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EFFECT OF PIXEL DIMENSIONS ON SAR PICTURE QUALITY
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SUMMARY
In an SAR mapping system, the pixel size for best picture quality is not
always known. Here we investigate whether 1t is worthwhile looking at small
pixels if it turns out after processing that such fine resolution was not
necessary and that several adjacent pixels therefore need to be combined.
The product of looks per pixel and number of pixels in the scene is kept
constant. Assuming that the returns from all the resolution cells obey
Rayleigh statistics, the expression for pixel SNR incorporating both speckle
and additive white Gaussian noise is derived. We conclude that it is pos-
sible to use fine resolution and leave the large-area estimate slightly but

not much worse than if the larger pixel size had been initially decided upon.

1.0 INTRODUCTION

Speckle reduction in SAR requires incohrrent averaging over several inde:
pendent looks at each pixel. [l]. [2], [}]. If we can settle in advance on
the best pixel size, we should take the maximum allowable looks at pixels
of that size to get speckle reduction. But suppose we aren't sure what the
best pixel size is, which might happen in mapping unkrown surfaces. Might
it not be better to design the system to take fewer looks at smaller pixels?
(We ignore additional processing requirements which would arise for digital,
though not for optical, proces-.rs, but do consider that the system power

is fixed.) Suppose a large area " is divided into n = M/k resolvable sub-
areas (n, M, k integers) and k looks are taken at each sub-area and the
average of the k reflectivities is taken as the estimate of reflectivity for
that sub-area. If it is later decided that an estimate of the reflectivity
of area G is ~equired, this can be obtained by averaging over the estimates

for the n sub-areas. In the following, we define pixel SNR in the presence

of speckle and additive white Gaussian noise as in [ﬂ and derive the
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expression for pixel SNR as a function of n. The return from each sub-area

is assumed to nbey Rayleigh statistics.

2.0 PIXEL SNR FOR k LOOKS AT n = M/k AREAS

Let Al’ A2' .. An be the mean power returns from the n sub-areas. Each

component (in-phase (I) and quadrature (Q) of the return amplitude from
the jth look at the ith sub-area is (after Butman and Lipes [(]»:

Trij - iy * "1 1)

r = 3 +n 2

atj ™ %13 * ot @
where the a's are the signal components and the n's are noise components,
i.e. the nIij and nQij are statistically independent white Gaussian noise
with variance N°/2 and the aIij’ aQij are statistically independent
Gaussian random variables with zero mean and variance Ai/Z'
The power return is

_ .2 2
Pij T 115 ¥ T Qij 3

which is exponentially distributed with mean (Ai + No) and variance
(Ai + No)z, for each j from 1 to k.
The estimate of power return from the ith sub-area, after averaging over k
looks is
j=i

The variance of Pys for independent looks is
1. 2
N, = [Ai +N ] (5)
In the absence of noise, the mean signal power in Py is % times the sum of

the mean signal powers for the pij’ i.e.

- k
p] S, =+ A, =A (6)
i N =0 i ki i
o
so that the pixel SNR which incorporates both noise and speckle is
/l-c_Ai
SNR =, .« @))
i o

This gives the pixel SNR that can be expected in the estimate of the power
return or reflectivity of the ith sub-area (which has size G/n if all n
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sub-areas are equal). But now suppose that an estimate of the reflectivity
of the large resolution cell of size G is required, after having processed
the data to give a resolution size of G/n. This can be obtained by
averaging over the estimates for the n sub-areas.
In this case the estimate of power from the whole area is

n

1
v i

where Py is exponentially distributed with mean (Ai + No) and variance
2
(Ai + No) /k.

Now the pixel SNR becomes
/E[Al+ . +An]

s

. , 9
2 2
/N £A1+No) +oo0 4 (AN )

SNR]. =

We assume now that there is available a total power MP which is incident on
the n sub-areas in k looks. Thus, in one look, a total power %2 is in-

cident on the whole area G and, if the n sub-areas are equal,

%% = 52 = P is incident on each sub-area G; let the mean return power in

each look in this case be A. Thus, in the case where power P is incident

on each of n > 1 sub-areas G/n, a total power nP is incident on the area G
and the mean return must therefore be nA.

Therefore, nA = Al +A, + + An (10)
where Al’ .. An, as defined before, are the mean power returns from the

n sub-areas.

Now consider two n-dimensional vectors

a = ((A+N (AN ) --- (A #N )) and (11)

b=(1 | 1). (12)
Then Schwartz's inequality

a-b < |a||v] (13)
gives
YA :

n(A+N ) <V V(A )T+ + (A ) (14)

Let
2 2
n(A+N ) = rVn (A;#N )7+ 0 (A #N) (15)

vhere r < 1.
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Then Eq. (9) becomes

/o - A vkn A ™ A (16)
SN, = At Tt T RAN “TATN
[+] [+ (o]
where
l n
Py z (A{H\lo)
r e i=1 a7
n
/% I (AW )?
i=]
3.0 SPECIAI. CASES
(1) Whenn=1, we get r = 1, and
ow), - B
[o]

so that taking M looks at the large area G and averaging gives the best
estimate of the reflectivity of the large area G.

(2) 1If the area G has uniform reflectivity so that the A,'s are all equal,

i
then the equality sign holds in Eq. (14) and again r = 1, irrespective of

what n is.

If the Ai's are not equal, then r < 1 so that we sacrifice something in pixel

SNR by not having decided on the coarser resolution.

(3) When No = 0, i.e., no noise is present,

SNR] . = oM; ¢ = ?111———— (19)

=
=

which is unaltered if all Ai's are multiplied by a common factor, so that
the variation of SN@]G with n is independent of the power incident on area G.

4.0 CONSEQUENCES FOR VARIOUS DISTRIBUTIONS OF Ai FOR No =0

(1) For the most extreme case where all but one of the Ai are zero:

r=1 (20)
1 /n
When n = M, this gives r = —, so that SNRJG = | while i{f we had n = 1,
M (n=M)
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it would have been SN@]G(n-l) = /M, which is expected since we are getting
only one non-zero return in all the M looks and thus effectively taking
only one look at the whole area. On the other hand, if all the return comes
from only one of the M sub-areas, that in itself would be of considerable

interest.

(2) Uniform distribution of the A, 's: If we assume that most scenes of

interest can be classified as having Ai that are independent and uniformly
distributed between 0 and Am’ then we can get the expected value of r as a

function of n.

n
1 I 2
< .2, A)
rz(n) ..n_1 1 i (21)
1 n 2
=z oA
n i=1

The numerator is a random variable with mean equal to (—%—)2 and a
variance that becomeszvery small as n + » while the denominator is a random

variable with mean é%— and negligible variance as n + », so that

Lin @) = 3 = 0.866 (22)
N>

For finite n, rz(n) is given by
il S N
r(n) = J 3 PAi(ai) . PAn(an)dai ++ do (23)

2 n
| +-t %

(where pAi(ai) = probability density function of Ai)which is difficult to
evaluate explicitly for general n. However, for n = 2, this can be evaluated

for the uniform Ai distribution case, and gives

r(2) = /llzl—“—z— = 0.92 (24)

(3) Exponential distribution of thg_ﬁi's: If the Ai's are independent and

exponentially distributed with a mean value of Am, then for n + ©, we have

the numerator of Eq. (21) tending to Am2 and the denominator to 2Am2 so that

lin r(n) =-—l = 0,707 (25)

n-reo

N
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Since all these values of r calculated in Egqs. (22), (24), (25) are not
significantly different from I, we conclude that, for a realistic dis-
tribution of the Ai's, the pixel SNR does not get much worse if n is
doubled or quadrupled. It might be worthwhile doubling n for the sake of
improved small-area resolution, (especially if k, the number of looks at
each small area, is large enough to compensate for speckle) while leaving

the estimate of the large area G if later desired, almost as good.

5.0 CONCLUSIONS

If we are not sure what the best pixel size is, it seems to bec betier to
design the system to take fewer looks each at smaller pixels. If the
chosen (larger) pixel size is indeed correct, we will have sacrificed
something in SNR. But if a smaller pixel size is better, we can at least
get some (noisier) information about the smaller pixels, and we still have
almost as good information about the larger pixels as if we had looked at

the whole large pixels only.
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