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ABSTRACT

A flexure strut wheel suspension system is described which keeps a
wheel flat against the track and maintains a small interface moment.
Equations are presented for the evaluation of this moment. A comparison
of the flexure strut system is made with a rigid link design containing
pivot bearings.
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SECTION I

INTRODUCTION

In many engineering applications a roller or uncrowned wheel bears
against a flat track. Usually it is desirable that the loading along
the contact area, parallel to the wheel axis, be symmetrical and as
nearly uniform as possible. If the loading is not symmetrical, an inter-
face moment will exist between the wheel and track, and the effect of the
moment is to increase the load intensity at one edge of the wheel and
reduce it at the other edge.

A wheel suspension system is described which keeps the wheel flat
against the track and limits the interface moment to small values. A
method of evaluating the moment is presented.
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SECTION II

DESCRIPTION OF THE WHEEL SUSPENSION

The basic configuration of the wheel suspension system is shown
in Fig. 2-1. The wheel frame is attached to the base structure by
sloping support struts, the ends of which are firmly connected to the
wheel frame and base structure. In the ideal position the center planes
of the struts intersect the top surface of the track in a line which is
also the path ,,f the wheel contact center. In this position the wheel-
track contact load distribution is symmetrical about the wheel-track
contact center, called the wheel-track origin, and the moment about this
point, called the interface moment Mi , is zero. This condition makes
the peak contact stresses a minimum, and produces only axial forces in
the support struts. This ideal position is represented by the solid
line sketch of Fig. 2-2a. If the cross section of the track rotates
from its ideal position by the small angle 94, as shown by the dashed
lines of Fig. 2-2a, the support struts become displaced, as indicated
by the dashed lines, and have finite end moments and shears. The
reactive moments and shears on the wheel frame, together with the axial
load in the displaced strut, sum to form an interface moment, which
under special conditions can be zero but is usually finite. In all
practical cases the interface moment will be small enough to allow the
wheel to remain flat against the track.

The analysis of the support strut as a beam column, as shown in
Fig. 2-2b, will give the moment and shear at station 4, Vaere the strut
attaches to the wheel frame. In the following analyses all parts except
the support struts are considered rigid. Also it is considered that there
is only one strut on each side of the wheel, the properties of which are
equal to the sum of two or more identical struts on each side. Two types

Fig. 2-1. Wheel suspension system
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of flexure struts will be analyzed, namely,one of constant cross section
of length Z, and one composed of end flexures of lengths k l and k 4 con-
nected by a rigid member of length m. Both k l and Z 4 have constant
properties over their lengths, but the properties of k 1 may be different
from those of k 4,

A third type employing rigid struts with pivot bearings will also
be analyzed and compared to the flexure strut system.
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SECTION III

BEAM COLUMN EQUATIONS

It is convenient to employ the solutions of the fourth-order
differential equation for the cases at hand, which are limited to small
deflections and have no transverse forces between the ends of the beam
elements. For these conditions the following equation from Ref. 1

appliea: t:

d--Y +k 2	0	 (1)
dx4	dx2

where

k2 = P/EI

P is the column load

E is the modulus of elasticity

I is moment of inertia of area about the axis perpendicular to the
plane of bending of the strut

The general solution of (1) is

Y - A sin kx + B cos kx + Cx + D 	 (2)

where A, B, C, and D are constants to be determined from the end condi-

tions. The slope dy/dx and moment M are obtained by differentiating

(2) and are:

d = Ak cos kx - Bk sin kx + C	 (3)

2
M - EI ^ _ - P(A sin kx + B cos kx)	 (4)

dx

3-1
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The shear S perpendicular to the undeflected beam axis is:
i

S= aM +P^ CP	 (5)
dx	 dx

The constants A, B, C, and D can be determined by applying two

proper end conditions to each end of each beam column elev.ent. In each

case to be considered, the deflection and slope are both zero at the
left-hand end of the strut as pictured in Fig. 2-2b, that is, at the

origin of the X-axis. At the right-hand end of the strut at x = °', the
slope has the known value 0 4 , that is, it is equal to the tilt of the

track. With the coordinate system shown in Fig. 2-2b, the value of the
right end slope shown is negative. Also the deflection at the right-

hand end is y 4 , which is related to ? 4 as follows:

Y4 = - h©4
	 (6)

where the diRtance h is shown in Fig. 2-2b.

For the case of a single flexure of length Q and of constant cross

section, the following equations may be written from (2) and (3):

Yx=O=B+D=O	 (7)

qX]	 = kA + C = 0	 (8)
dx x=0

yx-4 = ;sin k;) A + (cos ke)B + RC + D = - hO 	 (9)

dy'l^x 	 = (k cos k2) A - (k sin kx)E + C = 8^{	(10)
'x= .

The characteristic equation of (7), (8), ( 9), and ( 10) is:

k[2(1 - cos k2) - kQ sin k^] = 0	 (11)

The .lowest nontrivial value of k^ satisfying (11) is

kv = 27	 (12)
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Since k = P/EI, the following critical value of the column load, PCR,
is obtained:

P^ = 4
rt2EI	

(13)

Solving (7), (8), (9), (10) simultaneously, one obtains

A	 - h s in K - k (1 - cos kQ )
e4- 2(1- cos kk) - kR.ainU	 (14)

	

B	
h(1 - cos kk) + Q - k sin U

04 = 2(1 - cos Id - kk sin kR,	 (15)

C - kA	 (16)

D 	 (17)

These values of A and B allow the equation for M to be evaluated
for any value of X in terms of 94 . At x - Z, the moment is

	

M4 MAR	 h(1 - cos kk) - £ cos U + - sin kR

	

©4 - 
84 	 2(1 - cos ki) - U sin kk 	 (18)

Fzom (5;, the shear S is constant over the beam length and is

S - -kAP = P kh sin U + (1 - cos kq,)	
(19)

64 	 e4	
2(1-cos U) -kk sinkZ

If the shear is negative, the equilibrating force on the beam at the
right-hand end, station 4, acts upward.

Since the forces and moment acting at the right-hand end of the

beam are now known, the equal and opposite forces and moment acting on

the wheel frame are also known, thus allowing the total moment about the

wheel-track origin to be evaluated. This, by definition, is the inter-

face moment being sought.

3-3
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For the case of the supnorc strut being composed of two flexures
separated by a rigid centerpiece of length m, the forces and n,,Ment at
station 4 of Fig. 2-2b can be determined in a similar but mare ctiuvlica-
ted way. Referring to Fig. 2-2b, th, left flexure can he -olved in terms
Of Y2 and 02 , the deflection and slope at station 2. Similarly, the
right flexure can be solved in terms of Y 39 639 Y4 , 0 4 . Making use of
relationships between 0 2 and 0 3 , and between Y2 and Y3 , and then employ-
ing two different moment equilibrium equations, the unknowns Y2 and 02
can be obtained. Using subscripts 1 and 4 for the left and right flex-
ures, respectively, the following are obtained:

Y - Al sin k1x + B1 cos k 
1 
x + C 

1 
x + D	 (20)

Using the boundary conditions

_	 d	 _
'fix-0 0 ' d 

Y-0	
0 ' Yx-R 1 Y 2' dx 

x=9,	
02

1

the following values of the constants are obtained:

(sin k 1 2 1 ) Y 2 - 
k1 

( 1 cos kl Z ) 02
_	 1

Al 	 2(1 - cos k 1k 1)-	 k1^ 1 sin '.c1Q1	
(21)

(1 - cos k 1 l ) Y 2 + (I
1
 - k sin kl'1^ >

1

B 1 -	 20 - cos k 
I 

z
	 -
 k 

I 
k 
1 

sin k 
1 

z	 (22)

D 1 - - B 1	(23)

C1 - - k1A1	 (24)

The moment M1 at stzLion 1 is

- 0 - cos k l zi ) Y2 + (9, l - kl 
sin 

k,Z, )1M`	 Mx=O - - P	
20 - cos k 

I 
z	 - k 1 9, 1 sin k19,1	

(25)
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The shear at X - 0 is

(k1 sin kil l) Y2 - (1 - cos 
kli l) e2

8x=0 = PC
1 = - P 2(1 - cos k

lk N - klk l sin kl1 l	 (2h)

The deflectiot. of the right fit-Auru in terms of coordinate u (see
Pig. 2-2b) is

Y = A4 tin k 4 + B4 cos k 
4 

u + C 
4 

u + D4 	(27)

Using the boundary conditions

Yu=0 = Y3 = Y2 + me 2

Iu=o=e3=o2

Yu=SC4 = Y
4 = -h84

dux=k 
= 6 4 (28)

4

the following values of the constants are obtained:

- (.ink ! ) Y,	 n (.1n k 1 ) - i 0 cos k f - k 4 .in Y41  ?	 h(.in k f ) + 1 (1 - co. k ! ) d4 4	 C 4	 k4	 L 4	 4 4 	 2-	 4 t	 k4	 4 4	 6
A4 	 -----	 2(i -cos k41,) - k4 4 •in k4f4

(29)

U - co. k 4 4	 2! ) Y + [-(1	 114)-roe k   	 + 1 (.in kL	 4f 4 - k 4 4 ce. X44	 `f )^ ^ 2 + IhG - cos k 
44
4 ) + I (k 

4 
9
4 

- an k
4 
i
6 
)] B 4k 4	 k4

^4	 20 - cn. k4 f 4 \ - k4 7 4 sin k4f4

(30)
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D  = Y2 + me  - B4	 (31)

C4 62 - k4A4	 (32)

The moment at u = 0 is

1t^	 •a 2 `	 a ♦ 	 ka	 4416.i	 ai	 2 l	 it	 ki ai	 ♦ a	 t
3 s u.p - r	 -	 1 - cw ka a  - kita sia ka a	 --^

(I - cos k t ) T +[a(I - cos k t) + 1 (sia R t - k.t cos k t )
J 8 + 1 htl -cos k [ ) + i ik t - sla k t 

1 
rt

(33)

The moment at u = 14 is	
t

{I - co. k t )T. +U - ew k t ) + 1 (k t - sta 4t ) @ ♦ hti - eoa k t,) - —b;!{k.t. ros k t - ata k t )^ eas	 ai	 ka as	 a	 z	 s.	 ki ._	 ii	 ai	 i
Ni ndi T	 2t1 -cos Y'. - k,% sia kite

(34)

Now consider a free body diagram of the entire strut as shown in
Figs. 3-1 and 3-2, and write the moment equilibrium as follows:

	

(m+L 1 +R4) S+M1 -M4 +Pb0 4 = 0
	

(35)

Next consider a free body diagram of the right-hand flexure only,
as shown in Fig. 3-3. From Fig. 2-2b, it may be seen that

Y4 - Y3 =-he 4 -Y2 -m8 2 	(36)

The moment equilibrium of the right -hand flexure is

z4  + M3 - M4 - P(-h8 4 - Y2 - m8 2) 0	 (37)

1

M)	 P

a,	 Y4 -h 84
P

1-

5 = C ) P	 S

Fig. 3-1. Free body diagram of strut
1

1
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Substitute (25), (26), (33), and (34) into (35) an-1 (37). This
produces two independent equations in the unknowns Y2 and 82 and with
the known 84 appearing on the right side of the equations as follows:

-(m + it + k 4) k  sin k lk l + (1 - cos 
klkl)

2(1 - cos klk 1
) - kl' 1 sin klk 1

(1 - cos k4z4)	 Y
2(1 - cos 

k4k 4) - k4k4 sin k
4k 4	2

(m + k 1 + k 4)(1 - cos 
klk l) - e l + kl 

sin klkl
+

	

	 1
2(1 - cos klk 1

) - klk 1 sin klk 1

m(1 - cos 
k4k4) 

+j 
4  - 

k  sin 
k4k4

_	 4

2(1 - cos 
k4k 4) - k4k4 sin k

4k 4	e2

h(1 - cos 
k4k 4) -
 9 4 cos k4k 4 + kl sin k4k4

4

2(1 - cos 
k4k 4) - 

k4k4 sin k4k4	
- h 8 4	(38)

k1' 4 sin k
1R'1

1 2(1 - cos klk 1
)
 - klk 1 sin klk 1

2(1 - cos 
k4k4)

2(1 -cos 
k4k 4) -k

4k4 sin k4k 4 Y2

k4 (1 - cos 
k111)

+ m + 2(1 - cos 
k1'1) - k19.1 

sin 
klkl

(2m + k 4)(1 - cos 
k4k4)

2(1 - cos k4k4) - k4k4 sin k 4 k 4 	 82

(2h + k 4) (1 - cos 
k42,4)

2(1 - cos k4k 4) - k41 4 sin k4k4 - h 8
4	(39)

3-8
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'When Y2 and ()2  have been evaluated from solving (38) and (39)
simultaneously, M4 can be obtained from (34), and S is

S = PC  a - Pk1Al	(40)

Substituting (21) into (40) results in

k1 (sin k1 R 1) Y2 - (1 - cos klil)82
S	 P	

2(1 - cos k1R1) - k1Rl sin k 
1 

1	
41)

In Fig. 3-2b, a free body Ji.agram of the support strut is shown
'	 with the forces P and S and the moment M4 acting on the end which joins

the wheel frame. Figure 3-2a shows the equal and opposite forces and
moment applied to the wheel frame. The clockwise moment about the
wheel-track origin produced by both struts, and defined as the interface
moment, is

Mi = 2 I + PY4 + hS]	 (42)

Figure 2-2a shows that Y4 = -h6 4 ; thus (42) becomes

Mi = 2[M4 - Ph8 4 + hS)	 (43)r,_

tt i

Equation (43) applies to either the double-flexure strut or the
single-flexure strut. For the former case, Y2 and 6 2 must be obtained
by solving (38) and (39) simultaneously, evaluating M4 from (34) and S':•_
from (26). For the case of the single flexure, Eq. (18) and (19) can
be substituted into (43), yielding`

M	 1 + kh2 + kRh) sin kR - R cos kR

64

	

	 = 2P	 k2(1 - cos kR) - kt sin kR	
(44)

single
flexure

Since it is possible for the numerator of the right side of (44) to be
zero, the interface moment can be zero.

3-9
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The effect of the interface moment on the wheel-track loading
intensity, for the case when the wheel is flat against the track, can be
approximated by assuming that the interface moment is equilibrated by a
triangularly distributed load between the wheel and track. Let w l be
the maximum intensity of the triangularly distributed load. The usual
relationship between wl and Mi is

wl = 6Mi
2	

(45)
L

where L is the width of the wheel.

Let w2 be the rectangularly distributed loading between the wheel
and track causcu by the total vertical load W acting on she wheel.

__ W

w2 L

The maximum loading intensity 
max 

is the sum of w2 and the absolute
value of wl , namely,

max - w2 + ^ wl ^	 (47)

From Fig. 3 -2 it is clear that

P = 2 c
òs	

(48)x.==-

t

If (48) is substituted into (44) and the result substituted into
(47),	 i_	

I

W	
664	 ( 

k + kh 2 + kih) sin kw - F. cos ki

max L 1 + L cos R	 2(1 - cos ki) - ki sin ki	
(49)

j

In this form the effect of the interface moment (of the single flexure
configuration) on the contact load intensity can easily be compared
to unity, which is the intensity loading factor when the inter.facF
moment is zero.	

i

I

3-10
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SECTION IV

CRITICAL COLUMN LOADS

The critical column load PCR is the column load that produces
instability or buckling regardless of the magnitude of compressive and/or
bending stresses in the beam column. Its value is determined by end
conditions which remain constant as the column load increases. The
single-flexure critical load is given by Eq. (13) and was derived by
considering the slopes and deflections to be fixed at both ends.

The critical load for the general case of two different end
flexures will not be discussed. However, the special case of the two
end flexures being identical has a simple solution. From symmetry, it
would be expected that the slope of the rigid connecting member would
remain constant. The shear is also constant over the entire length of
the strut. Therefore, at the end of the flexure which joins the rigid
connecting member, the proper end conditions are constant slope and
constant shear. At the other end of the flexure, the two end conditions
are constant deflection and constant slope. The characteristic equation
is formed by applying Eqs. (2) and (3) at, say, the left end, where
X = 0, and Eqs. (3) and (5) at the right end, where X = R,,. The result-
ing characteristic equation is

Pki sin k1£ 1 = 0	 (50)

The lowest nontrivial value of k1£1 is 7r; hence

2

PCR	 n 2I	
(51)

DOUBLE	 ^1
FLEXURE
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SECTION V

SUSPENSION SYSTEM WITH PIVOT BEARINGS

Figure 5-la shows another wheel suspension system consisting of
sloping rigid links connecting the base frame to the wheel frame. The
link ends are pivoted in bearings. The ideal configuration is shown
in solid lines, and the tilted track configuration is shown by dashed
lines.

From Fig. 5-la, it may be seen that the lower pivot is displaced
from its ideal position by an amount h0. The moment arm that the dashed
link has with the origin is ;he(9_ + h)/d. Letting P be the nominal
axial load in one link, the clockwise moment about the origin M  is

Mp - PO	 (k + h)	 (52)

Now consIder the equilibrium of the right-hand link as the track
tilts so as to increase the value of 0. The frictional moments have the
direction and magnitude shown in Fig. 5-lb, where r is the effective
radius of the bearing and N is the friction coefficient. The equilibrat-
ing lateral forces R have the directions and magnitude shown in Fig. 5-lb.
The equal and opposite forces and moments to the wheel frame are shown
in Fig. 5-2.

Referring to Fig. 7, the clockwise interface moment about the
origin .,V is

21 PO	 (k + h) - hR - MF 
J
	 (53)

Substituting the expressions for R and MF shown in Fig. 5-1 results in

2P[0 
R 

(h+k) -rp (1+2
R ^1
	 (54)

The negative sign in (54) pertains only when the absolute value of a as
shown in Fig. 5-la is increasing. If the position is as shown in
Fig. 5-la and the movement is toward the ideal position, the negative
sign of (54) becomes positive because the frictional moments act against
the direction of movement. Therefore the maximum absolute value of the
interface moment I.,fli I may be expressed as

2P 0	 (h + k) + ru (1 + 2 Q)]	 (55)
C

5-1
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Fig. 5-1. Schematic diagram of suspension system
with pivot bearings

Equation (55), in contrast to (44), can have no cancellation of
terms. Even a frictionless bearing produces a finite interface
moment, whereas it is possible for the flexure system interface moment
to be zero.
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Fig. 5-2. Free body diagram
of wheel frame

5-2
I>

n



SECTION VI

EXAMPLES

The following examples, taken from engineering designs of suspension
systems for the azimuth bearing of a large antenna, show a typical
difference between the pivot bearing and flexure ty,)es.

For the pivot bearing type, let L - 10, cos S - 0.866, 181 = 0.004
rad, h - 13, k - 40, r - 3, u - 0.10. When these values are substituted
into Eq. (55) and the result is used in (47), the following is obtained:

max L 1 + 10(06866) 0.004 
(L3

) 
53 + 3(0.10) (l + 2 x 40)11

	

= L 11 + 0.391}
	

(56)

which shows that the maximum wheel-track loading intensity is increased
by 39% over the ideal value. If the bearing friction coefficient is
increased to 0.30, the 39% would increase to 108%, more than twice the
ideal value.

For the single-flexure type, let L = 10, cos 6 = 0.866 6 0.004
rad, h = 10, t = 49, k = 0.068. When these values are substituted into
Eq. (49) ,

	

max	
L (1 + 10.011511

which shows that the maximum wheel-track loading intensity is increased
by only 1.15% over the ideal value.

6-1
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