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SUMMARY

Modifications were made to the three-dimensional Douglas
Neumann surface singularity method developed by Hess in order to
improve the accuracy and efficiency of calculating the low speed
potential flow on arbitrary lifting configurations. The original
source paneling is replaced by a combination of source and doublet
panels based on the classical Green's identity. The amount of
calculation per panel is not increased, as the source distribu-
tion is given directly by the body geometry. Solution to a set
of equatioﬁs for approximately one doublet strength parameter per
panel then gives the doublet distribution to satisfy boundary
conditions of flow tangency on the body. A doublet sheet repre-
sents the wake of vorticity from the trailing edge of lifting
surfaces.

A numerical study of the characteristics of Green's identity
was made for two-dimensional flow. The source panel method used
in the original Douglas Neumann program is less accurate on thin,
highly loaded 1lifting surfaces as the result of local source sin-
gularities of large magnitude. Results show significantly better
accuracy in such cases for the milder source-doublet combination
of Green's identity. A wake-tangency Kutta condition improves
the accuracy of the calculated lift. This permits a reduced
number of panels (20 to 40 on an airfoil section) for a given
accuracy, and a substantial saving of computing cost on config-
urations such as high lift devices or supercritical airfoils.
Other advantages of the Green's identity method are improved
accuracy for the flow in concave corners and more reliable and
efficient inverse solutions for design of multi-element sections
with given pressure distributions.

A comparison of different numerical methods for the Green's
identity formulation resulted in selection of the approach used
in the 3-D program modification. Flat, trapezoidal panels with
piecewise constant source density cover the body surface and
panels with piecewise quadratic doublet density cover the body
and the wake. 'Boundary conditions of zero perturbation potential

are satisfied at an internal control point on each body panel and



'

at points on the edge of paneled sections. Special attention was §§
. N
given to reducing the discontinuity of doublet strength between

adjacent panels. The internal doublet sheets used in the original
program to provide lift carry-over through "non-lifting" bodies
such as fuselages are not required in the modified program. The
doublet distribution covers the outer surface of all body com-—
ponents, and the only distinction made between lifting and non-
lifting components is in the joining of a wake to sharp trailing
edges.

The program is written for the CDC CYBER 175 at Langley
Research Center. Calculated results are presented showing the
accuracy and stability of the modified program for isolated

bodies, wings, wing-body combinations, and internal flow.



INTRODUCTION

The surface panel method philosophy for solving arbitrary
incompressible potential flow problems involves the mating of
classical potential theory with contemporary numerical techniques.
Classical theory is used to reduce an arbitrary flow problem to
a surface integral equation relating boundary conditions to an
unknown singularity distribution (Reference 1). The contemporary
numerical techniques are then used to calculate an approximate
solution to the integral equation. This involves representing
flow boundaries by surface panels on which potential flow
singularities are distributed.

All properly formulated surface.panel methods are exact in
the sense that the difference between the approximate numerical
solution and the exact solution to the integral equation can be
made arbitrarily small at the expense of increasing the number of
computations. This does not imply that all panel methods are
equally successful. Indeed, vast differences exist with respect
to prediction accuracy versus computational effort, reliability,
simplicity, and applicability to an inverse solution mode for
design problems.

The Douglas Neumann surface source singularity computer
program (reference 2z) has been used extensively at industry,
university, and government facilities around the world for pre-
dicting subsonic inviscid flow. For most geometries, the program
predictions are accurate, efficient, and reliable. However, for
wings with thin trailing edge regions and high loading, the
program predictions can be inaccurate or numerically unstable.
The instability results from local source singularities of
extremely large magnitude.

This report describes the modification to the Douglas
Neumann program to eliminate the difficulties associated with
thin, highly loaded geometries. The basic concept involves
replacing the source singularity formulation by the mild combined
source-doublet distribution of the classical Green's identity.



1 1o omEpm o n InnIm mEn 1 T oI O NS N ) EEEIN N N Sem— 0 0 - ——— ——F
i
]
t
£
"

The body of this report covers the theoretical fundamentals, 1&
the results of a study into numerical solution approaches for
two-dimensional flow, the three-dimensional solution formulation,
and representative numerical solutions for three-dimensional con-

figurations. The section entitled Potential Flow Theory concen-

trates on the concepts of importance in establishing a reliable

solution formulation. Included in the section Research on Green's

Identity Formulation are the effects in two-dimensional flow of

(1) the type of surface singularity distribution employed, (2)
higher order panel curvature corrections, and (3) the method of
applying boundary conditions. Of special concern were predic-
tion accuracy, numerical stability, efficiency, and applica-
bility to inverse design problems. Using the two-dimensional
study as a guide, the modification formulation for the arbitrary
lifting body Douglas Neumann program was developed and is pre-

sented in the section Numerical Solution Formulation. The

example solutions in the section entitled Calculated Results

include isolated bodies, wings, wing-body combinations, and

internal flow.



POTENTIAL FLOW THEORY

The solution to incompressible potential flow problems is
based on the concept that arbitrary potential flow fields can be
considered to be induced by suitable surface density distributions
of singularities such as sources and doublets on the boundary
contours. The utility of this concept is that simple flow fields
induced by isolated singularities can be superimposed mathe-
matically to generate fields having arbitrarily complex boundary
geometries or boundary conditions.

This section provides background on the classical funda-
mentals of the theory, particularly the aspects pertinent to the
formulation of a reliable and efficient numerical solution method.
It will be explained that there is no limit to the number of dif-
ferent surface source-doublet distributions that will induce any
given flow field and that there is no theoretical basis to favor
one distribution over another. However, such is not the case
when the theory 1s coupled with contemporary numerical technigques
to establish a solution method. The type of singularity distri-
bution selected can play an important role in solution efficiency
and numerical stability. An understanding of the theoretical
fundamentals is necessary before it is possible to determine how
best to model the theory in a numerical formulation. In that
regard, the rationale for selecting the combined source-doublet
distribution of Green's identity will be presented below. Sever-
al two-dimensional examples that quantitatively demonstrate the

advantages will be presented in the following section.

Laplace Equation

For the case of an incompressible, inviscid, and irrota-
tional fluid, the Navier-Stokes equations can be reduced to the
classical Laplace equation (reference l1l). Consider the fluid
in the region R of figure 1. The illustrated fluid boundaries
can be solid such as an airplane wing, permeable such as the sur-
face of a jet stream, or imaginary. Because the fluid is incom~-
pressible, continuity dictates that the divergence of velocity

must be zero.
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Figure 1. lHustration of a Bounded Fluid
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The momentum eqguation is

> >
bv _ _ ¥p
Dt 0 (2)

where %€ is a material derivative, i.e., it refers to the time
rate of change of a fixed set of fluid particles. By taking the
curl of equation (2), it is possible to establish Kelvin's law
that an initially irrotational, inviscid fluid will so remain.
The mathematical consequence of zero vorticity (3 x V = 0)

is that there exists a function ¢(x,y,z) which has a gradient

equal to the velocity at each field point in the region R.



V=1V (3)

Here it is assumed that the flow is initially irrotational, such
as a free stream approaching a fixed airplane. The substitution
of equation (3) intc equation (1) generates the governing Laplace

differential equation for incompressible potential flow.

Ve (Yo) = v2s = 0 (4)

Equation (4) applies whether or not the flow is time dependent.
In the special case of steady state, Bernoulli's equation is
readily established by integrating equation (2) along a stream-

line path S between any two points A and B.

B B
> - > >
bv ds = - v d
P Dt ° = p . ds
A

>
For steady flow, the differential ds can be replaced by Vdt.

B - N
DV
o s bt - Vit = - (pg = p,)
A
v_ 2 v_ 2
- - 2 = = (pg = Py
P 2 2 Pp A
1 2 1 2
+ = L
Pat 3P Va =pPgtizoVy (5)

If the region R is unbounded and point A is allowed to move in-
definitely upstream, the conventional Bernoulli equation relat-

ing pressure and velocity is established.

cEP..:_h=1_<V>2.  (6)

P %-pV@Z Ve



In the determination of the velocity field for irrotational
flow, the application of equation (4) is equivalent to the simul- %

taneous application of equations (1) and (2). The obvious ad-
vantage to equation (4) is that there exists only one unknown
scalar function. For the usual case of steady flow, the solu-
tion to the velocity field is essentially the complete solution,
since eguations (5) or (6) provide the pressure directly from the
local velocity. Forces and moments can then be generated by
pressure integration. The essence of the solution method in-
volves determining the potential function 6.

Singular Solutions
A simple function which satisfies the Laplace equation is the

potential due to a point source of strength m positioned at

(Xo'yo’zo)°

b, = -1 (7)

where

K
i
N} b=

2
[(x—xo) + (y—yo)2 + (z—zo)2]

With the exception of the point (xo,yo,zo), the Laplacian (vz)
of equation (7) is zero. Since equation (4) need apply only to
points in the flowfield, equation (7) satisfies the governing
flow equation as long as (xo,yo,zo) is on or within the non-
fluid side of a flow boundary. Equation (7) is designated a
particular solution. The term "source singularity" refers to
the fact that the field induced by a source satisfies the Laplace
equation everywhere except at the singular point (xo,yo,zo).
Because the Laplace equation is linear, the sum of any
number of particular solutions is also a solution. Equivalently,
any distribution of sources on or within flow boundaries is a

solution to Laplace's equation.



Other particular solutions can be generated by differen-
tiating equation (7) with respect to (xo,yo,zo). For example,
the doublet function @D, defined below, satisfies the Laplace
equation except at the singular point (xo,yo,zo).

R 9¢g 90g g (8)
o =8 (5 35 5
(@] O O

The direction of unit vector n is arbitrary. Physically, equation
(8) describes the limiting situation of an equal strength source

and sink on an axis parallel to A (figure 2). The separation dis-

tance is equal to As and the source strength is f%.

7 {Doublet Axis)

m
+__.
As)

(Xo, Yor Zo)

As—o

Figure 2. Point Doublet at (xq, yq, 2¢)



Any distributiﬁn of sources and doublets on or within flow
boundaries automatically satisfies the governing Laplace equa-
“tion. It is possible to demonstrate that any bounded potential
flow field can be considered to be induced by a continuous dis-
tribution of sources and doublets (reference 1l). Indeed, there
is no limit to the number of different distributions that will
induce any one given flow field. Once such a distribution is
found, the solution is essentially complete because the flow
potential and velocity at any point can be calculated directly
as the integral sum of the individual differential contributions

induced by the source and doublet distributions.

This study is restricted to the investigation of source and
doublet singularity distributions on flow boundaries, not within.
An example of the latter is the representation of the flow in-
duced by a solid body of revolution immersed in a uniform stream.
For some body shapes, it is theoretically possible to represent
the effect of the body by an axial distribution of source sin-
gularities (figure 3). However, in the formulation of a numer-
ical solution method, a distribution of singularities on the body
surface provides a faf more attractive model. It is desirable
to have the singularities as close as possible to the flow. which
they induce. Otherwise, the distinction between the influences
of neighboring regions of the singularity distribution is clouded,
and numerical instabilities can result. This effect becomes more

pronounced as body thickness increases.

T/ 777777777

(11110004 LLLLL

Figure 3. Body of Revolution Represented by an
Equivalent Axial Singularity Distribution
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Possibly a more compelling reason for avoiding internal
singularities regards the existence of solutions. For bodies
with flat disk noses or tails such as in figure 4, there is theo-
retically no axial distribution of sources that can induce the
flow. On the other hand, there always exists a solution

surface distribution of singularities on the flow boundaries.

W///////////// /77777777>777’a
Voo % M
YL

Figure 4. Body for Which No Equivalent Ax-ial
Singularity Distribution Exists

In accordance with equations (7) and (8), it is possible to
express the induced potential ¢ at any field point P as the in-
tegral sum of continuous source and doublet distributions on

boundary surfaces (see figure 5).

— _ _ G e 3 1
e = § { Zrr T 47 3n (f)} ds (9)
In equation (9), the following definitions are used:
(1) o and u are respectively the source and doublet

strength per unit area on the boundary at arbitrary

point Q,
(2) ds is a differential surface area element at point Q,
(3) r is the distance between boundary point Q and field

point P, and
(4) n is distance measured along an axis normal to the
boundary surface at Q, positive into the flow.
Notice that the doublet axis direction in equation (9) is normal

to the flow boundary.

11



LLLLLLLLLL

Fluid Region R /

NSNS\

Boundary
Surfaces

T T /

Figure 5. Points in a Fluid and on a Boundary

There is an important equivalence between surface doublet
distributions and vorticity. As is proved in reference 2, a’
surface doublet distribution of density u can be replaced
by an equivalent surface vortex distribution where the vortex
density vector ? at each surface point satisfies the following
equation:

> -> >
Y = n X Vyu (10)

where A is to be interpreted as the unit normal vector. Equa-
tion (10) follows from the fact that a vortex loop of strength
I' induces the same velocity at every field point as a uniform
doublet sheet of density I', provided that the edges of the
sheet lie on the loop (figure 6). The theoretical equival-

ency between vorticity and doublet distributions does not imply

12
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equivalent simplicity in a numerical formulation. In this study,
attention will be focused on doublets rather than vorticity,
because distributions of scalars such as p are generally much

simpler to handle than vector distributions such as vorticity.

/R
\r
r
r r =
r
N\
N
Concentrated Vortex l.oop Constant Density Doublet Surface

{1 — Strength/Area)

Figure 6. Equivalency Between Vortex Loops and Doublet Surfaces

For any bounded potential flow field, there exists a surface
source distribution ¢ and doublet distribution p that will in-
duce the field. Integral equation (9) describes the resultant
potential at any field point P, and in accordance with equa-
tion (3), the gradient of equation (9) will give the flow velo-
city at point P. As discussed above, equation (9) satisfies
the Laplace equation regardless of distributions ¢ and u. It
remains to determine the appropriate distributions, and this is
accomplished by satisfaction of boundary conditions.

Boundary Conditions

Within certain constraints on geometric slope continuity
(reference 1), a bounded, simply connected velocity field is
uniquely determined by the distribution on flow boundaries of
either the normal component of total flow velocity Ve .n or
the total potential ¢®. These boundary value problems are res-—
pectively designated Neumann and Dirichlet problems in the clas-
sical literature. In this study, primary consideration will be
given to Neumann problems, because most practical cases involve

prescribed normal velocity boundary conditions. In particular,
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the flow tangency associated with solid bodies is expressed
mathematically as Ve.n = 0. All formulations in this study

are sufficiently geneial to allow direct extension to arbitrary
Neumann, Dirichlet, or mixed Neumann-Dirichlet boundary condi-
tions.

The relationship between prescribed Neumann boundary condi-
tions and the unknown source-doublet distribution is generated
by taking the gradient of equation (9) and then allowing field
point P to approach the boundary surface at arbitrary boundary

point B. The normal velocity component at B is designated Vy-

I
="
—
!
).
AN
%o
~
o
%o
p —
K-

&(11)

- -
VN = l1lim V & . nB
P->B J

where ;B is the unit normal vector at boundary point B.

The limiting procedure avoids contacting the singularities: this
is necessary since the Laplace equation is satisfied arbitrarily
close to a source or doublet location, but not at the location
precisely.

There exists a solution distribution ¢ and p for any arbi-
trary normal velocity distribution Vyr provided that § VNdS = 0.
The integral constraint expresses the fact that the net fluid
mass surrounded by the boundaries cannot change with time for
incompressible flow. At each boundary point B there are two
unknowns, ¢ and u, while there is one boundary condition, the

prescribed value VN. As one might expect, for any set of
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boundary conditions, there is no limit to the number of dif-
ferent solution combinations of source-doublet distributions.
In other words, there is no limit to the number of different
surface singularity distributions that can theoretically induce
the exact same field. The discussion to follow is intended to
establish the particular source-doublet combination most suitable
for application to a numerical solution formulation.

One possible candidate is a source-only distribution, with
u set to zero a priori. The disadvantage is that source-only
solution methods can generate strong numerical instabilities
and unreliable predictions. The explanation is that for thin
bodies at incidence, the solution source distribution tends to
increase in magnitude linearly with respect to the inverse of
thickness, while the net flow velocity changes only slightly.
Prediction errors tend to be proportional to the singularity
strengths. For a thin body, the average magnitude of source
density can be several times that of the induced velocity, with
a subsequent magnification of prediction error. An analbgous
situation could occur in measuring the distance AB in figure 7.
The distance could be determined indirectly by subtracting the
measured distance BC from measured AC. In the absence of mea-
suring errors, AB is exactly AC - BC. However, if the relative
error in taking a measurement 1s e, the indirect measurement would

generate the following error AAB:

L @ —
A B C
Direct: Measure AB > Small Error
i Measure AC and BC
Indirect: {E - AC - BC :> Large Error

Figure 7. Direct and Indirect Measurements
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If AC is sufficiently large, the error in measuring AB would be
greater than 100%. Obviously, one would be far better off mea-
suring the distance AB directly. 1In the same spirit, one would
prefer to use singularity distributions of approximately the same
magnitude as the induced flow velocities.

This can be accomplished by applying Green's third identity
(ref.3, p.219). If the source distribution is established a
priori by setting o equal to VN at each boundary point, and then
if equation (11) is satisfied, it can be proved that p = ¢ at
each boundary point. By making these substitutions for o and yu

in equation (9), Green's identity is established.
= -VN % 3 (1
* =9 {14wr T I 3m (E)} das (12)

The utility of Green's identity is that the singularities are

no stronger than the flow field which they induce; indeed, there
is a local equality regardless of geometry or boundary conditions.
This contrasts sharply with source only solutions for thin geome-
tries subjected to high 1lift. For the flow around conventional
slotted flap high 1lift devices, the source densities can be orders
of magnitude greater than the induced flow velocities.

The demonstration that setting o = VN results in p = ¢ is
straightforward if consideration is given to the imaginary flow
field inside the real flow boundaries (figure 8). Subscripts
E and I are used to designate the real external and imaginary
internal fields, respectively. The following discontinuities

apply to any sheet of sources and doublets,

(13)
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E ———> Fluid Side of Boundary

(External)

Imaginary Flow
(Internal Side
of Boundary)

Boundary
Surface

Figure 8. Two Sides of a Flow Boundary Surface

Both VNE ang VN are considered positive toward the real flow
(direction n). Since o = VNE, it follows from equation (13)
that VN = 0. The imaginary flow must be stagnant because the
normal velocity component at all boundary points is zero and
because such Neumann boundary conditions generate a unique solu-

tion. Therefore, %, is a constant, which can be selected as zero.

I

Finally, equation (13) indicates that on = My completing the

demonstration.
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In most problems of interest the flow is unbounded. In that
case, the surrounding boundary is allowed to increase indefinitely
and its effect is replaced by adding a free stream of uniform
velocity §m. However, Green's identity, as expressed by equation
(12), still applies. Indeed, if solid bodies are immersed in the
free stream, equation (12) indicates that o = 0 on the solid body
surfaces and a doublet only representation results. As will be
demonstrated later, convergence difficulties arise when doublet
methods are applied to design problems.

By applying Green's identity to the perturbation potential
instead of to the total potential ¢, a particularly useful com-
bined source-doublet representation is defined (Reference 1l). The
representation will be shown to provide reliable solutions for both
analysis and design problems. The perturbation potential ¢ is

defined as follows (see figure 9):

0 = V_-(x,vy,2) + ¢ (14)
, v
P - ve
Vo

Figure 9. Body Immersed in an Unbounded Flowfield
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To apply Green's identity to the perturbation potential, o
is replaced by %¢-K (rather than ?@-K) and y is replaced by ¢
(rather than ¢).

_ a w3 (1)1
¢=9 {_ Zzr T Tn In (;)f ds
Vo.n
) Ve ¢ 3 1 (15)
=4 3 dnr * o7 wn (f); ds
where $¢.3 = Vg - ﬁm .n; %m .n is a simple function of

local geometry. Because ¢ approaches zero at infinity, there is
no need to include a surrounding boundary, which considerably
simplifies the formulation of a numerical solution method. In
equation (15) the singularity densities o and p are equal to

the perturbation normal velocity and perturbation potential,
respectively. If the perturbation flow vanishes, so do the
singularities which induce the flow. Hereinafter, the term
"Green's identity" refers to equation (15). .

The singularities of Green's identity are mild, and there
are no more unknowns than for a source only formulation. For
Neumann problems the source density distribution is known -a priori

o = T6.B = vy - Vu.R (16)
and the doublets are to be determined. For Dirichlet problems,
the opposite occurs; the doublet distribution is known from the
prescribed potential distribution on the boundaries, and the
source distribution is to be determined. The approach of apply-
ing Green's identity to a numerical solution method is believed
to have been first employed by Morino, et al (reference 4).

The equivalency between a doublet distributon and vorticity
as expressed by eguation (10) results in a useful equality for
Green's identity. Since u = ¢ on boundary surfaces and since
V = Vo + $¢, it follows that the tangential component of pertur-
bation velocity on the surface will be equal in magnitude and

normal in direction to the vorticity density vector 7. Figure
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10 illustrates the situation for the special case of two-dimen-
-5

sional flow. The total flow velocity vector V is seen to con-

sist of components V., and VN where

T
(17)
Vg = VN, t O
INVISCID FLOW ™ —
/BOUNDARY =~
(2-D)

Figure 10. Surface Velocity Corresponding to Green’s ldentity

An illustration of the nature of three different singularity
distributions which induce exactly the same flow field is present-
ed in figure 11. The problem is to calculate the flow about a
solid two-dimensional circular cylinder immersed in a uniform
stream Gm. The analytical singularity distributions are pre-
sented for a source only solution, doublet only solution
(Green's identity applied to total potential ¢), and the combined
source-doublet distribution corresponding to Green's identity
(applied to perturbation potential ¢). For clarity, the equival=-

ent vortex density y is presented instead of doublet density.
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It is noteworthy that the combined source-vortex solution is
the average of the source only and vortex only solutions.
Green's identity typically provides a source distribution more
mild than the source only solution and a vortex distribution

more mild than the vortex only solution.

Representation

_@ Source distribution only

= == = —(B) Vortex distribution only
—— — -—© Green's identity

SOURCE
DENSITY

)

74

Vo= 1
+2 T w— g
VORTEX B - ~N -
DENSITY | P _ - S o
7 C —
v "T"’T——T L1 |.~TN\~4>
0
0 60 120 180

0 - DEG

Figure 11. Equivalent Singularity Representations
for a Circular Cylinder

Green's identity also offers the prospect for using internal
indirect boundary conditions (reference 4). 1In solving Neumann

problems, the first step is to set o = VN - ?m.ﬁ, where

Gw -n is a function of geometry only. The second step for
direct boundary condition satisfaction is to solve for p by
satisfying equation (11) at each boundary point. However, it
can be shown to be theoretically equivalent to establish zero
perturbation potential on the imaginary or internal side of all
flow boundaries. The proof follows immediately from egquation

(13).
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The advantages ‘of Green's identity in the application to a

numerical solution method are summarized below.

(1)

(2)

(3)

(4)

Mild combined source-doublet distributions suppress
numerical instabilities, which can otherwise be pre-
valent for thin high 1lift geometries.

Singularity distributions vanish as the perturbation
field vanishes, thereby eliminating possible residual
error.

Direct relationships between velocity and singularity
strengths on boundary surfaces exist which simplify
calculations.

Possibility exists of applying indirect internal

boundary conditions to simplify calculations.

One additional advantage is in the application to design or

inverse problems,

for which the geometry most nearly correspond-

ing to a prescribed velocity distribution is to be determined.

Even though doublet only analysis problemlsolutions are rela-

tively mild, they tend to be unsuitable for inverse problem

application in leading edge regions.

Supporting two-dimensional

examples and the explanation will be furnished in the next section.

Wakes

It is possible to prove that the net force on all bodies

immersed in a steady,

zero

1ift in a fully potential fluid.

(reference 1).

incompressible, potential flow field is
In other words, an airplane would have no

On the other hand, it is common-

place to solve aerodynamic problems by representing lifting

airplanes as solid bodies immersed in a potential fluid.

The

representation is made reasonable by the introduction of an

additional flow boundary,

the semi-infinite trailing wake.

The need for a wake can be illustrated by considering

flow circulation.

(figure 12).
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Consider a section of an airplane wing

The circulation I' is defined as
+
A > .
r = ¢ vV.ds (18)
A-




Path of Integration

Starting
Point A™

Figure 12. Circulation Around a Wing Section

where the path of integration is a closed contour in the fluid
surrounding the wing. If the fluid were to satisfy Laplace's
equation everywhere, then equation (3) could be substituted into

equation (18).

The circulation would be zero because ¢ would have to be con-
tinuous at A to satisfy Laplace's equation. Of course, a lifting
wing possesses circulation, and therefore the fluid cannot
realistically be described by Laplace's equation alone. The
missing ingredient is the effect of viscosity at sharp edges.
Potential fluids theoretically generate infinite velocity
gradients at sharp convex corners such as at wing trailing edges.
Regardless of free stream Reynolds number, the action of vis-
cosity will be felt if velocity gradients are sufficiently
strong. Therefore, even what is conventionally designated an
inviscid fluid will demonstrate the effects of friction at a

sharp trailing edge. The fluid will search for a finite velocity
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at the sharp edge, corresponding to what is referred to as

the Kutta condition. The fluid in this localized trailing edge
viscous region will be carried downstream to form a region which
cannot be described by Laplace's equation. This viscous region
is, of course, the wake.

As free stream Reynolds number increases, the thickness of
the wake region diminishes and is often assumed to be zero.
Nonetheless, the fluid properties are discontinuous across the
wake and the wake itself cannot be neglected. Usually the wake
is modelled as a stream surface having zero pressure loading
imposed by the surrounding flow. These two free stream surface
conditions are sufficient to determine the two sets of unknowns,
wake geometry and wake singularity distribution.

A frequently used assumption for wake geometry that is
approximately correct for sufficiently high Reynolds numbers and
small flow perturbations is that the wake is a flat surface
emanating from the trailing edge and parallel to the free stream.
The condition of zero loading is represented by the small distur-
bance approximation of zero vortex strength along lines normal to
the free stream (Figure 13). Equivalently, the streamwise gradi-
ent of wake doublet density is assigned the value zero.

The two-dimensional flow analogue to a wake is a streamline
along which velocity is continuous but potential is discontin-
uous. The strength of the discontinuity is equal to the circula-
ation and is dictated by the Kutta conditionof finite trailing
edge velocity. In its simplest form, the Kutta condition is to
be considered an approximation to the viscous part of the flow
problem.

In this study, the wakes are represented by a doublet sheet
having zero thickness and zero streamwise doublet gradient. The
wake geometry, though not necessarily flat, is specified. 1In the
case of multi-component wings such as slats and slotted flaps,

each component is assigned a separate wake.
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Figure 13. Simple Wake Model

e

Continuous Sheet
of Vorticity
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RESEARCH ON GREEN'S IDENTITY FORMULATION

A study was made in a two-dimensional surface paneling
formulation to give a better understanding of the Green's
identity method, as a basis for selecting the numerical methods
to be used in applying the Green's identity formulation in the
3-D program. A large number of formulations could be compared
using available programs, and essentially "exact" calculations
could be made by transformatioﬁ methods (references 5, 6) to
compare the accuracy of the different methods.

The classical potential theory of the previous section
reduces an arbitrary flow problem to a surface integral equation
relating boundary conditions to an unknown singularity distri-
bution. Numerical techniques are then used to calculate an
approximate solution to the integral equation. Paneling methods
do this by dividing the surface into a number of panels with a
source or doublet singularity density distribution of unknown
magnitude on each panel. The singularity densities are then
calculated by solving a set of equations satisfying boundary
conditions at control‘points on each panel plus additional KRutta
conditions for the circulation to give smooth flow at Kutta
points on the trailing edge of lifting surfaces.

Many conceivable approaches are available for formulating
surface paneling methods (references 2, 4, 7-18). At the level
of potential theory, an unlimited number of combinations of
source and doublet singularity distributions can induce a given
external flow field. Our main interest in this study is in the
particular source-doublet combination defined by Green's iden-
tity, as well as the source only method used in the original 3-D
Douglas Neumann program. Additional choices can be made of the
numerical techniques to be used. The results of a study into
the merits of the various approaches are presented in this

section.
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Comparison of Surface Paneling Methods

The principal distinguishing features of surface paneling
methods are (1) choice of representative singularity distribu-
tion, (2) numerical scheme for distributing the singularities,

(3) type of boundary conditions employed, and (4) conversion of
solution singularity densities to velocity. A study was made
to determine which selections in the above four categories pro-
vide the most desirable characteristics in terms of prediction
accuracy, computational efficiency, and numerical stability for
both analysis and design.

Special attention was given to problems for which the Green's
identity formulation showed promise of signficant improvement
compared to the original Douglas Neumann source method. The
Douglas Neumann method uses flat, constant density source panels,
plus a constant vorticity (or linear doublet) distribution
around an airfoil or wing to give the circulation which satis-
fies a Kutta condition of equal pressure on the upper and lower
surface panels next to the trailing edge. Reference 8 discusses
some problems with this method resulting from large source den-
sities on thin, highly loaded surfaces. The accuracy can also be
poor when the panel number around a section is reduced to the
range of 20 to 40, typical of 3-D applications, due to inaccurage
circulation and panel curvature effects. As discussed later in
this éection, the Douglas Neumann method erroneously predicts un-
bounded velocities as a'sharp, concave corner is approached.
These characteristics present difficulties in applying the method
to problems of current interest, such as supercritical airfoils
and strongly cambered high 1ift devices such as slats and vanes.
Accordingly, the study included analysis and test cases related
to (1) accuracy vs panel number and panel distribution, (2)

thin surfaces, with a small value of the ratio of distance .
between panels to panel length, (3) method of applying the Kutta o

condition, and (4) flow in concave corners.
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Table I indicates the combinations of formulation approaches
which were tested on two-dimensional sample problems during the
study. The designations "low order" and "high order" refer to
the numerical scheme for modeling the surface singularity dis-
tributions. In every case, the low order scheme incorporates
a piecewise constant strength source distribution, a continuous
piecewise linear vortex strength distribution, and flat surface
panels. The high order scheme includes corrections for local
source gradient and panel curvature in accordance with reference
8. Boundary conditions are normally applied directly at one
control point per panel. For both the doublet and Green's
identity approaches, theoretical relationships exist between
local singularity strength and local velocity which can be used
to provide either an equivalent internal potential boundary
condition in lieu of prescribed normal velocities or a convenient

means for calculation of velocity from singularity strength.

TABLE L 2-D SURFACE SINGULARITY METHODS TESTED

Surface Paneling Boundary Conditions Velocity Calculation
. Influence Local fnverse
. Low High Normal Internal g . . N
Singularity . " Coefficient | Singularity | Solution
Order Order Velocity Potential Summation | Strength Vode
1. Source X X X X
2. Doublet X X X X X
3. Combined
Source-Doublet
a. Least Squares
(Reference 17) X X X X
b. Symmetric
Singularities X X X X
(Reference 18)
(1 X X X X
c. Green’s -
Identity  (2) X X
(Ref 19-21)(3) X X X X
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Existing computer programs were available to MCAIR for all
the combinations listed in Table I, except for the application
of internal potential boundary conditions to a Green's identity /
formulation (which was developed as part of this contract effort),
and the inverse (or design) capability for the Green's identity
formulation with internal potential boundary conditions (which
was recently developed in a separate MCAIR supported effort.)
Documentation of the earlier programs is available in references
17-20, as noted in Table I, and the two new Green's identity
programs are discussed later in this section (also see Reference 21).
Detailed discussion and supporting examples comparing most
of the formulation approaches indicated by Table I have been
provided in references 17, 19, and 20 and will not be duplicated
here. However, the more significant characteristics are repeated
below.

1. Source methods are numerically unstable for thin highly
loaded geometries, which results from using unnecessarily
strong singularity densities to induce a flow field.

(See figure 14).

2. Doublet methods fail near leading edges in design
problem iterative solutions. This is the consequence
of the theoretical equivalence betweén doublet gra-
dient and local velocity. In low speed regions, the
combination of low flow velocity and low singularity
strength numerically decouples the effect of local
geometry from velocity, and the result is numerical
instability. (See figure 15).

3. The combined source~doublet combination obtained by
the least squares approach of reference 17 is numeri-
cally stable for both analysis and design. However,
the least squares procedure results in a significant
increase in computational expense by increasing the
number of unknowns.

4. The symmetrical singularity approach of reference 18
is unstable for design.
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Figure 15. Circular Cylinder Inverse Solution
(Vortex - Only Method)
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5. The mild combined source~doublet distribution corres-

ponding to Green's identity generates numerically
stable results with none of the additional expense

associated with least squares.

6. The high order numerical scheme applied to flow tan-

gency boundary conditions provides increased accuracy
compared to low order at only a slight increase in com-
putational expense and with no increase in numerical

instability. (See figure 16).

7. If flow tangency boundary conditions are applied to

32

Symbol Method

the high order Green's identity method, the velocity
calculated by summing the individual contributions of
each panel 1is significantly more accurate than applying
the relationship between local velocity and local

singularity density.

Flap
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Figure 16. Two-Element Airfoil Inviscid Solution



8. The mild singularity distribution near the trailing
~edge from Green's identity permits improved accuracy of
circulation, by a Kutta condition of wake tangency (zero
normal velocity) at a point on the trailing edge bisector
a few percent of the trailing edge panel length down-
stream of the trailing edge.

Internal Potential Boundary Condition Formulation

Inasmuch as no computer program which could handle internal
potential boundary conditions was available to MCAIR at the
start of this contract study, the above enumerated characteris-
tics of surface singularity methods do not include consideration
of potential boundary conditions. Therefore, an appropriate
computer program was formulated and tested during this reporting
period. The remainder of this section is dedicated to a brief
explanation of the program formulation, the presentation of
illustrative examples, and the resulting conclusions.

As implied by equation (17) and illustrated in figure 10,
Green's identity implies that if the source density o everywhere

on a geometry satisfies the relationship
o =V, -V (19)

then it follows that the vortex density y will satisfy the fol-

lowing equation
Yy =V, -V (20)

Here subscripts N and T refer to the surface normal and tangen-
tial directions respectively, V is velocity, and «» refers to free
stream conditions. It is simple to demonstrate that if equations
(19) and (20) are satiifieg, the flow field inside the body is
uniform with velocity V = V., (reference 19). Equivalently, the
disturbance potential ¢ inside the body will be a constant, and
this fact can be utilized to generate equivalent internal poten-
tial boundary conditions. The procedure, first applied by Morino,

et al, (reference 4) is as follows:
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1. Calculate the source density ¢ on each panel from
equation (19). Vy is known a priori from prescribed
Neumann boundary conditions and Vy_ is a function of
local surface slope only.

2. Calculate the local vortex density on each panel by
solving a system of linear equations corresponding to a
constant internal perturbation potential at each
panel control point.

3. Calculate the velocity at any field point directly from
the solution source-vortex distribution.

For airfoils having sufficiently small camber and thickness,
it can be demonstrated that the above solution procédure is equiv-
alent to small disturbance,. linearized boundary condition flow
theory. The demonstration is based on the fact that along any
internal path connecting any two control points the average pertur-
bation velocity component parallel to the path is zero. This is
a direct consequence of having the same perturbation potential at
all internal control points. Along a path connecting upper and
lower surface control points at a given chordwise station, the
average perturbation velocity component normal to the chord will
be zero. The source contribution to this zero average is approx-
imately equal to the free stream velocity component normal to the
local camber, a fact which is easily verified by considering the
difference between the upper and lower surface source densities
(Equation 19). The source induced normal velocity must be offset
by the vortex contribution in order to attain the magnitude of zero.
Therefore the average of the upper and lower surface vorticity is
uniquely determined by the camber and incidence in the same manner
as for linearized flow theory. Thickness effects can be understood
by considering the avierage perturbation velocity along a chord-
wise path between two internal control points on either the
upper or lower surface. Because the average of the upper and
lower surface sources is approximately equal to the thickness slope
(Equation 19), the source contribution to the internal chordwise

velocity is the same as the thickness-induced tangential velocity
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of linearized flow theory. The vortex-induced internal velocity
along the chord line will offset the source contribution, with the
result that the difference between upper and lower surface
vorticity is twice the thickness-induced velocity of linearized
flow theory. The consequence of the similarity between the appli-
cation of internal potential boundary conditions and small
disturbance linearized flow theory is that for sufficiently thin,
planar geometries, both approaches will generate similar numerical
behavior. In that regard, the uniform strength source-doublet
quadrilateral panel method of Morino (Ref 4) actually reduces to

a conventional vortex lattice method as thickness approaches zero.

i _ Actual Geometry

Figure 17. Two-Dimensional Panel Modeling
(Flat Paneis) '

In the present formulation, a low order modeling was used
(piecewise uniform source, continuous piecewise linear vorticity,
flat panels). See figure 17. At the center or control point of
each panel i, the internal perturbation potential is designated
- Uniform internal perturbation potential at each control point
is obtained by satisfying the following system of equations:

Apj = bipq — 6, =0 (1<i<n-1) (21)
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where n is the number of panels used to model the airfoil element.
An additional equation is introduced to fix the circulation. At

the discretion of the user, the circulation can either be prescribed
explicitly or generated implicitly by a Kutta condition. The un-
knowns are the vortex densitiées at the n panel endpoints. The
source densities are known a priori from equation (19).

After solving the system of linear equations for the unknown
vortex densities, the surface velocity can be computed either by
summing the effects of the individual panel singularity distribu-
tions or by resorting to equations (19) and (20), which provide
a direct relationship between local velocity and local singularity
density.

In order to solve equation (21),. it is first necessary to
establish the linear relationship between potential and the source-
vortex distributions on a panel. Consider a panel of length s in
Figure 18. The following equation provides the potential at an arbi-
trary point (&b,no) induced separately by a constant source density,

constant vortex density, and linear vortex density on the panel.

{Eo M)

—p £
—s/2 0 / +s/2
Panel

Figure 18. Coordinate System for a Panel of Length s
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It is noteworthy that the vortex induced potential is dis-
continuous at N, = 0 for Eo > 0. In establishing A¢i for equation
(21), it is necessary to eliminate the effect of the discontinuity.
This can be accomplished by interpreting A¢i as the line integral
of velocity along any internal path between control points i and
i+l. For convenience, the selected path follows the surface of
panels i and i+l. If this path crosses ng = 0 for go > 0, then
a value equal in magnitude to the potential discontinuity is
subtracted to eliminate the effect of the discontinuity.
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Special treatment is applied if there are any slope discon-

tinuities on the airfoil surface, such as a sharp trailing edge.

At each panel endpoint that is designated a sharp corner, a dis-
continuity is allowed in the vortex density. This corresponds

to the fact that theoretically the perturbation velocity’'is dis-
continuous at a corner. The magnitude of the vortex density hop

at the panel endpoint is an additional unknown which is determined
through the introduction of an internal control point a few percent
of panel length from the corner. The imposition of uniform
internal perturbation potential is applied to each sharp corner
control point, as well as to the panel center points.

Computing time is nearly independent of the type of boundary
condition applied. For either the direct flow tangency or
indirect internal potential methods, essentially the same terms
are required for influence coefficient calculation and the same
number of linear equations must be solved.

Comparison of Green's identity Formulations

The present low order Green's identity panel method using
potential boundary conditions has been compared with both the low
and high order Green;s identity formulations of references 19 and
20, in which the conventional prescribed normal velocity boundary
condition is applied at each panel control point. It is noted
that in every test case for which velocity or pressure is
illustrated in the results to be presented below, equation (20)
was applied for the potential boundary condition method and the
individual effects of the panels were summed for the other two
methods. This corresponds to what has proved to generate the
best prediction accuracy in each case. In selected cases, re-
sults are also presented for the low order Douglas Neumann
source method which uses piecewise constant source density,
uniform surface vorticity, and flat panels. This source method
is analogous to the existing three-dimensional Douglas Neumann
Program of reference 2. In every example for which there is
lift, the same net integrated vorticity was used for all the
methods in order to avoid the clouding effects of different

Kutta conditions.

38



The test case solid-body geometries cover a wide range of
shapes and thicknesses. Included are a circular cylinder,
Karman-Trefftz airfoil, supercritical airfoil, nearly flat
plate with noisy coordinate definition, and a thin symmetrical
airfoil at zero incidence. The symbols used in the figures for
all cases are defined as follows:

O Low order Green's identity with potential boundary

conditions
/A Low order Green's identity with normal velocity boun-
dary conditions

O High order Green's identity with normal velocity
boundary conditions

{ Low order Douglas Neumann

For the example involving a circular cylinder, the objective
was to determine prediction accuracy versus panel density. Two
panel models were established, one using twenty and the other
using forty equally spaced panels. By comparing the calculated
surface vortex density Y against the exact analytical value
corresponding to Green's identity, it was possible to establish
the root-mean-square error in vorticity around the cylinder.

The results are as anticipated for the case involving prescribed
normal velocity boundary conditions, i.e., flow tangency (figure
19). Consistent with the explanation of reference 20, the low
order prediction error is proportional to the inverse of panel
density and the high order error is proportional to the square
of the inverse of panel density. What was unforeseen (as shown
in figure 19) is that the prediction error for the low order
solution with internal potential boundary conditions exhibits
higher order characteristics; that is, the error varies propor-
tionately to the square of the inverse of the number of panels.

Similar trends are apparent for a thin, highly loaded
Karman-Trefftz airfoil (figures 20 and 21). The virtually
exact conformal mapping technique of Catherall-Sells (reference
5) was used to provide a standard of comparison. Both in the 25
panel representation of figure 20 and in the stagnation region

of a 50 panel representation (figure 21), the calculated velocity
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O Potential boundary conditions (low order)
A Flow tangency (low order)
O Flow tangency {high order)

0.06 -
20 PANELS _
Y~ Yexact
0.04 |- — =
— exact
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0.02 — 20 PANELS
| | 40 PANELS
0 | 1 | | ,
0 0.02 0.04 006 O 0.0010 0.0020 0.0030
(NUMBER OF PANELS)—‘I (NUMBER OF PANELS)_2

Figure 19. Prediction Accuracy for a Circular Cylinder

and pressure distributions for the low order potential boundary
condition solution are very accurate and nearly identical to the
high order flow tangency solution. On the other hand, the

accuracy of the low order flow tangency solution is considerably

worse.
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Figure 20. Karman - Trefftz Airfoil
Q° o, 3.24 Cy, 25 Panels
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Figure 21. Karman - Trefftz Airfoil
0° «, 3.24 Cq, 50 Panels
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For the supercritical airfoil of Figure 22, the low order
potential boundary condition method again provides excellent results.
The Douglas Neumann constant source solution is also presented in
the figure to illustrate the well-known thin airfoil instability
associated with source solutions. To account for the l1ift of the
supercritical airfoil, the usual approach of adding a uniform
vortex density around the airfoil was implemented in the Douglas
Neumann method. It is noteworthy that for this example much of
the error associated with the source solution could have been
eliminated by replacing the uniform vortex distribution by a
distribution parabolic in terms of surface distance (Reference 22) .
For certain geometries, the parabolic distribution allows weaker
source strengths and therefore improves the prediction accuracy.

In order to determine sensitivity to coordinate noise, the
upper surface velocity distribution was calculated for the non-
lifting nearly flat plate of Figure 23. 1Ideally, the smooth upper
surface should be insulated from the jagged lower surface and the
calculated results should agree closely with the solution for
a nonlifting flat plate at -90° incidence. Such is the case
for all three Green's identity solutions, which are nearly
identical. Again, the source solution reflects the thin airfoil
instability.

The final example explores the limiting behavior of a
symmetrical airfoil at zero incidence as thickness ratio
approaches zero (figure 24). The perturbation velocity for
the low order potential boundary condition method and for the
high order flow tangency method share approximately the same
average prediction error, which is much less than the error from
the low order flow tangency solution (figure 25). As a function
of panel density, the vortex density at 50% chord for all three
methods approaches the analytical linearized theory value as
panel density increases (figure 26). However, only the vorticity

from potential boundary conditions exhibits good accuracy.
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Figure 22. Supercritical Airfoil
(4° «, 0.905 Cy)



Exact (analytical, t/c = 0)

(o] Potential boundary conditions {low order)
A Flow tangency (low order and high order)
= —Q— — Douglas Neumann {low order) Voo
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Figure 23. Noisy Flat Plate at —90° Incidence
(Cg=0)
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Figure 24. Thin Symmetrical Airfoil Geometry
(20 Paneis)

46

1.0



I

-
A A
Exact (linearized flow theory)
O Potential boundary conditions {low order)
A Flow tangency (low order)
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Figure 25. Thin Symmetrical Airfoil at Zero Incidence
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Figure 26. Thin Symmetrical Airfoil Vorticity at 50% Chord




From the above examples, one reaches the heretofore unex-
pected conclusion that, even in a low order formulation, the
application of internal potential boundary conditions provides
prediction accuraéy that is in most practical cases equivalent to
a higher order formulation. This applies only to the velocity
calculated by equation (20); velocity calculated by summing the
product of velocity influence coefficients and singularity density
is significantly less accurate. The preliminary explanation is
that the increment in potential between adjacent control points
is nearly independent of both source gradient and surface cur-
vature effects for a wide range of geometric shapes. Therefore,
the prospect exists for obtaining higher order prediction
accuracy without the additional complexity of calculating
higher order corrections to the influence coefficients.

Accuracy of Concave Corner Solutions

On typical aircraft configurations, the intersection of
the wing and fuselage generates a sharp concave corner in the
cross—flow plane. The existing Douglas Neumann surface source
method predicts a velocity distribution that increases without
bounds as the corner is approached, rather than the finite
velocity limit corresponding to the correct inviscid flow
tangency solution. This characteristic of the Douglas Neumann
method is discussed by Hess in reference 23 for the special case
of two-dimensional flow.

In order to ascertain whether implementation of Green's
identity offers the prospect of improving prediction accuracy
near sharp concave corners, an investigation was conducted for
the simple two-dimensional geometry of figure 27. This
geometry was initially used by Hess in his study of source
method prediction characteristics. He compared the numerical
and exact analytical solutions near the concave corner at S = 0.
The present study repeats his procedure with the inclusion of

predictions by the higher order Greén‘s identity panel method
using flow tangency boundary conditions.
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{Symmetric Flow)

Figure 27. Simple Geometry with a Concave Corner

Hess provided the solutions from his low order Douglas
Neumann source method. The geometry of figure 27 modeled by
Hess incorporates 56 equal length panels between S = 0 and
0.30 and 66 equal length panels between S = 0.30 and 1.00.
Identical paneling was used on the lower half of the geometry.
For the Green's identity panel method, we used essentially the
same panel distribution, but only one-half the panel density
in order to avoid increasing the dimension limits of the pro-
gram.

Bofh the symmetric (0° o) and anti-symmetric (90° o) solu-
tions were investigated. At any intermediate angle of attack,
the solution is simply a linear combination of these two
solutions. In the vicinity of a concave corner, Hess states
that the exact velocity varies as V ~ s3 for symmetric flow and
V v S for anti-symmetric flow.

The calculated velocity distribution for symmetric flow is
presented in figure 28 as a function of surface distance S.

The Douglas Neumann and Green's identity solutions are virtually

identical except near the concave corner, where the former blows
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up. On the other hand, the Green's identity solution is seen
to approach stagnation at the corner, as does the exact analyti-
cal solution. The detailed behavior of the Green's identity
solution very near the corner is evident in figure 29, where
velocity has been plotted versus surface distance on a log-log
scale. Notice that the numerical solution agrees well with the
exact solution (V ~ S3) except within two panel lengths of the
corner, where the velocity error is approximately 0.001 V.

This error is insignificant and would not be noticeable if a
logarithmic scale were not used.

T T
Comparison Between Douglas Neumann
I and Green’s ldentity Methods

I
| /—BOTH METHODS

2.0 —
| DOUGLAS L//
/ NEUMANN

15
v | BOTH s \
Voo I METHODS—\ \
1.0i
I —~— 9°)
0.5 GREEN'S | oo
: \IDENTITY—\
\
0 \\—Z 1 1
] 0.2 0.4 0.6 0.8 1.

S - SURFACE DISTANCE

Figure 28. Calculated Velocity Distribution for Symmetric Flow
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Figure 29. Velocity Distribution Near A Concave Corner
(Symmetric Flow)

Similar graphs for anti-symmetric flow are presented in
figures 30 and 31. Here the discrepancy between the two methods
is much smaller, although the Green's identity approach still
provides a significantly better velocity distribution near the

concave corner.
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The concave corner example was repeated for the low order
internal potential approacﬁ, and the results are similar to the
solution for the higher order flow tangency Green's identity
formulation.

It is concluded that for two-dimensional flow, Green's
identity provides an improved flow model in the vicinity of a
concave corner when compared to the Douglas Neumann solution.
It is expected that this benefit will carry over to the wing-
fuselage intersection region in the modeling of an aircraft.

Inverse (Design) Capability

The approach of reference 17 was used to formulate the
complete partial derivative distribution of surface velocity
with respect to surface geometry, for the low order, internal
potential boundary condition formulation of Green's identity.

Then, by prescribing an arbitrary change in surface velocity
distribution, the program determines the corresponding first order

change in geometry by solving a system of linear equations. By
iteration, the program designs the multielement airfoil geonetry
having a specified velocity distribution on one or more elements.
For each element to be designed in a multi-element airfoil
system (up to five elements), the following steps are involved:

(1) The user prescribes a design pressure or velocity
distribution around the surfaces of one or more of the
various airfoil elements. The geometry of the remain-
ing elements will be fixed.

(2) The user prescribes a starting geometry to initialize
the calculations and the location of one point on each
element to be fixed in space, such as the trailing
edge.

(3) The program solves the direct problem for the starting
geometry in order to determine the change in velocity
distribution required to achieve the prescribed values.

(4) The program calculates the rate of change of surface
velocity with respect to an arbitrary change in surface

angle distribution. The element perimeter remains
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fixed. 1If the tangential component of velocity at the
control point of the ith panel is designated AL and

. th

if the surface angle of the j panel is designated 05,

then the array Aij is calculated where

= = (23)

(5) The change of surface angle distribution is calculated
in accordance with the prescribed velocities and the

following first order expression.

Y
AV, = I (Aij AOj) (24)
1 J
(6) The geometry is corrected by the program, and steps
(3) - (5) are repeated as a series of iteration cycles.

The most difficult and important step in formulating the inverse
capability is to generate the matrix Aij' It is noted that all
terms were incorporated in deriving the partial derivative,
including singularity strength changes and the displacement of
panels j+1, j+2, etc. corresponding to the surface angle change
Aej. The corresponding singularity strength changes are obtained
by a first order expansion to the boundary condition equation.

A typical inverse solution requires five iteration cycles,
where each cycle requires approximately four times the computing
time of a direct problem solution. On the CBC CYBER 173, a
typical two-element airfoil inverse problem with seventy panels
uses 20 seconds computing time per cycle. This compares with
150 seconds per cycle for the earlier least squares method
(reference 17).

Two examples are discussed herein to illustrate inverse

problem solution convergence characteristics.
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The objective of the first example is to design a circular
cylinder by using a nearly flat plate for the starting geometry
(Figure 32). The exact analytical surface velocity distribution was
prescribed, and the converged solution geometry of figure 32
was obtained after four iteration cycles. The panel endpoints

are within a maximum distance of 0.002 x radius of lying on a

-circle.. The complete partial derivatives of velocity with

respect to surface angle change are necessary but not sufficient
for obtaining convergence about the periphery of this example.
The use of mild combined source-vortex singularities is also a
factor. To illustrate, the example was repeated, but this time.
only vortex singularities were used to induce the flow field, in
accordance with the analysis method of Woodward-Dvorak (reference
11). The geometry never converged (figure 15) but oscillated
+30° in the leading edge region from one iteration cycle to the
next.

The second example demonstrates the inverse solution for the
two-element Williams airfoil presented earlier in figure 16. The
simple starting geometry shown in figure 33 was used to initialize
the calculations, and the exact surface velocity distribution of
Williams was prescribed on both elements. The geometry converged
and agreed with the target geometry to within a tolerance of one-
tenth of one degree surface angle on all panels in five iterations.

This approach to the design problem is suitable for exten-
sion to 3-D. The 2-D inverse method based on the Green's
identity formulation has demonstrated low cost combined with
consistent accuracy and stability. The low calculation cost will
be even more important in a 3-D method. The effort of developing
a 3-D method is reduced since the modified 3-D analysis program
uses the same low-order singularities and internal potential
boundary conditions as the 2-D inverse method. The modified 3-D
program can be used directly for the analysis steps. The inverse
capability would play an obvious role in future high-1lift device
design, and would also be valuable in analyzing flow fields with

strong viscous-inviscid interactions.
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Figure 32. Circular Cylinder Inverse Solution
(MCAIR Method)
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Figure 33. Two-Element Airfoil Inverse Solution

59



Selected Formulation

Overall, the reséarch into two-dimensional panel method
formulations indicates that only through the application of the
combined source-doublet distribution of Green's identity will
one consistently obtain numerically stable calculations in both
analysis and design modes without any significant increase in
computational expense compared to either a source or doublet
only formulation. With higher order corrections, flow tangency
boundary conditions consistently provide accurate predictions.
Competitive accuracy can be obtained for a wide range of shapes
without such corrections if internal potential boundary condi-
tions are applied.

For initial development of a 3-D Douglas Neumann Program
modification, the internal potential boundary condition formula-
tion has the advantage of using the low-order source panel
singularities already in the program, while the flow tangency
boundary condition approach would require the additional effort
of incorporating the high-order, curved panel singularities
still under development by Douglas Aircraft Company. The internal
potential method is also a consistent analysis method for extending
the 2-D inverse method to a 3-D capability. Therefore, the inter-
nal potential formulation was selected for the 3-D program modifi-

cation.
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NUMERICAL SOLUTION FORMULATION

The formulation is presented as a modification to the exist-
ing Douglas Neumann Program (reference 2) to improve the effi-
ciency and reliability of predicting component interference and
high 1lift characteristics of wing-body configurations. The pri-
mary modification is the substitution of the mild combined source-
doublet distribution of Green's identity for the fundamental
source-only distribution of the existing program. The advantages
associated with combined source-doublets were explained in terms
of classical theory in the section on Potential Flow Theory and
were demonstrated for two-dimensional flow in the examples of the
section Research on Green's Identity Formulation.

The objective is to couple contemporary numerical techniques
with the classical theory in order to provide a reliable predic-
tion tool. It is assumed that one or more bodies are immersed in
a steady, incompressible, inviscid stream of velocity v;. The
bodies can be either lifting or nonlifting, which means that wakes
can be either included or omitted. Consistent with the existing
program, the present formulation assumes solid body tangency
boundary conditions. In accordance with the classical theory, it
would be a simple matter to extend the formulation to allow either
arbitrary normal velocity boundary conditions or Dirichlet pre-
scribed potential distribution. The aim is to calculate flow pro-
perties at the solid body surfaces, particularly the pressure,
which is integrated to provide force and moment.

The selection of the modeling is dictated by the following
guidelines:

1. If the body geometry approaches the shape of an infinite
aspect ratio wing with uniform cross-section, then the
numerical doublet model should reflect the piecewise
linear vortex representation employed by the two-dimen-
sional Green's identity panel method of the preceding
section.

Experience in solving two-dimensional problems demon-—
strates that such a vortex model provides good accuracy

and numerical stability, and it would be unfortunate to
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sacrifice such characteristics in the three-dimensional
formulation.

2. The doublet distribution model should be as nearly con-
tinuous as possible. Discontinuitites in doublet density
correspond to concentrated vortex filaments which coun-
teract the mild velocity gradients associated with
distributed surface singularity methods.

3. The entire doublet distribution should be described by
a set of scalar parameters with approximately the same
number of members as there are panels. These parameters
are the basic unknowns to be determined. Determination
of additional parameters could lead to excessively large
computational expense, since computing time varies as
the third power of the number of unknowns.

There are four basic steps in the solution process, (1) geo-
metry definition, (2) influence function calculation, (3) solution
to linear simultaneous boundary condition equations for the un-
known singularity density distribution, and (4) calculation of
surface flow properties. These steps correspond to a direct
application of the theory, except that the continuous integral
theoretical relationships are discretized to allow numerical
solutions to arbitrarily complex problems. Prediction error is
defined as the difference between the exact analytical solution
and the numerical calculations. Because no small disturbance
assumptions are employed, prediction errors result from the
discretization process only. Therefore, one could generate
arbitrarily accurate numerical predictions at the expense of the
increased computing time commensurate with the introduction of
additional unknowns.

The geometry definition involves replacing the actual contin-
uous boundaries by a set of trapezoidal panels. In the existing
program of Ref 2, each panel is identified by one of four categories,
(1) nonlifting, (2) 1lifting, (3) internal lifting, and (4) wake.
Nonlifting source only panels are typically distributed on
fuselage-type surfaces while the lifting panels model wings and

aerodynamic control surfaces. The internal lifting panels are
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designed to pass through fuselages and connect the exposed wing
roots in order to provide fuselage lift-carryover. In the present
formulation, the combined source-doublet distribution panels
allow a natural carryover of flow properties from wing to
fuselage surfaces. Therefore, the first three panel catego-
ries of the existing program are replaced by the single category
"body panels". In the same sense that the theory recognizes no
fundamental distinction between fuselages, wings, and tails, the
body panels are used to represent any solid flow boundary. As
in the existing program, wake panels are used to model lifting
configurations.

The continuous surface source and doublet distributions of
the theory are respectively modeled by piecewise constant and
plecewise quadratic distributions on the trapezoidal panels.
Seven parameters describe the complete singularity density
distribution on each panel. One parameter is the uniform source
density. The remaining six are the coefficients of the six terms
in the expression for quadrétic doublet density. The potential
and velocity induced at any field point by the panel singularity
distribution can be expressed as the product of each of the
seven parameters with its appropriate influence function. Each
influence function depends solely on panel geometry and field
point location and is written in closed analytical form. One
influence function describes the effect of a unit strength uniform

doublet distribution, another describes the effect of a unit linear

doublet distribution, etc.

Of the six parameters that describe the doublet distribution
on a panel, only one can be considered an independent variable
reserved for boundary condition satisfaction. The remaining
five are fall-outs whose values are dictated by a least squares
surface fit through neighboring control points.

There is approximately one boundary condition control point
allocated per panel. Because Green's identity is employed, the
source density for each panel is a function of local geometry
only (eg. 16). It remains to determine the doublet density.

Rather than prescribing Neumann boundary conditions directly,
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the theoretically equivalent zero internal perturbation potential
boundary conditions are applied. In two-dimensional flow, such
potential boundary conditions consistently produce very good
prediction accuracy even though panel curvature and source gra-
dient effects are neglected. Furthermore, the two-dimensional
design boundary conditions for inverse problems were easy to
derive when coupled with internal potential conditions and led to
exceptionally rapid, stable convergence. Based on the experience
that three-dimensional numerical characteristics should reflect
those of two-dimensional flow, the selection of internal potential
boundary conditions was made.

With the aid of the influence functions and doublet con-
tinuity considerations at panel edges, the internal potential
boundary conditions are established as a system of linear equa-
tions with the doublet strength parameters as unknowns. There
is essentially one unknown per panel. Solution to the system
renders the complete singularity distribution known, and it is
then a simple matter to calculate the net induced velocity or
potential at any field point. Pressure coefficients at body con-
trol points are determined from Bernoulli's equation (6), and
the resultant force and moment is determined by integration
under the assumption that the pressure on each panel is uniform.

The formulation is presented in detail below.

Geometry Panel Modeling

All boundary surfaces are divided into continuous regions
designated sections, as illustrated in figure 34. Each solid
body in the flow can be described by one or more sections, and
the division is at the prerogative of the user. For example, a
section could be the upper surface of a wing, a fuselage, or
both the fuselage and wing simultaneously. The only restriction
is that a single section must contain either body regions or wake
regions exclusively and not both simultaneously. This deviates
from the original program but provides a more consistent formu-
lation. It is assumed that all body slopes within a section are

continuous; therefore, section edges should be aligned with
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any slope discontinuities such as wing trailing edges and wing-

fuselage junctures.

Body Surface

A Section

/
Voo

Figure 34. A Section of a Body Surface

Each section is subdivided into panels in the same manner
employed by the existing Douglas Neumann Program. The section
is described by a total of NxM points, where each point is iden-
tified by the pair of indices i and j (1L = i £ N, 1 2 j = M).
See figure 35. The points describe a set of(N - 1) x (M - 1)
panels, where each panel is identified by the pair of indices

ip and jp (1 = N-1; 1 < jP < M-1). See figure 36. Panel

1 <
.'LP_

(iP,jP) is defined by the four corner points (1P, jP), (lP’ jP+l),

(iP+l, jP+l), and (iP+l, ). The order of sequencing is such

]
that the positive normal direction (pointing into the fluid) is
out of the plane of the paper. In other words, the positive
normal direction is in the sense of the increasing i-direction
crossed with the increasing j-direction. Any inertial (x,y,2)
Cartesian coordinate system is satisfactory for describing the
geometry. The free stream velocity qois assumed to have unit

magnitude and to be described by the following components:
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Number of Corner Points = Nx M
Number of Panels = (N—1) x (M—1)
Figure 35. Corner Point Indexing Convention for a Section
{(M—1)
2
i
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Figure 36. Panel Indexing Convention for a Section
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where e, ey, e, are unit vectors in the x, y, and z — directions,

respectively.

The four corner points of a panel in general describe a
nonplanar quadrilateral. For compatibility with existing
influence functions, adjustments to the corner points
are made in order to generate the trapezoid that is most nearly
described by the original four points. The procedure is iden-
tical to that of the existing program (reference 2).

Consider the arbitrary panel of figure 37. For clarity, the
four corner points are identified by indices k =1, 2, 3, 4.
The adjustments to determine the trapezoidal panel involve
making the line between points 1 and 2 parallel to the line be-
tween points 3 and 4. If the unadjusted coordinates of corner

. . >
point k are (xk, yk, zk), then define wvector Pk as

>

P, = X & +.y & + (1
P = Xpe, toypey z, &

<

k = 4) (26)

2

k

i Adjusted

Side Midpoint Fixed

Figure 37. Adjustment of the Input Points to Form a Plane
Trapezoidal Panel
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and, using subscripts "F" and "S" to designate first and second,

define

B.ab, -P
F 2 1 (27)

m

o
|

oy

i3
S 3 4

> ->
The weighted average of PF and PS is used to define the

direction of the parallel sides of the trapezoid, which is also
selected as the £-direction of the trapezoidal panel coordinate

system

r t Pg

+ —_
e =

£

oy | oY

oy oy

r * Pgl

If the adjusted corner points are identified by an asterisk *,

then the following definitions are applied:

e R > l—> > A
P,"z5(P] + Py - 2IPFIeg
—>*:£+ > L—» >
P*z5(P) + Py) + 2|PF|e£
?(29)

—>*=£|_-—> -> £—> ->
Py*=5(Py + By + lPgle,

1,> > 1l1,> ,~>

* = U —

By =5(Py + By 2| Pgleg /

It is noteworthy that the midpoints and lengths of line segments
1-2 and 3-4 remain unchanged after the adjustment.
The normal direction is defined as the direction of the

t-axis of the panel coordinate system

(§4* - 2*) < (§3* - ﬁl*)

+_

= — (30)
g ](P4* -

oy Wov

* +* —).*
2*) ¥ (By* = Py )
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The third Cartesian coordinate of the panel system is designated

. . . >
n and is assigned the unit vector e, where

> > >
e = e 31
n c X € (31)
A 3 x 3 transformation matrix aij is generated from the above
definitions such that
>
€x
- -+ -+ >
e e }=la,. e
{eE’ n' z [ lj] Y (32)
>
€z

The centroid of the trapezoid is taken as the origin of the panel

coordinate system (&, n, ¢). See figure 38.
(ip. jpt1)
2

(ip+1ip+1)

£ 3

n Centroid

4

1 lip+1,ip)

Figure 38. Panel Coordinate System (£,1)

Several important geometric parameters associated with each
trapezoidal panel such as area, maximum diagonal, etc., are
calculated for future reference. These are described in detail

in reference 2 and are not repeated here.
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Panel Singularity Distribution

The theoretical singularity distribution on the actual bound-
ary surface is modeled by a uniform source density and quadrat-
ically varying doublet density on each trapezoidal panel. As
part of this contractual effort, John Hess of Douglas Aircraft
Company furnished a computer program code to calculate both the
velocity and potential induced at any specified field point by
a uniform source density and arbitrary quadratic doublet density
distribution on an arbitrary trapezoidal panel. In order to
generate reasonable doublet continuity modeling at panel edges,
an approach developed by Boeing (reference 16) has been applied.
This approach establishes linear relationships between the coef-
ficients of the quadratic doublet distribution on each panel with
the coefficients on the adjacent eight panels. An alternate
approach which is believed to provide better continuity proper-
ties at the expense of slightly increased computing effort has

been formulated as part of the contractual study, but has not yet

been coded for a computer. These developments are discussed
below.

Influence Function Formulas - Consider a trapezoidal panel
with the geometry of figure 38. The uniform source density is

¢ and the gquadratic doublet distribution u(g,n) on the panel is

described as follows:

_ 2 2
BT Hgg T oMbt oMy touggET o HpgEn F ougsn (33)

where the coefficients Hoor = °* are arbitrary. The formulas

U
02
furnished by Hess provide the induced potential and velocity at

an arbitrary field point (go, N’ QO). In Hess' formulas, the

coordinates (EO, n_s co) are designated (x, y, 2z). It is impor-

tant to interpret ihe coordinates as being in the panel system,
(¢, n, z). The term g is defined as the potential induced by
a uniform source density of unit strength, while ¢ mn refers to
the potential induced by the doublet density distribution
p(g,n) = Em nn. Then the potential ¢ induced by all the singu-

larties on the panel is expressed as follows:
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¢ = gdg * ugebgg * H10%10 T Mo1%01 t ¥20%20 T *11%11 F Mo2%02 (34)
‘The velocity is generated by taking the gradient of ¢ with

respect to (g_s n_, z ) s i.e., with respect to (x, y, z) in Hess'

o
formulas.
> 3¢ > 3¢ > 3¢ - W
vV = — e, + — e + — e
3o &  3ng N ¥y ©
o¢ 99 8¢ 3900 310 2401 ’
ot 3% 8% ' Moo Tax Y10 Tax ' Mol Tax f(35)
N %020 , 011 %02 |
H20 Tox 11 Tx o2 Thx
. . 3¢ 3¢
Analogous expressions exist for e and SEE .
The required influence functions are ¢S’ ¢00, ey ¢02,
aq’S a¢OO 902 . Each of these twenty-eight functions
dx ' ex ' T bz

depend solely on the coordinates of the field point and the four
corner point coordinates of the trapezoidal panel (gl,nl),
(€2,n2), (£3,n3), (£4,n4). Some of the functions are provided
in reference (2), along with intermediary functions of the four
corner points. Using the same definitions from pages 77-84 of
reference (2), the remaining influence functions are presented
below. It is important to realize that Hess' definitions of
potential and velocity influence functions differ from those of
this report by the factors -4n and +4w, respectively. To avoid
confusion, Hess' formulas will be designated by an asterisk,
where

¢* @ -4n¢

vV* @ +41Vv
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= -z V; (source)
(x-£,) - m,,(y-n,)
(- nl)L(lz) . 2 32 2’ (23)
2
1 + m32
3
2
1l + m41
3¢ *
s _ 1 L (23) _ 1 L (41)
X —
Vl + mgz Vl + mil
= - V; (source)
9
by L2 34 _ M2 (23 a1
oy N 5
1+ m2 1+ m2
32 41
= - V; (source)
23 (32) (32) (41) (41)
7z - T2 - T3 - T + Ty
= - Vi (source)
* — *
¢OO = Vz (source)
¢31 = —zv; (source) + yv; (source)
$* = —gzv* (source) + xV* (source)
10 bl Z
0% = 23, + 2y¢*. - yoox
02 02 01 00
*  _ * *
011 = 2Ty * Xépp T Y1 T XY
oX = 23, + 2x¢¥ - x2¢*
20 20 10 00

(36)




— 4R _
J20 = %s T Ho2 (39)
oJ oH
20 _ % _ %Fo2
T Ve (source) o ™
oJ ) oH
20 * 02
= =V source) - (40)
TR ) - oy e
5J SH
20 _ _ox 02
5z~ Vg (source) - T J
3¢ 8 J 39 ¥ 34X
20 _ 20 10 _2 °%00 _ *
% - 2 Thx + 2x 5% X 5% 22VX (source) T
a0 X 3J 3¢ 3 *
20 _ 20 10 2 °%00 (41)
= z + 2x - x >
3% 3y Ay oy
* * *
2020 _ _ 220 ., 210 _ 2 %00,
2z 5z 52 5z 20 y

To convert velocities from the panel coordinate system to
the body system of figure 34, the transformation matrix [aij]
is employed. .

It is to be noted that the influence functions are exact for
any field point location. Approximate intermediate-field and far-
field formulas were not furnished by Hess and have not yet been
incorporated. The advantage of such approximations would be
a significantly reduced computing effort at no appreciable loss
of accuracy for points not in the immediate vicinity of the
panel. For example, in the far field representation the effect
of the uniform source density ¢ on the trapezoidal panel of area
A is represented by a point source of strength ¢A positioned at
the panel centroid. The formulas for a point source are, of

course, far simpler than those for a distributed surface singu-

larity.

73



Doublet Distribution Surface Fit Approaches - On each panel

the doublet distribution is described by the six quadratic
coefficients Hogr + = + ¢ Mgo- Several approaches were consi-
dered for matching the distributions on neighboring panels in
order to accurately model the analytic doublet distribution and
to minimize doublet discontinuities at panel edges. An approach
developed by Boeing (Reference 16) was selected for implementa-
tion in the Douglas Neumann Program modifications. The essence
of this approach involves passing a least squares quadratic
through the boundary condition control point of a panel and
through the control points of the adjacent eight panels. An
alternate Boeing approach for generating improved doublet con-
tinuity characteristics was also coded and tested, but proved to
be numerically unstable if the panel network is not composed of
nearly straight generator lines. A new approach that improves
both the continuity and accuracy of the quadratic doublet i
representations without introducing numerical instabilities

was developed under this study but has not yet been coded for
the computer. A discussion on the various formulations is
presented below.

The numerical requirements for achieving continuity can be
illustrated by considering a broken line segment model of a
continuous function y = f£(x). See figure 39. Over each inter-
val i, the model is described by y = a;x + bi’ where the
coefficients a. and bi are analogous to the six gquadratic

coefficients u -+ -y Hpo of a panel in the surface doublet

oo’
distribution. Consistent with the continuity of function £ (x),
the broken line segment model is required to be continuous at
interval endpoints. If X, is the endpoint between intervals

i and i+1l, continuity is imposed by the condition:

ajx; v by =A% tbhig
which can be re-expressed as:
= a _ (bi+l - bl) (42)
i+1 i Xy
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Figure 39. Broken Line Segment Approximation to Function f(x)

Regardless of the function f(x), equation (42) expresses the

continuity constraint that a:.q is a linear function solely of

a bi’ and bi+l' In other words, there is approximately one
free parameter per interval for adjusting the broken line seg-

ment model to most nearly match the curve f(x). The remaining

coefficients are entirely dictated by continuity.

The necessity for minimizing doublet discontinuities is

apparent upon examination of a simple numerical example. Con-

sider a two-dimensional doublet distribution described by the

equation

where p is doublet density and s is surface distance. A cubic

has been selected because it cannot be modelled exactly by

quadratic curves. Now suppose piecewise quadratic interpolating

curve fits are made to the doublet distribution between integral

values of s. That is, the endpoints are at s = ..., -2, -1, 0, +1,

+2, ... Of the many possible types of quadratic fit,
The first

two are

illustrated in figure 40 over the range 0 < s < 2.

curve fit (A) is continuous with continuous slopes at panel
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endpoints, equivalent to the piecewise linear vortex distribu-
tion employed in the method of references (19-21). 1In this case,
the quadratic fit was determined such that the exact slope is
attained at all panel endpoints and such that the curve fit
passes through the exact value of doublet density at s = 1. The
second quadratic curve fit (B) was established at each interval
by passing a parabola through the exact doublet density at the
interval midpoint and at the midpoints of the two adjacent inter-
vals. At this stage it is difficult to predict which type curve
fit would be most accurate for use in a numerical surface
singularity method. Whereas the discontinuity in curve fit B at
s = 1 is obviously nonexistent in the exact distribution, such
discontinuities do allow guadratic fit B to attain a more accurate
average doublet density in each interval than curve fit A. The
analytic gradient of the doublet distributions provides the
equivalent vortex density curve fits (figure 41). For curve fit
B, the doublet discontinuity at s = 1 is reflected by a delta

function in the vortex distribution.

10 E— ——
Exact U= 33
g - — — — —@ Piecewise continuous guadratic
——— — —(B) Piecewise discontinuous quadratic /

(23

U - Doublet Density
N

N

As=1

S - Surface Distance

Figure 40. Two Curve Fits to a Doublet Distribution
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— e o= e Curve Fit
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7 - Vortex Density

E-N

0 ] 2
S - Surface Distance

Figure 41. Vortex Distribution - Corresponds to Figure 40

Neither the doublet nor vortex distributions reveal the sig-
nificant numerical consequences of the type of curve fit. How-

ever, the corresponding normal velocity distribution is highly

informative. For both curve fits and for the exact doublet
distribution, the normal velocity induced by the section of dou-
blet distribution between s = 0 and s = 2 was calculated analyt-
jcally. A finite vortex filament was included in each case at
s = 2 to counteract the doublet discontinuity magnitude u = 8.
Plotted as a function of surface distance s in figure 42,
the normal velocity distribution corresponding to curve fit B
is seen to be the more accurate in the vicinity of s = 1/2 and
s = 3/2, which would correspond to control point locations in a
panel method. However, the effect of the concentrated vortex
at s = 1 leads to numerical instabilities for curve fit B. The
consequences are quite clear. No matter what type panel spacing
is used or how close a control point is to a panel edge, curve
fit A will provide a reasonable approximation to the actual exact
normal velocity curve. On the other hand, curve fit B is obvi-

ously in error unless the control point is very close to the
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panel midpoint. Therefore, erroneous calculations could result
if prescribed normal velocity boundary conditions were used with
curve fit B. Although it is less obvious, the application of
internal potential boundary conditions would not eliminate the
problem. 1In fact, for a thin wing with upper and lower surface
panels sharing a common chord plane projection, the use of in-
ternal potential boundary conditions approaches equivalency to
lifting surface theory as wing thickness vanishes. It is con-
cluded that minimizing doublet discontinuity is highly beneficial

to the modelling of a doublet distribution.

3
Exact/.l=S:3
= = = = Curve Fit @
———— == == Curve Fit \
> 2
©
2
o
>
©
£
(=}
=2
4
> 1
0 \
0 1/2 1 3/2 2

S - Surface Distance

Figure 42. Normal Velocity Distribution - Corresponds to Figure 40

If a three-dimensional doublet representation is to satisfy
the three guidelines presented in the introduction to this
section, it is necessary that the doublet density on each panel
vary as a second order polynomial in terms of coordinates in the
plane of- the panel. The objective is to adjust the coefficients
such that boundary conditions are satisfied at approximately one
control point per panel with as smooth a doublet distribution

on the panel network as possible.
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A schematic of the selected control point locations is
furnished in Figure 43. For each trapezoidal panel there is
one control point at the centroid. Additional control points
are placed along the edges of a section at the trapezoidal panel
side midpoints and at section corners. The purpose of the
additional points is to generate doublet continuity at adjacent
section edges without reguiring two-sided surface fits to the

doublet distribution across the edges.

M+1)g——@ ® * ® 9
® ° ® ° ® ®
¢ ° ° ° ® T

(N+1)

Figure 43. Schematic of Panel Control Point Locations on a Section

The entire doublet distribution on a section is uniquely
determined by the set of doublet densities at the control point
locations. On each panel the distribution which has been
selected for use in this study is generated by a least squares
quadratic fit through nine neighboring control points. For
example, consider any panel (ip, jp)’ which is schematically
illustrated in Figure 44. The doublet density at the panel
centroid control point and at the eight adjacent control points
is identified by subscript k (1 < k < 9). If panel (ip, jp) is
on the edge of a section, then some of the adjacent control
points will be on panel edges. The following table provides

the conversion between control point index k of Figure 44 and

indices (i, j) of Figure 43.
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Figure 44. Indexing Convention for u in Vicinity of Panel (ip, jp)

TABLE II - CONTROI POINT INDEX (i, J)
Panel Index (i_, 7]
[Pane ( b jp)]

k i 3
N :
Tp Jp
2 i j.. o+ 1
p p
3 i .o+ 2
p P
4 i+ 1 ]
P Ip
5 i+ 1 i+ 1
p p
6 o+ 1 42
‘p Jp
7 i+ 2 ;
*p Ip
8 i+ 2 i+ 1
p p
9 i+ 2 j.. + 2
tp Ip

The second order polynomial u(g,n) of Equation (33) is the

doublet distribution on panel (i The six coefficients

= jp) .
Hogr+ * r ugo are determined by minimizing the following error

function E
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E= » {W [u(g,, n.) = u,11} (43)
ST L T K

(gk, nk) are the coordinates (£, n) of the kth control point.
For control points k that are either at the centroid or on the
edge of panel (ip, jp), a very large weight factor W;>>1 is

selected. Otherwise, W, is chosen as unity. This weighting

k
matches the function u(f, n) to the values My at control points

on the panel and provides approximate matching at the remaining

control points.

Equation (43) is minimized with respect to each coefficient

Hopr= = - ¢ Mgo- This leads to a system of six linear equations.

If the six coefficients Moo’ H1g’ Haypr Hogr My’ Mgo

are respectively identified by 817 Bos- - « 4 B, then the
& o]

solution to the system of equations can be expressed in the

following form:

™
I
I~ ©

Box My (1<2<6) (44)

| k=1

The array sz is determined by matrix inversion and depends
solely on the panel geometry, not on the values Uy - Therefore

array B can be determined before solving for the doublet

Lk
strength.

The above surface fitting approach for establishing the
doublet distribution is equivalent to method "B" in the two-
dimensional example of Figures 40-42. Admittedly, the resultant
doublet continuity properties at panel edges are not ideal. An
alternate approach developed by Boeing in an unpublished report
reduces to method "A" for the special case of two-dimensional
flow. This alternate approach was coded under the present study
and is available in the modified Douglas Neumann Program. For
cases in which the paneled geometry of a section is defined by
(nearly) straight generator lines, the alternate approach is
accurate and has good continuity properties. Otherwise, however,

the calculated array analogous to sz tends to be numerically
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unstable. Therefore, the former apprcach was selected and was
used in all the three-dimensional examples of this report.

A third approach, previously investigated by Boeing, involves
reducing the discontinuities at panel edges after the doublet
distribution has been determined. The computed doublet densities
at panel edges from the initjial doublet distribution are averaged
to generate a new, nearly continuous distribution. Then a least
squares second order fit is passed through the new edge values.
The drawback is that the discontinuities should be eliminated
prior to satisfying boundary conditions, not after. The signifi-
cant numerical instability associated with doublet discontinuities
is that boundary conditions become unrealistically sensitive to
panel geometry and control point location.

An improvement to the third approach has been developed
under this study, but has not been coded at this time. The
essense of the present improved approach involves minimizing doub-
let discontinuities at eight peripheral points on each panel prior
to solving for the unknowns. This is possible because the doublet
distribution on each panel is a linear function of the unknowns,
where the unknowns are the doublet density at the adjacent con-
trol points of Figure 43. Four of the eight peripheral points on
a panel are the corners and four are the side midpoints (Figure 45).
In order to assure that adjacent panels in a section will share
identical peripheral point locations at a corner or edge, the
eight point locations of Figure 45 are to be interpreted as lying
on the sides of the non-planar quadrilateral panel which was de-
fined prior to the trapezoidal approximation. Doublet discontin-
uities at panel edges are minimized by attempting to match the
doublet distributions of adjacent panels to a common desired value
at each of the peripheral points shared by the adjacent panels.
Details of the present improved approach are discussed below.

A second order quadratic fit u(g, n) is to be established
on each panel

2
£ 2

uv(g,n) = By + Byr + By n + 8 + B8 n 4+ Bg 1

4 (45)
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Figure 45. Panel Edge Locations for Doublet Matching
For each panel, the coefficients 82(11216) are determined by an
exact matching of u(&,n) to the unknown centroid value and a

least square error matching to desired doublet values at the

eight panel peripheral points. For any peripheral points that

are on the edge of the section, the square error weighting is

selected to make the matching exact. If Mo is the unknown

centroid doublet density of the panel and “?k (1<k<8) identifies
the desired doublet density at the eight peripheral points, then
the method of least squares generates a relationship in the

following form:

8
B, = B u + z (1<2<6) (45)

B u
L Cp © k=1 Pek Px
The coefficients B¢, and Bp,, are functions of only the panel
corner coordinates (prior to the trapezoidal approximation).
By expressing Up1 (1<k<8) as a linear combination of the

unknown doublet densities at several neighboring control points

and then substituting the expression into Equation (46), the
coefficients 82 of a panel will be in the following form:
82 = i Bzm Mo (1<2<6) (47)

where M refers to the unknown doublet densities at control

points in the vicinity of the panel.
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To determine Hpp as a linear combination of the unknowns,
an interpolating least squares surface fit is passed through the
control point doublet densities in the neighborhood of the panel
peripheral point k. For best interpolation accuracy, the
greatest least squares weighting should be assigned to control
points closest to point k.

The array Bzm of Equation (47) is a function only of the
corner point coordinates of neighboring panels and is determined
prior to solving for the unknowns Mo e The limits of m in
Equation (47) depend upon the number of neighboring control
points used in the interpolation for upy - The limits l<m<25 are

expected to be adequate.

10
Exact U= S3

— — —— —@ Piecewise continuous quadratic
——— — = (B) Piecewise discontinuous quadratic

— e — © MCAIR approach (indistinguishable from exact) /

AS =1

K - Doublet Density
Ny
[

AS =1

S - Surface Distance

Figure 46. Three Quadratic Curve Fits to a Doublet Distribution

The present approach is expected to improve both the
accuracy of the doublet distribution and the continuity proper-
ties, at the expense of slightly greater computational effort.
However, it is expected that the increased effort will be
insignificant compared to what is required in establishing
influence coefficients and solving the system of linear boundary

condition egquations.
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The numerical characteristics are aptly illustrated by
re-examining the simple two-dimensional example of Figures 40-42
with the inclusion of the present approach (curve C). It is
noted that in terms of doublet density (Figure 46), vortex
density or doublet gradient (Figure 47), and induced normal
velocity (Figure 48), the present method most nearly matches
the analytic curve. The significance is revealed in the normal
velocity distribution of Figure 48. Regardless of where one -
might select a boundary condition control point, the boundary
value is sufficiently close to exact to suppress unwarranted
numerical instabilities. Therefore, panel geometry and control
point location can be expected to have only a minor effect on

computed results, which is compatible with simplified user

reqguirements.

12
Exactu =S8
— e = Curve Fit
—=————= == == Curve Fit
> 8 == = =« == Curve Fit
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S - Surface Distance

Figure 47. Vortex Distribution - Corresponds to Figure 46
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Figure 48. Normal Velocity Distribution - Corresponds to Figure 46

Boundary Conditions

The indirect approach of applying internal potential boundary
conditions is applied in view of the good accuracy and stability
exhibited in the two-dimensional examples presented earlier.
The two steps to satisfaction of the boundary condition are to
set the source density on each panel equal to the negative of
the local free stream normal velocity component and subsequently
to determine the doublet distribution corresponding to zero
internal perturbation potential at selected control point loca-
tions. As explained in the section Potential Flow Theory, such
an approach is theoretically equivalent to prescribing solid
body flow tangency conditions.

Several other approaches for applying boundary conditions
are conceivable. For example, the net velocity flux through a
control surface bounded by four neighboring panel centroids
could be prescribed as zero. This would require analytical

integration to formulate velocity flux influence coefficients
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for three-dimensional geometries, but would reduce to the suc-—
cessful stream function approach of Oellers (Ref 10) for two-
dimensional flow. However, the present internal potential
boundary condition approach is believed to provide the best
compromise with respect to accuracy, numerical stability, compu-
tational efficiency, and availability of influence functions.

The source density on each body panel is calculated from the
dot product of the free stream velocity Vm with the local normal

direction gc, in accordance with equation (16).

Il

(ayagy + ayd3y; + @,333) (48)
For wake panels the source strength is prescribed to be zero,
corresponding to the assumption of negligible viscous displace-
ment effects.

A schematic of the control point locations was presented
earlier in Figure 43, The edge control points do not lie pre-
cisely on the trapezoidal panel edges, but are instead moved a
few percent of local panel dimensions toward the centroid.

This repositioning prevents contact with the concentrated
vortex filament that bounds the edges of a doublet sheet.

At each control point on a section of body panels, the
boundary condition is imposed that the internal perturbation
potential induced by the simultaneous action of all singularities
is zero. The internal potential is evaluated at ¢ = O_, i.e.,
on the non-fluid surface of the panel. At the control points
along one edge of each section of wake panels (Figure 49), the
imposed boundary condition is that the total velocity component
normal to the panel is zero. By aligning this section edge with
the trailing edge of a lifting body, the Kutta condition of wake
tangency is satisfied. Zero doublet gradient is prescribed along
the j-direction of the wake panels, corresponding to the absence
of wake loading. This eliminates the need to prescribe boundary

conditions at the other wake control points.
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Figure 49. Schematic of Wake Boundary Condition Control Points

The present approach of prescribing zero internal perturba-
tion potential at edge control points provides for a continuous
carryover of doublet density from one section to another. On
each side of the intersection between two sections, the edge
control point will have the same value of internal perturbation
potential, zero. Because the difference in potential across the
intersection is dominated by the magnitude of the local doublet
discontinuity, the absence of any difference assures doublet
continuity. The discontinuity in doublet gradient (vortex
density) 1s dictated by the change in potential between the edge
and centroid control points of a panel. In fact, the present
approach is equivalent to the formulation for predicting the
vortex discontinuity at sharp corners which was described in the
section "Research on Green's Identity Formulation." Therefore,
the present method can be applied to sharp concave corners at
wing-fuselage intersections. Whereas the absence of a sharp
corner does not negate the applicability of the approach, it
would probably be preferable to eliminate edge control points
in cases in which the body is smooth at the section edge. This

would require the introduction of special indexing to carry the
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doublet distribution surface fit from one section to another.
It is anticipated that such indexing will be established in the

future.
The prescription of zero internal perturbation potential at

edge control points is believed to be less sensitive to gaps

and control point location than the Boeing approach of prescrib-

ing zero normal velocity at the same points (Reference 16). For

example, consider a simple two-dimensional problem in which two
adjacent parallel panels exhibit a slight gap (Figure 50).
Assume that there is a unit strength doublet density on both

panels. The corresponding potential and normal velocity compo-

nent induced by the two doublet panels is plotted as a function

of position in Figure 50. Whereas the normal velocity distribu-

tion is a singular function of both position and gap at the panel

edges, the distribution of potential is well-behaved on both
Similar behavior is evident regardless of the angle

panels.
Hence the present approach should be

between the two panels.
consistently reliable even without the introduction of special

additional treatment at section edges.

L
0.04 0.02 g GA; | 0.02 0.04
PANEL A 0.0 PANEL B
LENGTH 1.00 LENGTH 1.00
p=1 w=1

Figure 50. Potential and Normal Velogity in Vicinity of Adjacent Panel Edges
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By combining the influence functions of equations (36)-(41)
with equations (34), it is possible to establish a system of
linear equations relating the unknown set of control point
doublet densities to the imposed boundary conditions. The number
of equations and unknowns are equal, and the solution renders
the complete singularity distribution for all panels known.

In order to simplify the solution for more than one free
stream vector %w, three right-hand-sides to the system of
equations are solved simultaneously, with each right-hand-side

denoted by a different subscript.

> >

Vool = ex

= >

sz = ey (49)
> >

Voy = €,

Then for any vector ?w, the solution singularity strengths can
be generated as a simple linear combination of the solutions for
.

> o
le, sz, and Vm3.

Calculation of Flow Properties
At each panel centroid the equality between tangential per-
turbation velocity component and doublet gradient is empioyed to
calculate the total local flow velocity V. 1In the panel coordi-
nate system (&,n,%),

Vo= (V-3 + 22 4+ (V-3 4+ %%o%n (50)

8
oy
oy
oy
8
3

= (V_-&_ + 62)3 + (V_ e+ 83)3n

The components in system (x, y, 2z) are obtained with the aid of

the rotation matrix [aij].

Pressure coefficient is calculated by Bernoulli's equation.
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Force and moment integration is performed under the assump-

tion that the centroid pressure cf each panel acts on the entire
The resulting integration accuracy

flat trapezoidal geometry.
is consistent with the basic solution formulation.
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CALCULATED RESULTS

Surface pressure distributions were calculated for several
three-dimensional geometries in order to assess the relative
merits of the modified program developed under this study and
the existing Douglas Neumann program. Hereinafter, the modi-
fied and existing programs are respectively designated "present
method” and "Hess program.” The authors are grateful to James
Thomas of NASA, Langley Research Center, for his interest and
effort in the selection and testing of the examples.

The geometry selection included shapes for which prediction
accuracy by the Hess program is characteristically good as well
as shapes for which the program tends to be unreliable. The
former category includes isolated solid bodies of revolution,
wings of conventional section geometry, and typical wing-fuselage
combinations. The latter category includes wings with thin,
highly loaded trailing edge regions and internal duct flow.

The first example is intended to reveal whether calculated
pressure distributions for wings of high aspect ratio tend to
reflect the 2-D numerical characteristics discussed earlier in
the section "Research on Green's Identity Formulation." The
supercritical geometry of Figure 51 was panelled as an unswept
wing of rectangular planform with constant cross-section and
aspect ratio 100. Ten equally spaced spanwise strips of panels
were employed. Two chordwise panel spacing distributions were
examined, each having a total of 40 panels per spanwise strip.
Both the spacings, c¢osine and cos/sinh, are dense in the trailing
edge region, with the former being the denser of the two. The
calculated chordwise pressure distributions near the root are
presented in Figure 51 for the two programs and for the virtually
exact 2-D conformal mapping solution of Catheral-Sells (Reference
5). The present method solution is nearly independent of the
panel spacing, whereas the Hess program solution is highly un-
stable. It is important to consider that in the Hess program
a uniform chordwise surface vortex distribution is applied. Hess
reports that his latest 3-D program has a parabolic vorticity

option (analogous to that of Reference 22) and that for the
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supercritical geometry the parabolic option would have
substantially reduced the numerical instability. Nonetheless,
the present example does support the conclusion that combined
source~doublet methods are significantly more reliable than

source methods for thin geometries subjected to strong pressure

loading.
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Figure 51. Supercritical Wing
Effect of Panel Spacing, Rectangular Planform, AR = 100

The second example also involves modelling a 2-D airfoil

as a high aspect ratio wing. The Williams two-element airfoil
of Figure 16 was selected in order to determine whether the wake
from the forward element disturbs the rear element pressure
distribution. In viscous flow, the geometry of the forward
element wake is significant; however, for purely inviscid flow
with weak spanwise gradients, the pressure distribution is anti-
cipated to be nearly independent of wake shape. The reasonable
but crude wake geometry of Figure 52 was selected, and the wake
was allowed to trail several dozen chords downstream. The plan-
form and spanwise panel gpacing definition are similar to those

of the preceding example.’

93



/36 PANELS PER STREAMWISE SECTION

/TRAILING EDGE

30 PANELS PER
STREAMWISE SECTION

TRAILING EDGE

Figure 52. Williams Two-Element Wing Geometry
Rectangular Planform AR =100

For the present method, the chordwise spacing of Figure 16
was applied. For the Hess program, it was necessary to adjust
the spacing of the rear element trailing edge panels such that
the upper and lower surface control points nearly aligned.
Without this adjustment, the calculated 1lift coefficient based
on the Hess program equal pressure Kutta condition is approxi-
mately 25% too low in comparison with the exact value. The calcu-
lated chordwise pressure distributions near the root presented in
Figure 53 show that the present method and exact solutions
compare well. Even with the adjusted trailing edge panels, the
Hess program significantly underpredicts lift. The probable
explanation is that the trailing edge Kutta condition is

sensitive to the locally strong source strengths.
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Figure 53. Williams 2-Element Wing Pressure Distribution

In each of the first two examples, the present method
generates a slightly lower 1lift coefficient than the exact 2-D
solution. This is characteristic of the effects of spanwise
gradients on a finite wing. For a rectangular wing of aspect
ratio 100, downwash reduces the root section 1lift coefficient one

to two percent below the two-dimensional level.
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Figures 54-56 present the calculated chordwise pressure
distributions for an unswept wing of rectangular planform, aspect
ratio six, and NACA 0012 cross section. Using the symmetry plane
option, the wing semi-span was panelled, with 8 equal size strips
spanwise and 40 panels per strip streamwise. Both the Hess and
present methods show good agreement with experimental data at
6.75° angle of attack (Reference 24). No viscous corrections
have been incorporated. It is noteworthy that in the tip region
the Hess program results are superior to the present method. In
particular, the upper and lower surface pressure distribution of
the present method intersect at approximately 70% chord. It is
believed that this behavior is associated with the guadratic
surface fit to the doublet distribution. At the tip strip of
panels the spanwise distance to the adjacent strip control points
is twice the distance to the tip edge control points. This non-
equal spacing, coupled with the large doublet spanwise gradients
at the tip, generates significant errors in the surface fitting
algorithm. Future implementation of the improved doublet fit
approach described in the section "Numerical Solution Formulation"
is expected to eliminate the difficulty. Of course, the less
efficient approach of increasing the panel spanwise density near

the tip would also improve the results.

The flow around the panelled sphere of Figure 57 was calcu-~
lated by the present method. Only one-half of the sphere was
panelled, and the symmetry plane option was employed. A hole
approximately one percent of local panel dimensions was left
at the north and south poles to prevent the exact coincidence
of two edge control points of triangular panels. The flow was
solved for two free stream directions, one parallel to the x-axis
and one to the z~axis. The latter solution (Figure 58) is of
greater interest because non-axisymmetric panelling is used to
model an axisymmetric flow. For both free stream directions
there is good agreement with the exact analytical solution. It
is noteworthy that there is a slight scatter in the calculated
results for panels at the edge of a section, although the magni-
tude of the scatter is smaller than the symbol size in Figure 58.
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Apparently the edge control points do not generate surface
continuity properties as well as the direct imposition of the
quadratic surface fit between adjacent panels. The pressure
distribution for the Hess program was also calculated and agrees
well with the exact solution, but is not shown here.

Figure 59 illustrates an isolated axisymmetric fuselage with
an open base. Identical panelling was used for both the present
and Hess methods, and the calculated pressure distribution was
compared to the solution generated by Hess' higher order axisym-
metric surface singularity program (Reference 25). The higher
order solution, considered to be virtually exact, is nearly

matched by both the present and Hess program solutions.
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Figure 54. Rectangular Wing Pressure Distribution
Root
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Figure 55. Rectangular Wing Pressure Distribution
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Figﬁre 58. Pressure Distribution for a Sphere .
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Figure 59. RML51F07 Body Alone

The capability to predict internal flow properties was
assessed by testing the panelled duct of Figure 60. The geometry
represents the body of revolution generated by wrapping a NACA
0010 airfoil around a circular cylinder where the cylinder
length-to-radius ratio is ten. The minimum internal cross-
sectional area is a factor of four smaller than the corresponding
inlet and exit areas. The panel dimensions were chosen to be
unusually large in comparison to the internal diameter in order
to amplify numerical difficulties, thereby simplifying the
assessment of the methods. A cylindrical wake extending
"approximately ten duct lengths downstream was panelled to allow

Kutta condition satisfaction at the exit.
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Figure 60. Duct Paneling
Two Views

The internal pressure distribution is shown in Figure 61 for
the present and Hess programs. To verify that the solution from
the Hess higher order axisymmetric program is sufficiently close
to exact to be so designated, both the axial panel distribution
of Figure 60 and a distribution of double density were tested.
The present method calculations agree quite well with the exact
solution. It is noteworthy that the minimum pressure coefficient
is Cp £ -13, which compares to the value Cp = ~-15 corresponding
to one-dimensional flow theory applied to a constriction ratio of
four. The Hess program vastly underpredicts the magnitude of the
internal pressures. This is characteristic of low order source

methods, which exhibit significant leakage between control points
for internal flow.
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Figure 61. Duct Internal Pressure Distribution
Exit Kutta Condition Applied

Because it is conceivable that inaccuracies associated with
exit Kutta condition satisfaction could have affected the duct
solution of Figure 61, the example was repeated with no wake
panelling and no Kutta condition (Figure 62). Althouch the result-
ing magnitude of internal flow velocity is significantly reduced,
the relative prediction accuracy of the different methods is not
substantially changed.

Hess has demonstrated that the inclusion of higher order
terms significantly improves source method internal flow predic-
tion accuracy (Reference 26). Of course, increasing panel density
also increases the accuracy. For the Hess program, doubling
the number of panels per unit length (gquadrupling the total number)
reduces the leakage by an approximate factor of two. It is
interesting that even without higher order corrections, the
present method provides satisfactory internal flow solutions for

low panel density.
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Figure 62. Duct Internal Pressure Distribution
Zero Circulation

The objective of the final example is to determine whether
the interference effect of a wing on a fuselage pressure distri-
bution can be predicted without extending the wing panelling
through the fuselage interior. Whereas the Hess program uses
internal fuselage panelling, the present method relies entirely
on surface panels to generate the fuselage 1lift. A disadvantage
of the internal panelling approach is that it is not clear
how various high or low wing configurations should be modelled.

Figure 63 illustrates the wing-body geometry selected for
this example. The conventional mid-wing coﬁfiguration is
characteristic of geometries for which the Hess program predic-
tions are very accurate, thereby providing a standard of compafi—
son for the present method. Furthermore, experimental pressure

data are available (Reference 27), which provide a second standard.
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Wing Details

Airfoil Section

NACA 65A006
Aspect Ratio 4
Taper Ratio 0.6
Incidence, deg 0
Dihedral, deg 0
Geometric Twist, deg 0

Quarter Chord Line

Axisymmetric
Fuselage

Figure 63. WingBody Geometry

The geometry is symmetric with respect to both the wing
chord plane and the zero butt line plane. Panelling was
established on only one side of the latter plane of symmetry,
and an appropriate symmetry option was used in brogram computa-
tions. Outboard of the fuselage, the wing was modelled by nine
streamwise strips of approximately uniform width. Each strip
contained twenty upper and twenty lower surface panels. The
fuselage cross section panelling was equally spaced, with each
panel subtending an arc of 30°. Nineteen fuselage station
locations were used to define the fuselage panelling. For the

present method only, the fuselage panel density in the region of
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the wing intersection was increased and the panel distributions
modified such that the wing and fuselage panel edges aligned.
Whether this precaution is beneficial was not determined prior
to the publication of this report.

In order to compensate for a deficiency in the present
program, it was necessary to model the fuselage afterbody as
a cylinder. For consistency, the modelling was also used in
the Hess program. The deficiency is that if the centroids of a
streamwise strip of wake panels are not colinear, the trailing
vortex filaments will not be streamwise. 1In most cases it is
possible to panel the wake by parallelograms, which eliminates
the difficulty. Nonetheless, the deficiency in the present

program should be eliminated.

The flow around the wing-body was calculated at 4° angle of
attack. WNeither compressibility nor viscous corrections were
made to the calculated pressures. The test data corresponds to
free stream Mach number 0.60.

The calculated and experimental fuselage pressure distribu-
tions are presented in Figure 64. In spite of significantly
different approaches used to generate fuselage 1lift carryover,
the predictions by the two programs are in close agreement.

In fact, the total configuration 1lift coefficients agree to

three significant figures (0.256 Cp, at 4°a). For the Hess pro-
gram, the slightly milder gradients at the wing root leading

edge are probably due to the less dense fuselage panelling. The
fact that the present method pressure distribution is of slightly
lower magnitude immediately above and below the wing root is
believed to be attributable to excursions from the nominal
azimuthal angles © of Figure 64 (0 = 45°, 75°, 105°, 135°).

For the present method, the panelling at the wing~fuselage
intersection is such that the actual values of © are approximate-
ly 70° and 110° instead of the nominal values 75° and 105°, re-
spectively. Both the present and Hess methods agree reasonably
well with the experimental data, in spite of the fact that
neither viscous nor compressibility corrections were applied.

105



By running the Hess program with and without the fuselage
afterbody curvature, it was established that more than half of
the difference between calculated and experimental pressures

is attributable to modelling the afterbody as a cylinder.
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Figure 64. Fuselage Pressure Distribution in Presence of Wing
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The wing section pressure distributions at three spanwise
stations are presented in Figure 65-67. The two methods agree
well with one another, except near the wing tip. As discussed
earlier, a more sophisticated doublet surface fitting procedure
is needed to improve the reliability of the present method at
wing tips. Over the remainder of the wing, the greater part
of the differences between calculated and experimental pressures
is attributable to neglecting the fuselage afterbody curvature.

The wing-body example demonstrates that the panel edge
boundary condition control points can provide the proper fuse-

lage lift carryover without the extension of wing panelling

through the fuselage.
Based on the above examples, some deficiencies of the
present method which can and should be eliminated have been

uncovered. The only one not discussed above pertains to the

calculation of the influence coefficients. Only near field

formulae are currently used. It is believed that this increases

the time spent computing influence coefficients by an order of
magnitude over what would be required if both far and intermediate

formulae were used. As a result, the total computing time for a

wing-body configuration is approximately five times greater than
what would be required. This is reflected by comparing the com-
puting times of the Hess and present programs. For example, on
the CDC CYBER 175, the duct solution required 100 seconds com-
puting time in the Hess program versus nearly 400 seconds for
360 body panels were used

far field formulae

the present method. In each program,
on each half of the symmetry plane. Clearly,

need to be introduced.
In general, the above examples confirm that the combined

source-doublet distribution of Green's identity coupled with
internal perturbation potential boundary conditions provides
accurate and stable numerical flow field predictions for a wide

variety of body shapes, including thin wings and duct interiors.
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CONCLUSIONS AND RECOMMENDATIONS

The use of mild combined source-doublet surface singularity
distributions eliminates the numerical instabilities associated
with the excessively strong singularity magnitude of source only
solutions for highly loaded thin geometries. Also, significantly
improved prediction accuracy is achieved at sharp concave corners.
Even without higher order corrections, the use of internal poten-
tial boundary conditions produces surprisingly good accuracy for
a wide variety of body geometries. The implementation of Green's
identity offers several other benefits. Nonlifting configurations
are made lifting by the simple introduction of a wake. The con-
figuration doublet distribution automatically readjusts to generate
lift, thereby eliminating the requirement for separate lifting and
nonlifting formulations. Internal potential boundary conditions
can be applied, which tend to improve numerical stability further
and, as demonstrated in two dimensions, lead to a simplified
reliable solution method for design problems in which the pressure
distribution is prescribed. All boundary flow properties can be
evaluated directly from the local singularity strengths, which
saves the effort of summing the individual influences of the
singularities on all panels. This feature also simplifies the
implementation of mixed Neumann-Dirichlet boundary conditions.

Two areas of further study are recommended, specifically,
the improvement of doublet continuity properties and the imple-
mentation of a design formulation for arbitrary bodies.

It is expected that doublet continuity properties can be
improved significantly by using common values at adjacent panel
edges prior to boundary condition satisfaction. At the expense
of slightly greater computing time, this technique should both
increase prediction accuracy and reduce the sensitivity to the
panel distribution. Elimination of the trapezoidal panel restric-
tion by implementing more comprehensive influence functions should
also improve continuity characteristics.

For inverse design problems in which the geometry most
nearly corresponding to a prescribed pressure distribution is

to be determined, it is expected that the characteristics of
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efficiency and stability demonstrated by the two~dimensional
method will carry over in an application to three-dimensional
geometries. The two-dimensional method exhibits unusual
insensitivity to starting geometry and good convergence charac-
teristics even in the difficult leading edge regions.

McDonnell Aircraft Company
McDonnell Douglas Corporation
St. Louis, Missouri 63166
January 13, 1978

111




10.

11.

REFERENCES

Lamb, Sir Horace: Hydrodynamics. Sixth Edition. Cambridge
University Press, 1932.

Hess, J. L.: Calculation of Potential Flow About Arbitrary
Three-Dimensional Lifting Bodies. MDC J5679-01, McDonnell
Douglas, October 1972.

Kellogg, 0. D.: Foundations of Potential Theory. Dover
Publications, Inc., 1953.

Morino, Luigi; and Kuo, Ching—-Chiang: Subsonic Potential
Aerodynamics for Complex Configurations: A General Theory.
AIAA J., Vol. 12, No. 2, February 1974, pp. 191-197.
Catherall, D.; Foster, D. N.; and Sells, C. C. L.: Two
Dimensional Incompressible Flow Past a Lifting Aerofoil.

R. A. E. TR-69118, 1969.

Williams, B. R.: An Exact Test Case for the Plane Potential
Flow About Two Adjacent Lifting Aerofoils. Aeronautical
Research Council R. & M. No. 3717, September 1971.

Hess, J. L.; and Smith, A. M. 0O0.: Calculation of Potential
Flow About Arbitrary Bodies. Progress in Aeronautical
Sciences, Vol. 8. Pergammon Press, 1966.

Hess, J. L.: Higher-Order Numerical Solution of the Inte-
gral Equation for the Two-Dimensional Neumann Problem.
Computer Methods in Applied Mechanics and Engineering,

Vol. 2, No. 1, February 1973, pp. 1-15.

Martensen, E.: Berechnung der Druckverteilung an Gitter-
profilen in ebener Potentialstromung mit einer Fredholmschen
Integralgleichung (Calculation of Pressure Distribution on
Cascade Sections in Planar Potential Flow by a Fredholm

Integral Equation). Archive for Rational Mechanics and
Analysis, Vol. 3, No. 3, 1959.
Oellers, H. J.: Die Inkompressible Potentialstromung in der

Ebener Gitterstuffe (The Incompressible Potential Flow in
Planar Cascades). Jahrbuch 1962 der Wissenschaftlichen
Gesellschaft fur Luft-und Raumfahrt, pp. 349-353.

Dvorak, F. A.; and Woodward, F. A.: A Viscous/Potential Flow
Interaction Analysis Method for Multi-Element Infinite Swept
Wino- NASA CR~-2476, November 1974.

112

——————— e —— —~ DUV [ RS,



12,

13.

14.

15.

l6.

17.

18.

19.

20.

21.

22,

REFERENCES (Continued)
Stevens, W. A.; Goradia, S. H.; and Braden, J. A.: Mathe-
matical Model for Two-Dimensional Multi-Component Airfoils
in Viscous Flow. NASA CR-1843, July 1971.
Halsey, N. D.: Methods for the Design and Analysis of Jet-
Flapped Airfoils. J. of Aircraft, Vol. 11, Sept. 1974
pp. 540-546.
Maskew, B.: A Subvortex Technique for the Close Approach to
A Discretized Vortex Sheet. Vortex-Lattice Utilization Work-
shop. NASA SP-405, May 1976.
Tulinius, J. R.: Theoretical Prediction of Thick Wing and
Pylon-Fuselage-Fanpod-Nacelle Aerodynamic Characteristics at
Subcritical Speeds. NASA CR-137578, July 1974.
Johnson, F. T.; and Rubbert, P. E.: Advanced Panel-Type
Influence Coefficient Methods Applied to Subsonic Flows.
ATAA Paper 75-50, January 1975.
Bristow, D. R.: A New Surface Singularity Method for Multi-
Element Airfoil Analysis and Design. AIAA Paper 76-20,
January 1976. ‘
Méskew, B.; and Woodward, F. A.: Symmetrical Singularity
Model for Lifting Potential Flow Analysis. AIAA J. of %
Aircraft, vol. 13, No. 9, September 1976, pp. 733-734. |
Bristow, D. R.: Incompressible Potential Flow: Numerical
Characteristics of Three Classical Surface Singularity
Representations. MDC A4407, McDonnell Douglas, September
1976.
Bristow, D. R.: Recent Improvements in Surface Singularity
Methods for the Flow Field Analysis about Two-Dimensional
Airfoils. AIAA Paper 77-641, June 1977.
Bristow, D. R.: Improvements in Surface Singularity Analysis
and Design Methods. NASA Advanced Technology Airfoil Research
Conference, Langley Research Center, 7-9 March 1978.
Hess, J. L.: The Use of Higher-Order Surface Singularity
Distributions to Obtain Improved Potential Flow Solutions
for Two~Dimensional Lifting Airfoils. Computer Methods in
Applied Mechanics and Engineering, Vol. 5, 1975, pp. 11-35.

1i3




23.

24.

25.

26.

27.

114

REFERENCES (Concluded)
Hess, J. L.: Review of Integral-Equation Techniques for
Solving Potential-Flow Problems with Emphasis on the Surface-
Source Method. Computer Methods in Applied Mechanics and
Engineering, Vol. 5, 1975, pp. 145-196.
Yip, L. P.; and Shubert, G. L.: Pressure Distributions on
a 1- by 3-Meter Semispan Wing at Sweep Angles from 0° to
40° in Subsonic Flow. NASA TN D-8307, December 1976.
Hess, J. L.; and Martin Jr., R. P.: Improved Solution for
Potential Flow about Arbitrary Axisymmetric Bodies by. the
Use of a Higher-Order Surface Source Method. NASA CR 134694,
July 1974.
Hess, J. L.: Status of a Higher-Order Panel Method for
Nonlifting Three-Dimensional Potential Flow. Report No.
NADC-76118-30, 31 August 1977.
Loving, D. L.; and Estabrooks, B. B.: Transonic-Wing
Investigation in the Langley 8-~Foot High-Speed Tunnel at
High Subsonic Mach Numbers and at a Mach Number of 1.2.
NACA RM L51F07, 6 September 1951.

e e e e e e e — v e e e e < = = - e e e e+



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-3020 .
4. Title and Subtitle 5. Report Date
MODIFICATION OF THE DOUGLAS NEUMANN PROGRAM TO | August, 1978 -
IMPROVE THE EFFICIENCY OF PREDICTING COMPONENT [6. Performing Organization Code
INTERFERENCE AND HIGH LIFT CHARACTERISTICS .
7. Author(s) 8. Performing Organization Report iNo.

D. R. Bristow and G. G. Grose

10. Work Unit No,

9, Performing Organization Name and Address
McDonnell Aircraft Company
McDonnell Douglas Corporation 11. Contract or Grant No.
St. Louis, Missouri 63166 NAS1-14756

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administation 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

Langley Technical Monitor: Harry L. Morgan, Jr.
Final Report
16. Abstract

The Douglas Neumann method for low-speed potential flow on arbi-
trary three-dimensional lifting bodies was modified by substituting
the combined source and doublet surface paneling based on Green's
identity for the original source panels. Numerical studies show im-
proved accuracy and stability for thin lifting surfaces, permitting
reduced panel number for high-lift devices and supercritical airfoil
sections. The accuracy of flow in concave corners is improved. A
method of airfoil section design for a given pressure distribution,
based on Green's identity,was demonstrated. The program uses panels
on the body surface with constant source strength and parabolic dis-
tribution of doublet strength, and a doublet sheet on the wake. The
program is written for the CDC CYBER 175 computer. Results of calcu-~
lations are presented for isolated bodies, wings, wing-body combina-
tions, and internal flow.

17. Key Words {Suggested by Author(s)) 18. Distribution Statement
Low speed flow
Potential flow Unclassified - Unlimited

Wing-body configurations
Lifting bodies
Green's identity

Surface paneling method Subject Category 02
9. Security CIdssif (of this report) 20. Security Classif (of this page) 21. No. of Pages [22. Price
Unclassified Unclassified 124 $6.50 .

* For sale by the National Technical Information Service, Springfield, Virginia 22161

HASA-Langley, 1978




