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SUMMARY

An approximate indicial 1lift function associated with circulation has been
developed for tapered, swept wings in incompressible flow. The function is
derived by representing the wings with a simple vortex system. The results
from the derived equations compare well with the limited available results from
more rigorous and complex methods.

The equations, as derived, are not very convenient for calculating the
dynamic response of aircraft, parameter extraction, or for determining frequency-
response curves for wings. Therefore, an expression is developed to convert the
indicial response function to an exponential form which is more convenient for
these purposes. The exponential form is nearly as accurate as the form derived
from the simplified vortex system,

INTRODUCTION

The indicial lift function following a unit step increase in wing angle of
attack is fundamental to the calculation of airplane transient motion. The orig-
inal derivation of this function (generally designated by Kkj(S)) was developed
in 1925 for two-dimensional incompressible flow by H. Wagner (ref. 1). Since
that time the indicial response has been calculated for a number of specific
wing planforms (refs. 2 to 4, for example) and vortex lattice methods are avail-
able for calculating indicial lift of arbitrary wing planform (ref. 5, for exam-
ple). 1In addition, technigues are currently available for estimating the 1lift
on wings undergoing oscillatory motions. (See refs. 6 to 9, for example.) Ref-
erence 10 contains a review and bibliography on work in unsteady aerodynamics,

Although available methods appear to be adequate for determining transient
1lift loads, they are generally complex and do not appear to be suitable for
inclusion in aircraft motion studies (except for a few specific wing planforms).

The purpose of this paper is to develop a simplified method for determining
the indicial lift function associated with circulation. The part associated
with the "apparent additional mass" is not treated (eq. (31) of ref. 2). A
second purpose is to provide an elementary approach to unsteady aerodynamics
which, although it lacks the mathematical elegance of more exact theories, it
does give the novice a starting point for study in an important and interesting
area of aerodynamics.

SYMBOLS
A aspect ratio, b2/s

ag,aj,az,by,b2 constants




b wing span

Acy, () three-dimensional indicial 1lift coefficient, a function of time
(CLa) steady-state lift curve slope
ss
c wing chord
c; (0) section lift coefficient at t =0
Acz(t) two-dimensional indicial 1lift coefficient, a function of time
Cr wing root chord
C¢ wing tip chord
i -V
K nondimensional constant '
kq (8) Wagner function
L wing 1lift
1 section 1lift, per unit span
P,Q,R terms defined in equation (12)
s wing area
s Laplace variable
t time
U free-stream velocity
W downwash velocity due to vortices

distance from three-quarter chord point of root chord to starting

Xo
point of shed vortex along root-chord line
Y,z constants in exponential form of indicial response function
a angle of attack
. @
a =
dt
r total strength of vortex
Iy vortex strength of ith vortex (i =1, 2, . . ., n)
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A sweep of wing quarter-chord line
Ay . sweep of shed-vortex line
A wing taper ratio, cy/c,
p air density
T dummy variable
w angular frequency
ANALYSIS

The basic concepts used in this study involve the use of lifting-line
theory to model the change in lift following a unit step increase in angle of
attack. The principles are derived for a two-dimensional wing and then extended
to swept, tapered wings.

Two-Dimensional Wing

The two-dimensional wing is represented by a bound vortex located at the
quar ter-chord line. (See fig. 1(a).) The boundary condition of no flow through
the wing is satisfied only at the wing three-quarter chord line. If the wing
angle of attack o is suddenly given a unit increase, the bound (lifting) vor-
tex strength increases by a value I'. Since the total strength (or circulation)
in the flow field must remain at the value it had before the unit increase in «q,
a counter vortex of strength (-T) is formed near the wing trailing edge. The vor-
tex strength is such that the normal velocity component at the wing three-quarter
chord line, induced by the two vortices, is equal and opposite to the component
of the free-stream velocity normal to the wing surface at the same point. Aas
time increases, the shed vortex moves downstream, but retains its original
strength. This movement would cause a decrease in downwash at the three-quarter
chord point, but the decrease is offset by the shedding of additional vortices.
(See fig. 1(b).) This means, in turn, that the bound lifting-line vortex
strength increases in order to keep the total circulation unchanged. Conse-
quently, there is a distribution of vorticity behind the wing. The vortex sheet
is extending downstream at a rate equal to the free-stream velocity.

Wagner (ref. 1) obtained a solution for the lift following a unit step
increase in o by applying a conformal transformation and satisfying the physi-
cal principle that the velocity at the wing trailing edge is finite at all time
(Kutta condition). He derived for the lift, as a function of nondimensional
distance s = Ut/(c/2), the expression

1 = 2TpUwk; (8) (1)
Wagner did not derive an explicit analytical expression for kj(S) but gave

only numerical values. Some years later (1936), Kussner (ref. 11) derived a
long, slowly convergent series for kj(§).



The mathematical complexities of obtaining values or expressions for kq(8)
arise because of the physical model depicted in figure 1(b), or its equivalent
in the transformed-plane method of reference 1. The present report develops a
simpler model and a simple, yet reasonably accurate, analytical expression for
k1(s). The shed vortex sheet is replaced by a single shed vortex having the
same (time varying) strength as the bound vortex and moving downstream at a
velocity KU. The downwash velocity induced at the three-quarter chord point
by the two vortices (bound and shed) is easily found by use of the Biot-Savart
law (or see ref. 12, p. 127), and is

r 1 1
W —— b —— (2)
2T\c/2 Xo + KUt
Scolving for ' results in

o] 1
' = 2tw -1 - (3)
2 Xo KUt
— + —
c/2 c/2

The boundary condition is met by
w=1U sin O
or, for small angles
w = Uo (4)

Equations (3) and (4) can be used with the Kutta-Joukowski equation for section
lift

1 = pul (5)

to obtain an expression for the section lift coefficient due to a unit step
increase in angle of attack

Acy(t) = 2m[1 = —— (6)

Under steady-state conditions (t * *), Acz = 27, which is the correct value.
The distance x, is related to the starting lift; that is, x5 1is related to
cZ(O). From equation (6),

AcZ(O) =2m{l - ——4m— (7)
Xo
1 + —
c/2
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Using Wagner's conclusion that the starting lift is one-half of the steady-
state 1lift leads, for the two-dimensional wing, to

_ =1 (8)

Equation (6), therefore, becomes

Acy(t) = 2111 - — (9)

The term in parentheses is the counterpart of the Wagner function kj(S). This
term is found to approximate the Wagner function very closely if K equals 1/2.
Equation (9) then becomes

1
Acy(t) = 2m(1 - ———— (10)
1 Ut
2 4 - —
2 ¢/2

Garrick (ref. 13) arrived at exactly this same expression by curve-fitting the
Wagner function.

The indicial response is approximated closely by use of the single bound-
vortex line of figure 1(c) and the shed vortex (which represents the shed distri-
bution of vorticity) starting at a distance c¢/2 behind the wing three-quarter
chord line and moving downstream at one-half the free~stream velocity.

Three-Dimensional Wing

The simple vortex model of the two-dimensional wing compares well with
Wagner's exact analysis; therefore, the same ideas have been tried on three-
dimensional tapered, swept wings. There are several choices to be made rela-
tive to the mathematical model, and these choices include:

(1) At what point should the boundary condition be satisfied?

(2) Where should the shed vortex be started relative to the wing?

(3) How should the shed vortex be oriented relative to the wing?

In order to keep the model as simple as possible, it was decided to satisfy

the boundary condition only at the three-quarter chord point of the root chord.
The other two choices are made in a later section of this report.



The vortex model for the three-dimensional wing is indicated in figure 2.
The downwash at the control point can be derived by using the Biot-Savart law
(or see p. 127 of ref. 12) and is of the form

T
w=—(P+Q+R) (11)
il
where
~
b/2 Cr Cr
- — sin A — sin A
1 cos A 2
+ _

1 b Cr b
Xo + - Ut + — tan Ag — - — tan A
1 2 2 2 2
Q=— +
b 1 b - 2 (p\2 °r b 2 /p\2
Xo + — Ut + - tan Ag] + |- — - —-tan A] + (-
2 2 2 2 2 2
? (12)
b/2 1
+ {X5 + - Ut] sin Ag
] cos Ag 2
R = - - - - N
2

2(x +1Ut cos A b/2 ! i 2 !
o T3 s Gos g + \%o + 3 Ut) sin Ag| + <xo+-2-Ut) cos Ag

1
(xo + > Ut> sin Ag

1 2 1 2
(xo + 5 Ut) sin Ag| + (xo + 2 Ut) cos Ag
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The P,Q,R expressions are associated with the bound vortex, the wing-tip
trailing-vortex pair, and the shed vortex, respectively. The geometric rela-

tionship b/c, = A(1 + A)/2 can be used to put equations (12) into more con-
venient forms

A(1 + Q)
————— sec2 A - tan A
A(1 + 1) 2
bp = - + tan A
2 A(1 + A) 2
> sec A - sin A| + cos2 A
X5 +1 Ut R a(l + ) tan Ag S A(1 + A\) tan- A
o cr/2 2 cp/2 2 2
x - AL+ M) 2 AQ + 2 2 A+ A) 2 A + N2 (13)
+ - + tan Ag| + 1- tan A} +
cr/2 2 c/2 2 2 2 z
A(1 + Q) *o 1 Ut
A(l +X) sec? Ag + + - tan Ag
3 2 cy/2 2 cp/2
bRo_ 2 ) - tan Ag
Xo R 1 Ut A( + A) A Xo 1 ot A 2 %o 1 Ut A 2
—_— = — sec +|— + = si + o
cp/2 2 cp/2 2 s cr/2 2 cp/2 s cr/2 2 cp/2 o8 Ts J

The lift of the wing is determined from the Kutta-Joukowski equation
L = pul'b (14)

Nondimensionalizing and using equation (11) results in

2Twb

cpit) = (15)
US(P + Q + R)

The boundary condition requires that w/U = 0; hence, equation (15) becomes

2MAQ

Cp{t) = —— (16)
b(P + Q + R)



Under steady-state conditions (t * ), equation (16), with proper substitu-
tion of equations (13), results in

27TA ]
C = —— - I . - 7
(Cra)eq 17
A(1 + Q)
1] - —— tan A
2
bP + R
[1 A(1 + 1) A2 A(1 + A)[2
-y tan A 4o
Solving for 2TA and substituting the result into equation (16) results in,
for a unit step in q,
. A(1 + ) A
C - ——— tan
( La)ss 2
Acp (k) = ————(bP + — ) o+ 1 (18)
bP + bQ + bR A(1 + )) 2 AQL + M)712
1 - — tan A| + —

As t becomes very large, equation (18) reduces to
AC (t > oo) = C
L ( LO‘>ss

However, equation (17) is not accurate because of the simple vortex-system rep-

resentation of the wing. A concept proposed is to use the best available source

for (CLa) rather than equation (17). In this manner, attaining correct val-
ss

ues for equation (18) is insured, at least for large values of time.

Before equation (18) can be used (with egs. (13)), the terms x5/ (c./2)
must be determined, and a choice made for the sweep angle of the shed vortex.
As noted previously, for a two-dimensional wing, a value of x5/(cy/2) = 1.0
is appropriate. This value is retained for simplicity so that the inboard ends
of the shed vortex start at a distance X,/(cy/2) =1 behind the three-quarter
chord point of the root chord.

Selection of the sweep of the shed vortex was made by trying reasonable
values; that is, (1) parallel to the wing trailing edge, and (2) parallel to
the wing quarter-chord line. Comparison with results from more exact methods
showed that the shed vortex sweep angle equal to that of the wing quarter-chord
line was the better choice.
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Based on these choices, equations (13) become

N
A(1 + A)
———— sec? A - tan A
A1 + A) 2
P = —— + tan A
2 AL+ A) 2
I sec A - sin A| + cos? A
A(1 + A) 1 Ut AQ(l + A)
+ ———— tan A + - 1 - ——— tan A

2 ¢ /2 2

1
bQ = S 4 _
1 ot AQ + A) 2 Ta@g + N2 Al + A) 2 [a( + A2 > (19)
1 + — +—— — tan A| + | ——+--— 1 - — tan A + | —
2 cp/2 2 2 2 2

Ut
tan A
cr/2>

2
1 vt A1 + A) 1 Ut 2 1 Ut 2
T+ — ——  sec A+ (1 + — sin Al + |[1 + — cos A
2 cp/2 2 2 ¢ /2 2 ¢ /2

Equations (18) and (19), with suitable selection of an expression for (CLa)
ss

N =

AQ+ 1) Mseczl\+<1+
2

(use of ref. 14 or 15, for example), are the basic equations for the indicial
response for tapered, swept wings in incompressible flow. Although the equa-
tions are somewhat lengthy, several factors appear repeatedly and are constant
during the 1lift buildup.

LIFT VARIATION FOR ARBITRARY CHANGE IN ANGLE OF ATTACK
The 1ift of a wing undergoing an arbitrary change in angle of attack can be

determined by use of the indicial response function in Duhamel's integral; so
that

t
Cp(t) = f [ACL(t - 1) d(r)] at (20)
0

Frequency response characteristics can be obtained easily by using the Laplace
transform of equation (20) so that

cp(s) = Ac(s) a(s) = [Acg(s)] (s)[a(s)] (21)



from which
cpiv = [fop(iw)] (v [aliv]

Because of the manner in which time enters into equations (18) and (19), closed-
form Laplace transforms are not known to exist for the general indicial lift
function ACL(t). Therefore, a form for which closed-form Laplace transforms

do exist, which would also be convenient, has been sought. In reference 2 the
indicial response for several specific elliptic wings were given in exponential
series of the form

ACL = ag + a1e—b1 [Ut/(cr/2):| + aze-bz[Ut/(Cr/2):| + . . . (22)

In the present study, equation (18) was approximated by just one exponential
term, namely,

A ye~2[Ut/ (e /2] (23)
(CLa)gg
that leads to
[ A(1 + A)
Ay, (£) . J 1 - ————5———- tan A
= —-{(bP + 1 + —
(CLa)SS bP + bQ + bR A(1 + )) r [A(] + A)T
1« —— tan A| +| ————
L 2
-1 - ye—z[Ut/(Cr/Z):, (24)

The parameter y was determined by evaluating equation (24) at
Ut/(c,/2) = 0 and solving for y. The resulting equation is

- M
A(l + A)
1 - — tan A
1 2
y=1- bP + 1 + ?
[bP + bQ + bR]Ut/(cr/2)=0 A(1 + ) 2 A(T + A) 2
1 = ————— tan A + ) —_—
. 2 2 J
(25)

10
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where
A(l +A)
—  sec? A - tan A
A(l + 1))
bp) = + tan A
2 Al + ) 2
— sec A - sin A| + cos? A
A(1 +X)
1 + — tan A
b ut/ (cp/2)=0 = —= A1 +0) 12 [a( + 02
\“:1 + ——— tan Aj' + [—}
2 2
A(1 + A
- __————l tan A
+ - :
[ Al +\) :]2 {A(‘ + A)}z
1 - —— tan A + [
2 2
~
A(l + A)
(— sec? A + tan A
Al + 0) 2

(bR) gt/ (c,/2)=0 =

solved for 1z, the result is

1 1
——(log, —
Ut/(c,/2)) ¥

Determination of the parameter =z

2
sec A + sin AJ + cos? A

is more difficult.

Acy, (£)

1 -
(CLa)ss

- tan A

r (26)

J

If equation (23) is

(27)

11



Evaluation of equation (27) at Ut/(c /2) = 0 yields the indeterminant form
ACy, (0)
0/0, since y 1is precisely equal to 1] = ————|. However L'Hospital's rule

(‘o) e

can be used with equation (27) and the resulting expression evaluated for z.
By using L'Hospital's rule

[ 4 acg, (t) 1)
'| -
4 Ut (CLa)ss
1 \c¢/2
Z = - Limit - N .F
ut/(cy/2)»>0|y 1 ACy, (0)
-1 - —
Y| (%a)gs
1 d ACr, (t)
oot eseky suen| (e
Ut
/(e Y d ( Lo‘)ss
cp/2

Using equation (24) results in

P
A(l + ) A
1] = —— tan A
1 2
z = —=(bP + 1 + __ .
Y [ A(1 + 1)) ]2 l:A('I + A)T?
1] =« — tan A | —
2 2
g J
d 1
X
g Ut \ bP + b0 + bR
(Cr/2>

Ut/ (cp/2) =0

12
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. .

or
e 2
A(1 + )
- ———— tan A
1 2
z=-—-(bP+1+ _ ?
y [ A1 + 1) }2 [AU +Aﬂz
1 - —  tan A R
2 2
L J
1
x | - (bP + bQ + bR) (28)
(bP + bQ + bR)ZJUt/(cr/2)=o af Zt
cy/2

Ut/ (cp/2) =0

The derivatives appearing in equation (28) were evaluated, and the results are

d(bP)

d(Ut>
/2) Jut/(ep/2)=0

d(bQ)

Ut
(e
L\’ Jur/(cpr2)=0

d(bR)
Ut

(e
/2 |t/ (cp/2)=0

0

1A + A)]2
2 2
A(1 + 1)) 2 a( + 2122
1 + 2 tan A + _2——

(29)

A

4 {AU +2)
2

A1 + A)
sec? A + tan A »2—secA+sinA sin A + cos? A

(1 +X) tan A A(1 + A)

4

1
- 3 BRIOt/ (e /2)=0 *

2
sec A + sin A} + cos? A

[Aﬂ + )

x -

A(D + A) 2 372
—2—~secA+sinl\ + cos2 A

13



Equations (25) and (26) were used to calculate y for a wide range of wing
sweep angles, aspect ratio, and taper ratio. Equations (28), (26), and (29)
were used to calculate 2z for the same range of geometric variables. Results
from the calculations are presented in figure 3 and can be used in equation (23)
for calculating indicial response.

COMPARISON OF RESULTS WITH OTHER METHODS

This section compares results from the methods developed in this study with
other methods for which numerical results are published.

Two-Dimensional Wing

The two-dimensional wing is a rather special case having A +» «, X\ =1,
A = 0. The indicial-lift function given by the equation is relatively simple
(eg. (10)) and does possess a closed-form Laplace transform. There is no need,
therefore, to use the exponential form for the indicial 1lift. Results from
equation (10) are compared with those of references 1, 2, 4, 5, and 11 in fig-
ure 4. The results from equation (10) are in excellent agreement with those of
references 1, 2, 4, and 11, which are exact solutions or numerical approxima-
tions of exact solutions. The success of equation (10) in matching these exact
solutions is attributable to the selection of x, (the starting point of the
shed vortex) and the velocity of the shed vortex to match the Wagner solution.

Three-Dimensional Wings

Vortex systems and doublet distributions used to model three-dimensional
wings are generally rather complex and lead to involved calculations for deter-
mining indicial 1ift. Numerical results, therefore, are available for only a
few specific wings for comparison with equation (23).

Rectangular wings.- Rectangular wings have A = 1.0 and A = 0. Results
from use of equation (23), with values of y and 2z from figure (3), are com~-
pared with results from other more exact (and more complex) methods in figure 5
for wings of aspect ratio 6 and 4, The figure shows that the approximate method
of the present paper is in good agreement with the results of references 4 and 5.

Triangular wings.- Triangular wings have A = 0 and, in addition, the wing
geometry leads to a simple relationship between aspect ratio and the angle of
the quarter-chord line, that is,

tan A = (30)

Pl w

Results from use of equation (23) and values of y and 2 from figure 3 are
compared with results of reference 16 in figure 6 for triangular wings of aspect
ratio 4 and 2. In these cases the agreement between the results of the present
approximate theory with results of reference 16 is excellent.

14



Limiting case with A > 0.- The parameter y for wings having aspect ratio
of zero can be determined readily from equations (25) and (26) and is

Yaro = 0 (31)
The indicial response function, therefore, is

ACL (t)

(Cra)

SsJa+0

= 1.0 (32)

This result agrees with the results of reference 16.

CONCLUDING REMARKS

An approximate indicial 1lift function associated with circulation has been
developed for tapered, swept wings in incompressible flow. The function is
derived based on representing the wings by a simple vortex system. Comparison
of results from the derived equations compare well with the limited available
results from more rigorous and complex methods.

The equations, as derived, are not very convenient for calculating the
dynamic response of aircraft, parameter extraction, or for determining frequency-
response curves for wings. An expression, therefore, is developed to convert
the indicial response function to an exponential form which is more convenient
for these purposes. The exponential form is nearly as accurate as the form
derived from the simplified vortex system.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

May 5, 1978
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Figure 1.- Vortex representation of a two-dimensional wing following a step
increase in angle of attack.
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Figure 3.- Concluded.
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