
NASA AVRADCOM
Technical Paper 1287 Technical Report 78-18

Effect of Geometry on
Hydrodynamic Film Thickness

David E. Brewe, Bernard J. Hamrock,
and Christopher M. Taylor

AUGUST 1978

NASA



NASA AVRADCOM
Technical Paper 1287 Technical Report 78-18

Effect of Geometry on

Hydrodynamic Film Thickness

David E. Brewe
Propulsion Laboratory, AVRADCOM Research and Technology Laboratories
Cleveland, Ohio

Bernard J. Hamrock
Lewis Research Center
Cleveland, Ohio

Christopher M. Taylor
University of Leeds
Leeds, England

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978



SUMMARY

The influence of geometry on the isothermal hydrodynamic film separating two rigid
solids was investigated. The investigation was conducted for a conjunction fully im -
mersed in lubricant (i. e., fully flooded). The effect of geometry on the film thickness
was determined by varying the radius ratio from 1 (a ball-on-plate configuration) to 36
(a ball in a conforming groove). The dimensionless film thickness was varied from 10
to 10 . Pressure-viscosity effects were not considered. It was found that the minimum
film thickness had the same speed, viscosity, and load dependence as Kapitza's classical
solution. However, the incorporation of the Reynolds boundary conditions resulted in an
additional geometry effect. That is, the film-thickness equations can be compared as
follows:

i— \. ~* n

f Full circular film;
\ Reynolds boundary conditions

Hn = 128a e(Hn) ̂  0. 131 tan"1 ^+1. 683 )
° L W 2 /J

(o. 131 tan"1 - + 1. 683^1
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Hn = 128a I <&. (o. 131 tan"1 2. + i 683^ P / Parabolic approximation;
L W \ 2 /J I Reynolds boundary conditions

0 W 2/ s half -Sommerf eld boundary
conditions

H = 12 8 a A°u L\ Parabolic approximation;
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where HQ is the dimensionless central (minimum) film thickness, a is the radius
ratio Ry/Rx, e is the film -thickness effect on reduced hydrodynamic lift, and U/W
is the ratio of dimensionless speed to dimensionless load. With the Reynolds boundary
conditions the predicted load capacity is 11 to 20 percent greater than if half-
Sommerfeld boundary conditions .are used. The parabolic approximation results in over-
estimations of the minimum film thickness of 1. 6 and 0. 7 percent for dimensionless

-4 5minimum film thicknesses of 10 and 10, respectively.



INTRODUCTION

A considerable amount of work (refs. 1 to 6) has been done to develop a minimum-
film-thickness formula for the classical hydrodynamic point- and line-contact problems.
Most of the work to date has concentrated on minimum -film -thickness formulations for
either a ball on a plate or line contact. But the full range of geometries between the two
extremes has not been adequately studied. Kapitza's film-thickness solution (ref. 1) is
not limited to a ball-on-plate configuration. However, applying the half-Somm erf eld
boundary conditions used in Kapitza's analysis violates flow continuity at the cavitation
boundary. Consequently, a need exists for a film-thickness formula that is determined
by more realistic boundary conditions and that applies for a wide range of geometries.

Work (refs. 7 to 10) has been presented in which the minimum film thickness was
determined by using an elastohydrodynamic lubrication (EHL) point-contact theory.
There the influence of contact geometry - as expressed by the ellipticity parameter and
the effects of the dimensionless speed, load, and material parameters on the minimum
film thickness - was investigated for both the fully flooded and starved conditions. This
paper continues the previous work to form a more complete theory. However, to prop-
erly bring out the physics requires a modification to the analytical approach used in the
previous work. Here the effect of load capacity has been studied by varying the ratio
of the transverse radius to the rolling radius ("radius ratio") for two film thicknesses.
The investigation was conducted for a conjunction fully immersed in lubricant (i. e.,
fully flooded). The radius ratio was varied from 1 (a ball-on-plate configuration)
to 36 (a ball in a conforming groove). The dimensionless film thickness was varied from
10 to 10 . Thirteen cases were used in obtaining the film-thickness formula, for
which pressure and thermal effects were considered to be negligible. Contour and pro-
file plots of the pressure distribution are also shown.

SYMBOLS

a«,a1 least-squares coefficients

D difference, [(Hmin - Hmin)/Hmin] x 100, percent

G material parameter

H dimensionless film thickness, h/Rx

HO dimensionless central (minimum) film thickness, h0/Rx
*>-»

Hn calculated dimensionless central (minimum) film thickness from least-squares
analysis

h film thickness, cm
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hg central (minimum) film thickness, cm

L reduced hydrodynamic lift

m starvation parameter (percent loss in load capacity)

N direction normal to boundary

P dimensionless pressure, pR /vwu
o

p pressure, N/cm

Q solution to homogeneous Reynolds equation

R effective radius of curvature, cm

r radius of curvature, cm

S separation due to geometry of solids, cm

U/W ratio of dimensionless speed to dimensionless load

u average surface velocity in x-direction (UA +Ug)/2, cm/sec

w load capacity, N

X dimensionless coordinate, x/R
A,

x coordinate along rolling direction, cm

Y dimensionless coordinate, y/R_
A

y coordinate transverse to rolling direction, cm

a radius ratio, R,7/R_.y x

e film-thickness effect on reduced hydrodynamic lift

TJ dimensionless coordinate, Y/t/2oH0
o

VQ fluid viscosity at standard temperature and pressure, N- sec/cm

cp Archard-Cowking side-leakage factor, [l + (2/3a)]~

X dimensionless coordinate, X/ 1/2HQ

Subscripts:

A solid A

B solid B

E entrance, or inlet

x,y coordinate direction

0 center of contact

°° infinite domain



THEORETICAL FORMULATION

Solution for Central Film Thickness

The thickness of a hydrodynamic film between two rigid bodies in rolling contact can
be written as the sum of two terms; that is,

h = h0 + S(x,y) (1)

where

hQ central (also minimum) film thickness due to hydrodynamic effects

S(x,y) separation due to geometry of solids

The separation of two rigid solids (fig. l(a)) in which the principal axes of inertia of the
two bodies are parallel can be written as

where

-fix7*2

SBx = rBx

SBy = rBy ' VrBy '

A simplifying transformation can be effected by summing the curvatures in the x = 0
and y = 0 planes. In terms of the effective radius of curvature,

1 _ 1 , 1
Rx rAx rBx

Ry rAy rBy



The resulting equivalent system is shown in figure l(b). The separation in terms of the
coordinates and the effective radius of curvature is

S(x,y) = Rx - - x + Ry - - y (2)

Thus equation (1) is completely determined when the hydrodynamic effects on the central
film thickness are known. These effects can be determined by applying the conservation
equations for an incompressible Newtonian fluid under laminar, isothermal, isoviscous,
steady -state conditions. The following Reynolds equation is obtained:

J_/h39P\ + A/h39P\ = l2l,nu^
ax \ ax/ ay \ ay/ ax

(3)

where u represents the average surface velocity between the two solids along the rolling
direction. It is convenient to nondimensionalize with respect to the effective rolling ra-
dius; that is,

Rx R R
(4)

also

"0" R

where a denotes the "radius ratio. " In terms of these dimensionless variables the
Reynolds equation becomes

ax ax aY 3Y ax
(5)

The film -thickness equation in dimensionless form is

H = En + 1 - \ 1 - X" + ot 1 - 11- (6)

n <\

For situations in which X « 1, and (Y/or) « 1, it is convenient to expand H in a
two-dimensional Taylor series to give



H. « Hn + - + JL (7)
U 2 2tf

This is called the parabolic .approximation. The analysis to follow uses both forms of
H, and comparisons are made.

The solution of the Reynolds equation (eq. (5)) is known to consist of a homogeneous
solution and a particular solution; that is,

P = Pp + Ph (8)

for which Ph is a solution to the homogeneous equation and satisfies the condition that
Ph = -P at the boundaries:

a / S 9Ph\ a / S 9Ph\_L (H3 -Jl + -1 H3 —£. = 0 (9)
3X \ 3X / 9Y V 3Y /

For the parabolic approximation, the particular solution for the pressure is simply pro-
portional to X/H2; that is,

P ,
P

where

In the preceding equation q> is the side-leakage factor established by Archard and
Cowking (ref. 11) and can be verified by inserting P back into equation (5). If we de-
fine P,(X,Y) = 4(pQ(X,Y), by using equation (8), we can express the full solution as

(10)

In general, the homogeneous solution P, is an unknown function of X and Y. Conse-
quently, the pressure distribution must be determined numerically. The pressure dis-
tribution as given in equation (10) can be used, however, in relating the hydrodynamic
effects (i. e., load, speed, and viscosity) to the central film thickness. First, the load
capacity and the pressure distribution are related through the following equation:



w = f f p dx dy (ID

or in dimensionless form (vising eq. (4))

w = dXdY

Substituting equation (10) into this expression gives

_ + Q \ d X d Y

For the parabolic film assumption, the central film thickness can be isolated from the
integrand by defining the following transformation:

Y =

If we assume the homogeneous solution to transform in the same manner as the par
ticular solution, we obtain

w = -x Q(x,r?)
(1 + X +

(12)

Kapitza refers to this integral as the reduced hydrodynamic lift L. Thus,

L = (13)

The reduced hydrodynamic lift in Kapitza's analysis was determined to be n/2 by as-
suming Q = 0 and integrating over the half-space of positive pressures. For Reynolds
boundary conditions, the limits depend on the shape of the cavitation boundary and hence
the geometry. Consequently, we seek an additional geometry effect in Kapitza's solution.
Equation (12) enables us to determine the central (minimum) film thickness as a function
of the load, speed, geometry, and fluid viscosity; that is,



The ratio of dimensionless speed to dimensionless load may be defined as

W w

and equation (14) becomes

HQ = 128a feA (16)
U V W /

For the parabolic approximation, we need to determine L only as a function of the
geometry; that is,

[x2 « (1/2HQ)
L = L(a) if 4

|/ « (1/2H0)

This will be determined numerically. If, on the other hand, the film thickness is large
enough that these inequalities cannot be satisfied throughout most of the domain, the
exact film-thickness equation (eq. (6)) must be used. The integrand of equation (13) thus
becomes a function of the central film thickness. Consequently, L = L(a,Hn), resulting
in a transcendental equation for HQ.

Boundary Conditions

Earlier theories (ref. 12) assumed the pressure to be ambient or zero at the point
of closest approach. This resulted in an antisymmetric solution with respect to X
(fig. 2(a)). In actuality, the lubricant is unable to sustain the negative pressures pre-
dicted by the full solution. A simple approach taken by Kapitza (ref. 1) was to ignore
the negative pressures, that is, to employ the half-Somm erf eld boundary conditions.
This solution (fig. 2(b)) has been used to get a reasonable estimate for the load capacity.
However, Kapitza's solution does not satisfy continuity conditions at the exit (cavitation)
boundary; that is, the pressure gradient normal to the cavitation boundary must be zero.
To insist on P = (3P/3N) =0 at X = 0 would be overspecifying the problem mathe-
matically. However, we can insist on P = (3P/3N) = 0 at the cavitation boundary
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(i. e., Reynolds boundary conditions). The general solution will then appear as in fig-
ure 2(c). For film thicknesses of about 10 to 10 centimeter, Dowson (ref. 13) has
shown that other boundary requirements are needed. For that investigation, the cav-
itation boundary as determined by the Reynolds boundary conditions did not coincide with
the cavitation boundary observed experimentally. Taylor (ref. 14) has summarized sev-
eral of the boundary requirements that have evolved as a result of Dowson's work.
Among the boundary requirements discussed, the Reynolds boundary conditions were
chosen as the most appropriate for the conditions of load and speed in this investigation.

NUMERICAL ANALYSIS

A pressure distribution satisfying the Reynolds equation (eq. (3)) was determined
numerically for a given speed, viscosity, geometry, and film .thickness. The numerical
solution was achieved by using the Gauss-Seidel iterative method with overrelaxation.
The parameter $ = PH ' (ref. 15) was introduced to help the relaxation process. A
computer program is given in the appendix.

Nodal Structure

A variable-mesh nodal structure (fig. 3) was used to provide close spacing in and
around the pressure peak. This helped to minimize the errors that can occur because of
large gradients in the high-pressure region. The grid spacing used in terms of the co-'
ordinates X and Y was varied depending on anticipated pressure distribution. That is,
for a very highly peaked and localized pressure distribution, the fine mesh spacing was
about 0. 002 and the coarse mesh spacing was about 0.1. For a relatively flat pressure
distribution, the fine mesh spacing was about 0. 005 and the coarse mesh spacing was
about 0.13.

Integration Domain

The size of the conjunction, or the integration domain, is determined so as to make
the contact fully flooded or as close to that as practical. From Dalmaz (ref. 3), a fully
flooded condition for a ball-on-plate configuration would have an inlet domain defined by
XE = -1 and YE = ±1. By using the pressures from Kapitza's classical theory, the loss
of load capacity resulting from using a finite inlet rather than the semi-infinite inlet used
by Kapitza can be estimated. For this purpose let m represent the percent loss in load
capacity; that is,



oo

(17)
w.

Thus as m approaches 100, the inlet becomes severely starved. If m approaches
zero, the inlet is considered fully flooded. For the ball-on-plate inlet domain, m is
calculated to be 1. 61 percent. Since this represents a negligible loss in load capacity,
we chose to retain the concept that a fully flooded condition exists in this case. Hence-
forth, if m < 1. 61 percent, the inlet is considered as fully flooded. According to this
criterion, the inlets for all the geometries considered in this investigation were fully
flooded (table I). The exit boundary was determined so as to allow for a fully developed
cavitation boundary.

In our effort to achieve a fully flooded condition, we recognize the fact that the
Reynolds equation loses some of its validity at large distances from the point of minimum
film thickness. Dowson (ref. 16) has pointed out that the errors involved in using this
equation to determine the buildup of pressure in such regions are negligible: The pre-
dicted pressures are themselves so very much smaller than the effective load-carrying
pressures in the region of closest approach of the solids.

Film Thickness (Parabolic Film Approximation)

Once the integration domain has been established, the film-thickness equation can
be determined numerically. First, the load capacity w is obtained from the numer-
ically determined pressure distribution. Then inserting the value of w into equation (14)
allows us to solve for L for various geometries.

From the data in table II, a curve fit can be effected as a function of geometry.
Studying figure 4 and trying several appropriate functional forms to curve-fit the data
showed that the following equation represented the data best:

L = ax tan"1 - + aQ (18)

The values of a.-, and a., were determined to be

= 1.683'
| (19)

a1 = 0.131 '

n n
The coefficient of determination r^ (ref. 17) was 0. 96 for this fit. The value of r re-
flects the fit of the data to the resulting equation: 1 being a perfect fit, and 0 being the
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worst possible fit. Inserting equation (18) into equation (16) gives for the calculated min-
imum film thickness

H - = 128a I & (o. 131 tan'1 2 + 1. 683 ]] (20)I
L

For comparison of the calculated film thickness with the actual input film thickness, it is
convenient to define the differences (in percent) as

<- " Hmin)

Hmin
x 100 (21)

The difference ranged from -2.14 to 1. 35 percent (table n).

Film Thickness (Exact Equation)

The results of using the exact film-thickness equation (eq. (6)) rather than the para-
bolic approximation (eq. (7)) can be compared from the values of L given in table n.
The values of L determined through the exact film-thickness analysis are always re-
duced by a constant factor. Thus the dependence on geometry and film thickness for the
reduced hydrodynamic lift can be separated as follows:

(22)

where L is determined by using the parabolic approximation. The values of C(HQ) are
given in table HI. Using the parabolic approximation gives errors of 0.7 and 1. 6 percent
for film thicknesses of 10 and 10 , respectively. Although these errors are quite
small, they would probably be larger for thicker films: As the film thickness is in-
creased, the pressure distribution spreads out more evenly (e. g., fig. 5). Thus the
pressures far from the point of contact, where the parabolic assumption is no longer
valid, contribute more to the load capacity than if the pressure distribution had been very
localized.

The minimum film thickness can now be written as

Hm. = 128a [i3£? (0.131 tan'1 ^+ 1. 683Yl (23)
mm |_W \ 2 /]

The difference ranges from 2.00 to -2.11 percent for the exact film-thickness results in
table H.
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DISCUSSION OF RESULTS

Comparison of Theories

The minimum -film -thickness equation derived by Kapitza using half -Somm erf eld
boundary conditions and assuming the parabolic approximation is

<24)

W 2

By equating equation (16) with this expression for a given speed parameter, the load ca-
pacity for the two theories can be compared; that is,

(25)

The effect of the geometry on the reduced hydrodynamic lift is shown in figure 4. The
figure shows that L, and hence the load capacity (eq. (25)), is 11 to 20 percent greater
than that predicted by Kapitza. The least difference occurs for a ball-on-plate contact.
As a is increased, the difference in load capacities approaches a constant 20 percent.
The alteration of the pressure distribution due to the Reynolds boundary conditions at the
cavitation boundary is responsible for this geometry effect. Figure 6 is a three-
dimensional representation of a pressure distribution for a of 1. 00 and 36. 54 and il-
lustrates the shape of the cavitation boundary. As a becomes large, the cavitation
boundary tends to straighten out, accompanied by decreasing changes in L. The scale
along the y-axis in figure 6(a) has been magnified about 3 times to improve the resolu-
tion. Consequently the differences in the shapes of the cavitation boundary are actually
subdued as they are presented.

The two analyses resulted in the same exponent of 2 for U/W. Dalmaz(ref. 3), using
the Reynolds boundary conditions for a ball-on-plate configuration, reported an exponent
of 1.77. The lower exponent appears to be due to starvation effects resulting from the
inlet condition in both the analytical and experimental results. This is illustrated more
clearly by comparing the results of applying the inlet condition of Dalmaz and the inlet
condition in this study, using Kapitza's classical theory for both. A fixed oil film thick-
ness at the inlet that is independent of the minimum film thickness is used in Dalmaz's
analysis and in this study as well. But the inlet oil film thickness for the analysis of ref-
erence 3 and experimental work (given in ref. 18) was roughly 5 percent of that used
here. The effect that this has on the exponent of U/W can be seen by calculating the
load capacity for two different film thicknesses while keeping the other hydrodynamic
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-4 5variables constant. Dimensionless minimum-film-thickness values of 10 and 10 re-
sult in load capacities of 0. 046 and 0.151 newton, respectively. This would yield an ex-
ponent of 1.94. For thicker films (i. e., HQ = 10" ) the starvation effects become even
more pronounced and the U/W exponent is driven down in value to 1. 84. For com-
parison, from the data in table I for fully flooded conditions, we calculate the exponent
to be 1. 98.

Figure 7 compares experimental data (ref. 3) taken under lightly loaded (rigid con-
tacts), isoviscous conditions for pure sliding of a ball on a plate with the corresponding
theoretical results. The parameter grouping in the figure is that used by Dalmaz (ref. 3)
and first introduced by Thorp and Gohar (ref. 4). The theoretical results of this paper
are in excellent agreement with the data for the lower half range of HQ/WG. For the
reasons previously explained, the agreement of these results with the experimental re-
sults of reference 3 begins to diverge for the upper range of HQ/WG. Further, using
comparable inlet conditions for both theory and experiment provides better agreement
between the two for the upper range of HQ/WG, as the theoretical line of Dalmaz attests
in figure 7. For comparison, the theory by Kapitza has been included.

Contour Plots

! Isobar plots for three radius ratios (i. e., a of 25.29, 8.30, and 1.00) are shown in
figure 8. The contours were generated by means of a contour-plotting subroutine and
displayed with a Calcomp plotter. The contours belong to the family of curves defined by
equation (10). The center of contact is represented by the asterisk. The pressure peak
builds up in the entrance region, which is located to the left of the center of contact and
is indicated by the +. Since the isobars in each case are evenly spaced, the pressure
gradients can be easily depicted. Note that, as the radius ratio increases, the steeper
pressure gradients are predominantly along the rolling direction. This implies that the
amount of side leakage decreases as a increases. A decrease in side leakage is re-
flected in an increase in the value of cp. For line contact y = 1 and for the largest
value of a in this investigation (a = 36. 54) <p = 0. 998.

Pressure Profiles

Pressure profiles across the center of the conjunction and in the direction of rolling
are shown in figure 9 for three radius ratios (i. e., a of 36. 54, 2. 84, and 1.00). The
pressures were generated for a constant dimensionless film thickness (HQ = 10 ). The
locations of the pressure peaks were not altered by the fact that Reynolds boundary con-
ditions were used rather than half-Somm erf eld boundary conditions. The locations of the

13



pressure peaks from reference 1 are determined by setting (3P/3X) = (3P/3Y) = 0 and
solving for X and Y as follows:

Ypk =

(26)

Equation (26) shows that the geometry does not affect the pressure peak location, as can
be verified by the numerically determined curves of figure 9. However, the magnitude
of the pressure peaks will, according to equation (10), be modulated by the Archard-
Cowking side -leakage factor q>, which is a function of the geometry. The influence of
the side -leakage factor on the pressure distribution for several geometries is shown in
figure 9.

CONCLUDING REMARKS

The influence of geometry on the isothermal hydrodynamic film separating two rigid
solids was investigated. The investigation was conducted for a conjunction fully im-
mersed in lubricant (i. e. , fully flooded). The effect of the geometry on the film thick-
ness was determined by varying the radius ratio from 1 (a ball -on -plate configuration) to
36 (a ball in a conforming groove). The dimensionless film thickness was varied from
10" to 10 . Pressure -viscosity effects were not considered. It was found that the min-
inum film thickness had the same speed, viscosity, and load dependence as Kapitza's
classical solution. However, the incorporation of the Reynolds boundary conditions re-
sulted in an additional geometry effect. That is, the film -thickness equations can be
compared as follows:

HQ = 128* [c(H0) Jfi (o. 131 tan'1 2 + 1. w}]* J™1 circular film''
L W \ 2 /J 1 Reynolds boundary conditions

HQ = I28a te (o. 131 tan'1 £ + 1. 683)? (Parabolic approximation;
L W \ 2 / J [ Reynolds boundary conditions

H = 12 8 a (y® -^ (Parabolic approximation;
0 \W 2) < half -Sommerfeld boundary

^conditions
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where HQ is the dimensionless central (minimum) film thickness; a is the radius ratio
R/R • e is the film -thickness effect on reduced hydrodynamic lift; <p is the Archard-y *
Cowking side-leakage factor; and U/W is the ratio of dimensionless speed to dimension-
less load. The Reynolds boundary conditions resulted in the predicted load capacity
being 11 to 20 percent greater than if half -Sommerf eld boundary conditions were used.

The parabolic approximation resulted in overestimations of the minimum film thick-
ness of about 1. 6 and 0.7 percent for calculated dimensionless film thicknesses of 10
and 10" , respectively.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, May 12, 1978,
505-04.
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APPENDIX - COMPUTER PROGRAM

IMPLICIT REAL*8 (A-H,0-Z)
REAL*4 XMIN,XL5N,Yi1IN,XE(60)
REAL*U XG(56) ,YG(5S) , YGC(119) , DUMB (56 , 1 19 , 2)
REAL*U FNjUSjWS^SjXKSfXMAX.XCENTS^CENTS
REAL*U XNODFS,XDBL,YDEL,H*INS,T>!1IN,H''IAX
N A M E L I S T / P . A D I U S / R A X , R A Y , R B X , R B Y , R X , R Y , U A , U B , P H E E
N A M E L I S T / O U T P U T / P , P B A R , P C H E C K , S U M 3 , H O , H O B A P , U O W
D I M E N S I O N P2 ( 5 6 , 5 0 , 2 )
D I M E N S I O N DBS S( 3360) , VIS ( 3 3 6 0 ) , X*U (3363) , Z P P (3360) , PHI ( 3 3 6 3 )
D I M E N S I O N A ( 3 3 6 0 ) , B ( 3 3 6 0 ) ,C (3360) , DLZ (3 36 0) , XL (3360) , KM ( .3350)
D I M E N S I O N 3 ( 3 3 6 3 ) , H ( 3 3 6 0 ) , P P S V ( 3 3 6 0 ) , PP ( 3 3 6 3 )
D I B E N S I O N I M ( 3 )
COMMON/CTRINF/FN,U5,W5,GS,XMAX,XCENTS,YCENr3,YMAX,PR»1XS,XPK
COnMON/CTR/XMODFS, XDET,,YDEL,HMINS,PHIN,HHAX
COMMON/CTFINr/NC7,F

C
C INPUT
C

MPARA=1
NVISC=0
MWT=1

C
C MPAPA=1: T:IE PARABOLIC APPPOX Id AT ION WILL BE USED
C NVISC=0: THE IST-VISCOns SOLHTION IS DETERHINED
C MWT=1: PARTIALLY CONVERGED SOLUTION IS STORED ON TAPE
IN CASE OF CPASH
C

ROSM=1.0DO
IDE=1
MAUR=0
JENN=0
ZZZ=1.0DO
PI = 3. H M 5 9 2 5 5 3 5 9 D O
P I V A S = a 3 5 8 . 7 D O
VISO=a . 1 1D-6
V A = O . O D O
V B = O . O D O
Z = . 6 7 D O
E L P H A = 5 .827 '4 '4D-6
EETA=1.68343D-5
VISE=.00000030631D3
ORF=1 . 9DO
NX=56
NY=60
ZD1=9.799652DO
Z E 1 = 4 9 0 . 1 9 6 0 7 8 D O
Z E 2 = 7 I D 1
ZC1=10.000DO
ZC2=500.0DO
JZON=10
JMIN=10
NCGF=10

X C E N T = 1 . 0 0 0 0
Y C E N T = 1 . O O D O
X N O D F = . 9 1 B < « O D O
M=1
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c
C «=-1: READS IN FDRIATTED INPUT AND BYPASSES THE
INITIAL CALCULATION OF
C THE PRESSURE DISTR IBUTION
C
C «=0: READS IN HEXADECIMAL INPUT AND BYPASSES THE
INITIAL CALCUL&TI3N OF
C THE PRESSURE DISTRIBUTION
C
C M=+1: CALCULATES AN INITIAL GUESS
C

RAX=1. 11125D3
RAY=RAX
RBX=1.D12
RBY=-1.D12
UA=10.0DO

975 CONTINUE
DEL1=. 1DO
MAXS2=1
D2L3=. 1DO
HH IN =10.0 DO
HMAX=10.0
PRSVMX=. 1D-18
PRMX=. 1D-18

976 CONTINUE
UB=UA
NXY=NX*NY
NX1=NX-1
NY1=2*NY

7.C1S = ZC1
ZC2S=ZC2
ZE1S=ZE1
ZE2S=ZE2
FN=FLOAT (IDE)
IN (1) =IDE
IN (2) =NY
IN (3) =NCGF

C
C CURVATURE SUM AND DIFFFRENCE
C

RX=(1./RAX)«- (1./SBJC)
RY= (1. /RAY) *• (1 . /R3Y)
RHO=HX+RY
GA«MA= (RX-RY) /RHD

C
XCENTS=XCFNT/RX
YCENTS=YCENT/EX
XNODFS=XNODF/PX
YM=YCENT
XN=XCENT

C
C DIMENSIONLESS PARA1ETEK GPOIIPI'13
C

SMV = . 5* (VA*VB)

T H E T A = A T A N ( 3 f 1 V / S ? 1 ; J )
EP=VISO*V*RX
U=VISO*RX*V/EP
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us=u
HO=1.D-<* .
PHEE=1./(1.*(2.*RY)/(3.*RX))
Q1=VISE/VISO
Q2=EP/19608.5268
Q5=ELPHA*EP
Q6=BETA*EP

I* CONTINUE
ZC=ZC1
ZCS=ZC
SA-1./ZC
SB=1.0/ZD1

C
C INITIAL GUESS
C

IF (Pi) 5,6,7
5 CONTINUE

RE AD (5,700) ( ( (P2(I,J,K) ,1=1,NX),J=1,NY) ,K=1,2)
700 FORMAT (8D10. 5)

GO TO 7
6 CONTINUE

READ (5) ((P2(I,J,1),1=1,NX),J=1,NY)
READ (5) ( (P2(I, J,2) ,1=1,NX) ,J=1,NY)
REWIND 8 .

7 CONTINUE
XHIN=XCENTS-.20
Y=O.DO
DO 13 J=1,NY
X=O.DO
DO 12 1=1,NX
ZD=ZD1
N = I*(J-1)*NX
JTWIN=NY1-J
IF (J.GE.JZON) ZC = ZC2
YGC(J)=Y/RX
YGC(JTWIN)=2.*YCEMTS-YGC(J)
YMIN=YCENTS-.16
YMAX = YCENTS«-. 16
XG (I)=X/RX
IF(YGC(JTWIN).GE.Y1AX) JMAX=JTHIN-1
IF (JTWIN. EQ. JKAX .AND. XG (I) . LE. XCSNTS) LU = ?J
IF (XG (I).LE. XKIN .AND. J.EQ. NY)K1 = N
IF(XMIN.EQ.O.) K1=NX* (MY-1)+2
IF(J.EQ.JMIN .AND. X3 (I) . LE. XCENTS) LM AX = N
NVMF=NCGF+ (J-1) *SX
NVMB=NVMF*NZON2
IF(N.GE.NVMF .AND. N. LT. NVHB) ZD=ZE1
IF(N.GE.NVMB) ZD=ZS2
SQX=((X-XN)/RX)**2
SQY= ( (Y-YM)/RX)**2
IF (MPARA .EQ. 1) GO TO 75
S (N)= (1./RX) * (1. /RY) -DSQRT((1./RX) **2-53X) -OSQRT((1./RY) **2-SQY)
IF (S(N) .GT. 1./RX) S(N)=1./RX
GO TO 8

75 S(N)=(RX*SQX*RY*S3Y)/2.
IF (S(N) .GT. 0.5/RX) S(N)=0.5/RX

8 CONTINUE
IF (M.EQ. 1) 30 TO 9
PR(N)=P2(I,J,1)
GO TO 10
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9 CONTINUE
PR (N)=- 1D-8

10 CONTINUE
IF (J. EQ. 1 .DR. I. EQ. 1 .OR. I.EQ.NX) PR(N)=O.ODO
IF(PR(N) .GT.O.) 3D TO 11
PR (N)=0. DO

11 PRSV(N)=P? (N)

12
13

900

C
C
C

.
IF (PP (N) . LT. PRSV1X) GO TO 12
PRSVMX=PR(N)
NHOLD=N
X=X+1./ZD
Y=Y+1./ZC
XMAX=XG (NX)
YDEL=Y«AX-Y1IN
XDEL=YDEL
WHITE(6,SOO) (PR(V) ,N=1,SXY)
FORMAT(1H ,2HPR/70(1H ,10013. 5/))
WRITE(6,1000) (S(N) ,N=1,NXY)

1000 FORMATflH ,1HS/73(1H ,10013. 5/))

FILM THICKNESS

14 CONTINUE
DO 19 J=1,NY
DO 18 1=1, NX
N3=I+(J-1) *NX
H (N3)=HO+RX*5 (N3)
IF (H(N3) .GT.HMIN) 3D TO 17
HMIK=H(N3)
HHINS=HMIN
NSAVE=N3

17 CONTINUE
PHI(N3)=PF (N3) *(H(N3| **1. 5)

18 CONTINUE
19 CONTINUE

WRITE (6,1100) NSAVE,HMIN
1100 FORMAT (1H , 6HMSA VE = ,T 1 0, 1 OX,5HHHIN=, D 16 . 5)

WRITE (6,1203) PR5VKX,NHOLD
1200 PORHAT(1H ,8HPPSV»IX=,D16.5,10X,7HNHOLD=,I10(

20 CONTINUE
WRITE(6, RADIUS)

C
C
C

C
C
C

INITIAL VISCDSITY AND DENSITY CALCULATION

DO 21 N=1,NXY
DENS (K) = 1. «-(Q5*P8(N) ) /(1. +Q6*PR(N) )
VIS(S) =Q1**(1.- (1.+Q2*PR(M» **Z)
X«U(N)=DENS(N) /VI5 (N)

21 CONTINUE

RELAXATION C3EFFIENTS A ,D , C, D, L, AND M

22 CONTINUE
SUM'O.ODO
ZC=ZC1

DO 2" J=2,NY
DO 23 1=2, NX1
ZD=ZD1
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N = I + ( J - 1 ) *NX
N V M F = N C G F * (J-1) *NX
N V M B = N V M F » N Z D N 2
IF (J. GE. J Z O N ) Z F = Z C 2
IF(J .GT. J Z O N ) ZC = ZC2
IF ( N . G E . N V f . F . A N D . N. LT. N V M B ) Z K = Z E 1
I F ( N . G T . N V M F .RtiD. N . L E . N V M B ) ZD=ZE1
I F ( N . G E . N V M B ) Z E = Z E 2
I F ( N . G T . N V M S ) Z D = Z E 2
V1= ( ( Z E * Z D ) / ( Z E + 2D) ) **2.
V 2 = ( ( Z E ) **2. ) * ( Z D - Z E ) / ( Z D + Z E )
V 3 = ( Z E * * 3 . ) * ( Z E + 2 . * Z D ) / ( ( Z E * Z D ) )**2.
V4= (7,D**3.)* ( 2 . * Z E * Z D ) / ( ( 2 E * Z D ) ) **2.
V5= ( Z D / Z E ) **2.*V2
C2D=ZC**2-ZF**2
C 3 P 1 = Z C + 2 . * Z F
C 3 P 2 = 2 . * Z C + Z F
C F = ( Z F / ( Z C + ZF) ) **2
CF1= (1./(Z
CP= (ZC + ZF) **2

Z 2 = Z C / ( Z C + Z P )
Z3=Z1**2
ZU=Z2**2
N1=N+1
N2=N-1

I F ( J . E Q . N Y ) N 3 = N U
Y O = X M U ( N )
Y 1 = X N U ( N 1 )

( N 2 )

( N 4 )
Y 5 = H ( N 1 )
Y6 = !l ( N 2 )
Y 7 = H ( N )
Y8 = H ( N 3 )
Y 9 = H ( N 4 )
Y 1 0 = Y 1 * D 5 Q R r ( Y 5 )
Y 1 1 = Y 2 * D S Q R r ( Y 6 )
Y 1 2 = Y 3 * D S Q R r ( Y 8 )
Y 1 3 = Y U * D S Q S T ( Y 9 )
Y 1 4 = Y O * D S Q R T ( Y 7 )

A ( N ) = V 1 * Y 2 + V 2 * Y C H V 3 * Y 1
B ( N ) =za*(Y3*7,F**2
C ( N ) = V t i * Y 2 - V 5 * Y O * V 1 * Y 1
DLZ (N) =CF* ( Z P * C 3 P
X L 1 = Y 2 * 4 . * 7 3 - ( Z D - Z E ) **2*YO+Y1*ZE**2*CF1 * ( Y3*ZF**2*CP-:2D**2* YO+ ZC**2*
XL2=1.5 / (Y7**1 .5)
X L 3 = Y 1 1 * ( V a * Y 6 - Y 7 * l 4 . * Z 3 * Y 5 * V l ) * Y 1 U * ( - V 5 * Y 6 * ( Z D - Z E ) **2* Y7 + Y5* V2) «•

1 Y10* ( V 1 * Y 6 - Z E * * 2 * Y 7 + V 3 * Y 5 )
X L « = C F 1 * ( Y 1 2 * Z F * * 2 * ( Z F * C 3 P 2 * Y 8 - C P * Y 7 » - Y 3 * Z C * * 2 ) *

1 Y13*ZC**2* (Y3*ZF**2-CP*Y7*ZC*C3P1*Y9) *
1 Y1«*C2D* ( Z F * * 2 * Y 8 + C 2 D * Y 7 - Z C * * 2 * Y 9 ) )

X L ( N ) = X L 1 * X L 2 * ( X L 3 + X L t )
XM1 = 12.*U/(Y7**1.5)
X M 2 = { (ZE**2. * D E N S ( N 1 ) * Y 5 / ( Z D + Z E ) + ( Z D - Z E ) * D E N S ( H ) * Y 7 -

1 ZD**2 .*DENS ( N 2 3 ) * Y 6 / ( Z D * Z E ) ) * D C O S ( T H E T A ) )
X M 3 - ( Y 8 * Z F * * 2 * D E S S ( N 3 ) *C2D*DENS (N) * Y7-Y9*ZC**2*DENS ( N H ) ) * D S I N ( T H E T i )
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XH (N) = XH1*
23 CONTINUE
24 CONTINUE
25 SUM=O.ODO

C
C RELAXATION FORMULA
C

DO 30 J=2,NY
HEND=0
DO 29 1 = 2, NX1
MN=I* (J-1) *HX
MNA=HN+1
nNB=MN-1
HNC=NN+NX

IF(J.EQ.NY) HNC=HND
ZPR(flN)=PHI(!1N) -DBF* (PHI (UN) «• (XH (UN) -ft (UN) *PHI (HNA) -B (UN) *PHI (HND)

1 -C(MN) *PHI(nNB| -DL^ (MN) *PHI (BNC) ) /XL (NN) )
26 CONTINUE

IF (ZPR (NN).LE.O.) GO TO 27
Y18=(ZPR(HN) -PHI (Hit)) /ZPR(MN)

GO TO 28
27 ZPR(HN) =0.10-20

MEND=HEND«-1
IF (BEND .E9. 1) XE(J)=XG(I)

29 PHI(MN)=ZPR(MN)
29 CONTINUE
30 CONTINUE
31 CONTINUE

MAUR=MAUR+1
11 CONTINUE

IF (HHT.EQ.O) GO TO 66
65 CONTINUE

WRITE (8) ((P2 (I, J,1) ,1 = 1, NX) ,J=1,NY)
WRITE (8) <(P2(I, 3,2) ,1=1, NX) ,J=1,NY)
REWIND 8

66 CONTINUE
IF (SUB.LT.DEL3) 30 TO 311
GO TO 25

C ,
C VISCOSITY AMD DESSITY ITERATION
C

311 SUH2=O.ODO
WRITE (6,t»83) MAUR.SUH

U80 FORHAT(1H ,5HH AUR=, 18 , 5X,6HSOH=, 18)
MAUR=0
PRMX=. 1D-13
DO 315 J=2,NY
DO 316 1=2, NX1
N=I* (J-1)*NX
PR(N)= (PHI(N) /(H(H) **1.5)»(ROSH-1.)*P5(N))/ROSfl
IF (PR(N) . LT. PRHX) GO TO 33
PHMX = PE (N)
PRnXS=PRMX
NHOLD=N

33 CONTINUE
IF(NVISC.EQ.O) 3D TO 316
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DENSN=1.+ (Q5*PE(N) ) / ( 1. *Q6*PH (JJ) )
VISN=Q1**(1.- (U + a2*PR(N)
X«UN=DENSN/VISN
Y99=(Xf50N-X!10 (N) ) /XHUN
S U M 2 = S ( I M 2 + DABS ( Y 9 9 )
D B N S ( N ) = D £ N S N
VIS(N)=VISN

316 XMU(N)=XMUN
315 CONTINUE

MN1=1
i«59 CONTINUE

JENN=JENN+1
WRITE (6, 810) SOM2

810 FORMAT (1il ,5 HSUM2) , D1 C. 5)
IF (SUfl2.LT.DEL1)" GD TO 32
IF (MAXS2. GT. «00) 30 TO 63
MAXS2=MAXS2*1
GO TO 22

C
C A P P L I E D N O R M A L L O A D
C

32 C O N T I N U E
M A X S 2 = 1
W H I T E ( 6 , 4 8 1 ) J E N N

U 8 1 F O R « A T ( 1 H , 9 H J E N N I F E R = , I 8 )
J E N N = 0
M A D E = 0
Q U U = O . O D O

IZON=1
ZD=ZD1
PBAR=O.ODO
PCHECK=O.ODO
«S=2
« F = N C G F
GO TO 483

482 2D=ZE1
I Z O N = 2
MS = MF
M F = M S + N Z O N 2
Q U t t = O . O D O
PSUK=O.ODO
GO TO as 3

485 ZD=ZE2
IZON=3
MS=MF
MF=NX
QU«=O.ODO
PSUM=O.ODO

U83 CONTIHdE
DO 38 I=MS,1F
IM=MOD(I,2)

IF (IBS.EQ. 1) GO TO I486
QU1=1.0DO
IF(IM.EQ.I) QU1=2.0DO
GO TO £»87

486 QU1=2.0DO
IF(in.EQ.I) 301=1.000
CONTINUE
QD5=1.0DO
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QU3=O.ODO
IF(I.EQ.t!S ,3R. I . E Q . M F ) QD1 = .5DO
IFJ I .EQ. NS -OH. I. EQ. (IF) Q05=.5DO
JINTG=1 .
ZC=ZC1

NS = 2
N F = J Z O N
GO TO 35

34 JINTG=2
ZC=ZC2
NS = NF
NF = NY

35 DO 37 J = N S , N F
N = I*(J-1) *NX
J N = M O D ( J , 2 )
J N S = f ! O D ( N S , 2 )
IF ( JNS.EQ.1) GO TO 40
IF ( JN .EQ.O) 3V1=2 .0DO
IF(J"N.EQ. 1) Q V 1 = H . O D O
IF(J .EQ.NS .3R. J .EQ.NF) QV1=1.0DO
GO TO 37

40 I F ( J N . E Q . O ) Q V 1 = 4 . 0 D O
IF(JS.EQ. 1) Q V 1 = 2 . 0 D O
I F ( J . E Q . N S .35. J . E Q . N F ) Q V 1 = 1 . 0 D O

37 Q U 3 = Q U 3 * P R ( H ) * Q V 1 / Z C
IF ( J INTG.EQ.1) GD TO 34
PSUB=PSUB*Qa3*Q05/3.0

38 QUU = QUI4*Q03*Q01/3.0
P B A R = 4 . * E P / ( R X * * 2 ) * 3 U H / ( 3 . * Z D ) * P B A R
PCHECK = 2 . * E P / ( R X * * 2 ) * P S O M / Z D + PCHECK
I F ( I Z O N . E Q . 2 ) GO TO 1*85
IF ( IZON.EQ. 3) GO TO 36
GO TO 482

36 CONTINUE
UOW=U*VISO/(PBAR*RX)
WRITE (6,OUTPUT)
HS=PBAR

39 CONTINUE
IF (MPARA.EO..O) 33 TO «3
PRMX=.1D-13
PRSVMX=PRMX
HMAX=10.0DO
HMIN=10.0DO
MPARA=0
GO TO 976

43 CONTINUE
W R I T E ( 6 , 1 6 0 0 ) N S 5 V E , H H I N

1600 F O R M A T ( 1 H , 6 H N S A V E = , 1 1 0 , 1 0 X , 5 H H M I N = , 0 1 6 . 5 )
W R I T E ( 6 , 1 7 0 0 ) ( P R ( N ) , N = 1 , N X Y )

1700 F O R H A T ( 1 H , 2 ! IPR/70 (1H ,10013.5/))
W R I T E ( 6 , 1 8 0 0 ) ( P H I ( N ) , N = 1 , N X T )

1800 F O R M A T ( 1 H , 3 H P H I / 7 0 ( 1 H ,10013.5/»
W H I T E ( 6 , 1 9 0 0 ) ( H ( N ) , S = 1
» R I T E ( 6 , 2 0 0 0 ) < S ( N ) , N = 1

1900 F O R H A T (1H , 1 H H / 7 0 ( 1 H ,10013.5/))
2000 F O R M A T (1H , 1 H S / 7 0 ( 1 H ,10D13.5/))

W R I T E ( 6 , 2 1 0 0 ) ( D E N S ( N ) , N = 1 , N X Y )
2100 F O R H A T ( 1 H , 7 H D E N 3 I T Y / 7 0 ( 1 H ,10013.5/1)

W R I T E ( 5 , 2 2 0 0 ) ( V I S ( N > , N = 1 , N X Y )
2200 FOR*AT(1H ,9HVISCDSITY/70(1H ,10013.5/))

WRITE (6,2330) (A(N),N=1,NXY)
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( ! C L { N )

2300
2«00
2500
2600
2700
2800

53

W R I T E ( 6 , 2 « 0 0 )
W R I T E (6 ,2500 )
W R I T E ( 6 , 2 6 0 0 )
W R I T E { 6 , 2 7 0 0 )
W R I T E ( 6 , 2 8 0 0 )
FORMAT(1H ,1HA/70(1H

,1HB/70(1H
,1HC/73(1H
,1HD/70(1H

FORWAT(1H
FORMAT(1H
FORHAT(1H
FORMAT(1H
FOPHAT(1H

(B(N),N=1,NXY)
(C(N) ,N=1,NXY)

(DLZ(N) ,N=1,NXY)
N=1,NXY)
N=1,NXY)
, 10D13.5/) )
,10013.5/))
, 10D13.5/))
,10013.5/))
,10013. 5/) )
,10013.5/))

,1HL/7D(1H
1HK/70(1H

CONTINUE
PI1IN=.1E-20
PRMX=.10-20
DO 55 J=1,NY
DO 5U 1=1,NX
N=I+NX* (J-1)
JTHIN=NY1-J
IF(J.EQ.NY) YG(I)=PP.(N)
P2(I,J,1)=PR(N)
DUMM (I,J,1)=PR(N)
DUMM(I,JTWIN,1)=PR(N)
Dunnfi,J,2)=H (N)
DUHM(I,JTWIN,2) =H(N)
IF(J. NE.JMIN .OR. PR(N) .LT.PMIN) GD TO 57
PMIN=PR(N)
NMIN=N
CONTINUE
IF (JTWIN. NE. JMAX .OR. PR (N) . LT. PMIN) GD TO 58

57

NU=N
58 CONTINUE

IF (PR (N) . LT. PRMX) GO TO 5U
PRMX=PR(N)
PRMXS=PR(N)
NHOLD=N
XPK=XG (I)

54 P2(I,J,2)=H(N)
55 CONTINUE

K«ftX=NXY-1
HMAX=H(KMAX)
IF{K(LUAX) .LT.HRAX) H ?1AX = H (LMAX)
IF (H(LU) .LT. HMAX) HMAX=H(LU)
IF(H(K1) .LT.HMAX) HHAX = H(K1)
IF (PMIN.LT.PR(KMAX)) PMIN=PR(KMAX)
IF(PHIN.LT.PR(K1) ) PHIN=PP(K1)

59 CONTINUE
60 CONTINUE

WRITE(7,2903) (((P2(I, J,K) ,1=1,NX) ,J=1, SY) , *-1, 2)
2900 FORMAT (8010.5)

WRITE(6,3000) PR1X,NHOLD
3000 FOBMAT(1H ,6HPRMX=,016.5,10X,7HNHOLD=,I10)

61 CONTINUE
CALL FSETUP{NX,NYM1,XG,YGC,DUMM)
CALL CTRSBR(NX,NYB1,NXY,NY,X3,YGC,DU.MM,XMIN,?niN)

62 CONTINUE
CALL GRAFNO(IN,X1AX,XG,YG,NX,INY)

63 CONTINUE
CALL TERM

6U CONTINUE
STOP
END
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TABLE I. - ESTIMATE OF PERCENT LOSS OF LOAD CAPACITY FOR

VARIOUS GEOMETRIES AND INTEGRATION DOMAINS

Minimum
film

thickness,
H0\J

ID'5

io-5

ID"4

Radius
ratio,

a

36.5361
1.0000

36.5361
25.2897
15. 8434
11.8266
8. 3033
5.2073
3.9983
2.8428
2.3213
1.3978
1. 0000

Inlet parameter

Abcissa
-xE.

1.00

\

Ordinate
±YE

7.00
1.00
7.00

1

t
4.00
4.00
2.00
2.00
2.00
1.34
1.00

Load capacity

Finite
domain,

w(N)

1.5162
.1532
.4744
.3917
.3055
.2604
.2133
.1635
.1369
.1091
.0946
.0640
.0479

Infinite
domain,
wM(N)

1. 5237
.1540
.4818
.3977
.3100
.2642
.2165
.1659
.1391
.1109
.0961
.0650
.0487

Loss of load
capacity,

m,
percent

0.49
.51

1.55
1.50
1.46
1.45
1.50
1.46
1.61
1.54
1.51
,1.56
1.61
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TABLE n. - DATA SHOWING EFFECT OF GEOMETRY ON

MINIMUM FILM THICKNESS

[Average surface velocity in x-direction, u, 10 cm/sec; fluid vis-
cosity, VQ, 0.411X10 N-sec/cm2; effective radius of curvature,
RX, 1.11125 cm. ]

Radius
ratio,

a

36.5361

25.2897
25.2897
15.8434
15. 8434
11. 8266
11.8266
8. 3033
8. 3033
5. 2973
5. 2973
3. 9983
3.9983
2.8428
2.8428
2.3213
2.3213
1.3978
1.3978
1. 0000

Load
capacity,

w(N)

1.8450
1. 8392
.5749
.5704
.4738
.4701
.3681
.3653
.3128
.3104
.2571
.2552
.1955
.1940
.1627
.1615
.1284
.1274
.1105
.1097
.0727
.0720
.0537
.0531
.1719
.1713

Reduced
hydro -

dynamic
lift,

L

1.9020
1. 8960
1.8741
1. 8595
1.8714
1. 8568
1. 8652
1. 8510
1. 8592
1.8449
1.8658
1. 8520
1. 8501
1. 8360
1. 8367
1. 8232
1. 8206
1. 8065
1. 8074
1. 7943
1.7543
1.7384
1.7305
1.7121
1.7533
1.7472

Minimum film thickness

Inputted
value,
Hmin

io-5

io-5

io-4

1

io-5

io-5

Calculated
from

equation,
Hmin

aO. 97 85X10 "5

.9789
al. 0079X10"4

1. 0075
a1.0075

1. 0072
al. 0078

1.0070
1. 0079
1. 0072
a.9919

.9907
a. 9900

.9894
a. 9899

.9887
a.9880

.9876
a.9878

.9863
al. 0061

1. 0094
a1.0135

1. 0200
a. 9891

.9901

Difference be-
tvreen Hmin
«* Smin'

D,
percent,

-2.14
-2.11

.79

.75

.75

.72

.78

.70

.79

.72
-.81
-.93

-1.00
-1.06
-1.00
-1.13
-1.20
-1.24
-1.22
-1.37

.61

.94
1.35
2.00

-1.09
-.99

Calculated by using the parabolic film assumption in theory.
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TABLE HI. - EFFECT OF

FILM THICKNESS ON

REDUCED HYDRO-

DYNAMIC LIFT

Dimensionless
minimum film

thickness,
Hmin

ID"4

io-5

Effect of Hmin

on reduced
hydrodynamic

lift,

^min*

0.992
.997

UB 'Bx

rBx

(a-l)y = 0 plane.

(a-2)x = 0 plane,

(a) Two rigid solids separated by a lubricant film.

— x—i

"o

(b-1) y • 0 r (b-2) x »0 plane.

(b) Equivalent system of a rigid solid near a plane separated by a lubricant film.

Figure 1. - Contact geometry.
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2.0

•§

— O— Parabolic approximation
— O— Full circular film
----- Kapitza's analysis (ref. 1)

L(o)=7r /2
I "

10 3015 20 25
Radius ratio, a = Ry/Rx .

Figure 4. - Effect of radius ratio on reduced hydrodynamic lift.

35 4

Dimensionless central
(minimum) film

thickness,
Hl

.,- Iff

," 10'

Figure 5. - Pressure profiles along rolling direction for two film thicknesses.
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Rolling
direction ""*

Captation
/ boundary

Exit region

(a) Radius ratio, a, 1.00.

P

Rolling r

direction

Captation
/ boundary

(b) Radius ratio, a. 36.54.

Figure 6. - Three-dimensional representations of pressure.distributions
as viewed from exit region, illustrating captation boundary.
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Figure 9. - Pressure profiles along rolling direction for dimensionless film thickness of 10"* with three radius
ratios.
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