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EXPERIMENTAL DETERMINATION OF THE RATTLE OF SIMPLE MODELS

Sherman A. Clevenson

SUMMARY

An investigation was conducted to study the effect of the excitation

frequency on the rattle boundaries of simple models. The frequency range

investigated was from 40 to 4,000 Hz. To aid in the understanding of the

basic physical phenomenon of the rattling of objects, a 1-inch steel ball was

studied to determine the rattle boundary for both vertical motion and for the

ball suspended as a pendulum. Effects of surface contact and weight were

also studied. Results indicated that the shape of the rattle boundary depends

on the particular configuration being investigated as well as the range of

frequency being investigated. In general, the level of acceleration required

to cause rattle is independent of excitation frequency.

INTRODUCTION

The vibratory response of buildings resulting from aircraft operations

has been of concern from the standpoint of structural damage and human

annoyance for many years. The effects of sonic boom and aircraft overflights

are discussed in references 1 through 4. More recently, the effects of

Concorde operations have been of concern and have been studied both at Dulles

and John F. Kennedy International Airports (refs. 5-10). It was conjectured

that vibration induced in walls and floors would cause rattling of windows,

hanging pictures, dishes, and other items which would in turn result in

increased annoyance.
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The physical phenomenon associated with rattle was studied in reference 11

as part of a general study of the vibration response characteristics of houses

to aircraft noise. It was concluded that rattle was a type of nonlinear

vibration response phenomenon and that the rattling of wall-mounted decorative

objects was associated with smaller amplitude displacements as the frequency

of excitation was increased. The data shown in figure 21, reference 11,

indicate that the rattle acceleration boundary (the lower level of acceleration

at which rattle could be heard) was essentially independent of frequency. The

frequency range was from 20 -^:0 400 Hz.

To further investigate this rattle phenomenon and, in particular, to study

the effects of excitation frequency over a wider range, the present study was

conducted using simple laboratory models. The study consisted of using a

small exciter to force the separation of a ball from its contact in the vertical

direction and when the ball was suspended as a pendulum. The effects of surface

contact and weight were also studied and are discussed in the appendix. Results

are presented herein.

APPARATUS AND TEST PROCEDURE

Test Configuration

Various models were utilized for this study. All tests were conducted

either in an audiometric room or the Interior Effects Room within the Aircraft

Noise Reduction laboratory.

Vertical rattle.- A 10-pound peak force electrodynamic vibration exciter
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was used (figure 1(a)) with a steel ball that weighed 0.15 pounds (68 g). A

miniature accelerometer was used in line with the driving force on top of the
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exciter. The force gage had a threaded hole in its upper surface forming a

circular line contact with the ball.

Pendulum-type rattle.- A 10-pound force exciter was used to obtain rattle

of the same steel ball suspended as a pendulum. The ball was allowed to rest

directly against the force gage as shown in figure 1(b). In another

configuration (figure 1(c)), the exciter was outside the wall of the Interior

Effects Roan (IER) whereas the ball was suspended against the force gage on the

inside surface with the same angle (0.05 radians) as used in the setup of

figure 1(b). The wall was of standard dry wall construction with 1/2-inch

thick plaster board on the inner surface. The exciter was connected to one of

the 2 x 4 inch studs.

Instrumentation and Test Procedure

The acceleration level at which rattle was heard was recorded when a

listener reported that he heard the rattle. The occurrence of physical

separation of the test model and the exciter was also determined by observing

the acceleration and/or a force gage output voltage on an oscilloscope and on

a narrowband (1 Hz) spectrum analyzer. The acceleration level for separation

always occurred at the same or at a lower level than the acceleration level

for rattle since the listener had to hear the model impacting the exciter,

whereas, separation could be seen on a real-time spectrum analyzer. A slight

impact caused a second or third harmonic to appear on the oscilloscope of the

analyzer; the larger the impact, the greater number of harmonic responses.

Examples of outputs of the real-time analyzer are shown in figure 2 for a

forcing frequency of 100 Hz. Figure 2(a) shows the spectrum of either the

force gage or the accelerometer (their shapes are identical) prior to

t
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separation or rattle. After the amplitude was increased sufficiently to hear

r^	 the rattle, the spectrum shown in part (b) of the figure was observed.

The test procedure was as follows: (1) The acceleration level as measured

on the ball was continuously increased until harmonics could be observed on the

narrowband analyzer or oscilloscope. (2) The acceleration was further increased

until a listener with good hearing capability reported that he could hear the

rattle. If there was a question of initial separation or rattle, the experi-

ment was repeated. Both levels were recorded. This process was repeated at

select frequencies from 40 to 4,000 Hz.

RESULTS AND DISCUSSION

The results of this study are shown graphically in figures 3 through 6.

The results of vertical rattle, rattle of a pendulum, and a comparison to

previous data will be discussed in this section. Results of weight and contact

effects are found in the appendix.

Effect of Frequency on Vertical Rattle

Figure 3 shows the data for a 1-inch diameter steel ball resting on the

hole in the upper surface of a force gage mounted on a 10-pound force exciter

(figure 1(a)). The boundaries between audible rattle, separation but no audible rattle,

and no separation as functions of frequency are indicated. Based on simple

physical arguments, it would be expected that separation would occur at lgpeak,;gp),

throughout the frequency range. (See prediction line on figure 3.) The upper

curve on the figure represents the rattle boundary (rattle could be heard at

accelerations above the curve and could not be heard at accelerations below the

curve). With the exception of the data point at 1,500 Hz, all points on the
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curve lie within +4 and -6 dB of the lgpeak line. Audible rattle is relatively

independent of frequency in the range studied.

The lower curve of figure 3 indicates the acceleration boundary between

separation and no separation of the ball and the exciter. The boundary is very

irregular and indicates that the separation phenomenon is very complex.

Although it was expected that the separation boundary would be lower than the

rattle boundary, it was also expected that the boundaries would be smooth. It

is noted later (see appendix) that the amount of contact has an effect on the

rattle boundary. It is possible that in this simple test configuration, any

slight unbalance of the exciter moving components or any slight side forces

due to the exciter could affect the rattle boundary. It may be noted that the

audible level of rattle is within a few dB of the separation level at

frequencies up to about 1,200 Hz. At higher frequencies, the difference

becomes greater (over 11 dB at 4,000 Hz).

Effect of Frequency on Pendulum-Type Rattle

Figures 4 and 5 show the data for a 1-inch diameter steel ball suspended

as a pendulum against a force gage mounted either on a 10-pound force exciter

or on a wall surface (test setups as in figures 1(b) and 1(c)). When the

suspended ball is excited directly by the exciter (figure 4), both the rattle

and separation boundaries are very irregular. When the ball is rattled

through the wall (figure 5), the boundaries appear less irregular. Although

the data points for rattle of the ball in the Interior Effects Room in the

frequency range to 1,000 Hz (figure 5) are somewhat erratic, data from 1,000

to 3,000 Hz have a tl dB scatter band and indicate no effect of frequency on
the rattle boundary. At frequencies below about 1,000 Hz, the acceleration
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levels corresponding to audible rattle are within a f5 dB scatter band. It may

	

Up,	
have been expected that the rattle boundary of acceleration level with

frequency would be a constant (ref. 11, fig. 21). However, the reference data

cover frequencies only below 400 Hz and show a scatter range up to t1.5 dB for

plaques and a mirror on a wall. The current study shows much less scatter over

a much greater frequency range indicating that rattle is relatively independent

of frequency.

The prediction line shown at -26 dB on both figures was determined as a

component of g acting on the steel ball. For small angles, a, as shown in

figure 1, the g component is equal to a in radians. Thus g = a = 0.05 rad

or 0.05 gp and is equal to -26 dB. The angle was the same for configurations

1(b') and 1(c); thus, the prediction lines have the same value.

There appears to be a large difference in the acceleration level of the

rattle boundaries between the two configurations. The mean acceleration level

of the rattle boundary of the ball on the force gage attached to the exciter

is about -12 dB (0.25 gp) whereas the mean level of the rattle boundary of the

ball on the force gage attached to the wall is about -20 dB (0.10 gp). This

difference may be due to the difference of point and line contact on the balls

(discussed in the appendix) or it may be due to transverse forces in the

exciter system.

	

f	 Comparison with Previous Data

Figure 6 shows a comparison of the data up to 400 Hz for the ball suspended

as a pendulum against the wall of the IER with the data of reference 11. The

reference data were obtained with plaques hung on an interior wall. For

reference, the prediction for the steel ball suspended as a pendulum is shown.

The current data have a similar characteristic as previous data, namely, that
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the rattle boundary is rather erratic in the frequency range to 400 Hz, and

that there is no pronounced effect of frequency.

CONCLUDING REMARKS

An investigation was conducted to study the effect of excitation frequency

on the acceleration boundaries or levels for the initiation of rattle. The

frequency range investigated was from 40 to 4,000 Hz. To aid in the understanding

of the basic physical phenomenon of the rattling of objects, a 1-inch steel ball

was studied to determine the rattle boundary for both vertical motion and for

the ball suspended as a pendulum. Effects of surface contact and weight were

also studied. Results suggest that the shape of the rattle boundaries depends

on the range of frequency investigated. For vertical motion, the acceleration

levels to cause rattle fell in a scatter band of +4 to -6 dB of the lgpeak line.

For the ball suspended as a pendulum, the acceleration level scatter band was

±5 dB from 50 to 1,000 Hz and only ±1 dB from 1,000 to 3,000 Hz. The level of

acceleration required to cause rattle is relatively independent of the

excitation frequency.
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APPENDIX

EFFECTS OF WEIGHT AND CONTACT ON RATTLE BOUNDARIES

In addition to the effects of frequency on rattle boundaries that were

observed during this study, other effects were also noted. The amount of

contact between masses forced to rattle apparently had considerable effect.

Also, the absolute weights of the masses had an effect on the rattle boundaries.

The purpose of this appendix is to describe experiments using different weights

and contact surfaces and show the results.

Apparatus and Test Procedures

In addition to the four test configurations shown in figure 1, other

setups were used as shown in figure Al. Additional balls, blocks, and cylinders

were used as follows: plastic balls of 0.15 lb (68 g) ind 0.62 lb (281 g); a

steel ball of 1.13 lb (513 g); an aluminum block of 0.1 lb (45 g); brass

cylinders (flat side down) of 1.10 lb (499 g) and 1.5 lb (680 g); and a steel

cylinder (round side down) of 2.5 lb (1,134 g). The same instrumentation and

test procedures as described in the main text were used.

Resuits

The effects of weight (with point loading) on rattle boundaries are shown

in figure A2. The peak acceleration levels, gp, at which rattle first occurred

for various masses are given for the frequency range from 20 to 90 Hz. It is

expected that the lowest gp for rattle to occur is at a very small increment

over 1 gp. However, only the masses with flat bottoms (cylinders and block) in

contact with the driving plate (figure A1(d)) gave results close to 1 gp. The

various balls or cylinder with essentially point contact resulted in lower gp's
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depending on its weight. Thus, when the ball or cylinder is driven by a point

load, the peak acceleration level at which rattle occurs decreases with

increases of the weight of the item.

The effect of line contact on rattle boundarir: is indicated in figure A3.

One set of data were obtained with point contact, shown as essentially zero

line contact on the ball. The next set of data were obtained with a ball

resting on the open end of the force gage. The third set of data were obtained

with the bail resting on a washer glued to the top of the force gage

(figures A1(a), (b), and (c)). As the line contact became larger, the gp for

rattle increased toward the expected 1 gp level. The effect of weight is again

indicated in that the heavier ball required a lower gp to cause rattle.

The weight effect is again apparent when the balls are suspended as

pendulums. Figure A4 shows the acceleration levels required for the balls

to start to rattle as a function of angle with the vertical (a). The excitation

frequency was 20 Hz. As expected, the greater the pendulum angle, the larger

the acceleration level. However, for the same angle, the heavier ball is again

shown to start rattling at a lower acceleration level. As in the main text, the

prediction line shown on figure A4 is based on the co pv;ient of 1 g acting on

the ball due to the pendulum hang angle, a.

Concluding Remarks

It was noted that the amount of contact (from point to surface) between

rattling masses had considerable effect on the rattle boundaries; the less

surface contact, the lower the boundary. When the amount of contact approached

point contact, the heavier balls had lower rattle boundaries.
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Figure 1.- Experimental setups for obtaining rattle (separation)
vertically and as pendulums.
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a.

BA

BL or CY

- PL
-AC

EX

d.

AC	 AC

BA	 BA

WA
L' FG	 U FG

EX	 EX

b.	 C.

AC Accelerometer
BA Ball
BL Block
EX 10-1b exciter

FG Force gage
CY Cylinder
PL Plate
WA Washer

Figure Al.- Setups for obtaining effects of surface contact and
weight on rattle boundaries.
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Figure A2.- Rattle boundaries indicating effects of weight
(using point contact).
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Figure A3. - Effect of line contact on rattle boundaries, 20 Hz. 
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