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I 

This  report   presents  the full Navier-Stokes  time-dependent , compressible, 
turbulent mean-flow equat ions  in  mass-averaged var iables   for   plane or ax i spmet r i c  
flow  configurations. The equations  are  derived  in a body-oriented  orthogonal 
curvilinear  coordinate  system.  Turbulence i s  modelled  by a system of two  equa- 
t ions  for the  mass-averaged  turbulent  kinetic  energy and d iss ipa t ion   ra te  which 
determine  the  turbulent  (eddy)  diffusivity,  recently  proposed  by Wilcox e t  a l .  
These  equations  are  rederived  for  the  coordinate  system and  flow  configuration 
considered, and some  new features  of these  equations axe discussed. A system of 
second-order  boundary  1ayer.equations is then  derived which includes in a con- 
s i s t e n t  way the   e f f ec t s  of longitudinal  curvature and the  corresponding normal 
pressure  gradient.  I n  t h i s  system t h e  normal momentum equation i s  retained. The 
Wilcox  and Chardbers approach i s  used in   consider ing  effects  of streamline curva; 
ture on turbulence phenomena in   t u rbu len t  boundary layer  type  flows.  Their two- 
equation  turbulence model with  curvature  terms  are  rederived  for  the  cases 
considered in   the  present   report .  The derived  system of seven  second-order 
boundary layer  equations  serve as a bas i s   fo r  an analytical-numerical investiga- 
t i o n  of a va r i e ty  of boundary layer  (parabolic)  type problems where streamline 
curvature i s  of the  order of the  character is t ic   length  in   the  longi tudinal  
direct ion.  
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specific  heat a t  constant  pressure 

mass-averaged  turbulent  kinetic  energy 

total   (s tagnat ion)   enthalpy 

spec i f ic   s ta t ic   en tha lpy  af the  mixture, h = aihi 

spec i f ic   s ta t ic   en tha lpy  of species i 
c 
i 

di f fus iona l   f lux   fac tor  

heat  conductivity 

character is t ic   length of  flow in   x -d i rec t ion  

Lewis number 

diss ipat ion  length  scale  

molecular  weight 

Prandtl  number 

pressure 

heat  conduction  vector 

universal  gas  constant;  radius of curvature of the body surface 

Reynolds number 

d i s t ance   t o  x-axis 

Schmidt number 

temperature 

time 

x-  component of ve loc i ty  

y-component  of ve loc i ty  

to t a l   ve loc i ty   vec to r  

net  mass r a t e  of  production of chemical  species 
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X longitudinal  coordinate  along  surface  of  the body 

Y coordinate normal t o   t h e  body 

a 
as(- 

species mass fraction;  angle  of body with x - a i s ;  turbulence 

closure  coeff ic ients  

turbulence  closure  coefficients B 
B* 

Y spec i f i c   hea t   r a t io  

6 t  charac te r i s t ic   l ength  of flow in   y -d i r ec t ion  

E mass-averaged turbulen t   d i ss ipa t ion   ra te  

K curvature  of  the body 

P coef f ic ien t  of v i scos i ty  

V L kinematic  viscosity 

eddy d i f fus iv i ty  Vt 

5* 
51 
52 

P density 

turbulence  closure  coefficients 

cr 
fl turbulence  closure  coefficients 

,- - 
T viscous  s t ress   tensor  

cp cyl indr ica l  or azimuthal  coordinate 

w v o r t i c i t y  o r  pseudovortici   ty 

n dissipat ion  ra te   quant i ty ,  pw 

9 divergence  operator 

Subscripts 

a a = 0 plane  flow, a = 1 axisymmetric  flow 

t denotes  turbulent  quantity 

i denotes ith species 
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Super s c r i p t s  

N mass- averaged  value 

* nondimensional  quantity 

- time-averaged  value 

I time-averaged  fluctuations 

mass-averaged f luctuat ions 11 
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1. INTRODUCTION 

Recently,  considerable  research  efforts  have  been  devoted  to  the 
understanding of the aerodynamics of combustion  and the  complex turbulent 
mixing phenomena occurr ing  in  combustion devices.  Ekperimental  investigations 
and theoretical  modelling of such phenomena  ccunbined with  sophisticated computa- 
tional  fluid-dynamic methods a re   t he   e s sen t i a l   t oo l s   f ac i l i t a t i ng   t he  economical 
design and operation of these  combustors. 

Usually all. pract ical   f lames have the  form  of tu rbulen t   j e t s   i s su ing  
from round orifices,   the  fuel  gas  being  introduced  through a c e n t r a l   j e t  and 
the  oxidizer (air)  through an annulus  surrounding i t ,  so that   s t ra ight   concentr ic  
j e t s   a r e  formed. However, i n   o r d e r   t o  enhance the   fue l - a i r  mixing  process,  the 
pr imary  ( fuel)   je t  or the   secondary  je t  (air)  or both  are  given a certain  degree 
of curvature (e .g., swirl) . Also, in   cer ta in   types  of combustors  involving 
compressible j e t s ,   i n   o r d e r   t o   a c h i e v e  optimum combustion charac te r i s t ics ,   the  
f i n i t e - r a t e  chemical  processes  should  be  controlled  by  controlling  the  pressure 
and temperature   f ie lds   in   the combustor.  This  can  be  achieved  by  imparting t o  
the  flow  various  degrees of curvature. 

Among the   theore t ica l  models describing  curvature  effects on turbulence, 
second-order  closure  two-equation  turbulence  models,  which u t i l i z e  two parameters 
to   character ize   the  turbulence and t o  determine  the eddy diffusivi ty ,   wi th  each 
parameter  satisfying a nonlinear  transport  equation,  involve  less  empiricism 
than  the  mixing-length  theories,or  the one equation models  of turbulence. They 
sequire no  advance knowledge  of the  flow  under  consideration. Yet they are 
simple enough t o  use  for  general  engineering  applications. Such  models  have 
proliferated.   Recently,  Wilcox  and Chambers (Ref. 2) have  proposed an 
interesting  extension of t h e i r  model to  compressible  flows  with  streamline 
curvature. The success  achieved  by t h i s  method in  predicting  the  behaviour 
of a number  of turbulent  boundary-layer  flows  (Ref. 2) warrants i t s  fur ther  
use and testing  in  other  compressible  applications.  

The present  report i s  concerned  with  the  analytical  investigation  of 
curvature and compressibi l i ty   effects  on the  turbulent mixing of a compressible 
( f u e l )   j e t   i s s u i n g   i n t o  a compressible air flow  (Fig. 1). Flow variables  of 
pr imary   in te res t   a re   the   fue l /a i r   ra t io  and temperature  distribution. The 
fu l l  Navier-Stokes  equations  for  global  continuity,  species  continuity, 
momentum and  energy  conservation  are  derived for the  mean mass-averaged varia- 
b l e s  of a compressible,  turbulent,  axisymmetric or plane  flow in   curv i l inear  
orthogonal  body-oriented  system of coordinates ( R e f .  1). The apparent  (Reynolds) 
s t resses  were modelled  according t o   t h e  eddy v i scos i ty  concep.t, the   turbulent  
viscosi ty   being a function of two parameters,  the  turbulent  mixing  energy and 
the  turbulent-dissipation  rate  determined  by two nonl inear   par t ia l   d i f fe ren t ia l  
equations. The Navier-Stokes  form of these  equations was obtained  in   the 
coordinate  system  considered,  with due  account  of  compressibility  and  curvature 
e f f e c t s .  A compressibility  term was found to   ex i s t   i n   t he   equa t ion   fo r  
turbulent  dissipation  omitted  by Wilcox  and Chambers in   their   general   equat ions 
in  Cartesian  coordinates.   Start ing from this system of seven  equations, 
a complete set of  second-order  boundary-layer  (parabolic)  type  equations was 
derived  (terms of order  unity and of order 6t/R are   re ta ined,  €it being  the 
charac te r i s t ic  mixing  zone  thickness  and R the  radius of curvature, Mhich i s  
assumed t o  be of the  same order of  magnitude as the  character is t ic   longi tudinal  
length of the  problem). 
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2 .  WS-AVERAG;ED  EQUATIONS OF MITION 

The general  equations  describing  flows  of a reacting  mixture  of 
perfect   gases   in   vector  form are given by: 

Global  Continuity: b + d .  p F = o  at  (1) 

a ( W i  1 
at Species  Continuity: + 7 * (mi?+ $) = "ji 

Equation  of State:  

where vis .the  divergence  operator; p, T p are  the  density,  temperature  and 
pressure  of  the  mixture,   respectively;  $the  velocity  vector;  ai t h e  mass 
f r ac t ion  of t he   i t h   spec ie s ;  ~i the  diffusional  mass-flux  vector,  = p(f&-v3); 
~i t h e   n e t  mass r a t e  of  production of species i per   un i t  volume by  chemical 

react ion (grams of i per  cm3 per  sec);   ?the  viscous stress tensor;  H = C a h 

+ ? * ?/2 the   total   (s tagnat ion)   enthalpy;   hi   the   specif ic   enthalpy of t h e  
i th   species;   the   heat-conduct ion  vector ;  M i  the  molecular  weight of t he  ith 
species; R t he  universal gas  constant.   Consti tutive  relationshi s f o r   t h e  
viscous stress tensor '? , fo r   t he   d i f fus iona l  mass flux vector j ,  and f o r   t h e  
heat  conduction  vector  $must  be  added  to  these  equations  in  order t o   o b t a i n  
a closed  system.  Thus, f o r  Newtonian f lu ids ,  i .e. fluids such t h a t   t h e  
viscous stress tensor  i s  a l inear   func t ion  of the rate of s t ra in ,   the   v i scous  
s t r e s s  i s  given  by: 

-r) 

1 i i  

-P 

2 



with  def ? = grad ? + (grad $Ty the  superscr ipt  T enoting  the  transpose of 
a tensor ,  p being  the  coefficient of v i scos i ty  and fs the   uni t   tensor .  The 
diffusion of each  species i s  assumed t o  depend only on the  gradient  of  the 
par t icular   species  mass f rac t ion .  The assumption  requires  that  the  binary 
diffusion  coeff ic ients  Du f o r  each  species  are  equal and the  simple  Fick's 
l a w  i s  applicable. Thus 

where Le and Pr are t h e  
the   f l u id  i s  assumed t o  

- - - pDij grad ai = - p ~r Le grad ai ( 7 )  

Lewis and Prandtl  numbers, respectively.  Furthermore 
obey Fourier ' s  l a w  of heat  conduction  for $ 

- 
+ q = - k g r a d T  = - - Pr '" grad T ( 8 )  

being  the  specific  heat  of  species i. 

flows  considered in   the   p resent   inves t iga t ion ,  it i s  
assumed tha t   the   func t iona l  form  describing  the  transport  processes  discussed 
above  remain  unchanged  and  the  laminax  coefficients  are  replaced  by t h e i r  
turbulent  counterparts,   i .e.  p +pt, e tc .  The coef f ic ien ts   p t ,  . . . have yet  
t o  be  determined. 

The body-oriented  orthogonal  curvilinear  coordinate  system  used i s  
shown i n   F i g .  1, where x i s  the  distance  along  the  surface of t h e  body(measured 
from a cer ta in   point  0) and  y the  distance normal t o   t h i s   s u r f a c e .  The corre- 
sponding components of the   ve loc i ty   vec tor   $are  u and v .  R(x) i s  the  radius  
of curvature of t h e  body,  reckoned pos i t ive   for  a convex body,  and a ( x )  i t s  
angle  with and  rb(X) i t s  distance from the  axis .  The length  element i s  given 
by 

Q2 = h12 dX2 + h22dy2 + h 2 2  dcp 
3 (9)  

where the  metr ic   coeff ic ients   are  

h = 1 + KY, h = 1, h = r , r = r + ycom, .(X) = 1/R(x) (10) a 
1 2 3 b 

a = 0 for   plane and a = 1 f o r  axisymmetric  flows,  and cp i s  t h e   l a t e r a l  (2.) 
coordinate  in  plane  flow  and  the  azimuthal  angle i n  axisynmetric  flow. Then 
f r o m t h e  usual relations  for  vector  operators  in  orthogonal  curvil inear  coor- 
dinates  the  continuity  equation, Eq. (l), is found t o  be 

U s i n g  Eq. ( 7 ) ,  the  species  continuity  equation, Eq. (2), becomes: 

3 



where  Sc = Pr/Le i s  the  Schmidt number. 

The Navier-Stokes  moEntwn  equations  are (Ref. 3) : 

x-momentum. 

y- moment urn: 

The v iscous  s t resses  T ~ ,  ..., T~ are  given  by Eq. ( 6 ) ,  and in  the  coordinate 
system  considered  are: 

With Eqs. (7-8) and relat ions:  

4 



where "p. = dhi/dT, V2 = (u2+$)/2, and  assuming Le = 1 , t he  energy  equation, 
Eq. (4)  ,%becomes: 

An a l t e rna te  form of  the  energy  equation may be  obtained i f  we make 
use  of  the  equation f o r  the  kinetic  energy  of  the flow. Multiplying Eq. (13) 
by u and Eq. (14) by v and adding, we  ob ta in ,   a f te r  some calculation: 

Noting t h a t  H-(V /2) =h and  using Eq. (17) , we derive from Eq. (16) the  energy 
equation in  the  following  second form: 

2 

5 



In  order  to  obtain  the  governing  conservation  equations  for  turbulent 
flows, i t  i s  convenient to   rep lace   the   ins tan taneous   quant i t ies   in   the  above 
equations  by  their mean and the i r   f luc tua t ing   quant i t ies .   In   th i s   t rea tment ,  
t h e  mass-weighted-averaging  procedure i s  used. With this  procedure  the 
result ing  equations  for  the  average  turbulent  f low  quantit ies will have a 
form  very similar to  the  equations  for  laminar  flow. 

If f i s  any  flow  quantity,  the  conventional  time  average of t h i s  
quant i ty  i s  denoted  by ?. Then, the mass average  of  any  quantity  except 
density,  pressure and viscous  s t resses   ( f luctuat ions of t ranspor t   coef f ic ien ts  
are  neglected) i s  given  by 

P 

The quant i ty  f may then be wri t ten as 

where f "  i s   t he   depa r tu re  o r  fluctuation  from  the  mass-averated  value f". It 
- should  be  noted  that 8" # 0; f "  = - p ' f ' / p .  Also, i t  i s  easy  to  show t h a t  
p f "  = 0 .  Representing  the  density,  pressure and viscous  stresses  by  the sum 
of t h e i r  time average and i t s  departure or f luctuat ion  f rom  the time average, 
namely 

and the  velocit ies,   the  total   enthalpy,  static  enthalpy,  temperature and mass 
f r ac t ions  by the i r  mass average  and i t s  departure  from  the mass average, 
namely 

subs t i tu t ing   these   quant i t ies   in to  Eqs.  (11)-( 18) , and  applying  the  Reynolds 
rules of averaging  (Ref. 4) yields  the  following  conservation  equations  for 
plane o r  axisymmetric  turbulent  flows: 

6 



Global Continuity: 

Species  Continuity: 

x-momentum: 

y-momentum: 

Energy: 

7 



But it can be shown t h a t  

where 

p ; ; H " = p ; ; ( h " +  

" N  p v H = p Y " ( h " +  - 

2 + F  
2 

$ + F  
2 + e )  

i s  the  mass averaged  specific  turbulent  kinetic  energy. Hence Eq. ( 2 5 )  can 
be  rewrit ten  as 

(27) 
Contd. . . 

8 



I n  Eqs. (22),   (23),   (24) and  (27) t h e  Reynolds  (apparent) stresses 
and the   tu rbulen t  mass and  energy  transports  are  calculated  by  applying  an 
eddy transport  concept which i s  postulated  as: ( R e f .  6 )  

where v t  i s  the  turbulent  (eddy)  diffusivity,  and  Prt and Sct   the   turbulent  
Prandt l  and  Schmidt  numbers, respect ively.  It should  be  noted  that  unlike 
p, the  molecular  viscosity,  v t  i s  not a property of t h e   f l u i d .  I t s  value 
var ies  from point  t o  po in t   i n   t he  flow  and i s  determined  by  the  structure 
of turbulence a t  the  point  considered.  Substi tuting Eq. (28)   into  the 
conservation  equations , Eqs.  (22) - (  24)  and (27 )  we ge t  

Species  Continuity: 

9 



10 



where = 5 + 2pe/3, H” = h” + (?‘ + v )/2 and the  turbulent   kinet ic   energy 4 

has  been  neglected compared t o  t he  mean kinet ic   energy  for  a high-speed 
flow. 

Using t_he e uat ion  for   the m e a n  kinetic  energy of the Qrbulent 
flow, ;?!2/2 = p(u2 + v % )/2,  obtained  by  multiplying Eq. ( 3 0 )  by u and Eq.  
(31) by v and  adding 

where 



Subst i tut ing  the above i n t o  Eq. (32) w e  obtain  the  following  alternate form 
of the  energy  equation: 

Equations  (21) , ( 2 9 ) ,  (30) , (31) , (32) or  (34) and (5) form t h e  
complete s e t  of Navier-Stokes  equations  describing  plane or axisymmetric 
laminar and turbulent   react ing flows containing i dis t inc t   spec ies .  The 
turbulen t   d i f fus iv i ty  v t  i s  y e t   t o   b e  determined i n  terms of known or 
calculable  quantities.  Following Wilcox and Traci (Ref. 5) it is assumed 
tha t   the  eddy d i f fus iv i ty  i s  expressed  by  the  equation 

vt - - - pe 
E (35) 

where E i s  the  mass-averaged d iss ipa t ion   ra te  and i s  defined as E = p.Q1’.QTfp 
where R = 5 + .Q” = pw, w be ing   t he   vo r t i c i ty  or pseudo-vorticity.  Both e and 
E are  determined  from  the  following two par t ia l   d i f fe ren t ia l   equa t ions   ( for  
a detai led  der ivat ion of the  equations for the  particular  coordinate  system 
considered  here  see Appendix A ) .  

2 

12 



and 

"""""""_ """"""_"""""""""- 

""_""""" """""""""""----""-- 
1 2 

The term i n  box 1 i n  Eq. (37) i s  absent i n  the  corresponding  equation  given i n  
Ref. 5 by Wilcox  and Traci  for  general  three-dimensional  Cartesian  coordinates. 
The term i n  box 2 i s  neglected  in  Ref. 5; here it i s  kept and modelled  (see 
Appendix A f o r   d e t a i l s ) .  The importance  of  these  terms, as well as the values 
of the  closure  constants e2 and 53 can  be  assessed  by comparison with  appropriate 
and rel iable   experimental   resul ts .  The turbulent  Prandtl and  Schmidt numbers 
Pr% and Sc t   i n  Eqs . (29)  and  (32) o r  (34) and the  closure  coefficients a ,  a"k, 
@, @*, cr, o+, e* appearing i n  Eqs. (35) and ( 3 6 )  are  (see  Ref. 5 for   a   detai led 
~ s c u s s i o n )  : 

(38) 
Contd.. . 



a = - [ 1 - 11 exp(-  Ret/2) ] , 1 10 10 
3 10 1 - - 11 exp(- =et)] 

a being  defined as the  length  scale  of turbulence 

N s = &!(e e + e + 2e e = = men XY Yx) (39) 

To complete  the  formulation of t h e  set of equations an appropriate 
set of boundary  conditions must be  specified.  Generally, f o r  nonturbulent 
regions e = E = v t  = 0,  while  for  solid  boundaries  the  usual  no-slip boundary 
condition on  u and v appl ies .  Moreover, either  the  temperature o r  heat  flux 
must be specif ied.  The turbulent  energy  and  length  scale must s a t i s fy   t he  
condition e = = 0 (see R e f .  5 ) .  

3. BOUNDARY-LAY.EB TYPE EQUATIONS OF MOTION 

To compare the   r e l a t ive  magnitude  of  the  terms in   the   equat ions  
of  motion for   the  mean turbulent  flow  given in   t he   p rev ious   s ec t ion   i n  
s i tua t ions  where the  character is t ic   length of  t he  flow i n   t h e  x d i rec t ion  
i s  L and i n   t h e  y direct ion i s  €it << L ,  we introduce  the  following new dimen- 
s ionless  variables tha t  are of order   uni ty   in   the  f low f i e l d  considered: 



where U e  i s  a cha rac t e r i s t i c   ve loc i ty   i n   x -d i r ec t ion ,  pe a charac te r i s t ic  
density and  and V t  can  be  any  velocity  characterist ic of the  turbulent 
f i e l d .  The cha rac t e r i s t i c   ve loc i ty  Ve i s  yet  to  be  determined. 

I n  nondimensional  form  the  continuity, Eq (21) , is :  

If all t h e  terms of this   equat ion  are   to   be of the same order  of  magnitude 
then 

'e  'e 't 
" - 1  and Ve -- 

tUe 
- 

L (43) 

Thus the  continuity  equation, Eq. (42) , becomes 

The species  continuity  equation, Eq. ( 2 9 ) ,  i n  nondimensional  form, is :  

I n   t h e  above equation Wi = PeWi and GT i s  the  nondimensional mean -96 N 
N 

r a t e  of production  of  species i. The r e l a t ion  Vt/Ue = bt/L i s  used, and the 
quant i ty  ? = vL/Vtbt,  where VL i s  the  laminar  kinematic  viscosity,  can  be 
in te rpre ted  as t h e   r a t i o  of  the  viscous  layer  length  scale bV and the  defect 
layer   length  scale   6t :  

15 



Thus, i n   t u rbu len t  boundary layer  type  flows,  as a result of making the 
equations  nondimensional  by  using tge v a r i a b l e s   i n  Eqs.  (41) and (43) , two 
small parameters, 6 t /L  = Vt/Ue and E = 6v/St appear which correspond t o   t h r e e  
regions  of  flow  field:  the  inviscid  region where the   l ength   sca le  i s  L, 
the  defect-layer  region where the   charac te r i s t ic   l ength  i s  6 t  and  the  viscous 
layer  region where the   charac te r i s t ic   l ength  i s  F v .  Mellor  (Ref. 10; see 
also  Ref. 11) has shown that  expansion i n  one parameter &/L i s  su f f i c i en t  
as '8 = o[ (Gt/L)n] f o r   a r b i t r a r y   n .  From Eqs .  ( 3 5 )  and (36) the  nondimensional 
eddy d i f fus iv i ty ,  v t ,  is :  

I n  nondimensional  variables , Eqs.  ( 3 0 ) - (  32)  and (34) are: 

x-momentum: 

+ - h c o ~ a r )  - - div Y* sim 6t 2 
L 3 11 
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y-momentum: 

1 
N 

x [ $ + ;* v;) ( 
1 +" 6t P u* 6t )I + 

L R* R* +-p L 

-($) 6t ( 6 t p B + 2 -  L 6t 
2 (;* 2 + i;* v;) 2 a% bt > 

w +-p L 
1 + - -  

L R* R* + -  L 

- 2  
1 

1 +" 
L R* 

X 2 

( 5 0 )  
Contd. . . 

17 



6t v++ 

6t 

N 

- 
L 

" 

R* +-p L 

or  in the   a l te rna t ive  form: 

a;* 6t 
a+ L 

x - + -  

18 



6.t % ;* sildl + 6t > c o s  L 
+ -  

L 6t + 2 F  * + a  I+ 

R* +-p L 

The nondimensional  equations  of  motion f o r  m e a n  turbulent boundary- 
layer  type  flows  obtained  by  retaining terms of order  unity and terms  of 
order (6t /L)  i n  Eqs . (44), (45),  (48)-( 51),  which include i n  a consistent 
way longitudinal  curvature and normal pressure  gradient ,  are: 

Continuity: 

Species  Continuity: 

x-momentum: 



y-momentum: 

- 5 div ?*)I (55) 

Energy: 

o r  

4. TWO-EQUATION TURBULENCE MODEL FOR CURVED BOUNDARY LAYER TYPE FLOWS - "  

The turbulence  quantity  defined  in Eq. (26) and sat isfying  the model 
equation, Eq. (36), i s  regarded as the t o t a l   k i n e t i c  energy  of  turbulence, w i t h  
u'' and v'' denot ing  the  f luctuat ing  veloci ty  components i n   t he  streamwise  and 
i n   t h e  normal t o  the   shear   p lane   d i rec t ions ,   respec t ive ly   ( in   th i s   sec t ion  we 

20 



Consider th in   shear   l ayers   para l le l   to   y -cons tan t   l ines)  . However, Wilcox 
and Chambers (Ref .   2)   argue  that   th is   def ini t ion of e i s  phys ica l ly   r ea l i s t i c  
only if  the  kinetic  energy  of  turbulence i s  equipaxtitioned, i .e .  , i f  the 
turbulence i s  i so t ropic .   S ta t ing   tha t   tu rbulence   in  boundary layer  type 
flows i s  anisotropic ,   they  postulate   that ,  more appropriately, e i s  propor- 
t i o n a l   t o   v ” 2 .  The proportionali ty  coefficient is then  established  by 
requi r ing   tha t  e be  numerically  equal to   the   k ine t ic   energy  of turbulence  in  
the  law-of-the-wall  region  (Ref. 5) of a f l a t - p l a t e  boundary layer ,  i .e. , 
e = */4. Furthermore,  by  proper  consideration of the  physics of turbulent 
flows  with  streamline  curvature  based on t h e   c l a s s i c a l   s t a b i l i t y  arguments f o r  
flow  over a curved w a l l  (see  Ref.  12) , Wilcox  and Chambers show (Ref.  2)  that 
t h e   s t a b i l i t y  of  such a flow  depends  mainly on the  behaviour of v e r t i c a l l y  
moving f l u i d   p a r t i c l e s  and  not on any attendant  nonvertical   f luctuations.  
Hence they  conclude  that  in a turbulent  boundary  layer,   velocity  f luctuations 
normal t o   t h e  wall, 7, p lay  an important  role  in  curved  streamline  turbulent 
flows. 

The model equation  for  the %ixing” energy, e = 9 ~ “ ~ / 4 ,  may be 
obtained  from  the  exact normal  Reynolds stress  equation (A33) der ived   in  
Appendix A, rewri t ten  in   the  fol lowing form: 

- 

Production 

Dissipation - 

- Laminar, Turbulent and Pressure  Diffusion - (Contd. . .) 

21 



Turbulent Work 

- -ai v" ay 

Compressibility 

Multiplying Eq. (58) by 914 modelling  the  groups of terms for t h e  
corresponding  physical  quantities  as for Eq. (A34) and taking  into  account 
Eq. (28) ,  we obtain t u o l l o w i n g  model equation for t h e  mass-averaged 
"mixing"  energy e = 9~%~~/4p: 

Written i n  nondimensional var iables  of Eq. (41), Eq. (50) becomes: 

N 

9 u* - 1 
+ F  6t bt ysc bt R* 

R * + - P  L 
I+" L R* 

.. . . . . . . . . ...._ ... . .. . . . . . - . . . . . . . _. . . 

22 



where 

Retaining terms of order  not  higher  than  6t/L  in Eqs . (60)-( 61) we 
get:  

x (E* 2 + at ;* v*) 
t 2 F  ae* 1 

Except for   the  compressibi l i ty  term, which i s  retained  here   in  i t s  
general  form, Eq. (62)  reduces  to  the  corresponding  equation i n  Ref. 2 f o r  
a = t c = O .  

Wri t ing  the  diss ipat ion  ra te   equat ion,  Eq. ( 3 7 ) ,  i n  nondimensional 
var iab les ,  Eq .  (41), we have: 



Retaining terms of order not  higher than bt/L i n  Eqs .  (63) we get :  



Equations (62) and (64) represent  the model equations  for  the 
quant i t ies  e* and .+ for boundary-layer  type  flows  (6t/L << 1) needed t o  
determine  the  turbulent  (eddy)  diffusivity VI. The values of the  closure 
constants, a ,  a*, B ,  @*, cr and + and E*, are   the  same a s   i n  Eq. (28). The 
magnitudes of the  coeff ic ients  52 and 53 and  hence  the  importance of the 
terms which contain  these  coefficients may be  determined  by  comparing 
theoret ical   predict ions  with  re l iable   experimental   resul ts .  



DERIVATION OF TWO-EWATION TURBULENCE MODEL 

FOR  COMpRFSSlBLF PLANE OR AXISYMMGTRIC  TURBULENC  FLOWS 

I N  ORTHOGONAL CURVELNEAR BODY-ORIENTED  COORDINATES 

The mass-averaged turbulent  kinetic  (mixing)  energy  e,  and  the 
mass-averaged  turbulent  dissipation  rate E, axe  needed to   de f ine   t he  eddy 
d i f fus iv i ty  v t  given  by  Eq. (35) 0np.E. The following  detailed  derivation 
of t h e  model par t ia l   d i f fe ren t ia l   t ranspor t   equa t ions   in   the   coord ina te  
system  considered  which E and e Satisfy  follows  the Wilcox  and Traci  approach 
(Ref. 5 )  of turbulence  modelling. 

1. The Turbulent  Dissipation  Rate  Equation 

Tge diss ipat ion rate quant i ty  i s  chosen as  c2 = pRy R y h  where 
R i  = R i  + R i ,   R i  = PWi and the  vector L? = r o t  d i s  the   vor t ic i ty .   In   vec tor  
form t h e  momentum equation may be  wri t ten  as   (see,   for  example,  Ref. 7, Ch. 

N 

1) : 

e36 
where I and T are   the  unit and viscous stress tensors   respect ively.  Taking 
t h e   r o t  of E 3  (a)+ we get,   using  the  vector  relationship r o t ( $  x ?) = 
(v ' . ? )Z- (w.V)v+L?( ; f (d .? ) ,  

From the  continuity  equation (1) we have ? - v" = - ( l / p ) (  d;/dt)and $''/at + 
(9 - nL? = d / d t .  Hence Eq. (A2) becomes 

r - - -  1 P I 
or  & *  

The right-hand  side of Eq. (A3) may be  writ ten as 

P P 
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I -  

The components of the  vector  ? - p a r e ,   i n   t h e  orthogonal  curvi- 
linear  body-oriented  coordinate system,  considered: 

x- component : 

y-  component : 

and 

where 2, p a n d  7 are   the unit coordinate   vectors   in   the x, y and Cp direct ions 
respectively.  Hence 

r o t  (- y) = 5 gradp x gradp = - 1 
2 P P 

and s imi la r ly  

Equation (A3) may thus  be  writ ten as 



For the  only component R 3  = R of the  vector  d we get  from Eq. (Ab) ,  
in  the  coordinate  system  considered, 

N 

Decomposing 52 = R + R" , using Eqs.  (19) and ( 2 0 ) ,  and multiplying 
Eq. (A5) by ra (  l + ~ y ) R "  and taking  the  average, we obtain,  term by term: 

- 2r"(l  + .y) [ E  PR" div vfl + pR"R" div v f ' 3  
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I 

and t h e  last  term i n  Eq. (A5) may be  wri t ten as 

Adding Eqs. (A6)-(All), taking  into  account  the  continuity  equation, 
Eq. (ll), and  regrouping the  terms we get  the  following  equation  for  the 
turbulen t   d i ss ipa t ion   ra te   quant i ty  2 = pR" .~"h:  

Production 

Turbulent  Diffusion 

- Laminar Diffusion and Dissipation - 



Compressibility 

The physical meaning  of each  group of terms i s  i n d i c a t e d   i n  Eq. (Al2). Each 
group of terms  should  be  "modelled" to   express   the  physical   quant i t ies   actual ly  
present   ( ra tes  of turbulence  production,  dissipation  and  diffusion of the  
quant i ty  c2 as   wel l   as   the  effect  of compressibil i ty on t h e   r a t e  of change of 
e2) i n   func t iona l  forms  containing a closed set of dependent var iab les .  These 
funct ional  forms  should  be  dimensionally  consistent and may contain  empirical 
constants  that  are  expected  to  be  insensitive t o  the  character of individual 
flow f i e l d s .  The following  groups  of terms are modelled a f t e r  Wilcox and 
Traci  ( R e f .  5 )  : 

Production: 

U s i n g  the eddy d i f fus iv i ty  approximation, 

t h i s  group of terms may be  wri t ten as 

and i s  modelled  by Wilcox  and Traci  by  the  dimensionally  consistent  expression 

where 

N s =  2(exxexx + e  yyeyy -+ 2e 
't XY",) 



and Q: i s  a closure  coeff ic ient .  

Dissipation: 

The group  of terms describing  the  dissipation i s  modelled as 
follows:  from  dimensional  consideration  the  rate of diss ipat ton may be 
taken as ~/p[ l /sec]   and  the  diss ipat ion  ra te  of the  quantity p c? i n  Eq. 
(Al3) may be  taken  as 

where @ i s  the  proport ional i ty   coeff ic ient .  

Laminar  and  Turbulent  Diffusion: 

The form of .this  group of terms and the eddy diffusivity  approxi- 
mation fo r   t he   quan t i t i e s  u"pR"R" and v"pR"R" suggest  the  following  modelling 
of these  terms: 

where u i s  a c losure  coeff ic ient .  

Compressibility: 

The f i rs t  group  of  terms 

i s  missing  from  the  corresponding  equation  for e2 wr i t ten   in   genera l  
three-dimensional'  Cartesian  coordinates i n  Ref. 5 .  This  term i s  modelled 
here  simply as 

- 2  2 - E 2 P E  d i v v  
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where 52 i s  a propor t iona l i ty   (c losure   coef f ic ien t ) .  It i s  worth noting 
t h a t  this term i s  similar i n  form to   the   compress ib i l i ty  term f o r   t h e  
turbulent  kinetic  energy  in  Ref.  5 o r  i n  Eq. ( A 4 0 ) .  

The second  group of terms i n  Eq. (Al2) labelled  "compressibil i ty" 
i s  neglected  in  Ref. 5 .  However, t h i s  term may be retained and  modelled 
in   the  fol lowing way: from  mass-averaging re la t ionships  we have 

Consider now the   idea l ized   s i tua t ion  of  one-dimensional  high-speed  flow f o r  
which the  total   temperature  i s  approximately  constant,  the  fluid i s  a per fec t  
gas  and  pressure and t o t a l  temperature  fluctuations  can be  neglected. Then 
from the  energy  equation 

where a i s  the  speed of sound  and a* t h e   c r i t i c a l  speed 
u = u + u' and a = + a' we get  

of  sound. With 

y+1 a*' 
2 

Since (7-1)G2/2 + a2 = (r+l)a* /2 we have 2 

On the  other  hand pa2 = yp; with p = + p '  and a = a + a '   (pressure  f luc-  
tuations  are  neglected) we get  

Equation (A21) gives 

CU' a '  -1 u' a '  

a a a a 

2 

2 -2 -2 
(y-l) -2 = - 2 - - Y- - - - 

Substi tuting  the  value of -2a' /a from  Eq. (A22) in to   the  above equation, we  ge t  



I 

or approximately 

For two-dimensional  flows w e  can generalize this equation t o  

Using Eq. (A24), Eq. (A20) m y  be  wri t ten as 

or  using  again  the eddy d i f fus iv i ty  approximation 

we obtain 

However, from Eq.  (Al.2) f o r  c2, i n   t h e  approximation  considered, we can write, 

Tak ing  i n t o  account  Eq. (35),  Eq. ( A 2 5 )  becomes 

where 53 i s  a closure  coeff ic ient .  Hence the  second  group  of  compressibility 
terms i n  Eq. (Al3) i s  modelled as 
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which i s  dimensionally sound  and similar i n  form t o  Eq. (Al9). From Eqs. 
( a b ) ,  (Al7)-(Al9) and (A20), the   resul t ing model equation (Al2) f o r   t h e  
r a t e  of  change  of  the  quantity e2, i s  then 

The dissipation-rate  equation ( M 8 )  contains a t e rm  p ropor t iona l   t o   ( l / l+~y)  2 x 
x(&?/ax)2 + ( a j / ay )2   r e fe r r ed   t o  as the  gradient-diss ipat ion  term  in   Ref .  5.  
I t s  introduction was motivated  by comparison  of t h e  Wilcox-Traci model with 
other  two-equation  turbulence  models,  particularly  those  developed  by Ng and 
Spalding  (Ref. 8) and by  Jones and  Launder ( R e f .  9) . It enables one t o  
pred ic t  more rea l i s t ic   va lues   for   the   tu rbulence   l ength   sca le  a,  espec ia l ly  
near  solid  boundaries. The values of the  c losure  coeff ic ients  a ,  @ and u 
are  given  by Wilcox  and Traci  (Ref. 5) as: 

The magnitudes of the   coef f ic ien ts  52 and 53 may be  assessed  by comparing 
theoret ical   predict ions  with  re l iable   experimental   resul ts .  

2 .  The Turbulent  Kinetic  Energy  Equation 

The  x-momentum equation (13) may be  wri t ten as 
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I 

. 
Let - 

u = u + u", v = v + VI', p = p + p ' ,  p = 5 + p '  
N 

and 
- 

7 = 7 + 'Tij i j  i j  (A31)  

Multiply Eq. (A30) by u" and take  the  average;  after some calculation we ge t  

o r  rearranging the  terms, 
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Using Eq. (A3l) and multiplying  the y-momentum equation, Eq. (14), 
writ ten as 

by v" and taking  the average we get 

or  rearranging  the terms 
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I 

Combining Eqs. (A32) and (A33) we obta in   for   the  mass-averaged turbulent   kinet ic  
energy, Eq. (26) ,  the  following  equation: 

Dissipation 

I Laminar,  Turbulent  and Pressure Diffusion 

I- 1 

I- C o q r e s s i b i l i t y  -I 

I Turbulent i 
I- Pressure 

Work 
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Each  group  of  terms  expressing  the  physical  quantity  present i s  "modelled" i n  
the following way (Ref. 5) : 

Production 

Equation  (28)  suggests a modelling of this quan t i ty   i n   t he  form 

where 

N + 2e e 
XY yx) 

and a* i s  a closure  coeff ic ient .  The expressions  for e e are given 
i n  Eq. (~16) . xx' yy' 

Dissipation 

The r a t e  of diss ipat ion may be  taken as E/; [l /sec],   hence  the 
d iss ipa t ion   of   the   quant i ty  ;e  may be  modelled as 

where @* i s  a proport ional i ty   (c losure)   coeff ic ient .  

Laminar  and Turbulent  Diffusion 

The form of t h i s  group  of  terms suggests  the  following  modelling: 

with fl as  a closure  coeff ic ient .  

Compressibility 

Using the   re la t ionships  

plu' ut1 = - p f v '  VI' = - - 
Y - - 

P P 

and Eq. (A24), we can wri te  this group  of  terms as 

and 



From the  continuity  equation div( p V) = 0 we have 
- 3  

Hence the  compressibility  term i s  modelled as: 

where E* i s  a closure  coefficient.  

The resu l t ing  model equation  for  the mass-averaged  turbulent  kinetic 
energy e i s  then 

The values of closure  coefficients  (see  Ref. 5 )  are: 

The turbulent Reynolds number Ret i s  given i n  Eq. (A2.9). The turbulent work 
terms  in Eq. (A34) are  neglected. 

Equations (Ah) and (A28) represent a two-equation  turbulence model 
for  compressible  plane or axisymmetric  Navis-Stokes  flows in  the  coordinate 
system  considered. 
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