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PREFACE

This final report under ^fA5A NSG 3109 ME grant is composed of two parts.

Part ^ discusses theory relative to measuring inplane displacements

using speckle interferometry. From the inplane displacement field,

strains and stresses can be determined. This approach is potentially

preferred over holographic techniques for evaluating stresses in

rotating turbine ar compressor blades because of the relative ease in

collecting data, because the rigid body motion requirements are relaxed

and because data interpretation is simpler.

Part II dzscusses theory relative to measuring derivatives of dis^

placement fields by shearing speckle interferametry. The derivatives

of displacements are closer to and in some cases are the strain fields.

Therefore, stresses can be calculated directly. Again this approach 's

potentially preferred over holographic techniques as noted above.
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z . z^TRCQ^cTI ota

Conventional methods of measuring surface strains and dispiace-

ments utilize strain gages, dial gages and various other mechanical

and electrical sensing devices. The major limitation to these systems

is the information obtained is far a limited region only. In order to

determine the displacement or strain field for the entire object, a

large number of separate measurements must 6e obtained which is gener-

ally time consu„ping, costly and, in same instances, critical areas may

be missed.

In recent years, optical techniques employing a coherent light

source ^1aser} for detecting and measuring the components of surface

displacement and strain have come into use. The primary advantage of

these techniques is that the entire displacement or strain field can be

determined completely. The majority of these techniques fall into

three categories: Mai re' gauging, holography and laser speckle inter--

ferometry. The method employed in this report is laser speckle inter-

ferometry.

i^ioire' technique consists of attaching or projecting a grid

pattern on an object, then photographing the surface of the object

before and after deformation, and observing the interference fringes

produced by the overlapping grid pattern ^1, 2]*. This particular

method has the disadvantage that, somehow, a fire grid pattern must

* Numbers in the brackets refer to the references listed at the end.
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be generated and superimposed on the test surface and the photographic

.	 system used to recard the image must be of a high sensitivity to be

capable of resolving the grid system.

Ennas ^3^ measured in-plane surface strain using holographic inter-

:	 ferometry. The principal advantage of this method is the fact that it

is a very sensitive method of measurement, and the whole surface of the

structure can be investigated at the same time, rather than ^ po:int-by-

point. Although wail suited for measuring normal movements, the,^e is

no general way of eliminating the effect of normal movements from in-

plane movements. Also, holographic techniques have the disadvantage

that they require s E^vP rat separate views of the holographic fringey

patterns of the surface, which requires a considerable amount of data

reduction to separate out the in-plane displacement field.

Laser speckle interferametry is a relatively new experimental

technique which shows promise of alleviating many difficult problems

in experimental mechanics. The method utilizes simple high- -resolution

photographs of the surface which is illuminated by coherent light.

The result is a real-time or permanently stored whole--field recard

•:	 of interference fringes which yi e1 ds a map of displacements i n the

•	 object. Suggestions for the direct use of coherent light, in displace-

ment metrology and contour mapping first appeared in 1968 ^4]. Burch

and Tokars^i [5] showed that if two identical speckle patterns are

superimposed on a photographic plate translated laterally by a short

;;
	 distance between exposures, then the diffraction halo generated by the

1,	

processed plate will consist of a pattern of parallel straight fringes

^^

1 -.
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similar to Young's fringes. The diffraction halo observed through

'	 a small area of the recorded image wi11 correspond to the local dis-

placement at the corresponding paint on the object and the direction

of the fringes will be orthogonal to the direction of the local dis-

placement vector. Rlso, Burch and Tokarski ^5] showed that by optically

illuminating the developed photographic plate with a converging spheri-

ca^ wave, the entire surface could be analyzed at one time to determine

the displacement field of the surface.

Leendertz ^6^ developed a technique utilizing laser speckle effect

for measuring either normal or in-plane components of displacement over

an entire surface at one time. For measurement of normal (out-of-plane)

displacement two surfaces are coherently illuminated and two separate

speckle patterns are obtained (Figure 1}. For measurement of the in-

plane components of displacement, a surface is illuminated by two beams

of coherent laser light, symmetrically disposed about the normal to the

surface as illustrated schematically in Figure 2. ^'hese two speckle

patterns are superimposed and the resultant speckle pattern is recorded

on film. The intensity distribution of the resultant speckle pattern

`	 depends on the relative phases of the component pattt^rns. Then one or

both speckle patterns is changers and again ^:he resul'^ant speckle pattern

is recorded on the same photographic film. By measuring correlation be-

^:.
tween the resultant pattern at two different times, a change of relative

phase i s detected, which i n turn gives a meas u^^e of surface di sp1 acements .

These correlation fringes are observed either in real-time or by combining

-`;^
two transparences having resultant speckle pattern at two different times

and illuminating it in a Fourier filter system. A major drawback of

J

3
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Figure 1. Illumination Conditions for Out of plane Measurement -
Dual Beam

Figure ?. Illumination Conditions for In-plane Measurement -
Dua7 Beam
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this technique is the path length difference between the two i11umi-

Hating beams has to be less than the coherence length of the light

j	 used to generate correlation fringes.

Duffy [7^ presented t^vo methods for measuring in--plane surface

displacements. In the first method, this displacement was determined

by phot^^rapiling a coherently illuminated object through ^`wo laterally

displaced apertures. The displacement is displayed as a pattern of

Moire' fringes over the image of the surface. Thus there is no need

for scanning of the beam on a point by paint basis. As the surface is

illuminated by only a single laser beam, the implementation problems

associated with the dual--beam technique {mechanical stability and

t	
equal path lengths bet4veen the various optical components) are mini-

mized. In the second method, the object is illuminated using a single

laser beam and photographed via a double exposure before and after dis-

placement. The Fourier transform of the doubly exposed transparency

was obtained optically by illuminating the photographic plate ^vith a

converging spherical wave. The main advantage of this procedure is that

the whole-field displacement can be analyzed and by appropriate position

of a set of apertures in the transform plane any component of the dis-

placement normal to the line of sight can be detected and with variable

sensitivity. This thesis presents the mathematical analysis which

describes the formation of fringes for bath the 4vhole field and point-

by-point method of data reduction.

In addition, research has recently been conducted into the use of

^	
,_

' 4^	 1 aser speckle interferometry [8, 9, 10, 17 ] for vibrational anaiysi s.

y^e	 In this tf^esis, the time-average theory using the Fourier transform
z

^^ .
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is developed to present the application of this technique tv measure-
^^^	

ment o-F in-plane displacement induced by the vibration vi • an abject.
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T I, fl0lJBl.E EXPOStlRE S gECKLE INTERFERO^lETRY

2.l Basic Phenomf:na

When using a coherent laser light •; •or illumination, a uniformly

diffuse surface has a speckle ar grainy appearance due to random i n

terference tvi thin the resort uti on o-F the eye (or photagraphi c system) .

Addi ti anal ly, any point i n front of th i s surface tvi 7 i receive contri -

butions from ail points on the surface which have similar amplitude

but random phases. Thus the amplitude and phase of the radiation

field in •Front of the object vary in a random manner from point to
.f

point with the average intensity being the same as if the light were

incoherent. This phenomenon is knoti,rn as the speckle effect and has

been investigated by several authors ^i2]. [dhen an•imaging system

is used, the size of the speckle in the image plane is inversely

proportional to the aperture because intensity variations cannot be

produced inside distances less than tl',e Airy disk diameter [l 3]. The

speckle appearance of an illuminated object and the effect of aperture

on specks e s i ze i s i l i ustratec^ in Figure 3.

The speckle effect provides a sensitive method for measuring dis^

placements and strains on the surface of an object. The correlation

-^	 between the relative phases of speckle patterns of a coherently iilu-

-	 urinated objec,, at ttyo different times, is the basic principle of the

f_eendertz technique C6J. h(ith this technique, a double exposure

specklegram (photo•-negative? is made of the illuminated surface before

t	 7

^%
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- and after deformation.	 Thus, each bright " speckle paint" is recorded

on the speckTegram as two dark points:	 one in the undisplaced position

and the other in the displaced position.	 Finally, only knowledge of

the photographic magnification factor is required to determi ne the

ti	 . T ocaT	 in-plane displacement ante the length and di recti on of the Tine

', segment between two speckle points ar ¢ known.

Yn this report, the major emphasis is pi aced upon the "tvhoie-field"

interpretation of Young's fringes and comparison of the results to the

"point by point" interpretation.	 The theory presented here extends

works conducted by Burch and Takarski [5^ and Buffy ^7] in the inter-

pretation and data collection of the fringes.
f

One method for determing displacements -From the speckTegram, as

presented by Kinariwala^ ^T4^, is to direct a narrow collimated laser

beam through the speckTegram. 	 Diffraction wi ll modify the emerging

light rays into a cone.	 This "diffraction halo" is the result of

diffraction from the random distribution of small speckles.	 Since

the speckles are recorded in pairs .(displaced and undisplaced),

a parallel	 fringe pattern	 (Young's fringes) also occur in the

<, "diffraction halo",	 (Figure 4}.	 From these fringes, displacement

-^ at a point can be determined.	 Thus, the entire in-plane displacement

field can be determined by mapping the surface on apoint-by--paint

i1 basis.	 The number of points analyzed is dependent upon the type of
^_	 -

analysis conducted.	 To decrease the uncertainty in the displacement

field, more points tvauld have to be analyzed.
>;

`	 '^ Tn the second method of data interpretation, aconverging spherical

R.:
Wave of coherent light is passed through the speckTegram resulting in
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the specklegram being imaged in the transform piane as shown in Figure

5. Using this `°whole field° technique, the displacement field of the

entire surface in any direction can' be deter^mi nod with a si n gl e

photograph. The sensitivity of the displacement magnitude is

dependent upon the amount of offset of the aperture, p, in the

transformed plane; while the displacement component orientation

depends r^pon the angle between the focal point in the transform plane

and the aperture. For exar^ple, with a zero angle between the tyro,

only horizontal in-plane motion would be measured. While with a

90° angle , only verb cal i n--piane motion would be measured.

2.2 Thear of S eckie Interferometr -Double Ex osure - Sin le

Beam Analysis

Consider the arrangement shown in Figure 6. An object is

illuminated by a single laser beam ^manochromatic and coherent).

The location of the light source is shown as S which illulninate5

a paiint P on the surface of the abject. In this analysis, the

"double-exposure" technique for obtaining the specklegram is used,

meaning that initially an exposure of the undeformed surface is taken,

then the surface is deformed and another exposure is taken on the

photographic plate. In this development, the intensity distribution

on the photographic pinto is •investigated and, using the results of

this analysis, the in-plane displacement of the exposed surface is

determined.

From the first exposure, the complex light amplitude can be ex-

pressed as

E ( xl ,x2 } =A (xi ,x^} exP [io ^x l ,x^}^	 (2.1}



AARALLEL
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N
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Figure 5. Arrangement for Transform Ana7yszs of the Speck7egram
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{x1, x2) - Film plane coordinates

e (xl , x2) - Relative phase at each lacati^:n en the film

R (x 1 , x2 ) - Amplitude factor

The intensity of the first exposure is given by

I1 y Fl	 EZ
( 2.2)

where ^^ is the complex conjugate of E1

I l = A { x l , x^} exp ^ ^{ x l , x2 )1 A { xl , xz } exp C-io(x l ,	 x2)a

^^ (2.3)

For the second exporure, each paint on the body is displaced to

a new position; therefore, the exposure 15

F2 (x1, x2}	 = A {xl , x2} exp ^i o{x^ ^ xZ) ^ (2.5}

and the intensity is

I2 ^ A^ {x^, x^) {2.6)

Thus, the total	 intensity on the photographic plate is the total of T1

and IZ.

IT = A^ {xl , x^}	 -^ AZ (x^ , x2} {2.8}

That i s needed i s to relate this intensity distribution to the

displacement of the surface. 	 In the first exposure, the point Pis at

coordinate {x 1 , xz }.	 For the second exposure, the paint P is displaced

to point Q and is imaged on the film plane at coordinate {x1,	 xZ}.

The displacement vec-^or on the surface of the object, represented by

PQ,	 is

3

2

'.

-w

^,

(2.9}FQ = u lel + u Ze^
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and the displacement vector in the film plane is

^P^^Film Plane r ulfei ^ u2fe2
(2.10)

and the displacement in the •Film plane in relation to the abject is

ulf ^ Mu
l (2.11-1)

u2 f = i^u 2 { 2, 7 l -2 )

where M is the film magnification factor, usually less than 1.

Therefore, it foll ows tha •c the film plane coordinates far the second

exposure is given by

x^ = xl + ul f
	

^ (2 ,12-1 }

x^ ^ x2 
+ u2f

(2.12-2)

4lith these two relations, the total intensity given in ^quati 4n {2=^}

can be rewri tten as

TT = A2 ( xl , x2 } + A2 ^xl + ulf, x2 + u2f) (2.13}

Tf •she exposure E^x l , x2 ) at each point of the plate represents

small fluctuations which are mostly confined to the tae and the bottom

portion of the !1 and 0 curve, the amplitude transmission g^x l , x2 )	 of

the photographic plate is approximately a linear function of the exposure

i.e.
g(xl, x2 ) = a + b TT	 (2.14)

where a and b are constants of the photographic film. 411th the resin t

in eq X2.13) this can be written as

g ^ x l ^ x2 } = a + b PAZ {xl , .x2 } + A^^ (xl 
-^ ul f' x2 ^ u2f} ^

X2.15)
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This expression gives the relationship between transmissivity and

intensity in terms of the disp`Iacements in tha film plane. The next

`	 step in the analysis is to relate the displacement in tha film plane

to some measurable quantities. In this development, the "whole field"

interpretation of the fringes was used in the determination of dis-

placement.

^.3 ppti cal Fourier Fringe. Interpretation

- The whole •Field fringes are obtained by taking optically the

Fourier transform of the amplitude transmission function g(x l , x2} of

the specklegram ^5^. To simplify the notation, the x^ coordinate will

y	
be suppressed in the following development, i.e.

g(x) ^ a -^ b ^A2 {x) ^- AZ (x + of}1	 (2.16)

•This optical transform is accomplished by illuminating the specklegram

with a converging spherical wave as shown in Figure 5. neglecting

aberrations, the light amplitude G(w} in the transform plane is propar^

•	 ti anal to the Fourier transform of g(x} times a quadratic phase factor

^5^ as given by the following equation

.;	 2	
,

G(w} =exp (2kw } ./' g(x} exp (^iwx) dx	 (2,171}

where

w = k^ = k tan e	 (2.17--2}
.	 Z

s

where p is the coordinate of the iris in the transform plane and

``^'	 k = 2^/a ,where ^	 is the wave length of the converging beam and	 ^
^^ .

^^	 e is r^rr.ed in Figure 5. The di recd an of the laser beam and the
^a

common axes of the lenses L 1 and L2 are assumed perpendicular to the

..
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transform plane and to the plane of the speciclegram. Equation (Z.17-1)

F=ollows from the Kirchaff diffraction formula which was derived 6y

Burch and Takars^Ci [5]. Eq (2.1b) can 6e rewritten as

G(w) = exp [^ ] J` {a + b [A (x) -^ A (x -^ of )]} exp ( - iwx)dx

{2.1^)

2	 ^	 2

O(w) = a exp [ 2k ] ,J'exp (- iwx) dx + b exp [ î  ]

	

f [AZ (x) + A2 (x ^- u f)] exp (-iwx)dx	 (2.19)

The first integral in eq (2.19) is the delta function, S(w); th erefore,

2	 ^	 2

G(w) = a exp [ 2k ] a(w) + ^ exp [ 2k ] ,/' [A2 {x} +

'	 A2 (x + uf)] exp (-iwx ) dx 	.(2.20)

Equation {2.20) can be written in the following form with the applica-

tion of the shift theorem.

2	 2
G(w) = a exp [ zk ] s(w) + b exp C 2k ] 

[1 + exp { - iwuf)]

f A2 (x) exp (-iwx)dx	 (2.21)

The last integral is the definition of the Fourier Transform of A2 (x)

and is represented as F [A2 ] which leads to

2	 2
^	 G{w} = a exp [ 2k ] s(w} + b exp [ 2k^ ] F' [A2]

[1 +exp (-iwuf)]	 ^	 {2.22}

The delta function represents the (idealized) point -Focus of the

illuminating beam. It contributes to the diffracted amplitude only

at the point w=0; in practice, i t i s a smal 1 area around the point.

Outside this smal l area, the delta functi an i ^ zero and G {w) is given by

2
C(w) = b exp [ 2kw ] F [A Z ] [1 +exp (-iwuf)]	 (2.23)

.^

. ^._..
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The next step in the development is to determine the intensity

funcEi gn in the transformed plane which is

^^ = G{w} G^{w)	 (2.24}

where G^(w} is the complex conjugate of G(w}

2
z^ ^ { b exp C ^ ] F CA2^ ^l + exp C-- iwu^ }^ }

_	 2
{^b exp [ 2kw ^ F' ^A2 ^ Ll -^ exp {iwuf)J }	 (2.25)

T^ = b2 F [A2^ 
2 

L2 +exp (--iwuf) + exp { iwuf} ^	 (2.26)

Using the tri ggmetri c i denti ty

cgs {wuf) =exp (iwu f} +exp ( -iwuf}
_._	 2	 (2.27 }

i
the final expression for the lnten5'lty i s

I^ = 2b2 F'[A2 ^ (1 '}- Ca5 wu f}	 (2.28}

A fringe will be defined ^rhen the intensity, ^^., is equal to zero. 	 '

Sin e b and ^ A2 are bath nonzero Erin es will occur whenc	 C 7	 ^	 g

^1 -^ cas wuf^ = 0	 (2.29)

ar	 ^ cos wuf = -1	 (2.30}'

which means

wuf = (2n - 1 } ^	 n = 7, 2, 3,	 . , ^	 (2.31 }

kith the use of eq {2.17-2}, eq (2.31 . ) can be put in the following form

2^puf	(2.32)

A.z	
- { 2 n 

T 1 } ^
ar

of = (n - ^) P
	

(2.33)

^q (2.33) expresses the in-plane displacement in the film plane in terms

_t
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of quantities which can he measured in the transform plane. Finally,

the displacement of the deformed surface is given by

u^uf
	

(2.34)
m

u = (n - Z} ( mp )	 (2.35}

Snformation at location pis selected by placing an aperture to

pass only the light in the immediate neighborhood of p as shown in

Figure 7. Cloud [12^ reported that an aperture opening of approximately

one-tenth the amount by which the aperture is displaced from the optical

axis gives the hest results. This light is then imaged on film. Thus

p being fixed, the image fringe information is proportional to o f as

shown in eq (2.33. The direction of the measured displacement is

determined by the relation of p with the u-- and v- axis as shown in

Figure 7. In order to measure the horizontal displacement, the

aperture is moved along the a--axis and to determine the vertical dis-

placement, the iris is moved along the v--axis with movement always

starting from the focal point in the transformed plane. Thus, in-

plane displacement in any direction can be determined by appropriate

selection of the aperture coordinates. Eq (2.33) illustrates that

the sensitivity of the displacement determination is based on the

distance of the aperture from the focal point, p. An increase in

:^_	
p causes an increase in the sensitivity of the measurement; however,

due to the reso1 uti o^^ 1 imi t of the film and the relative wi dtl^ of the

fringes, the sensitivity of this technique is limited, dependent upon

the amaurtt of total displacement .

^:-



Transform Pl arse

0

^ ^	 ^:,

^...^,.-.	 ..._.,	 . _ _..-F	.._	 ^ _.._	 ,.	 .,

Figure 7. Arrangement for Fringe ^n^erpre-^ation - whole Feld Technique

s	
^... .



:^	 -.

1	 A

.

k`

r,

=,;

21

2.4 Aoint-by-Paint Bata Interpretation

The point-by-point data interpretation can also be determined

from eq (2.33), Figure 8 is a schematic of the point--by--point data

analyzer. A narro^v beam of coherent light i s passed through a region

of the film and fringes occur in the observation plane. To correctly

interprete these fringes, a reexamination of eq (2.33) is needed. Tn

the development of the transformed light amplitude (eq 2.17-1}, inte-

gration over the entire film plane vas conducted. For the paint-by-

paint analysis, this intensity relation is zero except in the narro^v

region of the film through which the light passes. The in-plane film

displacement is given by eq (2.33)

of-(n-Z}

For this case, the in--plane displacement is constant with p being the

variable. From the warE:ed conducted by Kinariwala Cl4], the expres-

sion for the in -plane film displacement for n = l

_ ^z	 (2.36)of-^
where

1 - wavelength length of light source

z - distance from film plane to observation plane

^ -- distance between fringes

For the case of n = 1, eq (2.33)

of = 2̂ 	 (2.37)

^Rn examination of the last two equations, shows the displacement

determined from eq (2.36} to be twice eq (2.37}. ^oweve r, this

difference arises in the measurement of Y and p. l'he distance Y

is measured between the fringes while pis measure from the center of
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.^	 the ha1a to the nearest fringe. Figure 8 presents these two measure-

ments. Thus, for the case of n = 7,

S = 2p	 (2.38)

and the two equations are equivalent.

2.5 Experimental verifications

f^esults of experimental verifications of the development in

section ?.3 are reported in this section. Two examples are considered

and for each case theoretical and paint-by-pnint results are presented

for comparison to the 4vhole fie]d results. An account of experimental

_	 procedures of recording and collection of data is also presented.

experimental Equipment

'	 The experimentai^set up far recording a speckiegram is shown in

Figure 9 and schematically in Figure 10. An air-supported table was

used to isolate the optical elements from surroundings and to provide

a vibration free support system.

A Spectra-Physics model 125A Ne-Ne ctiv laser ape rating at 80 mw

plane polarized output was used as the light source. The light was

spatially filtered using a Spectra-Physics spatial filter 332. Light

reflected from the object was imaged anta Kodak Nigh Speed fialographic
^;

Film 13i-02 using a Wall ensa^: 15 inch f/5.6 lens. The emulsion was

supported on a 4 in. x 5 in. glass plate to prevent reduction of the

_.	 imaged picture.

s ,,.	 ^n the paint-by-point fri nge t nterpretati an, a set up similar to

the one shown in f =igure 8 was used. The light source was a Spectra-

Phys ics Stabi 7 i te TM Model 120 Ne--Ne cw laser. The di frraction hal a
c_

with fringes vas photographed with a 35mm f^ikan camera using Kodak
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ORIGINAL PAGE I3
OF POUR QUALITY

LS -Light Source

SF -Spatial Filter

O -Object

C -Camera

Figure 9. Experimental Set up for Taking a Specklegram
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Paratomic-K film.	 For the whale-field fringe interpretation, the
^-,

°-^-^- set up shown in Figure ll was used. 	 The Spectra-Physics Model 125A

was the light source.	 The two lenses were sphe rical lenses with a

focal length of 26.5 inches. 	 The fringes were photographed using

a 35mm iii [con camera with Kodak Panatomi c-X film.

In the first example, only the vertical displacements were de-

` termined for comparison to the theoretical results. 	 For the second

example, horizontal displacements were determined.

' Example 1 -- Cantilever Beam

l'he first experimental example chosen to veri fy the theoretical

^	 ^ results was the bending of a rectangular cantilever beam wi th an end

load, as shown in Figure 72. 	 The beam had the end fixed at z^ = 0

-.^	 ^ and the end z1 = 7 had a single farce P directed along the posi ti ve x- 	 ^

axis producing a known defl ecti on, ^ 	 at z^ = 7 .

The ^ axis was taken along the center line of the beam and the

x- and y-axes were orthagona1 axes intersecting at the centraid of
!t

' the fixed end.	 The vertical	 (u) displacement component as given by

5okalnikaff ^l5] is listed below

u -	
P	

^ " (l-z }
	(x2y2) ^ ^ ^ lz^^	

(2.39)^	 ^EI	 2	 Y	 6	 2

The load P i s governec^.:hy tie deflection of the free end. 	 Suppose

the load P is applied at z^= 1 such that u(0,0,1} = S	 where S is the
':

known deflection.	 From eq (2,39)

P 
= 3E3S	

(2.40)
l^--;

F ri

^

,

^J 3S	 v	 _	 2 -	 2	 -	 - 7 z^	 '2.41u	 (1 ^ (x	 y)	 2^	 ^	 }
^; 132	

6

:^:
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Material used for the beam was plexigiass and the physical pro-

perties of the beam are

7 = 6.00 inches

b = 0.725 inches

c = .255 inches

^ - .37

E = 956000 psi

s^ = .003 inches

8z = .006 inches

Fixed end conditions for the beam were obtained by bonding one

end of the pl exig7ass to an a7 uminum bl oc[c as shown in Fi gore l3. The

end load was applied with a micrometer screw and the deflection was re-

corded with a dial indi cator (Figure 14} . Deflections of .003 inches

and .006 inches ware investigated.

Discussion and Results of Cantilever Beam Experiment

Figure i5 presents the experimental set up. The coordinates rela-

tive to the cantilever beam are given in Figure I2. Theoretical results

for S = .003 inches and d = .006 inches are tabulated in Table 3 `^^

and Table 4 , respectively. Also, a plot of deflection versus distance

along the beam far the ttvo loading conditions are shown in Figure l6

and 7 7.

As discussed in section 2.4, using the point-by-point data reduction

^rethod, the in-pi ane displacement in the principal plane is given by

of = ^^	 (2.42}

Figure 78 shows the diffraction halo and fringes at vari pus 7acatians

^„
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.	 a1 ong the beam for d = . 003 inches. The i n-plane verb cal di s pl ace-
_-	 :*,

i	 ment is given by

u - o f sin a	 {2.43)

where e i s measured as shown i n Fi gore 3. l'he data taEcen for the two

loading conditions are tabulated in Sable l-. For comparison purposes,

the experimentally determined displacements are plotted on Figure 16

r
for d = .003 in. and Figure 17 for S = .006 in.

Far the whole-field fringe interpretation, the in--plane displace-
i

ment in the film plane was shown to be equal to
y

of = {n - 2} 
^p	

{2.33}

and the actual displacement is

:.^	 u = (n - 2) 
mp	

{2.35}

Figure l9 is a photograph of the fringes in the transformed plane for

s = .005 inches. Far these two photographs,

p = .9S inches

z = 33 inches

a = 20.22 microinches

	

.	 The data for both load con ditions is tabulated in fable 2. Again,

	

=	 for comparison, the experimental results are plotted on Figure l6 for

8 = .003 in. and on Figure 17 for 8 = ,006 in.

	

F^. ^	 As seen from the resul`cs presented in Figures 15 and 17, excellent

results were obtained far both techniques. l'he maximum difference in the

point-by--point interpretation was ti5%. For the whale-field interpre-

	

^^-	 ration, the maximum error was also ti5%.

^^:
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TABLE 7

EXAMPLE 1 - CANTILEVER BEAM - PORT-BY--POINT INTERPRETATION

POR VERTICAL DISPLACEMENT

d = .003 inches
	

8 = ,QO fi inches



n z
inch

1 4.63

2 3.36

^	 3 2.45

I
4 1 .72

5 1.09

6 .36

u
inch)

.487 x i0-3

1.461

2.436

3.410

4.386

5.360

#'

,_,	 ,^.
i ^.,,i

t
^i

^^

^^
_.
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TABLE 2

EXAMPLE 1 -CANTILEVER BEAM - IdHOLE FIELD INTERPRETATION

FOR VERTICAL OISPLACEA1EiVT

^ = .003 inches

n	 z
inch)

1	 3.86

2	 2.13

3	 .77

u
(inch

.487 x 10-3

1.467

2.436

s = .00G inc^7es

.,

^}
'^ ^.

^.

u^

^^"



S = .003 inches
I

z
I

u
^inrhl inch

0 3.000 x is-3

. 3 2.775

.6 2.552

.9 2.330

i.2 2.ii2

i,5 1.90a

i.8 1.69i

2.i i.489

2.4 1.296

2.7 l.ii8

3.a .938

3.3 .775

3.6 .624

3.9 .4$7

4.2 .365

4.5 .258

S = .a06 inches

z u
inch ( inch}

'^ 	 a 6 .aao x ^o-^

.3 5.550

,6 5.104

.9 4.660

?.2 4.224

i . 5 3. Sao

1.8 3.382

2.1 2.978

2.4 2.592

2.7 2.236

3. a 1. $7s

3.3 1.55a

3.6 i .248

3.9 ,.974

4.2 .73a

4.5 .516

t

J

^^.

^a
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TABLE 3

EXAMALE 1 -^ GANTILEVER BEAM - THEaRETIGAL RESULTS

FOR VERTIGAL OISPLAGEME^lT

l•_
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Figure 16. Vertical Displacement for Example 1 as Determined from Theory, Point-by-Point
and 4Jhoie Field, d = .003 inches
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example 2 - Pressure Vessel

The second experimental example chosen to verify the results

of Section 2.3 was an internally loaded thin walled cylindrical

pressure vessel, The coordinate system for tr^is example is Shawn in

figure 21. The y--axis was chosen at the axis of symmetry. With

the x- and z-axes intersecting at the center of the tease of the

cylinder. The z-axes on the model and an the film were parallel.

The radial strain for a capped end thin wall pressure vessel

i5

oR	 1Er = ^ _ ^ ^^^ -- viz)

where

-	 a$ _ ^ ^R
^,

4 PR
6z - 2t

Therefore, the radial displacement is

2

o R = 2tE ( 2 -- v }

The horizontal displacement, u, is

'	 u W o R sin e

^Ol^leVer,

sin6 =x
R

^..	 Thus, the theflretical horizontal displacement is

u - 
2tEx ^2--v}

'^^ .^^
^^^	 for this example

(2.42}

^z.43-1)

(2.432}

X2.44}

X2.45}

{2.46)

X2.47}
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E^g[are 2^. Example 2 -Pressure Vessel



4

	
43

4 P W 400 ps i

R ^ Z.54 inches

t ^ .09 Inches

E = i0 x lDS psi

^ = . 3 3

A tabu? ati nn o^r theoreti cal horizontal displacement for vari o-^s x' s

is presented in Table 6.

The capped end conditions for the pressure vessel are obtained by

welding aluminum plugs at both ends. The physical dimensions for the

pressure vessel are shown in Figure 22.

The same procedure was followed as in the first example. The

results for the paint-by--point interpretation are tabulated for example

2 in Table 4. ^tesults for the whole field interpretation presented

in Table 5. A photograph of the whale field fringes is s pawn in Figure

23.

To verify the speckle theory, a comparison of the experimental

results to the theoretical results is presented in Figure 24. Excellent

agreement is obtained near the center of the cylinder; however, once

removed from the center area, a small difference between the theory and

experimental results occurs. For the whole field interpretation, rela-

tionship between x and the horizontal displacement is a straight line

as would be expected; however, the slope of the curve is less than

the theoreti cal . ^'or the poi nt- by- point results , i ni ti al iy the re7 a-

ti onshi p between x and the displacement com,ionent i s 1 i near; however,

at larger values of X, this linearity disappears. Probable cause-for

this difference is in the focusing of the cylindrical body onto the film
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plate. If the center of the cylinder is used for the paint of focus,

the outer edges (as x increases} wi7i be slightly out of focus depen-

dent upon the radius of the cylinder. Recent work has been conducted

into this problem of misfocusing and has shown that this can lead to

a difference in fringe spacing.

i
,^
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TA8LE 4

EXAMPLE 2 -PRESSURE VESSEL -- POINT-8Y-POINT INTERPRETATION

FOR HORIZONTAL DISPLACEMENT

x p e ^
(-inch) (:inch) ( deg} (inch)

o .25 p. a

. 2 .24 7.5 1.93 x 7 0-^

.4 .23 15.0 3.97

.6 .22 21.0 5.92

.$ .27 28.0 7.94

7.O .20 37.0 8.92

1.2 .79 36.0 70.44

TA6^_E 5

EXAMPLE.: 2 - PRESSURE VESSEL - 4^HOLE-FIELD INTERPRETATION

FOR HORIZONTAL DISPLACEMENT

x	 n	 u
inch)	 _	 (inch)

	

.17	 1	 7.67 9	 x 10-^'

	.52	 2	 9.858

	

.88	 3	 8.096

	

7.25	 9	 11.330

	

1.66	 5	 19.570

^+



x
(inch)

0

.2

.4

.6

.8

1.D

1.2

7.4

1.6

1.8

u

{Inch}

o.aa

7.88 x 10-4

3.77

5.65

7.54

9.43

11.31

13.21

15.14

17.az
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Figure 24. Horizontal Displacement -For Example 2 as Determined from
Theary, Poi nt-by-Point and YJhal e Field, o P = 400 psi
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Fi pure 2 4. Frinc^es from Wi^al e Plel d Inter^retat i an for Pressure

Vessel, p P = GQO psi
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III. TIDE AVERAGE SPECKLE I^[TERFEROi^ETRY

3.1 Basic Phenomena

As presented in Section Ii, in-plane displacement resulting from

a static load can be determined using double exposure speckle inter•-

ferometry. Tn this section, the speckle theory is extended to in-

clude the time averaging technique for use in determining in--plane

displacement due to harmonic vibration of an object. The time averag-_

ing technique has previously been sucessfui7y used in holography X16].

In recent years, time averaging in conjunction with speckle interfero-

metry has been investigated. Tiziani [l0] showed the intensity expres-

sion in the transformed plane to be a function of the zero order Bessel

runction fora time average recording of a harmonically oscillating

object or image. The work conducted in this section of the report

extends the work conducted by Tiziani CiO^ by determining the relation-

ship between the transformed intensity function and the in-plane

displacement of the oscillating object.

The analytical work closely parallels the development of the double

exposure technique presented in Section II. The major difference is

in the determination of the intensity expression. For the double

exposure technique, the intensity is determined for each exposurE and

summed. For the time averaging technique, integration is performed

over the total time to arrive at the intensity expression.

50
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3.2 Theory of SpecKle Interferometry - Time Averaging -

Single Beam Analysi s

The arrangement presented in Figure 6 is also used in the time

averaging. An abject is illuminated by a single Laser beam with the

location of the light source shown as S which illuminates a point p

on the surface of the object. In time averaging, a single exposure

is ta^Cen of the vibrating surface with an exposure time at Least

equal to the time for one complete cycle of the vibration.

For the condition of the time dependent loading, the complex

light amplitude can be expressed as

exp i [a^x^, :;2} -^ 4 ^^	 X3.7 }

where

xi, x2 - Film plane coordinates

x z, x^ -- Function of the amplitude of vibration,
frequency, time and location

9 - phase angle of the beam

Ae -The relative change in the phase angle 	 '
due to the vibration

For the time averaging, the riim exposure over a time interval

t is
t	 _

tIT = ^E^x z , x^) F* ^x^, xz } dt	 X3.2)
a

where E^^ ( x I , x 2} is the complex conjugate of F ^x^, x 2). Again, to

simplify the notation the xz-coordinate wi11 be suppressed for con-

venience, i .e.
t

tzT = ^ ^(x} E^(x) dt
0

X3.3}
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Therefore,

	

tTT = ^ A (x + x') dt	 93.4)

0

-	 A physical interpretation of x' is needed before this deve7apment

proceeds. At t = D, the point P is at coordinate { X k , X2) on the object.

Fort > D, the point is displaced to a new location P ^vhich is dependent

upon the amplitude of vibration, the frequency and the time. Thus, the

line segment P^ can be written as

PQ = u {X 1 , X^) sin +^t	 (3.5)

^.	
where u represents the maximum displacement of the surface at ( X 1 , Xz)

:J	 and on the film plane

C^ Film Plane	 of {x^, x 2} sin mt	 (3.6}

>	 an d

.	 u

where M i s a magni fi cati on factor. Thus	 `

tIt = f t R2 (x ^- of sin wt} dt	 {3.8}
0

.{ As present in Section 2.3, the amplitude transmission g{x} can

be approximated by a linear function of intensity, i.e.

9{ x} = a ^- b IT	 {3.9}

'^	 where a and b are constants of the film. Thus,
.^

^,
g{x} = a ^- b ^ t R2 (x ^- of sin ^+ t) dt	 {3.1D}

a

Eq {3.10} is a relationship between transmissivity and intensity in

r^
`^^	 terms of the displacement in the film plane.

f^i

i
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3.3 Optical Fourier Fringe inter retatian

The whole field fringes are obtained by ta^eing optically the

Faurier transform of the amplitude transmission funetian g(x l , x^)

as discussed in Section 2.3. The light amplitude function ^(w) =n

the transformed plane is ^5^

G(w) = exp ('^) ^g(x} exp (-iwx} d x 	(3.11)

as presented i n Section 2.3,

For the time averaging,	 ^^
2

^(w} =exp (^ } f^ta + ^ ^ A^ (x + u .^ sin mot) dt

exp (-iwx} dx	 (3.72}

qr
2	 2

G(w} = exp ('^ } ^" d exp (--iwx} dx + ^ ^ 
( 2k'^ }

^^tAZ (x + of sin Wt) exp {-iwx} dt dx 	 (3,13)
a

Naw

s(w} _ ^ exp (-iwx) dx
	

(3.14)

Thus
2 2

G(w} = as(w} exp (^^w } + ^ exp ('^ )

^f tA2 (x + of sin mt} exp ( -iwx) dt dx (3.15}
a

Since t and x are independent, and A2 (x + of sin wt} and exp ( - iwx}

are continucus functians! and of is a function of x only, the second

part of eq (3.15) can be written as

2
exp 

( ^kw 
},^tf A^ (x -^ ufsin cat} exp (-iwx)	 dx dt (3. 16J
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From eq (2.21 } , the fi rst integrati an is the Fourier trans-Form of

A2 (x ^- u.^in wt}. Thus,

2	 2
G(w) = as(w) exp (Zk^^) ^- ^ exp (^ )

fQt F ^A2 (x1 ^- of sin wt)^ at	 (3.17)

Employing the shi ^'^ theorem, eq (3.17} can be ret,rri tten as

G(w) = as(w} exp ('^'''2 ) ^. bF A2(X) 
exp 

( izwZ)
2^	 ^	 2It

^'texp (iu^taSin mt} dt 	 (3.18}
0

As discussed i n 5ecti on 2.3, the delta function `s contributi on occurs

only at w ^ u,. Far any value of w other than zero, eq (3.18) is

G(w) = b FCA2 (x)^ eXp ( i zL,r2)̂ -t exp (iu wsinmt} dt	 (3.19)
t	 2K	 o	 f

From Bessel function analysis

2m3 o (x) ^'`^ eXp (ixc os e) de ^2nexp (ix sine } da	 (3.20}

where d o (X} 1S the ze ra order Bessel Function. For evaluation of

eq (3.19), the integration will be for one cycle, that is t will be

the time required for one cycle, thus if many cycles occur the time

wi11 be same mu1 ti pl e of t. Rearranging eq (3.19) , and multi plying '

and di vi ding by w gi ves

2
G(w) = .^ eXp ^^ ^ F ^A2 (X}^^ texp (iu fw sin mot) wdt

D

(3.21)

Comparing eq (3,21) with eq (3.zo}

e=mt

de = c^dt

X^ufw

t =2nJc^

}
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Canseguen tly, eg (3.21) becomes

^(w} = t̂ , exp C2kw2 ^ F ^A2^ J o (U f ^^)	 (3.22}

The intensity function in the transformed plane is

IF = C(w) G^(w}	 (3.23)

Therefore,

I F = 222 F [A2^2 J? (ufw}	 (3.24}

tW

Fringes are defined in the transformed plane when T F = 0. Since all

the terms except Jo(u .^w) are always non-zero, fringes occur when

Jo (ufw} = C	 (3.25}

F rarn eq (2.17)

w=^-
az

Thus

2 ^rpu

Jo( Az f) = 0	 (3.26)

Since all the terms inside the bracket except o f can be measured ar

are known, the in-plane displacement for a harmonically oscillating

abject can be determined. Table 7 is a tabulation of the zero

values .far Jo(x}.

X 3,4 Paint-by-Point Interpretation

Similarly to the discussion in Sec-bion 2.4, the point-by-point

interpretation can be determined from eq (3.26). For the point-by-

point interpretation, the in--plane displacemen-^ is constant a-^ each

location with the distance p being variable. For the case of n = 1,

eq ( 3.26 ) yi el ds

.$
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TABLE 7

'	 ZERO VALUES FOR Ua(x)

Jo^x) Equais Zero when

x0i = 2.40

x02 = 5.52

x03 ^ 8.65

x04 = ii.79
e

x05 = 14.93
,_ i

'^'

x06 -
i8.07

rj

'

x07 =
21.2^I ^

,, x08
= 24.34

^^
i

'

•-

xOg = 27.49
`i

x i0 = 30.63
^^ r

^'^	 ^ xi i - 33.78

..	 -
x 12 = 36.92 ^

xi 3'
W 40.06 ^

}'	 .
- xi4 = 43.20

i
,r

^^^^^

^'

!'
_	 .^ ^̂ :

W. ^
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2^pu f

^z	 ^ 
2.40	 (3.27}

or

of ^ 
.382paz	

(3.28}

and

of = '3Mp2az	
(3.29}

Comparison of eq (3.28} to eq X2.37}, shows the only difference

betureen the time averaging and double exposure point-by-paint inter-

pretation is a difference in the constant.

3.5 Numerical Example - Vibrating Cantilever Bean_

The numerical example chosen is a vibrating cantilever beam.

The beam -^s made of aluminum,and the d imensions of the beam are pre-

sented in Figure 25. Far this example, the first two modes of vibra-

tion were analyzed.

The solution for the amplitude W(z i}, as presented by Nowacici

X18 ^ far -Free transverse vibration of a canti 1 ever beam with the end

fixed at z = 0 and an initial tip deflection of ^ at z = 1 is for

each mode of vibration
S(^ )

wr (z^} ^ ^ Cu(arz^) w 
^j 

v(arz^ }^ 	 r = 'E,2	 (3.30}

where Cis dependent upon the initial conditions and

cosh Arz^ - cos ^rz^

dt ^rz l. } ^	 2

V (A rz^) = sinh ^rz^ - sin 7^rz^

Z



.i

1

^► 	 i
^^

cosh ^r ^- cos sr
S{sr}

Z

^. Binh ^ r ^- sin sr

.	 T(^r} 2

2
^Z^	

ar
C,

.	 sz	 = 1.875

^2 = 4.69

m^ -natural frequency

` If the initial condition is such that only the first mode is

activated, then at z	 = 1

.. 5{^

, , j	 _
W^(1} ° ^ ^ ^	 [[1{^^}	 - T ^^	 U(^^ }a 13.31 }

1

Therefore, for this case

S(B

s	
= S ^ (3.32 )

,..

^ Similarly,	 if the initial condition is such that only the second mode

is activated then

_.	 _ S (^	 }

F,; 4^2(zl} ^8{azz^}	 T ^z^ V{a2z^}^

^ s	 -- 5 ^ (3.33 }

} ^U{^z} - T ^^	 v{^2)^

Therefore, far each case, the ratio of the amplitude to the initial

►, _.



59

tip deflection as a function of distance along the beam, z^, can be

•-	 - determined and is tabulated in Table 8. j

The amplitude of vibration is just the in-plane displacement,

u,	 defined in Section 3.2, i.e.

For tr^,^ first mode of vibration

'	 ^ S(R^}

^u^a Z Z ^^	 - T ^^	 ^{%^z;)^

u =	 ^ (3.34}

^^(^^)	 --	 T ^I^ V(s;)^

The in-plane displacement in the film plane is

u .^ = flu (3.35 )
-;^

where M is a magnification factor.

Then for the first mode of vibration, the in-plane displacement in the
^,b

•^ilm plane	 is

S(^^)
^d^a^z7)	 ^ T S^	 V^^iz1)^

of = ^ 	 5fi {3.35)	 -'

' ^d^^^)	 - ^- sr	 vEsz)^

...;;
For the second made ^.

'	 -
^ S(^	 } ;.

U^ ^ zz ^) ^L^^ a2z i ) - T s -^.
^^

^

u f _ ^7	 S ^ (3.37)	
is

LUt^2^	
T S ^ Vt^2)^

2 ^^
^^^r'^

i'.

lJhol e Field Interpretation.
^7

For the whole field interpretation, let

p = .3 inches

y z = 26.5 inches

r= ^:.



^	 I

so

•_ TRBLE 8

.,	 ' RAT10 OF RMPLITDDE/TIP DEF^.ECTIOf^

'	 ^ FIRST i^00E SECOND MODF

J
c

Z7 u/s z1 [i. ^
{inch) {inch)

_____

0 0 o a

' .3 ,0042 .3 -.0254

.6 .0165 .6 -.0926

.9 .0363 .9 --.1888

1.2 .0630 1.2 -.3071	 .

7.5 .0961 1.5 -.4173

1.8 .1349 1.8 -.5252

^" 2 ^ 7 .1789 2.1 -- .6178

2.4 .2275 2.4 -.6836

2.7 .2803 2.7 ^ .7177

3.0 .3366 3.0 -- .7137

:3.3 .3960 3.3 -.6713

3.b .4580 3.6 -.5896

3.9 ,5221 3.9 .4703

4.2 .5880 4.2 -.3171

4.5 .6551 4.5 --. 7 351

4.8 .7232 4.8 .0700	 _

5.7 .7919 5.1 .2916

5.4 .8617 5.4 .5237

^.^ 5.7 .9305 5.7 .7611

^^ ^ .a 1. 00ao 6, 0 1. 00ao

f.
, ,̂:.

;.	 ^^
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^ = 24.9 microinches

^ = l.0

a = .006 inches

1 - 6.0 inches

With these, eq (3.25} becomes

d o (2856 uf} = 0	 (3.38}

With zero values of Jo(x} presented in Table 7 and eq (3.38), a plot

of fringe order as a function of in-plane displacement was determined

a^7d presented on Figure 26,

With this information, fringe order as a function of length along

the beam for the first two modes of vibration can be determined. For

the first mode of vibration, eq (3.36} and Figure 26 along with the

fact s= .006 inches and 1 = 6.0 inches was used and the results are

plotted in Figure 27. For the second mode of vibration, eq (3.37}

and Figure 26 was used and the results are plotted in Figure 28. Figure

29 is a picture of the fringes for the first mode as they would appear

in the transformed plane. Figure 30 is a picture of the fringes for the

second mode of vibration.

Point-by-Paint interpretation

For the point-by-point interpretation, let

1^ = 24.9 microinches

z = 4d:0 inches

M^1.0

s ^ .006 inches

1 = 6.0 inches
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Therefore -For n = 7 , eq (3.28) becomes

u = 3.8 x i0^4	 {3.3g)
f	 p

Thus, fringe spacing as a function of displacement teas determined and

presented in Figure 3l. P1ots of fringe spacing as a function of

1engt^l along the beam for tf^e fi rst and second modes of vibration were

a7 so determi ned and are shaven in Figures 32 and 33, respectively.

Equipment fiat experimental verification of tl7e theory prese^}ted

in this section teas unavailable. Thus, na experimenta7 data is pre-

sented far tf^i s secti an .

i':

i

1
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E=1Ox706psi
v = .3
P = .10 lb/in3

c ^	
E^ = 355.1 in^.5

Figure 25. liumericai Example ^ Vibrating Cantilever Beam
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Figure 28_ Variation o-F Fringe Order along the Beam for
the Second Mode of Vibration-
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Figure 29. Fringe Location on Cantilever Beam
far First Mode of Vibration

Figure 30. Fringe Lacation on Cantilever Beam
for Second Mode of Vibration
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TV. CO^C^.UST^NS

The theory for the formation of fringes in the transform plane

far double exposure and time averaging speckle interferametry was

developed. Thus, in-plane displacement resulting from either static

or dynamic loading can be determined. Far the evaluation of the

fringes, the whole field concept was used and the relationship be-

tween fringes in the transform plane and displacement was derived.

The technique is simple and needs no calibration and no laborious

alignment of optical elements for the Formation of the fringes.

The sensitivity of the technique is dependent upon the resolving

power of the film, the magnification factor and the location of the

aperture in the transform plane. Tn ad dit^on, the magnitude of the

displacement has to be larger than the speckle size which is dependent

upon the aperture opening of the camera lens.

Tn general, speckle interferometry has the ability to measure

in-plane displacement for either the static or dynamic case within

an accuracy of ti5% for mast of the displacement field.

71 0
E

{

r

i



REFERENCES

T . Ecrooks , R. E. and Hefl i nger, L. 0. , "Moire' Gag? ng Using Optical
Ini:erference Patterns", Applied Optics, V. $ {5) (1969},
pp. 935 - 939.

2. Adams, F. D. and COrti,rin, R. R., "A Technique for Measuring In-
Plane Displacement by Holographic Interferometry",
AFFDL-TR-72-5, {February, 1972}.

3. Ennos, A. E., "Measurement of In-plane Surface Strain by Holo-
gram Interferometry", Journal of Scientific Instruments {Journal
of Physics E}, V. 7 {7 	 1968	 pp. 731 - 734.

4. Groh, G., "Engineering uses of Laser-Produced Speckle Patterns,
Symposium on the Engineering uses of Holography", University of
Strathclyde, 1968.

5. Burch, J. M. and Tokarski , J. N^. J. , "Production of Multi ple Beam

Fringes -Pram Photographic Scatterers", O^tica Acta, V 15 (2}
{1968}, pp. 101 - 711.

6. Leendertz, J. A., "Interferametric Displacement measurement on
Scattering Surfaces Utilizing Speckle Effect" , Journal of Scientific
Instruments (Journal of Physics E}, V 3 (3} (1970 .

7. Duffy, D., "Measurement of Surface Displacement Normal to the Line
of Sight", Spring, 1973 Meeting of Society for Experimental Stress
Analysis., Los Angeles, California.

8. Archbold, E., Burch, J., Ennos, A., Taylor, D., "Visual Observation
of Surface Vibration Nodal Pattersn", Nature, 222, 263, (April, 7969).

`^ ^4 ^	 9. E1 i arson, B. , Motti er, F. , "Determination of the Granul ar Radiance
Distribution of a Diffuser and its use for Vibration Analysis",
Journal of the Optical Society of America, 60, (5), 559 (May, 1971).

T0. Tiziani, H., "analysis of Mechanical Oscillations by Speckling",
Applied Optics, lam, {i2), 2911, (December, ?972).

	^- ^-	 11. Kopf, U., "Application of Speckling for Measuring the Deflection

	

^.	 of Laser Light by Phase Objects°, Optics Communications, 5, (5),
347, {Rugust, 1972).

.^

«.

- 72



73

12. Cloud, C., "Quantitative ' ^wcicle- -Moire' Interferometry", 1973
;^	 Meeting, Society for Fxperim^ntal Stress Analysis, Indianapolis,

Indiana.

l3. Rayleigh, lord, Scientific Papers of Lord Rayleigh, Qover, New
York, New York, V. 1, pp. 491 - 496.

l4. Kinariwala, V. R., "Determination of Surface Stresses Using Speckle
Interferometry", M. 5., Auburn University, March, 1976.

15. Sokol ni koff, I . S. , Mathematical l•heory of E1 asti ci ty, McDraw -
^ 	 F!i l l , 1966.

l6. hEinarit^ala, V. R., Ranson, ^J. F., Swinson, W. F., "Stress Analysis
of Vibrating Compressor Blades", MF -UC^7405, March, 1976.

l 7. Nowacki , ld. , Dynami cs of E1 asti c Systems, John Wi 1 ey and Sons, Inc. ,
1963.

rr
4^ :;

;.

.:



PART II

T}iE LASER SPECKLE EF'fECT

APPLIED TO OPTICAL STRESS ANALYSES

..r
^>

,. o



TABLE aF cdNTENTs

LIST OF TABLES .	 .	 . vz ^ ^

LIST aF FT GURES i x

LIST aF SYMBaLS	 .	 .	 .	 . xi

I. TNTRODUCTIaN.	 .	 . I
Basic Pnenamena
Phatoelasticity
Holography

II. SHEARING SPECKLE INTERFERdMETRY 17

Static Loading
Time Average

III. SINGLE BEAM SPECKLE INTERFEROMETRY. 33

Static Loading
Time Average

IV. EXPERIMENTRL VERTFICATIQN 39

Double Exposure Shearing Speckle Inter^'eromentry
Shearing Speckle Interi=erometry Vibration
Double Exposure Single Beam Speckle Inter-Ferametry
Single Beam Speckle Vibration

V. CaNC^LUSIdNS AND REC gMMENDATIONS 59

REFERENCES . 60

ii

-^



LIST QF TABLES

1. Zero Vai ues for J Q ^ x) .	 32

-	 2. So]utions for Transen^ental Equation far Vibrating
Cantilever Bean.	 45

.	 ^. Data Reduction -For Vibration Speckle 	 58

,^

iii



i LIST" OF FTG^JRES

i. Optical Arrangement fc^r Crass and Circular Polariscope, 3

2. Cross Polariscope with Model. 4

3. Circular Polariscope with Model 7

4. Optical Arrangement for Holography. ll

5. Reconstruction of Elologram. i4

6. Geometry of Fringe Formation. i5

7. Optical	 Configuration for Shearing Speckle. 18

8. Optical Configuration far Fourier Transform 2i

9. t^ledge Effect . 24

10. Lens Geometry 24

11. 5hearing 5peck1e Tnterferometry 25

l2. Specific Optical Arrangement for Vibration Shearing Speckle 30

73. Optical Arrangement for Single Beam 	 , 34

l4. Experimental Arrangement for Double Shearing
Speckle Tnterferametry.	 . 40

_,	 15. Shearing Speckle Photograph After Fourier Filtering 42

l6. Theoretical Fringe Plot with E,^tperimentai 	 Fringes for 43
Double Exposure Shearing Speckle. 	 .

77. Experimental Arrangement for Vibration Shearing Speckle 47

-	 i8.P •Vibration Shearing Speckle Fringe Drawings. 	 •	 •	 . 48

i9. Plot of Theoretical Curves and Experimental Fringes far
Vibration Shearing Speckle. 49

Z0. Experimental Configuration far Double Exposure Single Beam
Speckle Tnterferametry.	 .	 ... 5i

4v



i

7

i

r'^

	
I

F

q

21. Fourier Trans-Fo;^med Image -Far Double Exposure
Single Beam Speckle.	 , .	 .	 .	 52

22. Graph of Ti^ecreticai Curve with Experimental Fringes •For
Double Exposure Single Beam Speckle 	 .	 53

^ :	 23. Experimental Confi g^!rati on for Si r^gi a Beam Specks e 1ti brats on 	 55

24. Sample of Fringes •From Point by Poin^' Data Reduction
far Single Beam Speckle.	 .	 56

25. Theoretical Curve and Exper •imenta 1 Points for Vi brats on
Single Beam Speckle.	 .	 57

1' f

_ ^ ^

^lu

^1
J

i

V



i_zs^ aF sY^Bai~s

N •.
^:^1

b

r^
^•N

ti^

^^.

k^

a,b film ^;onstant

A maximum amplitude

^, ^^, ^o optic vector

I intensity

g(x^ optical	 transmission function

G(x) Fourier transform function

^ zero order Bessel function
0

l s ,m$ ,n s ,l o ,mo ,n o direction cosines

^ magnification factor

m index of refraction

n fringe order

p distance in transform plane

pl'p2 points an the object

p,q principal axes of stress

(x,y, z) coordinates

u,v,x displacement components

cat phase

^ initial phase

o angle

u constant^of proportionality

o angle between the fast axis and the vertical

vi ,



A^	 difference i n prase an g7 es

f^	 stress optic coefficiect

Amax	
maximum shear stress

40	 change in phase due to deformation

o f 	separation on film

a	 wedge angle

6	 tip deflection

oz	 shift in z direction

+^	 frequency of vibration

^	 waveIength

^ i 	zeros of the Bess el function

B r	 radian angle for vibration of beam

Oxp	 angl a between vertical and f^.s ^ axi s

Vli
	

1



r ^^

T . Ti^TRODl1CTTON

'	 1.1 Basic Phenomena

_	 ''	 The relation between the elastic and electromagnetic material

{	 properties +ryas studied by 4iertheim in 1844.(Annales de Chimie,T.

XTT pp. 670-624}. This interest was continued by Lard Kelvin who in

1856 noticed that the resistance of wires changed as the wires were

strete^ed [1]. This later led tD the developement of the electri-

cal-resistance strain gage.

Since ^lorld filar TT strain gages have been used extensively by

Industry to determine strains in variously 7Daded r^embers. The

major disadvantage is the fact that three gages are required (rossette)

^'

	

	 tD analyze a single paint thus requiring many gages -For a CDmplete

analysis [21.

Recently several optical stress analysis techniques have been

developed that give a -Full field representatiDn Df displacement,

strain or stress fields which utilize the wave nature of light as the

mathematical model ^3^ .

.	 where

a
f, ;	 E - OptiC 4eCtDr	 wt - phase

A - maximum amplitude	 ^ -- initial phase

.. 5 From Eu1er's identity

^ Y	 exp(io} = caso + i sink	 t7.2},..	 l
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.y
E becomes

B ^ A exp ti (cat ^- ^ } 1

j^	 where it is understood `hat we are dealing with the real part of

the expnnentia1 function.

The intensity is

^_
S ^ uF,F*

where B* is the complex conjugate ,'and-^ is a constant.

1.2 Phataeiasticity

Photaelasticity uses the property of birefringence in certain

materials ^4^ . When po^1 ari zed light i s incident an certain crys gal s

i t can be res ai ved i nta two components al ang the prici pal directi ans .

One component is retarded with respect to the att^er and is referred

to as the slaw axis. the other is the fast aXlS. For a more rigor-

ous discussion see ^3^ , ar ^5^ .

There are two basic arrangements for phatoelasticity ^5^, ^ e

cross pal ari scope and the ci rcul a • pal ariscape ^ F1 gure 1) .

Sn a crossed or standard ^+al ari scope, the two elements are a

pal arizer and an analyzer. Bath are polarizing prisms that convert

ordinary light into plane polarized light. There is no li ght output

from the analyzer since it is "crossed" relative to the polarizer.

If a bi refri ngent model is placed between the polarizer and

analyzer ^ Fi gure 2) , then loaded, there is light output.
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^,	 .

^:r,_.

^'

the light Trom the polari^er can be described by

^= Ae exp(i w t)

Then ^ fight eY}ters the model , ^ ^ Ts resolved into fro components

Ep = ^ cnsexp = Aa exp^iwt) cas^xp

^^ _ ^ sinexp = â exp^ , iwt} sinexp

When it leaves the model, the l ight vector becomes

gip , _ ô exp^(^t = ^ ^) cos exP

^q , _ ô sxp (iwt + ^ } sin axp

and when it leaves the analyzer

Er = gip , sine^p s ^^, coseXp

which reduces to

Er = Ao exp(iwt} sin 26xp exp(i^ p } - exp(i^q)

Zhe irrtensi ty becomes

I = ^Ao sin e 2aXp^l - cow ^^

or

I = ^ Ao sin22eXp sine (^ ^)
2

(1 .3}

(l.^)

(^ .5}

(l .6)

(1.7}

(1 .8}

(1.9)
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ŝ = ^/2 Ao exp(iw'^}	 {i.i3)

Ater leaving the quarter wave plate, the light vectors become

^.^, = ^/2 Ao expi (^,'^ + ^^)

^$, _ ^/2 Aa expi (cat + ^s )	 (i . 74.}

wh Ere

E1pon entering the model, the light is resolved into two light vectors

along the principal axes, p and q. they are

--	
Ep = ^.^, {cas(^/4 .- e Xp }} + Es , (sin(n/4 - eXp))

....	
^q = ^.^, ( s in(^n/4 ^ e xp )} - ŝ ^ (cos(^r/4 - e Xp ?)	 (1.15);.

and upon leaving the model, these light vectors become

^,:

gip, = i Ao^ expi (wt + ^s - ^r/^ +eXp + gyp}

Z

E q̂ , _ - Ao^ expi (wt + ^s - ^/^ -^ eXp + ^q )	 (l,lfi)

. ^	 ^[ote that

exp(i^} = i
2

and that



^	 ^	 ^

Upon entering the second guarter wave plate

Ŝ ^ ^^,	 COS( i^ ^ 9 xp ) i ^y ,	 57n( '^ µ exp}-'	 ^	 ^

^.^ = Ep ,	 sin( ^r - exp ) - Eq ,	 cos (n -exp }	 ^ {i .1^}k _
^	 ^

and after leaving the second quarter wave pi ate

Es , = Ao^ expi(mt ^ 2^s - '^ + ^^ Xp )[i exp (5^ p } cos(^r -exp}

2	 ^	 ^
- exp(i^^} s^n(^ .. exp}^

-^
E^, = 0,`2' expi (cat ^- 2^ s - 4 -^ e xp )[-exp(7^ p } sin(4 - 9^p)

2

;^	
;..	

^	 :^	 +	 iexp(i^	 )cos(	 -	 e	 }1 (1.i8)
g	 ¢	 xp

Finally going into the analyzer
i'

2	 2
^..

•	 an^^ af-^er leaving the analyzer Er reduces to

.	 ^r = Ao expi(mt -r 2^ s + 2e xp )[exp(l^ p ) - exp(^^^}^ (1.20)

-	 2

Th^^; intensity becomes

^= ^ Aoz(1- cos o ^

or	 •

1 = uAo 
sin ^,^) (l .21)

2

Fora •Fringe

!: ..



^^

^^=nll^	 (1,22}

and from the stress optic law ^^3 ,

^^-. = f6h^P - q)

Where

fv is a stress-optic coe^rficient

h i s plate the cicness

o -- q ^ .differences i n pr^i nci pal stresses .

So

p - q ^ nl^l fc = 2 ^cmax	 X1.23)
h

Equation 1.23 is the basic eq uati on far photael as ti city . The

information above, along wi g the isoclinic information, gives an

accurate descri pti o.^ of the shear stress field.

Phatoelasticity has many appli^catians in stress analysis, far

exampi a it ^is^ used as a tnol in fracture mechanics^[ y ,8^ far analyzing

cracks. It can else be used in finding stress concentration factors

far vari aus structures and has application for wave propagate on^9^ .

l . 3 ^lol o ra^hy

^olagraphy takes advantage of the interference of two coherent

light waves at a paint an a film plane. T'ne same mathematical- model

can be used as described in 1.1. Ei gore ^ shows the apti cal arrange-

men-^ far . holography. There are - two beams, an object which illuminates
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the object, and a reference beam wh7ch is directed to the film plane.

This is the off,axis reference beam method developed by Leith and

[^patnie^s	 [10^ .

Holographic interferorr^etry is a double exposure technique. 	 An

exposure is made of the abject before deformation, and an exposure

is made after deformation.	 The surface displacement of a point is

recorded as a phase variation, and fringes are produced.

With the arrangement shown in Figure ^ X71]

E^ = AR expi (u^t ^- a^}

^o = Ao expi (rat ^ e o ) (1.24}

The total.7ight vector for the first exposure i5 	 '

A'R expi (wt ^- 6^} -r Ao expi (mt + e o }	 ^ {1 .26}

far the second exposure after deformation

^2 = A^ expi {^,t ^- e^} + Ag expi {^,t + eo + oa o } {1.27}

where be o is the change in the object wave due to deformation of

the object by loading.

The intensify at the film for the two exposures is
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After developing the hologram, the -Fi1m is then reconstructed

{Figure 5}, where

^Recan	
I AR expi(wt -^ BR }	 (1.29)

From this, three distinct terms may be separated: a virtual term,

a real image term, and an undiffracted term,

The virtual term is used for analysis, and it reduces to ^,12J'.

IVirtuai ^ 2 RR A^ (1 -^ cas18)	 {1,3Q}

As i n photoel anti c7 ty , the 6 e tern .can be interpreted phys i cal iy.

Kansan ^12^ shows (Figure 6} that the ee term is related to a geometry

change ar

r^ 6 = 2^r C(^s -^ pa )	pP ^^	 (1.31 }

F
a

where

i ts is a unit vector from a paint on the body to the light source.

_,	 po is a unit vector from a point an the body to the film.

pp' is the displacement vector.

The final intensity expression becomes

IVirtual - 2 AR Aa [l+ cas(2^r(As ^' Aa )	pP^}^	 (i.32}

A fringe occurs when T 	 0 ar when cos de = -1.

^lith the use o-F a phatapoiymer, holography can be used to find

natural Frequencies in complex vibrating ab3ects ^i3^. It is very
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sensitive to out of plane motion, and can be used in wave propagation

studies when a pulsed laser is used ^I l^ ,

Several optical techniques can be used ^o determine strains [12^.

These are all base;i an geometry changes in a grid pattern either etched

or projected onto the abject. i'he mast popular ^^f these is Moire' ^15^.

Recently the speckle effect has received attention as a possible

means of determining displacement components. This thesis will deal

with this speckle effect in mare detail.



TT. SNBARTN^ SPECKi.E I^ITERFR^MBTRY

2.1 Static Loadi n^ Theory

The optical configuration for shearing speckle interferometry

is shown in Figure 7. Note the use of the wedge in the system.

Because of-this wedge, the focused Image has superimposed on it a

"shifted° image in the direction of the shea?^. For a shear in the

xl direction, a point Pis Imaged at [x l , x2} and (x l + ^xl , xz} in

the film plane, and a point p l is imaged at (xl , x2} in the film

plane.

Tn order to obtain fringe data, a double exposure technique

is used. A photograph is taken of the body in some reference position.

The body is then deformed and another exposure is . superimposed on

the same film.

Ranson and Swinson ^7&^ have shown that at the point (x l , xz),

the light amplitude for the first exposure will be given by

-^	 ^

FTl ^ FP + FPl

wh erA

Ep- A exp^i 9p (x7'xZ7^

Ep7 A exp^i e pl
(x 7 ^x^}^	 (2.7)

The total Intensity for the first exposure is

77
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where ^T7 denotes -the compiex conjugate

^,

:^.

or

^i = ^A exP^i ep(xi ^x^)^ + R exP^i 
d pi (xi ^x^)^I^

. {A ex p o—iep (x i ,x2 } + A expo—iePi ( x i ^x^ ) 1} 	 ( 2,3)

_ ^ + Rz exp^ ie p (x i ,x2 } - ie pl ( x i ,x^}] ^

A2 exp^ie pi (x i , x2 } - ia p (x i ,x2 }^ + A2	 (2.4}

= 2A^ 2A2 cosCep (x i ,x2 ) - ep ^( x l ^x2 )]	 ( 2.5)

^'or convenience we define o = op t x i ,x^} - © pi ( xi ,x2}

so	 .

Z 1 = 2A2 + 2a2 core	 (2.6}

5i^iiari iy for the second exposure

where

gip , = R expi Cep -^. e p] .

dpi, = R exp i ^ap i ^1. e pi]

4 0 
P

i s the change in phase date to deformation. The total intensi ty

for-the second exposure will be
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= A expi^e p +^de p] + A expi^e pl +4.e pl^ .

A expo . - ;Ce p +e e p^} + a exp(--;Ce pT +a e pl ^^	 (2.^0^

^^ g c^ reduces to

I2 = 2A2 + 2A^ costa + o e}	 (2,11}

whereoe ,^gp -^9p1

So the total ;ntens;ty expression far bath exposures ;s

I^ = I l + I 2	 (2,;2}

. = A^^Z + 2A2cas e + 21^2cos (e + d a)	 (2. ^ 3 }

Fringe data is obtained by taEc;ng the op-^ical transform o-^ the

f;lm as i^7ustrated in Figure 8. Far a transparency, the amplitude

transm;ssion function is linear fa+^ the ranges of in'serest or

^l 6^

Where g^x} is the transnissian function. The Fouri er transform of

g tx} is
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C^(w} = expo- izw /2k^ I^g(x} exp(-iwx)dx	 (2.15)

Where G(w} i s tt^e Fourier transform function of g^ x} wh ^ ch i s tf^e

	

light amplitude in the transform plane,: ^	 ^.

Ic = 2^r/a and

w=^ ,
z

flow define

s(w) = ! expo-iwx^dx 	 {2.16)

C(w) = f cose expL-iwx^dx	 (2,17}

S(w) _ ^^ sine expo- iwx] dx	 (2,18}

Sa

C(w} = expo-izw2 ^I ^a + b^^A2 + 2A2cose + 2A2cas(e -^.e }^
2^

,, i	expo- iw^;]}dx	 (2.19)

= expo-izw2^f ^a + b^^A2 + 2A^cose(1 + cos^.e}
2[c

.I,	
- 2A sine sire]}	 expo-iwx3dx	 (2.2Q}

exp^wizw2 ]^(a + abg2} s:w} + 2bA^C(w} (1 +cow e }
;:^	 2Ic

- 2bA25(w}sin 4 e	 {2.21 }

^^

The displacement Information 15 related to the m^n2mur^ of^C^[v^^^

or when ^l + cos^e} = Q and sir^_a = 4 or



23

,^	 ^e = {2n - l}^ n= 1,2,3,...

.	 As i n `other apti caI techni dues , this ^ e term can be ph.;^si cal ly

Interpreted, Kansan and 5winson ^16^ have shown	 ,

..

	

	 that for a wedge, the wedge angle « i s ref aced tcj the devi ati an

angle ^ by {Figure 9}

^ = {m ~ 1 }«	 {2.22}

^ihere m i s the index of refracti an and the amount of shi ^Ft or devi ati an

r'	 ^1 15
i

^i = Cm Y l)as'	 (2.23}

4^here s' is the distance From the lens to the focal _point (Figure 10),

Then an object is illuminated by a single beam . {Figure 11},:the

Y .	 wedge causes points P and P 1 to be imaged at the same film location,

The separation on the film plane is di.

Consider now the phase variation of the two points P and Pl.

As in irol ography ,the displacement sectors are

^ ^	 ^
pp	 u i e i 	^.

'	 {	 }pl p l .= u iei - u i {x i -^ox i )^i 	2 2^

The phase change is now	 ,,^

be Z = 2^ ^p 1 s -^ p l o^ •.pl p^

^	 _	 ..
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Q 8l	 - 2if^s T ^](}^' •	 pp =r (2.25}

Or ^'Qr parallel unit Ve^^DrS

0 e = 2n^ps ^ ^c^	 (Pl p -^ `	 ^ Pp ' } (2.26)

and Sri nges occur when d e = zr,3^r, ... (2n ^ 1)^

50	 ^^ ^^

(2n ^ l)n = 2n tl s ^ l a )(,au ^x + au ay + au ez} +
^	 ax	 ay az

tm^ -^ m^} to v ^x -^ a v ^y + a v Az)	 .^.

ax	 ay a z

tns + na }taw ox '- aw Ay -^ aw dz) +
a^	 ay az (.2.27}

An experi men -^al example a^ ^t^is -technique is sf^own in sec-^ion ^.1.
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2.2 Time Average

Consider again the arrangement of Figure 7 This time the

object is caused to vibrate toward the camera, usually by a frequency

generator or oscillator. A film record is made of the object during

vibration. During the vibration, the object reaches two positions

of zero motion. This effect is in essence the double exposure or the

recording at two different configiEratians. The film record is pro-

cessed and placed in a Fourier filter system as before.

Aga i n

E.^ _ ^p + ^p^	 (2.28)

where

^ A A((xl ^' x
l ' ^ ^ (x2 + x2 ' } )expi ye p (x l ,x2 ) + 4 ep^

and

^pl = A((x1 + x l ' } ^ ^x2 -^ x2 ' } }eXpi^epi (x l ,x2 )<+ ^ e pla	 (2.29}

Note that the amplitude A is a function of the frequency ^^f vibration

and 0 e p and ^
6p1 

are the relative phase changes due to vib^^ation.

The total intensity x is

I = 1'a(Ep + Ep p)	 ^Ep* + Epp*)dt
	

(2.30)

= f^A expi^9 p +da ps + R expi^e p^ +^$ pl^ .

__
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A expo-i ( e p -^.s e p )^ + A exp[-i ( e p1 + a e p1 )^	 (2.31 }

= I^ 2A ^- A expi[e p +ae p
 - ^p1 

-^ $p1^ +

expo-i ( e^ -^^e p -- e p1 - de pl )I	 (2.32)

to 2A^ ~^ A^^cp[i(6 +ee)^ ^ A2 ^cp[-i(e -^e }^	 (2.33}

where

s= e p -- e p 1

i
ae =.y e p - ae pl	.

^eca11	 g(x) = ^+ bI	 (x.34)	 ,

which becomes

g(x) = a + b,{o 2A^+ R2 exp^i(e +ae)^+ R2exp^- i ( e -^ae)] d^ 	 (2.35}

= a + bjzA2-^ + R^exp(i^)taexp ( ii!Le)dt + Rzexp( - ie)toexp - i (ae )^dt

(2.36)

As be^are

G(w) = exp(izw2 )tg(x) exp (-iwx)dx 	 (2.37)
zk

= exp( izw2 ) ,l^a + b[;?^^ + A^exp ( ie)to exp(ia a) d^
2k

+ A^ exp( - i^}t^ exp(-iae}d^^ } exp(-ixw ) dx	 (2.38}

= exp (izw2 ) a s(w) ^- 2A^b^ s(w) exp( izw2 )
2k	 2k

+ bexp(1zk?)[A^exp(ie)t^exp(i^e)dt
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-^ A exp{-io}lo exp(-i^ o}d^ expo-iwx]dx 	 (2.39)

As before the Q o berm can bs express,ed as

oa = 2^r 
{^s -^ t

o}(au4x +auny+auaz) +
^	 ^x	 ey	 8z

{ms + m0 }{awa x + aw 4y ^- awo z) +
ax ay az

( ns + no }(awo x + a w p y -^ awo z)
ax	 ay	 az

i^aw cans i der a speci f i c op^i cad arrangement (Figure ^ 2) .

i o = i 	 ^s=cosh

mQ = 0	 ms = 0

no = 0 	ns=sins

4x oy = 0

So ^ o now becomes

4 0 = 2^r (^ +cos s)a u -^ sinsaw 4 z 	 {2.40}
a	 az az

Assume a w is negligibl e and u = uo {z} sin ^ , wf^ere uo is the
az

maximum amplitude of vibra^ion and w is the fre^u.ency of vibration.

a u = ^ sin u^t	 { 2. ^2)
az az

For convenience define

y



Figure 7.2, Specific optical arrangement far vibration
shearing speckle interferometry.
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=,►

B + ^xp(i_,zw2) s (w} Ca + 2A^ bt]	 (2, y.3)
2k

flow substituting equations 2.40 _ 2.43 into equation 2,39

G(w} _ $ + bexp(izw2)P^A2exp(io)Pt expi^2n{1 + cos^)^ zauQSin^,t^dt
2fc	 p	 ^	 a z

+ A^exp(-io)1'^exp( -i 21I(l + toss}4za^^sinwta)dt exp(-iwx)dx
^	 az	 (2.44}

Reca17 that

.__	 2^Jo(x} = f^^exp(ix sing}do

i^ x^. = 2^ { 1 + toss}au z
ax

'	 Q = w^

dd = ^dt

tl = 2n /w

then

(2.45)

G{w} = B + bexp( ixwz )f^^exp(io) d (2^(1 + cos^^z^u }
tic	 ° ^

+ A^exp( i o} Jo (2n(l + coss^zau}a ex^(-iwx}dx	 {2.48)

	

^	 ax

Relative minimums occur when J o(x} = Q or when x = ^ i where ^i values

	

.are tabulated in Ta67e 1.	 '

Sa

(x.47}
	 ,^
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i
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X10 = 30.63

`̂ 11	 = 33.78
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36.92

X13 = 40.06

X14 = 43.20



III. SINBLE BEAM SPECKLE IIVTERFEROMETRY

3.l Static Loading

An object is•illuminated by the laser light before deformation,

and a photograph is taken with a conventional camera system as illust,

rated in Figure 13. The object is then deformed, and again another

photograph is taken superimposed on the first.

For the -First exposure, the light vector can be expressed

as

^l (x l ,x2 } = A{x l ,x2 } exp^ie{xl ^x2 }^ 	(3.I}

where

(xl ,x^} - fi ire pI one coordinates

o^xl ,x2 } ^ phase at film

A(xl ,x^^ , amp? nude factor	 `

The intensity expression for the first exposure is

^Iow for the second exposure, again

E^{x^l,x'^} = a{x^ l ,x t ^} exp Cio(x'^^x^ 2 }1	 (3.^}

and a similar expression exists for T^

Wilson ^I7] has shown that the total intensity at the film plane

15
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IT = Az {xl ,x2 ) + A2(x`I=x'2^
	

{3,^)

^iilson further shows the relation between the intensity distribution

to the displacement of the surface.

^T = A2{xl'x2^ ^ A2 {x^ ^ ulf ' x^ ^ u2f^

	
{3.5^

where

ul f = Mul

uZ f = MuZ

M = Magnification factor

u l ,u^ ^ displacements in x l ,xZ directions

The amplitude transmission function g {x l ,x2 ^ fora photographic

film can be approximated as a linear function of intensity for the

ranges of Interest, or

9 {x^,x^) = a + bST
	

{3.6^

where a^ and ^ b are film constants.

So

^,	 g{xI=x2^ = a ^ b^Az (x l =x2 ) + R2 {x l ^' ulf,x^ + 
u2f}^

Again the .Fourier transform df the transmission function must

be obtained. Far convenience the xz coordinate will be suppressed or

:.
w	 g(.x) ^ a ^' b^qz {X) + A2 {x + ^t f) ^ 	{3,7}

;^.

_	 _
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Therefore as in equation 2.15

G{w} = exp( izwz) tg(x} exp(-iwx}dx
zk

Wilson has shown that 0(w) reducPS to

^(w} = b exp( izw2 } FCA2^C1•+ exp{-iwu^}^
2k

where

^CAz^ = IA2 (x) exp(-^iwx)dx

The intensity in the transform plane is expressed by

I F = ^(w)	 G^(w}

So I F finally reduces to

T F = 2b z FCA2](1 + cos(wuf})

and fringes are defined when

7 + cos{wuf} = 0

ar u f - (n - ^) AP

An experimental example of this technique is shown in section 4.3.

{3•$}

{3.9)

(3,10)

(3.11}

{3.12)

{3,13}

(3.14]

(3.1^)
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^	 .._

3.2	 Time Average

Again, refer to Figure 13 far this arrangement. 	 A frequency

oscillator is used to induce vibration, a single beam of laser light

is . used to illuminate the ob,^ect, and a camera records the motion.

The 1_ight amplitude can be expressed as ^17^

E^(x l ,x^} = A(x l + x' l ,x^ -^ x ^ ^} exp ^i (o^x l ,x^ } a- A e^ (3.16 }

where

xl ,x^ ^ film constants

x' l ,x' Z , function of amplitude of vibration,
frequency, time, and 7GCation

o- phase angle

4 0- change in phase due to vibration

The film exposure time t is•

tIT = fp ^(x l ,x^}	 ^*(xl,x^}dt X3.17}

Again, suppress the coordinate notation so

tIT = fa ^^x}	 E^(x}dt = Io A(x ^-x' }dt (3.18)

Physically x' is related to the frequency of vibration and the time or

x' = u f^x l ,xz} -sin urt ^ 3.19 }

where of is the maximum displacement on the film plane,
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Recall

g(x} = a + bIT

= a + b Io A2 ^x + u^. sinwt}dt	 {3,20}

This amplitude transmission function is then Faurier transformed

or

G{w} = exp(i zwz )Ig(x} exp (^i^vx}dx 	 X3.21)
2K

As before,, this expression is evaluated and is a function of

the 8esseI Function as ^filson has shown ^17^.

G(w} = b exp{izwz } FGA^^ Jo (uf w)	 {3.22}
tw	 2Ec

where F is the^Fourier Transform function. zeros occur ^vhen

Jo (u fw} ^ Q

or

Jo{ 2^puf} 
_ ^	 (3.23)

az

^sfer to Table ^ for zeros of the Wessel Function. An experimental

example is spawn in section 4.4.



..	 -	 IU. EXPERI^E^ITAL VER^FICAT^Of^

4.l Double Exposure Shearinc^Spec^Cle Zn^erferome^ry

Consider a can-^ilever beam with a shift in the z direczian only

. ^ -	 {Figure 74}. Equation 2,27 reduces ^o ^16^. '

'	 {2n--IAA = 2L{I s ^' to}
ax ^' {ms ^' mo}av -^ {ns + 

no } aw o z

	

ax	 az

_	 From fi gure 74

^-	 I o = I	 I s m cast

. ^ :	 m^	 0	 ms ^ 0

na = 0	 n$ =sine	 ^ -^

^	 50
.	 i

{n-I/2} ^ _ ^{1 ^- cose}az -^ sin^^Az

For a canti 7 ever beam wi'ch tip deft ecti on s, then

u = ^Z{ I Wiz} { xz- y^} - ^z 3 ^ 2l zz]
.	 I

-I

a z.	 I s 2	 2

--	 aw w 
Ŝ C_I x ^- zx^a	

az	
73

Along the center of the beam y=0 and x=.125 gin..

Then

{4.2}

{4.3}

{4.4}

{4.5}

{4.s}
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az = {-. zol - 34.722 + 416.62) x is -6 	{4,7}

By substituting 4.7 and 4. s, plus the other information, into

equation ^,2, a theoretical fringe equation can be obtained as a function

of beam length z.

(n ^} ^ = C1. ^42{-.2oI - s^.7z 2 + 415.62) x l 0-6

+ o.s35 {-52.1 + s.6az) x to-^^ {.os^^}	 (4:9)

ar

n = .436 + 2.932 - .24422 	{4.I0}

A shearing speckle photograph was taken and filtere^I, which

is shown in Figure l5.

lasing Equation {4.I0) , a theoretical fringe plot was made and is

shown in Figure l6. Using the shearing spec}cle photograph, the

actual fringe order as a function of•distance can be found and is

plotted on .the theoretical curve of Figure l6. The agreement is

obvious .

4.2 5heari ng Speckle Inierferometry Vibration

Again look at Figure 12 and let the ob,^ect be a cantilever beam

with the confi gerati on shown i n Figure l7 . Nowac^Ci Cl s^ presents a

solution for the ampl i dude of vibrati on aI ong the beam as

^r^ zl } = CCl1..{ Xrz) - ^ fir) ^{ xrz)	 ^4, I I )
^s^
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Figure ]5. Shearing speck]e photograph after Fourier filtering,



^
i

^ 1 2 3 ^ 5 &

^^

0

6

^ ^

0

w
cnz
u'

2

.pw

^	 ^.

'	 ^;^'

DISTA^C^ (ifs. }
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{4.14)

4^h ere

w is the am^1itude

^ '15 a COnstan'^

^^ a z} = coshArx -cos^rx
.r

2

V{^,rz} = sinh7^rz - sinArx

2

S{^ } - 1 {co5hs r + cos^r}
r - 2

^„ i s wavelength d^ae ^o vibrati on

sr = ^`rl

1'he trar^scendenta.l equati^on•for a vibra^ing Cantilever beam is :^19^

cosh^ r cos^r = -1	 (4.12}

The sol uti ons are tabulated i n 1'abi a 2. For the ^fi rst mode of

v?bration r=1 and at z=1

Ldl {1} = s = C^ U(^1 } - T{̂  V{^1 }^	 {4.13)
1
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TABl.^ 2

Sal uti ans 'For Transcendental
6quat^ on -For u^ bra-^i ng

Gant lever Beam

^r

^.. 875

4.694

7.855

10.996

I4. x,37
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Taking the Derivative of W 1 (1) the ^z berm can be found.

l^.au ^ az^(sinh(^ 7 ,z) ^- sin(h 1 ,z)} -.	 .
sax	 2

(.734(casht^l ,x) -- cas(^I,z))^	 (4.3.5)

A cantilever beam with dimensions and properties shown in

Figure 3.? was vibrated in the fi rst made, with two di ^Fferent ti ^

de^Flecticans, and shearing speckle photographs were taken. These

photographs were Fo.uri^r f-i 1 tared and drawn ngs are shown i n Figure

3.8.

From Equation (2,47}

3, a u	 ^i	 ^
s a z ^

	

	 (4.3.6)
2rr( 3.-^ca^^ ^z.

From the theoretical eq^^at^on (4.15) a curve is drawn in Figure

19; the data poinfis arE platted on this curve. The agreement is obvious.
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a
1=7in.
b = .75 in.
^ z= x,2456 in.
X1 1 = 50 cycles per second

F^E^UENCY
^SCZ^.LA^fOR

^1
f \';1

F	 Figure ll, Experimental arrangement -for vibration snear9ng speckle.
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r

Figure 21, Or^awi ng of the Fourier transformed image far
sing3e beam speckle double exposure.
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X'̂ G^ ALA
^4'.^ Single Beam Speckle Vibration	

^ NOS ,^,^^^^

Figure 23 shows the experimental configuration used. Again

using the solution by I^owacki ^18^ for the first mode

s
This gives a theoretical curve far the vibration amplitude.

^eca17 Equation (3.23)

For the-pain t^by-paint data reduction (Figur^.2^.), the distance

between the f7rst two fringes is the xera of the Bessel function

giving

2^rpu f/ 1z ; 2. 40 	 (^. 22)

^'or the distance between the second outer fringes, the second

zero of the Wessel function g^^res

2rrpu,^^^x = 5.52	 (A^. 2S)

p Table 3 gives the results of the data reduction. notice at

z = R^.9a in. -^hrottg^ 6 . 67 in, , the second .outer fringes were used,

._thus the change in the constant relating displacement to fringe

spacing.

^'i gore 25 shows a plot of -the e.^cperimbntal - and the thaoreti cal
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- ^odei
Loc^^^ on

•	 - 2.85

- 3.14

3.33

3.62

3.81

4.00. 1

4.19

4.3$
,y

-
,t

4.57

^. 75

4,95

_ 5.3.4

5.33

^.
5.52

5.71.

^' 5.90

5.09
}	 :.I
-- 6.29

6.47

6.67

i^^^^
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_^^

TABLF 3

DATA RFI]UCTION FOR VISRATIOI^ SPEOKLE

X Madei
	

v^ ^tadei

4.50
	 W1 VVx^^_IL{r

3.56
	

1.98x10-4

3.14
	

2.24x10_4

2.95
	

2.39x10-4

2, 78
	

2.53x10-4

2.57
	

2.74x10-4

2,5
	

2.82x10-4

2.38
	

2.96x10-4

1.92
	

3,67x10-4

^. 85
	

3.80x10'4

^.. as
	

3,97x10-4

3.89
	

4.16x1.0-q.

3.60
	

4.50x10-
4

3.39
	

4.78x10-4

3.24
	

5.06x1.0"4

3. x^
	

5.23x3.0"¢

2.90
	

5.59x10-^'

2.76
	

5.87x10-4

2.7a
	

5.00x10-4



V.	 CONC^EISTOTyS Ai^D pECOMMEi^DATTONS

The speckle effect has been noticed for several years by many

investigators. The theory for shearing speckle and single beam

interferometry was developed.

Shearing speckle, like holography, is dependent upon a^phase

change. Tn general, for a shear in one di rertion at least two

derivations of displacement terms are combined in the frin ge pattern.

Experimentally shearing speckle is simple to set up, and for double

exposure ^ e fringes are easy to transform. For time average ana-

lysis, ^a fringes are difficult to transform. For this type of

experimental work time average holography yields much clearer -Fringes,

and with photopalymer recording, natural frequencies of complex

vibrating objects can be found.

Single beam speckle interferometry is dependent upon an ampli-

tude change. This technique is very simple to set up experimentally,

yielding two in-plane displacement components. For time average,

single beam speckle can be used to determine the amplitude of motion,

even for thin structures.
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