Nonlinear Analysis and Performance Evaluation of the Annular Suspension and Pointing System (ASPS)

Suresh M. Joshi

GRANT NSG-1241
AUGUST 1978
Nonlinear Analysis and Performance Evaluation of the Annular Suspension and Pointing System (ASPS)

Suresh M. Joshi
Old Dominion University Research Foundation
Norfolk, Virginia

Prepared for
Langley Research Center
under Grant NSG-1241

NASA
National Aeronautics
and Space Administration
Scientific and Technical
Information Office
1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>3</td>
</tr>
<tr>
<td>MATHEMATICAL MODEL DEVELOPMENT</td>
<td>9</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>9</td>
</tr>
<tr>
<td>"Coarse" Assembly Equations</td>
<td>10</td>
</tr>
<tr>
<td>Vernier Assembly Equations</td>
<td>16</td>
</tr>
<tr>
<td>Combined Equations of Motion</td>
<td>18</td>
</tr>
<tr>
<td>Magnetic Actuator Centering Errors</td>
<td>19</td>
</tr>
<tr>
<td>Magnetic Actuator Models</td>
<td>20</td>
</tr>
<tr>
<td>Roll Motor Disturbance Model</td>
<td>20</td>
</tr>
<tr>
<td>Cable Forces and Torques</td>
<td>21</td>
</tr>
<tr>
<td>Gimbal Torquer Models</td>
<td>22</td>
</tr>
<tr>
<td>CONTROL SYSTEMS DESIGN</td>
<td>24</td>
</tr>
<tr>
<td>"Coarse" Gimbal Control System</td>
<td>24</td>
</tr>
<tr>
<td>Magnetic Actuator Control System</td>
<td>26</td>
</tr>
<tr>
<td>SENSOR MODELS</td>
<td>31</td>
</tr>
<tr>
<td>PAYLOAD ATTITUDE STATE ESTIMATORS</td>
<td>32</td>
</tr>
<tr>
<td>SIMULATION DESCRIPTION</td>
<td>32</td>
</tr>
<tr>
<td>NUMERICAL RESULTS AND DISCUSSION</td>
<td>35</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
<tr>
<td>TABLES</td>
<td>41</td>
</tr>
<tr>
<td>FIGURES</td>
<td>50</td>
</tr>
</tbody>
</table>
NONLINEAR ANALYSIS AND PERFORMANCE EVALUATION OF THE ANNULAR SUSPENSION AND POINTING SYSTEM (ASPS)

By

Suresh M. Joshi*

SUMMARY

The Annular Suspension and Pointing System (ASPS) can provide highly accurate fine pointing for a variety of solar-, stellar-, and Earth-viewing missions. In this report, a detailed nonlinear mathematical model is developed for the ASPS/Space Shuttle system. The equations are augmented with models of components such as magnetic actuators and gimbal torquers. Control systems and payload attitude state estimators are designed in order to obtain satisfactory pointing performance, and statistical pointing performance is predicted in the presence of measurement noise and disturbances.

INTRODUCTION

The Annular Suspension and Pointing System (ASPS) holds the promise of providing very high payload pointing accuracy and stability during space shuttle orbital missions. The basic concept of ASPS was suggested in reference 1, and was developed in reference 2, along with preliminary results on statistical pointing performance based on a linearized mathematical model. A more elaborate linear analysis was carried out in references 3 and 4 in which a detailed model of the ASPS/Space Shuttle system was developed and used. Payload attitude measurement noise and state estimators were also included in references 3 and 4. The linear analyses used linear mathematical models for stochastic crew motion disturbances.

* Research Assistant Professor, School of Engineering, Old Dominion University, Norfolk, Virginia 23508.
The physical system, however, contains a number of nonlinearities. The nonlinearities include inherent trigonometric nonlinearities, magnetic actuator nonlinearities, gimbal friction and torquer nonlinearities, etc. It was therefore necessary to include these nonlinearities in order to more accurately predict the performance of ASPS. Detailed information regarding ASPS components (e.g., magnetic actuator models) also became available from the Sperry Flight Systems, under contract NAS1-14214, during the course of this work, and was used in the nonlinear mathematical model.

The ASPS (fig. 1) consists of an elevation gimbal and a lateral gimbal for "coarse" pointing. Magnetic suspension and fine pointing actuators are provided in the vernier assembly and generate fine pointing control torques. The payload or vernier assembly (VA), which consists of an annular rim (made of magnetic material) attached to a payload mounting plate (PMP), is levitated by the magnetic actuators of the VA. The payload instrument is mounted on the PMP. A noncontacting optical data coupler is used for transmission of data between VA and the Space Shuttle pallet. A battery pack mounted on the PMP supplies the payload power and eliminates the necessity of any cables. As a result of design evolution, the present version of ASPS, which is shown in figure 1, is somewhat different from the ASPS used in references 3 and 4 (although mathematical descriptions do not significantly differ). The functions of various components remain the same, and are described in references 2, 3, and 4. The magnetic actuator configuration is also different from that used in references 2, 3, and 4. There are three axial actuator stations (A, B, C) spaced 120° apart and two radial actuator stations (U, V) spaced 90° apart, as shown in figure 2. Roll motor station W consists of two segments, one inside and one outside the rim. The system considered in this study has been sized for payloads up to 600 kg with Z-axis center of mass offsets up to 1.5 m. The magnetic suspension actuators use bias current linearization to remove the current squared nonlinearity. To compensate for the inverse-gap-squared relationship, a signal proportional to the gap is used to multiply coil currents. A segmented two-phase solid iron rotor AC induction motor controls the roll rotational servo. Proximity sensors
are provided at each axial and radial actuator station, as well as at the roll motor station to compensate for radial gap. The "coarse" gimbal torquers are permanent magnet, two-phase brushless DC type.

The objectives of this study are

- Development of complete nonlinear equations of motion for ASPS/Space Shuttle system.
- Inclusion of all available component models (e.g., magnetic actuators, "coarse" gimbal torquers, etc.).
- Design of control systems for the vernier assembly and the "coarse" gimbals.
- Design of payload attitude state estimators.
- Prediction of statistical pointing performance via digital computer simulation.

The analysis presented here is based on rigid-body models, and thus does not contain representations of structural modes.

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>Axial actuator stations</td>
</tr>
<tr>
<td>A, A, A_\text{g}, A_{ij}</td>
<td>Coefficient matrices</td>
</tr>
<tr>
<td>A_j</td>
<td>Point on lateral gimbal representing actuator station j (j = A, B, C, U, V)</td>
</tr>
<tr>
<td>B_j</td>
<td>Point on vernier assembly corresponding to A_j</td>
</tr>
<tr>
<td>C_F, C_T</td>
<td>Coefficient matrices used in controller design</td>
</tr>
<tr>
<td>C_g</td>
<td>"Coarse" gimbal control matrix</td>
</tr>
<tr>
<td>C_p(x)</td>
<td>Cross product matrix of x</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>Transformation matrix from i- to j-coordinate system</td>
</tr>
<tr>
<td>d</td>
<td>Five-dimensional vector appearing in eq. (67)</td>
</tr>
<tr>
<td>E</td>
<td>Body rate to Euler rate transformation matrix</td>
</tr>
</tbody>
</table>
\(e_i \)
Unit vector in \(i \) direction \((i = 1, 2, 3)\)

\(F \)
Magnetic actuator force vector (total)

\(F_{ai} \)
Magnetic actuator axial forces

\(F_{\text{bias}} \)
Cable bias force

\(F_{ca} \)
Total cable force

\(F_{cs} \)
Cable spring force

\(F_j \)
Force vector generated by actuator station \(j \)

\(F_{le i} \)
Force exerted by lateral gimbal on elevation gimbal contact surface

\(F_r \)
Reactive force acting on coarse assembly

\(F_{rd} \)
Radial disturbance force due to roll motor

\(F_{ri} \)
Magnetic actuator radial forces

\(F_s \)
Force acting on shuttle

\(F_T \)
Tangential force due to roll motor

\(f \)
Force vector defined in eq. (78)

\(f_c \)
Cogging frequency

\(f_r \)
Ripple frequency

\(I_o \)
Inertia matrix of shuttle

\(I_1 \)
Inertia matrix of elevation gimbal

\(I_2 \)
Inertia matrix of lateral gimbal

\(I_v \)
Inertia matrix of vernier (payload) assembly

\(J \)
Performance function

\(K \)
Control gain

\(L \)
Vector functions of \(\omega_o, \phi, \theta, \dot{\phi}, \dot{\theta}, \alpha_o, \alpha_v, \omega_v \)

\(L_g \)
Proportional gain for gimbal control system

\(M_p \)
External moment acting on shuttle

\(M_v \)
Magnetic actuator torque acting on vernier assembly
m = \(m_0 + m_1 + m_2 \)

\(m_0 \)
Mass of shuttle

\(m_1 \)
Mass of elevation gimbal

\(m_2 \)
Mass of lateral gimbal

\(m_v \)
Mass of vernier assembly

\(O \)
Origin of 2"-frame; also the point fixed to lateral gimbal which is the nominal position of payload mounting plate center

\(O_i \)
Origin of i-frame

\(O_v \)
Center of payload mounting plate

\(P \)
Center of mass of shuttle

\(P_c \)
Combined center of mass of shuttle and "coarse" gimbals

\(P_e \)
Center of elevation gimbal axis

\(P_l \)
Center of lateral gimbal axis

\(P_r \)
Percent ripple

\(R_{c_{m1}} \)
Position of elevation gimbal c.m. relative to \(P \) in O-system

\(R_{c_{m2}} \)
Position of lateral gimbal c.m. relative to \(P \) in O-system

\(R_{c_{ma}} \)
Position of lateral gimbal c.m. relative to \(P_e \) in 1-system

\(R_{c_{mm}} \)
\(m_1 R_{c_{m1}} + m_2 R_{c_{m2}} \)

\(R_{c_{lei}} \)
Position of a point on the mutual contact surface between lateral and elevation gimbals relative to \(P_e \)

\(r \)
Radius of payload mounting plate used in magnetic actuator torque expressions

\(r_c \)
Position of combined c.m. of shuttle and two gimbals relative to \(O_i \)

\(r_{c_{m1}} \)
Position of elevation gimbal c.m. relative to \(P_e \) in 1'-system
\(r_{cm2} \) Position of lateral gimbal c.m. relative to \(P_x \) in \(2'\)-system

\(r_{cmv} \) Position of vernier assembly c.m. in \(v \)-system

\(r_d \) Position of \(P_x \) relative to \(P_e \) in \(1'\)-system

\(r_e \) Position of payload mounting plate center relative to \(0 \) in \(2''\)-system

\(r_j \) Position of actuator station \(j \) in \(2''\)-system

\(r_x \) Position of \(0 \) relative to lateral c.m. in \(2\)-system

\(\bar{r}_{lei} \) Position of a point on the mutual contact surface between lateral and elevation gimbals relative to \(P_x \)

\(\bar{r}_p \) Position of \(P \) relative to \(0_1 \)

\(\bar{r}_v \) Position of vernier assembly c.m. relative to \(0_1 \)

\(\bar{r}_1, \bar{r}_2 \) Positions of c.m. of elevation and lateral gimbals relative to \(0_1 \)

\(\bar{r}_{1}', \bar{r}_{2}' \) Positions of \(P_e \) and \(P_x \) relative to \(0_1 \)

\(r_{\phi vc} \) Rate command for \(\phi_v \)

\(T_{bias} \) Bias cable torque

\(T_c \) Cable torque acting on vernier assembly

\(T_{ca} \) Cable torque acting on lateral gimbal

\(T_{cog} \) Cogging torque

\(T_{cogo} \) Peak cogging torque

\(T_{com} \) Commanded torque

\(T_d \) Disturbance torque

\(T_f \) Gimbal friction torque

\(T_{fo} \) Peak or Coulomb friction torque

\(T_{fil} \) Estimator update interval

\(T_i \) Noise-generation time interval
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{RCJ}</td>
<td>Reaction control jet torque</td>
</tr>
<tr>
<td>T_r</td>
<td>Reaction torque acting on lateral gimbal</td>
</tr>
<tr>
<td>T_{ripple}</td>
<td>Ripple torque</td>
</tr>
<tr>
<td>T_1</td>
<td>Elevation gimbal torquer torque</td>
</tr>
<tr>
<td>$T_{1\text{com}}$</td>
<td>Elevation gimbal commanded torque</td>
</tr>
<tr>
<td>T_2</td>
<td>Lateral gimbal torquer torque</td>
</tr>
<tr>
<td>$T_{2\text{com}}$</td>
<td>Lateral gimbal commanded torque</td>
</tr>
<tr>
<td>$T_{i}(v)$</td>
<td>Transformation matrix for v radians rotation about axis i</td>
</tr>
<tr>
<td>T_V</td>
<td>Magnetic torque acting on vernier assembly</td>
</tr>
<tr>
<td>T'_3</td>
<td>$T_3(45^\circ)$</td>
</tr>
<tr>
<td>U, V</td>
<td>Radial actuator stations</td>
</tr>
<tr>
<td>(X, Y, Z)</td>
<td>Denotes coordinate frames; subscripts are described in the text</td>
</tr>
<tr>
<td>z</td>
<td>Integrator state variable</td>
</tr>
<tr>
<td>α_i</td>
<td>Coefficient matrices</td>
</tr>
<tr>
<td>α_o</td>
<td>Attitude vector of shuttle</td>
</tr>
<tr>
<td>α_v</td>
<td>Attitude vector of vernier assembly</td>
</tr>
<tr>
<td>α_{VR}</td>
<td>Attitude vector of vernier assembly relative to lateral gimbal</td>
</tr>
<tr>
<td>β</td>
<td>Incremental gimbal angle vector</td>
</tr>
<tr>
<td>β_c</td>
<td>Commanded gimbal angle vector</td>
</tr>
<tr>
<td>β_i</td>
<td>Vector functions of state variables</td>
</tr>
<tr>
<td>Γ_1, Γ_2</td>
<td>Matrices used in payload following controller design</td>
</tr>
<tr>
<td>γ</td>
<td>Gimbal torquer angle</td>
</tr>
<tr>
<td>$\Delta A, \Delta B, \text{etc.}$</td>
<td>Linearized center errors and gimbal angles [defined in eq. (67)]</td>
</tr>
<tr>
<td>δ_j</td>
<td>Centering error vector at actuator station j</td>
</tr>
</tbody>
</table>
\(\lambda \)
Desired decay characteristic

\(\rho \)
Damping ratio

\(\rho_{A_j} \)
Position of actuator station \(j \) relative to \(0 \)

\(\rho_{B_j} \)
Position of point on rim corresponding to \(A_j \) relative to \(0 \)

\(\rho_c \)
Position of combined c.m. of shuttle and two gimbals relative to \(P \)

\(\rho_{cmv} \)
Position of vernier assembly c.m. relative to \(0 \)

\(\rho_{cm1} \)
Position of elevation gimbal c.m. relative to \(P_e \)

\(\rho_{cm2} \)
Position of lateral gimbal c.m. relative to \(P_\perp \)

\(\rho_d \)
Position of \(P_\perp \) relative to \(P_e \)

\(\rho_e \)
Position of \(0 \) relative to \(0 \)

\(\rho_\perp \)
Position of \(0 \) relative to lateral gimbal c.m.

\(\rho_1, \rho_2 \)
Positions of elevation and lateral gimbal c.m. relative to \(P \)

\(\rho'_1, \rho'_2 \)
Positions of \(P_e \) and \(P_\perp \) relative to \(P \)

\(\tau_{se} \)
Torque exerted by shuttle on elevation gimbal

\((\phi, \theta) \)
Elevation and lateral gimbal angles

\((\phi_o, \theta_o, \psi_o) \)
Components of \(\alpha_o \)

\((\phi_v, \theta_v, \psi_v) \)
Components of \(\alpha_v \)

\(\phi_{vc}, \theta_{vc}, \psi_{vc} \)
Commanded values of \(\phi_v, \theta_v, \psi_v \)

\((\phi_{vr}, \theta_{vr}, \psi_{vr}) \)
Components of \(\alpha_{vr} \)

\(\Omega_{vr} \)
Angular velocity vector of vernier assembly relative to lateral gimbal

\(\Omega_1 \)
Angular velocity of elevation gimbal relative to shuttle

\(\Omega_2 \)
Angular velocity of lateral gimbal relative to elevation gimbal

\(\omega \)
Natural frequency
Angular velocities of shuttle, lateral, and elevation gimbals relative to i-frame

Angular velocity of vernier assembly relative to i-frame

Angular velocity of 1'-frame

Angular velocity of 2'-system

Position of actuator station j in v-system

An overhead bar denotes a vector quantity and corresponding operations indicate vector operations. (Overhead bars are not used to denote vectors in the Euclidian sense.) Superscripts "T" and "-1" denote transpose and inverse, respectively. One and two overhead dots denote the first and second time derivatives, and an overhead "^" denotes the estimated value of a variable.

MATHEMATICAL MODEL DEVELOPMENT

Coordinate System

Referring to figure 3 \((X_1Y_1Z_1)\) is an inertial coordinate system centered at \(O_1\). \((X_0Y_0Z_0)\) is a shuttle-fixed system centered at \(P\), the center of mass of the shuttle. \((X'_1Y'_1Z'_1)\) is a system fixed to the elevation gimbal, with origin at \(P_e\), the center of the elevation gimbal rotation axis. It is obtained from \((X_0Y_0Z_0)\) by one positive rotation \(\phi\) (elevation gimbal angle) about the \(X_0\) axis. Coordinate system \((X_1Y_1Z_1)\) is also fixed to the elevation gimbal and is parallel to the \((X'_1Y'_1Z'_1)\) system. It is centered at the elevation gimbal center of mass. System \((X'_2Y'_2Z'_2)\) is obtained by one positive rotation \(\theta\) (lateral gimbal angle) about the \(Y_1\) axis, and is fixed to the lateral gimbal. Its origin is the center, \(P_\lambda\), of the gimbal rotation axis. System \((X_2Y_2Z_2)\), which is also fixed to the lateral gimbal, is parallel to \((X'_2Y'_2Z'_2)\) and has the lateral gimbal center of mass as its origin. \((X'_2Y'_2Z'_2)\) is a system fixed to the lateral gimbal which is parallel to \((X_2Y_2Z_2)\). Its origin lies at \(0\), the center of the lateral gimbal plate, which is also the nominal position of the center \((O_v)\) of the payload mounting plate (PMP). \((X_vY_vZ_v)\) is a coordinate system fixed
to the vernier assembly (VA), and its origin is the center, O_v, of the PMP.

"Coarse" Assembly Equations

The "coarse" assembly consists of space shuttle, elevation gimbal, and lateral gimbal. Equations of motion for the "coarse" assembly can be derived by applying the method given in reference 5 (pp. 374-377) for a system of rigid bodies. "Coarse" assembly translation is given by:

$$m \ddot{\vec{r}_c} = \vec{F}_r + \vec{F}_s$$

(1)

where $m = m_0 + m_1 + m_2$, and \vec{r}_c is the position of the combined c.m. of the space shuttle, elevation gimbal, and lateral gimbal relative to O_v. \vec{F}_r is the total reactive force acting on the "coarse" assembly, and \vec{F}_s is the sum of other forces acting on the shuttle. \vec{F}_r consists of magnetic actuator force and cable force. The latter is present only when a cable is used for data transmission as a backup for the optical data coupler. Since

$$\vec{r}_c = \vec{r}_p + \vec{p}_c$$

(2)

and

$$\vec{p}_c = \frac{1}{m} (m_1 \vec{\rho}_1 + m_2 \vec{\rho}_2)$$

(3)

equation (1) becomes

$$m \ddot{\vec{r}}_p + m_1 \ddot{\vec{\rho}}_1 + m_2 \ddot{\vec{\rho}}_2 = \vec{F}_r + \vec{F}_s$$

(4)

(see fig. 3 for explanation).

"Coarse" assembly rotational equations are given by

$$\vec{H}_p = \vec{M}_p - \vec{\rho}_c \times m \vec{\dot{r}}_p$$

(5)
where \(H_p \) is the angular momentum with \(P \) as the reference point or

\[
H_p = \dot{T}_0 \vec{\omega}_0 + \dot{T}_1 \vec{\omega}_1 + \dot{T}_2 \vec{\omega}_2 + \dot{\rho}_1 \times m_1 \vec{\rho}_1 + \dot{\rho}_2 \times m_2 \vec{\rho}_2
\]

(6)

where \(I_1 \) and \(I_2 \) are the inertia matrices of the elevation and lateral gimbals relative to the 1- and 2-system, as observed by an observer rotating with the 0-frame. That is

\[
I_1 = D_{01}^T I_{1B} D_{01}, \quad I_2 = D_{02}^T I_{2B} D_{02}
\]

(7)

where \(I_{1B} \) and \(I_{2B} \) are inertia matrices of elevation and lateral gimbals relative to the 1-frame and 2-frame, respectively. \(M_p \) is the torque exerted on the "coarse" assembly.

\[
\omega_1 = \omega_0 + D_{01}^T \Omega_1 = \omega_0 + \Omega_1
\]

(8)

\[
\omega_2 = \omega_0 + \Omega_1 + D_{02}^T \Omega_2 = \omega_0 + \Omega_1 + D_{01}^T \Omega_2
\]

(9)

Using the notation

\[
\begin{align*}
\vec{H}_i &= \dot{T}_i \vec{\omega}_i \\
\dot{\vec{H}}_p &= \vec{H}_0 + \vec{H}_1 + \vec{H}_2 + \dot{\rho}_1 \times m_1 \vec{\rho}_1 + \dot{\rho}_2 \times m_2 \vec{\rho}_2 = \vec{M}_p - \dot{\rho}_c \times m \vec{r}_p \\
\ldots &= (\vec{H}_i)_r + \vec{\omega}_0 \times \vec{H}_i, \quad i = 0, 1, 2
\end{align*}
\]

(10)

(11)

where \((\vec{H}_i)_r \) is the derivative of \(\vec{H}_i \) relative to the 0-frame, expressed along 0-coordinate system,

\[
\begin{align*}
(\vec{H}_i)_r &= I_i \dot{\vec{\omega}}_i + \dot{T}_i \vec{\omega}_i, \quad i = 0, 1, 2 \\
\ldots &= (\dot{\vec{\rho}}_i)_r + 2\omega_0 \times (\dot{\vec{\rho}}_i)_r + \dot{\vec{\omega}}_0 \times (\vec{\omega}_0 \times \dot{\vec{\rho}}_i) + \dot{\vec{\omega}}_0 \times \dot{\vec{\rho}}_i, \quad i = 1, 2
\end{align*}
\]

(12)

(13)
But

\[\ddot{\rho}_1 = \dot{\rho}_1 + \dot{\rho}_{cm1}, \quad \ddot{\rho}_2 = \dot{\rho}_1 + \dot{\rho}_d + \dot{\rho}_{cm2} \]

(14)

\[(\ddot{\rho}_1)_r = (\ddot{\rho}_2)_r = 0 \]

and

\[(\ddot{\rho}_1)_r = \dot{\rho}_1' + D_{01}^T r_{cm1} \triangle R_{cm1} \]

(15)

\[(\ddot{\rho}_d)_r = r_d \]

\[(\ddot{\rho}_2)_r = \dot{\rho}_1' + D_{01}^T r_d + D_{02}^T r_{cm2} \triangle R_{cm2} \]

(16)

Components of vector derivatives \(\ddot{\rho}_1, \ddot{\rho}_2 \) can therefore be evaluated as in equation (13) along the 0-axes to obtain

\[\ddot{\rho}_1 = \alpha_1 \dot{\omega}_0 + \alpha_2 \dot{\phi} + \beta_1 \]

(17)

\[\ddot{\rho}_2 = \alpha_3 \dot{\omega}_0 + \alpha_4 \dot{\phi} + \alpha_5 \dot{\theta} + \beta_2 \]

(18)

where matrices \(\alpha_i, \beta_i \) are functions of \(\omega_0, \phi, \theta, \dot{\phi}, \dot{\theta} \).

"Coarse" assembly rotational equations of motion are then obtained by substituting for \(\ddot{\rho}_1, \ddot{\rho}_2 \) from equations (17) and (18), into equation (10):

\[A_{11} \dot{\omega}_0 + A_{12} \dot{\phi} + A_{13} \dot{\theta} + L_{\omega_0} = M_p - \frac{1}{m} C_p (R_{cmn})(D_{02}^T F_r + F_s) \]

(19)

where matrices \(A_{ij} \) and \(L_{\omega_0} \) are functions of \(\omega_0, \phi, \theta, \dot{\phi}, \dot{\theta} \), and

\[R_{cmn} = m_1 R_{cm1} + m_2 R_{cm2} \]

(20)
To obtain complete equations of motion for the "coarse" assembly, equations for elevation and lateral gimbals must also be derived. In these derivations, forces acting at the contact surfaces between shuttle and elevation gimbal, and between elevation and lateral gimbals, must be considered. Forces exerted by the elevation gimbal on the lateral gimbal at their mutual contact surface are assumed to be acting radially, i.e., they produce no torque about the lateral gimbal axis of rotation. Similarly, forces exerted by the shuttle on the elevation gimbal at their mutual contact surface are assumed to produce no torque about the X_1-axis. Equal and opposite reactive forces act on corresponding bodies at contact surfaces. Since these internal forces must be eliminated from the equations of motion, it is convenient to derive lateral gimbal equations first. Let \vec{F}_{lei} be a force exerted by the lateral gimbal on the elevation gimbal at point \vec{r}_{lei} (with respect to $2'$-system) located on the contact surface ($i = 1,2,3\ldots$). Force $-\vec{F}_{lei}$ is exerted by the elevation gimbal on the lateral gimbal.

Lateral gimbal translation equation is

$$m_2 \ddot{r}_2 = \vec{F}_r - \sum \vec{F}_{lei} \quad (21)$$

But

$$\vec{r}_2 = \vec{r}_p + \vec{r}_2 \quad (22)$$

Substituting for \vec{r}_2 into equation (21), and for \vec{r}_p from equation (4),

$$\sum \vec{F}_{lei} = \left(1 - \frac{m_2}{m}\right) \vec{F}_r + \frac{m_1}{m} \frac{m_2}{\rho_1} \vec{\omega} + \frac{m_2}{m} \left(\frac{m_2}{m} - 1\right) \vec{\omega} \quad (23)$$
It is convenient to derive lateral gimbal rotation equations in the 2'-system. Let \(I_{2B}' \) be the inertia matrix of the lateral gimbal relative to the 2'-system. Then

\[
H_2 = I_{2B}' \omega_{2B}
\]

(24)

where

\[
\omega_{2B}' = D_{02} \omega_0 + D_{12} \Omega_1 + \Omega_2
\]

(25)

\[
(H_2)_r + \omega_{2B}' \times (H_2)_r = T_r - \bar{r}_{lei} \times F_{lei} + \bar{T}_2 - \bar{\rho}_{cm2} \times m_2 \bar{r}_2
\]

(26)

where \(T_r \) is the reaction torque (consisting of magnetic torque and cable torque), and \(\bar{T}_2 \) is the torquer torque. \(\bar{r}_2 \) is the position vector of \(P_\ell \) relative to \(O_1 \).

\[
\bar{r}_2 = \bar{r}_p + \bar{\rho}_2 - \bar{\rho}_{cm2}
\]

(27)

After evaluating \(\bar{r}_2 \)' in a way similar to equation (13), and simplifying

\[
A_{31} \dot{\omega}_0 + A_{32} \dot{\phi} + A_{33} \dot{\theta} + L_\theta' = T_r + T_2 - \left(\sum \bar{r}_{lei} \times F_{lei} \right)
\]

\[
- \frac{m_2}{m} C_p(r_{cm2})(F_r + D_{02} F_s)
\]

(28)

Equation (28) is obtained along the 2'-system. Matrices \(A_{ij} \) and \(L_\theta' \) are functions of \(\omega_0, \phi, \theta, \dot{\phi}, \) and \(\dot{\theta} \). Equation (28) gives the value of \(\sum \bar{r}_{lei} \times F_{lei} \) (along the 2'-coordinate system). Since forces \(F_{lei} \) do not produce torque about the \(Y_2' \) axis, the \(Y_2' \) component of \(\sum \bar{r}_{iei} \times F_{lei} \) is zero. Thus the lateral gimbal equation is
\[A_{31} \ddot{\phi} + A_{32} \dot{\phi} + A_{33} \dot{\theta} + L_\theta = e_2^T (T_r + T_2) \]
\[- \frac{m_2}{m} e_2^T C_p (r_{cm_2}) (F_r + D_{02} F_s) \]

where

\[A_{3j} = e_2^T A_{3j}^t, \quad L_\theta = e_2^T L_\theta^t \]

Elevation gimbal rotation equations are conveniently written in the 1'-system. Let

\[H_1 = I_{1B}^t \omega_1^t \]

where \(I_{1B}^t \) is the inertia matrix of the elevation gimbal relative to the 1'-system.

\[\omega_1^t = D_{01} \omega_0 + \Omega_1 \]

\[(\vec{H}_1)_r + \vec{\omega}_1^t \times \vec{H}_1 = \vec{R}_{lei} \times \vec{F}_{lei} + \vec{T}_1 + \vec{\tau}_{se} - \vec{\rho}_{cm_1} \times m_1 \vec{r}_1 - \vec{T}_2 \]

where \(\vec{R}_{lei} \) is the point of application of force \(\vec{F}_{lei} \) exerted by the lateral gimbal at the contact surface, and \(\vec{\tau}_{se} \) is the torque due to forces exerted by the shuttle at the elevation gimbal-shuttle contact surface. \(\vec{T}_1 \) is the torque exerted by the torquer, and \(-\vec{T}_2\) is the reaction torque exerted by the lateral gimbal torquer

\[\vec{R}_{lei} = \vec{\rho}_d + \vec{\tau}_{lei} \]

\[(\vec{H}_1)_r + \vec{\omega}_1^t \times \vec{H}_1 = \vec{\rho}_d \times \vec{F}_{lei} + \sum \vec{R}_{lei} \times \vec{F}_{lei} + \vec{T}_1 \]
\[- \vec{\rho}_{cm_1} \times m_1 \vec{r}_1 + \vec{\tau}_{se} - \vec{T}_2 \]
\(\tau_{se} \) has no component along the \(X_1 \) axis

\[
\vec{r}_1 = \vec{r}_p + \vec{p}_1 - \vec{p}_{cm_1}
\]

(35)

The elevation gimbal equation can be obtained by substituting from equation (28) for \(\sum \vec{r}_{ei} \times \vec{F}_{lei} \), and from equation (23) for \(\sum \vec{F}_{lei} \), after evaluating \(\vec{p}_{cm_1} \times m_1 \vec{r}_1 \) as in the case of the lateral gimbal, and taking only the first components.

\[
A_{21} \dot{\omega}_0 + A_{22} \dot{\phi} + A_{23} \ddot{\theta} + L_\phi = e_1^T \left[T_1 + D_{12}^T T_r \right.

- C_p \left(\frac{m_2}{m} R_{cma} + \frac{m_1}{m} r_{cm_1} \right)

\cdot \left(D_{12}^T F_r + D_{01} F_s \right)

+ C_p (r_d) D_{12}^T F_r \left] \right)
\]

(36)

where

\[
R_{cma} = r_d + D_{12}^T r_{cm_2}
\]

(37)

Vector coefficients \(A_{ij} \) and \(L_\phi \) are functions of \(\omega_0, \phi, \theta, \dot{\phi}, \) and \(\ddot{\theta} \). Thus equations (19), (29), and (36) define complete rotational motion of the "coarse" assembly.

Vernier Assembly Equations

Let \(\vec{r}_V \) be the position of vernier assembly (VA) center of mass relative to \(O_i \). Then

\[
m_v \ddot{\vec{r}}_V = -\vec{F}_r
\]

(38)
But

\[\overrightarrow{r_v} = \overrightarrow{r_p} + \overrightarrow{\rho_\phi} + \overrightarrow{\rho_e} + \overrightarrow{\rho_{cmv}} \]

(39)

\(\overrightarrow{\rho_\phi} \) can be evaluated as in equation (13). It is convenient to evaluate it along the 2'-coordinates. \(\overrightarrow{\rho_{cmv}} \) can be conveniently evaluated along the v-system:

\[\overrightarrow{\rho_{cmv}} = \overrightarrow{\omega_v} \times \overrightarrow{\rho_{cmv}} + \overrightarrow{\omega_v} \times (\overrightarrow{\omega_v} \times \overrightarrow{\rho_{cmv}}) \]

(40)

\(\overrightarrow{\rho_e} \), the acceleration of PMP center relative to 2''-frame, can be evaluated along 2''-coordinates as in equation (13). Substitution and simplification yield the following VA translation equation along the 2''-system:

\[\ddot{\overrightarrow{r_e}} + H_{11} \dot{\omega}_0 + H_{12} \dot{\phi} + H_{13} \dot{\theta} + H_{14} \dot{\omega}_v + \overrightarrow{L_v} = -\left(\frac{1}{m_v} + \frac{1}{m}\right)F_r \]

\[- \frac{1}{m} D_02 F_s \]

(41)

where \(H_{1j} \) and \(L_v \) are functions of \(\omega_0, \phi, \theta, \omega_v, \alpha_0, \phi, \theta, \alpha_v \), and \(\overrightarrow{r_e} \).

Defining

\[H_v = I_v \omega_v \]

(42)

where \(I_v \) is the VA inertia matrix with respect to the v-system

\[I_v \omega_v + \omega_v \times (I_v \omega_v) = T_v + T_c - \overrightarrow{\rho_{cmv}} \times m_v \overrightarrow{\omega_v} \]

(43)

where \(T_v \) and \(T_c \) are magnetic actuator and cable torques in v-system. Substituting for \(m_v \overrightarrow{\omega_v} \) from equation (38) and expressing along 2''-coordinates results in.
\[\dot{\omega}_v = I_v^{-1} \left[-C_p(\omega_v) I_v \omega_v - T_v - C_p(r_{cmv}) \times (F_v - D_2 F_{ca}) + T_c \right] \]

(44)

Combined Equations of Motion

The "coarse" assembly equations have the form:

\[\bar{A} \begin{bmatrix} \dot{\omega}_0 \\ \phi \\ \theta \end{bmatrix} = y \]

(45)

where \(\bar{A} \) is a 5 x 5 matrix and \(y \) is a 5 x 1 vector of functions of \(\omega_0, \phi, \dot{\phi}, \theta, \dot{\theta} \), and the forcing functions. These equations can be solved for \((\omega_0, \phi, \theta)^T\) by inverting \(A \):

\[(\omega_0, \phi, \theta)^T = A^{-1} y \]

(46)

Other equations are

\[\dot{\alpha}_0 = E_0^{-1} \omega_0 \]

(47)

\[\frac{d}{dt} \phi = \dot{\phi} \]

(48)

\[\frac{d}{dt} \theta = \dot{\theta} \]

(49)

\[\frac{d}{dt} \hat{r}_e = \hat{r}_e \]

(50)

\[\dot{\alpha}_v = E_v^{-1} \omega_v \]

(51)

where \(E_0 \) and \(E_v \) are Euler to body rate transformation matrices for shuttle and VA.
Equations (46) to (51), along with (41) and (44) represent complete rigid-body equations of motion for the ASPS/space shuttle.

Magnetic Actuator Centering Errors

Let \(\rho_{A_j} \) denote the position of actuator station \(j \) relative to 0, the lateral gimbal plate center, and \(\rho_{B_j} \) denote the position of corresponding point \(B_j \) in the vernier assembly, relative to \(O_v \). Then the magnetic actuator centering errors are given by

\[
\delta_j = -\rho_{A_j} + \rho_e + \rho_{B_j}
\] \hspace{1cm} (52)

In the 2"-system, this equation reduces to:

\[
(\delta_j)_r = r_e + (D_{02} D_{10} \hat{D}_{iv}^T - I)r_j
\] \hspace{1cm} (53)

where \(r_j \) = position of actuator station \(j \) in 2"-system, and

\[
\hat{D}_{iv} = T_2(\theta_v) T_1(\phi_v)
\] \hspace{1cm} (54)

For axial actuator stations,

\[
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
-\sqrt{3}/2 \\
-1/2 \\
0
\end{bmatrix}, \quad \begin{bmatrix}
\sqrt{3}/2 \\
-1/2 \\
0
\end{bmatrix}
\] \hspace{1cm} (55)

For radial stations,

\[
\begin{bmatrix}
-1/\sqrt{2} \\
1/\sqrt{2} \\
0
\end{bmatrix}, \quad \begin{bmatrix}
1/\sqrt{2} \\
0 \\
0
\end{bmatrix}
\] \hspace{1cm} (56)
For roll motor,

\[
\begin{bmatrix}
0 \\
-1 \\
0
\end{bmatrix}
\]

(57)

At axial actuators, only axial centering errors are measured, which are given by the third components of \(\delta_A, \delta_B, \delta_C \). Radial centering errors at stations U and V are obtained by transforming \(\delta_U, \delta_V \) by 45 degrees rotation about the roll axis and then taking appropriate components. Axial and radial centering error at station W are given by third and second components of \(\delta_W \).

It is also necessary to compute the time derivatives of centering errors for use in the magnetic actuator models. They are computed along the 2"-system using the method of equation (13).

Magnetic Actuator Models

The radial and axial magnetic actuators, which provide rim suspension forces as well as fine pointing torques, are inherently nonlinear devices. The nonlinearities are present because of the fact that the magnetic force is proportional to current squared, and is inversely proportional to the square of the gap. A bias current technique has been used to remove the current-squared nonlinearity, and a signal proportional to the measured gap is used to multiply each coil current in order to remove the inverse gap squared nonlinearity.

A mathematical model of such a magnetic actuator (axial or radial) was developed by Sperry Flight Systems under contract NAS1-14214. Each actuator model is of order 6 (3 for each of the 2 electromagnets). The model also incorporates limiters and losses due to eddy currents.

Roll Motor Disturbance Model

The roll motor selected for generating tangential force at station W is an ac induction motor with constant fixed field excitation and a control
field excitation which is proportional to the tangential force command. It consists of two curved stator segments, one on the inside and the other on the outside of the rim. The rim is nominally equidistant from both segments. Each segment has a fixed and a control field winding. Since both segments exert attractive forces on the rim which are inversely proportional to the gap squared, each stator winding is made to carry a current which varies linearly with gap in order to achieve radial force balance. A small magnitude anomaly radial force is still present. The roll motor is excited by a 100-Hz carrier—therefore, it is not practical to include a complete roll motor model in view of the enormous computer time requirements. However, a "worst" case situation can be simulated by including a 200-Hz (twice the carrier frequency) sinusoidal radial disturbance force at the roll motor station. A 2- or 3-second time history should then yield adequate results indicating effect of the roll motor.

Cable Forces and Torques

During normal operation, a noncontacting optical data coupler is used for transmission of information between the payload and space shuttle pallet. However, a transmission cable may be used as a backup system for the data coupler. The cable is assumed to be routed through the lateral "coarse" gimbal and the center of payload mounting plate, and is assumed to cause a constant axial force, a constant radial force, a constant torque about the roll axis, as well as axial and radial spring forces (proportional to relative displacements) and a torsion torque (proportional to relative roll angle). This simple representation is used to keep the number of state variables low. In 2'-coordinates, the spring forces acting on the lateral gimbal are given by

$$F_{csi} = K_{si} r_{ei}, \quad i = x, y, z$$ (58)

The total cable force acting on the lateral gimbal (in 2''-coordinates) is given by

$$F_{ca} = F_{cs} + F_{bias}$$
Relative Euler angles between the payload and the lateral gimbal are computed from:

\[
\alpha_{\text{VR}} = E^{-1}_{\text{VR}} \Omega_{\text{VR}}
\]

\[
\Omega_{\text{VR}} = D_{\text{V2}} \omega_{\text{V}} - \omega_{2B}^{'},
\]

where \(\alpha_{\text{VR}} = (\phi_{\text{VR}}, \theta_{\text{VR}}, \psi_{\text{VR}})^T \) is the attitude of the payload (Euler angles) relative to the lateral gimbal, and \(E^{-1}_{\text{VR}} \) is the body rate to Euler rate transformation matrix. The cable torque acting on the lateral gimbal is given by:

\[
T_{\text{ca}} = \begin{bmatrix} 0 \\ 0 \\ T_{\text{bias}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_{TS} \psi_{\text{VR}} \end{bmatrix}
\]

The cable torque acting on the VA is given by:

\[
T_{\text{c}} = D_{2v} T_{\text{ca}}
\]

where \(T_{\text{c}} \) is expressed in the v-system, and \(D_{2v} \) denotes the transformation matrix from the 2- to v-system.

Gimbal Torquer Models

A permanent magnet brushless dc torque motor is used for driving each "coarse" gimbal. It is assumed that the current loop has been compensated to obtain a high bandwidth, so that

\[
T_{\text{out}} = T_{\text{com}} - T_f + T_{\text{cog}} + T_{\text{ripple}}
\]

where \(T_{\text{out}} \), \(T_{\text{com}} \), \(T_f \) are the actual, commanded, and friction torques, and \(T_{\text{cog}} \) and \(T_{\text{ripple}} \) are the cogging and ripple torques. Friction torque \(T_f \) is generated using a Dahl model (ref. 6).
\[
\frac{dT_f}{d\gamma} = \sigma_f \left\{ 1 - \frac{T_f}{T_{fo}} \text{Sgn}(\dot{\gamma}) \right\}^i
\]

where

\[\gamma = \text{gimbal angle (rad)}\]
\[\sigma_f = \text{rest stiffness or slope (NM/rad)}\]
\[T_{fo} = \text{peak or Coulomb friction torque (NM)}\]
\[i = \text{the friction law (shape of the hysteresis curve)}\]

The friction torque is given by

\[
\frac{dT_f}{dt} = \frac{dT_f}{d\gamma} \frac{d\gamma}{dt}
\]

Ripple torque is given by:

\[
T_{\text{ripple}} = p_r T_{\text{com}} \left(|\sin(f_r \gamma)| - 1 \right)
\]

where

\[p_r = \text{percent of ripple}\]
\[f_r = \text{ripple frequency} = \text{no. of phases} \times \text{no. of pole pairs}\]

Cogging torque is given by:

\[
T_{\text{cog}} = T_{\text{cogo}} \sin(f_c \gamma)
\]

where

\[T_{\text{cogo}} = \text{peak cogging torque}\]
\[f_c = \text{cogging frequency} = \text{no. of slots}\]
CONTROL SYSTEMS DESIGN

The two control systems to be designed are the "coarse" gimbal control system and the magnetic suspension and fine pointing control system. The former may use magnetic actuator centering errors, or fine pointing error and rate estimates, or gimbal angle information, depending on the mode of operation. The magnetic suspension control system uses estimates of fine pointing errors and rates, and magnetic actuator centering errors measured by proximity sensors.

"Coarse" Gimbal Control System

For stellar or solar pointing missions, the basic modes of operation of the "coarse" gimbal control system are as follows:

1. Fine-pointing mode, fixed gimbals. In this mode, the "coarse" gimbals are required to be in fixed positions relative to the Shuttle.

2. Fine-pointing with payload following gimbals. In this mode, the gimbals are required to continuously follow the payload in such a manner as to keep the rim properly centered in the magnetic actuators.

3. "Coarse" gimbal backup mode. In this mode, the vernier assembly is mechanically latched to the lateral gimbal, and gimbal command torques are generated using payload attitude and rate estimates.

4. Gimbal slew mode. In this mode, appropriate slew rates are used to drive the gimbals, with the vernier assembly either latched or centered in the magnetic actuators.

The generation of commanded gimbal torquer torques is quite straightforward for mode 1 and mode 3. For the slew mode, the problem lies in computing the desired slew rates. The payload following gimbal control system of mode 2 can be obtained by generating gimbal angle commands which will minimize a norm of the axial and radial centering errors. This is done by linearization about the target pointing angles. The linearized expressions for axial and radial centering errors are
where ΔA_z, ΔB_z, ΔC_z denote incremental axial centering errors at actuator stations A, B, and C, and ΔU_r, ΔV_r denote incremental radial centering errors at actuator stations U and V. $\Delta \theta$, $\Delta \phi$ represent incremental lateral and elevation gimbal angles, and d is a five-dimensional vector.

\[
\begin{bmatrix}
\Delta A_z \\
\Delta B_z \\
\Delta C_z \\
\Delta U_r \\
\Delta V_r
\end{bmatrix}
= \begin{bmatrix}
e_3^T \Gamma_1 r_A & e_3^T \Gamma_2 r_A \\
e_3^T \Gamma_1 r_B & e_3^T \Gamma_2 r_B \\
e_3^T \Gamma_1 r_C & e_3^T \Gamma_2 r_C \\
e_2^T T'_3 \Gamma_1 r_U & e_2^T T'_3 \Gamma_2 r_U \\
e_1^T T'_3 \Gamma_1 r_V & e_1^T T'_3 \Gamma_2 r_V
\end{bmatrix}
\begin{bmatrix}
\Delta \theta \\
\Delta \phi
\end{bmatrix}
+ d
\] (67)

\[
\Gamma_1 = \frac{\partial D_{12}}{\partial \theta} D_{10} \hat{D}_T
\] (68)

\[
\Gamma_2 = D_{12} \frac{\partial D_{01}}{\partial \phi} D_{10} \hat{D}_T
\] (69)

The transformation matrices and their partial derivatives are evaluated at nominal values and target pointing angles. The 5×1 vector d is not a function of $\Delta \theta$ and $\Delta \phi$. Equation (67) can be symbolically written as:

\[
\Delta = A_g \beta + d
\] (70)

where A_g is a 5×2 matrix, and $\beta = (\Delta \theta, \Delta \phi)^T$. Minimizing the quantity

\[
J = ||\Delta||^2 = \Delta^T \Delta
\] (71)
with respect to β, the command angle is obtained as:

$$\beta_c = -(A_g^T A_g)^{-1} A_g^T (A_g - A_g \beta)$$

$$= C_g \Delta + \beta$$

Therefore, the error signal going into the control system is

$$\beta_c - \beta = C_g \Delta$$

(73)

where

$$C_g = -(A_g^T A_g)^{-1} A_g^T$$

(74)

The gimbal control matrix C_g is dependent on nominal values of pointing angles and requires periodic updating at large intervals of time. Payload following gimbal control can thus be achieved by feedback of five proximity sensor outputs. The desired gimbal torquer torques can be written as:

$$\begin{pmatrix}
T_{1\text{com}} \\
T_{2\text{com}}
\end{pmatrix}
= \begin{pmatrix}
K_{g1} & 0 \\
0 & K_{g2}
\end{pmatrix}
\begin{pmatrix}
\dot{\Delta}\phi \\
\dot{\Delta}\theta
\end{pmatrix}
+ \begin{pmatrix}
L_{g1} & 0 \\
0 & L_{g2}
\end{pmatrix}
C_g \Delta$$

(75)

where K_{g1}, L_{g2} are rate and proportional gains, and C_g' is obtained from C_g by interchanging the two rows. The rate signals in equation (75) can be derived from the proximity sensor outputs using second order networks.

Magnetic Actuator Control System

The magnetic actuator system consists of three axial and two radial actuator stations and one roll motor station. Figure 2 shows the magnetic actuator configuration consisting of three axial actuators spaced 120
degrees apart, two radial actuators spaced 90 degrees apart, and roll motor
segments producing a tangential force at one point. The axial actuator
stations are labeled A, B, C, and the radial and roll actuator stations
are labeled U, V, W. They produce forces F_{ai}, F_{ri}, F_{T}. The total
forces in X''_2, Y''_2, Z''_2 directions produced by the actuator stations on
the vernier assembly are

$$
\begin{pmatrix}
F_x \\
F_y \\
F_z
\end{pmatrix} = F = C_F f
$$

(76)

where

$$
C_F =
\begin{pmatrix}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0
\end{pmatrix}
$$

(77)

and

$$
f = (F_{r1}, F_{r2}, F_{a1}, F_{a2}, F_{a3}, F_{T})^T
$$

(78)

Nominal torques (excluding anomaly torques) produced by these forces on
the vernier assembly about the v-system:

$$
\begin{pmatrix}
M_{vx} \\
M_{vy} \\
M_{vz}
\end{pmatrix} = M_v = \zeta_{Av} \times F_A + \zeta_{Bv} \times F_B + \zeta_{Cv} \times F_C + \zeta_{Uv} \times F_U + \zeta_{Vv} \times F_V + \zeta_{Wv} \times F_W
$$

(79)
where ξ_{jv} is the position of station j in the v-system, and F_j denotes the force vector at the jth actuator station, and so forth. Considering linearized design, the desired response can be obtained by making

$$M_v - C_p(r_{cmv})F = -I_{vo} \lambda_{av}$$

(80)

where

$$\lambda_{av} = (\lambda_{\phi_v}, \lambda_{\theta_v}, \lambda_{\psi_v})^T$$

$$\lambda_{\phi_v} = 2\rho \omega(\dot{\phi}_v - r_{\phi_vc}) + \omega^2(\phi_v - \phi_{vc}) + K_I\psi_v z_{\phi_v}$$

$$\dot{z}_{\phi_v} = \phi_v - \phi_{vc}$$

($\phi_{vc}, r_{\phi_vc}, K_I\phi, z_{\phi_v}$ are attitude and rate command, integral gain, and integrator output.) Or

$$C_T f - C_p(r_{cmv})C_f f = -I_{vo} \lambda_{av}$$

(81)

where

$$C_T = r \begin{bmatrix} 0 & 0 & 1 & -1/2 & -1/2 & 0 \\
0 & 0 & 0 & \sqrt{3}/2 & -\sqrt{3}/2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(82)

Therefore, desired pointing control can be obtained by making

$$\left(C_T - C_p(r_{cmvo})C_f\right)f = -I_{vo} \lambda_{av}$$

(83)

The desired VA translation response can be obtained by making
where λ_{re} is defined similarly to λ_{av}.

Equations (83) and (84) form a system of six linear equations in six unknown components of f. Therefore, the unique solution can be readily obtained by inverting the coefficient matrix.

This design offers complete decoupling of VA rotation and translation, if the VA inertia and c.m. location are accurately known. The commanded magnetic actuator forces are computed in this manner, using proximity sensor outputs, and payload attitude and rate estimates. Magnetic actuator centering error rates are generated from proximity sensor outputs using second order networks. These force commands are fed into the magnetic actuators. In the simulation, the actual output forces are obtained using actuator mathematical models mentioned earlier. Magnetic actuator forces so obtained are in the $2''$-system and act at points on the vernier assembly rim. Since the rim is continuous, only the relative roll angle ψ_{rel} of the payload assembly, relative to the lateral gimbal, needs to be considered for obtaining points of application of magnetic forces in v-system. The location of actuator station j in v-system is given by

$$\zeta_{jv} = T_3(\psi_{rel}) \, r_j$$

where r_j is the position of station j in the $2''$-system, which is a fixed vector. The three-dimensional actuator force at station j in the $2''$-system is

$$F_j = \begin{bmatrix} F_{xj} \\ F_{yj} \\ F_{zj} \end{bmatrix}$$

For example, for station A, $F_{xA} = F_{yA} = 0$, and $F_{zA} = F_{a1}$, which is the third component of actual magnetic force vector f_o [corresponding to f.
of eq. (78)]. For roll motor station W, the radial disturbance force (F_{rd}) can be included in this formulation. The total torque on the payload assembly due to magnetic actuators (in v-system) is given by

$$T_v = \sum_{j=A}^{w} C_p(\tau_{jv}) D_{2v} F_j$$

(86)

where D_{2v} is the transformation matrix from 2-system to v-system. The total magnetic actuator force acting on the payload assembly (in v-system) is

$$F_v = D_{2v} \sum_{j=A}^{w} F_j$$

(87)

The expression for T_v in equation (86) is used in the VA rotational equation (44). For the "coarse" assembly, the total reactive force F_r (in 2"-system) acting on the lateral gimbal is

$$F_r = -C_p f_o + F_{ca} - e_2 F_{rd}$$

(88)

where f_o denotes the magnetic actuator output force vector corresponding to the command force vector f. The reaction torque on the lateral gimbal is given by

$$T_r = T_{ca} - C_T f_o + C_p(r_{cm2} + r_L) F_r$$

(89)

The torque M_p acting on the complete "coarse" assembly is given by

$$M_p = D_{02}^T \left[C_p(D_{02} \rho_1 + D_{12} r_d + r_{cm2} + r_L) F_r + T_{ca} - C_T f_o \right] + T_{RCJ} + T_d$$

(90)

in the 0-system, where T_{RCJ} and T_d denote reaction control jet torque and disturbance torque.
These expressions for F_r, T_r, and M_p are used in the "coarse" assembly equations of motion, equations (19), (29), and (36).

SENSOR MODELS

Attitude of the shuttle is controlled by vernier reaction control jets. In the simulation, however, only one thruster firing is included in order to simulate the "worst case" reaction control jet transient. Therefore, the shuttle attitude measurement system is not necessary for the simulation. "Coarse" gimbal positions are measured by sine-cosine resolvers. Axial and radial centering errors at the corresponding magnetic actuator stations and at the roll motor station are measured by noncontacting proximity sensors. Outputs of the proximity sensors are assumed to be contaminated with Gaussian zero-mean white noise. The payload attitude and rate measurement system consists of three rate gyros and sun sensors/star trackers. The gyros are assumed to be low noise, dry-tuned types, and sun sensors are assumed to be high-resolution, monochromatic light type. Three rate and attitude error measurements (one per axis) are assumed to be available for feeding into the fine-pointing control system. Figure 4 shows a single axis block diagram of the payload attitude and rate measurement system. Each gyro output is contaminated with a zero-mean colored noise and a Wiener process bias. The sun sensor outputs, which are discrete-time, are contaminated with zero-mean white noise which represents electronics noise, thermal (shot) noise, and quantization error. A bias may also be present in the sun sensor. Gyro drift rate, sun sensor bias, and sun sensor boresight misalignment are important sources of low-frequency error. Gyro drift rate can be either compensated for or estimated by a state estimator which gives an asymptotically unbiased rate estimate. Sun sensor bias errors are usually measureable and repeatable, and can be compensated to a large extent by the sun sensor electronics. Any uncompensated sun sensor bias or misalignment will affect the mean pointing error (pointing "accuracy"), and not the RMS pointing error (pointing "stability"). The accuracy requirements are usually far less stringent than the stability requirements. Therefore, small sun sensor bias errors can be tolerated, and are assumed to be absent. Single-speed
wound rotor resolvers are included in the "coarse" gimbal assembly for position readout and control of the gimbal angles. A roll axis resolver is used to measure payload roll angle relative to the lateral gimbal.

PAYLOAD ATTITUDE STATE ESTIMATORS

Pointing performance of the ASPS, or any other pointing system, depends on the payload attitude and rate signals used in the synthesis of the control torque. If no estimator is used, it can be shown (ref. 4) that the pointing performance of a completely isolated assembly is severely limited. In fact, the pointing error in this case increases directly with controller bandwidth, reciprocal of damping ratio, and measurement noise level. Reference 8 contains a detailed treatment of the estimator design problem. Two types of estimators have been considered in reference 7, which give attitude estimates and asymptotically unbiased rate estimates despite gyro bias. The first type does not utilize the input (control) torque information, while the second type of estimator utilizes the input torque information in its prediction model. In the case of ASPS, the input torque can be accurately measured. However, performance of the second type of estimator (Filter 3) is critically dependent on the input noise level, which was not accurately known at the time of writing this report. Therefore, the first type of estimator (Filter 1A), one for each axis, has been included in the present simulation. These estimators generate estimates \(\hat{\phi}_v, \hat{\theta}_v, \hat{\phi}, \dot{\phi}_v, \dot{\theta}_v, \dot{\psi}_v \) for use in the fine pointing control loop.

SIMULATION DESCRIPTION

The mathematical model of ASPS/Space Shuttle system consists of a set of nonlinear ordinary differential equations. The nonlinearities include all trigonometric nonlinearities, magnetic actuator nonlinearities, gimbal and gimbal torquer nonlinearities, etc. The control systems consist of a magnetic actuator control system, "coarse" gimbal control system, and a space shuttle attitude control system. The magnetic actuator control system blends the discrete-time signal \(\lambda_{av} \) [eq. (83)] generated
using payload attitude and rate estimates, with the continuous signal \(\lambda_{re} \) [eq. (84)] to synthesize the magnetic actuator command-force vector. (The signal \(\lambda_{av} \) is generated every \(T_{fil} \) seconds and kept constant for \(T_{fil} \) seconds, where \(T_{fil} \) is the estimator update interval.) Although this control scheme has been assumed in the present simulation, other schemes such as multirate sampling (different sampling rates for attitude and rate feedback) may also be suitable for ASPS application. However, results of investigation of these schemes were not available at the time of writing this report. Therefore, the single-rate sampling scheme mentioned above has been used in the simulation.

The "coarse" gimbal control system is continuous time, except when used in the backup gimbal pointing mode. In that case, the control scheme would be similar to the fine-pointing control scheme discussed above.

The space shuttle attitude is controlled by vernier reaction control jets. However, for computing RMS pointing errors, a low bandwidth control system using an annular momentum control device (AMCD) or control-moment-gyros (CMG's) has been assumed for the space shuttle. This assumption is not restrictive (ref. 4) because, in the case of ASPS, the payload assembly is almost completely isolated from the shuttle. However, for computing peak pointing errors for the "worst case" reaction control jet transient, a control jet force pulse of -222.4 N in the Zo direction is applied, producing a disturbance torque of -2487.9 N-m about the Xo axis. The duration of the pulse is 0.52 seconds, and occurs when the shuttle angular velocity about the Xo axis is 0.00435 degree/second.

It was found that the ac resistance in the magnetic actuator model could be ignored without significant effects, reducing the order of each (axial and radial) actuator from 6 to 4. Various options are available in the computer program. These options include: inclusion or exclusion of payload attitude state estimators in the loop; use of magnetic actuators or latched vernier assembly backup mode; inclusion or exclusion of attitude measurement noise; proximity sensor noise; worst case shuttle vernier jet transient; roll motor radial disturbance force; choice of payload following or fixed gimbal modes; etc. Dimension of the state vector (excluding state estimators) is 65 for normal operation and 30
for the backup pointing mode. In order to keep the number of state variables low, gimbal angular rates and centering error rates are assumed to be available for control synthesis, instead of generating them using second-order networks.

Table 1 lists the noise sources acting on the system, and their standard deviations. All noises are assumed to be white and Gaussian. All the noise processes, except the sun sensor noise, are continuous time. For digital simulation, however, they must be represented by discrete pulses. This can be approximately done by choosing an integration interval \(T_i \leq T_{fil} \), and generating random numbers with standard deviations given by continuous standard deviations divided by \(\sqrt{T_i} \). The random numbers generated are held constant in each interval \(T_i \). This sequence of random amplitude pulses has approximately the same power as the continuous white noise. In the present simulation, \(T_i \) and \(T_{fil} \) were both 0.01 sec. The simulation proceeds in the following manner: the differential equations are solved for \(T_i \) seconds until time increment \(T_{fil} \) is reached (the ratio \(T_{fil}/T_i \) is an integer greater than or equal to 1); new state estimates and vernier torque commands are generated and held constant for the next \(T_{fil} \) seconds (magnetic actuator force commands are continuously generated using vernier torque commands and continuous proximity sensor outputs); the differential equations are solved again for \(T_i \) seconds, and so forth. All noise processes are generated every \(T_i \) seconds, except the sun sensor noise, which is generated every \(T_{fil} \) seconds.

Mean and RMS errors are computed by solving the differential equations until the statistics have evolved, and then computing means and standard deviations of the pointing errors as the solution continues. Sensitivities to various noise sources are computed by making all except the corresponding standard deviation zero. Two options were included in the computer program for solving the differential equations--Euler integration and fifth-order Adams method. The latter was found to perform satisfactorily for all cases because of its ability to solve stiff differential equations. The former may be useful for simpler cases (such as backup "gimbal pointing systems").
NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the performance of ASPS, a 3.7-m long, 66-cm diameter cylindrical payload having a mass of 270 kg was selected. This payload is well within the limits of the present magnetic actuators and is one of the two payloads used in reference 3. Table 2 gives the parameters of the space shuttle orbiter. "Coarse" gimbal torquer and friction parameters are given in tables 3 and 4, and cable parameters are given in table 5. Payload assembly parameters are given in table 6. Table 7 describes the control system modes and parameters used. Table 1 gives a list of noise sources and their nominal standard deviations.

In order to evaluate ASPS performance, it is necessary to include the errors made in measurement of VA c.m. location and inertia matrix, since the measured quantities are used in control systems design. An error of -1 percent was assumed in the measurement of r_{CMV}, and of the VA inertia matrix I_V in all the computer runs. The target pointing angles are assumed to be $\phi = 45^\circ$, $\theta = 45^\circ$, $\psi = 0^\circ$, which form one of the worst combinations (ref. 4). The basic computer runs for evaluating ASPS performance are described below:

1. Response to initial condition offsets.
2. Peak pointing errors for the worst case vernier reaction control jet (VRCJ) disturbance.
3. RMS error computation.
4. Sensitivities of pointing errors to various noise sources.

These computer runs are repeated with the following changes:

a. Use of backup gimbal pointing system (with payload assembly latched to lateral gimbal).

b. No estimators used.

c. Cable used for data transmission.

d. "Coarse" gimbals not in the payload following mode.

That is, the gimbal servos hold them in their nominal positions.
Response to an initial condition offset of 20 arcseconds in VA attitude and 2 mm (for each axis) in VA translation is shown in figure 5. Although a 2.5-arcsecond undershoot occurs, the transient dies down in about 1.5 sec. The magnetic actuator centering errors decay much more slowly due to low suspension bandwidth.

The worst-case VRCJ transient was next simulated, as described earlier. Table 8 shows peak pointing errors under different conditions. Peak pointing error was 0.00875 arcsecond (in ψ_v) in the absence of noise, and 0.01006 arcsecond when noise was present. When the cable was used for data transmission, the peak error increased to 0.0236 arcsecond. Figure 6 shows typical pointing error and centering errors for this transient when the cable was used. All peak centering errors were below 4 mm for all these cases. These results were obtained for a magnetic actuator current-loop bandwidth of 300 Hz. It was found that variation of current loop bandwidth had significant effect on peak pointing errors. Figure 7 shows the variation of peak pointing errors with current loop bandwidth.

Theoretically, peak pointing errors should be zero in the absence of noise and errors in measuring I_v and r_{cmv}. However, in reality, the peak pointing error is never zero because of (1) a change in VA roll position due to the transient, causing a change in the location of the vernier assembly c.m. with respect to magnetic actuators, (2) magnetic actuator nonlinearity, that is, error between commanded and actual forces, (3) finite bandwidth of magnetic actuator current loop, and (4) sampling of commanded magnetic actuator torques.

The results described above were obtained using the "payload following" gimbal mode. Fixed gimbal mode was next simulated in which the gimbals are held by the control system in a fixed position relative to the shuttle. In this case, it was found necessary to increase the bandwidth of the VA translation control system to 0.13 rad/sec in order to limit the magnetic actuator centering error excursions. This resulted in somewhat larger (about 15 percent higher) peak pointing errors as shown in table 8. This demonstrated the advantage of the payload following mode.

Peak pointing errors during the backup gimbal pointing mode (with VA latched to lateral gimbal) with noise and estimators present, are also
given in table 8. The largest peak error for this mode is 1.618 arcseconds in θ_v-axis, which represents almost a factor of 400 deterioration compared to the "normal operation" case. Figure 8 shows the response of the backup system to the worst-case VRCJ transient.

Root-mean-squared (RMS) pointing errors were next obtained as described in the preceding section, for various cases. Table 9 shows the results for normal operation and for the backup mode. The most significant source of error is proximity sensor noise. Contribution of the attitude measurement system noise is very small (for the nominal standard deviations). In order to investigate the effect of larger attitude measurement noise, the sun sensor noise standard deviation was varied from its nominal value, up to 2000 times the nominal value, and the RMS pointing errors were obtained. Figure 9 shows the resulting variation of RMS pointing errors. When the cable was used, the RMS pointing error increased only slightly (table 9) although the peak error for the worst case VRCJ transient almost doubled.

In order to investigate the effect of roll motor anomaly torque, a sinusoidal radial force with a peak of 0.0622 N and a frequency of 200 Hz (twice the carrier frequency) was applied at the roll motor station W. As discussed earlier, because of the high frequency, a 5-sec time response was computed for investigating this effect. All other noise sources were held at zero. The resulting RMS pointing errors were \((1.12, 0.231, 0.275) \times 10^{-4}\) arcsecond for ϕ_v, θ_v, and ψ_v, respectively, which are insignificant compared to the effect of proximity sensor noise.

CONCLUSIONS

A detailed nonlinear mathematical model was developed for the ASPS/Space Shuttle system. All trigonometric nonlinearities as well as nonlinearities in various components such as magnetic actuators, "coarse" gimbals, and torquers were incorporated. Control laws and payload attitude state estimators were designed for solar/stellar pointing missions. A computer program was developed to simulate the system, and the pointing performance was evaluated for various conditions for normal operation and for the backup
"gimbal pointing" mode. The RMS errors for normal operation were \((0.9949, 1.007, 2.844) \times 10^{-3}\) arcsecond for the three axes, and were 0.05359 and 0.05731 arcsecond in pitch and yaw axes for the backup pointing mode. The most significant source of error for the noise parameters considered was the proximity sensor noise. Peak pointing errors for the worst case vernier reaction control jet transient were 0.00301, 0.00398, and 0.0101 arcsecond for normal operation and 1.485 and 1.618 arcseconds for the backup mode. Use of a cable for data transmission under normal operation was found to cause about a 100 percent increase in peak pointing errors, but minimal increases in RMS errors. It can be concluded on the basis of these results that ASPS can provide very high quality pointing performance in the presence of sensor and actuator noise and disturbances.
REFERENCES

Table 1. Measurement noise parameters (nominal).

<table>
<thead>
<tr>
<th></th>
<th>Number of Measurements Used</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity sensor</td>
<td>5</td>
<td>4.82×10^{-8} m</td>
</tr>
<tr>
<td>Sun sensor noise, n_s</td>
<td>3</td>
<td>0.00283* arcsec</td>
</tr>
<tr>
<td>Rate gyro (rate) noise, v</td>
<td>3</td>
<td>1.632×10^{-6} arcsec/sec</td>
</tr>
<tr>
<td>Rate gyro (bias) noise, n_u</td>
<td>3</td>
<td>1.025×10^{-8} arcsec/sec²</td>
</tr>
</tbody>
</table>

* Discrete time.
Table 2. Parameters of Space Shuttle Orbiter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass, kg</td>
<td>86176.2</td>
</tr>
<tr>
<td>Inertias, kg-m²</td>
<td></td>
</tr>
<tr>
<td>I_{xx}</td>
<td>7,882,725</td>
</tr>
<tr>
<td>I_{yy}</td>
<td>1,037,200</td>
</tr>
<tr>
<td>I_{zz}</td>
<td>8,082,030</td>
</tr>
<tr>
<td>I_{xy}</td>
<td>6,779</td>
</tr>
<tr>
<td>I_{xz}</td>
<td>2,711</td>
</tr>
<tr>
<td>I_{yz}</td>
<td>-178,968</td>
</tr>
</tbody>
</table>

Crew station location in (X₀, Y₀, Z₀) system, m... (0, -16.002, 0.594)

Location of point Pₑ in (X₀, Y₀, Z₀) system, m... (0, 2.2, 0.75)
Table 3. "Coarse" gimbal parameters.

<table>
<thead>
<tr>
<th></th>
<th>Elevation Gimbal</th>
<th>Lateral Gimbal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass, kg</td>
<td>31.1</td>
<td>103.5</td>
</tr>
<tr>
<td>Inertias (x, y, z), kg-m^2</td>
<td>0.575, 0.575, 0.228</td>
<td>3.84, 3.84, 6.5</td>
</tr>
<tr>
<td>Center of lateral gimbal axis in 1'-system (r_d), m</td>
<td>(0, 0, 0.21)</td>
<td></td>
</tr>
<tr>
<td>Location of lateral gimbal center 0 in 2'-system, relative to lateral gimbal c.m. (r_0), m</td>
<td>(0, 0, 0.027)</td>
<td></td>
</tr>
<tr>
<td>Location of lateral gimbal c.m. in 2'-system (r_cm2), m</td>
<td>(0, 0, 0.208)</td>
<td></td>
</tr>
<tr>
<td>Location of elevation gimbal c.m. in 1'-system (r_cm1), m</td>
<td>(0, 0, 0.1)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Gimbal torquer and friction parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest stiffness ((\sigma_f), \text{ N-m/rad})</td>
<td>6.77</td>
</tr>
<tr>
<td>Peak or Coulomb friction torque ((T_{f_0})), \text{ N-m})</td>
<td>0.0316</td>
</tr>
<tr>
<td>Percent ripple ((p_\tau))</td>
<td>2</td>
</tr>
<tr>
<td>Ripple frequency ((f_\tau), \text{ Hz})</td>
<td>48</td>
</tr>
<tr>
<td>Cogging frequency ((f_c), \text{ Hz})</td>
<td>96</td>
</tr>
<tr>
<td>Peak cogging torque ((T_{cog_0}), \text{ N-m})</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 5. Cable parameters.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable translation spring constants (radial, axial), N/m</td>
<td>1.05, 0.35</td>
</tr>
<tr>
<td>Cable bias forces (radial, axial), N</td>
<td>0.01405, 0.00445</td>
</tr>
<tr>
<td>Cable torsional spring constant (Z), N-m/rad</td>
<td>0.005</td>
</tr>
<tr>
<td>Cable bias torque (Z), N-m</td>
<td>0.001</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Mass, kg</td>
<td>270</td>
</tr>
<tr>
<td>Inertias ((x,y,z)), kg-m^2</td>
<td>319, 319, 15</td>
</tr>
<tr>
<td>Location of c.m. in (v)-system ((x,y,z)), m</td>
<td>0.07, 0.07, 1.83</td>
</tr>
<tr>
<td>Radius of PMP, m</td>
<td>0.365</td>
</tr>
</tbody>
</table>
Table 7. Control system parameters.

<table>
<thead>
<tr>
<th>Type of Control</th>
<th>Damping ratio, ρ</th>
<th>Natural Frequency, ω</th>
<th>Nominal Location of Root due to Integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Coarse" gimbals</td>
<td>0.7</td>
<td>7.5 Hz</td>
<td>3 - 10 Hz</td>
</tr>
<tr>
<td>Payload attitude</td>
<td>0.7</td>
<td>1 Hz</td>
<td>1 - 4 Hz</td>
</tr>
<tr>
<td>Payload assembly</td>
<td>0.7</td>
<td>0.1 rad/sec</td>
<td>0.05 - 0.3 rad/sec</td>
</tr>
<tr>
<td>"Coarse" gimbals in</td>
<td>0.7</td>
<td>1 Hz</td>
<td>1 - 3 Hz</td>
</tr>
<tr>
<td>backup pointing mode</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Peak pointing error.

<table>
<thead>
<tr>
<th>Normal Operation</th>
<th>Peak pointing error, arcsecond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϕ_v</td>
</tr>
<tr>
<td>No noise present</td>
<td>0.00256</td>
</tr>
<tr>
<td>Noise and estimator present</td>
<td>0.00301</td>
</tr>
<tr>
<td>Noise, estimator, and cable present</td>
<td>0.00758</td>
</tr>
<tr>
<td>Noise and estimator present, "payload following" mode not used</td>
<td>0.00334</td>
</tr>
<tr>
<td>Backup Mode (VA latched)</td>
<td>1.485</td>
</tr>
</tbody>
</table>
Table 9. RMS pointing errors.

<table>
<thead>
<tr>
<th>Case</th>
<th>Pointing error, arcsecond</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϕ_V</td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
</tr>
<tr>
<td>Attitude measurement noise only</td>
<td>0.7978×10^{-4}</td>
</tr>
<tr>
<td>Proximity sensor noise only</td>
<td>0.9818×10^{-3}</td>
</tr>
<tr>
<td>All noise present but no estimator</td>
<td>1.001×10^{-3}</td>
</tr>
<tr>
<td>All noise and estimator present</td>
<td>0.9949×10^{-3}</td>
</tr>
<tr>
<td>All noise, estimator, and cable present</td>
<td>1.031×10^{-3}</td>
</tr>
<tr>
<td>Backup Mode (VA latched)</td>
<td>All noise and estimator present</td>
</tr>
</tbody>
</table>
Figure 1. Annular Suspension and Pointing System (ASPS).
Figure 2. Magnetic actuator configuration.
Figure 3. Definition of position vectors.
Figure 4. Payload attitude measurement system.
Figure 5. Response to initial condition offset.
Figure 6. Response to worst case VRcj disturbance (with cable).
Figure 7. Effect of magnetic actuator current loop bandwidth on peak pointing errors.
Figure 8. Response of backup system to worst-case VRGJ transient.
Figure 9. Variation of RMS errors with sun sensor noise level.
The Annular Suspension and Pointing System (ASPS) can provide highly accurate fine pointing for a variety of solar-, stellar-, and Earth-viewing scientific instruments during space shuttle orbital missions. In this report, a detailed nonlinear mathematical model is developed for the ASPS/Space Shuttle system. The equations are augmented with nonlinear models of components such as magnetic actuators and gimbal torquers. Control systems and payload attitude state estimators are designed in order to obtain satisfactory pointing performance, and statistical pointing performance is predicted in the presence of measurement noise and disturbances.