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Sumna.ry

This report presents the full Navier-Stokes time-dependent, compressible,
turbulent mean-flow equations in mass-averaged variables for plane or axisymmetric
flow configurations. The equations are derived in a body-oriented orthogonal
curvilinear coordinate system. Turbulence is modelled by a system of two equa-
tions for the mass-averaged turbulent kinetic energy and dissipation rate which
determine the turbulent (eddy) diffusivity, recently proposed by Wilcox et al.
These equations are rederived for the coordingte system and flow configuration
considered, and some new features of these equations are discussed. A system of
second-order boundary layer equations is then derived which includes in a con-
sistent way the effects of longitudinal curvature and the corresponding normal
pressure gradient. In this system the normal momentum equation is retained. The
Wileox and Chanbers approach is ugsed in considering effects of streamline curva-
ture on turbulence phenomena in turbulent boundary layer type flows. Their two-
equation turbulence model with curvature terms are rederived for the cases
congidered in the present report. The derived system of seven second-order
boundary layer equations serve as a basis for an analytical-numerical investiga-
tion of a variety of boundary layer (parabolic) type problems where streamline
curvature is of the order of the characteristic length in the longitudinal
direction.
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Notation

a speed of sound
cp gspecific heat at constant pressure
e mass-averaged turbulent kinetic energy
H total (stagnation) enthalpy
~h specific stabtic enthalpy of the mixture, h =Zaihi
hi specific static enthalpy of species i +
JT) diffusional flux factor
k heat conductivity
L characteristic length of flow in x-direction
Le Lewis nunber
dissipation length scale
M molecular weight
Pr Prandtl number
D pressure
a’ heat conduction vector
R univergal gas constant; radius of curvature of the body surface
Re Reynolds nunmber
r distance to x-axis
Sc Schmidt nurmber
T temperature
t time
u x-component of velocity
v y-component of velocity
7 total velocity vector
W'i net mass rate of production of chemical species
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Subscripts

a

t

longitudinal coordinate along surface of the body

coordinate normal to the body

species mass fraction; angle of body with x-axis; turbulence
closure coefficients

turbulence closure coefficients

specific heat ratio

characteristic length of flow in y-direction
mass-averaged turbulent dissipation rate
curvature of the body

coefficient of viscosity

kinematic viscosity

eddy diffusivity
turbulence closure coefficients

density
turbuwlence closure coefficients

viscous stress tensor

cylindrical or azimuthal coordinate
vorticity or pseudovorticity
digsipation rate quantity, pw

divergence operator
a = 0 plane flow, a = 1 axisymmetric flow

denotes turbulent quantity

denotes ith species
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Superscripbs

~

*

mass-averaged value
nondimensional quantity
time-averaged value
time-averaged fluctuabtions

mass-averaged fluctuations
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1. INTRODUCTION

Recently, considerable research efforts have been devoted to the
understanding of the aerodynamics of combustion and the complex turbulent
mixing phenomena occurring in combustion devices. Experimental investigations
and theoretical modelling of such phenomena cambined with sophisticated computa-
tional fluid-dynamic methods are the essential tools facilitating the economical
design and operation of these combustors.

Usually all practical flamesg have the form of turbulent jets issuing
from round orifices, the fuel gas being introduced through a central jet and
the oxidizer (air) through an annulus surrounding it, so that straight concentric
Jets are formed. However, in order to enhance the fuel-air mixing process, the
primary (fuel) jet or the secondary jet (air) or both are given a certain degree
of curvature (e.g., swirl). Also, in certain types of combustors involving
compressible jets, in order to achieve optimum combustion characteristics, the
finite-rate chemical processes should be controlled by controlling the pressure
and temperature fields in the combustor. This can be achieved by imparting to
the flow various degrees of curvature.

Among the theoretical models describing curvature effects on turbulence,
second-order closure two-equation turbulence models, which utilize two parameters
to characterize the turbulence and to determine the eddy diffusivity, with each
parameter satisfying a nonlinear transport equation, involve less empiricism
than the mixing-length theories or the one equation models of turbulence. They
require no advance knowledge of the flow under consideration. Yet they are
simple enough to use for general engineering applications. Such models have
proliferated. Recently, Wilcox and Chambers (Ref. 2) have proposed an
interesting extension of their model to compressible flows with streamline
curvature. The success achieved by this method in predicting the behaviour
of a number of turbulent boundary-layer flows (Ref. 2) warrants its further
use and testing in other compressible applications.

The present report is concerned with the analytical investigation of
curvature and compressibility effects on the turbulent mixing of a compressible
(fuel) jet issuing into a compressible air flow (Fig. 1). Flow variables of
primary interest are the fuel/air ratio and temperature distribution. The
full Navier-Stokes equations for global continuity, species continuity,
momentum and energy conservation are derived for the mean mass-averaged varia-
bles of a compregsible, turbulent, axisymmetric or plane flow in curvilinear
orthogonal body-oriented system of coordinates (Ref. 1). The apparent (Reynolds)
stresses were modelled according to the eddy viscosity concept, the turbulent
visgcosity being a function of two parameters, the turbulent mixing energy and
the turbulent-dissipation rate determined by two nonlinear partial differential
equations. The Navier-Stokes form of these equations was cbtained in the
coordinate system considered, with due account of compressibility and curvature
effects. A compressibility term was found to exist in the eguation for
turbulent dissipation omitted by Wilcox and Chambers in their general equations
in Cartesian coordinates. Starting from this system of geven equations,

a complete set of second-order boundary-layer (parsbolic) type equations was
derived (terms of order unity and of order 5t/R are retained, Ot being the
characteristic mixing zone thickness and R the radius of curvature, which is
assumed to be of the same order of magnitude as the characteristic longitudinal
length of the problem).
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2. MASS-AVERAGED EQUATTIONS OF MOTION

The general equations describing flows of a reacting mixture of
perfect gases in vector form are given by:

Global Continuity: % +T . FT=0 (1)
3(pat; )

Species Continuity: _'—a-tl_ + - (wi?+ 5;) = Wi (2)

Momentum: 85 +T TP =- B+ T F (3)

Energy: _8_(@)+§>, {pVH+a’+Zhij_’. - (‘?ﬂ }=O (4)
1
.
Equation of State: D= Rsz M—l (5)
1

where Vis the divergence operator; p, T, p are the density, temperature and
pressure of the mixture, respectively; va"the velocity vector; 04 the mass
fraction of the ith species; :j_;_ the diffusional mass-flux vector, j_; = p(Vi-XT));
Wi the net mass rate of production of species i per unit volume by chemical

reaction (grams of i per cm3 per sec); <? the viscous stress tensor; H = Z o.h,
i

+ T - V/2 the total (stagnation) enthalpy; h;j the specific enthalpy of the
ith species; @ the heat-conduction vector; M; the molecular weight of the ith
species; R the universal gas constant. Constitutive relationshi_;)s for the
viscous stress tensor € , for the diffusional mass flux vector J, and for the
heat conduction vector @ must be added to these equations in order to obtain
a closed system. Thus, for Newtonian fluids, i.e. fluids such that the
viscous stress tensor is a linear function of the rate of strain, the viscous
stress is given by:

- u( der V- % div ‘7?) (6)



with def V = grad V + (grad V)T, the superscript T genoting the transpose of
a tensor, p being the coefficient of viscosity and I the unit tensor. The
diffusion of each species is assumed to depend only on the gradient of the
particular species mass fraction. The assumption requires that the binary
diffusion coefficients Ds;: for each species are equal and the simple Fick's
law is applicable. Thus :

= _
dg = - ey

_ ., Le
3 grad O, = - W 57 grad.ai (D)
where Le and Pr are the Lewis and Prandtl numbers, respectively. Furthermore,
the fluid is assumed to obey Fourier's law of heat conduction for q:

c
g=-kgrad T = - fﬁ_ grad T (8)

where aP = % Qjcp;, cp; being the specific heat of species i.

For turbulent flows considered in the present investigation, it is
assumed that the functional form describing the transport processes discussed
above remain unchanged and the laminar coefficients are replaced by their
turbulent counterparts, i.e. p - pug, ete. The coefficients pg, ... have yet
to be determined.

The body-oriented orthogonal curvilinear coordinate system used is
shown in Fig. 1, where x is the distance along the surface of the body(measured
from a certain point 0) and y the disbance normal to this surface. The corre-
sponding components of the velocity vector are u and v. R(x) is the radius
of curvature of the body, reckoned positive for a convex body, and G(x) its
angle with and rp(x) its distance from the axis. The length element is given
by

dﬂz _ h,2 dx2 +h 2dy2 +h 2d¢2 (9)
1 2 3
where the metric coefficients are
hy =1 +ky, By=1, hg= %, r=r +ycost, x(x) =1/R(x) (10)

a = 0 for plane and a = 1 for axisymmetric flows, and @ is the lateral (z)
coordinate in plane flow and the azimuthal angle in axisymmetric flow. Then
from the usual relations for vector operators in orthogonal curvilinear coor-
dinates the continuity equation, Eq. (1), is found to be

> 1 D a o) a -
By (e e Frtemmto @

Using Eq. (7), the species continuity equation, Eq. (2), becomes:



o(e;) d
&1 * r (l+KY) { (=%, u) ¥ 5— (=" (1) e, 1V }

where Sc = Pr/Le is the Schmidt number.
The Navier-Stokes momentum equations are (Ref. 3):

X-momentum;:

E%fgu) 1 {ax [r®(ou+p=t o) ] +F [r2(1+ky) (puv-T )] }

r¥(14xy)
* Ty (P ) - 2 (p-Tg)sim = 0 (13)
¥-momentum;
aéJpGV) + . (1+Ky) {BX [z%(ouv- Txy)] F [r (l+|cy)(pv +p-T )] }_
l+ny (pul "'P -T ) - % (P-TW)cosot =0 (1)
The viscous stresses Tyx, ---» Tgp are given by Eq. (6), and in the coordinate

system considered are:

SRR LA B S LAl

3
i

Top ~ {? (usindt + veos) - % divv)]s Txy T {ﬁnygh%; :L+ny ] (15)
. 1 o) a 3 a
AGv V = ———— < = (ru) + r o (1+ky)Vv }

With Egs. (7-8) and relations:



o, 2
OH o .3 ¥
> zhlm‘af* °‘1°p1§+§z<2—/
o, 2
OH i g .9 v
oy zhl(T)y*- &y CPJ.%*—_&}(?/
where Cpj /dT V2 = (u2+'v2)/2 and assuming Le = 1, the energy equation,

Eq. (L), lbecomes

a(gE'P) +—L { igxpuﬂl [r & (1ry) ovH) }

r®(1+y)
bt G DI IR ACE D)
+ %{ [ra(Txxu+~rxyv)] + % [ra(l+Ky)(Txyu+TWV) ]} (16)

An alternate form of the energy equation may be obtained if we make
use of the equation for the kinetic energy of the flow. Multiplying Eq. (13)
by u and Eq. (14) by v and adding, we obtain, after some calculation:

FCF) iy B e ) [ remm £ -

_u_op BP bt
T Tty ox ~ ¥ 9y

= {B [r® (—r wHT v)]+6—[r (l+rcy)('r ST v)]}

r (1+KY)

T
xX ou 1 ov , du KU ov  a )
- THey & + K'V'> - Txy <m—y- & + BE' - l+|<y> - TY.‘}' 'gy - '; Tw(usnﬂ-ﬂrcoﬂ)
(17)

Noting that H—(V2/2)=h and using Eq. (17), we derive from Eq. (16) the energy
equation in the following second form:

o(ph
g +r—(-;;y—) {& r*puh) +'é— [r (1+Ky)pvh]}
oh L
T (l+rcy) {Bx < Ity ;r x g‘ ( r (l+ny) B_ + & ']T};IE %E‘ .
(18)
Contd...
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op 1 ou v 1 v, du uk ov
+v§§r+p‘[2<l+ny§+li}cy> +<l+ny§+§w}_l+ny> +'2<§-y> *

' 2
2a . 2 2 1L du KV ov usinotvceosy
== -+ - = _— = = 2D Ridonicinadbl Actedonid

+ =5 (usino+veost) 3 < Ty 3 Ty Tyt 8 = J (18)

r

In order to obtain the governing conservation equations for turbulent
flows, it is convenient to replace the instantaneous quantities in the above
equations by their mean and their fluctuabing quantities. In this treatment,
the mass-weighted-averaging procedure is used. With this procedure the
resulting equations for the average turbulent flow quantities will have a
form very similar to the equations for laminar flow.

If £ is any flow quantity, the conventional time average of this
quantity is denoted by F. Then, the mass average of any quantity except
density, pressure and viscous stresses (fluctuations of transport coefficients
are neglected) is given by

5
I
'R

The quantity f may then be written as

£=F + g

where f" is the departure or fluctuation from the mass-averasted value . 1t
should be noted that " # 0; £" = -p'f'/p. Also, it is easy to show that

of"™ = 0. Representing the density, pressure and viscous stresses by the sum
of their time average and its departure or fluctuation from the time average,
nanely

p=p+p's P=DFP, T, T b (19)

and the velocities, the total enthalpy, static enthalpy, temperature and mass
fractions by their mass average and its departure from the mass average,
namely

u=u+u, v=v+v", H=H+H', h=h+hn"

N - ~ By
T=T+7T", a =0, +al <ai=—_—1=_—1>
o o)
subsbitubing these quantities into Egs. (11)-{18), and applying the Reynolds
rules of averaging (Ref. 4) yields the following conservation equations for
plane or axisymmetric turbulent flows:



Global Continuity:

o

5 —_ {a (r pu) + = [r (l+ny)pv] } (21)

r (l+ny)

Species Continuity:
+ = oo, u) + 1+ky) pQi. V) }=
ot r*(1+ey) {ax (x7p0y o b7 (ren)eov))

e {1E (ks ?r )|+

~

[ P2 (1+y) < S5 S E&E?“ >}}-+ %; (22)

+
O/lQ/

x-momentum:

d 1 o -2 s = L o
(gltl) 2 (14xy) JLB_JZ (x50 + 5— Lx uﬂy)mﬂ} lil':; T TRy

—_— {a[r (-r - ouua") ] + y[ra(l"'KY)(:rxy_ pu'v )]}+

r (l+ny)

(T = V) - 5 (7 - o) singy (23)

K
+
1+ky

y-momentum;

d(pv)
ot

R (l+|4y) {CTX (r%ouv) + g [r (1ey) oV ]} l+ny e = - g!;r +

M a(j—L+ ) g_x [ra(;xy - v L (lHY)(T i W)]} i
r Ky

f-:ﬁ-_ (TXX - pu™a") - = (-r - oW Ycos (24)

Energy:

g [r*(1+ey) (BH - D)1 + g‘ [r*(PuH + pu™™) ] + '6_ [r*(1+ey) (pvH + ovE") ] =
(25)

Contd...
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(25)
But it can be shown that
1, n "1 ~ ~
m"= pu" <hu +U.'L1 '2"VV >+u pu”u” + v pu"v"
. n ", ~ ~
ovTHT = ov" < " o+ 22 ; vy > +u pu™v" + v pv™v"
v o~ B P
puH=pu<h+ S +e>
~2 ~P
- - o~ ~ u +
pvH=pv ( h + > Y o+ e >
where
v o e
o = pulu ov''v (26)

2p

is the mass averaged specific turbulent kinetic energy. Hence Eq. (25) can
be rewritten as

ol & -~ = o) a -~/ ~ ﬁe + ;2
Dt [t (L +wy)(pE-p)] + x| T eu h + —s— te 1 +

0 ~f o B
+a—yljra(l+ny)pv<h+——2—v+e>?|=

h mon n_n
=%£{ra[_;_rliﬁy%hx_+m_pu.,<h..+uu -2l-vv >1}+
h —_—_— e LAPTR N "1t
+gsr-{ra(l+Ky)lr.%;%_FTxyun_*_van_pvn<h”+uu 'el-vv >—l}+
(27)
Contd...
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+ %}? { ra[ﬁ(?rxx - pua") + w'?(frxy - oo v”)]}+

+ %’ { (1 + ;y)[ﬁ(frxy - pu™vT) + x?(?yy - W]} : (27)

In Egs. (22), (23), (24) and (27) the Reynolds (apparent) stresses
and the turbulent mass and energy transports are calculated by applying an
eddy transport concept which is postulated as: (Ref. 6)

~ —
t _ ——ww _ - 2 [ du ~'> 2. P _2-
T puu —pvt[ <§E+’W 3d1vV 3pe

XX 1+ry ;
t  —r - v 2 .. = 2 -
= = o X _Zai - =
Tyy pvv pvt ( 5 3 vV } 3 pe
8- T = oy 2a (Usina + veosa) - 2 aiv \? -2 oe
P P el T 3 173

(28)

t _ t _ — _ - 1 v aE K ~
Txy_Tyx__puv _'pvt<l+ny&+gy l+|<yu

where vi is the turbulent (eddy) diffusivity, and Prt and Sct the turbulent
Prandtl and Schmidt numbers, respectively. It should be noted that unlike
i, the molecular viscosity, vt is not a property of the fluid. Its value
varies from point to point in the flow and is determined by the structure
of turbulence at the point considered. Substituting Eq. (28) into the
conservation equations, Egs. (22)-(24) and (27) we get

Species Continuity:
o(pa; ) L1 _{
ot r*(L+xy)

%{- (ra"j&'iﬂ) + %37 [ra(l + ny)ﬁ&'iw'}']} =

_ 1 N a/ p th 1 aol:'L
s (et )Ew s |

+g—y[ra(l+w)<%g+‘z—:>%j]}+%i (29)

‘ 9



X-momentum;

_Lpu) Pe) a -~ o~ kpuv _
ot r(l+ny){ (%58 + 1= (““y)"uv]}* Trey

1
T Ty 5_ (l+}{y) {

¥ %5 [ T Ry (e Bvy) < T+ey g; g; 1i:y >] }'+

>

2kv 2 ~
’Vr(p,+pv)<l+xy-§ 1+Ky-§divv>}+

K - 1 8'\7 alhl‘ K.'l'I
Ty (B ovg) <l+ny x T T Trey > B
- yval2a ~ ~ 2 . &7 .
- (p + pvt) - | 3 (usino + veosa) - 3 dv V| sina (30)

y-momentums

e g {S P EN G e opFf- gy s -

P 1 d - 1 % .9 ~
"W = {&[ra(“+pvt)<l+ny§§+§u_l-tnyu>]+

r(1+ey)
~ -
+%y(ra(l+xy)(u+5vt)<2%—;-%divv>‘l} -
K ou  2kv 2 .. =
T 14y +pt) <l+|{y§ l+Ky_§dlvv>-

-—)
-2 ove) [2% (usina + veosx) - 2 @iv 7 >—l cosc (31)
r r 3
Energy:

S+ e)GE-D+& (P ERN + & P )BT -

ov L o~
St (Erm) S E(E- ) (z2)

Contd...
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L[ em (Bem) g (8- 58]
o -/ 2 d 2 2 =
-a—{ [ (n+ pvt)u<l+ny =+ lft:y -3 d.l'V'.V>
+(“+°Vt)v<l+ny%+%—;—lﬁy)’%aae]}"'

+%y{ra(l+f<3f) { (u+5vt)ﬁ<11w% +%- 1:Ey>+

+(“+5vt);<2?;-gdiv$>-%53e]} (32)

where B = p + 2pe/3, HE =h + (G? + ;Q)/Z and the turbulent kinetic energy
has been neglected compared to the mean kinetic energy for a high-speed
flow.

w

Using the eg?atlon for the mean kinetic energy of the turbulent
flow, pVo/2 = p(uW® + v°)/2, obtained by multiplying Eq. (30) by U and Eq.
(31) by ¥ and adding

a('\72/2) 1 Q. a -~V S . T ~
- {< 5 E) 3 [ o i £ )

u

1ty

1%

1 o) a, eff ~ eff ~
+ ———————— ——
) {E [==(r W4T v)] +

+ g—y [ra(l + KY)(T:;; u eff )]} Eff . al'1’+ KV > -

THky ox | Ley

~

eff 1 ou KU eff Vv

T v + - - eff
xy \ I+ky ox Oy  L+ky ¥y

(Usinx + veosa)  (33)

where

1
il

(1 + pv,) 2“‘7 -gdiv{/': - 2 %e
xx t l+ny§1_c T+ey ~ 3 3P

~ -
'reff—(u+5vt)<2%—-§—divv>-g-5e

11
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B

eff - Usind + veosc o . = 2 -
(p,+pv_t)<2a——r———--§d_lvv>—-§pe

eff _ QU kK~
Txy (“"V)(myax o l+wu>

Substituting the sbove into Eq. (32) we obtain the following alternate form
of the energy equation:

5(p B) L L Prim+ [r pvhlt=
5t +ra(1+y){5x( P h)+?y[a(l+w)pvm}—

_ 1 d a( u e\ 1 R
“m{&[r <§E+ﬁ 1+ny§]+

G0 (5B E g B

Q/O/

+(“+°V){ <l+ny5}—c l+ny> <l+ny§€ %-;2ny

~ 2 ~
ov 2a o~ . ~ 2 2 1 U

+ 2 <§'§ + = (usine + vcosx) I\ Try & T Ty t
=
v 7

;v us:LnOL + Vcoso _2 -
+ = 4 8 = 4
Equations (21), (29), (30), (31), (32) or (34) and (5) form the
complete set of Navier-Stokes equations describing plane or axisymmetric
laminar and turbulent reacting flows containing i distinct species. The
turbulent diffusivity vg is yet to be determined in terms of known or
calculable quantities. Following Wilcox and Traci (Ref. 5) it is assumed
that the eddy diffusivity is expressed by the equation
_ b
Vg € (35)

where ¢ 1s the mass-averaged dissipation rate and is defined as 62 =pO /E
where 9 = 0 + Q" = pw, w being the vorticity or pseudo-vorticity. Both e and
€ are determined from the following two partial differential equations (for
a detailed derivation of the equations for the particular coordinate system
considered here see Appendix A).

12



d(ee) , 1 {% (x*pTe)+ % [ + wy)p w7'e]}=

.__)
= (0% pS - B¥ €)e - t¥ e p div V +

+rT(;L:5{%E [ ra:f_u++,{;* BVt) % :]+%} {ra(l + Kl.f)(u + o th) % }
(36)

and

35 & 1 d -~ 2. 93 _a -~ 2.0
(gt€l+ra(l+ny) {S_x(rapue y vyl (1+Ky>pve]}—

ap5E Jpre[(252) (2) ]}

a -
1 P r(p + cpvt) 862 3 . ] a€2
' ra(l"”KY) {ﬁ [_TTEF -I+§§ [r (1 + ey)(p + Upvt) = j(}_
- §25€2d1v\7 - EB;%Z_%:B’V(%%%_%B%E) (37)
_____ 1 Sommmeemememmoesseoooooooeeeo

The term in box 1 in Eg. (37) is sbsent in the corresponding equation given in
Ref. 5 by Wilcox and Traci for general three-dimensional Cartesian coordinates.
The term in box 2 is neglected in Ref. 5; here it is kept and modelled (see
Appendix A for details). The importance of these terms, as well as the values
of the closure constants &z and £3 can be assessed by comparison with appropriate
and reliable experimental results. The turbulent Prandtl and Schmidt numbers
Prt and Sct in Egs. (29) and (32) or (34) and the closure coefficients &, o¥,

B, B%, o, o*, ¢*¥ appearing in Egs. (35) and (36) are (see Ref. 5 for a detailed
discussion):

(38)
Contd...
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Wi+

[1 —%exp(- Ret/2)], o =1%[l —-i%exp(- 2Re.t)J

L= Bel/z/e, Re, = Bel/z , Pr, =8c, = g (Le = 1) (38)

T

£ being defined as the length scale of bturbulence

§ = d?(exxexx + e Syy + zexyeyx) (39)

1 ou ~ 0\ av'
e == ——K < — + K.”- >, e = F}
(MO)

e =2Z 1 ov " o _ KU
xy 2\ 1tky oX ' Oy  1+ky

To complete the formulation of the set of equations an appropriate
set of boundary conditions must be specified. Generally, for nonturbulent
regions e = ¢ = v = 0, while for solid boundaries the usual no-slip boundary
condition on u and v applies. Moreover, either the temperature or heat flux
must be specified. The turbulent energy and length scale must satisfy the
condition e = £ = 0 (see Ref. 5).

3. BOUNDARY-LAYER TYPE EQUATIONS OF MOTION

To compare the relative magnitude of the terms in the equations
of motion for the mean turbulent flow given in the previous section in
situations where the characteristic length of the flow in the x direction
is L and in the y direction is & << L, we introduce the following new dimen-
sionless variables that are of order unity in the flow field considered:

Ut
X R r y e
= — * = = = = = Ea ¥ = —_.
Xt =g, R=g, e oy 5.’ & L
e 4 m ¥ o E 5 o
u* =, VX = 7 %= g_’ p¥ = 5, B¢ = =5 (1)
e e e peUe Ue
* Vt e _ €6t _ ) B a*e*l/E
Ve = 5 e¥ = —x, e*x = ’ ===
t V.0 2 p vV 8} e¥
t7t Vt et t
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where Ug is a characteristic velocity in x-direction, pg & characteristic
density and and Vi can be any velocity characteristic of the turbulent
field. The characteristic velocity Ve is yet to be determined.

In nondimensional form the continuity, Eq (21), is:

I‘* <l+L -R-;
+Lvea I'*a l+6_t._yf. ‘-3*\7* =0 ()-1-2)
6,0, Oy¥ L R¥ -

If all the terms of this equation are to be of the same order of magnitude
then

=1 and V_ = (43)

Thus the continuity equation, Eq. (42), becomes

I CTE L S B QR L)
p¥ u¥) 4 1+ o* v =0
ST T Ty L )+ o T ®
T R¥ (4k)
The species continuity equation, Egq. (29), in nondimensional form, is:
o(p* &i) 1 { o) a -, v
+ . — (r*" px wra.) +
ot* r*al+EEﬁ ek i
L R¥
0 a Oy vE O\ =, o~ _
+~é——y_)e r* l+i—-ﬁ *v*ai =
i 1 SN2 o [ e (B2, PN 1 x5,
- a G ¥ i =3 c se, j 6t * xHF
=G TF) )

o] = p¥* v¥ a& A
+ 9 { r*& < 1+ EE 1; > ex 2 £ Eﬁ£]}+ w? (k5)

In the above equation Wi = peW and wl is the nondimensional mean
rate of production of species i. The relation Vt/Ue = By/L is used, and the
quantity € = vp/Vibg, where vy, is the laminar kinematic viscosity, can be
interpreted as the ratio of the viscous layer length scale B, and the defect
layer length scale Dy:
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(46)

tt

o>

U
o=

]
o] o
<

Thus, in turbulent boundary layer type flows, as a result of making the
equations nondimensional by using the variables in Egs. (41) and (43), two
small parameters, B4/L = Vi/Ug and € = By/bt appear which correspond to three
regions of flow field: the inviscid region where the length scale is L,

the defect-layer region where the characteristic length is Ot and the viscous
layer region where the characteristic length is 8&y. Mellor (Ref. 10; see

also Ref. 11) has shown that expansion in one parameter Bt/L is sufficient

as ¢ = o[ (84/L)"] for arbitrary n. From Egs. (35) and (36) the nondimensional
eddy diffusivity, vi, is:

i o M2 (47)

In nondimensional varisbles, Eqs. (30)-(32) and (34) are:

X-momen tums

o) ~
et e [ et R e e R
r*& 1+—t-y—*>
T R*
+_6_t ok vx 1 3% 1 BN N
L O Op y\ OF s Py p) WD/ o
R¥ + ¥ <1+L R¥ r* “L—ﬁ>
~ 5 ~
2 Ju¥ t ¥ LR
X I’*(p*€+p*vt)< +2<—> ——-—d_‘LVV*:l"'
{ l+il*_m . *+i-'.y*
L R¥ L
5 8 O o
t\ o a t y* 1 t Ov¥
+<L gﬁ[l* <1+L—ﬁ><°*€+p*v>< 5, wI &
_t ¥y*¥
L R¥
- SN 1 Deane,
5, o7~ 6, _ f 5, \ 75, T o
R*+— <R*+L—y*> LT R
+%;%—;:— > < >(p*e+p*v)——lj—r—_)% <a*sira+
R¥ + —
B ~ 2 ~o N
+ T v¥costt) - 3 div V¥ /} sino (48)

16



y-momentum:

®

t B(p*v*) 1 {B (r%® 5% T ¥ ) [ a< t y¥
— g% u¥x v¥) + r¥ (1 + = 2=
L St ¥ ﬁa1+&ﬁ Sk oy* L R*

. L R* :

-, ~2 = 5, \2
~2 p¥_u¥ __ L opx 1 “t Y 9
x p¥ v¥ ]}‘ 6, TR T T, B yw {<L>§:‘c¥x
S ¥ <1+L—'R¥>
6 ~ ~ ~
* 1 t Ov¥ I, ou¥ uk
([0 (B k)
l+i—ﬁ R*+-L—y*
+ia & :L+iﬁ (B% €+ p* V) ea;*-—d_w\?; -
T oy* L Rx ) \P t 5 3
2 (p* € + % v}) 2 Sk St T* 2 =
‘(’L‘) 5, 6ty*$+2f—‘6t—_‘§d”v*>‘
Be 4o v* Lo R¥ + o= ¥¥
s} 2 - 5, . I~
- <L—t> %— (’*/e‘ + p% vt)[l%% (u¥siny +i-tv*cosa) - -§- div V¥ >J cosC
(L9)
Energy

5 - B, \2 - 0% V¥
+ ) _ t o) a/ p*x € t
X[I*a<l+L—Rﬁ*>p*"*H* ]*(r) sﬁ[r* <P—r+ Pr, >X

~ 2 ~ 2
1 3 N u¥ +(6tv*/L) 3 a aty*
i (P T e [ (o)
I

(50)

Contd...
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- - ~ * ot f~4
x{r*a{(p*,e\+p*vi)u*<———26—-—§u—+21'—t Vg - = div V¥ ) +
t y* £
1+ 1 &% R¥ + - v
B ﬁtg* 1 6taw7*+L dux u*
pT e d Pt Vi) T 6ty*L&‘ 5. % ~ 5, /-~
e RE v

5, ~ ~ 5
1 t ov¥ . L oux u¥ b omy AL = ¥
X< 6y e T % 5, &% 5, + g (P &4 o Vv x
1+-L—R—* R¥ + — y¥
vk 2 = 2% .~
X 2§—y¥-§divv*>--3-i— *v*e*}} (50)
or in the alternative form:
- 5
o(p* h¥*) 1 0 a -, ~, 0 a T oy* )
pra 3 6ty‘* Sg(r* p*u*h*)+6—— r* 1+f-§¥/x
(1 o+ —
GeF)
e~ o) 2 -~ FJ*V*
oies T (B [ (5550
a — L Ox* Pr Prt
o\t RE
~ ) - A F—)*V* ~
1 on* S a t yx\ [ px € t ) ohx
x aty*ﬁ}ay*[r* <1+L_R“*)< Br " Pr, )%} +
TR
Y i S - o 2t 2(:3*€+Ev*v*) 2 L
ot* 5 o oy L t 5 X
l+__._yj l+__tﬁ
L R¥* T, R¥
Xa_N*+E§ v o 1 iav*ﬂ_aa* uk ° .
% L B, Sty*L R 6tTy*' B
% — —_— —_—
R¥ &g v* PrToww S
N\ 2a [~ O ~ 2 2 1 dQux
+ 2 $> +-—2<u*sinot+—L—v*cosot) --3—< 5 -a}—@;+ (51)
r¥ 1+ b ¥* Contd. ..
L R¥
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~ ~ w* si i
+.EE ¥ .\ o ‘. u* sinx + 6t v¥ cost L \2 2 EE 2 i}
L 6t ov* r* 3\ L
R¥* + —— y¥
L
_ ~
x p¥ e¥ div V¥ (51)

The nondimensional equations of motion for mean turbulent boundary-
layer type flows obtained by retaining terms of order unity and terms of
order (®4/L) in Egs. (4k4), (45), (48)-(51), which include in a consistent
way longitudinal curvature and normal pressure gradient, are:

Continuity:

- . o N -~

Bt (et [0t E)r ]
o <1+L—R—* (52)

Species Continuity:
_* ~
o(p* ;)

1
ot¥ a 6t y¥*
r* <l+L—'§¥>

r* &
(53)
Xx-momentum:
-y [ dux T dux o~ dux . Op W v 1 Sp*
P T e L TR T R )T T T o e
1+ -8 I 1+ =2
T R¥ I R¥
+._;_ é__ r*a 1+ EE ¥* ( * @ 4+ po% v¥) oux 6t u
%2 % T mx ) \P PAlsE T
- A -
+&(p* €+ p* vE) gy (54)
L R¥ oy* -
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y-momen tum:

5 ~ ~ ~ - ~2 .. B
t -, (9 ~. 0 ~  Ov¥ p* w¥~ L Op¥ .t 1 9O
L—p*<5'ﬁ¥+ *g&”*?ﬁ)‘T"a—tS%*fr*awx

—{x—*a(b* 8 ox v');) <2g‘z-y:_

_ % div §§->} (55)

or

~ ~ 5) - A
- Ooh* u¥ oh*  ~ oh* \ _ 1 0 a t oy o¥ €
- aty*ﬁ”*a—y*)*;asﬁ[ﬁ <1+L_“R_*><Pr *
1+ — =
L R¥*

Qu*

~N8
&
X[B—_y* "2T SRR (57)

4. TWO-EQUATION TURBULENCE MODEL FOR CURVED BOUNDARY LAYER TYPE FLOWS

The turbulence quantity defined in Eq. (26) and satisfying the model
equation, Eq. (36), is regarded as the total kinetic energy of turbulence, with
u" and v" denoting the fluctuating velocity components in the streamwise and
in the normal to the shear plane directions, respectively (in this section we
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consider thin shear layers parallel to y-constant lines). However, Wilcox

and Chambers (Ref. 2) argue that this definition of e is physically realistic
only if the kinetic energy of turbulence is equipartitioned, i.e., if the
turbulence is isotropic. Stating that turbulence in boundary layer type

flows is anigotropic, they postulate that, more appropriately, e is propor-
tional to v"2. The proportionality coefficient is then established by
requiring that e be numerically equal to the kinetic energy of turbulence in
the law-of-the-wall region (Ref. 5) of a flat-plate boundary layer, i.e.,

e = ‘“Eyu Furthermore, by proper consideration of the physics of turbulent
flows with streamline curvature based on the clagsical stability arguments for
flow over a curved wall (see Ref. 12), Wilcox and Chambers show (Ref. 2) that
the stability of such a flow depends mainly on the behaviour of vertically
moving fluid particles and not on any attendant nonvertical fluctuations.
Hence they conclude that in a turbulent boundary layer, velocity fluctuations
normal to the wall, ;mz, play an important role in curved streamline turbulent
flows.

The model equation for the "mixing" energy, e = 9v"2/L, may be

cbtained from the exact normal Reynolds stress equation (A33) derived in
Appendix A, rewritten in the following form:

ST ) mhg (& (e ees)

o ~ VvV 2k~ ==
+ Y r (1 + ky)p v - " Ty upuv' =

- a; K'tl’ T a;
= - 2pu'v < l+nyax Ttey - pv''v 2'&

Production

2T Ty v

-l+K'y'g-2T -§§—+

Dissipation

1 o) a "o T
+ = 2t vl - u +
r¥(L+ky) {ax [ By vl

+%§[ra(l+ny)(w-vﬁ3‘fv - )]}

— Laminar, Turbulent and Pressure Diffusion — (Contd...
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2k T 2k 77 28 —rr— . oY
+ =5 + - + == - +
Ty U PUY Tty (p' Txx) — v (o T(P;) cost + p &
Turbulent Work
e 8
Compressibility

Multiplying Eq. (58) by 9/L, modelling the groups of terms for the
corresponding physical quantities as for Eq. (A34) and teking into account
Eq (28), we obtain the following model equation for the mass-averaged

"mixing" energy e = 9v'v'/Lp:

alp.el L Az 58e) ,d (.o .
5t ¢ r*(1+xy) { ox * Sy "1 + wy)o v e]}+

+2 KU _v l BF U Kl _
2 T+ry P Y T Ty

a -
I‘(p,+0‘*pvt)ae

o I~ 1 a[ ]
= (o¥%ps - p¥ - ¥ di = 1 X
(008 - B¥ ) - £ e p div ¥ + ¥ (1+ky) {ax L+ey & |7
+%§[ra(l+l<3f)(”+o*5vt)§:'} (59)

Written in nondimensional variables of Eq. (U1), Eqg. (50) becomes:

a(t—ﬁgt:*) + :g {a(r*a g:;ﬁ* *) 4 %_)—6 [ <1 + Lt g: o v e*]}+

t t y¥ t
A LYo &
.ﬁ
(¥ p¥ 5% - P¥ eX)e¥ - ¢ e¥ p¥ div V¥ + 1 X (60)
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-
Lo
O [P 1+Eﬁ (o% €+ o% ¢ v*)ae* (60)
or* L R¥ Ve o=
where
<~ 5.~ ~2
% 1 ou¥ t v¥ ov*
-l (m+rﬁ>f+($>}+
1+ L
L R¥
et = - -
1 t Ovk L Ou¥ u¥
/*[—a—t—y—*rm%—ts—y*-a—f (61)
1+—= L
L R¥
Retaining terms of order not higher than 6y/L in Egs. (60)-(61) we
getb:
- .a =~
Ty
L R*
9 Wk - L oux _ - 1L dux u*
+5 g% oFvE g; 5 - [ a* O*Ig; o §¥l - B* e*] e¥ -
- ~ 1 ) a 6ty*
- EX e¥% p¥% div V¥ + gg*—{r* <l+i—ﬁ>x
& :L+—tﬁ
L R¥*
x (x84 ox o) 5% | (62)

FExcept for the compressibility term, which is retained here in its
general form, Eg. (62) reduces to the corresponding equation in Ref. 2 for
a=xr = 0.

Writing the dissipation rate equation, Eq. (37), in nondimensional
variables, Eq. (41), we have:
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(r%™ p¥ ux ex7) +
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Retaining terms of order not higher than &y/L in Egs. (63) we get:

(e &) 1 {a(ge o o of) |
S

1 > [I*a<l+6t ( dex ]
- o% €+ o p¥ v) -
r*a<l+it’-—yf o bR -
L R¥
5 ~
_ p*e* t __aiv V* ( Op* dp* _ Jp* op*
_gep*e* d_'L'V'V'X‘—E,3 i th*<'§$ g—y*m> (6&)
1+ — L&
L R¥
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Equations (62) and (64) represent the model equations for the
quantities e* and e¥ for boundary-layer type flows (6t/L << 1) needed to
determine the turbulent (eddy) diffusivity v"te. The values of the closure
constants, o, ¥, B, B¥, o and o¥ and £¥, are the same as in Eq. (28). The
magnitudes of the coefficients £&o and &; and hence the importance of the
terms which contain these coefficients may be determined by comparing
theoretical predictions with reliasble experimental results.
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APPENDIX A

DERIVATION OF TWO-EQUATION TURBULENCE MODEL

FOR COMPRESSIBLE PLANE OR AXISYMMETRIC TURBULENT FLOWS

IN ORTHOGONAL CURVILINEAR BODY-ORIENTED COORDINATES

The mass-averaged turbulent kinetic (mixing) energy e, and the
mass-averaged turbulent dissipation rate €, are needed to define the eddy
diffusivity vy given by Eq. (35) onp.R. The following detailed derivation
of the model partial differential transport equations in the coordinate
system considered which € and e satisfy follows the Wilcox and Traci approach
(Ref. 5) of furbulence modelling.

1. The Turbulent Dissipation Rate Equation

The dissipabtion rate quantity is chosen as & = Q\Q; Q;/Eu where
Q3 = Ql + 03, Q4 = pwi and the vector & = rot ¥ is the vorticity. In vector
form the momentum equation may be written as (see, for example, Ref. 7, Ch.
1):

§+v<§>+:xv=§-<-p?+‘f’> (1)

< <
where I and T are the unit and viscous stress tensors respectively. Taking
the rot of Eq. (A_'L) we get us1ng the vector relationship rot(@x V) =

(?-V)w—(w DY+ oV

a-;) V & o

L@ - @ DT+AT - D t{ SES X, ](Az)
From the contlnulty equation (1) we have V - ¥ = - (1/p)(dp/dt)and du/dt +
(¥ - V)& = dw/dat. Hence Eq. (A2) becomes

= - < &
p%-(pa’.ﬁ)?-?%%=prot[ '('1;I+T)J
or & =
I

@-(3-7)?+2§_2>(V-?)=prot{ﬁ'(_g +T)1 (43)

at
The right-hand side of Eg. (A3) may be written as
=

o &S
V-(—pI+T)=_gradp+V‘-r
o] ] ]
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The components of the vector v - %are , in the orthogonal curvi-
linear body-oriented coordinate system,considered:

X-component:

a a .
8, = r + l + - sincy
y-component:
8 =a—{~g—x(ra-r ) +_§—[ra‘(1+ny)~r ]}- ;‘i:‘xx_%q_ costt
yoox (1+ey) Xy Y yy Ry PP
and
7 - ‘? ex — ey = — — - —
== + = 0« y=I_do+ 1 O
5 5 5 B+ 4 e &+ P 4

where 6?, E) and ?are the unit coordinate vectors in the x, y and ¢ directions
respectively. Hence

& B 7
rot (- 822R ) - L 409 radp = L 19 1 9r 0 =
0 S —pgg P x gradp = I hlgf N &

o)
1®  1L%®
hlﬁ hgay
1 <ap@_@ap\7
" ()t N v o )

and similarly

ot <V‘;‘?> l+Ky{ 8[ (l+;y)11 ] }7

Equation (A3) may thus be written as

7§ oL
W_ @ Y TP + pop _Op Op 2
ot ol - I - 26T D) v (R - 35&) +liny{5x_y'

of (l+Ky)Hx] 5
B ),
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For the only component Q3 = @ of the vector % we get from Eq. (A4),
in the coordinate system considered,

D%+12:y§+ pvg——- 2p9hv?+l+y<%%%!§_%%>+

2 BHy o[ (l+ny)l'[x]
R Bk (25)

Decomposing Q = @ + Q", using Eqs. (19) and (20), and multiplying
Eq. (AS) by r2(1l+ky)Q" and taking the average, we obtain, term by term:

00" & XL+ )@+ a1 =3 & [ (1 + ky)p Z“ }

- ) (46)

ot (F + wy AE2AN 1D { r® { o ¥ 22, Grsgrgn ] }

p
U ~
T (o 4 o o
p — _ o~ TSR
ra(l + K.y)DQ"(V + V”) %_ (Q !) = % g_y { I‘a(l + rcy) { oV D.Q-Q + -—'—V'D-Q"Q" J}_
p
2"a" 9 a a R iv=y1d 0
ST [0 ay)ev] + N1+ ) O S (28)
T 7
- 201 + ky)p™(Q + Q")dJ.V(V + 7 = - 2r®(1 + wy)p £ div V -
D
a ~ nooas h Ml s hp
-2r (1 + xy)[Q pQ" dv V' + po"Q" div V') (A9)
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r Q"

a [B(p+p) 3P +p") _do+p) . 3B +r") .
ox Y oy ox '
a lr 85 _ aa aI.-) > - Q" ___30' . @? - Q" 55' a; _
X5§ oy oy X X X
1 6 ' ap' n a ! - 85 1 ' . a- 1 ! !
e T R E g T L (810)
and the last term in Eg. (A5) may be written as
— ol _
SR Pee gy e ] (a11)

Adding Egs. (A6)-(All), taking into account the continuity equation,
Eq. (11), and regrouping the terms we get the following equation for the
turbulent dissipation rate quantity €2 = p"q"/p:

Y

5 2 1 3 =~ 2y .9 -~ 2.0
(p€)"'m{&(rapuE)+?y[l‘a(l+|cy)pv€]}—

TTAT NS ~
_ pu' Q" 00 , —ow 00 | _
o [ERE T E ]

Production

_ 1 _a_ a n—nl" __ r T [red
(L) {&¢ )+ & G - T

Turbulent Diffusion

., a2 a[ (l+Ky)ﬁx]
l+vcy { oW

— Laminar Diffusion and Dissipation —
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e

Q/

Mapv .apv apl p

4 T 4 e e e e v 2 [T (RE-BE)
+ 0" - + 0 —+Q ! - Q" aﬁ_
> v % = T ETUSE S Uy

Compressibility
(A12)

The physical meaning of each group of terms is indicated in Eq. (A12). Bach
group of terms should be "modelled" to express the physical quantities actually
present (rates of turbulence production, dissipation and diffusion of the
quantlty €® as well as the effect of compressibility on the rate of change of

IS ) in functional forms containing a closed set of dependent variables. These
functional forms should be dimensionally consistent and may contain empirical
constants that are expected to be insensitive to the character of individual
flow fields. The followlng groups of terms are modelled after Wilcox and
Traci (Ref. 5):

Production:
Using the eddy diffusivity approximation,

pv
1+ky

[

¥,
1
2
o)
I
ke
d‘<
S

- pu”Q" =

this group of terms may be written as

o0 (280 (F)

and is modelled by Wilcox and Traci by the dimensionally consistent expression
aps e (A1k)

where

S = o 2(e_e +e e +2e e ) (AL5)
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1 o~ v
}Cx_l'*'Ky ax+nv>, ey_y_—'?y’

e -
(A16)
e e 2l(l ., ;| ku
xy yx 2\ Itky 0X oY 1tky
and & is a closure coefficient.
Dissipation:
The group of terms describing the dissipation 1s modelled as
follows: from dimensional consideration the rate of dissipation may be
taken as g/p[L/sec] and the dissipation rate of the quantity p € in Eq.
(A13) may be taken as
- 2
-Bhe =-p & (817)

ot m

where B is the proportionality coefficient.

Laminar and Turbulent Diffusion:

The form of this group of terms and the eddy diffusivity approxi-

mation for the quantities W e " and Ve suggest the following modelling

of these terms:
a -
1 S r (H + o pvt) a€2 3 o 562
ra(l+Ky) {:SE {.—_—_iiEyf__—_ 3x ] Ty [ (L +ky)(p + o pvt) S5 1 }

where o is a closure coefficient.

Compressibility:

The first group of terms

- 2 ~ o~ -
_ )-l-(p € div V + Q an div V" + pQ"Q" div V")

is missing from the corresponding egquation for p €2 written in general
three-dimensional Cartesian coordinates in Ref. 5. This term is modelled
here simply as

=
v

- 2
- 52 p € div (AlQ)
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where &2 is a proportionality (closure coefficient). It is worth noting
that this term is similar in form to the compressibility term for the
turbulent kinetic energy in Ref. 5 or in Eq. (AkO).

The second group of terms in Eg. {(Al2) lsbelled "compressibility"
is neglected in Ref. 5. However, this term may be retained and modelled
in the following way: from mass-averaging relationships we have

Q' = - = (A20)

Consider now the idealized situation of one-dimensional high-speed flow for
which the total temperature is approximately constant, the fluid is a perfect
gas and pressure and total temperature fluctuations can be neglected. Then
from the energy equation

71 2, 2. z;-l a2

where a is the speed of sound and a¥* the critical speed of sound. With
u=u-+u and a =3a + a' we get

Zéi (ﬁ2 + 2uu' + u’2) + 82 + 2Bat +al® = 1%& ax®

(constant total temperabure)

Since (7—1)5?/2 + 32 = (7+l)a*2/2 we have

(y-1)uu' + Z%E w? s 28a +a' =0 (A21)

On the other hand pa2 = 9p; with p = p + p' and a = a + a' (pressure fluc-
tuations are neglected) we get

2
! - - - 1 1 1
%— (a2 + 2aa') = - 2aa' + a'® or EL = - g%— + 3?2 . (a22)
o o a a

Equation (A21) gives

- 2 2
uu' a' y=1l u' a'
(1) z=-2=-F 7 -3

®
©

Substituting the value of -2a'/a from Eq. (A22) into the above equation, we get

t 1 H 2
(7-1)1_1%-=-f—-3<f‘—>
) a

&
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or approximately
£~ (1) & (A23)
p
For two-dimensional flows we can generalize this equation to
1 - - -
Ol L 22X (T ') (A2lk)
o] a

Using Eq. (A24), Eq. (A20) may be written as

T ~- LT T T
a

or using again the eddy diffusivity approximation

eyl T e L, OF
u'f = l+Ky ax 3 v'Q =~ V_b ay
we obbtain
Q" =~ _v_t < 1-1 _a_E_: + '\_f B(—: \ (A25)
72 \ 1Hky ox Sy

However, from Eg. (Al2) for 52, in the approximation considered, we can write,

-
u ~ ~
Qe de =

Ty x Ty 7T ¢

Taking into account Eq. (35), Eq. (A25) becomes

o =~ - §3-é—2-ediv (a26)

where k4 is a closure coefficient. Hence the second group of compressibility
terms in Eq. (A13) is modelled as

% _ %
£3-3%) (427)
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which is dimensionally sound and similar in form to Eq. (Al9). From Egs.
(A1), (AL17)-(A19) and (A20), the resulting model equation (Al2) for the
rate of change of the gquantity 62, is then

-{me«ﬁw%ﬁ
(BT )i (B[

+a—y(ra(l+W)(““’5"t>§'§E ]}_

1
N
<]

o e di 3 B _BP

-t p€ 535—2— +K Y WX (A28)
The d1551patlon—rate equation (A28) conbains a term proportional to (1/l+ky)%x

(BZ/BX) + (aﬂ/ay) referred to as the gradient-dissipation term in Ref. 5.
Its introduction was motivated by comparison of the Wilcox-Traci model with
other two-equation turbulence models, particularly those developed by Ng and
Spalding (Ref. 8) and by Jones and Launder (Ref. 9). It enables one to
predict more realistic values for the turbulence length scale f, especially
near solid boundaries. The values of the closure coefficients ¢, B and o
are given by Wilcox and Traci (Ref. 5) as:

a:i .._e —. :—3 O‘=£' Re =ﬁi/2_'g° Z:é—e_:lie-
3 Xp 20° 2 2 t U ? €
(A29)
The magnitudes of the coefficients €, and §3 may be assessed by comparing
theoretical predictions with reliable experimental results.
2. The Turbulent Kinetic Energy Equation
The x-momentum equation (13) may be written as
a du a du a du a a op
+ = + = + + + = - +
r (L + ky)p SETT oeuR tT (1 + ky)ov 5 FE rew v
d(x%r_.) a
XX el a a ar
+o—_—— = -
5 55 (™1 + KY)TXy] kT, oo S (A30)
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Let

and.

Tea = To. + Th. (431)

Multiply Eq. (A30) by u" and take the average; after some calculation we get

r(l+ny)8—<_puu> [ < Gpu_u +upuu>1+r ouu” &+

a a -~ puu n PU U unaﬁ
* S (1 + ky) pv25 + v 5 + (1 + ky) oV i

-y 851
+ r% (T PuTE" 4+ U UV +u'puv)=—ra<u"%+u"g—>—f

+ & (BT -, S R0 ] -

- ra(l + KY)TXy —g; + r% T Ty " % CPCP%—

or rearranging the terms,

L (T )i (B (45 EE ) [0 i BT ]
r%(L+ey) 2p Y 25

li uW=—§{?g—i—W%§— liiy putu” l:mym—
e (T BT e E
+T;E3_r Ty T % u"(Tcpcp - p')sin +i‘3'—w—:§l— (432)
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Using Eq. (A31l) and multiplying the y-momentum equation, Eq. (14),
written as

P )
ra(]_ + kY¥)p % + rapu % + ra‘(l + ky)pv % - ra'r:pu2 = —EEC_'Y— - ra(l + Ky) g!-;r +

+a—[ra(l+|¢)-r ] - rPr__ - (1 + wky)T or®
& Y Tyy xx oo 3y

by v"' and taking the average we get

_a— a o~ pV"'V'” " pV"V” a — a;
+ay r(l+xy){ pv " vt +r(l+ny)pvvgy_

a(ra'r ) _
by a TS . _n Xy " BP

—2r kU UV -k oW = v T—ra(l+ny)v i

- S+ ey) v g;”.,a 21 + ky)7 ]-ram-umy)m%

or rearranging the terms

G (FET) e (B (#5EE ) g [ e i T2 ).

2Kk~ ——w ouw" ov ——r OV K e TXY ov"
- = - + — - -
Thy “FPYY Ty XY Y TR Y T TR X
- g L | r v - out e + r"(1 + ky) x
¥y 83’ I'a(l+1&y) ox Xy 2 5?

2 1+ky blo'd r

—r oV VT ——p K a
X Ty_yV -y EP—— - p'v ]}+ v'(p' - 1. ) +=v"{p" - T(pcp)cosa -

TP (A33)

&1
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Combining Egs. (A32) and (A33) we obtain for the mass-averaged turbulent kinetiec
energy, Eq. (26), the following equation:

3(pe) {
(x* o ue)+ [r%(1 + wy)p ¥ €]
ot - (1+ ) x 6?
TR, o e (B 68, 1 X e ¥
- + - - —_— - -
They \ X Kv) PRV Y Ty T X )T
Production
_ T}CX'. du" . aun xy aV'" a‘V"
I+ky ox xy Oy  1Hky oX YY oy
Dissipation
— -
1 a a — o auy + QVWV"
S e—— -a-}—c-(r u"TXX+~er-u"_———2-——_
r(1+y) Y

a a pu1ru|| F D'V'"V”
-p'u >J+§§{r(1+ny)<u"7xy+v"Ty_y-v"———2 - +

a
11, 1 + 1 hL s + T +
l+|< v'p =P (Wsina + v'cosxt)

Laminar, Turbulent and Pressure Diffusion

K T T a Mot v
+ _ _= + -
T+r (u T vV T ) T (u sin ' COSG)

Turbulent Work

u" ai - .v." ap
T 1tky & 5?
— Compressibility
u v
1 m 1T
Ty e TP & (a3)
Turbulent !
Pressure ——i
Work
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Each group of terms expressing the physical quantity present is "modelled" in
the following way (Ref. 5):

Production

Equation (28) suggests a modelling of this quantity in the form

a* p S e (A35)

where

S = /2Te s ) (A36)

+e e + 2e__e
XX XX Yy ¥y Xy yx

and ¥ is a closure coefficient. The expressions for €’ eyy, exy are given
in Eq. (A16).

Dissipation

The rate of dissipation may be taken as €/p [1/sec], hence the
dissipation of the quantity pe may be modelled as

- pxpe f = - Prec (A37)

where B¥ is a proportionality (closure) coefficient.

Laminar and Turbulent Diffusion

The form of this group of terms suggests the following modelling:

ra(p + 0% pv, ) - '
i (B[ ) 4 [ s i B o

with o¥ as a closure coefficient.

Compressibility

Using the relationships

bl

and Eq. (A2Y4), we can write this group of terms as

i

- u aﬁ_v"_a_f):g_,. u' af)+p,v'a:—p.z_e_ H a‘5+'\78}3
T+ky ox oy 5 1+ky ox 5 o gZ 1+ky OX oy
and
u" ai " a:-p- E 5{3 ~ ap
- — - = —_— +
Ty & oy ° <l+ny§5 v



_.)
From the continuity equation div(p V) = O we have

-div$+ u 85+;BB=O
e 1+ey X &y

Hence the compressibility term is modelled as:

—r -
u’ P  —w P _ -
l+y_-v E_—-&*epd_lv

=
v

(439)

where £¥ is a closure coefficient.

The resulting model equation for the mass-averaged turbulent kinetic
energy e is then

e -te +m{~2¢x (xr* o U e) +%§ [r* + KY)EH?e]}=
(0% p § - B* e)e +ra_(i:;5{% { o (w ;: th)§ }+
+-g—-§[ra(l+ny)(u+c*5vt)%;:l}- E*eﬁdiv\? (ako)
The values of closure coefficients (see Ref. 5) are:
oz*=l—g[l—%_;%e@(—2’t'{et) }, ;3*=l—26, c*=%, g*=% (Ak1)

The turbulent Reynolds number Ret 1s given in Eq. (429). The turbulent work
terms in Eq. (A34) are neglected.

Equations (A40) and (A28) represent a two-equation turbulence model

for compressible plane or axisymmetric Navier-Stokes flows in the coordinate
system considered.
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