade element coordinates . . . . . . . . . . .
Freestream (earth) set . . . . ... ... ..
Swashplate coordipates . . . . . . . .. . .

Degrees of Freedom . . . . . . . . . « o e = a2 s o
Vehicle or rigid body . « « ¢« <« ¢ ¢ ¢« ¢ o &« o &
Rotor.l..l ...... e ®» & = ®w & ® e » 9

Shaft or transmission deflections . . . . . . .
Blades . . . ¢ ¢ ¢ =« « ¢ o = s o s 2 2 s s = o
Swashplate . . . . ¢« . ¢ ¢ ¢ o o « = = » o o .
General Mction and Coordinate Transformations . .
General case of spacemotion. . . . . ., « + « &
Coordinate transformations - Euler angles . . .
Angular velocities and accelerations - general.

Relative Motions and Transformations Used in the
Equations of Motion. . . . . . . . . . « e e s e .

Fuseliage motion in inertial space . . . . . . .
Hub motions in inertial space . . . . . . . . .
Motion of rotor coordinate axis . . . . . . . .
Blade coordinate relative to rotor coordinates

Blade element motion. . . . . . . e s s e e e e e
Swashplate motion . . . . . . . . . e s s ¢ = &
Blade feathering motion . . . . . . . . o« s e s
EQUATIORS OF MOTIOR . . . . . . ot a e s e e e e .

Introduction . . . . . . . ¢ . . . . .. o« o s s s

Energy Approach to Development of Equations of
Motion . . . . . . e s o 8 s e e v s e o s 8 s w »

Iterative Concept and Equation Set Solution Method
Overview of Rotor-Blade Model. . . . . . . . . . .
Concept of modeS. . - « ¢ « o o ¢ = =« ¢ s o s =
Blade bending - modal variable. . . . . . . . .

vi

‘i’—%‘a’%’?\Rg

34

36
Lo
ko
131
Ly
L8

51
51

SERB

105
108
113
113

113
119
138
138
138



Section

5.4.3
S.h.k
5.k.5
5.4.6
5.4.7
5.k.8
5.5

5.5.1
5.5.2
5.5.3
5.5.k
5.5.5
5.6

5.6.1
5.6.2
5.6.5
5.6.4
5.6.5
5.6.6
5.7

5.7.1
5.7.2
5.7.3
5.7.4
5.8

5.8.1

5.8.2
5.8.3

TABLE OF CONTENTS (Continued)

Blade mode generation . . . . . ¢ < o 0 . .
Modal coefficients. . . . . . « ¢ ¢+ o o ¢ &
Independent blades. . . . . « ¢+ + o o - o+ .
Blade element aerodynsmic forces - overview

Blade torsional response. . . . « « o o o o

Radial integration. . . . . . . . .
Equation System Development. . . . . .
Reference to base operation matrix.
Organization by degrees of freedom.

Partial derivatives . . . . . . o s
Generalized masses . . . . . . .
Generalized forces . . . . . . . .

Blade Bending and Torsion Equations. .
Blade radial summation. . . . . . .

Partial derivatives . . . . . . . . . .

Generalized masses. . . . . . . . .
Generalized forces. . . . . « « . .
Quasi-static blade torsion. . . . .
Quasi-static pitch horn bemding . .
Shaft Axes Equations . . . . . . « ¢
Transmission isolation mount. . . .
Partial derivatives . . . . . « . .
Generslized masses. . . . . . . . .
Generalized forces. . . . . « o e s
Principal Reference Axis Equations . .

Nonzero contributions from most vehicle
elements. . . . . . ¢ .« o . » e e v e o .

Partial derivatives . . . . « . . . ¢+ ¢ o 4 .

Generalized masses. .« + « « ¢ & ¢ ¢ + s o o

vii

.

-

139
139
140
140
1kl
14
1kl
1k
1k2
143
147
148
1k9
1i49
1h9
160
167
173
176
176
176
176
17
178
179

179
180
181



Section

5.8.4
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
<

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
6.4.1

TABLE OF CONTENTS (Continued)

Generalized forces. . . . . . . . .
Swashplate Equations . . . . . . . . .
Partial derivatives . . . . . . . .
Generalized masses. . . . . . . . .
Generalized forces. . . . . « « . .
Control inputs. . . . . ¢« « &+ « « .
Engine Equations . . . . . . . . ¢ ..
Rotor azimuth and rotation rate . .
Enginemodel. . . . . . . . . . . .
Partial derivatives . . . . . . . .
Generalized masses. . . . . . . . .

Generalized forces. . . . . . . .
AERODYNAMICS. . . . &+ «. ¢ o o o & & « v
Introduction . . . . ¢« ¢« ¢« ¢ ¢ o ¢ o &

Aercdynamic forces producing surfaces

Use of forces generated . . . . . .

Main Rotor . . . . . . « « « .« . « v o s s & ® « e e o .

Concept of rotor inflow model . . .
Blade element velocity components .
Coefficient table lookup - overview
Blade element and rotor aerodynamic
Interference Terms . . . . « . « « o &
Nature of the phenomenon. . . . . .
Rotcr to wing/fuselage. . . . . . .
Rotor to horizontal tail. . . . . .
Data sources. . . . . . ¢ « ¢ ¢ .
Empennage velocity components . . .
Body Loads . « « + « .+ ¢ ¢ ¢ ¢ o o .
Nonrotating airframe airloads . . .

viii

183
187
187
189
190
196
197
197
197
199
201
203
204
20L
204
204
20k
204
205
215
2217
227
228
228
229
230
230
231
233
233



TABLE OF CONTENTS (Continued)
Section Page

6.4.2 Component additional airloads. . « « « + « « o« « « . 238
6.5 Tail ROLOX. « « v o o o o o o o =+ o o o 8 o s o o o+ o 239
6.5.1 Formulations « « « « o o o ¢ « + o = o » o o o » o » 239
6.5.2 Afrloeds - control gettings. « « « « « o« « « o o . o 2W7
6.6 Aniliary ThrustOrs « « « « o o « o o » » o o o o o « o 2U7
6.6.1 Formulations and airloads. . . . o « « « « « « + o . 28
7 CONTROL SYSTEM . . « o « o = 5 « o o s s o s a o s s o o o 249
T.1 OVErvieW. . « & « ¢« o o ¢ o o s o o s o s oo o s o oo 249
1.2 PL10t CORLIOLS. « « « » o = « o o o o oo o o o « o« o 249
7.3 Stubinty Augmentation Systems. . . « + « ¢ o - o« o . 291
8 REFERENCES CITED + « « o « o « o o o ¢ s s s s o ¢ s o « « 260

ix






Figure

& oW N

N

10
11
12
13
1L
15
16

17
18

19

20

21
22
23

24

RREQEDING BAGE BLANK NOT FILMEL

LIST OF ILLUSTRATIONS

Block diagram model description . . . . . s . ¢ . . .
Coordinate systems fuselage set . . . . « « « ¢ ¢« & &
Coordinate systems fuselage axis to airmass . . . . .

Coordinate systems - hub (nonrotating shaft top to
fuselage axis (flexible shaft) . . . . . « « « « « &

Coordinate systems - hub axis to airmass . . . . . .

Coordinate systems - rotor, blade, and blade
elment sets - - - - LY L] - - - - - > . - - » L2 - L] -

Coordinate systems - blade element set . . . . . . .

Coordinate systems - freestream (earth) to principal
reference axis . . ¢ ¢« ¢ o ¢ ¢ ¢ e 4 s 2 e e s s s

Coordinate systems - trajectory path to freestream
axIs . . . c s i e e b e e e e e s e e s s s « o e

Swashplate coordinate system . . . . . . . .« « « . .
Degrees of freedom . . . . . . . . e e s e o o s o
First inplanemode . . . . . . . . e e s s o o s = s
First flapmode . . ¢ . ¢« ¢ o ¢ ¢ o ¢« o s ¢ o s o o o
Second flapmode . ., . « ¢ « ¢ ¢ o o s o ¢ s s o s o
Blade, pitch horn and feather hinge geometry. . . . .

General case of gpace motion in terms of moving
coordinate axes x, y, z and inertial axes X, Y, Z . .

Rotational displacement of & coordinate system . . .

Relationship of Euler angle and coordinate system
angular ratesS . . . . . . ¢ ¢ o s s s s s e s o s a0 e

Blade element c.g./origin location in dlade
coordinates . . . . . v e e 4 e o s a2 8 s e v s e s e

Effect of blade twist on location of blade element
c.g./axis systemorigin . . . . . ¢ 4 4 4 4 e e e e

Bladepreconeangle,po...............
Blade sweep, T, and blade droop, ¥ « ¢ ¢ ¢ o« o ¢ o

Introduction of blade 1/L chord offset, Y o and Z o
with respect to precone line . . . . . .‘1.8. .« . J 8

Point p and feathering axis precone BFA e e e e e

xi

Page

13
23
2y

25

28
29

32
33
35

C8BEs

]
b5

k9

70

71
73



Figure

PEREEI SRR

= &4

42
43
Ly
45
46
b7
48

LIST OF ILLUSTRATIONS (Continued)

Static feather bearing geometry . . .

® & 8 & & &

Blade static pretwist, *TU and elastic twist, ‘T'

Keutral axis vs blade radius. . « « « .
Pitch horn blade feathering phase angle
Equation solution loop. « « . ¢ ¢ o ¢
Swashplate friction . « . . ¢« « ¢« . « &

.

cwtmlms-..o......-..-...

Engine model and torque-speed characteristics

Blade loading distributions in hover. . . . . .

Induced velocity distribution as s function of wake
angle (forvard flight). .« . « ¢ « ¢ ¢« ¢ ¢ ¢ o = o &

Incremental area for shaft moment integration . . .
Typical shape of iongitudinal factor curve, . . . .

Dynamic stall-lift coefficient vs angle-of-attack

-

hysteresis 100D =« « ¢ o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s o o o & o

Dynamic stall - moment coefficient vs angle-of-attack
wstemsis lwp L ] - - . - - - - - - L ] - * * L ] > * > L ]

Overall tail rotor geometry . « « « .+
Tail rotor blade element detail . . . .
Fixed aerodynamic surface . . . . . . .

Pilot controls. « « o « o s o o o o & =

3

Longitudinal cyclic stability augmentation.

Lateral cyclic stebility augmentation .
Elevator stability augmentation . . . .
Rudder stability augmentation . . . . .
Tail rotor stability augmentation . . .
Aileron stability augmentation. . . . .

xii

76
82
100
110
12k

192
198

207

21k
22
226
241
241
252
253
254
255
256
257
258
259



LIST OF TABLES

Table Page
1 Blade Generalized Masses . . « « « « « o o+ o o o + o « o « o 161
2 Generalized MasseS . . « o o« « o o o o ¢ ¢ o o s o s oo 1T
3 Generalized FOrces « « « o « o o o ¢ o o o o o o = o o o & 178
4 Reference Axis Generalized Masses. . . . « « « « - « . » . 181
5 Reference Axis Generalized Forces. . + . « « « « « « « . . 184
6 Swashplate Generalized Masses. . . « « « « « « « « &« « « o« 190
T Engine Generalized Masses. . . ¢ « & o + o ¢ o ¢« o o o o« & 201

xiii



REXOR II ROTORCRAFT SIMULATION MODEL*
Volume I — Engineering Documentation
J. S. Reaser and P, H. Kretsinger
Lockheed-California Company
SUMMARY

This report describes a generalized format rotvorcraft nonlinear
simulation called REXOR II. The program models single main rotor vehicles
with up to seven main rotor blades. Wings, two horizontal tail planes,
and auxiliary thrustors may be included to model a variety of compound
helicopter configurations.

Program output is primarily in the form of machine plotted time his-
tories specified from a signal list. This list is, in turn, user selected
from a set of computation variables used by the program.

LIST OF SYMBOLS

The symbols used in the REXOR II equations are quite numerous. In order to
keep the catalog of symbols to manageable propcrtions the following list

is divided according to the discussion in Section 3. Namely, a list of
basic symbols is given, followed by subscripts, superscripts, and post-
scripts. Nonconforming cases of usage together with complicated or
obscure subscripting are fully annotated in the basic list.

SYMBOLS

& arbitrary vector

a_ speed of sound, m/s

i, acceleration vector, m/s (ft/sz)

a, longitudinal component of blade f;rst harmonic flapping, iad
[A] generalized mass element matrix

A1,2,3 modal variables

Aln generalized displacement of nth blade, first mode

*The contract research effort which has lead to the results in this report
was financially supported by USARTL (AVRADCOM) Structures Laboratory.



Aan generalized displacement of nth blade, second mode
A3n generalized displacement of nth blade, third mode
Als cosine component of blade first harmonic cyclic, rad
b number of main rotor blades; arbitrary vector

B dissipation function

B sine component of blade first harmonic cyclic, rad
c blade segment chord, m (ft)

(] damping matrix -

CD aerodynamic drag coefficient

CL aerodynamic lift coefficient

CM aerodynamic pitching moment coefficient

CP pover coefficient

CT thrust coefficient

Cx,r,z linear damping, N/m/s (1b/ft/s)

CO,O.W rotary damping, Nem/rad/s (ft-1b/rad/s)

01’2’3 blade bending to feathering couplings

c(k) 1ift deficiency function

4 infinitesimal increment

dr increment in rotor, radius, m (ft)

dt inerement in time

a/at derivative with respect to time

(d/e)0 swashplate to feather gear ratio, zero collective
(d/e)l swashplate to feather gear ratio slope with collective
e pitch horn effective crank arm, m (ft)

EI blade bending stiffness distribution, Nem® (lb-ftz)
fiMR ground effect factor for main rotor



X,Y,2

F
$,0,¢
BPH

3

€x,Y,z

factor; force, N (1b)

force components along X,Y,Z directions, N (1b)
generalized force about ¢, 6, y axis

feathering mode generalized force

gravity, m/s2 (ft/sz)

gravity components along X,Y,Z directions
gear ratio

generalized force vector

gyro angular acceleration partial product
blade torsional stiffuess, N-m® (1b - ft°)
= Im Xiz, kg-m2 (slug-ft2)

= Im; Yie, kg-m2 (slug-ftz)

2

i kg—m2 (slug-ftz)

= Im, 2
i

= Im (Yiz + 212), kg-m2 (slug—fte)

= I (xia + zia), kg-m> (slug-ft°)

= Im, (xi2 + yiz), kg—m2 (slug—ftz)

_ 2 2
= Im X Y, kg-m (51lug-ft°)

_ 2 2
= Zmi Xi i kg-m“ (slug-ft°)

= Im, Y kg—m2 (slug-ft2)

i i

unit vector

Zi’
unit vector
advance ratio

number of blade radial stations; reduced frequency,
rad/s; unit vector

spring matrix

blade spring matrix element



spring con-tants along X,Y,Z direction, N/m (1b/ft)
spring rates about ¢, 0, ¢ axis, F-u/rad (ft-1b/red}
locstion inboard feather bearing, m (ft)
location outboard feather beering, m (ft)

radial >ceation of intersection of precone and feather
axis, m (ft)}

rolling mosent, B-m (rt-1b)

mass of element, kg (slugs)

summed fuselage coordinate mass, kg (slugs)
sumed hub axis mass, kg (slugs)

mass of ith perticle or blade segmer*, kg (slugs)

svashplate summed mass, kg (slugs)

pitching moment, E-a (ft-1b); = In,, kg (slugs); mach number
generalized mass watrix

generalized mass matrix element

= Um, X, kg-m (slug-ft)

= Im Y, kem (slug-ft)

= t-i Z, kg-n (slug-t)

moments about X,Y,Z axis, F-m (ft-1b)

blade torsional moment, N-a/m (ft-1b/ft)
number of systeam particles

angular velocity sbout X axis, rad/s; particle
main rotor pitch moment inflow, m/s [ft/s)

generalized coordinate; angular velocity about Y axis,
rad/s



Upm main rotor rcll moment inflow, m/s (ft/s)

Q generslized forcing function

Q, aerodynamic pressure times reference ving area, kg (1b)
QLOADS total nonmain rotcr aerodynamic loads matrix

g tail rotor torque, N-m (ft-1b)

r general vector; radius of curveature, ft; angular velocity

about. ° axis, rad/sec; notation for (X,Y,Z)

ry static blade shape

R -vector displacement of particle p in X,Y,Z2 axis system
Ro vector displscement of x,y,z origin in X,Y,Z system
RZQ,Z gyro damper coupling ratios

3 Laplace varisble, path of motion of particle p

Spa blade spline length along reutral axis locii, m (ft)

t time

T kinetic energy, N-m {ft-1b)
(1] transformation of coordinates matrix

u velocity in X direction, m/s (ft/s)

U potential energy function, N-m (ft-1lb); strain energy, F-m (ft-1b)
U’:,P,S,T air velocity on blade element, m/s (ft/sec)

v velocity in Y direction, m/s (ft/sec)

VT trajectory velocity

v velocity in Z direction, m/s (ft/sec)

LA main rotor collective inflow, m’s (ft/sec)

V. R tail rotor zollective inflow, m/s (ft/sec)

x motion in X direction, m (ft); blade span location



]

gﬁ - {'r{(

1,2,3

EK

1,2,3

coordinate direction; axis; deflection, m (ft); location,
m (ft); cross product

blade radial station of sweep and jog, m (ft)

trajectory path, m (ft)

tail rotor longitudinal force, m (1b)

motion in Y direction, m (ft)

coordinate direction; axis; deflection, m (ft); location, m (ft)

tension torsion pack outhoard end modal coefficients

difference between Y direction locations of cg and neutral
axis points of blade element, m (ft)

motion in Z direction
coordinate direction; axis; deflection, m (ft); location, m (ft)

relative swashplate vertical displacement with respect to
the hub, m (rt)

tension-torsion pack outboard end modal coefficients

teetering rotor undersling, m (ft)

hub set distance above fuselage set, m (ft)
hudb set distance above swashplate set, m (ft)
angle of attack, rad

angle of attack with hub set, rad

sideslip angie, rad

blade feathering angle, rad

feathering/pitch-horn bending or dynamic torsion
generalized coordinate displacement

blade droop relative to precone angle, rad



blade sweep angle, rad; dynamic stall delay, s
trajectory path angle with E set, rad

limit deflection, rad; freeplay, rad; small increment
tail rotor pitch - flap coupling

downwash factor of wing on horizontal tail

vector notation of ¢, 0, ¢

rotation about Y axis, rad

collective blade angle, rad

sideslip at blade element, rad

air density, kg/m3, (slugs/ft3)

time constant, s; natural pericd, s

feathering axis precone, rad

rotation about X axis, rad

feathering angle, rad

feathering angle of blade element of nth blade, rad
blade roc: reference feather angle, rad

blade torsion, rad

sum of blade twist and torsion, rad

wake angle of main rotor, rad, (deg)

rotation about Z axis, rad; sideslip angle with hub set, rad

control input axis rotation from swashplate, rad
pitch lead angle, rad, (deg)

trajectory path yaw with E set, rad

main rotor apparent airflow angle, rad

rotational speed, rad/s; angular velocity, rad/s;
natural frequency, rad/s



»

T >

CORR

DYN

ENG

partial derivative, derivation

arbitrary coordinate set a

due to aerodynamics

arbtitrary cocrdinate set b
associated with blade elastic bending
blade element coordinate system

blade reference axis system for the nth blade

associated vith pilot control input, chordwise
associated wvith center cf gravity location
ccrrective, correction

referring to downwash

referring to dynamic component

earth axis

associated with powerplant - engine

estimated

fuselage axis; associated with blade feathering
referring to blade feather axis

associated with feedback

associated with feathering of the nth blade
due to friction

referring to gyro or gyro coordinate system

associated with gas generator section of powerplant

associated with gyro control feedback

gyro to swashplate connection



GUB relating to gyro gimbal unbalance

H referring to hub or principal reference axis system
HT associated with horizontal tail

i referring to inflovw, particle

I8 referring to inboard feather bearing location

J spring matrix index

Jog associated with blaje attachment Joggle

J associsted with gyro end of feedback rod linkage

Jn associated with feedback rod coming from the nth blade
k generalized mass index

LAG associated with lead-lag damper

LIMIT signifying limiting value

m blade mode index, spring matrix index

MR associated with main rotor

n blade numbter index

RA referring tc blade segment neutral axis

NEW neviy determined value

NO normal (to airflow) component

NR pertaining to nonrotating value

OB referring to outboard feather bearing location

OLD value from previous time step

P associated with propeller; perpendicular blade component
PH referring to pitch horn

r generalized mass index

R referring to rotor axis system



REF associated with blade feather reference value

RM referring to control gyro feedrack lever moment

S referring to blade spanwise velocity; general mode; static;
structural; shaft

SC referring to blade segment shear center

sp referring to swashplate

SPc command to swashplate

S, SP referring to swashplate limit stop

STEADY steady component

SW referring to blade sweep angle location

T associated with trajectory path relating to E axis;
tangential blade component; blade torsion; blade twist

TR associated with the tail rotor

TRIM initial or trim value

™ associated with blade twis: (built in)

UB relating to control gyro unbalance

UNSTEADY associated with unsteady component

vT associated with vertical tail

WING associated with the wing

X relating to component in X direction

Y relating to component in Y direction

YA relating to aerodynamic component in Y direction

Z relating to component in Z direction

ZA relating to aerodynamic component in Y direction
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1,2,3
1S

1/k ¢
3/4 ¢

8PHn

¢

6

L]

SUPERSCRIPTS

I
T

(-)

()

(+)

()

(-1)

(=)
POSTSCRIPTS
(i)

(n)

(nought ) associated with collective value, courdinate axis
value, with respect to principal reference axis, blade
root summation

with respect to blade modes 1, 2, or 3

first harmonic component shaft axis feathering

with respect to blade 1/h chord

with respect to blade 3/L chord

associated with the feathering mode of the nth blade
relating to component in the ¢ direction
relating to component in the 6 direction

relating to component in the ¢ direction

referring to inertial reference

matrix transpose

(bar) average quantity

(prime) slope with respect to blade span
(dot) time derivative of basic quantity
(double dot) second time derivative
matrix inverse

vector quantity

blade radial station index

blade number index
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1. TINTRODUCTION

1.1 Scope of the REXOR II Program

REXOR II is a rotorcraft analysis tool which has resulted from applying an
interdisciplinary math modeling philosophy. The REXOR II ma‘h model is
written for a single rotor helicopter with capability for analysis of hinge-
less or hinged rotor systems with conventional controls. This helicopter
may be conventional in design, winged, or compounded. The main rotor may
have a maximum of seven blades. The model is broken dowrn into the three
major categories shown in Figure 1. These categcries are the control systenm,
the rotor, and the body.

Figure 1 indicates the manner in which these components are related to

one another as utilized in the ¢ ’-rsis. The analysis is the simulation of
8. entire aircraft, which incluc detailed dynamic description of the
rotor and control system as well . conventional six-degree-of-freedom
body dynamic description which cperates in two modes identified as TRIM
and FLY. In the TRIM mode, the aircraft is cons*rained to a prescribed
static flight condition while the controls are activated and the rotor is
allowed to respond to obtain a force and mcoment equilibrium of the aircraft
at that static condition. In the FLY rode the entire aircraft is free to
respond dynamically to control inputs or to any other arbitrary inputs such
as gusts. Pilot inpuus can be any single or multiple control manipulation
in the foru of simple steps or pulses, doublets, stick stirs, or other
transient input within the capabilities of the control system simulated.

As a result, transient loads and resulting aircraft and rotor dynamic re-
sponse can be obtained. For correlation purposes, actual flight test con-
trol motiors can be used as input toc provide comparative response data.
Additionally, gust inputs and other types of external excitations can be
applied directly to the rotor and/or airframe.

1.2 REXOR II Capabilities

REXOR II is e detailed rotorcraft math model simulation with particular
empnasis on the main rotor mechanics. The program is particularly valu-
able in a detailed exploration of rotor characteristics of proposed de-
signs, in identifying problem areas and verifying fixes in flight test
development programs. A case history is given in Reference 1.
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Typical REXOR II applications are listed below.
Dynamics:

® Rotor stability as a function of flight speed, maneuvers,
rotor rpm, nonlinear blade aerodynamics

® Rotor/body sensitivity and dissipation capacity as a function
of gusts and vilot control inputs

@ Effects of design parameters (mechanical and elastic
couplings, controls, etc.) on rotor stability and load
sensitivity

® Correlation and check of specialized dynamic models.

Handling Qualities:

® Vehicle response to pilot control inputs for vehicle flight

conditions, speed, altitude, rotor rpm, design parameter

variations

® Vehicle stability as function of speed, rotor rpm, flight
conditions, design parameters

® Effect of design parameter variations on handling gqualities
® Development and checking of handling qualities models.
Failure Analysis:

e Effect of loss of one inplane darper on subsequent flight
time history

® Blade projectile hit and ensuing events
® Blade strike and resulting rotcr track.
Performance:
® Correlation and independent check of performance models,
particularly in regions of Lighly nonlineer blade aerodynamic

operation (retreating blade stall and compressibility effects)

@ Develop data for performance models for use in nonlinear
areas

1L



Loads:

® Steady-state rotor loads as a function of rotor rpm, fiight
velocity, control trim settings

® Dynamic rotor lcads as a function of rotor rpm, flight velc-
city, vehicle maneuvers, pilot control inputs

® PRotor/fuselage clearances as a function of speed, vehicle
maneuvers, rotor rpm, pilot control inputs, fiight
configuration

@ PRotor/fuselage/wing design chzracteristics requirements as
functions of maneuver load factor, control commands (see
Reference 2).

1.3 Improper Application REXOR IIX

While REXOR II is capable of performing a number of analysis tasks, the
progrem range of use is certainly not all inclusive. Examples of types

of use where REXUR II either wouldn't work well or would be impractical are
given below.

REXOR II is an extensive math model and, as such, may consume a considerable
amount of computer time to execute a case. Therefore, the program is not
intended as a parametric design analysis tool, but rather as a device to
verify the correctness of a parametric selection process.

REXOR II does not treat blade-to-blade vortex interaction. This condition
limits the validity of the vibration solution in the transition flight
regime.

REXOR 1II typically uses twenty or less blade radial stations. The computer
blade deflections show good correlation to measured data with this model-
ing. However, since shear is a first derivative, and moment is a second

derivative of deflection data, care needs to be exercised in their use
(Reference 3).

1.4 The REXOR II Report and Its Use
This report is presented in three volumes.
e Volume I

A develorment of rotorcraft mechanics and serodynamics including
a derivation of the equations of motion from first principles.

15



e Volume II

The development and explanation of the computer code required to
implement the equations of motion.

& Volume III

A user's manual containing a description of code input/output end
instructions to operate the program.

Volume I is intended to be a self-sul “Icient guide to the math development
of the equations of motion and is the reference background as such. Volume
IT gives the location of computation elements, and serves to locate elements
for inspection or modiiication. Volume III presents rormal program operation
plus troubleshooting gu®de material required for day-to-day program use.

16



2. BASIC COMPUTATIONAL IDEA

2.1 Modal Solutior - Overviev

The aircraft is described dynamically by an array of fully-coupled degrees of
freedom. In addition to the six degrees of freedom of the fuselage principal
reference axes, six degrees of freedcm describe rotor hub to fuselage deflection
due to shaft bending and transmission mount motion. Rotor/engine speed is a
degree of freedom. The contrcl swashplate has three degrees of freedom.

Motion of each of the main rotor blades is described by three coupled flap-

vise and inplane mocdes and a pitch horn bending degree of freedom which couples
blade feathering to the swashvlate. The total number of degrees of freedom
possible is 16 + b, where b is the number of blades.

The blade modes are primitive modes in that they are de’ermired from a

lumped parameter analysis at a select: d rotor speed and collective blade
angle, hereafter referred to as the reference feather angle. The general-
ized stiffness matrix is computed using these rotating modes and conteins

only the structural stiffness of the blades and hub. This formulation

ensures proper internal and external force and moment balance. The model
deflections outboard of tre feather hinge are rotated through the actusal
feather angle less the reference feather angle. Thus, blade element
deflections outboard of the feathering hinge due to modal displacements are
defined to remain aligned with a coordinate axis system which is orthogonal

to a plane containing the instaneous deformed feather axis and rotated through
the instantaneous feather angle less the reference f.ather angle. As a result,
the internal strain energy ir the blade due to unit model displacements is in-
variant with variation in blade angle. This technique permits the highest
resolution of motion and forces Tcr the blade with an assumed mode solution
for a given number of modes.

2.2 Energy Methods Development
The equations of .motion for REXOR II are developed from Lagrange's equations,
vhich is ar energy approach. If one can express the kinetic, potential, and
dissipative energies of a system in addition to the work done by externsal
forces, then Lagrange's equations prcvide a powerful method for developing

ne equations of motion.

The dynamic ejuations of motion are w.itten in matrix form as

-[A) {d} + {c}=0 (1)
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vhere [ A] is & square matrix of generalized mass elements, {4} is a columm
vector of accelerations of the generalized coordinates and {G} is a colwm
vector derived from the Lagrangian energy functions, dissipation function and
generalized forces, vwhich take the form:

{3 = - 2143l - 2] {a} + [Q] {£ (0} (2

The equations ¢f motion are sclved using a time history sclution with rotor
aziruth angie increments required to provide a stable solution at the highest
frecuency mode present.

2.3 Calculation of Rotor Mode Tisplacements, Velocities, and Accelerations

In & rotor simulation of this type, it is difficult to compute the proper dis-
placement velocities and accelerations and associated inertia and aerodynamic
forcecs and moments which are required for high resolution of the blade feather-
ing moments. This requires exacting aer>dynamic data as well as a precise
statement of the inertial loedings. To establish the feathering moments due
to these loads,., the relationship beiveen the eather axis and ihe point of ap-
plication of the loads must be precisely determined. This is accomplished by
a very accurate analytic censtruction of the undeformed blade and a superposi-
tion 22 the blade elastic bending on this shape. In order to achieve the
kighest resolution of the predicted blade shape and feather axis position, the
blade modes are defined at approximately the trim collective blade angle. The
blade static position is also constructed at this blade angle. Blade element
displacenents, velocities, and accelerations are then ccmputed from the com-
bined static shape, the elestic blade motion, and blade feathering with re-
spect to the reference feather angle.

The aerodynamic description used in the analysis is composed of a rotor inflow
model, nonlinear steady and unsteady blade element aerodynamics, nonlinear
fuselage aerodynaric characteristics, rotor/body aerodynamic interference, and
auxiliary airloads from the tail rotor ard tail surfaces. The main rotor down-
wvash effect on the wing and horizontal tail angles of attack is an empiriceal
functicn c¢f rotor thrust and forward velocity. The nonlinear fuselage aercdy-
nexics nay be inputted as tables of actual wind tunnel test data.

The sircraft primary control systems are simuiated from the pilot control
levers operating through & btoost system in all certrol axes. Gearing and
gains in the control path are inputs to the analysi: and miy bte easily changed
for studying the effects of design changes in the comtrol system.

Control servos are simulated by first-order lags with rate limits and with

soft and hard physical stops. Contr-l stiffnesses in collective and cyclic
pitch axes of the main rotor are included in the dynamic equations of motion.

18



2 L Output

The analysis is a time history solution of the equations of motiom. REXOR TI
does not directly process the results of the solution process for output, it
creates an output file of user selected parameters vhich are correlated by
the computation time step. From this data bank the recorded signals can be
selected for tabular or plotted output. Assuming & good selection of param-
eters is chosen to be recorded, the user in an interactive mode may select

as little or as much of the information for viewing as it needed. Thus a
configuration can be examined thoroughly without having to rerun the case

to select additiona’ output.
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3. SYMBOLS

The notation used in REXOR II generally follows vhat could be termed KASA
notation. In general:

Axis systems use a right-hand triad X, ¥, 2
Rotations about these axes are also a right-hand triad €, ¢, ¥
Rotation rates, again a right-hand triad,are p, g, r

Velocity components of X, Y, Z are u, v, W.

3.1 Subscripting Fotation

Subscripting is used as & rule in REXOR II to further identify a variable.
Superscripts except in a few column vectors are reserved to denoie raising
to a power. The subscripting can mean:

Type of element; F for fuselage, SP fcr swashplate, TR for
tail rotor, R for rotor, etc.

Coordinate system reference; BLn for blade axis, H for hub axis,
R for rotor axis, etc.

Modal identifiers.

3.1.1 Blade number. - The blade mcdal identifier typically is of the form

A_.
mn

Wnhere n is the blade number.

3.1.2 Mcde number. -~ Alsc from Amn’ m is the mode number, and is keyed to

the symbol A. A represents blade bending modes (3). Therefore m can be

1 to 3.

3.1.3 Mode type. - Other than blade beniing the remairing blade mode is

torsion, and is separately identified as SPFn' Nonblade modes are identi-

fied by the direction and subscripted axis of motion. Examples are "R for

rotation of the rotor and eS for shaft pitching.

20



3.1.4 Generalized mass, damper, spring, forces. - The generalized masses

are denoted as M doubly subscripted by the two modes active for that mass.

Examples are M and M . This scheme is also used for other elements
‘S’S Amn OH

of the equations of motion, dampers (C), springs (K), forces (F). HNote the

forces are a column vector and singly subscripted.

3.1.5 Forces and moments. - In the process of forming the equations of
motion many subelements of forces and moments are formed, translated and
combined. Several levels of subscriptirg may exist in performing this
process. The guidelines to the layering are:

® First level denotes the direction or axis system that the quantity
is formed in. Examples are X and BLE.

® Second is the axis system invoived or axis system being translated
to, depending on the specification of the first level. The seccnd
level may also be specified as O or nought, to indicate the
value is a. the coordinate system origin. This notation is used
to show an inertial reference and blade root summation gquantities.

® The third level, usually outside a series of bracketed quantities,
shows the blade number being computed, or the overall coordinate
system in use for the computation at hand.



k. COORDINATE SYSTEMS AND TRANSFORMATIONS

k.1 Introduction
Prior to developing the equations of motion, a system of coordinate sets
vith a description of the elements of the system in these sets and the
interrelationship of the sets is required.

4.2 Coordinate Sets

L.2.1 Fuselage coordinates (XF, YF‘ ZF)' - The fuselage X and Z axes lie in

the fuselage plane of symmetry. The location of the origin is arbitrary. See
Figure 2. The coordinates form a right-hand triad XF, Y., ZF' Rotations for
velocities with respect to earth of these cocrdinates are either XF, YF’ ZF
or uF, VF’ V- A conventional double dot notation is used for acceleration.
Euler rotations of the set follow conventional practice of roll right ’F’

pitch up 6., and yaw right *F' Rates of rotation are either denoted by dot

F’
notation or Pp» Gp» Tp- Angular acceleration is double dot notation of the

- - f iy - - - R
rotation or dot notation of the rates, ’P’ GF’ *F or pr» qF, re

Nurerocus aerodynamic terms are referenced to the fuselage set. Figure 3
shows the relationship of airfiow to this set. The components of airflow,
also noted as Ups> Vs Vg, are defined with respect to the fuselage set by

an angle of attack a, and a sideslip angle 8. The angle of attack is the
arcsin of the ratio of the vertical component and the vector sum of the X
and Z components. The sideslip is the Y component of airflow in relation
to the total vector airflow sum. The angle of attack is positive (pitch up)
of the fuselage set with respect tc the airflow. The sideslip is positive
{yaw ieft) for the airfiow relative to the set. The airflow is the vector
sum of the fuselage set inertial motion and {low fields from other parts of
the vehicle, such as main rotor downwash.

5.2.2 Hub coordinates (XH, YH’ ZH)' ~ The hub set origin is a2t the top of

the main rotor mast, but does nct rotate with the mast.

Airflov information is referenced to the hub set for use in the main rotor
aercdynamic calculations. The reference scheme is shown on Figure 4. Tor

components of airflow Usrs VH’ VH with respect to the hub set, an angle of
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attack a,, and sideslip y are defined. The generatio1 conventions are different
from the fuselage airflow reference in order to clearly separate the inplane
and outplane airflow components.

%.2.3 Shaft coordinates (Xs’ Y., Zs). - The shaft axes are an intermediate

set between the hub and fuselage sets, see Figure 5. The geometry is deter-
mired by the distances (Xo, Y, ZO)F-H and (Xo, YO,ZO)S_H that the hub origin

o
is locatea from the fuselage and shaft axes and by the rotation (¢°, eo,
wo)s u of the shaft axes from the fuselage axes. The hub axes are parallel
to the shaft axes.

The elastic deflections due to motions of the shaft and transmissicn suspen-
sicn are given by the set of coordinates (Xs, Ys Zs, ¢s, A ws). The hub

is assumed to move as a rigid body with respect to the shaft axis origin.

4.2.% Rotor coordinates (XR, YR’ ZR). - The undeflected rotor set has the

same crigin as the hub set. See Figure 6. The XR and YR axes rotate with
the blade number 1 reference axis system. At WR = 0, the XR and ZR axes are
aligned but pecint in a direction c¢pposite to the XH and ZH axes. The rota-
tion of the rotor set is measured counterclockwise (CCW) from the —XH axis

ty the angle WR.

Y. = To tookkeer the deflecticns

. 3 Y A\'d
L.2.5 Blade coordinates (“BLn’ Yorn® ZBLn

properly for all the main rotor blades, sets equivalent to the rotor set

are created for each blade. These are the BLn sets, where n is the blade
number {(counted clockwise from blade number one). All BLn sets are iden-
tical except for an azimuthal rotation (r - 1) Ay, where AV is the inter-

blade angular spacing. The rotation is about the ZR axis. Note that Bln

sets are rctating coordinates and have a common Z axis.

Y

4,2.6 Blade element coordinates (XB ). - The blade element set

LE®> "BLE’ ZBLE
origin is located at the center of gravity of an element of a particular
blade. See Figure 7. Reference to a column vector subscripted by BLE is
used to dencte the blade element located by the blade element set origin.
The right-hand coordinate triad of this set has the X axis parallel to the
local quarter chord line, the Y axis along the chord line toward the leading
edge. The Z axis is mutually perpendicular and pointed up. The BLE set is
used to track the local feather angle, to develop aerodynamic and dynamic
lcading terms.
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Figure 5. - Coordinate systems - hub, shaft{, and fuselage sets.
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a. ROTOR AND HUB AXIS SETS
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Figure 6. - Coordinate systems - rotor, blade,
and blade element sets.
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The BLE set origin for each blade element specifies the element c¢.g. with
respect to the quarter chord, and in terms of the BLE directions, i.e.,
for the Kth element the position coordinates are SY(K) and SX(K) where
SX(X) is the blade radial station. Transformations to the neutral, no-
stretch axis are made for X deflections. Note: The quarter chord is
merely a convenient reference datum, and does not convey any model
limitations or assumptions.

L4.2,7 Freestream (earth) set (XE, YE’ ZE). - The freestream set is essen-

tially the earth or inertial set inasmuch as the axis alignments are the
seme. However, the freestream set can assume any origin. Thus the use of
the set is to reference the local gravity vector and/or an absolute angular
displacement or linear velocity acceleration of another set. As shown on
Figure 8, the ZE axis points down toward local gravity. Other sets refer-

ence to the E set, as the F set shown here, may assume any starting value
of roll and pitch such as the trim initial conditions. The relative ori-
entation changes with progressing time of flight.

With the freestream set origin located coincident with the fuselage set,
the components of fuselage set velocity in E set are uE, VE’ VE. These
components combine into a trajectory velocity Up, and path XT' The

trajectory path is yawed right wT and pitched up Yo from the E set.
See Figure 9.

4,2.8 Swashplate coordinates ( ). - As shown on Figure 10, the

v
Xsp> Ygp* Zgp
SP set origin is located in line with the ZH axis and above the hub set a

The SP set does not rotate with the rotor shaft. For no

distance ZOSP'

deflection of the SP set, the X and Y axes have the same alignment as the
X and Y of the hub set.

L.3 Degrees of Freedom

The degrees of freedom of the REXOR II equations are defined as the general-
ized coordinate variables of the set of equations of motion to be devel-
oped in Section 5. These degrees of freedom fully describe the motion of
*he physical elements of the modeled helicopter, but each direction of
»otion of the helicopter may not have a degrec of freedom directly asso-
ciated with it. The physical motions may be described by a series of

modal variables (Section 5.4) or through a set of transformations and com-
binations of the degrees of freedom as developed in Sections L.4 ard b.s5.
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Figure 9. - Coordinat: systems - trajectory path to freestream axis.
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The REXOR II rotorcraft simulation analysis can be applied to describe the
vehicle-rotor-control system dynamic response for up to 16+ 4b (where b is
the number of blades) fully-coupled degress of freedom. These include the
normal six rigid body or vehicle degrees of freedom; rotor speed; provisions
for up to twenty-eight degrees of freedom defining rotor tlade motion {four
mode degrees of freedom for seven blade maximum). Three swashplate degrees-
of-freedom and six for describing shaft/transmission deflection. The equa-
tions of motion are written in a general form sc that additional degrees-of-
freedom can be added if desired. The current degrees-of-freedom are listed
in Figure 11. The discussiou following describes them in detail.

L.3.1 Vehicle or rigid body. - The six rigid body degrees-—of-freedom; three
translations, and three rotations, are defined as motions of the fuselage or
principal reference axis system, Section 4.2.2, relative to freestrean

(inertial) reference datum. Translational displacements (X, Y, Z)CF of the

origin of the fuselage coordinate, and rotaticnal displacements (¢, 6, u}p

about the fuselage axes describe these degrees of freedom. See Figure 8.
As mentioned in Section L.2.7, the freestream set may instantaneously assume
any reference point; therefore, only the time derivatives of (X, Y, Z)Ou and

(e, 8, &)H have significance. 1In order to locate the direction of the

gravity vector relztive to the hub, a running calculation of the EBuler
angles QE‘ eE, &E rust be made. Since these are not degrees of freedom and

therefore not calculated in the equations of motion, they must be calculated
outside the dynamic equations as the time history prcceeds. When the initial
orientation c¢f the hub is defined, ‘E’ 62, and ws are known and their

charnging values may be calculsted by integrating the hub rotaticn rates in
the earth or freestream axes.

]

4.3.2 Rotor. ~ The rotation for the rotor degree of freedom V. is defined

R
as motion of the rotor coordinate system relative to the hub sxis system.
This is shown in Figure 6. This figure also indicates the change from =
down to Z up axis, which is equivalent to a 180-degree pcsitive rotation
about the Y axis. Note: Rotor rotation alsc includes blade feathering
from swashplate rotatior in addition to blade root rotation.

4.3.3 Shaft or transmission deflactions. - Shaft or transmission degrees-
of-freedom are defined as motions of the hut coordinates relative to the
shaft axis system. Hence, as shown in Figure 4, hub motions are cdependent
variables which are functions of the shaft deflecticns.
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ITEM SYMBOL TYPE OF MOTION
FUSELAGE Xof- YoF- ZoF TRANSLATION AND ROTATION
PRINCIPAL AXIS & eF . WITH RESPECT TO

FOFF INERTIAL REFERENCE
ROTOR “R ROTATION OF ROTOR SET
WITH RESPECT TO HUB
AXES
SHAFT OR TRANSMISSION Xs, Ys, ZS DEFLECTION OF HUB SET
DEFLECTION éS eS s WITH RESPECT TO SHAFT AXES
BLADES A1 - AZn' A3n BLADE BENDING MODES AND
FEATHER/PITCH HORN
(n = 7 MAXIMUM) SHn BENDING OR TORSION WITH
RESPECT TO BLADE
ROOT AXES
SWASHPLATE %esp SWASHFLATE AXES MOTIONS
WITH RESPECT TO HUB
Zgp AXES
Figure 11. - Degrees of freedom.



4%.3.4 3lades. - Each tlade's motion relative to the rotor coordinate system
is defined in terms of four generalized coordinates. These consist of three
blade bending modes and a combined feathering, pitch arm bending mode, or a
torsion mode.

L.3.%.1 Blade bending. - Blade motion due to blade bending is defined by
the generalizeé mc3al coordinates Amn vhich typically represent a coupled

tirst irplane bending mcde, a coupled first flapwise bending mode, and a
ccupled second flapwise bending mode. Ordirarily in a model analysis, the
effects of centrifugal and structural stiffness are lumped together into a
generaiized stiffness which is simply the modal natural frequency squared
times the generalized mass. In contrast to this, the REXOR II analysis sep-
arately treats the strain energy or structural stiffness in each mode and
the stiffening due tc the centrifugal force field. This provides the capa-
bility of being able to account for the periodic variation of stiffness in
tte modes due to the reorientation of the centrifugal force field with re-
spect tc the blade principal axis due to veriations in blade angle. This
feature can be important in the study c¢f subharmcnic stability where the
pericdic variation of coefficients may be important, but it alsc permits
being able tc make rather large changes in rotor speed and collective blade
sngle without heving to change tlade modal data.

Mode shapes and natural frequencies are initially determined for a twisted
blade at or near the collective biade angle and rotor speed tc be analyzed.
Such effects as precone, blade sweep, blade droop, and blade angle varia-
tion are included in the REXCR II analysis and couple the initially orthogonal
rodes. The elastic bending contribution due to the modal deflections is
calculated relative to the blade's static shape.

As previously noted, the blade modes are initially defined at some refer-
ence feathering angle, eREF' As time progresses in the anaiysis, the blade

feather angle varies about this reference positicn. The mode shares are
correspondingly transformed to accourt for the difference between the in-
stantaneous feathering angle and “he reference feathering angle, at the
same time accounting for other effects such as the static and instantaneous
chape of the blades. This yields the modal coefficients (partial deriva-
tives] that relate blade element mction to the blade bending generalized
coordinates as a function of tire.

Tre vertical and inplane blade element variational motions, in and 6Zi’

can be written as follows:

Y Y, oY,

= i R 1 1 (3)
Y0 %y, (g .t)éa) + 3, (q,t)eA, + %, (q.,t)eA,
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and

a2 2z a2
= = 1 (a_.t)éA (1)
820 = 35, (V)% t W (a2t %R0 * 30 (a,:t)6A3,

where the given or input partial derivatives are the true modal coefficients
of the orthogonal modes for the blade in an undeformed shape, with no static
geometry accounted for, and at the rotor speed and collective angle for which
the blade modes were initially calculated.

The orthogonal bending modes used in the analysis are illustrated in Fig-
ures 12, 13, and 14. Observe that the root boundary conditions for the
modes may be cantilevered or articulated.

Note that in addition to the normal bending respoases, Yi and Zi’ the span-

wise motion of each blade element is alsc determined, and biade feathering
due t> pitch-lag and pitch-flap kinematic coupl ng effects are also accounted
for in each blade bending mode. This feathering is added to that due to
sweshplate motion as is blade feathering dve to flexibility.

This modal data is developed to the form used in the blade equations in
Section L.5.5. The discussion of modes is carried on from a math vicw-
point in Section 5.4.

L.3.4.2 Pitch horn bending - dynamic ‘orsion. - The remaining mode per
blade, pitch horn tending, is comprised of either a blade feathering drive
flexibility with a torsionally rigid btlade cr an uncoupled torsion mode.
Examining the first alternative, the swashplate position determines the
Primary blade feathering motion. In additior, the linkage between the
swashplate and the blade (see Figure 15) has flexibility in tke pitch link,
pitch horn, and cuff. The feathering or pitch horn bending degree—of-
freedom therefore can be rigid tlade featiering motion outboard of the
blade cuff coupied with a net inboard stiffness. Inboard of the blade
cuff, feathering flexibility results from the pitch link, pitch link
bearings, piteh horn, and cuff. The relationship between blade feathering,

°Fn’ and motion of this degree-of-freedom, BPHn’ is defined as the partial
derivative, 3¢F
aBPH n
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Figure 12. - First inplane mode.
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Figure 13, - First flap mode.

zBl..n
Y8Ln i
/ =1 %
- =~ A3n
== AP |
v —— =~ // — XaLn
(d/avi A
3A3“ 3n

Figure 1k. - Second flap mode.
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Figure 15. - Blade, pitch horn, and feather hinge geometry.
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Alternatively, this degree of freedom, BPHn’ can be a distributed torsional

response of the blade based upon defining an uncoupled dynamic torsion mode.
The selection of the degree-of-freedom representation is made on the basis
of the type of analysis being performed. The mode defined is uncoupled in
the sense that it is not a function of the flapping or lead-lag modes.

An optional quasi-steady torsional response of the blade may be used in
conjunction with pitch horn bending. This is superimposed on the rigid
blade feathering and permits a distributed torsional response alternative
of the blade reacting the spanwise variation of applied torsional momen s
from aerodynamics, coriolis, and centrifugal force terms. The blade tor-
sional response at the ith blade station is computed from the following
equation:

. tip

_ 1 X3 dax

op; T 7 s+1[ GJLJ[ My (x)ax )
T root &

vhere S is the Laplace operator, and 1, is the time constant associated
<

with blade torsional response. This equation is implemented numevically
in the PEXOR II progranm.

To aid in program trouble shootine the pitch horn bending representation
(with or without quasi-static torsion) may also be operated as a qu:si-
static degree of freedom without second-order response.

L.3.5 Swashplate. - The swashplate has three degrees of freedom: ¢SP’

p? and Z P Rotations OSP and 6 are Buler angles defining the orienta-

eS S sp
tion of swashplate coordinates relative to the hub. Likewise, the transla-

tion ZSP defines vertical displacement of the swashplate relative to the hub

axis. These ~re shown schematically in Figure 10.

L.k General Motion and Coordinate Transformations
In development of the equations of motion, it 1s convenient tu write the
forces, moments, velocities, and accelerations in coordinate systems

related to separate elements of the system. Consider tne concept of
general space motion of a particle.
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L.4.1 General case of space motion. - For the general case of space motion,
a particle, p, moves with respect to a reference axis system which is, in
turn, in motion with respect to a fixed coordinate system. This is illus-
trated in Figure 16 vhere the fixed or inertial coordinate system is des-
ignated by capital letters X, Y, Z, and the moving coordinate system is
designated by lower case letters x, y, z. The moving coordinate system is
rotating at an angular velocity, w. The vector @ may, in general, vary in
magnitude and direction, both of which can be referenced with respect to
the fixed X, Y, Z axes.

Thus, the absolute motion of the particle p, referred to the inertial

X, Y, Z axes, is equal to the motion of the particle relative to the
moving coordinate axes x, y, z plus the motion of the moving axis system
with respect to inertial space.

X

Figure 16. -~ General case of space motion in terms of moving coordinate
axes x, ¥, 2z and inertial axes X, Y, 2,
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To visualize the motion of the particle p, let its motion with respect
tc the roving axis system be indicated along a curve s fixed in the
moving axis system, x, ¥, z. An observer sitting on the moving axis
system would therefore see only the motion of p along the curve =

From‘Figure 16, the position of p relative to the x, y, z axes is represented

by the vector

<>

+> -+ g
R= xi +yJ + 2k

where i, J, and k are unit vectors
be treated as variables due to their

along X, ¥, 2,
changing direction.

_’
TR results in

(6)

and therefore must
Differentiating

-> > > g -+ > di:
r=xi+yj+zk+x-a%+y%%+z3-t- (7)
di ¥ dk
-> > -> -+ - >
Since = =wxi, 4 . wxJ and —— = w x k, this expression can be
das dt dt
written as
-+ > -> > -> -> > ->
r=xi+yj+tzk+owx(xi+yj+ zk) (8)

or
-> > -+ -+
r=r+wxr (9)
-5
In this equation, the first term, r represents the velocity p relative
to the rotating axis, x, y, 2. The second term, ; x ;, is the velocity
of the point in the moving coordinate system due to the rotation w. The
->
absolute or inertial velocity R of the point p is obtained by adding
> ->
the velocity of the origin RO of the moving axis system to ;, or:
-> -> > >
R = RO +r+war (10)
> > > >
where w=pi+q) +1rk
and w=pl+qf +rk
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The inertial accelerations of the point p can now be determined by
simply differentiating this expression with respeci to time. Performing
this differentiation yields

- > +> - + > - -+ > >

R ﬁo +r+uxwxrtoxr+2wxr (11)

-+ > -> >
where the terms w x w x r and @ X r represent accelerations of the

->
coincident point in the moving axis system, r is the acceleration of P

relative to the moving axes, x, y, z, and 2; x ; is the coriolis
acceleration which is directed normal to the plane containing the vectors
> >

w and the relative velocity f, as given by the right-hand rule.

The vectors expressed in the preceding equations are in the most general
form for defining the motion of a particle moving in a moving coordinate
system. All special cases can be deduced fom these equations.

For convenience, the time derivative equations can be expanded in matrix
form. The inertial or absolute velocity and accelerstions of the particle
p, vwritten in expanded matrix form, are given by:

X XO x 0 -r q x
Y = {Y, +4yg+ r 0 -p y (12)
Z Z0 b4 -q P 0 z
and
I .
X Xo I X [ 0 -r q { 0 -r q X
Yy} = §O +4dyet+ | r 0 -p r 0 -plgv¥y
Z Z0 2 qu P 0 qu P 0 Z
0 -r é X 0 -Tr q x
+1r 0 -plyvf*r2|r o -p{{v¥ (13)
-q P 0 z -q P 0 2
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Performing the indicated matrix multiplication gives:

x|t [XO ! x zq - yr]
Y = fo +dyd+4dxr-2zp (14)
Z ZO z YP - Xq
and

. I . I

X XO b'4

Y = YO + y

Z iO z

2 2 . . . .
x(-r“-q°) + y(pqg-r) + z(pr+q) + 2zq - 2yr
. 2 . . .
+ { x(pg+r) + Y(-rz-p ) + z(qr-p) + 2xr - 22zp (15)

x(pr-q) + y(ar+p) + z(-p>=q°) + 2yp - 2xq

L.k,2 Coordinate transformations - Euler angles. - To describe motions in
one coordinate system in terms of motions in another coordinate system,
Euler angles ¢, 8, and ¥ with the appropriate subscripts are introduced.
These angles can be applied to define the rctation of one coordinate system,
X, ¥, Z, relative to another coordinate reference frame, X, Y, Z. Since the
development contained in this report utilizes these angles in relating
coordinate systems, a brief explanation is given here.

Rotational displacement of a coordinate system can be represented by the
three rotational displacements ¢, 6, and ¢, as shown in Figure 17. The
order of rotation is not important as long as the sequence selected re-
mains consistent and the reverse order is used when rotating back to the
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AXES (X, Y, 2), DEFINED RELATIVE TO REFERENCE
AXES (X, Y,Z) , BY EULER ANGLES 0.0 %

Figure 17. - Rotational displacement of a coordinate system.



original position. In this analysis, the rotations start with aisplace-
ment ¢ about the x axis, then a rotation 6 about the nev Yy axis,
followed by a rotation ¢ about the new or final =z axis unless geometry
or physical ccnsiderations of the mocdeled part dictates another order.
This means the (X, Y, ':'.)a coordinates can be rotated into the

(x, v, Z)b axis svstem as follows:

- - g - g 1

X cosy sin¢¥ Cllcosé O -sinelfl 0 0

Y = l-siny cosy O 0 1 0 0 cos¢ sing Y

A Y 0 1} Isine O cosgl 0 -sing cosy Z
b | 4 a
S - -y
(16)
or:

X X

Y§ = [Ta_b] Y (17)

pA b lz a

X X X
Y} = [Ta_b]-] YR = [Tb_a] Y (18)
Z a Z b Z b
vhere
cosy sinyg OJJcosé O -siné]i 1 0 0
[Ta- ] = J-siny cosy O 0 1 0 0 cos¢ sing (19)
i 0 0 1|lsine 0 cose]] o0 -siné cose
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and

1 0 0 cos8 O sin@]jcosy -sinv O
T -
lTa-b] L -lo coss -sine o 1 o0 siné cosy O] (20)

U sin¢ cosé -sind 0 cos9 0 0 1
By inzpec%ior, then, it can be seen that
inverse of [T] = transpose of [Iﬂ

or

] =[] = [Foce] (21)

Carrying out the indicated matrix multiplication yields the transformation
matrix [T] :

(cosvcos9) (sin¢sinBcoswvtcos¢sing) (-sinBcos¢cosy+singsing)
[fa-b] = | (-sin¥cos®) (-sinysin¢sin@+cosycosd) (sinysinb@cos¢+cosysing)
(sind) (-cos8sing) (cosécos®)

(22)

Using this transformation, the inertial veliocities and accelerations of a
point or particle be written in one coordinate system in terms of those in
the other coordirate sysiem as follcws:

I

[

b
N

(R

(23)

[
N
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and:

X I % I
3 = 3 L
Y [Ta_b] Y (24)
Z b z a

and inversely,
i I i I
Y} = [Tb_a] Y (25)
z a Z b

and
% 1 % I
i} - ['rb_a] ¥ (26)
Z a Z b

L.4.3 Angular velozities and accelerations - general. - For the general
case, ccnsider the coordinates in the previous section, and let (p, q, r)a

and (p, q, r)b be the respective angular velocities of and about the

(x, ¥, z)a and (s, y, a)b axis systems. Also, assume that the Euler angles
are varying with time (¢, 6, and V), and let (x, y, z), be the reference
coordinate set with (x, y, z)b coordinate set moving relative to it. This
is illustrated in Figure 18.
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Figure 18. - Relationship of Euler angle and coordinate
system angular rates.
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From this figure, the following can be written.

P 0 cosy
qQ = 40 » + J-siny
I &
1 0
+310 cosé¢
Q0 -sin¢
i

r e

siny 0 0 cosf
cosy O &4 8y + 0
0 1l (0] sindé
LU
3 )
0 p
sin¢ 1 4 q b 3
coséd r
aJA

siné 6
4] 0
cosé 0

(21)

Differentiating tris expression with respect to time results in angular

(p,
angular velocities

accelerations

q, i)b in terms of the reference coordinate system

and acceleraticns.

—

This results in the following:

. 9
P 0 -siny cospy O r o cos6 0 -sin6
a} =d0 %+ vjcosv -sint Ol Y+l o 1 0 )
r b v 0 0 0 0 siné 0 cos®
- N\ F .
r N %Y 8 b Y
1 0 0 P cos siny O 0
+10 cosé sind (4 q % 3% + |-siny cosYy 0 p ) 3
0 -sin¢g cosé r 0 4] 1 (0]
2) |
Y A L . . J
R - . r 2 N N
—sin8 0 -cos8 | [[é 1 0 0 P
+ 8 0 0 0 40 +] 0 cosé sing fday %
cosf 0 -siné 0 0 -sin¢ cosé r
. \ L _LJaJ
N d &3 -
[cos® 0 -sine P [0 o 0 (o)
+1 0 1 0 440+ @ 0 -sin¢ cose | Ja L
sind O cos®O 0 0 -cos¢ -sing r
L .‘L L 4 N J
1r.
r1 0 0 P
+]0 cos¢ sing |d q
0 -sin$ cosé r
. - N\ a
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¢

o

(=)
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These equations represent a general form for defining angular velocities
and accelerations of one axis system rotating relative to another axis
system, whick in turz is in motion.

A special case is the angular velocities of system b with zero Euler angles.

B B ¢ Ve +¥q - 8r
q = Jal «)sl + [-i6+4r-vp
rly r a Yla 8¢ +08p - ¢q |

4.5 Relative Motions and Transformations Used in the Equations of Motion

In this sectior the inertial linear and angular velocities and accelera-
tions of major components of the vehicle, are presented. Also included is
the development of coordinate trausformations that relate motion in one
axis system to another. Motion of the principal reference axis system in
relation to the earth is described. Motion of each component or reference
axis system is then defined in terms of the degrees of freedom.

4.5.1 Fuselage motion in inertial space. - At each instant in time the
fuselage axis (Section 4.2.1) is related to an inertial coordinate axis
system. Inertial accelerations of the fuselage axis system are defined
by the vector

) TP ¢ (29)

. Jr

where the quantities represent the total inertial acceleration of the
generalized conrdinetes of the vehicle as defined by motion of the
principal coordinate axis system.



Orientation of this system relative to the earth is specified by Euler
angles ¢, 6, and *B as gseen in Figure 8. The sequence and defini-
tion of these angles is *é (yav), op (pitch), e (roll). Note that the
sequence of rotations is opposite to that given by Figure 17. The
angular rates, Pps Qps rF, of the fuselage or principal reference axis

system with respect to the inertial coordinate system can be written as

] ’E 1l 0 0 0
q = €0 +10 cosoE sanE eE
r . 0 0 —sinoE cos¢Eﬂ 0
A h
cosSE 0 —s1n6E 0
+| o 1 0 I 2 4 (30)
51n63 0 coseE wE )
This equation can be rewritten to solve for ¢E’ GE, and ﬁE as
’E 1 51n¢E taneL cos¢E taneE P
eE =10 cos¢E —Sin¢E q (31)
wE 0 31noE seceE cos¢E seceE r .

The Euler a:.; es defining orientation of the principal reference axis
system with respect to the earth is next obtained by integrating the rates
with respect to time, or

t .

% = [0 bp dt + % - o (32)
t .

Op =fo A (33)
t -

Vg =/0 b dt * ¥ - oo (34)
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Angular velocities of the fuselage, with respect to the inertial axes
reference system, Fps Qps» Tpo are defined in terms of the degrees of freedom

as r ) r Y )
P o |t P P
0 t .
€qd =496 = 2 qf dt + { q (35)
0
R 0
r ¥ r r
0 t = 0O,F
. F \ JF .~ 4 '
where
0 [~ )1
P ¢
<ci> =160’ (36)
r ¥
0
LJF \ JF

Linear velocities of the fuselage or principal axis system are nowv determined.
The first three quantities of the fuselage axis acceleration vector represent
the linear interial acceleration of the fuselage. For a system in motion, the

‘e . ! s . . .
inertiai acceleration, 2y » at the origin of the system is defined,

based on the vector algebra of Section L.L.1, as

> I > -
- .. >
= +
a, a, *wx V0 (37)
>
> av
where ao is Frae is the rate of change of velocity, VO’ of the origin

of the moving ccordinate s stem and w 1is the rotational velocity of the
moving coordinate system, both relative to the earth. Now defining:

I
Vv =
-l
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gives

F. ) r ) Y )
Xo I u FO -r q u

4 YO b =4V + r 0 -plg vy (39)
Zo v -q P 0 w

\ JF \ JF L JFU JF

From this equetion, then, the rate of change of velocity of the moving
coordinate reference system becomes

r.w PiI .

u i

vl=]¢t + (40)
S A8 R B TR LA ¢

. 5 I

w Z. -Dpv+qu

LdF LO JF

This set of accelerations and the time integral represent airflow accelera-
tion and velocity incident on the helicopter.

» separate set of accelerations is carried through the analysis which contain
the acceleration due to gravity. Ordinerily, gravity is treated as a force
of mg on the right-hand side of the equations. However, the gravi.ational
term can be accounted for by defining

o h r “
iTEI f'i b
0 0 €x
4ito,=4'1i0>-<g,{» (k1)
0 0 &
e L R B R B

wvhere EXF’ EYF’ SZF ere the three components of the gravity vector to be
defined. The acceleration on the lef! may be defined as being in earth-

inertial, EI, axes.
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The logic behind this substitution is as follows. For a rigid body in

motion, the equilibrium equations can be written as

mX = m(u + qv - rv) = F

m¥ = m(v+ ru-pvw) = Fy (42)
mZ = m(w + pv - qu) = F,
vwhere
Fx Fx €y
BRI ARG (43)
¥ s &
F » F s and T, represent the external forces acting on the body, exclusive
X’ Y Z

of gravitational forces.

Subtracting the gravitational vector from

equations yields:

each side of the previous

m(X - &) = m{u + qw - rv - gy) = (Lb)
m(Y - g,) =m(V+ru-opw-g)s= (45)
n(Z - g) =m(v+pv-qu-g)= (46)
which by inspection gives
X - gy =Rt Qv -7V -g (87)
Y-g =v+ru-pv-g (48)
Z - 8 =V+pv-qu-aq (49)
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Rearranging these equations yields:

ix=(5i-gx)-qv*rv+gx (50)
i:(Y-gY)-ru**pV*‘sY (51)
v=(Z - gZ) -pvtauteg, (52)

The first terms on the right side of the equation are identified with the
proposed gravitational acceleration definition of Equation L1,

Making the substitution:

r r 1
u iEI -qw trv+g
0 X
vl = YgI - ru+pv+ g . (53)
W 5EL _ PV + qu + g
0 2
F
-JF he o

In this equation, the accelerations igi, ?gé, and igi are the degree-

of-freedom accelerations of the principal reference axis system used in
the REXOR II analysis. These accelerations represent the inertial accel-
erations plus the equivalent accelerations of the reaction force to
gravity. Thus, gravity is an equivalent acceleration applied to the
reference coordinate axis system. Via coordinate system referencing,
every mass element on the vehicle is therefore acted upon by this accel-
eration. This avoids including gravitational force as an external force
individually applied to each mass element.

The gravitational vector at the fuselage is simply the gravity vector in earth
axis transformed to the fuselage axis system through the Euler angle rotations

gy 0
st = [Ter] {0 (54)
g, g
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where

1l o] 0 coseE 0 —sineE coswE sinwE 0
[TE-F] =10 cos¢E sin¢E 0 1 0 —sinwE COSWE 0
0 -sin¢E cos¢E sineE 0 coseE 0 0 1

| (55)

The velocities of the principal axis system are obtained by integrating
the rates of change of velocity with time, or

r' \I r\I r.\ o 9
Xo u u u
t
<ioP=<v>=‘/<\}Pdt+‘V, (56)
. 0
~Zo W w w
4 JF L JF . JF L‘t=o’F

r \I r wI r \I

¥o %o %o

Y = |z i,y =[r T4
Yo ¢ = TF-E 1 of = [TE-FJ 1%¢ (57)
7 6 2 7
‘L JE . 04F . OJF

which can be integrated to give the position of the system relative to the
earth. Doing this yields

r 3 C . ) 1 9
X . %o X
1% | =f0 1% @ *{%} (58)
VA Z z
[ O)x L %)k L0t=O,E
o
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4.5.2 Hub motions in inertial space. - The geometry of the hub, shaft and
fuselage is described in Sections 4.2.1 through 4.2.3. Forming the motions
of the hub first requires knowledge of the shaft set motions and shaft
generalized coordinates. The transform from fuselage to shaft set,[TF_s] ,

involves rotor tilt alignment date ¢o and eo . Elastic motions of the

s s
transmission suspension, and consequently the hub, are described by the
generalized coordinates (X, Y, Z, ¢, B,W)S which are measured with respect

to the shaft (S) set. The transform from shaft to hub, TS—H] is a function

of the generalized coordinate angles (¢, 6, W)S.

The development starts with fuselage to shaft set relations:

r — 1
.11 -1 ]
o XO | 0O -r gq Xos
i} - [?F_%] {ib +| = o -p| {% t } (59
Z |12 -3 p o Zo
0 S L 0 F | _F S]F
ET (. 7 EI s B 7]
Xo Xo 0 -r g 0O -r g
YO = [TF-S] {4 Y, + r 0 -p r 0 -p
20 s "O F -9 p C! F L9 P O F
L L~ - =
= -
o -+ 4l | |%,
+ ¥ 0 <P Yos L (60)
L F ® FJ

Noting the following transformations:

Pp P
G + = [TF-S] q (61)
Tr | s rile
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ﬁI“
< qF o
r
F
- r S
Applied to hub set equations:
r T [ o - r
(3 I L I
X %
15t = [TS-H] 11 YO >+
Lzo H | %
4 - 4 -
H
and
[ JEI . Ter (s
%o X X
r YO o = [TS-H]J* YO L + 4 YH <
. . .
Z pA Z
0 o] H
L JH | Js L Js
A
0 --rF qF 0
rF 0 -PF rF
-y Pp O s LoF

(62)

(/]

(64)
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vhere

f ] () 11 ]
X.H X rO -Ws Ss on
y YH; = 1Yy + wS 0 —@S 4 YOH} (65)
pA -8 ¢, O 29
S S S
L Js LF 1 JL s
P.ﬂ r h r . é - r -
X X 0 -v% S '(OH
v = v - 3 -t S
1%} 4 Y} ig O el vg, (66)
Zy Z ~8. é. ¢ Zg
S S S 1
e LP L 1 1s
r - o - - r “
4 7 _z .
5 X 0 L és )‘OH
< YH b =¥ 4 §S C -¢S YOHP. (6’{)
3 5 A -
-3 % Z
4 “Is S T O
| & JS L J = J L OHJS

Forming the relative location of the hub ir fuselage coordinates:

r - r r E
Xy Xoq %
.. Zn z

..“hJ F oL Yr .“HJS

Locking at enguler information in the hub set:

P C] cosy s'ny O ¢
= JC ] + |-siny cosy O 414
3" ig o o 1 Hofs
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<
cos8 0 -sin $ 1 0 0 Pp
+1 0 1 O 0 +] 0 cosé sind] {qp s
8ind O cose.v 0 S 0 -sinp cos rp S
) (69)
p 0 -siny cousy O 0 cosé 0 -sind ¢
4f = {0} + v]-cosy -siny Of € {a} +] 0 1 o 0
el v S 0 0 0 O'S sind 0 cos9d s (¢] s
L r
i 0 cos¥ siny O 0)
+10 cosd siué #t [-siny cosy ol 46
0 -sin¢ cos¢ (4] 0 1 0 s
p -
-sing O -cos¢ ) 1 0 0 PF
+és {0} +]0 cos¢ sing I
cosd O -sxne 0] 0 -sin¢ cos r
\7’s F
S
cosf® 0 -sinéd 0 0 0 0 PF
+ 0 0 0 -sin¢$ cos qr
sin® 0 cos9 S 0 S 0 -cos¢$ -sin rp s
(i
1 ¢ 0 PF
+ 30 cosé sing qF g
0 -sin¢ cos iF .
J
(7¢)
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L.5.3 Motion of rotor coordinate axis. - The rotor coordinate axis system
is stown in Figure 6, Note that the rotor coordinate axis system is rotated
180 degrees about the Y axis relative to the hub axis system at the time
vhen the rotor is at azimuth position zero. That is, X and Z change direc-
tinns. The rotor coordinate system then rotates through the angle ﬁR from

this position.

The sequence of rotation in going from hub to rotor coordinates consists of
first a 180-degree 8 rotation, fcllowed by the *R rotation. Following the

convention estabiished in Section L.L.2 for Euler angles:

- Fyy r 3
,osz sLnJR 0 cosT C sinw
[TH-R] = -51n¢R coswR 0 0 1 0
| © 0 1JL-sin™ 0 20ST

'coswa sinb, 0] o 0

= f-siny cos$R C 0 1 0 {11}

o 0 0 l-A -0 O -l

vhere the last matrix represents the 180-degree 6 rotation. The next
t
matrix is the rotor rotation, y_ = G, dt.
R ‘R
0
Since the origins of the rotor coordinate system and the principal refer-

ence axis system are ccincident, the linear velocities and accelerations
of the origin of the rotor coordinate system can be directly written as:

1 M I
XO 1%
op = [ras] {% (72)
Z z
0 R 0 "
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and

" eI % 1EI

%o %

Yof = [TH-R] Yy (13;
) » LC) o«

Noting gravity has been treated as an equivalent acceleration in the hub
generalized coordinate accelerations. This same equivalent acceleration

. . .. EI
is included in (XO, Y ZO)R’ the rotor coordinate accelerations.

0’
The angular velocities, Pps Qps Tp» and accelerations, bR’ éR’ iR of

the rotor coordinate system are determined; again noting the rotation
order. The rotor coordinate system angular veliocities are:

P 0 cost'R siny, 0 -p
q = 0 + |-sinvg cos¥y ¢ q (7h)
ria %R H 0 ¢ 1 -rly

Likewise, accelerations of the rotor ccordinate system are:

) r o A o - r
P 0 -smwR cosﬁ;R 0 -p
: y = b o+ o - —si 3
1 €40 wR cosdvR s1ni;R 04 q
rlz WR 0 0 0 -y
. J \\ " JH R J U J
- 27 .Y )
cosd:R sin&R C -p
+ —sinwR ccswR ol4aqaf ¢ (15)
0 0 1 rly
L. - . J y

The above equations then define the coordinate transformation from hub to
rotor coordinates; and rotor axis system linear and angular velocities and
accelerations in terms of velocities and accelerations of hub and the rotor

degrees of freedonm *R'
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4.5.L Blade coordinate relative to rotor coordinates. - Since each blade
has its own blade reference system, as shown in Figure 6, the xBLn and YBLn

axes are rotated vith respect to the XR and YR axes azimuthally by 2n angle
ith defined by the equation

v = -2x(n-1) (76)
BLn b

vhere b is the number of blades and n is the blade number. This equation

states that the xBLl and XR, and thLe YBLl and the YR axes are coincident.

The transformations betweern the rotor coordinate axis system and the blade
coordinate axis systems are defined by the equation

cosq;BLn s.ngBLn 0
[TR-BLn] = —sin@BLn cos;aBLn 0 (17)
] 0 1l

Note that these equations define blace one as being straight aft at time
zero.



In the blade reference axes, the velocities and accelerations of the
origin of the blade reference axis system become:

r 3 r Y

: 1 )1
X0BLn Xo
YVoBaf [‘R-BLn]‘ Yof (18)
5 ;
| OBLoJ prn ok
and
r 3 r N
. EI . ) EI
X0BLn Xo
{ Yorin t = [TR—BLn]{ Yt (79)
. OBLnJ BLn \ OA R

Likewise, the angular velccities and accelerations of the blade reference
axis systems become:

P P
q - [TR-BLn] 1 (80)
¥ JBLn TJr
and
P P
q = [TR_BLH] q (81)
r BLn r R
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4.5.5 Blade element motion. - The following blade motion description, due
to the involved nature ¢ the geometry, is rather lengthy. First, in this
development, the motion of the blade with respect to the relative blade
coordinates is given. This motion is the sum of static and modal deflec-
tions. Then the relation to freestream coordinates is computed. Partial
derivatives are extracted from the transformations for use in the equations
of motion of the blade in Section 5.6.

The blade element motions for the nth blade are defined relative to the
blade (BLn) coordinate reference axes (Figure 6). The blade element rela-
tive motions are functions of the static shepe, of blade feathering and
torsional deflection, and of blade bending of the coupled inplane and
flapping modes.

The static shape includes such items as blade twist,
angle, 8,,
sveep angle, T feathering axis precone, 8

QTH, hub precone

blade droop angle relative to the precone angle, vy, blade

FA® the blade feathering

angle, and the blacde element center of gravity location.
The blade motions about this static shape include the effects of tlae
three blade berding modes, A n’ A and A

1 2n 3n’
and blade torsional deflection, Qt.

blade feathering, OF’

The blade element motions are now defined. The blade static position in
the blade reference axis system is first developed. The blade bending and
feathering deflections are then introduced. Both deflections and slopes
are developed and then these equations are differentiated with respect to
time to obtain the biade element linear and angular velocities and
accelerations.

The blade element linear motions are developed in blade (BLn) coordinates
and the blade element angular velocities and accelerations are developed
in blade element (BLE) coordinates. The coordinate transformation

matrix [rBLn—BLé] is also defined to permit the transformation of the

inertial velocities and accelerations from one axis system to the other.
The development of the blade relative motion equations now starts with
the description of the shape of the blade.
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L,5.5.1 Blade static shape. - Blade elemental motion is defined as motion of
tiae blade element reference axis system which has its origin at the blade
element center of gravity. The blade serodynamic reference axis is selected
as the 1/4 chord. Likewise, the geometry end dynamics are referenced to the
1/4 chord, though any reference line could have been used. Starting with the
straight untwvisted blade with the blade 1/4 chord lying along the xﬁln axis

as in Figure 19, the blade element cg and blade element coordinate axis system
origin are defined by the coincident point defined by the vector

fxcc(i)

. 82
YCG(l) (82)

o (s
266440 | BLn

in blade coordinates. Thd dimension XCG(i)BLn is the undeformed spanwise
location of the cg/blade element origin. The dimension YCG(i)BLn is the

chordvise location of the c.g./blade element axis system origin forward of
the blade 1/b4 chord and ZCG(i)BLn is any vertical offset of the c.g./blade

element origin with respect to the reference chord plane oI the blsade.

Now, introducing blade twist by rotating about the xBLn axis through the
local blade twist angles, Figure 20, results in:

X(1i) 1 0 0 X

BLE X(i)gp CG
-\ - - - - -
Y(1,BLE = Y(1)BLE 0 coscbTw smq:Tw YCG (83)
2(i)grp 2(i)g g 0 sindgy  cosépu | | %e6 | BLn

I BLn

The Roman numeral subscript I denotes the first of a sequence of static line
transformations.
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Yiilgy o

Xlilgy o

. Figure 19. - Blade element c.g./origin location in blade coordinates.

I
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I / ® YaLn- Vi
7
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Srw

Figure 20. - Effect of blade twist on location of blade element
¢.g./axis system origin.



At this point the subscripting, BLE will be dropped to simplify the develop-
ment. Rewriting the above equation, we have:

X(i) 1 0 0 Xco
Y(i) =10 coscaTw -sin¢Tw YCG (84)
Z(i) I 0 sin«bTw cosq;Tw ZCG

Introducing vlade ccning, BO’ results in the location of the blade as shown
in Figure 21. This results in:

X(i) cosB0 0 -sinB X(i)
Y(i) = 0 1 0 Y(i) (85)
2(1) II sinBo 0 cosB0 z(i) I

The next item of static geometry that is considered is blade droop, vy, and
then blade sweep, to. These rotations are shown in Figure 22. Note that

since the blade sweep and droop angles are introduced at a distance xsw out

on the blade, it is first necessary to transfer axes to this location before
making the rotations. Therefore, the blade displacements outboard cf
Station XSW become:

X(i) cosT -SinTO 0 cosy O siny x(i)
Y(i) = sinto cost, 0 0 1 0 Y(i)
2(i) I1I 0 0 1§l-siny © cosy Z(i) I
Y el
- 0 (86)
XSWSinBO
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At this same station, provisions are introduced to allow for offsets of the

blade in both the vertical and horizontal directions by Zjog and YJOS'
respectively. These offsets are shown in Figure 23. These offsets represent
displacement of the blade 1/4 chord with respect to the blade precone line at
blade station XSW'

Introduction these offsets, then, and transferring back to the center of rota-
tion through XSW results in the description of the blade displacements out-
board of station XSW’ including the effects of precone, sweep, droop, and

offset of the blade from the precone line.

X(3) X(i) 0 XswcosBO
Y(i) = dY(i) + ong + 0 (87)
Z(1i) v 7(i) ITI Zjog XswsinBO

2,y

Figure 23. - Introduction of blade 1/r chord offset, Y

j0 and Zjo
with respect to precone line. g €
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At this point, & reminder that the rrior development represents the blade
displacement inboard of Station XSW and the above equation outboard of

Station X

Sw* Therefore, inboard of Station Xsw:
X(i) X(i)
Y(i) P = €Y(i) (88)
7(1i) z(i) II
Qutboard of Station Xsw:
X(i) X{i)
Y(i)p = {¥(i)
(89)
Iy /.\
7{i) Z'1) v

With this in mind, the remaining developing of including the efiects of
feathering axis static precone and blade reference feather angle in describing
the static blade position continues. No distinction will be made in the fol-
lowing developments between inbecard of Station Xsw and outboard of Station XSW‘
Figure 24 shows how blade feathering is introduced. The axis system is trans-
lated tc a point p which is located at the intersection of the precone line
and the feathering axis. The location of this point is a distance £ _ along

the cone line, as shown in this figure. The blade is first rotated tc ihe
feather axis; then rotated about the reference feathering angle, QREF’ the

feathering angle for which the blade modes are defined. Doing this results in:

X(i) 1 J 0 cosBFA o 81nBFA X(i)
Y(i) =0 coséppr -singpoo 0 1 0 Y(i)
72{1) v 0  singgpo cos¢ppo | |-sinky, 0 cosB, Z(i)
L cosB
P 0 (90)
- 0
2p51n80
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FEATHERING AXIS

ZBLn

Figure 24. - Point p and feathering axis precor= Brp:

This equation defines the locatior of the static shape of the tlade in an
axis system with the y-axis horizontal and the x-axis aligned with the blace
static feathering axis. Transforming now back through the feathering axis
precone angle and translating back to the rotor shaft centerline results in
the static shape of the blade defined in blade coordinates, or

—

XS(i) COSBFA 8] -sinBFA X(1i) [lpccsBO
Ys(i) = 0 1 0 Y(i) 4 0 (91)
Zs(l) L SlnBFA 0 cosBFA Z(i) v lzpsinBO

where subscript S refers to blade static or undefcrmed shape. Combining
equations developed so faur results, then, in the follcwing two equations which
represent the static shape of the blade for botl inboard and outboard of

blade station XSW'
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Inboard of Station XSH:

r
b4
S
r = 4Y p =
S
’ ngn
ZS .
| ) Bin
cos;sFA
. J
-51n8?A
1 0
=10 cocs$o
z -Ln¢Th

[

<

{92

\



Qutboard of Station lsw:

-si 1l 0 ¢
XS cosBFA 0 31nBFA
- = -sin
‘rsin, = {Yt = 0 1 0 G cosdpon L —
n
Zs sinBFA 0 cosBFA ¢ 51n¢REF cos¢REF
[ d 1 f i 0. cos (4] siny
oosBFA 0 StﬁﬁFA costo -51nt0 Y
. i 0 l 0
0 1 0] 4 51nro cosrO 0
-si 0 ] 1l -siny 0 cosy
LSIHBFﬁ 0 COSBFAJ \ !
4 - - — -
-si X
cosB0 0 s nBo 1 0 0 cG
. 9 0 1 0 0 <:osq’,1,_"Y —s:.noTw ‘oG S
i Z
51n80 0 cosBCJ _0 szmTw COSOTHJ cc |
[ ] L cosR )
XSUCOSSC 0 XSHCOSBO pcos 0
- + 4Y b + 0 - o p
4 0 jJog
h i i £ sinB
L:{susmﬁo ZjogJ XSH51nBO P in 0
.
3
cosB0
1 ° (93)
£ sin8
L 0

These two equations ther define ccmpletely the static shape of the *lade.
The dce-<lopment will not proceed tc include the blade bending or elastic de-
formaticn. Jowever, before proceeaing with this, the static location of the

blade feathering bearing is defined s’nce these will be used in the develop-
ment that follows.
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Referring to Figure 25, it —an be seen that the static position of the inboard
feather vearing location can be written as:

The static location of the outboard feather bearing is:

\ JB

BLn

Ln

\

L

IB

*oB

cosBo

0

B} 3 v - - { - R
v1551n80 (Ep iIB)(tan(BFA SO))COS'O

cosSO

3 {94)
J
\
( ($5)

with these definitiors, the analysis will not proceed tc include the effects
of blade bending, blade feathering, and torsional deflection.

ZgLe
'y

08B FEATHER
BEARING

18 FEATHERING

> xBLn

Figure 2%5. - Static feather bearing gecretry.



4.5.5.2 Blade shape - elastic deformation. - In the foregoing development,
the analysis has proceeded in a completely rigorous fashion. At this point,
though, a departure from a completely rigorous simulation of the elemental
blade motions will be made., It will be assumed, as far as blade elastic de-
formation is concerned, that the cosine of angles, like precone less droop,
blade swveep, elastic flapping, and elastic inplane slopes, but not blade
feathering is approximately equal to 1, and therefore, the blade elastic de-
flections, y and z, in blade coordinates, will be assumed to be equal tc those
in the static blade element coordinatec. This assumption i. a reasonably
valid assumption sné is completely consistent with standard practice in the
matiematical representation of blade element motionms.

Additionally, as far as the effect on structural axis reorientation due to
blade ¢ rotation, the effect due to blade leastic twist is considered to be
small compared to that due to blade cyclic and collective feathering. Also it
will be assumed that the contributions to blade Y and Z motion are small due
to blade torsional motion, other than that due to local center of gravity
offset.

With these aw--mptions in mind, blade elastic tr~nding will now be introduced.
The contribution to elastic blade bending is si—ly

b r = f h
0 o o o A
1n
1epf % Y Y3ifA,¢ (96)
7 z oz 3 A
BEND | . y %4, 2
. 4 Bin L. 3 . 3n y

Note that X cor spanwise motions are not included in this equation. Blade
spanvise motion will be determined separately by utilizing blade slope dzia
to determine the change irn the orolected blade length upon the blade X axis.
With this in mind, the total Y ané Z blade rmoticns inciuding blade bending,
but not yvet including blade feathering or blede elastic twist, is strictly
the sur of the previous static line expressions and the modal deflection.
Blade torsicnal deflectior is treated as an independent degree of freedcH,
and therefore is not included as prart of these blade modes. Combining the
previous static deflection with the modal deflections gives:

A r
(3+53) 3 0
Y . -
T (B+53; YS + 9 XBEND (97)
“(z+s)] “a f_ “REND
L J BLn BLn . BLn
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4.5.5.3 Blade feathering. - Blade feathering is relative to the reference
feathering angle ¢REF' The feather angle, then, as far as blade motion is

concerned, is due to the difference in the total “eather angle ’F and the

reference feetner angle éREF'
The blade feathering motion is introduced similarly to the way the blade
reference feathering angle was introduced, except that the feather axis slopes
are due to the static position as well as due to elastic deformation in both
the flapwise and inplane deflection.

If we let Z'FA and Y'pA represent the instantaneous vertical and inplane slopes

of the feathering axis, then transferring to the inboard feathering bearing,

making the rotations through Z'FA and Y’FA to the feathering axis, rotating

through the delta feather angle -(¢ ) of ~8¢p, rotating back through

F*REF

—Y'FA and —Z'FA, ané then transferring back to the BLn axis system results

in the definition of the disrlacements in blade axis coordinates.

However, before proceeding with this, the feathering axis slopes Y'VA and

Z'FA are defined. The slopes are simply defined as the difference in the

total static ard elastic defiection ¢f the outboard and inboard feather bear-
ings divided by the spanwise distance betwveen the bearings. Then {rom Fig-
ure 25 and the vearing static lccation equatiorn:

and

R {99}

b,
s

ta
-
1
]
0
-
o3
]
[
——
tl
s
¢ 4]
)
t?
[
6]
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where in terms of the static ani modal deflections

( 9 r N r “ r N
X X 0 0 0 A
IB SIB 1ln
4 Y _2=4Y b+ | Y Y Y 4 3% (100)
1B
Six 18, IB, IB, 2n
z Z YA ya z A
1B S 1B 1B
| L") P 2 B3 3
and
{ h 4 R o N 4 h
X X 0 0 0 A
0B SOB In|
{4y - Y p+ Y. Y Y N . 101
OB SoB CBy ogz 0B, 2n (101)
VA 4 z yA yA A
| "B | “Son ) i 0B, 0B, 0B, | 3n

In the development that follows, the time derivatives of Y'FA and Z'FA are

required, so therefore, they are now defined. Tak¥ing the first and second
time derivstives of the slope equations yields

Y'FA = :YOB - YIB) / Ces(Y'FA) "B (102)
AN Z - ZIB) /cos(Z'?A)lB (1.03)

and

YU o= (Y

fee T ] y 2
Fh 0B V7 eos¥ o iy + sin(YT L) ¥ “feos(Y',) (104)

- ¥
15

N
{

~ =y - : : 2
= (ZOB - “IB) /CCS(.’.'?A)QB + Sln(Z'FA) Z'F-. /CCS(Z'FA) (105)
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vhere

r 1 g ) "'\ A
ETI I B¢ Y132 YIB3 1n
4 p = l 4 A } (106)
- - - 2 2n
A L o -
IB 1B, “IB, “IBg i,
. J L J U onj
- Jr- O
[ W Y Y Aln
Y9 Yoal 0B, 0B, )
p p = < A2n p (107)
7 VA yA yA )
CB OBl 082 053 A
. 4 - - - 3“4
and where
- r .. W
'_ ) Y Y Y ] Aln
Y18 ‘1B IB IB
L 1 2 31 i }
4 5 z 7 7 2n (108)
IB B, CIB, IR | |
- | - J U 3nJ
’" Y - ] . n r};l Ny
Yos Yo, es, osg || (109)
4 b = i . 14%onf
VA 2. & & .
OB s, “oB, “oBglli
L L J U 3n)

Transferring the blade displacements as indicated above to the inboard feather
bearing, trensforming to the feathering axis, and verforming the feathering
rotaticn as discussed earlier, yields the following equation which defirnes

the blade displacements in blade axis coordinates:
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r N ™~ - -
' —ai J ' -sinY"
X(F+B+S) cosl FA sin?2 FA cosY FA sin FA
- ] Y'

4 Y(F+B+S) 0 0 sinY FA cos FA
~” 3 '?l 7 e 0 n
Z(pens sin2'p, cosZ'cy 3
L (F+B S)J BLn JL

[y -
1 0 0 cosY FA sinY FA
» —_y [ L]
0 cosA¢F —31nA¢F sinY FA cosY FA
0 sinAcbF coséoF 0 0
b -l - -
[ 1 (( )
27 3 7'
cosZ FA 0 sinZ FA X(B+S)
. 0 1 0 44 Y(B+S)
A VA -
sinZ FA 0 cos ¥A Z(B+S)
L o A 4
r 3 r 3
Xg X8
b i1 ¢ AR BN (110)
“18B “1B
- JJ . J

This equation then gives the blade displacement in blade coordinstes, includ-
ing the effects of the static shape=, blade bending, and blade static twist.
The effect of blade elastic twist is now considered.

4.5.5,4 Blade elastic twist. - Blade motion due to blade elastic twist is
accountec for by going back to the static twist equation. Blade elastic iwist,

QT is assumed to te directly superpositionatle with blade static or blade

pretwist, ¢, except that the static pretwist takes place about the 1/l chord,

and the blade elastic twist takes place about the blade element shear center.
This is shown in Figure 26. From this figure it can be seen that previous
static twist equation carn be rewritten as:
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Figure 26.
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If we let &

L.5.5.5 Final blade element

T

v
is

o T1r 1 (( w
1 Q 0 l 0 0 xCG
0 coqu -sian 0 cosQTw -sinﬂrw 44 YCG p
0] sin¢\T cosqr 0 31anw cosQTw ZCG
e - - A W 4
r AR - - r N
0 1 0 0 0
- ﬁ YSC by + |0 cosfbTw —sm¢,rw 4 YSC :
0 LO 51n¢Tw cos¢Tw 0
\ ry o - y
(6 + ¢Tw) then this equation beccues
'-l e r o 5 r ~- Y (
0 0
Xea 0 0
0 ¢ -si -
cos T 51n¢T 11 YCG p 1 YSC by + 1 YSC°°S¢TW
6 sing cos 9 Z 0 Y si
T T fore SC51n¢ y
- J W J L J) L T
3 N h r 2
1 0
0 XCG 0
0 cosd, -sin¢, |1 YCG b+ YSC‘ eos¢Tw-cosoT L
0 sin? cosd,, z_ ; —ai
i T i CGJ 51n¢Tw s1n¢TJ
. .

v

(111)

(112)

Z displacement equation. - Suostituting the

above eguation in the previous development sequence yields the blade dis~
placement equation whicn includes the effect of the static shape of blade
bending, of blade feathering, and of blade elastic twist.

However, befsre proceeding with these substitutions, the following column
vector is defined to simplify the notation.
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where:

8L

3n

3n

(113)

(11k)
A
1n
A2n .
(i15)
A
3n



Note that for convenience c¢f using the condensed matrix notation discussed
above, the most general vectors for such terms as Ep, XSW’ Zjog’ and YSC have

been used. As can be seen in this equation, these have all been treated as
full vectors. Making the appropriate substitutions of course will result in
the expressions previously obtained.

It is noted that the eqguation is written for the relative displacement of
points on the blade outboard of Station XSW' Inboard of that station, the

displacements are determined from the previous .nboard equation or simply by

zeroing out such terms as riog and {rsw and substituting unit diagonal
transformations for [?1-] and ( Y] in +he full equation. Following either
0

approach yielés the blade displacement equation for points inboard of
Station Xsw; or

7 [ o P i or
SIE T, 7 7, T, 2L 1 a,
"BLE[ b [ z FA] Y FA] ] MF’] [ Y FA] [ Z»FA]] [aAn][ Jn]
fl 1T 1T T T

v 1% |t T T T r
" [BFA. ["REF. [BFA] [30] ["T] [CG]
[ T P 6
l"Tw} - [¢T] “selt - {rIB} * {rIB} (116)

The ith station blade displacements, Y and Z, in blade coordinates for points
on the blade both outtoard ard inboard of station XSw are then defined.

+

-

4,5.5.6 Blade element Y and Z relative velocities and accelerations. - The
blade element coordinate axis system linear Y and Z velocities relative to the
blade reference axis system can be found by differentiating the position
equation with respect to time, Note that no distinction will be made at this
point between outboard or inboard of station XSW’ but using the equation for

displacements outboard of this station and as discussed earlier, zeroing out
certain terms, results in the equations for velocities or acceleretions of
points inboard of that station.
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Note in the above equation that the [?é] matrices are not time derivatives of
the [TQ] matrices but are derivatives of the transformetion matrices with re-

spect to the transformation aungle ¢. This is arrived at by making the sub-

stitution that:
aTr
9_ T = g'_c ___C] = {; 'i‘ (11_8)
at| ¢ dt dC J g

and

d g[r
dt

;] N E['i";] * &e[ic] (119)

Taking the time derivative again of Eyuation 113 yields the blade element
Y and Z linear accelerations relative to the blade reference axis systca.
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These equations define the blade element relative displacement velocities and
accelerations, respectively, required by the blade inertial velocity equations
developec shortly. Note that in the preceding development these equations are

]
written for the nth blade, and vith the exception of the 3; N 8
FA

Couee): ol [} o) o] ol vl Fsoal {7 2 o]

matrices, tne terms are all blade dependent. Remember, also, that inboard of
{rsw the {T ] and [T ]utrices are unit diagonal.
LI Y

4.5.5.7 Blade element slopes. - The blade element Y' and Z' slopes are
determined by differentiating the deflection equation with respect to the nth
blade radial distance, x'BLn' These formulations are used for quasi-static

torsion formulation and output. Performing the required differentiation for
points along the blade reference line:

?
Y = JY! = {r' {121)
Mot BLE BLE [ BLE] BLa

o[ Bl B o] ] (B )
[ T B BB ES] o

' { ool cc| o] l ] }

T
r . -r il ]
CG SC} l OT

vhere

S

' 1
réc - récl } = l g} as programmed)

(123)
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4,5.5.8 Transformetion from blade-to-blade element coordinates, - In this

section, the transformation matrix for the blade root to the ith blade element
motion will be developed. Each blade will have its own transformation matrix
for each ith blade station. The transformation matrix will initially be
developed as the transform from blade element to blade coordinates, BLE-BLn]'

The transformation matrix, » can be de-eloped by referring to the

[TBLE-BLn]
develomment of the deflection equations. The first rotation from blade ele-
ment to blade coordinates is through the combined twist angle, -QT; the second

rotation is through the negative of the precone, Bo; the third through the
negative of thw sweep and droop angles, Tgs Y5 the fourth through the feather-
ing axis angle, BFA; the fifth through the negative of the reference feather-
ing angles ¢REF; and the sixth back through the negative of the feathering

axis rrecone angle, BFA.
These rotations then define the transformation from blade element to blade
coordinates, including the effects of the static shape of the blade, pretwist,
precone, sweep, droop, etc. Also included is the effect of blade elastic
twist. Again note that for stations inboard of Station xsw, the sweep and

droop angles, 1, and y, respectively must be set to zero in the formulation of

0
the transformation matrix as in the definition of the blade displacements and
blade slopes. This portion of the transformation matrix which includes the
static blade shape and combined twist is defined as follows:

[ [P B Eol] B B 07

(124)

The next two rotations from blade element to blade coordinates are due to the

elastic blade bending slopes. Since Y'BEND and Z'BEND are motions of the
blade elements with respect to the blade, then to transform from blade element
to blade coordinates requires negative rotations of Y' and Z' to be

BEND BEND
included. Finally, the blade feathering rotation from the reference feather
angle must be included. The final transformation then, from blade element to
blade coordinates, is defined by the following equation:
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vhere

and

)

and again where

inboard of Station Xsw.
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T,,
\ [?Z'F;][:z BEND

cos(Z'BEND) 0 sin(Z'BEND)
0 1 0
-sin(Z'BEND) 0 cos(Z'BEND)
' in(Y"
cos( penp’  sin(Y BEND) 0
-sin(Y® '
sin( BEND) cos(Y BEND) 0
0 ] 1

(125)

(126)

(127)

(128)



Aln
Y' Y! Y. ! Y. !
BENDY | ! 2 3 A (129)
ZI Z' Z' Zl 2n
BEND 1 2 3 A
3n

The inverse or transpose of this equation yields the transformation from blade
to blade element coordinates, or:

i i
. ) T
[¥BLn—BLEJ = |*BLE-BLx]

el (e o] ol
. [TY'BEND; [Tz-m; [Tz'm]T [TY'FA]T [T“F] [TY'FJ [Tz'm]

[}
3

(130)

again where

16 [

inboard of station Xsw.

4.5.5.9 Blade element angular velocities and accelerations. - From the fore-
going discussion, the blade element angular velocity vector can be determined.
Starting with the angular velocities (p, q, r)BLn of the blade reference axis

system and systematically and rrogressively transforming these velocities
through each axis rotation and adding the respective angular velocity asso=
ciated with each of the indicated angular rotations, results in the following
equation for the blade element angular velocities,
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Y’
\" ) BLE 0 BEND
r e
0 0
+ T {1-z +1T,, Z'
[ Y'BERQ] BEND [ 2 BEEHJ FA
0 0
N
r .
0 0;] 0
T T m
+I17T £4 © + IT,, 0 + [}
[ Z'F;] [‘Y Fﬂ] A¢FJ
-Y' 0 Y'
LU FA ] FA
r A
0 P
+IT } A *+ 1T, q L (132)
o) f15mf " [
| T ) BLn

Rote that in this equation, starting on the right-hand side with the quantities
in the innermost brackets, the blade reference system angular velocities are
first transformed through the increment of feathering axis flapping slope due
to bending, Z'FA‘ and then the feathering axis flapping angular velocity,
'Z'RA’ igs added. Minus is used since Z' is a negative © rotation., Next, the
resultant W vector is transformed through Y'FA and Y'FA is added. This is
then transformed through the delta feathering angle, AQF, and the feathering
angular velocity, 6F’ is added. This is then transformed back through the

increments of f{eathering axis slopes due to blade bending, giving the vector:
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: i
0 ~I'pa L °. FA
2 3
0 p
+ | -z + |7, a} b . .. (133)
[en] 11 [z
0 r
P BI‘nJ

which represents the blade element angular velocities due to combined blade
feathering and blade reference axis system angular velocities,

Next, the effects of blade bending nt each blade station are introduced. The
above vector is first transformed through the local blade element flapwise
bending slope, Z'BEND’ and then the angular velocity, -Z'BEND’ is added. This

result is transformed through the blade element inplane bending slope, Y'BEND’

and the inplane angular velocity due to blade bending, Y'BEND’ is added, re-

sulting in the total vector less the initial transformation string. This
vector represents the blade eiement angular velocities due to the combined
effects of the blade reference axis system angular velocities of the blade
feathering angle and of the blade angular velocities due to blade elastic
bending. The remaining transformations then include the static effects of
the blade feathering axis precone, BPA’ the blade reference feathering angle,

¢REF’ blade sweep, TO’ blade droop, y, and blade or hub precone, 30, and ti-

combined effect of blade static and elastic twist, represented by ¢ Finally,

T.
the blade elastic twist angular velocity, °T’ is added, giving the total
P A

blade element angular velocities,dq .

T) BLE

Also note, as indicated before, the matrix [TY] [?1 ] has the value calculated
0
if X is greater than xgw and has the value of unity if X is inboard of

station xsw.
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2

At this point is has been assumed that the contributions of Y'
3
P

A
Fa 804 275,

are small compared to the other contributions toq q

w

. This assumption

T} BLE

is supported by referring to the final form of the ;ho e development. First
P

of all, both of these vectors are small compared tolq s Which is funda-

[T} BLn

mentally the rotational speed of the rotor. Also, both of the feathering
axis flapping and inplane angular velocities are first added and then trans-
formed through the delta feathering angle and then subtracted, meaning that
fundamentally the principal magnitude or component contributions due to Y'FA

and i'FA are self-cancelling.

With the above assumption:

; 0
P ¢p 0
T .
q =40 +|T R] 0 +[T ' ] -Z
[ ’T] [ ] ' BEnp BEND
T ) eE 0 ' BEND 0
op
T T
+ |7, T, T, 0
[ZBEND] [ZFA] [YFA]
0
P
* [TMF] [TY'FA] [Tz'FAJ 1 {(134)
T )BLn
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wvhere:

G TSR R 8 I

and:

A
' ' ' ' ln
Y BEND _ Yl Y2 Y3
) = A (136)
z' Z L Z L L= ] 2n
BEND 1l 2 =3 -
A
3n

The tlade element angular accelerations can now be determined by differentiat-
ing this equation with respect to time. Again, as in the case of the angular
velocities, the contributions due to time derivatives of the feathering axis

flapping and inplane slope changes due to bending are neglected. With this
assumption, the time derivative is:

. . o
P 0
. T N
4 T[ “’T][] ) X' gEND
' 0
) . 0 ' BEND
r -
p
+ [T T Ty o *+|T, [Ty. ][FZ. ]
[ Z'BEND] Z'FA] [Y FA] 1 [ bp Faj} 2 Fa
0
\
w r
P 0
. b+, |IRIF 44 o T35 SN | 58
b ) BEND
r Y
BLn [ BEND
o | ¢p
T T
. A + |7 T, T, , 0
BEND [Z'BEND] [ Z FA] [Y FA
0 0
»







4.5.5.10 Blade element X motions. - In the previous development, the equations
did not account for the blade element displacement, velocity, and acceleration
in the spanwise or X-direction. The method used to define these is one of
taking the neutral axis as the axis of no stretch and determing the projection
of this axis onto the X-axis as the blade bends. This projection, then, is
the spanwise or X location of the neutral axis in blade coordinates. The rate
of change of this projection is the spanwise relative velocity and the second
rate of change is the spanwise relative acceleration of the blade element
neutral axis location or point. The motions are then transformed to the cen-
ter of gravity to obtain the spanwise motion of the origin of the blade ele-
ment reference axis.

In Figure 27, the deflected neutral axis is shows as a function of blade radius.
The (i-1) and ith station are shown. It can be seen from this figure that as
XNA(i-l) approaches XNA(i), then the delta length of the blade

(SNA(I) - SNA(I-l)), can be written as:

. . 2
(sNA(l) - sNA(l_l)) - (XNA(i) - xm(i-l))2 + (1) - ¥, (1-))?
BLn NA BLn

[ . X 2
+ (ZNA(I) - ZNA(l—l))BLn (139)

Rearranging this equation and summing from the blade root to the kth blade
station yields:

k k

_ . . _ o s . 2

Xga ) = _E(XNA(“ - xNAu-l))BLn > (bm‘l) - sNA(l-l))

i=2 i=

1/2

- (Y. (i) - Y  (i-1) 2 {2, (i) - 2 (i-1) 2 (1%0)
( NA NA )BLn (NA NA )BLn
and

SNA(l) = xBLE(l) (1b1)
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zBLn

NEUTRAL AXIS

Y“-"NA
"———’x“'"NA—J

Xlilya |

Figure 27. - Neuvtral axis vs blade radius.

Likewise,

X, (1) = K, (1) = 0 (1k2)

ABLn NABLn

SNA(i) is simply the blade length to the ith station measured along the neutral

(i) and Z,_,(i) are the Y and Z locations of the neutral axis in
N NA

Ln BLn
the blade coordinate axis system for the nth blade. These displacements,
along with their derivatives, will be defined leter. First, however, by
taking the first and second time derivative of X equation, the spanwise velo-
cities and accelerations of the blade element neutral axis point are deter-
mined and are given by the following two equations.

k -(YNA(i) - YNA(i-l)) (szA(i) - iM(i-l))
BLn

kNAfk) - Z

axis and Y

BLn

ILn 4= (i) - x, (i-1)
=2 (XNA NA )BLn
-{z,,(1) - 2, (i-1) 2. (1) = 2 (i-1)
(NA NA't )BLn (NA 1 nald )BLn
X, (1) - (i-1) (143)
(NA Xea )BLn
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. . - . 2
k -(Xn(x) - Yu(l-l))mm

x"l(sﬂ =Z X, (1) - Xu(i-l))sv

i=2

- (i.n(i) - iM(i-l))2

BLn

-y (i) - ¥, {i-1) Y, (i) - ¥ .(1-1)
(u‘ NA )m(u Ha )BLn

(xm(i) - XEA(i-J.))

BLn

7. (i) - 2. (i-1) Z,.(i) - Z_,(i-1)
(m KA )Bm(n NA )

(i) - x_, (i-1)
(XKA NA )Bm

BLn

Y (i) -Y (i-—l)) (i (i) - Y (1-1))
[(M A BLa \ A RA BLn

(xm(i) - X (i-1 ))1351.:1

+(7.M(i) - ZnA(i-l))BLn (im(i) - iu(i-—l))m‘n]z

(xm(i) - XnA(i-l))3

BLn

(1LL)

If Yom(i) is the distance along the ith blade element cherd line from the

blade element reference axis origin or center of gravity to the blade element
neutral axis, then the blade element neutral axis motions can be written in
terms of the blade element motions as:

h 4 b r h
Axm(i) 0 0
Wl P e [TBLE-BLn] 1 Yonalf (1k5)
2, (%) Zoo (i) 0
RA P BLH \ ELE y i“Ln . y BLE
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Referring to Secticn k.5, the time derivative of the above equation is:

r 3 4 b 4 h

8Xgy (1) 0 ~TprE oA

4 iNA(i) p = YBLE(i) ) + [TBLE-BL;] 4 0 b (146)
s (1) 2. (i) Por oY

\?na | P (g P | PBLE oA BLE

and likewise, the second time derivative is:

4 W r ) - 3
AixA(i) 0 (P £ TarE Yona

R ANEYIE SRR S NCY) S [%BLE—BL;] { %o he Yo {
Z.. (i) Z..(i) (q +poo)Y

0 ) U™ bia L BLE'BLE FPBLE ONA BIE,

(147)

These three equations, then, define the Y and Z displacements, velocities,
and accelerations of the neutral axis point used in “he X equations and time
derivatives. Also, the increments of spanwise motions due to the offset
between the center of gravity and neutral axis are defined by these same
three equations. This increment represents the motion of the neutral axis
relative to the blade reference axis origin, therefore, the span motion at
the center of gravity is determined by subtracting AX,, (i) from the spanwise
mction of the neutral axis, or: Ln

X (i) = X, (i) - ax,, (i)
BLE. ) XN - X Y (1L8)

X (i) = X, (1) - &Y. (i)
Lo magl) - 471 (149)

xBLEéii = iNAgii - Axy (ii (156)

102



These equations, then, along with the previous expressions for X ané Z, de-
fine the blade element relative displacement, velocity, and acceleration vec-
tors required for the total inertial vectors which follow.

L,5,5.11 Blade motion in absolute coordinates. - To this point the blade
element motion has been defined in terms of the blade axis or relative coordi-

rates. The elemen:s defined are:

blade element relative displacements YBLE(i) (151)

BLn

F )

BLE

g

blade element relative velocities BLE(i) (152)
(i)

[ IO

st
and blade element relative accelerations YBLE(i) (153)
(i)

..

Z
BLE"") Bl

Using the method of Section L.h.1l, expressions in freestream (absolute) coordi-
nates can be written for use in the equations of motion. The blade element
velocity becomes:

. NI - I -
Xy p(1) XgBLn - 0 - d)f Xpglt)
YBLE(i) = YOBLn + YBLE(i) +|r 0 -p YBLE(i)
7 (i) Z 7 (1) -« p ollz. (i)
BLE"" J pin OBLn ) o BLE""" J Bin BLE " Jpin
BLa (15k)
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The blade element accelerations are:

« .Y I - 1 [ .
Xpg!i) XoBLn Xpg(i)
YBLE(i) = 3 ¥onn + YBLE(i)
Z . (i) Z 7 (i)
BLE BLn OBLn J .. U"BLE BLa
- . o) 4
0 -r xBLE(i)
+ 1 r ~ p 4 YBLE(J'.)
-q p 0 z.. (i)
) JsLn | “BLE BLn
[0 -r q] ['o -r q XBLE(i)
+i{r o0 -p r 0 -p YBLE(i
-q P 0 ~q P 0 z_ . (i)
) JBla [ BLn | “BLE BLa
0 [ X
-4 BLE
+2]r 0 -p ) Y
,BLE (155)
-q p 0 Z
Bin | “BLE ) o
wvhere
X X
Y Y (156)
v Z
0) BLn 0) 8n

and matching rotation terms are defined in Section 4.5.k in terms of rotor
axis terms which are in turn related to the principal (hub) reference axis.
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4.5.6 Swashplate motion. - As shown in Figure 10, the swashplate reference
axis system is defined with the Z-axis down. The motion of the swashplate
reference system is defineé by three generalized cocrdinate displacements,

ZSP’ QSP‘ and OSP’ vhich zove relative to the hub axis system.
The rotations ’SP and eSP are taken in the same order as shown in

Figure 16 and therefore, from Section L.4.3 the angular velocities are:

P 0 cos¢ siny O 0
q = 0 + |-siny cosy O éSP
r v 0 0.1 0
SEp SP 3
- - r h
coseSP o -smeSP ‘SP
+ 0 1 0 4 or
_31nGSP 0 cosespd ¢ 0 )
- - 3
1 0 0 p
+]o cosés, sindo | fa ¥ (157)
b0 —51n¢sp COS’SP r H
- . y
where $SP is the rotational speed of the swashplate, and
bep = -3 (158)

vhere éR is the rotational speed of the rotor. Note no coupling is pro-
vided for shaft motion, the assumption being that swashplate motions relative
to the hub due to shaft motions have been designed out of the system.

As indicated before, the chosen swvashplate axes do not rotate at the rotational
speed &SP’ Howvever, the total angular velocities reflect the rotational
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rate ;SP‘ Therefore, the total angular rates of the swashplate
in svashplate axes are obtained with ¥ = 0. This gives

. 'l .
p ] 0 cosb, 0 -sinf, ¢sp
= 8

q 0 + sp + o 1 0 4]
rlep 'SP 0 :’.inﬁsP 0 cos °sp 0

1 0 0 n

+lo cosQSP sinQSP q (159)
] -SiHOSP cosos r H

Nonrotating swashplate angular velocities, subscripted SP, are obtained
by deleting ¥, above.

The swvasnplate angular accelerations can be similarly determined by
evaluating the general expression at ¢ = *SP = 0. This yields:

P 0 *SPqSP —snxesp 0 -cOSGSP ‘SP
q = 8 b+ d-bopp b + 8l 0 0 0 ° ¢t
& Sp 0 *SP coseSP 0 -s:mGSPJ 0 )
1 0 0 s 0 ind,..}) [ 66..)
P cosdsp =sinfgp) | 19cp
+]0 cos¢sp ssinosP q + "0 1 0 ; 3 0
0 "Sin’SP cosoSP r H LSineSP 0 cosesP 0 )
h
0 0 0 p 1 0 0 'I(‘ )
+ ’SP 0 -simsP cos’sP q +10 coz?.oSP s:'uwsP {3} ¥
o —coswsP --sinosP r H 0 -51n0SP coawsP \r |

(160)
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The vertical velocities and accelerations of the swashplate are simply
defined as:

- I s .1
Zosp = Zsp * Zog (161)

and

S P |
Zosp Zep * 2oy (162)

It is noted in these equations that the Z-axis motion is assumed to
remain parallel to the hub Z axis.

The swashplate angular displacements are obtained by integrating the
angular velocities, or:

$p = oj $5pdt bomo, 5P (163)
and
t -
Bsp = O/eSPdt +opo, sp (164)

Likewise, the vertical displacement of the swashplate relative to the
hub is:

Z3p = j Zgpit 4 g (165)
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L.5.7 Blade featherigg motion. - The feathering occurring at the feather
bearings, Figure 15, is taken to be the sum of the motions of the following
dynamic and kinematic elements:

e Swashpiate - collective command

e Swashplate - cyclic command

® Blade bending to feathering couplings

e Elastic pitch horn and associated components
The total feathering response is:

9. =06 - cos(¥ + ¥ ) - B . sin(y +9) + il A
Fn - % " As Bn ¥ YR’ ~ Bis Ba * YR T FE A

(4] ¢ 1)
Fn Fn F
+——— A +—— A +— 8 (166)
3A2 2n 3A3 3n 38y, PHn

Velocities and accelerations are formed by differentiation. The desired
relations sre:

*rn = 8 ~ Ajg coslvg + ¥p) - Big sin(uy,  + )

* [AJS sin(bgr, + V) - Byg coslug + *R)] r

g, . ¢ YT 29
—Fno —Fn Fn F_ .
Yo, At A, ‘a’ %, Ap * 28y "Pln (167)
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and for accelerations:
w e e o R )
bpn = 8 = Ayg cosligy, + vg) - Big sinlig, + ¥pl

+ 2[Als sin(wBLn + \VR) - Bls cos(!tvBLn + WR)]WJR

. 2
* [AlS cos(bg \ + ¥p) + Byg sinlbg, + “’R)]*R
. d- % ..
* [AIS cos(ypy  + ¥g) - B)g sinlug, + ¥l + W An
: ) 2
- Fn - F ..
+ R S A, + — B (168)
p 2n 3A3 3n 3Bpy PHn
The commanded cyclic blade angles are:
A1s] _ (g singpy  cos¥py "SP]
e R (169)
BlSI cos¥py  —sinbpyl | Ogp

where the angle wPH is the pitch horn-swashplate connection lead to

feather axis. See Figure 28. This angle is computed as a static value.
It should be noted that some hub configurations carry the pitch horn
toward the blade trailing edge. These configurations are entered in
REXOR II by forming the supplement of WPH'

wPH = 180 - wPH (degrees) (170)

This angle gives the correct modeling of the sense of rotation
reversal with the trailing pitch horn geometry.

The velocities and accelerations of the command cyclic are obtained by
differentiation.
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Figure 28. - Pitch horn blade feathering phase angle.
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e

st (g sinvpy  cosVpy [°SP}

- e . .
Bis cosVpy  =sinvpy | | 8gp
. Isiny cosy ¢
RO el e ar
€h coswPh —sianH eSP
and
Ms| (g\ sinypy  coSbpy rsp
. e/ . .
Bis cosypy  —sindpy || Ogp
a\ . [Fimpy  cosvpy | "’spl
)
e 0 . ;
1 coswPH -51anHJ [ eSP
_ Isiny cosy ¢
+(§) i PH [SP} (172)
1l coswPH -51n¢PH esp

The overall coupling (swashplate to feathering) gear ratio, d/e, is
expressed as a static term plus a first-order collective correction.

- ), ),

0 1

The collective is:
90 = -ZSP/e (17%)

The swashplate vertical motion, Z,, is developed in Section 4.5.6., The

value e 1is the static effective crank (pitch horn) arm about the blade
feather axis. This crank length is entered as a negative number for a

trailing pitch horn geometry to give the proper sense of collective for
swashplate vertical translation.
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Taking time derivatives:

» [y

60 = —ZsP/e (175)
and
5 = -ZsP/e (176)
dbp,  p,
The blade bending to feathering coupling fectors are SA.® 3A. ' and
1 2

9
3322 for the first, second, and third blade modes. The blade bending modes

3

are described without a torsion component; this allows freedom in varying the
blade swveep, droop, jog, or other geometric parameters without new input

data for the blade mode shape. The torsion either is calculated separately
along the blade proper or as a blade root component vy pitch horn bending.
The coupling factors are intended to add a feathering componeat to the blade
mode which would exist even with no torsion or feathering moments. As such,
they are in effect the 63, ans etc., coupling usually described in the

literature. These couplings are usually determined as a function of the
distance from the flap or inplane mechenical or vertical hinge to a pitch
horn projection.
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5. EQUATIONS OF MOTION

5.1 Introduction

With the coordinate systems and transformation between systems well in
handa, the development can proceed to the equations of motion. The
development ylelds a set of second-order differential equations with time
. varying coefficients. These equations are formulated using the energy
approach in a form credited to Lagrange. The solution to the system of
equations is in the time domain by numerical integration. The result is a
time history of the displacements, velocities, accelerations, and loads of
the components of the helicorter modeled in detail, and the program

treats =2ach blade separately.

In the ftllcwing development a Lagrangian approach to system modeling is
applied to a set of point masses and then extended to discrete masses and
inertias. The result is a set of generalized mass and force expressions.

In REXOR (Reference L) these expr sions are programmed directly, element by
element. In REXOR II extensive us. is made of matrix notation both in descrip-
tion and programming. The transition to matrix notation is given at the end

of section 5.3.

5.2 Energy Approach to Development of Equations of Motion

There are two basic approaches to developing the equations of motion for
a physical system. These are:

e Vector summation of forces
e Energy approach

Given an equal set of conditions, limitations, and assumptions, both pro-
cedures should result in =quivalent sets of equations. The difference is
in the ease of arriving at a complete set of equations. Note that force is
a vector, whereas energy is a scalar gquantity. Therefore, in dealing in
terms of energy, less information regarding direction needs to be handled.
Also the systematic nature of the energy approach reduces the risk of
error. As stated by Lagrange (Mecanique Analytique, 1788), "The methods
vhich I present here do not require either constructions or reasonings of
geometrical or mechanical nature, but only algebraic operations proceeding
after a regular and uniform plan".

The starting point of this development is Lagranze's =2quation. It mey be
derived by postulating Newton's second law, or from Ha: .on's principle.
Lagrange's equation may be written in the following foruw:

gé(gﬁ_)g?_g.g_glcz (1)
qr qI’ r qr
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where

T is kinetic energy

q is a generalized coordinate
B is dissipation functioa

U is potential energy function

Q! is the generealized force, derised from the virtual work, 6&W, and

is defined by the equation

Q = 3.° (178)

Equation 177 will now be developed into the form as applied in REXOR TII.
This form bears a close resemhlance to a force balance equation, but is
derived from energy considerations. For clarity, the development is first
shown for a set of discrete mass particles, then, in the section that
follows, is extended to the distributed elemental masses of the PEXOR II
modeling and to the iterative solution scheme used.

In a conventional manner the equation is formulated in terms of generalized
coordinates. These coordinates are a function of time, and ccmpletely
define the system. They are generally not directly identifiable as a
physical quantity.

The physical parameters or elemental coordinates are defined to be func-
tions of the genesalized coordinates and in turn a function of time.
Consider a system to be composed of particles whose physical coordinates
are a function of n generalized coordinates. For the ith particle:

x, = xi(ql, Qs = - ¢ 4 Q; t) (179)
yi = Yi('lls q29 A A 1 Qn; t) (180)
2, = zi(ql, Qs * ¢ s Q5 t) (181)

Note: a Cartesian coordinate set is selected, and used in REXOR II. However,
the argument is true for an arbitrary coordinate set.
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The functional relationship of the physical or constrained coordinates and
generalized coordimates yields:

3xi 3xi 3xi
6x, = SEI Sq, + 3;; Sq, ¢ - - -+ 3;; 8q (182)
3y 3y Iy
i i i
§y. === 68g, + —=8q_ + - - - + 8 (183)
i Sql 1 3q2 q2 5&; qn
azi azi azi 8k
6zi = Wl qu + @ qu L I i E‘T 6qn (1 )

The time dependence is iEr’°cit in the increments of the generalized
coordinates. The equation is strictly true for infinitesimal increments.

In REXOR II the generalized coordinates are distinct from physical coordinates
in the main rotor blade descriptions. Here the generalized coordinates

are blade modal variables. The modal variables represent tangible 2eflec-
tions of the blade from a reference position, and as such are small but

not infinitesimal variables.

As the variables are a function of time:

3xi ax, Bxi
i. =e—gq, +—q * e v ¥ om— (185)
i aql 1 oq2 2 3qn qn
Iy, ay. Iy
. ==—=Q, + —=Q,  + -+ « +—=q (186)
i aql 1 aa, 2 aqn %4,
azl azi azi
z, = — Q —q_ +t e s 4+ =G (187)
i aql 1 aq2 2 3qn %4

In terms of the ith particle the kiuctic energy for the system may be
identified as:

N
R < Bt 2 .2 .2
I ‘2:2’”1 (xi *y; "zi) (188)
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Towvard the particular formulation of Lagrange's equation used in REXOR II,

the first two terms of the previously stated form, Equation 177, are
developed:

d 3TV aT
—_— e, - ——— (189)
dt (aor)’ 3,

Performing these operations for the ith particle case and the rth gen-
eralized coordinate and summing over the system yields:

N
g_(a'f_) E—-Eémd——?—(i2+y'2+é2)
at \3q } ~ 3¢ 2 i dt  3q i i i
%, b ey 9%
1 2 f-2 .2 .2 <
-5 m; 3;; (%i ty; vz ) {i90)

A useful math operation of cancellation of the dots is aeveloped prior tc
proceeding. Recall:

3xi Bxi axi
5xi = saz-sql + 3;;-5q2 + e o4 36;-6qn (191)
Then also
axi 3xi axi .
xi=3§ql*3fq;—q2+---+§qn (192)
or
35(i axi
1 -1 (193)
9q 3

This is also true for y and z and for the double dot terms in x, ¥y
and z.

An operation to reverse the order of spacial and temporal differentiation
is required. To show this the time derivative of a partial is taken as

a (¥4 a [**%). a [¥%). a [**;).
=—}= —l—=la, + —|—g, + - - - + — (194)
dt(aqr 3, \3q_ "1 ~ 3q,\dq "2 3q_ Sq‘r
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Next the spacial derivative of ii is given as

aii 5 % . 3x 3:. . (195)
.a_q:-.wraql q_2+---+3-—qn 195

FNow since
xi=xi(ql, Ls * qn) (196)

the order of spacial differentiation is revorsible

3‘11 3211
S (197)
33 3q_  3q 3q
and hence
ax Ix
d i) i
dt 3qr - 3qr (198}

Similar relations exist for yi and zi.

Proceeding on with the kinetic energy terms:

L] ax ay; 3z ax ay
WA R S P L PR d_(Ti)” d_(_)
dt 3qr aqr 4 ij’i aqr i aqr i qu i dt\3 iadt 3qr

3z, ax_ ay. 3z,
. d 1 . i - i . i
t d—t(aqr)-xisa;-fixr-ziaf.; (199)

Using the relationship for cancelling dots in pertials, reversing the order
of differentiation and cancelling terms gives

Y. 9z,
d foT .
w()- % Z R #0e)
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Then from Equation 17T, lagrange's Equation in constrained coordinates
vith point masses becomes

.| .
or. ay. az
Zn.i.-—-—l+ii.—-1+'z'.-— Bed=q (201)
il7i 3qr i aqr i aqT qr aqr
i=1

Aiso, in the same vein of defining the generalized coordinates, the
relationship between the elemental and generalized forces can be developed.
This relaticachip is developed from the definition of virtual work on a
particle as the scalar product of the applied force and an infinitesimal
displacement. There®re for the total system of N elements,

62.] {202)
1

Using the definition of Qr from Equation 178 gives:

| 4

Z 3yi 3Zi
—+F — (203)
= \x 3qr yi aq_r zi 3q_r

Substituting Equation 203 into Equation 201 yields the final form of the
Lagrange energy equation in constrained coordinates for point masses, which
is in the form from which the REXCR IY Equations of motion are developed.
Making this substitution and reerranging the equation yields

L a::i y. 8zi
z miii - Fx ryes +my. -F -a—-]* +fmz. ~-F e
— i 2% vioo¥) o, ri ) %
i=1
ggr +3 -0 (20%)
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The above equation is the basis for the entire derivation of the equations
of motion of REXOR II. RKNote that this equation is written for discrete ele-
ment masses and discrete forces. Also, at any instant in time all of the

ingredients required to define the elemental accelerations, ii’ ?i, Ei’

are not known. Specifically, the generalized coordinate displacements and
velocities, qr and dr’ are kncwn at any instant in time but the generalized
coordinate accelerations, Hr, remain to be determined at the time the

elemental accelerations are computed.

The following section presents the manner in which the foregoing equation
set is adapted to the REXOR II numerical solution to solve the equilibrium
equations or equations of motions for the generalized coordinate accelera-
tions. This development is first presented in the simpier form, for
clarity, for discrete mass elements and forces and then in expanded form
to include elemental distributed masses and applied moments.

5.3 Iterative Concept and Equation Set Solution Method

Given a set of equations as developed in the previous section, the next
step is to establish a method of solution. The solution process is
defined as solving the equation set for the accelerations, integrating
the accelerstions for updated velocity, and position; then substituting
the integrands back into the equations to determine new values of
accelerations.

The first step of the process is to define exvlicitlv the acreleratinne

from the equation set. In the process of implementing the REXOR II equatioms,
it is desirable to handle the accelerations as an estimated plus a correc-
tive term. In generalized coordinates then we can write

. - ’ LX)

(i)Y (4 )

. 3 =€ . ? + . ) (205)
q q q

L diew UM oore. U % Jonp

This operatiorn proceeds on a sequential time basis. For each increment

advance in time, the previous 'NEW' becomes the 'OLD'. 1In REXOR II, the time
increment corresponds with a step azimuthal advance of the main rotor
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blades. However, this need not be the case. The 'NEW' accelerations must
bte used in the numerical integration process to define the generalized
coordinate velocities and displacements. But if some form of a predictor
on accelerations is used then the 'OLD' would be this predicted value and
.in this case it would be an estimated, 'EST', value.

Using the notation 'OLD' and 'EST' interchangeably the linear elemental
accelerations can be written at time t as

Y1 . L)1
x X. X
i i i
£v ¥ =4<v > £<dv »
¥y ¥s bt A (206)
il Ei Ei
N - t A P CORR h P EST

where the estimated accelerations are determined using the generalized
displacements and velocities, qr and ér’ at time t, and the generalized
coordinate accelerations 5}, either estimated or from one previous time

step in the numerical integration process.

Then, at any given instant in time where the 'EST' elemental accelerations

are thusly determined, the corrective elemental accelerations, (X, ¥, Z); CORR

can be written as a function of the generalized coordinate corrective
accelerations.

Or
[ ) ’ax. 3x. 3
X. 1 q . e .+ — q‘n
1 99 “Loogy 3%, MeoRR
Byl 3yi L
$v. 2 = 4 a S (207)
1 39 Loopg %, Q"‘coxm
Bzi 9z
z. —=q + -« - 4 —=3g
{ IJ CORR Laql 1corR 2, q"CORRJ
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or

[ 'ax.
h

i aqk quORR ]

n

dy

. _ i..

1% ¢ = z 1——aqk choan p (208)
k=1

3z,

e 1l ..
z, -
{ i Y corr L3qk Y

CORR J

Now making the substitution of Equations 203 and 207 into Equation 201
from the previous section and rearranging terms yields the lagrange

equation for the a. coordinate in terms of the estimated elemental

accelerations and the corrective generalized coordinate accelerations.

Z 3xi 3"1 azi
m X, -F + [m.¥. -F + [m.Z. -F
- ( t lgst xi)sq—r ( 1 lEsT yi)sq—r ( ‘EsT zi)BTr
N n n n
ax, X, Y. Y. 9z, 9z
+ -3 23 + 2 1 + 3 i..
il 3q ‘3. % 3q, i % 5q_ 3, Y
~ r 4=4 “% “CcoRR. o1 k CORR. ot CORR.
+ :—2— + g—u— =0 (209)
r 9
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The equations of motion for the system can now be combined and presented
in matrix form.

1
] N ax ay.
q X, - F 3 );—]‘ +
1 2i= idper "1)3‘11 9
M ] + )
MASS .
MATRIX N ax, ay. (
a ¢ -7 Y\— + — +
" CORR - 1 ipsp "x) 9, ( )3%
L i=1
- - p- -P
4 9
. Cpy S L . \=o0 (210)
DAMPINC STIFFNESS
maTRIX | K- MATRIX y B
4 4,
=9 - - -l

vhere the matrices, M _., C . and K will be defined in the following
rk’ rk rk

discussion. However before proceeding with this, Fquation 210 is now
rearranged into the form actually used in the numerical process in REXOR II.
The equation is solved in terms of the corrective accelerations.
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The correction terms come from an iaversion (or simultaneous equation,
Cholesky method) operation on the model equation set.

r -
-1 r
— - N axi
r a W m i - F S— + - - -
q X,
1 Z-_ [( 1ipge xi) 3q1
i=1l
4 . ) = - Mrk <€ 4 . "
MASS .
MATRIX N ix
q E m_ X - F Leo..
i doome, b e T 1) )
Ll—l -
. 1
- r o) -1 a. )
W) T q,
: . q
+] e < . o L 4 p (211)
DAMPING STIFFNESS
MATRIX - MATRIX ¢
L. 4\ q‘nJ h— dl § qu y
y

As indicated before estimated accelerations in physical coordinates come
from the 'EST' or 'OLD' generalized coordinate acceleratiors and the cur-
rent generalized coordinate velccities and displacements. 7The integration
part of the solution operation supplies the (q) and (q) data.

q=/qmdt 5 q=/th (212)

The whole package operates in a cyclical fashion, as shown in Figure 29.

Arranging the solution sequence as such gives it some important attributes
and adventages.

First, to determine the corrective acceleration, the inverted mass matrix

premultiplies the difference of applied and estimated reactive forces
represented by the quantity in the large brackets on the right-hand side
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FORM NEVJ AL.CELERATION
FROM OLD AND CORRECTION

TERMS A

ADVANCE
TIME

NEW ACCELERATION
REPLACES OLD
ACCELERATION

SOLVE FOR
ACCELERATION
CORRECTION TERMS

INTEGRATE NEW
ACCELERATION TO
FORM VELOCITY AND
POSITION TERMS

\Y

SUBSTITUTE ACCELERATION,
VELOCITY AND POSITION
DATA BACK INTO EQUATION
SET

Figure 29. - Equation solution locp.



of Equation 211, With the usual, small, integration steps these
differences will be relatively small. Therefore, inaccuracies in the
mass matrix or its inversion process only slightly affect the total
acceleration determination. This means approximations and simplifications
to the mass matrix are acceptable. In some instances, & diagonal mass
matrix will give convergence to the required solution.

Second, as will be shown in the Section 5.4, (blade equations section),
carrying the running acceleration in elemental coordinates allows for the
simple separation of the centrifugal and structural stiffness of the rotor
blades which has important advantages which have been discussed. Also,
the aerodynamic loading terms, already by nature in physical coordinates,
are easily accounted for. '

In the actual application of Equation 211 to REXOR II, distributed elemental

rigid body masses are associated with each coordinate point and applied
moments in addition to forces at each coordinate point are accounted for.

Referring back to Equation 203 the generalized force, Qr’ from virtual

work can be simply written in the following form to account for applied
moments at each of the ith grid points as

N ax, 3y. oz, a0, 28 2y
Q =E F —a—i'*F ?—1—+F 3—+M -5—+M ‘a—-"‘M 30 (213)
r X0, ¥y 0% 2 0% X509 ¥y 0% Z; 9q

i=1 1

The terms of Equation 200 in Equation 20k can be developed for the dis-
tributed masses by going back to the elemental acceleration equation,
Equation 13 of Section 4.L.1 which is repeated here, in a rearranged
form, for clarity of this development.

AT VI . 2 2
X X, X (-r“-q9%) Pa pr x
) . . 2 2
Y = \¥0 * (¥} * Pq (-r"-p°) qr y
. ) ] 2 2
z 2, z pr qr (-p"=a)| (=
0 -r qllx 0 zZ =ytiip
+2)r o -pli{y} *+|-z 0o x|{a (214)
-g P ogj\z ¥y =X ollr
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For distributed masses of a rigid body with coordinate point and system

embedded in the body:

and Equation 21k oecomes:

i

Now, remembering that for a point mass,

and

126

w:

N

I

x=y=2=0

-x(r°+q®) + ypq + zpr
2 2
xpq - y(r"+p”) + zqr

2
xpr + yqr - z(p +q2)

Ix

%,

o

&y
Z

ar

+

zq - yr
_zé+xf
YP - xq

1215}

(216)

(217)

(218)

(219)

(220)

(221)

(222)



The total partial derivatives relating the motion of the coordinate point
end set imbedded within each elemental body and the motion of the
generalized coordinate becomes

x . 0 _ ¥ 230 (223)

qu aqr aqr qu

dy
oy 0 Y ¢
5 5, © dq_ (224)

i
+
™

3z _ 2% 20 3¢ (225)

3q_ aqr"xaqr‘”yaqr

where on the right side of these equations, x, y, and z represent the
location of the distributed masses within the rigid body elemental mass,

and z_ represent the moti:n of the mass element reference

and xo, yo 0

point.
For each jth coordinate of the system, the elements of

Equation 200 cen be written by substitution of Equations 216, 223,
224 and 225. This gives
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L
. '
[-%4
Lad
3

axo 2

0 L. B L. 28 2, 2 .
%0 5, ~ %01 5q_ " %o™t E"‘i(r*‘”ﬁ;*" yy (=% 3a

r r g
N H
oY, 3y 3¢ &
. 0o . ¥ 9 0 2 3 ¢
= — — - = + X_PqQ = + X, x—— = X.Y.PQ =—°
Z "11¥0 3¢ T YoXi 5a, Yo?4 a_ iPd 3, " *i P4 R MR T
i=1 :
3z 9z H
0 . 36 + a¢ + 0 2 ae + a¢ .
- X.pr - X Y p— X.V.pr ~— 1
:O 5qr %0%1 3q z0y i Sqr iP §qr 2 P aqr ivi qr_‘:
L - .
. IxX ax_*
: 2.2, 33 0 2 3w 30 03
.- + — - Y. —_—t V.2, = + Z . pr —-»
H xizi(r *q) 5&; yipq q, yl pa aqr ylzlpq ?inr iP Q.3
: ay ay, i
: 2.2, Yo 2. 2, 3 2,2y 3 0
+ E- yi(r +p°) sq—r - xiyi(r +p°) 59_1- + yizi(r p°) ——aqr 2,9, a—qr :
v, 2 Kyt vy fa B n P o0 :
¢ Y% 3 i%r a i 3. ‘i ) H
“ Q 9 1 r _
£ W 2 ¥, . 3y 2. 36 i
i- ypr—--l-z pr +zq - ¥;2,9 5=+ 2.9 —
: 2393 qu aqr E)c;r ivi aqr i aqr :
: oy :
1‘E""“‘ra T % g T AP e T %P 3 1 P aq i
: 3z 5
i 2 2 i - 36 &
:+xzi(p )—-Yz(p )B_+yip5-_xiy1pﬁ.f
= r r_e
P 9%, 2. . 28 ]
YT sg Y T A T AT N
: 3y _ ,
+:+xi~—-9+x.2ry'-+x.zr§9— (226)
: i aqr i aqr i1 aqr
: 9z
2. 9 ! 2. 38 3
- — - —
E yi P qu xiq aqr xl q aqr 1 iq aq ;
— d J
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Expanding and identifying mass moment and moment of inertia terms:

N X, x,
R P] i
Z”i Y3 5;; -
i=1 zi Z.
EST

bR B B
;iiaxc-vﬁgi—*ﬂzxae - (r2+q2)?:9-+1 (r2+q2)a-l 3
R, q, X %, i
f’i“’ﬁ;’"%,“*’—ﬁn ’-
é_‘lxz(":*‘lz) 3:;! Mypq ;:2 I,pa g:T I,,pa ::r Mzur :% _,
*é‘w( "’P)z‘l (r "’PD)I"’ IYZ(rzi-pz):—;-ri-lﬁqr?:o §
§L+quz%l)—lnqr g%+ Iqug%T_m( 2)27_:‘,1“(92*‘12) :LE
?—IZYpr%‘+Izprgi-+Miq;Z: Imqg%r-tlzq%_ ;% -2
*g*lmqr%-lzqrg—;;- Z'%-Im§%+lng—+uﬁ-;{—: §
;’nyr b -1y ggr'
+§+1xr§%’r—1xz ?,:—r (227)
Xqu:r i
s |




and finally collecting and grouping terms yields the final and complete

definition of the
accelerations.

terms of Zjuation 2.i for the estimated elemental

2

N x x L
Iy "' - __3_ y =
E : i )
i=] z EST O z
J
[ x -(r%%) pq-r prgq Xo
M{y] v perr | ¢+ {-P?)] sz arp 5—:; Yo
5 pr-q qrp -(p%%) z
I 0 X -¥x
w .. 20 w -
+ M 3—:]: + Wr 0 + -aq—r
¥z -Xz 0
L
] . 20 .
Ix(O) +IY(-5Er(pq-r)) +IZ(W, (pr+q))
[l 2 - - 1LY (ar-5
. Ix(:qr(pqi'r)) +2,(0) Iz(aqr(qr 5)
-Ix(% (pr-q )) +Iy(g-;-r (qrep )) +L, (o)
- -
In(r2+q2) gl - Ixz(r2+q2) g—:—; + IYZ((pq-x") g—g; - (pr+q) g—"—)
1ra®s® 5+ (et 3+ (e ) It 3
.\ 3¢ Y . (2. 2,93 2.2, 3¢
I {(pr-a) == - (ar+p) = Y+ I__(p“4q°) =— - I (p+q°) ==
I.XY( aqr 3qr) XZ aqr YZ aqr 1;
(225)
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N
where in this case the summation Z represents summation over the jth
i=1
rizid body element. With tais in mind. substituting E:uatioas 228 and
2.3 back into Equation 201 yields the complete form of the Lagrange
energy equation in constrained coordinates with distributed elemental
masses and forces from which the REXOR II equations of motion are all devel-
oped. Also including these terms as well as the moment terms of Equa-
tion 213 in Equation z11 yields the final form of the equation as used
in BEXOR II. This form will be presented following the development of the
generalized mass damping and stiffness matrices.

Frcem Equation 209 it is easily seen, by examining the coefficients of
the corrective accelerations that generalized mass matrix elements,

M

e car be written as

This equation is for point masses. Actually, as discussed earlier, the
REXOR II equations model a set of distributed masses characterized by an
overall mass, center of gravity, and moment of inertia values. As shown

in the previocus section, extension *o the distributed mass form is made

by describing the rarticle absclute cocrdinates in terms of the positicn
of a relative cocrdinate set “n inertial space and the particle position in
terms of this relative set as developed in Section 4.4, For a rigid body
the associated relative set and the particle associated with the body main-
tain a fixed relationship. The suming over the particles of the system
then becomes a sum over praduci:s 5 masses and lengths yielding mass

moment and moment of inertia terrs.

The mass elements can be d_.eloped by substituting the partial derivatives
deveioped in the preceding discussion. These partials describe both the
motion of tile mass element reference and also the distributed masses within
the rigid body elemental masses.

in



Substituting these partials, Equations 223, 22k and 225 in the
generalized mass expression, Equation 229 yields:

N
3 9 3 9
w3 (e e, T, w | w
rk i=1iqqu idq dq 15T'raqk 1%}@
+y2“ 4 -yza* ae-&z -3-9-.3..x—0+yz ﬁ_i’!‘_
i 3q dq " 7i'i g 3q i3q dq ~ 7i'i 3q_ dq
., 2238 2 ¥ ¥ Yo _ . Moo
i aql_ aqk 3q aqk i 3q aqk i3q ﬁ;{
9
LN To, 20 a2 e 2 o
i qraqk i q!_aqk 118qr3q 13qr3qk
- z.x go_?#+ 2 3¢ 3°+azoaz°_xaz°3¢
13 99, 3q "1 39, %q,  Bq_ g " i 3 Fq
3
sy 02 _ 28 az0+x236 (LIRS I
199, 3 ~ "idq g i 3q, 8 " %i'i 3q g
9z
+y % 0 _ 3 3/ . 293¢ 3¢
i aqr qu i“i 9q 3qk i aqr 3qk
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and using moment of inertia and mass moment definitions:
ax 3x 3y 3y az z Yy I
e
Mg ~ M(qu 3q, ' 3q % Y 5q Sq ) zz(ﬁ;_ S
3 9% ) (ae 20 ) ( W 39 3¢ v )
+ 1 [=— =})+1I _..5_-»1 - 5 < 3 5
xx(aqr aqk Yy 3qr U Xz 3qr aqk aqr Yy
g (ae 3¢ 3¢ 3°)+1 (av 20 20 aw)
I - - - —
XY qu Ek 3q Sk YZ E E; E %,

+

W(_ax % _dw ax 3¢ 3z iz ao)
3qr qu 3qr aqk aqr qu aqr 3qk

_[>x 30 36 3x 3¢ 3y 3y 3¢ )
+ Mz(— -+ —_— - - = (231)
aqr 3qk 55; aqk 3qr 55; aqr 5&;
and is identified as a generalized mass. For orthogonal systems M is

rk
zero except for r = k. The development of REXOR II is mostly nonorthogonal

coordinates, therefore, the generalized mass matrix has many off-diagonal
terns.

Similarly, terms can be developed for the strain (potential) energy and
damping functions.

N
=lz [( +k ¥y +k z.2)
2 y. i z, 1
1 1

i=1

2 2 2
+(K¢‘ ¢i + Kei Bi + Kwi wi )} (232)
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39 28, . .
+ k. —— E —tq +k — E —q
bi aqr 3q k wi qu %a, 'k

k=1 k=1 k

Define

9x,. 9x, Jy. Jy. dz. dz.
1 1 1 1 1 1
Z:k 3 33 T %. 30 3¢ T %2 39 3a.
= 1% %% e Yt e T Y O

1

. déi 301 . aei 98 . . Bwi 3wi )
¢i 3qr aqk ei qu aqk wi qu qu rk

Similarly for damping:

N
axi axi 3yi 3yi Bzi azi
°x. ? ag * cy 3q_ aq, * €2. 3 aq
eyl e TR e SEER A SRS e TS S B

3¢. 9¢. 30i 90,

W. Iy,
* . 3 - 3 =+ . 3 S'E te 3‘1 3 ~|=c k
¢; 99, i %% 9 ¥y 99 9q r

1
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The stiffness and damping matrix terms in REXOR II are defined with reference
to relative coordinates; which parallels the physicsl configuration. The
coordinates used with these terms then should be on a relative basis.

This statement at first appears vo be contradictory to the premise of the
equation development. However, if these matrix terms were defined om an
absolute basis the terms other than those associated with a relative

motion would be identically zero. The integration of the accelerations
produces changes in velocity and position. These changes with the proper
starting reference are the relative coordinates and velocities.

Equation 211 is nov repeated here in a slightly expanded form to include
the effect of applied elemental moments, Equation 213, and distributed
elemental masses, Equation 228,

< p— - - -
r aff n ax, .
‘.i E m_X. - F + M — . . .
1 - (1 ipgp b 3q1 x5 aql ]
i=1
Mrk
< .2 = - MASS 49 . p
MATRIX

9xX. 301
i m ¥ ‘F>—3 M 3q Y
CORR i L 1_1 ‘EsT Y i%h .

(Equation 231) ‘
(Sum of Equations 213 a.nd‘228)

= n r ) [~ “ r
Crk Krk
+ DAMPING < .2+ STIFFNESS < .22 (236)
MATRIX MATRIX
q
b J \ nJ - kan
(Equation 235) (Equation 23k) J
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Even though Qr was defined as the generalized forces of the system, for

the purpose of further development and of the application of the above
equation in the REXCR Ii aralysis, each line in the large brackets on the
right side of Equation 236 will hereafter be referred to as a generalized
force or a generalized delta force and will be referred to by the symbol,
FR, in the following development.

In REXOR II use is made of matrix notation tc produce compact partial
derivative, generalized mass and generalized force expressions. The
partial derivative set

ax_ a3y 3z 34 36 ¥

0 37 39,799, 34,7 T,

is replaced by
rhge
2, [
Usually the generalized coordinates gq are grouped as three linear plus

three rotational motions. The full partial derivative for system coordi-
nate A and generalized coordinate set B is:

[arOA]

F)

Yp

The generalized mass expression (Equation 231) can be rewritten as:

ruooou’z’-n?

O M 0 -MZ O MX

(237)

[ar-roouu'f-ﬁo l;,,l
M
rk

9 _— 3q,
. 0 -MZ MY I, -L, -I,, X

MZ 0 -MX “Liy Iyy ~Iys
-MY MX 0 -I,, -I,, I,,
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The generalized delta force, A

» can be expressed in matrix notation for

contribution of coordinate set A as:

r

'

r

——q

o-r qf

[

° -p

P Qja

ro—r q|

o -p

P oj,

|

|

o —

0 MZ -MY
-MZ O MX
L_u‘i MX o _
[ I ~ixy “Ixz |
Ty Iy Iy

z []z
» -1 K b
Ai
P ¢

| JA

"I ~hyz Tz

“MZ

A

M MY -MX 0
0 -MZ MY I, -L, -I.,
MZ 0 -MX-L, L, -I,.
-MY MX 0 Iy ~Iyy Il

(238)
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5.4 Overview of Rotor-Blade Model

Many elements of the rotorcraft can be directly modeled following the
methods developed in Sections 5 through 5.2 and systematized in Section 5.5.
However, there are enough special considerations and concepts involved in
modeling the individual blades and combined rotor to Justify a separate sec-
tion to address these topics.

S.k.1 Concept of modes. - The basic textbook principles governing solutions
for eigenvalues (natural frequencies) and eigenvectors (mode shapes) for
systems of several degrees of freedom can be applied to those of many degrees
of freedom. For each independent degree of freedom there is an additional
natural frequency and mode shape.

Free vibrations of continuous systems such as beams, or for example the
helicopter fuselage, or rotor blades, are generally analyzed mathematically
by reducing the system to a system of discrete masses and elastic
constraints.

5.4.2 Blade bending - modal variable. - The blade is a twisted rotating

beam and its analysis requires considering the coupled flapwise-chordwise-
torsional response of the blade. For the REXOR II analysis, coupled flapwise-
chordwise mode shapes are used, upon vhich is superimposed one of a number

of torsional response representations of varying complexity (Sections 4.3.k,
5.4.7, 5.6.5, and 5.6.6).

If one applies generalized coordinates, each blade mode in the analysis

may be treated as & single degree of freedom. The generalized coordinates
are called normal coordinates for the special case when the modes are
orthogonal, in which case the generalized mass matrix reduces to a diagonal
matrix, as édoes the generalized stiffness matrix.

The REXOR II analysis uses tlade modes calculated for the blade at a fixed
rpm, fixed col} :ctive, :ud ir an unswept, unconed orientation. Since the
program allows for variation of all of these parameters, which is accounted
for in the overall REXOR II analysis, the predetermined modes become non-
orthogonal as used in the program. Thus, blade motion is effectively
described by a set of mcdal variables, each representing a characteristic
frequency, and a set of modal coefficients that describe the relative
amplitude of oscillation for each blade segment and each frequency.

Since the modes are nonorthogonal, we will find in REXOR II, as would be
expected in such a case, off-diagonal coupling terms in both the gen-
eralized mass and stiffness matrices. It can readily be shown in cases
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vhere generalized or normal coordinates are applied, that relatively few
modes need be taken to define accurately the time-history of blade deflec-
tion. This assumes that the primary frequencies of excitation fall within
the range of modes considered.

5.4.3 Blade mode generation. - The blade modes can be determined by any
appropriate classical method of analysis for coupled flapwise-inplane bending
beams. The only requirements is a cantilever (hinge or hingeless) boundary
condition for the modes and that the terms included in the homogenous part

of equations 28 and 29 of Reference 5 be accounted for. These equations are
repeated here for convenience. Flapwise:

[(EI1 c0528 + EI, sinaa)v" + (EI2 - EIl) sinB cosg v"]"

- (') - %y + ¥ =0 (239)

and inplanewise:

s " 2
[(EI2 - EIl) sinB cosB w" + (EI1 sin“g + E12

coszﬂ)v“]"

- (Tv')' - Qamv +mv =0 (2%0)

S.4.4 Modal coefficients. - Several additional points need to be made
regarding modes in order that the equation development be properly understood.
First, the same modal coefficients apply to the first and second time
derivatives of the function, since

== = f(x) (211)
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Then

9z 32 3z
. --_s. —._S- S -
o T T T w * 3 A (2u1)
1 2 n
2z Y 3z
2Dy LUy L, Ty
2smm Mt Rt Y (243)

Second, the motion is not necessarily confined to one direction. A given
modal frequency may excite or couple with motions in other directions.
For example:

BYS BYS 3YS
1 2 n

Y Y Y
. S - S S ;
Y = =2 A + =227 + ...+ =7 (2ks)

3

S aAl 1 A2 2 8An n

3Y oY oY
s %, At %, Ay * * % A (216)

5.4.5 Independent blades. - In REXOR II the blade motions are computed and
tracked 1ndividually. One set of equations operates on & blade in BLE
coordinates as explained : Section 5.L.11. The result for a time step is
stored in BLn coordinates for that blade. The operating set in BLE
coordinates then performs the computation: for the next blade in turn.

5.4.6 Blade element aerodynamic forces - overview. - The functions F

Xi?
FYi, in, and moment terms from Section 5.2 are primarily aerodynamic

loads for the blade equations. These loads are derived from blade inertial
velocity (equivalent to air velocity) and table lookup aerodynamic
coefficients as given in Section 6.
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5.4.7 Blade torsional response,

5.4.7.1 Pitch horn bending. - Several alternate approaches to modeling blade
feathering dynamics exist in REXOR II. One approach is to assume the blade
is torsionally rigid, and that the flexibility is in the pitch horn.

5.4.7.2 Quasi-static blede torsion. - The blade pitch horn bending descrip-
tion is improved by the addition of a blade twist dependent on the moment

loading. This quasi-static torsion is computed by integrating the blade
pitching moment times the torsional flexibility from tip into the root.
(Develcped in Sections L4.3.4 and 5.6.5.)

5.4.7.3 Dynamic blade torsion. - A third approach to blade torsional response
in REXOR is an uncoupled torsional mode which operates as additional blade
twist. This material is developed in Section 5.6.

5.4.8 Radial integration. - For each element cf a rotor blade the equations
of motion are formed per Section 5.<.9. As briefly touched on in Sec-

tion 5.4.6 these data are formed in BLE axis. These elements are summed to
total equations for each blade in BLn coordinate at the blade root. This is
explained in Sections 5.6.3 and 5.6.4. These blade root summations are also
used in the fuselage axis (Section 5.8).

5.5 Equation System Development

5.5.1 Reference to base operation matrix. - The equation of motion, as
developed in Sections 5.2 and 5.3 and as presented in most general form by
Equation 236, may be given in abbreviated form as

-1
q =M F (247)
(o [ )

's are the generalized mass matrix elements, the Fr's are the

The Mrk
generalized forces, and the qr‘s the generalized coordinates or degrees

of freedom. As explained previously, the Fr's are the complete set of
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external forces and internal reactions computed with estimated values of
the accelerations, §ppon's, at the next time point. The draopp'S &T€

then corrections to the estimated values.

The generalized mass, Mrk’ is developed in Section 5.3. The gen-.ralized

force may be expanded as (using the point mass form):

N

L T 3B 3U
Fo=- mA\X% 3¢ *Yisg Yt )l m T a
r . qr qr 1 q‘r r qr

+ F +F, +F (2u18)

The inertia, damping, and elastic terms aire developed further in Sec-
tion 5.3 (see Equation 236). The friction force Frp » the aerodynamic
r

external forces FA , and the pilot control forces Fc are described as
r r
needed. Note that the potential energy and dissipation terms have been
directly included in the force expression. Where the stiffness and damping
matrices are simple diagonals, this is done. 1In the case of the blade
equations the distinct stiffness and damping matrix form (Section 5.3) is
computed before combining all the applied forces, internal reactions,
stiffness and damping terms into an overall force.

5.5.2 Organization by degrees of freedom. - In developing the equations of
motion there are three types of ingredients needed:

® Generalized masses
e Generalized forces
e Partial derivatives (used in bolh of the above items)

The equation development can then proceed witi these ingredieats along one
of two lines of organization.

e For every major rotorcraft piece (fuselage, rotor, etc.), compute

all the ingredients and sort according to degree or freedom for
equation use.
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e For every degree-of-freedom group, sort through the rotorcraft
pieces for applicable ingredients. Sorting is minimal because of
close asscciation of degrees of freedom and component parts.

The latter develcpment is used here. The degrees of freedom modeled are
given in Figure 11.

The fcllowing subsections will describe the appropriste partial differen-
tiations, the generalized masses, and the generalized forces in detail.
Bach generalized mass couples the inertia of one generalized coordinate
with another or iiself. The algebraic equations for each generalized mass
wiil be given only once. If the reader cannot find a particular mass
element under one subsection, he should look into the other subsection
reiating to the coupled generalized coordinate. '

5.5.3 Partial Gerivatives. - Tne generalized masses and forces use partial
derivatives whick Cescr e the variational motion of each physical amass element
in rectangular coordinates relative to the motion of each generalized coordi-
nate. The partia} derivatives recuired are determined from the generalized
mass and force expressicns for distributed masses of Sectison 5.2. The partial
derivatives are easilv constructed from the coordinate trunsformaticns wvhich
have been developed.

In developing the =otions of a physical mass element relative to a gen-
eralized coordinate, a number of transforms may be used. These can be
categorized as either lirear or Euler axes transforms which either displace
without rotation or rotate without displacement. The overall partial will
be the product of partials associated v th each of these transforms. The
typical form of these partials will now be illustrated.

To obtain tne partials, the equations reiating the velocities are obtained
1

first. Reviewing Sections 4.4.1 asna 4.%.2, the velocity relations of
interest are restated. For linear transforms:

X X X 0 z, - ilp
b4 = + + ]~

Y, Y z, O X, q (237)
Z )y Zg . z ). r, X, 0 r |
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P P
q =44q (238)
F b a
and for fuler transforms
r . o Y
X X
{r} = [Ta’b] Y} (239)
Lz b z‘ .
r 3
r A
p 01‘ 0 * P
a =40 +[T*]1 8y +[Te]4< 0 +[T¢] a2 {2L0)
r b v 0 a 0 a r 8l
a . J
.

4

The partials of interest are conveniently organized into 3 by 3 matrices.

They are for the linear transform:

1kb

X | X |

3 3 3
g
r x\ I X l (X

2 a |, P
SEYP |a—Y-;f lﬁ4‘f
L Ele ) | g
-~ A r

3 X |3 X |3 X
ﬁay} |5—e-aY lW,;Y
i ZJbI Zbl LZ

-

1 ¢ 0
=[I]= 0o 1 o {2h1)
0 ¢ 1
[ 2
0 z -Y
a a
=1-2 0 X (243)
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Y r oy ]
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—_— —— —_ = 24k
X b Isvfet |sz{et [O] (2uk)
a l a a
b . w P b . WJ b -
3 3
| (4 [+
) )
3 | 301 6 3 3¢ 0% = [I] (245)
a a
b ' ML ML
For the Euler angles defined in Section 4.4.2:
r 3
| [x] 1 [+
] ]
— b — =
b | i B =1Y¢ ['ra_b] (2u6)
a a
o | 12)s Z) v
r - 1
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cosycost

= | -sinycosd

(250)

For Euler angles defined in reversed order or reversed sign the last matrix
will differ. Note by inspection that rotary to linear derivatives such

286 - C e . .
as = are 8.1 zero. The derivatives can be strung together *o get motion

Ix

in a third axis ¢ relat.ve to motion in axis a.

matrices:

3rc ar_ ’arbw Brc 3,
E-FEER]FE]E

assuming in general

and
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The abbreviations used are

r=1{X, Y, 2} (257)
and

L= {4, 0,V} (258)
Transformations may involve linear and rotational operations. Partial
derivatives showing the combined coperations may be generated using a

linear transform from set a to b, followed by a rotation from b to c.
This sequence gives:

ar 1. 7
[ c -['ra_c 2 0 X {259)

ar | 1
—<| = ['r (260)

=9 (261)

[Fee] - Be)

5.5.4 Generalized masses. - As discussed before, the helicopter is assumed
to consist of a finite number of mass elements. They are the

e fuselage

e tail rotor

¢ engine rotor

e swashplate

e fixed hub {all parts that do not feather)

¢ k mass elements on each of b blades.
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The reader should realize the mass matrix is symmetric from the definition
of Equation (209) and interchange of the order of differentiation.

M =M (263)

Only the elements in the diagonal and the upper right triangle will be
given in the folloving sections.

Each of these mass elements must be summed for each of the generalized mass
matrix elements. Each mass is handled with the distributed mass Mrk relation

of Section 5.2. Fortunately, only the fuselage requires the full equation.
The center-of-gravity terms drop out if the mass motion is determined at the
center of gravity. This situation is truve for the blade line which passes
through the center of gravity of the blade section mass elements. Only the
fuselage, the swvashplate and the shaft/‘ransmission have reference axis origin
off the center of gravity. Another simplification is that cross products of
inertia exist only for the fuselage and the shaft/transmission. Each blade
mass element is considered to ve in the shape of a rod lying along the chord
at the blade station in question.

Certain small terms and factors are dropped from the generalized masses.
As discussed in Section 5.3, the equations of motion are solved for small
incremental corrections to the accelerations. With this formulation the
messes carn tolerate approximations as contrasted to the generzlized forces.

5.5.5 Generalized forces. - The equation formulation, Section 5.3, requires
that precision be used in compiling the generalized forces per Equation 2LT,
expanded per Section 5.3, Equation 236, to include rigid body distributed
mass elements. This formulation includes for each degree of freedom:

e Summation over all mass elements of the mass times inertial
acceleretion times pa: tial deriva*ive. (Section 5.3 expression
for distributed masses.)

e External (aerodynamic) loadings times a partial derivative.

e Potential energy and damping terms or assembled stiffness and
damping terms with partial derivatives (Section 5.3).

For some degrees cf freedom the applicable mass elements and the total
integration are directly written as final results which can be verified

by inspection. Degrees of freedom that properly include summation over the
main rotor blades involve some extensive numerical integrations and com-
plicated coordinate transformetions.

148



5.6 Blade Bending and Torsion Equations

5.6.1 Blade radial summation. - The contribution from all the individual
blade sections are summed to give the blade generalized masses and forces.
These are given for blade root, bending, feathering, and torsion motions.

The blade root values are then transformed to the final degree of freedom
variables by partial derivatives. The summation is carried out over zll
elements of the rotorcraft, including the independent blades. Due to the
relative isolation of one blade's modes from another, only the L by L submass
matrices along the diagonal of the ub by Ub rotor matrix are filled, where

b is the number of blades.

5.6.2 Partial derivatives. - The generalized masses and forces utilize
partials relating the X, Y, Z, $, 6, and ¢ linear and rotery motion of eah
blade element to the blade bending, blade torsion, bcdy, rotor, and swash-
plate degrees of freedom. Only the blade bending, torsion, and feathering
partials are derived in this section; the blade partials for other degrees
of freedom are to be found in their respective sections.

As developed in Section 4.3.4, the blade torsion may be modeled either as
a pitch horn bending or an uncoupled dynamic torsion mode. For the former

3¢v
case the partial 3 B‘H is & blade spanwise constant multiplier to summa-
PHn
30BI..E!
tions which couple in the feather angle. 1In the latter case, 38 is a
PHn

function of span and blade number.

The first partials to be ccnsidered are those relating motions at any
point i on the blade to the rigid body motion of the blade root. These
partials are:

[a(x ) a(xnf ) a(x‘.,)
BLE) g n *LE) Bin T

Y
M BLn 3 oBLn 2onn

a(r ) a(y ) a(r , ) a(y )
Bl BLn BLE g1 B p1n BLE BLm =[ 1]

] : (264)
T BLn Xsprn 3 5Ln 2 0BLn
a(z ﬂ) a(z ) a(z )
E-=/pln BLE o BLE Soin
.
X 5BLn 9 5BLn 26810
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(aee)  (ae), (e,
3’31.:; “BLn l aVBLn - _ -
0 zZ__-Y
a(rm)BLn a(!m)mm E(YBLE)BL“ a(YBLE)BLn o
%y | | % ®prn Vo | | HE D E
a(zm)m 3(23“)31,:: a(zm)B | Yaie Yme O
| 8 Pan  Yma |
(265)
R I N .
- o Ty,
) a(eBLE 3(°BLE a(eBLE
e Sl S ]
(o) e (toum)ye  (° mi)ys
L a'BLn 3682.:2 31’31"‘ L

2 -3 A 3 a .
Note that xBLE’ YBLE and BLE 2F¢ expressed in blade root coordinates;

while ’BLE’ SBLE and *BLE are in terms of blade element axes aligned

with the blade element pripncipal axes.

Next consider the blade Y and Z bending response with respect to the
blade bending modes. A numb-r of equations cap be used to develop the
required expressions. The velocity equations from Section 4.5.5 are

selected for ease of analysis. Using cancellation of the dots
{Seation 5.2):

aY(i) 3Y(1)
(_SK"B'I'@) ’( T BLE) (267)
mn BLn nn BLn
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( ak ) - ( A ) (268)
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SO R YR O

bp obp g
'33;:'33;, and-sxg-are input data.

The angular derivatives with respect to the blade bending modes are also
constructed in the velocity form.

r) r 3
)
e 5iE
F) Y
nn mn
Y
BLE
43}‘3—» ={n p (271)
mn mn
17
_ar —BLE ]
aAmn aAm
k J BLE \ J BLE

Note that the angular derivatives, being applied to local segments, are
presented in BLE axis. Referring to Equation 132:
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Alsc note that in the same context and argument of Section 4.5.5 the
feathering axis slopes, Y'FA and Z'FA have been neglected in the above
angular partials.

Derivatives with respect to the blade featherinz are also constructed
using cancellation of the dots.

r 3 r 3
aYBLE aYBLE
a¢Fn aIFn
4 P = 4 . p (275)
aZBLE aZBLE
L8¢Fn aan
J \ 4
gives:
r 0 1
Y . - -
1 a¢BLE’ YA T 1y, TrTM ' Tyr | |2
Fn FA FA F FA FAJ
3k dry v ) ( ] ] (276)
3% 0208 B U R P + {r 27
L ™ JBIa Bon mn | | SBLE 1B
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Similarly, for angular motion:

(oo, )
®a1E

a¢Fn

1

L EIE I B el
Lﬁ% L [TY'Bmm] _TZ'Bm] [rz" L [TY'FA]T ‘g]

fl

The partials developed with respect to ¢Fn are used directly in swash-

o o B+

} (as programmed) (217)

plate and rotor summations as well as some of the following mass and force
9¢
~a
aBPHn
the case of the pitch horn bending torsion option. Taking the deg = of
freedom to be pitch horn angular deflection about the feather axis, the
constant is approximately 1/e. For the dynamic torsion option a different
set of mess formulations is used in terms of BLE axis, obviating the

need for the compounded derivative. As indicated in Section 4.5.5,

terms. Some terms require a further compounding derivative, for

expressions inbnard of XSw equal expressions outboard of XSw with

[TY] [TTO]= [I] (278)

{‘”sw} ) {r.jog} = { O] (279)

and
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Blade X motions must now be accounted for. The assurption of the neutral
axis as the axis of no stretch is discussed in Section L4.5.5 and the
derivation of the X motions shown. The equation for the partials in

Bln axis for a point on the neutral axis is taken from the formulaticn for
the X velocities:

Y(i) 3y (i-1)
X 1) k [- (Y(i)NA - ¥(i-1), T_“A - = NA
NA mn_ mn
3A - x(i),, - x(i~1)
mn Bln ‘i=2 NA NA
Z(i) 9Z2(i-1)
-{z(i),, - z(i-1) NA JA
NA NAR 34 3A
mn mn_
X(i),, - X(i-1)
NA NA BLn
and
(ax(l)NA -0 .
oA v
mn

Bln

The program data, however, is at the blade center-of-gravity axis. The

transfer is:
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vhere the right-hand side elements are from Section L.5.5 and the previous

development of this section. The distance Y(i)om = Y(i.lu - Y(i)CG oE

is the distance the neutral axis is from the center-offgrafity axis,

ay(i)n az(i)u
positive forward. The partials —SA and T are used in the
mh m
X(1)y, 231Dy 1o then the aifferemce in X

preceding equation for 3 . A
mn m

motions between the reference and the neutral axis, and is subtracted from
the neutral axis motioas:

ax(i)BLE A ax(x)u |, 3’“1):1\ .
A WA A (262;
Bln Bln B2 ) Bla
to obtain a center-of-gravity 7alue.
axl(t)y o
The spanvise varietion of X with feathering, Yy s can be derived
Fn
X(i)y o
in a manrer similar tc ——aA——— . The formulations are:
mn
:m(i)m‘E . a)c(i)“‘L a.\(:)u .
e . =5 i (v (283)
J’r’n 3‘?1’2 “Fn
Bln Bln Bln
vhers
[ aax(i),.) f ) [ 3¢ )
e 0 - 52y (1)
“*Fu e OFA
-~ =% 3Y -
J aY(l)m > .. (I)BLE - . (2843
(O FN ¢ RLn-BLE| ) !
21 32(i)g, v (——m“ )Y(i)
N 2, . EY) ONA
. ™ Jpwa U R . P s

157



and

#
™

= X(i).. - X(i-1)

Y (i) aY{i-1)
. x [-{y),. - (-1 AX— M _ ’“‘l
ax(l)m : ( NA n 3¢Fn A

Bla i=2 HA NA
s 521)
] . 32(1)RA 3Z(i l’HA
-2y - D e T e
Fn Fo
x(i) , = X(i~1)
NA rA BLy.
aX(1)g, - o (285)
9¢pn
X . . L
The program assunes | ———-e to be zero fci generslized mass cajcula-

3¢
o forn

tions. This is done because o5f the latitude possible in the generalized
masses and the second order nature cof the term. In contrast, the derivative

3 o9
35?§é1 is retained. The partial QOBLE is set to unity for the
BLn “Fn

generelized rass terms. The full equations are used for all these terms in
deteraining the generalized forces.

A simple partisl derivative is also needed when SPHn is defined as cynamic
torsion. Sirnce torsion cccurs along the bent and twisted blade lire, in

blede element axis BLE, oniy the verticai cr normal to chord moticn of the
shear center is of interes®, hence,
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/sz(i)m) _(az(i)BLE BLa *2(1)py 3015\
8pmn /] \ 23zZ(1) 54 a8
\ it 2 N S, BLE BLE 28pHnf

(286)

IOBLE
[TBI.E _ Bm] (Y(i)sc - Y(i)cc)ma—s-;

MpLE

is program input for the torsion mode shape.
35pan

Use is made of a tlade mode to blade feathering partial derivative array to
produce a compact development. This array is simply by definition:

o : -
0
]
0 10
o) | [T (267)
[ ]
3%m ' 0
..... - =
0 0 0'1
where lTBng lAln’ A_ , A3n’ ’Fhl'
Additional partigcl sets which are used to expedite the mass and force
expression development are:
[ ' 7
970 ITP.-BLn] ' [OJ
l_m.l - --[-]---: ------ |- (288)
9TR 0 .
L ' lr:—:smu

oTH

IavoR, I L3 S S (289)
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5.6.3 Generalized masses. - The tlade generalized masses in conjunction
with partial derivatives couple blade feathering, blade torsion, blade bend-
ing, fuselage motions. All the blade generalized mnsses that assumed to
3
exist are given in the followving table. As mentioned before, 3;§géi
F

is
n

W E

a‘?n

in the table. The blade has a rotary inertia about the center of gravity

axis Ixx . The blade also has inertia Izz about a vertical axis.
BLE BLE

assumed zerc and is assumed one in the program, although it is given

Table 1 lists all the ter=s coupling rotary motion at the blade root,

M and similar terms. Howvever, not 8ll listed are used, as certain
$ $
Bln "Bln

approximations are made in developing the principal axis generalized masses

vhich reduce the number of blade coupling generalized masses needed. Since

the mass matrix operates on the acceleration error term rather than the total

acceleration, these approximations do not detract from the validity of the

results produced.
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TABLE ..

=

—

Blale Root Coupling

K
= < = X = (i)) (n(i))
"’onLu"Bm "ZOBLnaBLn "BLa"CGy 121 (xm‘g Bla
g {»00)
k
N cm Y. = Y (i)) (-(i.‘)
Hzoam’nm -"xoam*sm "BLa Gy g (m‘g BLn |
(201
X
- < mpyZe (i)) (n(i))
onsmem.n —Mycam‘am "BLa"CGy § (Zm‘E BLa
(292)
K
= .= = = m(i) (293)
ontaXonta  Yobialosta  ZosicZopia PR 1;
Feather Coupling
K
3
oBLa’*m £ S .
K
) S
Mo, =Zm(i)(a¢&£) (295)
oBLa’rn 4= m/y
K
Ap1k
M, =Zm(i)(“ (296)
oBla’ra &= /o
- More Yae . *Zpix Y%LE
My s =Z m(iNT % 26 29
Bla’rn & Ln *m BLn **Fn

BLADE GENERALIZED MASSES I
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TABLE 1. - Continued

—
Feather Coupling (Continued)
k By ay 32 3
N, =Z (i) Bie Ypie | Ypre gL
Bla'rn 4 810 *m  prn My
... 3¢
[**BLE **BLE
+1 3-: - a’m) (298)
8La
k Y 3 2
" _ Z a1y BLE ZBLE ZpiE
YBiotrn 4 M5l ’Fn Ln **m
s 3
BLE 2*BiE
: I“&::(“’Bm a‘r-‘n) (299)
BLa
K 2 2 2
D> mm( )’ (), ()
*rfm £ *mn *m *rn
] 3¢
BLE 2%BLE
(1) (300)
XXBLE(z’Fn “Fn)
Bln
k 3 ' 3 )
" Z m(l) xBLE BLE , “ZpiE *%BLE
Auntps aA e 0y, | OA_ 3
3¢ ¢
BLE **BLE
+ I, (i) (301)
)ocBLE(aAm T
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TABLE 1. - Continued
| == —
Blade Bending Coupling
X
oy
Mo, = Z m(i)(a:BLE (302)
OBLn mn " mn
i=1 BLn
k
Y
D m(i)(aABLE (303)
OBLn ‘mn mn
i=1 BLn
. .
3z
- Z :m(i) BLE (304)
OBLnA aAmn
mooym Bln
k 3 3 g 3 3z 2
~ Xp1E xBLE BLE . °ZpiE *Zpie
My a © il . aw A T w. 2
Bla mn (o} BLn ““mn Bln
3¢ ¢1
BLE B -
" Ip TR (305)
1\ BLn
X 5 3 g Y ? 3
" =Z ()| mpie B BLE , %piE *ZpIE
A A A__ 3A aA EYY 3A__ IA
mn mn i=1 mn mn mn mn
¢ 3¢
BLE B
* Iy e (306)
LE mn BLn
BPHn Defined As Dynamic Pitch Horn Bending
3¢
Fn
M =M (307)
AnfpEn  Aun®rn 2feun
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TABLE 1. - Concluded

BPHn Defined As Dynamic Pitch Horn Bending (Continued) I

T 2
M =M (308)
oun’PEn  *Fn*rn\°%PHn
(T
M, . - M¢ o \ie— (used in swashplate) (309)
PHn®Fn PHn

8 Defined As Dynamic Torsion

PHn
X
Z al1) aZBLA aZBLE (1) (2*BLE (“BLE
e e * o\, sta) CPean/,

(310)
¥k F 2
3 3¢
E m(i)(a:BLE) + Ix.x(Bi) ( BLE) (311)
PHn Phn i=1 | BLE BLn
Er
- [?ZBLE azBLE 3’3_2 *pLE
L ni) o VAR XXB 36
i=1 | LE BLo \ F2%/prn
(used in swashplate) (312)
—_— — —A
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To save comrutation time some of the masses generated by the blade inter-
gration and summation process in Table 1 are saved as a pseudo mass associated

vith a fictitious rotor coordinate (R).

of the rotor blades can be treated as an equivalent mass matrix:

% X
ITo T
2= 2
[ é] 3T
n=1 R i=l
Tpre “oBLn
°
arBLn arR

arBLE

Mprn

T

(1)
0
0

0
m(i)
0

lo

0
0
m(i)

Txx
0
0

lo

0

Thus for any given time step the sum

BLE

(313)

The couplings of the pseudo rotor coordinate to blade and hub coordinates are
also formed as an intermediate step to save repetitious blade integration.

T
3T,
) BLn}
[HORBL] . l Itg [MOBLBL] .

(31%)
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is the feather and bending coupling terms for

Where the array [HOBLBL]

the o'l vlade. Te.,

pr— ——

M oA X

oBLn 21 YoBLn "2 YoBla A3 onsz.n %

“YomAl"Y A, % A3"Y ¢

OBLa 2 OBLn OBLn "Fn

M A% M @

[“o ] | %opta ™1 ZoBLa "2 ZoBrn A3 ZcBLn *Fn
BLBL M M M M

n YoBLn *0BLn 8o 3 ‘oBLn *Fn
M

A A,

M M

eOBI.n ¢l"n

M M M
Yopra 72 VoBIo 3 YOBIa *fn (315)

L ——

] A, 7o
OBLa 2 OBLa *3

In addition to the rigid body motion blade coupling matrix, [Ho » the

BL-BL]
blade mode coupling matrix, "'BL-BL » Will be used in the subsequent

develomment

™ M M
MA MA A A A
| u M
["m.m.] 2 Ay Ay Ay Ay Ay A3 A, 4
, .
any Maga, Magag Mo,

M
_Q’fAl fA2 fA3 fof

n (316)
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.6.4 Generalized forces. - The development herein proceeds by first deriving
the equations for the loads on an individual blade elemernt. The blade element
loads are composed of aerodynamic and inertial components conveniently found
in either the blade root axes BLn or the biade element axes BLE. The loads
will be summed in Bln axes with the appropriate transformation. The desired
equations are:

. - 1 fe
FyDgre X(1)pp) Feaipe
. _ N EV T ,
Fy(i)pre = -m(1)§Y(i)yp * [TBLn-BLE] Fya(ilprp (317)
F (i) Z(i) F_, (i)
z VBLES BLE/ [ za'*’BLE
. .
My (1) Ppre*9pLETBLE
T
(i) = [1 ] -1 4 0
My BLn-BLE XXy o
M (1)prp Fp1E PRLEIBLE
BLn
MXA(i)BLE 'ch(i)BLE I'ﬁz.t\(i)m,}a
+ 0 + 4 0
0 § 0
BLn Bln
0 -Z(i)BLE Y(i)BLE Fx(i)BLE
+ z(i)BLE 0 -x(i)BLE 1-“1,(1)131.E
-Y(i) X(i) 0 F_(i)
BLE BLE Bin -2 BLEJ .

(318)

The aerodynamic loads are in BLE axes alignment about the blade reference
datum line which is the quarter chord. A transfer through the distance
Y is made to the aerodynamic moment. To put the data on a common

CGBLE
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basis with dynamic terms. The blade aerodynamics is detailed in
Section 6. Since only the blade section pitching moment is considered,

MYAB = MZAB = 0. Note the blade element is assumed configured as a
LE LE

chordwise rod for inertia; bence

I =1 and I = (319)
( Xoie  ZZpiE Ypie )

A number of blade summations are desired. All will be made in BLn axes
along the center-of-gravity axis. The losds at the principal reference
axes and for rotor tilt make use of the blade root shears and moment.
These are simply the sum of the k total blade elements,

r ) r
F F (i)
X 9BIn . X'"/BLE
{F ,=E dF, (1) ¢ (220)
Yonin - Y'"'BLE
i=1
F F_(i)
| “0BLa | 2 P ) Bua
and likewise for root moments.
r 3 r )
"x(i)
BLE
L™ I
M, 3= E MGt (321)
BLn :
i=1l
(i)
LMZBLn, LMZ BLE ) oo

The summations illustrated above are for the total inertial and aerodynamic
components. In a similar manner, the blade root serodynamic loads are
derived. The blade root loads are summed over all the blade to give main
aerodynamic loads for downwash computations (Section 6.2.2) in the manner
the total main rotor loads are found in Section 5.9.
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Total main rotor root loads are formed from the blade root shears and moments.
Using the pseudo rotor coordinate:

( N
FX

> =

MR

\ /

Nb 3 OBLn

T
2 { °BI‘“} < > (322)
n=1

aTR

~ ~

TFeathering moments are used by the swashplate equations of motion. These

moments are:

where

Fota-re] =

BLn
M
\ - ZBLnJ
L 3 ¥
cosY FA sinY FA
—aid ' ]
sinY FA cosY FA
0 0

: 1 )
0 z -Y F )
IB IB XOBLn
-Z 0 {F b 2
IB XIB YOBLn
Y =X 0 F
. "IB 1B dgin \ ZOBLnJ )
(323)
. 1 3. L
0] F cos?Z FA 0 siaZz FA
) 0 1 0 (324)
—al ' '
l- A sin?Z FA 0 cos?Z F@J
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Oniy the X component is used by the program. Th¢ equations above trans-
fer the summed blade loads to the inboard bearirg, ‘en transform them to
feathering axes. Using the blade root loads is : -ie2t when one recalls
that the blade is defined as those portions that -. ¢« feathered; the fixed
hub is excluded.

The blade bendi~z generalized forces are now presented. ' Yy are:
X | fxi1) 3Y(1) 32(1)
F = _EEF(.’L) ..._.__E.I‘EF (i +——MF (1)
Am Z aAm X'~ "BLE 9A Y '~ 'BLE aAmn 2"~ 'BLE
i= n Bln
aMi)BQ aw(i)QLE 18] 9B
+ M.x(i) + M (i) - - T
9A BLE aAmn Z BLE 9 nn 9 mn
BLn
(325)
The potential energy is given as:
3
U _
A Kot M4n (326)
nn
J:
where
aM& aMY aMZ SMZ
TIP{3A _ & A oA
mn Jn mn Jn
K = _Jr_ , _mB__ J7 ias (327)
m Elyy Elyz
ROOT

are inputs calculated external to the program from a be-ding beam model.

EIYY and EIZZ are the flapping and chord stiffness abc 't axes aligned

with the blade element principal axes. The chord and flapping moments,
.& and MZ reflect the contribution of the bending moment from the i
i i
(or j) mode. The integration goes from root tc tip. The K's are
evaluated for whatever normalized modes are used as program input.

The last equation can be derived from the Bernoulli-Euler law for bending
beams :

M= 22 (328)
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vhere r is a radius of curvature. The strain .aergy is

T L g,y 2 (329)
""/ 2("Yds”"2ds)ds 329

RGOT

Substiteting in from the Bernculli-Fuler law and noting that dS = ryde =

2 2
TIP
U:/ %‘-(i' +2IZ )dS (330)
R £ \Ea

00T

r. .4y,

Partial differentiation gives

2t /"!’IP IMY aﬁyféAm M‘?_ esz aAmn) i

= + (331)
A Flyz

Tsnsidering the m-merts as a linear sum of components from each bending
mcie, sne has:

3
M M, M 3
Y Y
M o= 5 ¥ A+ "A' Ag_ + 3?\‘ A? = .i A (332)
Y A, in  BA, "2a 3 3 = Zﬂ QAJ jo

and likewise for #.. Then. by substituticn, the desired equation is obtained.
b

5.6.5.1 Blade motion damping. - The blade motion damping is rodeled by struc-
tural damping, aercdynamic carmping, and a merhanical Gamper for lead--lag
potlons. The aerodynemic damping is accounted for in the aerosdynamic blade
lcads devalcped ir Cecticn €.2.

The structural fector is sssumed proportional to the spring —ate components
of Tcustica 327. The coefficients ¥_, can be directly identified with the

)
coe:ficients ?rk dev2aloped in Section 5.3, Equecicas 23k and £36. The required
éamping coef’icients, Crk’ are then th: product of the proportionality facter,
:S’ and gmj' The structural damcing compcnent is then:
3
. 2B _ . -
: 5‘:‘:.-.: g Z Km\' ,'3!1 (333)
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A lead-lag mechanical damper is usually a rotsry or linear motion device em-
ploying elastomeric, dry friciion, or viscous energy absorbing mechanism.

The device is oupled adbout the blade lead-lag hinge or point of lead-lag
motion slope by & linkage array. REXOR II models a rotary viscous damper
mounted about a given blade location for which the inplane slope is specified
as a function of the blade modal variables. For an articulated blade, this
vill simply be the motion of the lead-lag hinge. The damper has a pressure
relief valve so that an initial damping rate, cLAGl’ is replaced by CLAG2
above a set motion rate, i'l.

Given the slope rate data, Yn » for blade o at the damper location, c, the

c 1
initial Ganping rate sesmest is defined by |i;x < Y'. The damping is
e

1
) Y , 3Y
o3 = - (g () (3:2) (334)
(o4 Y n
where
3
Y’
X B, —c
fr = Z (.M A_m) (335)
c 3=l J

Beyond the pressure reliaf opening point the damping coamtribution is

3B

aim = - [(ii) (smn (i;c)) Cracy

a

) .. . Y!
+ (Crpc0) (Y"‘c - (4 ;) (smn (Y"‘c)) ] (a A:m)

(336)
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The generalized force is developed for pitch horn bending and dynamic
torsion. For pitch horn bending,

3¢
_ Fn
8. 'Fa -K, 8 (337)

F
PHn 3B pun pHp PHD

where M“n is the total feather moment as derived in Section 5.10. For
r

the uncoupled dynamic torsion option,

K
3z(i) 3¢
BLE . . s BLE
F, =Z (—A——F(:) e M (1) Lk, g (338)
fopn £t \ Mtpp  ZOBE XUBLEJpip 3y, fppy, PHR

in BLE axes. Since the blade elements icads are derived in 3Ln ax-@s,
the transform

4 : 3
- Pl pre
- = [r V) r (1) (339)
Bin-BLF|q "Y'’ 'BLE }
F.{i).. . F (i),
RLE q Z dLEJ BLa

is needed. The spring constant can be interpreted as
K =M @ L0
8 a_,. (340)

where the generalized mass 1s ccmputed coniinucusly and we is the
PH

nautra.: freguency of the uncoupled tcersion mode, a program input

constant.

5.6.5 Quasi-static blade torsion. - To improve the pitch horn bending blade
feathering representation a quasi-static blade torsion Jdistribution is intro-
duced. Quasi-static torsion is computed from the structursl stiffness,

GJSC, at each station and the torque MXSC at the shear center. The torque is

s.mmed from the tip to the tlade station in question as shown in Section 4.3.4.
Tke increment of twist produced at a blade station J can be displayed sas:
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. MISCJ (3%1)

m bp5 * ¥y Tgey

T

assuming a first~order lag represents the torsional dynamics. The time con-
stant T is chosen tc be representative of the blade first torsional mode
frequency.

To obtain this result, the available computation elements require some
further operations. First, REXOR II conducts blade integrations from root
to tip, in BLn axes. To obtain tip to root values:

r 3 F r 3
F F F .
xBLEJ X0 XBLE(l)
L F. F. .
BLE] YO -!-q(l)
F F F

ZorEs 20

b ]

~ (342)
4 4 = 4 p - 1 p
-“xBLEJ Yo 'EE; MXBLE(i)

M | Mo M (i)

\ 7 Bln BLn 7 BLn

Note the summation is conducted from root to the station ! in question.

Thus the j represents a summation wherecas the i represents a blade station.
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Second, these data are used to form the required torque at the shear center.

MXSC; 1 Y'SC Z'SC r ‘&BLEJT

! -y =]- - -1 %Y

-

BLE]
L = ) S 3 %
PLa \~ BLEIS pIn
- A
-y ] § )
0 ZSC YSC FXBLEJ
+]- 0 {F p 3 (343)
ZSC xSC YBLEJ
Yse¢ *sc¢ O ¢ A
- “BLn BLn 4
Sxmall angles are assumed. The moments (ng ) etc., act along the
L&/ BLn
BLn axes and hence the matrix of lengths (XSC) etc., are employed to
BLn

obtain moments at the shear center which are then transformed into shear
center axes, subscripted SC, parallel tc blade element center-of-gravity

axes, subscripted BLE.

The blade deflections and siope in BLn are also needed for the above
expressions.

Xsc xs::! 0
Ysc = 1 e * [TBLn-BLF]T Yse g (344)
fsedy,  VEREdp ° e
and
0 0
Yo, = Yok (3u5)
2'se - Z'piE oL
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5.6.6 Quasi-static pitch horn bending. - To facilitate troubleshooting numer-
jcal instability problems as optional quasi-static pitch horn bending degree
of freedom is available. The computation elements are the same as developed
in Section 5.6.4 except that the solution does not use gereralized masses, is
therefore an uncoupled mode, and is calculated externmally to the main computa-
tion flow. The formulation used is:

“n

E;— (346)
PH

"pH *FoPH * YFnrH

The dynamics are assumed represented by a first-order lag with BPF as the

.

time constant. The variable ¢thq is used to distinguish this formulation

from the Lsual BPHn symbology.
5.7 Shaft Axes Equations

5.7.1 Transmission isclation mount. - The shaft equations couple the spring
rcunted transmissi~-, swashplate and rotor to the ground side of the mounting
springs (fuselage). The fuselage is the reference coordinate set hence deriva-
tives with respect to the rotor, hub, swashplate and transmission masses

exist for the shaft axes equatic:.s.

-

5.7.2 Partial derivatives. -~ Iy using rotor pse .>ordinate masses only a
few opera*  ons are required to assemble the coupr - ass terms using one
derivative vector, a1, /3tel-

0H S

E: - =2nding:

— ' —
: 0 Z -Y
)
[Ts-'r:]:[:s-ﬁ] 2 0 X
' .
) | Y X 0O S-H
To ]
2 O L
- = : ——————- (347)
ITg .
: cos ws cos es sin ws 0
]
] . .
[O] ; | —sin ws cos es cos &S 0
i
i : sin OS 0 1l

This expression is a compact notation form of the development of section 5.5.3.
Note that the angle to angle pcrtion of the array is not a full transformation,

but rather reflects the relation of a dependent coordinate to an independent
Euler angle,
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The hub to riashplate partial {aro /arn} is developed in the next section.
SP

5.7.3 Geaeralized masses. - The shaft axes matrix elements couple to the

blale Amn' BPHn) and swashplate generalized coordinates as well as to itself.

Use is made of matrix notation and the rotor pseudo coordinate to produce a
compact notation.

TABLE 2. = GENERALIZED MASSES

- o {1:** SR
”.(,H] o (gt o () e
[HSBL { } { } . BL] (349)

[ - {"m } l?‘) } o {a“g?} (350

The element masses are defined as:

4

Ty
ke 't
[MQ ] = Ix (351)
H I
Y
i 27
[ mep ]
Bsp
Bsp I
[Mo ] - Xsp . (352)
SP YY
| SP o
225p
L -
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TABLE 2. - Concluded

n 0 mZ -mY
n -mZ 0 mX
m mY -mX 0
0 -mZ mY Ixx + -IXY -Ixz
XY n(Xf + 22) -myz
-mY nX 0 -Ixz ‘IYZ Izz +
& -mYZ +m(x2 + Y2) T

5.7.% Generalized forces. - The shaft axes exercise the transmission mount

springs [KS] and dampers [C.]. Rotor loads, reflected through the hub coordi-
nates also appear in the shait generalized forces.

| TABLE 3. - GENERALIZED FORCES
-
[ Fy ) [Fy ) r X1 X7
F F Y Y
Y Lor o Y _
RS e o i S A M AP
= - -
F g My F 51714 6
¢ ¢
F, Fy 3 0
F F v ¥
- w-i s - ’4‘4 m W Js L J S
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TABLE 3. - Concluded
*r - t - h
[ (X, "o -r q] (3 x3)] [r
"o r op from 49
aro T 20 -4 P O.B;.(IS h)- .r.j H
H o < b
- 1 + : + F o -r ] X 3)7 (p g
“s} [["%] ["%]] g °-rdq i3 P
» q r op from <9}
[t )y -0 pogl (b W) {r)y
\ o
J
- of
+IM
- rs . - h
Xo o
¥ o
o
aro T 20 o
_{ sp} I 1°F ., A 1
STH OSP P o =-r q n P
q r o =-p IYY q
LfJgp (L@ P olgp Iz2] L=
L SPJJ
(354)

5.8 FPrincipal Reference Axis Equations

5.8.1 Nonzero contributions from most vehicle mass elements. - The principal
reference axis equations of motion consider contributions from all of the phy-
sical elements of the rotorcraft. The elements involved are:

® Main rotor - defined as all portions that can be feathered

e Rotor hub - includes all portions of the main rotor assembly that
carnot be feathered, and is treated as u rigid bcldy

e Swashplate

e +ail rotor
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e Fuselage
o Engine

The six rigid degrees of freedom: X, Y, Z, ¢, 6, V¥ are taken with respect to
the stationary fuselage axes which are also the principal axes. The other
elements considered are then referenced to the fuselage axes. The hub is sub-
Ject to shaft bending motions relative to the principal axes. The tail rotor
is installed on the fuselage and rotates at the main rotor speed times an
appropriate gear ratio. Positive rotations are defined as:

¢ Hud

same as main rotor
& Swashplate

e Tail rotor - Clockwise looking right
e Engine -~ Counterclockwise looking forward

The engire is treated as a rigid rotating body but the tail rotor is allowed
to flap (teetering hinge, etc.). This flapping is considered secondary and

enters only into the aerodynamic computations. The main rotor is allowed
feathering, bending and twisting.

5.8.2 Partial derivatives. - Elements used the reference axis masses and
forces can by in large be conveniently related to either the fuselage or hub
coordinates. Since the reference set is taken to be the fuselage coordinate
set, no partials are required in this instance.

Partials relating hub coordinate motiorn to reference generalized follow the
scheme given in section 5.5.3.

3T T T
ITREF 3Tp J |°"REF
EL‘F_}Z" Teg|l-2 0 X

! Y =X O

|
o
£
U
e

- ___FH
= - - (355)
(o] vimey
- ||—- —

where

3Ty
{3;:;} = [1] (356)
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The swashplate system is physically connected with the hub structure, and
partial derivatives describing its moticn are taken through this intermediate,

hud, coordinate.

motion is assumed to be unaffected by tilt angle.

- | -
l1 0 0 ) 0 ZSP 0
t
Brosp i 01 0 :-ZSP 0 -0
3Ty 0 01 ' 0 e _o
f - e e e e — - - - -~ 1
|

liote due to a parallelogram linkage the swashplate vertical

(357)

5.8.3 Generalized masses. - Use is made of matrix notation and the pséudo

rotor coordinate to express the reference generalized masses given in Table 4.

" *BLE 4. - REFERENCE AXIS GENERALIZED MASSES

.

-]

where MO
R-BL;

.

T T T T

Oy Og M,
per| |3 R-BL
is given in Table 1.

T T

T 9T 3T
_ Oy Osp Ogp
REF-SP Larnﬁp oty %sHPTsp
sty T [or, VP 3 5
T T
) % %R |—M %R 1 %
REF-S rer| ot | | %R} |H | ]S
{
'31 1 - 11 9T )
O O
+4 g MO + MO t
LaTREF | “H T_]1|3ts
E N P B at At
A % %L T % el ] %
L3¢REF L 3Ty Osp| | 3t | |ots
F /

(258)

(359)

(360)
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TABLE 4., - Continued

p=
T T T T oT ot
[+]
) OH ORl y OR OH
[ nml Itper| [97H J % | |ovx | |?Trer
? 3T -~ 5
aTOH - aroH
+ 4 MO + MO b
ITREF L% u 3T RER
. ‘ = P
’3 1° 'a 1T [
T T ot 3T
0 0 0 0
+ : H ) SP\ M SPY H
3TREF aTH OSP BTH BTREF
L L J 9
+| M + [ (36
oF] MENG] +[MTR] 361)
where
— -1
m 0 mZ -mY
m -m7Z 0 mX
m mY -mX 0
0 -m7Z mY IXX 'IXY -IxZ
+m(1’2 + Z2) -mXY -mXZ
[Mo] = (362)
F - - I -
mZ 0 mx IXY J'YY IYZ
My +m()(2 + 22) -my%
-m¥Y mX 0 --IXZ _IYZ IZZ.
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TABLE 4. - Concluded
T=:;£ =)
Po -
0
0
[%ENG = L (363)
Ix/2
L Ixx/2d -
- -
0
0
Mog b= I, /2 (36%)
Tyy
L IYY/?_ =

The mass of the fuselage is considered to contaii. .he engine and tail rotor
masses, although the moment of inertias is treated separately.

5.8.4 Generalized forces. - The lcads cssociated with the six reference axis
degrees of freedom are listed in Yable 5. The tail rotor and engine are
assumed to have shafts parallel to the fuselage axes. The transfer of the
zercdynaric loads from teil rotor axes with origin at hub center and parallel
to the fuselage reference axes is shown in the table. The fuselage aerodynamic
loads include tail rotor and propulsion terms. Further development of the
main rotor blade component loads is in Section 5.6.1 and the aerodynamics for
all rotc-s and fix~  surfaces is left to Section 6.
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TABLE 5. ~ REFERENCE AXIS GENFRALIZED FORCES

- o )
rFx Fy
F F
! - T 9T ]T !
F ) ) F
{2z _ H Ry ]z
Fé oTrer| |°7a Fé
Fo Fo
[ F¥) LF¥)
REF MR
(e r%
Fy X,
F ¥
i 11, Y o
1o F 7
+ arF 1 - M (1.t
Ri™j Fo F|]p
Fo 4
‘Lrwa u.rJ
F, F

o -r o] [3x3] (M) ]
r o -p from qt
[_"q p 0 FL(l’ h)-d rj F
(o -r a7 [(3 x3)] [r]

r o -p from qp

-4 D O-FL.(h’h)- ) p

of

)
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TABLE 5. - Continued

%1 (o
0
¥ r
3T T o
OH Zo __-q
T 1 MO o ™
REF ~_j J b 1o
q r
Lt Jy -4
L L
.
f-x- ‘1
o
-Y.o
T T
T 9T 5
o | [oq] ;
H SP 4 MO * C b
rer| | ¥ J sp| |2
Q
Li. y SP
[ o )
(¢
o
L - b *
o -r g Ixx p
r o -p IYY q
- p o IZ"’ r
- Sp - =igp SP )
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H :(1' 4) ]
(3 x3)
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TABLE 5. - Concluded
F

-r q (3 x3) P
q r o ~p from q
i Li‘ m k3 P °ofm (4, &) r) o)
of

1
ey
[-%3 Q)
—QE’!
g2
=]
A
g
[*]
[ S
A
e |
v
+
v

o -r gq (3 x3) P

q r o -p from q

_!"J ENG i -qQ P o ENG “&, L) r ENGJ
- of o

["mc{l (365}

The angular velocities and accelerations associated with the engine and tsail
rotor require special consideration. Here the terms consist of a reference
motion plus the turning due to the geared main rotor rate.

Using the rate and acceleration Euler transforms for zero Euler angles
(Section L.4.3):

p P 0
a = Jap  +op {ig (366)
*J TR-REF o 0
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P P “¥R TREF
q = ddit  + Gy J Vg (367)
*J R-reF *) rer VR PrEF
and
P (p] for
da¢ =4Jdqp - GERG 0 (368)
") enorer U7 ) mer 0
51 b1 Vo
{a} = J4} = Gy i’a - (369)
¥} eng-rer U7 mer VR IREF

5.9 Swashplate Equations

5.9.1 Partial derivatives. - The swashplate partial derivatives are readily
obtained from Section L4.3.%. Using matrix notation

oo [

T
0 0 0 1
{ SP}= g = - (370)

3T
sP , cos eSP 0 0

oY

{
N ' sin eSP 0 q_

Since the swashplate axis is directly referenced to the principal {hub) set,
the above derivatives are complete. The lack of translation to angular de-
rivatives is explained by the parallelogram linkages used with swashplates
to isolate the collective and cyelic inputs. The terms left out of the
matrix indicate that the swashplate does not have a yaw degree of freedom.

The reader should be aware that the angular notation ¢, 6, and ¥ have two

meanings, depending on whether they are in the numerator or the denominator
of the partial. The numerator is the displacement of the mass element with
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respect to the hudb axis, vhereas the denominator is the degree of freedom
incremental variable.

Swashplate motions pick up large inertia loads from the roter due to blade
feathering. Partials relating feathering to swashplate motiIons are
assembled by first relating the feathering motion in the rotating system
with feathering in the stationary system:

9
3322-= 1 (371)
]
¢
Fo _
el cos(vy,  + ¥) (3712)
¢
Fn _ .
—3818 = - SIRWBLn + WR) (373)

From Section 4.5.8, equations relating swashplate motions to the stationary
feather angles give

i h
e R =
Usp %]
=?[Tv ] (374)
B, 9B PH
| Msp %%p |
and
\
M
6 tsp
0 d
1 ’=(—,;) [Tw ] 0 (375)
3B, 1| Ve |%se
9,
. y
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where

i
s sinvg, coswPH
T, ] = l (376)
PH coswPH -31n$PH
Also
ae_O:-_]:_ (377)
BZSP e

The [T@ ] matrix does not follow the conventional Fuler angle notation
PH ’

since a desire existed to define @P as the angle the pitch horn to

H

pitch link attachment point leads the blade. The overall derivatives can
be put together as:

pn _ gy s Mgy By (378)
sp Mg gy Bg 3,
¥ O s + Pr Bis (3719)
— -
Bsp M5 3 9B)g g,
3
$rn =(3¢Fn L 0 Yhis | 3y 2Big) % (380)
gy \29,  BAg 38, BB 38 )T
a¢Fh
These partials are the elements of the 3T vector.
SP

5.9.2 Generalized masses. - Table 6 presents the generalized masses which
couple the swashplate motions with one and another and with tha blade fuselage
degrees of freedom. The table uses summations of the blade that arc described
in detail in Section 5.6.1.

189



TABLE 6. - SWASHPLATE GENERALIZED MASSES

LEN “ T - T
"‘sp-m.l - Ziﬁ-s;} ‘-“:} I"BL—BL] ] (381)

n=1
lb T T

(SIS = I - WA e R e
n=1

3T, " 9T
+{ atSPl oSPl l 382)

5.9.3 Generalized forces., - The generalized forces are: ({assuming a constant
speed drive)

3
Y ¥
oSP/f. oSP .
F, =--220p 1 + r (I -I ) 1
bsp a‘sp( SP “XXgp WGp Tspltzz ) rsp SP "7z,

Fn 9B
E e v (383)
an 3¢SP 3¢ a¢sp MFR

¢
t]
=) SP

38

oSP /.

F = - —=fq I -T P (I -1 )
eSP BGSP( SP YYSP SP “Sp\"2z XXSP

3U 3B
2:’% Mgy | 965, 3~ MFR,0 (384)

n=1 SP

Note p, q terms are the same for R and NR systems.
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b
. .. g T 3B
Fzsp == (2Zgp + Zp) mgp, + En‘ :"Fn WL, ~ % | 3 (385)

vhere

p p vq
4 =44 ~ 4-¥p (386)
tJooonr LT Jop ¥ Jsp

The moments used in these formulas are developed below.

The feathering moment, Hfh’ is taken to be composed of blade and friction
loads.

Mo = Mg+ Mg (387)

The detailing of Man, feathering moments due to blade loads, is accom-

plished in Section 5.6.4. The friction load, MR Fn® follows the func-
tion shown in Figure 30. By reducing ‘Fn BK to near zero, stiction

]
MFRFn 3K

P, BK

is obtained. Otherwise, if ¥ is large, the ratio
Fn,BK

determines the amount of viscous friction.

The remaining portions of the generalized force are the potential energy
and dissipation functicns. First consider the angular potential energy
terms which model the swashplate tilt spring rate. This spring rate has

a center dead-band, an operating range spring rate, and a high spring rate
to simulate a travel limit stop.

Consider the normal operating range spring rate first. The swashplate

springs are defined in control axes (Figure 31) as K, andK (can
sp %p

be unequal in size). To find the elastic spring loads, the swashplate
motions are first found in control axes as:
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osp costb sinwb ’SP
=1 (388)
esp c -sm’#c cosigc 681’

The geometric interpretation of *c is showm in Figure 31.

Taking the swashplate deflections in the control axes, subtracting control
inputs ¢c and 6,, and using the inverse transform, the swashplate spring

terms in swashplate axes become:

U v .
—_— cost -siny K b, - ¢
sp ¢ o |Mse (%se = %) c
- (389)
10
Py sin¥ cos¥ K 8.y _ O
aeSP C C eSP ( SP C) C

1
vhere the subscript (1) is used to distinguish these values (used in sub-
sequent logic calculations) from the final expressions developed below.

Substituting for the swashplate motions in terms of the swashplate axes
and rearranging:

v
dgp bsp . K¢SP¢
= - T c (390)
U IKSP] 6 l w(;I
30 s Koapo
spP 1 SP c
where
coswc -sinwc
[T ’ ]T = (391)
C .
smwc coswc
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and

2 2 |
[K, cos 'y, + K  sin"y (K, -K, ) siny, cosy
*sp C O%p c *sp Ssp ¢ c
(% ]=]— ~ } — — — | (92
2 2
K - K siny_ cosy K siny, + K cos ¥
( Ysp eSP) €T ] s ¢ %p ¢

Note: [KSP] is a symmetric matrix of constants.

The center dead band is modeled by the following logic.

) U
—_— =0 if | [— <K (1,1) 6¢ (393)
aOSP (a¢sp)l KSP SP .
otherwise
P)i] au) ( ( 1) )
— =) - 1,1) 8¢ SIGN [ —— (394)
3sp (a"sp “sp SP 3sp
1 1
18] < au
6.~ = 0 if (—_ae ) <Kgp(2,2) 88, (395)
SP Sp 1
otherwise
ag” = (agu )- Ksp(2,2) 86, SIGN (Eg_u_) (396)
SP SP Sp 1
6¢SP and GeSP are input constants giving swashplate angular freeplay.
Swashplate stops are alsoc allowed with spring rate K . A load
1/2 "sv 1/2
240 2 ( ?) (397)
Ks,sp (°sp * 9p ) 8s, sp "sp ®sp
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is added to

(398)
1]

368P

to account for a limit travel stop. The limit deflection for the
swashplate is

S &5 op (399)

where GS Sp is the circular stop swashplate deflection limit.
>

The angular damping term is analogous to the spring load:

= [CSP] . (400)

where [CSP] has the same formulation as [RSP] .

Control friction is treated as having rotating and nonrotating components.
The rotating component has already been discussed as part of the feathering
moment. The nonrotating component is applied to the swashplate. It has

the formulation shown in Figure 31 with a change in labels such that &Fn

is either ¢ or O_. .+ and is either or
sP SP MFRFn MFR,¢SP MFR,GSP

The vertical potential energy term is described as:

< z1 (4o1)

3y
- 7., + F. if | 2
sz, -z, ‘sp T e ' SP ap
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Otherwise

U . g VA + K (Z - )+F (Lo2)
3ZSP leP 1SP 2ZSP SP zlsP C

FC is a constant to center the gyro springs.

2Z

The spring rate is taken to be KlZ out to deflection Z1 and K
SP SP SP

beyond.

A simple coupling from the rotary dampers gives the vertical dissipation
function.

3B . .
ze—=C 2apo = R, C ¢
aZSP ZSP SP 4 ¢

- A ry
sp sp ~Bgg Co 8 'k03)

0
Sp gp SF SP

where RZ¢’ Rze are coupling ratios. Note the effect of vertical
motion on the swashplate tilt loads through the rotary dampers is assumed
zZero.

To correlate with flight test records and/or to force the swashplate
vertical response to cross the spring rate changeover a force offset con-
stant is used. Introducing this constant into the swashplate vertical
degree of freedom equation line, causes the variables, primarily the
swashplate vertical motion, to shift and rebalance the equation.

5.9.4 Control inputs. - The swashplate input is controlled by the pilot's
cyeclic stick. The input torques are:

K, ¢ K, X
% C XC c
= {Lok)
K. 6 K Y
C
ec fC c
The inputs are aligned with the control axis (Figure 31)..
Note the equivalence of forms in terms of angular commands ¢C’ 8., or

longitudinal stick (aft) X, and lateral stick (right) Y.

196



The controls are frequently linked to the swashplate through actuators which,
as a first-order approximation, can be simulated by a first-order lag. See
Section T.2. '

5.10 Engine Equations

5.10.1 Rotor azimuth and rotation rate. - The program allows a variation of
rotor speed in maneuvers due to variations in the torque required by the
various rotors and in the torque supplied by the engine. The dynamic system
rotates as a rigid, geared unit. That is, the shafts are not allowed elastic
windup. The main rotor speed, @R and hence the engine speed, is referencea to

the fuselage, and not to inertial space. The displacement WR is the azimuth
of the mumber one blade.

5.10.2 Engine model. - Figure 32 illustrates the engine model used in the
program. The figure also plots typical engine torque cheracteristics. The
model represents the first-order lag power response characteristics of the
free turbine powerplants commonly used in rotorcraft applications.

Being a perturbation model, the engine is referenced to its trim position.
The change irn engine torque in s maneuver is

= ?ﬁﬂﬂi' Mewg o . )

(wENG - YEng,TRIM (ko5)

M - M = 3., VGEN T 39
XA “PENG,TRIM  CYGEN YEnc

where 0 = MXA < MXA . The zero limit occurs if the overrunning
ENG ENG,MAX

clutch disconnects the engine in the transition to autorotation. The maximum

value corresponds to the engine shaft torque limit.

The gas generator, speed, ¢GEN’ is a degrea of freedom. It is considered

a secondary degree of freedom in that the coupling through the generalized
masses with the primary degrees of freedom can be neglected. An equation for
the generation speed can be supplied from its torque characteristics:

C - K (4C6)

Toen e * Somn Yomn = = Xenar Vewe ~ ¥eweel¥eve - wENG,TRIM)
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Figure 32. - Engine model and torque-speed characteristics.
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The terms on the left represent acceleration inertia torque and steady
state torque. On the right, the fuel contrcl causes torgue to be added if

the engine speed drops below the trim value. The EENG term exists since

the control is modeled with simple lag. Restating this equation, using
rotor speed and a generator time constant, gives:

M - * > \
;- Yo Ym %" Krol¥s = Vg, rRiv’ (507
r i
GN TGEN
IGEN
where wGEN = C is the order of a second.

GEN

The engine drocop characteristic can be used to size the engine constants.

With ;GEN = $R = 0, substituting the generator equation ..... .ue engine

equation and rearranging,

(e, (%c),

R GEN

A Men
Koo = —gszggza' {L08)

Only A incrementsl changes are of interest. The bracket subscripted R
indicates the torque is determined at the rotor speed aad includes the
engine gear ratio. The term on the right is the static droop line shown
in Figure 32. This plot also peometrically interprets the partial
derivatives on the left.

The generator speed wGEN is not given a reference. Its value is zero
vhen trim is completed.

5.10.3 Partial derivatives. - Shaft rotation not only involves tiade root
rotation wq, but also feathering motions. The feathering partial is

obtained by differentiating the feather angle equation in Section 4.5.9:

W - ] ,)
n + “R) BlS cos\ ¥V BLn + WR) {409)
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A set of partials are defined to relate the various rotating components to

tre wotor shaft and to the reference set.

b=

i

|

atm

=

3&mc

}

}

HOOOOO

(410)

(411)

(k12)

(413)

(L1k)

(L15)



5.10.% Generalized masses.

- The engine degree of freedom couples with

every other degree of freedom. Equations for the engine generaliied masses

are given in Table 7.

Matrix notation is again used for compactness.

Note

the transmission is modeled as a non rotating mass, and therefore dces not

appear in these masses.
rigid body motion of the rotcr blades, but also biade feathering.

The engine degree of freedom contains not only

The

feathering contribution is a minor contributor for some of the mass matrices
and has been neglected.

TABLE 7. - ENGINE GENERALIZED MASSES

["a—sp ]

-]

["Ha-m.] .

+

+

+

M [read.

m;
M, 3‘31. rn
= [ R'BL] 3‘39
T
NBL [ ] { oL
{BL-BL I
Moy 3&5? [ ] *%SP
e 0SP
3T T 3
OR " ToR 3‘oa
s [ on] lar
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3oy 3ToH
[MOH] T
T
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30K t ) Tosp

(416)
ey |
- i
‘'sp
{(s17}
{:18)
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TABLE 7. - Concluded
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5.10.5 Generalized forces. - Only one generalized force is needed.

F, = (Fy) -G I (P, - G V)
R MR ENG XX F ENG 'R
+ 5 (F -1 (q. + G ¥.))
TR °'m oo F TR 'R
A
.o Kb 3¢Fn
- (1 + 1 Y v+ —_— + G
2z, ZZp R 2: A Mg ENG"H(, ENG
n=1
(k21)

The main rotor contribution (inertial and aerodynamic loads) is given in
Section 5.6.L. The tail rotor aercdynamics are described in Secticn 6.5.
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6. AERODYNAMICS

6.1 Introduction

Other than gravity, the external loadings acting on the REXOR II equations of
motion can be traced to aerodynamic sources. The following subsections trace
the source, nature and use of these aerodynamic loads.

6.1.1 Aerodynamic forces producing surfaces considered. - The aerodynamic
loads considered in REXOR II are divided into the categories of (1) associated
with the main rotor, or (2} the rest of the rotorcraft (nonrotating surfaces
and tail rotor). In view of the stated objectives of REXOR II, the program
development emphasis is on the main rotor which is considered in Section 6.2.

The nonrotating components consist of the fuselage, wing, vertical tail, lower
horizontal tail, upper horizontal tail, tail rotor, auxiliary thrustors, mov-
able surfaces on the wings and empennage, and dive brakes. Wake effects from
the main rotor and wing are addressed in Section 6.3. The nonrotating load
elements are mostly developed and assembled in Section 6.k. The tail rotor
equations, in integrated form, are developed in Section 6.5, and the auxiliary
thrustor formulation is in Section 6.6.

6.1.2 Use of forces generated. - As mentioned, the aerodynamic loads are in
essence the external forcing functions of the equations of motion. Generally
the developed loads are in the axis of the apparent air velocity of the loaded
element. Thus transformations are required to put the loads into the refer-
ence axes of the equation of motion considered.

6.2 Main Fntor

6.2.1 Overview. - To generate a main rotor model with sufficient detail to
do dynamic investigations, a reasonably good juality aerodynamics presenta-
tion is required. To this end a table lookup of blade section properties,
multifunction inflow model, quasi-steady aerodynamics, and dynamic stall are
used in REXOR II.

6.2.1.1 Blade flow field. - As developed in the following subsections, the
instantaneous blade airflow is the inertial velocity of the blade element.
This velocity includes the motion of the principal reference set and the
motion of the blade element with respect to the principal reference set. The
calculation assumes the airmass is at rest, vhich is reasonable for dynamics
investigations.

6.2.1.2 Air pressure and angle of attack. - The dynamic pressure used for
these calculations is based on sea level standard density. The loads are
ratioed to the actual air density.
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The angle of attack is the sum of geometric pitch argle and the instantaneous
air velocity. The rate of angle of attack is also calculated and used for
the transient blade aerc loads, Sections 6.2.3.3 and 6.2.3.4.

6.2.1.3 Forces and moments produced. - The steady blade loads are produced
from the air velocity components of Section 6.2.3.1 and the coefficient 3ata
(c,, Cp» CH) of Section 6.2.4. The transiect 1ift and moment effects are

developed in Sections 6.2.3.3 (quasi~steady aerodynanics) and 6.2.3.L (dyramic
stall).

6.2.2 Concept of rotor inflow model. - The main rotor inflow model used irn
REXOR II is based on the air flow incident upon the rotor disc plus the air
velocity imparted due to momentum exchange due to integrated blade span load-
ing. This is to be contrasted with a formulation vhich tracks the rotor
blade positions and the attendant trailing vorticies.

The incident air flow is the inertial velocity of the rotor cocordinates, and
is directly available from the preceding mechanical development. However a
number of assumptions need tc be stated and utilized to arrive at the induced
velocity component of the inflow model.

6.2.2.1 Induced velocity assumptions. -

1. Only the vertical downwash and its variations racdisally and azimuth-
ally over the rotor disk are considered. Induced swirl and lateral
downwash components are neglected.

2. Downwash effects due to unsteady aerodynamics are not treated here
as an overall effect, but as a blade segment condition in Sec-
tion 6.2.3.3.

3. Rotor-induced flow distribution in hover and forward flight is pat-
terned after Reference 6. This reference assumes a uniform loading
in hover. Figure 33, from Reference 7, shows this distribution
compared with typical loading and a triangular loading model. Fig-
ure 34 from Reference 6 shows the theoretical induced velocity dis-
tribution in forward flight as a consequence of a uniform hover
distribution. This data is fitted to slopes or a longitudinel skew
as a function of speed in REXOR II. Lateral distribution remains
uniform in accord with Rererence 8, which corrects the lateral dis-
tritution work of Reference 6.

4. A variation in lateral and longitudinal induced velocity is included
to account for roll and pitch aerodynamic shaft moments.

5. Lifting line theory correction is accounted for by an effective
rotor radius, BR.
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6. Root cut out effects are ignored.
7. Transient effects are simulated by a single time lag.

6.2.2.2 Steady state values. - The starting point for determining the down-
wash is momentum theory as applied to an elementary dA:

4n’ . [
T = (dt) o, = (viMR dA) vy

=p\["li2 + vH2 + (vH - wi)2 dA 2w, (422)

The thrust increment {s 4T, dm/dt is the flow >f air through the rotor
disk with resultant velocity V. .., pis the air density and w; the down-
wash velocity. The velocities are taken in hub coordinates and no effort
is made to account for rotor tilt.

The thrust expression above is used to define the following induced
velocity components.

Average component, vy

Longitudinal variation with pitching aerodynamic

moment. , U MR
Lateral variation with roll aerodynamic moment, PiMR
The downwash velocity becomes
Vi T Var Y T Qug ©O8 YR+ r Pivm sin yp (L23)

The coefficients can be evaluated by equating the thrust and moment values
for the main rotor equations to the integrals of the momentum expressions
at hand. First consider the thrust expression. The evaluating task can
be reduced by employing some boundary conditions. For rotor thrust only
(no moment), q3 and Py = 0. A convenient expression for the elemen-
tary area, dA, is shown ¥§ Figure 35. While radial anulii would serve
for thrust integration, the form selected is particularly suited for the
moment expressions.
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Figure 35. - Incremental area for shaft moment integration.
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For the average rotor thrust,

BR
-FZAmﬁxTa-./ DJuH2+vH2+ (wH-wiMR)Q (Q\I(BR)Q—rgdr) 2 Ve

-BR

(L2k)

A further assumption is required to solve the square root of this expression
and the corollary momentum equations.

For forward flight

W, << Voup =\/u_:_" + v:_f + (w:_, - wiMR) = (constant) (L2s5)
Completing the integration gives
-F. = on(BR)Z V., 2w, (426)

“‘AMR H iMR iMR
b ]

Next consider the case of no rolling moment; i.e., only thrust and pitching
moment. Figure 35 is uged with the incremental strip considered to be right-
left oriented so that all equal values of qiMR are integrated at once.

Then,

BR
MYA'MR,H = [ r 4T

-BR

BR

= ; 2 2 o)
f rp\[“}i”’ﬂ" ("H‘wima‘rqihm)

-BR

(2vV(ER)2 - r2 ar) 2 (w

(L27)

iMR+rqiMR)
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or

o ﬂ(BR)h v , (L28)
HYAMRH R 2 Umr
]
Likewise for rolling moment, and using fore-aft increment strips gives
' 4
"'BR)
=p— Vo 2 (L29)
M“m,u MR © Bivm

Note the subscript A on F . MXAMR , and MY denotes the aerodynamic
hre *Ag,n Ar,1

component only of main rotor loads in hub axes.

The foregoing expressions are now developed for hovering and low-speed fligit.
In this condition,

2 2 2
U + Vy << Vi~ YOR (430)
Integrating gives
-F =om (8R)% (v, - v 2w (431)
LN H 1MR) iMR
and
- mr(BR)h (W = ) 2 1 ViMR (VH - wiMR) "3z
T N B~ YiMR MR T 2 +2e)
» wH - wiMR /
4 w (W, = Wi
_ {on(BR) iMR *"H iMR
M i = (——-—r (WH - ViMR)) 2 pim )l - v - v )2 (L33)
’ H iMR
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The consequence of cyclic, first-harmonic downwash was explored in

Reference 9. Their conclusion, which parallels Lockheed's experience, is
that the phase and magnitude of the flap response of a hingeless tlade to
cyclic feathering is markedly affected by cyclic downwash. The shaft moments
variation wvith feathering angle and the phase angle between flap arnd feather-
ing are both reduced with cyclic downwash, the effect being greater in hover
than in forwvard flight.

A physical interpretation can be rationalized for the formula above, at least
in hover, in *hat the aerodynamic thrust and moment produces a flow of linear
and angular mamentum. Imagine the flow as a continuous stack of disks having

mass per unit thickness D'(BR)2 and dimetral inertia per unit thickness
I
' o .-
o(*(BR) /k). 2 Vo 2 Pyyg 84 2 qp 8Te the final, far downstrean posi
tion, values of induced velocities obtain by these disks oriented with the
flov. The terms o!(BR)%i an. ou(BR}h/L Vi are the mass flow per unit time,
and the moment of inertia flow per unit time through the actuator disk,

which times hw, 2pﬂm or 2qnm is the gain of momentum.

For programming purposes, an empirical blend of the forward flight and hover-

ing sets of expressions is used. The limiting cases of the empirical set give
the derived ceses. The expressions used are:

-F - ox(3r)2 V.

A & MR 2 YiMR (u3k)
_ on(eR)" _ visg (Y5 = Vivg)
‘"YAHR g b i PR |1- y 2 (L35)
? iMR
- M(BR)I‘ v, 2 L il (Vg ~ Vo) (L36)
Map T F O BE Piv - —
? iMR
6.2.2.3 Varistions in forward flight and ir grouni effects. - The previous

develcpment can be assembled and combined with linearized forward fiight dis-
tribution and ground effect factors.

( )

v =W £, [1+K. L ocos(¥_ + ¢ +\b)]
BLE DW,BLn iMR "iMR iMR R R Bln W

*+ TP\ sin(d:R + wBLn) * e, cos(wR + wBLn) (437)
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The ground effect factor, fiHR’ and the longitudinal linear gradient factor,

KiHR’ accounts for forwvard flight.

Note this formula is in rotating coordinates, and that the forwvard flight dis-
tribution actually is applied along the line of the apparent airflow, *H' in

doing this the distribution is valid for forward flight, sideward flight and
sideslip conditions. The angle *H is

-1f VB
¥, = Tan (—-—) (L38)
v Yy

as shown in Figure LS.

The aerodynamic moment factors, q‘”m and piHR’ remain attached to the hudb
axis. )

The downwash factor KiMR’ as explained in assumption 3, is given as a function
of the wake angle defined as

(2,2
-1 VY% "%

Xy = Tan =~ ————— (439)
iMR "iMR - VH

vhich is zero in hover and rear 90 degrees in high-speed flight. The function
can be constrained by a number cf factors. In hover, the value is zero. A
90-degree value of about 1.6 can be read fram Figure 34. Also from this rig-
ure a set of linearized distributions is read, and plotted as Figure 36.

The ground effect factor,

1
1 2 -+
i S

> (Lk0)

1l +

is taken from Reference 10, where h = -(ZOH)E is from Section k.S5.1.

6.2.2.4 Downwash transients. - Downwash transients exist due to an apparent
mass associated with the induced flow field. Work by Peters, et al. derive
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the expressions for collective and cyclic downwash including unsteady
components. A good summary of this vork is Reference 1l.

Converting the referenced vork to dimensional form gives equations comparable
to (L34, 435, L36).

F
LER ~ Apy

Yisr Y37 Vi T " 20 Vo (BR)°2 (Lb1)
P

o . 32_ ER iMR

MR ORST Ve Tovne O - vag) Moe

_ a'x‘m,n

- : ‘
o Vg™ (BR) ‘1 - Viur (Vy - Vom!) /vaiHRl (Lb2)
.32 BR &vr

4GMR * hsw viHR [1 - ViR ('ﬁ - viHR) /Viuélf

} -a“mln

. L
°‘ima' (BR) ll -

(L43)

MR

(¥ - vag) /ViHRI

These differential equations are sclved for w__, P and q, usirg numeri-
X : iMR® " iMR iMR
cal (Euler) integration.

6.2.2.5 Iteration of downwash solution. - As is the case with any rotary-wing
loading calculation, there is an interplay between the downwash variance from
calculating the loading and a variance in the loading fram recomputing the
downwash. A common practice is to solve an iterative loop to satisfy both
equations (i.e., lift and momentum). In REXOR II the iteration does not take
place independently, but proceeds stepwise with the rotor azimuthal advance.
With the normal, rapid convergence of the iteration the soltion will essen-
tially be complete with the step advance. However, large step sizes will
incur an additional downwash time lag.

6.2.3 Blade element velocity components. - In the following subsections the
blade aerodynamic loading is categorized and developed along two lines. They
are:
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® Steady-state serodynamics

e Transient phenomena consisting of quasi-steady aerodynamics and dy-
namic stall.

6.2.3.1 Sources and resolution from blade motion. - The steady aerodynamics
are based on the air velocities while the quasi-steady aerodynamics (from
flutter theory) and dynamic stall depend on accelerations.

The air velocity is the blade mechanical velocities summed vith & component
due to downvash. In a similar manner, the air acceleration is taken to be
the mechanical blade accelerations minus the downwash accelerations. The
downvash formulation as developed in Section 6.2.2 allows for lags, and it is
these lags that result in downwash acceleration terms.

6.2.3.2 Steady aerodynamics. - The air velocities relative to a blade section
are desired for an axis system vith origin at the quarter chord to match the
airfoil table data. From Section Lk.5.5, the mechanical blade velocities rel-
ative to the free stream or earth axes are available as {XBI.B’ YBLE’ iBLE}I'

The desired relative air velocities at the quarter chord (or blade BLn refer-
ence axis) are.

r
X X I 0 \ rY
/L ¢ e G
Usef © [TBLn - nx..t:]< e *{° R
i 7 o -~p Y
/4 e)prp BLE J o1 BLE ) e BLn ) pre
L J

(kb)

Where che second vector on the right is the downwash velocity developed in
Section 6.2.2, and the third transfers the velocity from the BLE reference
point at the blade center of gravity back to the quarter chord. The distance

YOG is positive with the center of gravity ahead of the quarter chord. For

notational convenience,

US xlllt c
Ue 1 ¢ (L45)
Uﬁ Zl/h c
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The angle of attack is defined as

g | / 2 2
@1/ o = 8in (UH/ Uc +UN ) Jhké)

Airflow aspects of quasi-steady aerodynamic formulation are developed at this
point for convenience. The quasi-steady aerodynamic contribution is conceived
as composed of circulatory and noncirculatory components. The circulatory
components are taken to be equivalent to finding the aerodynamic force, and
moment coefficients are based on an angle of attack at the three-quarter
chord:

®3/ie "%t (4T)

As such, the eflfect of angular rates is included in deriving the steady aero-
dynamic coefficients. The formulation above does not attempt to account for
local downwash rotation or curvature and its chordwise variation. The net
result is that aerodynamic coefficients determined in Section 6.2.4 are com-
puted with 03/1‘ "

A number of quantities used in the dynamic stall computatioms, Section6.2.3.4,
ars also available from the previous mechanical development. They are also
defined here for convenience. First, the angle of sideslip appears only in
the dynamic stall formulation. For this purpose it is defined as

U,
A = Tan (U_S) (448)

Also, dynamic stall is based on the time derivative of the angle of atteck at
the three-quarter chord:

3 = 1 [.E’.E _..Ui"_‘{]
be 54wy L% Y Y
¥ Ye
. ] .
e Ppre U Uo * U3 4
S| BE o, (L9)
2 2. 2 BE \w?2.+.up?3
vy c K2

c N

v
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e
.

The above equation requires flc and

il
'v"
"
[~ ]
o
|

o]

u, | 0 0 -1]

)

+ (1] +
v
BLE 7 1y BIn
-(i'—pq)!cc

+do
(b+qr)Y

G Jgta

i EI &

TnE R A0

Znie BLo & —_
~ 0 r q X I

BLE BLE X5ie
Tpg © Pgre| ¢ Y=
| Yy Ppx O La Zoe L
(450)

The inclusion of the gravity term places these accelerations in a trus iner-
tial axis system, not earth inertial axes, as appropriate for aerodynamic

calculations. See Section 4.5.1.
these can be ignored.

Gravity does cause buoyancy forces, but
The turning acceleration components are also subtracted

i to produce linear accelerations which ccerrectly model the blade element inci-

dent airflow.

The gravity vector can be obtained from hud values as:

o at o *x
[ % pLa R
1oemml] -
g
2) e Z) 4
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By differentiating the downwash velocities, the downwash acceleration is
obtained:

. Yaa

~Vir Tivr Kpug —y— sinlvg + Vg + 0N,
*+ TPypp Sinlvp + ¥y ) ¢ rggp coslvp + vy, )

+r Py coslyy * ¥y ) - gy sinlyg WBLn)]vR

(452)

6.2.3.3 Quasi-steady aerodynamics. - Quasi-steady aerodynamics is accounted
for in REXOR II by incorporating the terms from the two-dimensional flutter
theory of Theodorser (reference 12). In the REXCR II analysis, Theodorsen's
lift deficiency function C(k) is taken as unity. This means that the flutter
theory presently incorporated neglects shed wake effects, or in physical terms
does not account for the phase change between blade element 1lift (or pitching
moment) and angle of attack, due to shed vorticity, or the assumption of
quasi-steady aerodynamics is expressed by C(k) = 1.

Referring to a classic text on aeroelasticity by Bisplinghoff, Ashley, and
Hoffman (Reference 13), the expressions for lift and pitching moment are
given as:

L =npb2[ﬁ + Ud- baa]+ 2nU bC(k) [R+ua+d (%- - )&] (4s3)
and
M = nob° [bak - Ub (3~ a) & - b° (% + a9 4]
+ 2mU v° (a +3) co) [h+vasy 2 - 2)3] (Lsk)
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In REXOR II, the blade aserodynamics and quasi-steady serodynamics are
referenced to the local section quarter-chord properties. This is done
because the majority of available airfoil data uses this reference. HNote
that the final aerodynamic loads are translated to the local BLE axis (c.g.
location) for use in thc.: equations of mction.

Reviewving the above expressions, and referencing the rotation point to the
quarter chord gives a = -1/2. If ve take C(k) as unity, replace 2 for cir-
culatory lift by (dcm/du), and substitute c¢/2 for the semichord b, these
equations become

2 daC .
e [ieviegs] o (E) 2 [hevert] s
and:
2 2
_Ipc ey U - ¢ (3 &
M=y [‘u“‘a“‘k(a ")] (456)

Note that the entire last term in the moment equation vanishes with a = -1/2.
Referring to the lift expression, noncirculg.tory aerodynamic lift is accounted
for in REXOR II by the first term in which h + Ua are combined into U“ in

blade element coordinates. The second term results from table lookup where

dc
AL=LDU2c( dI;R)a=-;- DUZch (LsT)

in vhich the angle of attack is previously computed from

O e = [%+ o+ ;—;] . (458)

The a within the brackets is identified as 8, the actual physical angle of the
blade with respect to the freestream direction. The a on the left hand is
that due to the air velocities which include the plunging velocity h and ro-
tation component c¢/2a. Hence Purg = a and i’BLE =a.

The total aerodynamic pitching moment is the sum of the quasi-steady loads
computed above and the table lookup blade section properties (Section 6.2.L4).
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6.2.3.4 Dynamic stall. - Dynamic stall is included in REXOR II based upon
the Boeing-Vertol formulation set forth in References 1L, 15, and 16. It is
similar to the treatment of dynamic stall in the Bell C-81 program. A com-
parison of REXOR II with the C-81 program is given in Appendix IV, pages 393-
Lok, of Reference 3. Dynamic stall is specifically addressed with respect to.
the two programs beginning on page 395 of that report. A significant point
of difference between the treatment of dynamic stall in the two programs is
that C-81 puts a 20-percent limit on the angle-of-attack overshoot in obtain-
ing the dynamic maximum lift coefficient, whereas REXOR II has no limit. The
correctness of the treatment of dynamic stall in either program is difficult
to assess since the concensus of researchers in this area is that current
methods are empirical at test, and much research still remains to be done in
this area.

Reference 1k notes that, "The trends show that compressibility effects reduce
dynamic-stall delay, and at about M = 0.6 no dynamic-stall delay is evident."
For this reason an upper Mach number limit of 0.6 was implemented in the dy-
namic stall calculations for REXOR II. The test data obtained by Boeing
Vertol and given in the references cited was for the Mach number range 0.2 to
0.6. As implemented in REXOR II if M < 0.25, the value M = 0.25 is used in
the snelytic expression for developing the stall hysteresis loop.

Reference 15 notes that it was found that, "airfoils used currently by the

helicopter industry had stalling dominated by leading edge stall. For this
type of stalling process, the dynamic CL extension was proporticnel to th

time rate of change of the angle of attack.”

In that reference, so as to use static airfoil data as much as possible,
static stall and dynamic stall are empirically related by developing a refer-
ence angle of attack given by

Qppp = @ = (Y\/’E§%1 sign(&)) (459)

in which,

- 0.601
Y = log, —— (L60)

and is physically related to dynamic stall delay. o is identified as @ 3/4e
and

2 2
M= as/ Uy * U (461)
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As noted in Reference 16 in regard to dynamic stall..." as a blade element
reaches and exceeds the static angle of attack, stall does not occur as long
as a sufficient, positive time rate of change of the airfoil angle of attack,
&, is present.” The experimentally derived equation for dynamic stall delay
is given in the reference as

dynamic stall delay = y 92-7 (462)
vhere
oK (463)

the blade element reduced frequency.

Referring to the gamma expression, we note that Y -0 as M +» 0.601, which is
the upper limit for Mach number values for dynamic stall calculations. Also,
note that Y+ 1 as M + 0.2211, which is approximated by the value of M = 0.25,
the lower limit in REXOR II for dynamic stall simulation.

The term @ EF given above is also called the dynamic angle of attack (Refer-

ence 15) and giver by the notation @ vy
6.2.3.4.1 Lift accounting for dynamic stall. - Using the reference or dy-
namic angle of attack computed fram O pEF® the REXOR II program implements the

"Fast Aerodynamic Table", Section 6.2.4, subroutine and determines the lift
coefficient, CL’ corresponding to ® PER and the freestream Mach number for the

specified blade element and blade azimuth vosition. Also computed at the

given Mach number are the CL for zero angle of attack and the CL for a small

increment A a with respect to zero. Yawed or radial flow is accountad for by
computing the yaw angle of the flow given by:

U,
A= Tan ! (T:) (L6k)

where Us and UC represent blade spanwise and chordwise componen.s of flow

respectively.
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The slope of the lift curve is then found from:

(acL) i CL(QREF’M) - CL(O,M) (465)
a
Y] DYN REF cos A

It can be argued from physical reasonings that the dynamic lift-curve slope
cannot exceed the static life-curve slope. As a check, REXOR II also
calculates:

(acL) = C (8a, M) - C (0,M)

o), = (466)

Only in the event (SCL/au)DYN is greater tha.n«(%)CL/?:)Ot)O,M is the latter value

used to calculate CL' Jthervise CL is calculated by

8z
L
C. = (—— a+ C_(0,M) (467)
L aa /DYN L

The ability of this approximation to describe mathematically the 1lift hyete-
resis characterized by dynamic stall is shown in Figure 37, which compares
analytical results with experimental two-dimensional airfoil data. (From
Reference 16.)

The component of the 1ift force per unit span acting normal to the blade
chord axis and including dynamic stall effects is then calculated from

P e
AFy, = Cp ¢ —5= cosa (u65)

The total normal force is determined by adding to this term the drag compo-
nent, CD c oV2/2 sin a, and the unsteady aerodynamic terms discussed in the

previous section. To account for dynamic stall effects on drag, two-
dimensional drag coefficient data are used, but as determined atchEF, not a .

This is consistent with Reference 15.
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The component of the 1lift force per unit span parallel to the blade chord axis
is found correspondingly from:

C, c oV
8F, > sin a (L69)

N

The total chordwise force is then obtained by auding the corresponding drag
coefficient term multiplied by cosa.

6.2.3.4.2 Pitching moment accounting for dynamic stall. - For determining
pitching moments due to dynamic stall (see Refererce 13), the reference or

dynamic engle of attack given by:xREF must be modified. In REXOR II, this is

accomplished by multiplying the second term by an empirical constant, K.
Hence,

a ! =a! = - 3&_ + 3
Rer = %pyy = - K (Y Iavl 513“("’) (470)

K is selected based upon the dynamic stall characteristics of the airfoil.
In general it has been found for conventional rotour blade airfoils that K
should be selected so that

“Rer = “gpr * 4 ° (k72

vhere Aa is of the order of 2.5 degreas. With‘aﬁEF calculated fruom the above

equation, the moment coefficient is determined from tables such tha%,

C,, = CM(a' (L72)

M reF? M)

A comparison of test and theoretical dynamic CM from Reference 15 is shown in
Figure 338.

The total pitching moment acting per unit span on a blade element is then
given by:

2 quasi-steady
- 2 pv .
T(1) = -y 0" E - Fyy 8, (0) 4 [ aero (473)
terms

(Saction 6.2.3.3)
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vhere SY(x) represents the distance from the aerodynamic center to the blade
elastic axis, and the quasi-steady aerodynamic terms are included as descrided
in Section 6.2.3.3.

6.2.4 Coefficient 1able lookup - overview. - In cataloging blade section
aerodynamic data, Cl’ CD and C“, there are two procedures available.

® Curve fit the serodynamic data to the specific airfoil geometry being
investigated for the range of Mach number and angle of attack tc be
considered.

e Tabulate the data as a function of performance and geomzetric peram-
eters, and interpolate to the exact conditions at hand.

REXOR II uses the second procedure. The data consists of CL‘ CD and Cntables.

Each table is tabulated as a function of angle of attack and Mach number. The
table format is organized idemtically to the Army C-8i program. Thus C-81
airfoil decks may be directly used in REXCR II.

A table set of NACA 0012 section characteristics is included as part of
REXOR II. Two external tables may be used; the first of which overrides the
resident 0012 data. Changeover of extermal tables occurs at a preselected
blade radial station.

6.2.4.1 Inputs and outputs. - Each table (CL’ CD, CM) has a separate angle

of attack entry and a common Mach entry. The separate entries are used for
dynamic stall calculations. The outputs in addition to CL’ C. and CM are the

D
zZerc angle-of-attack CL and CL vs angle of attack slope.

6.2.5 Blade element and rotor aercdynamic loads summary. - The required
loads for use in the equations of motion are in Bln axis. Development to
this form from BLE axis about this quarter chord point is covered in Sec-
tion 5.6.4. The BLE exis form is:
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ka(lﬂ 0
L (Uaoue)cf“
Fy (1) _ . - -3 %% AR N
A ]
s o
F. (1) [“’BLE] | [] Low?eul) c (1)
“A 2 c X s
< ( )r = -——-—L-——— 4 1 +
Mo (4 = .
*a | . 2 °c(uC2 + U %) ¢, (1)
] 1 [o-ad] Y
My (i) .
A — - 0
M, (1) LC J
L 4 JaE
]
(o
0
To (1)
s R . (b72)
WXA(z)
0
LC < Unsteady,BLE
vhere,
1 0 0
[T"-BLE] = |° °°5("3!h c) “sm(“s/h J (475)

LO sin(a}/h c) cos(u3/h c)

6.3 Interference Terms

6.3.1 Nature of the Phenomenon. - In the process of producing 1ift, the var-
ious parts of the rotorcraft impart a net momentum change to the air mass
opposite to the direction of the force produced. This induced air velocity
from the momentum change impinges upon other elements of the rotorcraft chang-
ing their aerodynamic btehavior.
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The sources of interest are the main rotor and wing (or 1ifting body charac-
teristics of the fuselage). The surfaces being affected are the wing plus
fuselage and the empennage. The impinging velocity is expressed in Zg
(fuselage vertical) axis as a percentage of the source flow arnd a function
of the wake angle of this flow.

A second interference velocity scurce is to consider the circulaticn pert
of the Theodorsen functicn. Here the wing or wing equivalent of the fuse-
lage is producing 1ift at the quarter-chord point according to the air
velocity at the 3/i4-chord location. Accordingly, the vertical component
of air velocity at the wing inciudes a cormmonent,

.lc 3
2 “wing IF (76)

Here the wing quarter chord is assumed to lie on the Yr axis. This com-
ponent is also effective at the horizontal tail via the wing t¢ horizontal
tail downwash factor.

6.3.2 Rotor tq_gigg[;uselnge. ~ The downwash function (percentage of source
flow) used in REXOR II is a lookup table of downwash factor, F(x)MR W and
idealized main rotor wake angle X, B

vhere,

1{ "
X = tan - u77
MR ( vH - viMR) ( )

The table data is linearly interpolated to the required wake angle value.

The fuselage reference downwash velocity at the wing (or equivalent) then is

) 1
w =W - W -_
wing - F " Vom FOhp oy * 3 Cyne % (478)
and taking time derivatives,
é = {i - ‘.n’ .]; .4
wine -~ F~ "am FOhmoy * 5 Cyme & (k79)
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The total air velocity to the wing/fuselage is
1/2
_ 2 2 2
VT = (uF tvp + VWIRG ) (L80)
and the angle of attack is
1 { Mwne
*win = o0 ( u ) (81)

The total velocity in the {uselage XZ plane is used in the erpennage
computations:

1/2

v = 2 .. 2
x, ~ (ur * uInG ) (k82)

6.3.3 Rotor to horizontal tail. - A downwash factor F(X)MB- betveen the

HT
main rotor and horizontal tail is computed in the same manner as F(X)MR v

from the main rotor wake angle XMR' This data in conjunction with the wing

to horizontal tail downwash factor is used to compute incremental air veloci-
ties at the horizontal tail.

Evaluating the main rotor increment,

Yivp, © VMR (F(X)m-n'r - F(x)m-w) (483)

A increment for an upper horizontal taii is likewise generated:

"nw, T iR (F(X)M'R-HTU N F(x)m-w) (48L)

6.3.4 Data sources. - The theoretical downwash factor ranges from 0 at X = 0
and 180 degrees to 2 at X = 90 in the fully contracted rotor wake. Several
sources of measured data are available to construct a distribution for a given
configuration. Reference 12 gives isolated rotor data for field distances and
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vake angle ranges suitable for F(X)m_" and F(X)m_m.. Reference 16 gives a
gocd data set for typical ving locatioms.

6.3.5 Empennsge velocity components. - REXOR II models the empemage assembly
as either part of the fuselage-ving erodynamic table (tail on) or as a sep-
arate set of aerodynsmic loads (tail off). In either case a set of perturba-
tion velocities is used.

The wing to horizontal tail dowmwash factor appears explicitly as a quasi-
unsteady aerodynamic term. An airflov time delay from the ving to horizontal
tail is computed as

2
HT
at =3 (485)
Using the downwash factor 3€/3a the vertical airflow component at the
horizontal tail is
AL 2e _tur . € (486)
¥ING 3do vxZ WING sa

In a like manner the delay in sidewash gives rise to the term gv,r/vx fp acv,,./ a8
Z Fe
on the vertical tail.

The vertical incremental horizontal tail velocity is then:

AUHT = -“iHBI + IHT (qF *"gf‘thnc//vxz)
(487)

+ +
(’EL e ¥ e Si )uHT

The terms TEL and T intrcduce equivalent velocities due to elevator and
horizontal tail incidence deflections respectively.
Similarly for the upper horizontal tail:

e
#TU - " ViMR HTU (qF "‘a:"wma/ sz) (488)
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Assembling the vertical tail lateral incremental velocity:

aOVT ;F
Av L ey '} T, = e a——eee h (h89)
F a8 \'} * pF * tRVD GRVD uV'i'

THIRG

Where 1 is used to introduce an equivalent velocity due to rudder deflection.

PUD

A horizontal and vertical tail longitudinal total velocities are simply
developed from a wake deficiency factor

uHT =anHT » (h90)
Yeru ~ UF "H1U (491)

and
Upr = Up nVT (L92)

Then the total vertical velocity at the horizontal tail is:

Ve = Yo Vo F(X)NR-V - Yg € * A'HT (493)

and
e = ¥F i T pv U Spr * Ve (hob)

The induced flow field angles CHT and EHTU are a function of wing angle of
attack, flap deflection and wing incidence change.

3¢ € gy 3€ gy
€. = ¢ + —sina + Sy + 8 (495)
HT o FL i
TS de €
HTU . HTU HTU
€ =€ + sina_ _+ 5.+ 6. k96
HIU = “opry;  da LRI A (496)
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The total lateral velocity at the vertical tail is
Vgr = Vp = Up Oyp * A (497)

Where Oy is a sidewash coefficient from the fuselage.

T
[+ =

ey sing, (k98)

6.4 Body Loads

In this section the aerodynamic contritutions from the fuselage, wing and em-
pennage are developed. These components are addiud together with the tail
rotor loeds, Section 6.5, and auxiliary thrustors, Section 6.€. A transfor-
mation to fuselage axes is made from wind axes.

The fuselage, wing and empennage data is composed of STATIC, DFRIV, ard COK-
TROL elemeats. The STLTIC data are the steady state load components as would
be measured in a wind tunnel. These data may te tail on or off. The DERIV
data give additional loads due to velocity component variations from trim for
tail on STATIC data as well as steady offsets (unequal wing twist, etc.).
Tail of{ DERIV loads use full taili velocity components rather than variations
to generate the empennage forces and moments.

The CONTROL loads account for flup, dive brake, wing incidence, aileron de-
flection inputs via the cuntrol system. The rudder, upper and lower Lorizon-
tal tail incidence, lower horizontal tail ele ator inputs affect the empennage
air velocity components, and are developed in Section 6.3.5.

6.4.1 Nenrotating airframe airloads. - The required lcads are computed in
REXOR II as the sum of steady-state forces and moments plus loads arising from
stability derivative type terms 2nd control surface inputs. The steady-state

data are Tormed in terms of overall CL' CD, and CH for the fucelage, wing, and

empennage assembly.
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“he static body loads are:

T r 3
F -C. Q
Xy p; %
F 0
'y
Fz -CL QA
B o I
< F =24 »
¥ CR (499)
c
" M Q4 Corne
» 0
“B
| B Jw,smaric p
where:
_1 2
Y =7 PSyme Vx, (500)

The wing area, SWI* , and chord, C ..., are actual or the equivalent of the
lifting fuselage. “Alternately, they may be the reference length and area
used for the available wind tunnel data. Crys €L, and Cy, are linearly in-
terpolated from input data tables of C., C ,"C , Versus angla of attack, a .
The data are interpolated con @ ING fron Section 6.3.2. The loads develope
are in wind axis. -

The stability derivative lcad coatributions are computed as a 6 by T de-

rivative matrix postmultiplied by a velocity component vector. For tail
on fuselage aerodynamic data:
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2
"t I B
F2, [“F|"F

N (501)

A,
Y
"
®
o|°
e}
_AL
-

MXB [UF|PF
MYB |%F|%¥ar
MZ 'uF'AvVT
L B )y pzazv
JuHTUIAwHTq

The components of the [Fyn] matrix are discussed in Volume III. Two hori-
zontal taiis and one vertical are assumed. The upper tail is considered optional.
The matrix also provides for asymmetric effects of wing incidence differentiel,
for linear and quadratic sideslip variations and for wing roll damping.

For tail off data the velocity vector is replaced by

1

-

\IF

Y| VF
| B (502)
e

|“v'r|"v'r

L Purul "Hmu
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These terms also produce forces and moments in wind axes.

REXOR II includes the effects of flaps, ailerons and dive brakes in the non-
rotating aerodynamic loads. The flap deflections are modeled as iinear sta-

bility derivatives of CL’ CD and CM' The aileron load is the variation of

aileron moment volume (rolling moment coefficient times wing ares times wing
span) with aileron deflection. The input is for one aileron. Dive brakes are
represented as a variation of drag area with brake extension. The brake penels
are assumed to be on the fuselage vertical axis and a distance - hDB below the
fuselage reference.

The desired loads are:

. - . -
FXB -(acD s +acD . acy ‘. )Q
asp, OFL Va5 oe T 55 v/
F 0
I3
Fy I (o TP A W
B 0 QGFL FL v w 'A . (503)
« b =-p—— < .
"xb ° 2 a_Y_AI_Il s Q
. AL &
My ac.  ac
B 3CM D
(551"1. ¢ GFL+hDBaGDB+ 2 Cv61V)QA
| MZBJ W,CONTROL | o ]

The static and derivative terms are added to form the total body loads and
transformed into fuselage axes.
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\ ZBJF B ZBJ W,STATIC
r N 4 A N
F F
X3 Xp
F. F
g Ty
F F
g Zg &
+< } +< > (504)
MYB MYB
M M
ZB W,DERIV ZB W,CONTROL
L I \ J " Y,
where,
cos(ow) 0 -sin(aw)
['ra =1o 10 (505)
W
sin(aw) 0 cos(aw)
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cos(Bw) -sin(Bw) 0
[Tbé] = sin(Bw) cos(Bw) 0 (506)
0 0 1l
and
cos(uw) = uF/sz (507)
sin(uw) = wWING/vXZ (508)
cos(B.) =V, /V (509)
W XZ TWING
sin(B,,) = v_/V (510)
vooF Tume
The air velocities VWING’ ny, VTWING’ are defined in Section 6.3.2.

6.4.2 Component additional airloads. - A total array, {QLOADS}, of non main
rotor air loads is computed in fuselage axes.

- IR .
F F F, (F.,
Xw X5 XrR X
F F F F
Y g ToR ¥p
2 2 Fy Fy
< > = {QLOADS} = < B . + < ® > +4 Py (511)
Fy My MxT M
B R X
M
Fy Ty MYTR MYP
M M M
F \ 2 A
\ b JFA B F . ZTR“F \ pJ P
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The first component is described above. The tail i10tor load vector auxiliary
thrustor load vector are developed in the following secticns,

6.5 Tail Rotor

A number of different levels of aerodynamic presentation accuracy and axis of
representation may be used for tail rotor computations. 1In line with the stated
objectives of REXOR II, a linear aerodynamic approach is used. A shaft axis
reference is used for the analysis, In this system, the air velocity quantities
involved are easy to visualize. Also, the flapping arl feathering motions are
‘he true, measureable quantities.

6.5.1 Formulations. - First, consider the airflow quantities available in
fuselage axis, Figure 39. Note the tail rotor axes alignment with respect
to the fuselage axis system. Formulating the components with respect to the
fuselage axes gives:

YR YUp Mg
v 3o v
TR V. - g - 2 TR __F‘_ 12

F - Yr °mm TR (;F - =% mw) + b Po (512)
Yor) ¢ Yy

where
3c
OTR = 3§R Sin By (513)

The vertical component is approximated by the horizontal tail value. Terms
subscripted w refer to velocity, w, and sideslip angle, g, at the wing. The
flow effects induced by the wing-fuselage bombination are described by the
wake velocity deficiency fact or NoRs the side wash angle, ToR? and its varia-
tion with angle of sideslip.

The velocity vector is then rotated through the tail rotor shaft lateral tilt,

¢°er.

u 1 0 0 Ure
v = 0 cos¢° sin¢° VTR (51%)
v LP -sing¢ cos¢ W,

TR o o TR TR F



Constructing the blade element tangential (UT) and perpendicular (UP) components,
as shcwn in Figure L0 gives:

Up = (r 2)pp + upy sin ¥, (515)
Up = = Yo = Vg = rd - ugg Bcos vop (516)
vhere,
V.m is the tail rotor induced velocity
and

R - ViR (s517)

Expressing the blade element angle of attack as a small angle of
approximation,

UP
GTR =0 + U— (518)
T
Jhere,
8=0p, - R, cos bpp - B, sin¥ o (519)
AS coupling is used to minimize tail rotor flapping. Defining + 63HD
as a veduction in feathering for positive flapping gives e
8= eTR + GTTR alha cos ¥, + 63’1‘R b, sin¥ (520)
- ans —TR
The tail rotor analysis assumes no coning.
The blade flappirg, B, is then
B=-a, cos¥,. -b. sin¥, (%21)
‘13 TR igp R
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Figure 39. - Overall tail rotor geometry.
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Figure 40. - Tail rotor blade element detail.
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The tail rotor expressions of interest are the prime forces added to the
fuselage system. First looking at the tail rotor thrust. For a blade ele- -
ment ve have )

aT, = [% pab e aUT2 dr] (522)
R

vhere a is the l1ift curve slope, b is the number of tail rotor blades, and
¢ is the blade chord (assumed constant).

Substituting,

= L 2
d Top = [2 pa b ¢ (auT + 4, UT)dr]m (523)

Integrating for the entire rotor,

BR
S PR Y eu 2 + U
Top o fabe (6uU," + U, UT)dr a (524)
Q o

TR

vhere B is the finite airfoil 1ift factor expressed as a so-called tip
loes factor.

Noting only even functions contribute to the integrand.

3
! B 2 B 2
Trg =7 08(b ¢ Rlgp (°TR T () + Ogp 5 YR

2 2
B . B
* 5 (ma)TR Vep * (R} upo b, — 63'1‘12) (525)

Note the thrust is independent of the longitudinal flapping, but is a func-
tion of lateral cyclic shown as lateral flapping times delta 3.

The required lateral flapping angle is obtained by equating the lateral
flapping moment equal to zero.
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2® BR

0= -él-'%pabcj[ (e, +uPuT)cosvrdrdt

[¢] [e] ™R

gives

b W WIS (527)

To obtain the longitudinal flapping angle, the longitudinal rotor moment is
formed and set equal to zero.

2% BR
0= -12;% oabc[[(eur +U U)sintrdrdv
[o] o] ™
(528)
gives
8
u,.,P( (@R) 33+2v )
. 22(ar)2. + 3 u_2)+ B2(aR)2 - Ly ° (529)
: 63’1‘R( Vem 2'1'R) ™ ~ 2 R

In formulating the tail rotor drive torque, the blade prcfile drag is ex-
pressed as

D D L (530)

where C. is the average 1lift coefficient. Reviewing the thrust equation
with a Constant {average) lift coefficient gives
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=] i1 e 2 1
Tog [2:2 """Cx.f U d"‘”] (531)
° TR
gives
3 2 3 2
c, = GTm/(oo,mA,m (B (2R)gp +-5 B ¥g )) (532)

The drive torgue is expressed as the reacticn to turning the tail rotor
shaft. The pius sign is associated with & clcckvise sense of rotation
vken “acing a left-hand mounted tail rotor.

1l 2= 1 2
=% o - -_—
dQ.m _[ > pcerT CD+2 pabdbec aQrUT]TRdr
(533)
where
U
P
¢= o (534)
T
integrating
2% R
Q,m=i[-2—'3 obc[ -UT CDrdr
o Fel
BR
/ 2
+ ‘a Uy U, 6- a0l )rar dv]

[ C.
- +L 2 @) - 2 u 2
t=> o(b ¢ Rl Rep (-h (@R)™ - 7~ Upg
(continued on next page)
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3 2
+a (R) %ve+;vm2 g—

2

2
2 B 2B 2 2
" (1'53'1‘9)"“35“@ 7 ¢ @Ry F oy (1*631'5)

2
2 2B 2
tatig  Upg B"(3'53TT—R))
(535)

The remaining load term in X,m Using the same formulation methodology,

- 1 = 2 .
dx,m—-[2 obc(‘DUT siny

-

-% pad ca’J,,,‘ {(sin$ sinv + sinsB cos&)] dr
- TR

(536)
Making small angle approximations,
a =10 e) -T, U2 sinv
x’m 2 TR DT
+ a9, U +Uz) sing
T P P
2 . 2 .
-a{eU,” + U, U,) (a, cos“y + b, siny cosy ) ar
T P 7 1 - 1l
R
(537)
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integrating

2%
1l 1
XTR = 2—'—2-9(\3 C)m[/ (
[

2
+ (;( °“-r"p + Uy ) siny

-a(OUTz'l-UPUT) (al cos® ¥

+ bl siny cos¥ ) )dr) d&]

TR

3 2
=% palb ¢ Ry (— 2 8 (aR)° §3—- s -3-2- Vo (@R)gg

2
g 02 - 02 (123 oL Gmigg

~

- a (l+62 )(aa) v E_ 2 (@R) )
o VRT - Rlrr Yo
1 3TR 3a TR (538)

The induced velocity is calculated from simplified momentum balance.

2 1/2)

Vim = T.m/((2 xR Bo)p (uge® + vee® + up®) (539)

Formally, the thrust, flapping, and induced velocity equations are sclved as

an iterative set. In REXOR II, these equations are solved for every pass
(azimuth step) of the main rotor, and the tail rotor set convergence is assumed
a priori.

Note that the pitch-flap coupling does not appear in the expressions developed.

This is due to the equivalence of flapping and feathering, coupled with the
absence of lateral flapping.
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6.5.2 Airloads - Control settings. - The force and moment terms are assembled
for use in the overall fuselage loads, Section 6.k The pilot controi is the
rudder pedals 6

m.
PF W
X
ATR 1 o 0
{0t =2 |0 cose, -sing, e
[
Temy S (540)
Fz 0 sine, cos¢, TR TR
. ATRJp 0
0, ] 1 o 0~ o
ATR
4 L _ 2 10 cos$, -sin} 4- *
S Q- o -sin Un wsign (6,
0 sin¢ cos¢ 0 J
L#ZATRJP - ° “m "
~ o h ; rpx b
ATR

(sk1)
R |F2

lo

|-y -2

STR is a factor to account for in blockage on the tail rotor thrust. The
equations for XTR’ TTR and QTR are based on oo, the sea level density. The
sign of GTR allows for a tail rotating in a negative direction; i.e., upper top
moving forward.

€.6 Auxiliary Thrustors

REXOR II models the compound helicopter configuration by the inclusion of an
auxiliary source of forward thrust. A perturbation bypass jet math model is
used. It is assumed that all the thrust units are at the same setting. Further-
more the dynamics of the engine rotating mass are ignored.
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6.6.1 Formulations apd ajrloads. - Based on a perturbation model the thrust
for all units installed is:

[T 2,37 aT__’ 0
Tp (;;'2 8, * N Myt 3-(!7;5;7 M 6p) Po (5k2)
f 4

vhere Mp is the freestream Mach number and sp represents the total engine
control parameter.

The engines are located at height hp and distance l.p aft of the fuselage axes.
A thrust angle 60 is also assumed. The engine contributions to the fuselage
aerodynamic londspu-e then:

[ -

Fx“] cosé, 0 sineo" Tp
I b - |o 1 0 do ¢ (543)

AP

Fz -8in6, 0 coseo_ 0

| “ap) o - P L

M, K h 0] (F, 1

MXAP P Xyp
p 3 = -h 0 L 4 F -

" P P Tap (skk)
M, 0 -1 1
B P 0 F
L AP‘ F - zAPa
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T. CONTROL SYSTEM

7.1 Overview

REXOR II models vehicles ranging from pure helicopters to winged helicopters
to compound helicopters with conventional airplane control surfaces, The
control system is modeled as a set of pilot controls (stick, rudder pedals,
colilective, etc.) which are coupled to the helicopter and airplane aserodynamic
surfaces through a set of overall linkage factors (gains). These gains are
slaved to a master control (phasing unit) which can be varied from the ex-
tremes of pure helicopter to puve airplane type of coutrols.

7.2 Pilot Controls

To simplify the operation of REXOR II the control inputs are mostly expressed
as a percent of full scale (maximum input). The pilot inputs are:

4 Xc P longitudinal stick
i
%Y Lateral stick
C,p
r Rudder pedals
4 c.p pe
£ Propulsion setting
P,p
0.p Collective blade angle
L
v Rotor speed setting
R,p
K Dive brake extension angle
DB,p
3 GFL,p Flap extension angle
2 Command wing incidence change
iw,p
4 8 P Command horizontal tail incidence change.
1 4

Pilot controls are combined with trim (T), initial condition (IC), rigging
offset (subscript 0), and stability augmentation inputs (SAS). These com-
bined inputs then operate the rotor and fixed aerodynamic surfaces. Scaling
factors (K) convert the percentage inputs into angular and linear deflectionms.

X

. - c
X c Kxcrs Gc(’xt':,T * ’xc,p) * xo::,SAS * 39, % (sLs)
Ser = Xprrs GEI,(’xc,T * zxc,p) * SgL,0 * 8g1,SA8 (546)
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aYc

Y'c - l(YC!'S Gc(ﬂc,‘l‘ * ’Yc,p) * Yc.SAS M 360 %

)

(%Y +% )+ AL, SAS

a1t = arwrs Carn' et t Mep’ t Samo !

8 : 3
ote * Mrmrs Srnl¥Fe,1 * Fre,p) * Somm,0 4 0 oTR o

OTR,SAS ¥ 36, O

Ssup = Kruoes Crup®Te,r * ¥e.p) * Shup,0 * Smp,sas

8, = xers (Zac"p + ’°o,r) - (zsp - ZSP’T)/e

Z_=2_ .
wvhere sp sp,T . =

YoM = trry
sp = Kpps (SGP’T + Sap’p)
Spp = Epprs (%opm p * %opp 1¢)

Spr, = Kprps (%opp, p * %05 1¢)

%5 )

(%8 iw,IC

8w = Kiurs *Su p *

smr,p * *Simr, 10’

)

Sy = Kymmps (%6
$iuTu = KinTFs (’GiHTU,IC

The factors Gc’ GEL’ GAIL’ GTR’ GRUD

phasing unit.

(547)

(548)

(549)

(550)

(551)

(552)

(553)

(55L)

(555)

(556)

(557)
(558)

are the slaved gains controlled by the

The quantities X'c, Y'c are processed through a first order lag and rate
limiting prior to being applied as swashplate input commands, Xc anc Yc.
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X : X (559)
Y Ts+1)|Y,

icc ) (6
T, S Syax 560)

The fixed aerodynamic surface motions are shown in Figure L1. The pilot

inputs are depicted in Figure 42.

T.3 Stability Augmentation Systems

REXOR II incorporates stability augmentation inputs to the lateral and longi-
tudinal cyclic inputs, elevator, aileron, tail rotor collective,and rudder.
These SAS inputs are all derived from fuselage axis angular rate informastion.
Signal processing consists of a low frequency washout and limiter applied to
all throughput. A first order lag is also used on some signals,

The SAS coefficients are also computed on the basis of percentage of full
scale deflection of the pilot control they are connected to. The same scal-
ing conversion factors as used for the pilot inputs are applied to the SAS
outputs.

The six SAS channels are shown below, Figures 43 through 48.
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