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PREFACE

This final report under NASA NSG 3109 ME grant is composed of two parts.

Part I discusses theory relative to measuring inplane displacements
using speckle interferometry. From the inplane displacement field,
strains and stresses can be determined. This approach is potentially
preferred over holographic techniques for evaluating stresses in
rotating turbine or compressor blades because of the relative ease in
collecting data, because the rigid hody motion requirements ére relaxed

and because data interpretation is simpier.

Part II discusses theory relative to measuring derivatives of dis-
placement fields by shearing speckle interferometry. The derivatives
of displacements are c1osér to and in some cases are the strain fields.
Therefore, stresses can be calculated directly. Again this approach 's

potentially preferred over holographic techniques as noted above.
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PART I

DETERMINATION OF IN-PLANE
DISPLACEMENTS USING SPECKLE
INTERFEROMETRY
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I. INTRGDUCTION

Conventional methods of measuring surface strains and displace-
ments utilize strain gages, dial gages and various other mechanical
and electrical sensing devices. The major Timitation to these systems
is the information obtained is for a Timited region only. In order to
determine the displacement or strain field for the entire object, a
large number of separate measurements must be obtained which is gener-
ally time consuning, costly and, in some instances, critical areas may
be missed.

In recent years, optical techniques employing a coherent 1light
source (laser) for detecting and measuring the components of surface
displacement and strain have come into use. The primary advantage of
these techniques is that the entire displacement or &train field can be
determined completely. The majority of these techniques fall into
three categories: Moire' gauging, holography and laser speckle inter-
ferometry. The method employed in this report is laser speckle inter-

ferometry.

Moire' technique consists of attaching or projecting a grid
pattern on an object, then photographing the surface of the object
before and after deformation, and observing the interference fringes
produced by the overlapping grid pattern [1, 21*. This particular

method has the disadvantage that, somehow, a fine grid patiern must

< e MR .

* Numbers in the brackets refer to the references Tisted at the end. :

1
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be generated and superimposed on the test surfice and the photographic
system used to record the image must be of a high sensitivity to be
capable of resolving the grid system.
Ennos [3] measured in-plane surface strain using holographic inter-
ferometry. The principal advantage of this method is the fact that it
1s a very sensitive method of measurement, and the whole surface of the

structure can be investigated at the same time, rather than g podint-by-

point. Although well suited for measuring normal movements, there is
no general way of eliminating the effect of normal movements from in-
plane movements. Also, holographic techniques have the disadvantage
that they require several separate views of the holographic fringe

patterns of the surface, which requires a considerable amount of data

reduction to separate out the in-plane displacement field.

Léser speckle interferometry is a relatively new experimental
technique which shows promise of alleviating many difficult problems

in experimental mechanics. The method utilizes simple high-resolution
photographs of the surface which is illuminated by coherent Tight.

The result is a real-time or permanently stored whole-field record

of interference fringes which yields a map of displacements in the
object. Suggestions for the direct use of coherent Tight, in displace-
ment metrology and contour mapping first appeared in 1968 [4]. Burch
and Tokarski [5] showed that if two identical speckle patterns are
superimposed on a photographic plate translated Taterally by a short

distance between exposures, then the diffraction halo generated by the

processed plate will consist of a pattern of parallel straight fringes
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similar to Young's fringes. The diffraction halc observed through
a small area of the recorded image will correspond to the local dis-
placement at the corresponding point on the object and the direction
of the fringes will be orthogonal to the direction of the local dis-

placement vector. Also, Burch and Tokarski [5] showed that by optically

T T,

illuminating the developed photographic plate with a converging spheri-

cal wave, the entire surface could be analyzed at one time to determine

the displacement field of the surface.

l.eendertz [6] developed a technique utilizing laser speckle effect
for measuring either normal or in-plane components of displacement over
an entire surface at one time. For measurement of normal (out-of-plane)
displacement two surfaces are coherently illuminated and two sgparate

speckle patterns are obtained (Figure 1). For measurement of the in-

plane components of displacement, a surface is illuminated by two beams

of coherent laser light, symmetrically disposed about the normal to the ?}

surface as illustrated schematically in Figure 2. These two speckle
patterns are superimposed and the resultant speckle pattern is recorded

on film. The intensity distribution of the resultant speckle pattern
depends on the relative phases of the component patterns. Then one or
both speckle patterns fis changed and again the resultant speckle pattern
is recorded on the same photographic film. By measu.,ing correlation be-~
tween the resultant pattern at two different times, a change of relative
phase is detected, which in turn gives a measure of surface displacaments.
These correlation fringes are observed either in real-time or by combining

two transparences having resultant speckle pattern at two different times

and illuminating it in a Fourier filter system. A major drawback of
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this technique is the path length difference between the two illumi-
nating beams has to be less than the coherence length of the 1ight
used to generate correlation fringes.

Duffy [7] presented two methods for measuring in-plane surface
displacements. In the first method, this displacement was determined
by photeyraphing a coherently illuminated object through two laterally
displaced apertures. The displacement is disp]ayed.as a pattern of
Moire' fringes over the image of the surface. Thus there is no need
for scanning of the beam an a point by point basis. As the surface is
ilTuminated by only a single Taser beam, the implementation problems
associated with the dual-beam technique (mechanical stability and
equal path lengths between the various optical components) are mini-
mized. In the second method, the object is illuminated using a single
laser beam and photographed via a double exposure before and after dis-
placement. The Fourier transform of the doubly exposed transparency
was obtained optically by illuminating the photographic plate with a
converging spherical wave. The main advantage of this procedure is that
the whole-field displacement can be analyzed and by appropriate position
of a set of apertures in the transform plane any component of the dis-
placement normal to the 1ine of sight can be detected and with variable
sensitivity. This thesis presents the mathematical analysis which
describes the formation of fringes for both the whole field and point-
by-point method of data reduction.

In addition, research has recently been conducted into the use of
laser speckle interferometry [8, 9, 10, 11] for vibrational analysis.

In this thesis, the time-average theory using the Fourier transform
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is developed to present the application of this technique to measure-

ment of in-plane displacement induced by the vibration of an object.
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II. DOUBLE EXPOSURE SPECKLE INTERFEROMETRY

2.1 Basic Phenomrna

When using a coherent laser Tight for illumination, a uniformly
diffuse surface has a speckle or grainy appearance due to random in-
terference within the resotution of the eye (or photographic system).
Additionally, any point in front of this surface will receive contri-
butions from all points on the surface which have similar amplitude
but random phases. Thus the amplitude and phase of the radiation
field in front of the abject vary in a random manner from point to
point with the average intensity being the same as if the light were
incoherent. This phenomenon is known as the speckle effect and has
been investigated by several authors [12]. When an imaging system
is used, the size of the speckle in the image plane is inversely
proportional to the aperture because intensity variations cannot be
produced inside distances less than the Airy disk diameter [13]. The
speckle appearance of an illuminated object and the effect of aperture
on speckle size is illustrated in Figure 3. ‘

The speckle effect provides a sensitive method for measuring dis-
placements and strains on the surface of an object. The correlation
between the relative phases of speckle patterns of a coherently i1llu-
minated object, at two different times, is the basic principle of the
Leendertz technique [6]. With this technique, a double exposure

specklegram (photo-negative) is made of the illuminated surface before

-



Figure 3.

9
G
o™
Lens
Aperture
/2.8
/5.6

Effect of Aperture Opening on Speckle Size (Enlarged 150X)

bt Lo o (0 Sy



9
and after deformation. Thus, each bright "speckle point" is recorded
on the specklegram as two dark points: one in the undisplaced position
and the other in the displaced position. Finally, only knowledge of
the photographic magnification factor is required to detsrmine the
local in-plane displacement once the length and direction of the line
segment between two speckle points are known.

In this report, the major emphasis is placed upon the "whole-field"
interpretation of Young's fringes and comparison of the results to the
"point by point" interpretation. The theory presented here extends
works conducted by Burch and Tokarski [5] and Duffy {7] in the inter-
pretation and data coliection of the fringes.

One method for determing displacements from the specklegram, as
presented by Kinariwala [14], is to direct a narrow collimated 1aser
beam through the specklegram, Diffraction will modify the emerging
light rays into a cone. This "diffraction halo" is the result of
diffraction from the random distribution of small speckles. Since
the speckles are recorded in pairs (displaced and undisplaced),

a parallel fringe pattern (Young's fringes) also occur in the
“diffraction hale", (Figure 4). From these fringes, displacement

at a point can be determined. Thus, the entire in-plane displacement
field can be determined by mapping the surface on a point-by-point
basis. The number of points analyzed is dependent upon the type of
analysis conducted. To decrease the uncertainty in the displacement
field, more points would have to be analyzed.

In the second method of data interpretation, a converging spherical

wave of coherent Tight is passed through the specklegram resulting in




R PP S R

Laser

Traverse

vireciion ar npianeg
Displacement

Proportional
To
Displacement
of
Point A

Ground Glass
or
Screen

Figure 4. Arrangement for Analysis of the Specklegram - Point-by-Point Interpretation

o Cohw *"W
e e o e e b R b R ETd e el T e 1l s B el et e e | +

oL




h Y

o

AN
L

&

e
Py ~a

11
the specklegram being imaged in the transform plane as shown in Figure
5. Using this "whole Tie1d" technique, the displacement field of the
entire surface in any direction can be detetrmined with a single
photograph. The sensitivity of the displacement magnitude is -
dependent upon the amount of offset of the aperture, p, in the
transformed plane; while the displacement component orientation
depends upon the angle betwsen the focal point in the transform plane
and the aperture. For example, with a zero angle between the two,
only horizontal in-plane motion would be measured. While with a
90° angle, only vertical in-plane motion would be measured.

2.2 Theory of Speckle Interferometry - Double Exposure - Single

Beam Analysis

Consider the arrangement shown in Figure 6. An object is
illuminated by a single Tlaser beam {monochromatic and coherent).
The location of the 1ight source fs shown as S which ilTuminates
a point P on the surface of the object. 1In this analysis, the
"double-exposure" technique for obtaining the speckiegram is used,
meaning that initially an exposure of the undeformed surface is taken,
then the surface is deformed and another exposure is taken on the
ﬁhotographic plate. 1In this development, the intensity distribution
on the photographic plate is investigated and, using the results of
this analysis, the in-plane displacement of the exposed surface is
determined.

From the first exposure, the complex 1ight amplitude can be ex-

pressed as

E (XT’xZ) 5K'(x1,x2) exp [i© (x],xz)] (2.1)
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wheare

(xl, xz) - Film plane coordinates
2] (x1, xz) - Relative phase at each location on the film
K’(x], xz) - Amplitude factor

The intensity of the first exposure is given by

E; Ef (2.2)

Iy = g

where E? is the complex conjugate of E.l

I; = & (x5 %5) exp Li0(xys %) 1A {xg5 x5) exp [-10(xy, x5)]
- (2.3)

I, = A% (x;5 %) (2.4)

1

For the second exporure, each point on the body is displaced to
a new position; therefore, the exposure is

E, (x]» x5) = & (x], x5) exp [1e(xy, x5)] (2.5)
and the intensity is
- 2 H 1

Thgsf the total intensity on the photographic plate is the total of 11
an . :

: (2.7)

Ip=Ii+ 1

1o = A% (x;5 x,) + A% (xd, x3) (2.8)
What is needed is to relate this intensity distribution to the

displacement of the surface. In the first exposure, the point P is at

coordinate (XT’ xz). For the second exposure, the point P is displaced

to point Q and is imaged on the film plane at coordinate (xi, xé).

The displacement vector on the surface of the object, represented by

PO, is |

P = uEy + uge, (2.9)

i
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and the displacement vector in the ilm plane is
PQei1m Prane = U1 ¥ Y22 (2.10)
and the displacement in the film plane in relation to the object is

L)

where M is the film magnification factor, usually less than 1.
Therefore, it follows that the film plane coordinates for the second
exposure 1is given by

dexg tue (2.12-1)
X5 = Xo * Upe (2.12-2)

With these two relations, the total intensity given in Equation {2.8)
can be rewritten as .

I = A2 (xq5 Xp) + A% (% + Upps %p + Upg) (2.13)

If the exposure E(x1, x2) at each point of the plate represents
small fluctuations which are mostly confined to the toe and the bottom
portion of the H and D curve, the amplitude transmission g(x1, xz) of
the photographic plate is approximately a Tinear function of the exposure
i.e.

9(xqs o) =a+b Ip (2.14)
where a and b are constants of the photographic film. With the result
in eq (2.13) this can be written as

g(x1, xz) =a+h [A2 (x1,-x2) + A (x1 ¥ lyges Xy F ”2f)]

(2.15)

M

o el b ol
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This expression gives the relationship between transmissivity and
intensity in terms of the dispiacements in the film plane. The next
step in the analysis is to relate the displacement in the film plane
to some messurable gquantities. In this deve}opment, the "whole field"
interpretation of the fringes was used in the determination of dis-

placement.

2.3 Optical Fourier Fringe Interpretation

- The whole field fringes are obtained by taking optically the
Fourier transform of the amplitude transmission function g(x1, x2) of
the speckiegram [6]. To simplify the notation, the xé coordinate will

be suppressed in the following development, i.e.

g(x) = a + b [AZ (x) + A (x + ug)] (2.76)

-

[J

-This optical transform is accomplished by i1luminating the specklegram

with a converging spherical wave as shown in Figure 5. Neglecting
aberrations, the Tight amplitude G(w) in the transform piane is propor-
tional to the Fourier transform of g(x) times a qﬂédratic phase factor

[51 as given by the following equation

. 2 '
6(w) = exp (g ) r9(x) exp (~iwx) dx (2.17-1)

where

W=kp =k tan @ (2.17-2)
Z

wherg p is the coordinate of the iris in the transform plane and
k =2n/3% , where X 1is the wave length of the converging beam and

8 is deftned in Figure 5. The direction of the laser beam and the

common axis of the lenses L] and L, are assumed perpendicular to the

e e B b e o




)

iy

QN

( )

ey

T

17

transform plane and to the plane of the specklegram. Equation {2.17-1)
follows from the Kirchoff diffraction formula which was derived by

Burch and Tokarski [5]. Eq (2.16) can be rewritten as

G{w) = exp [ 1zw 1] Sta+b[A(x)+A(x+ Ue )1} exp (-iwx)dx
(2.18)
.27 '
G(w) =aexp [ %%ﬂ 1 Sexp (-iwx)dx + b exp [ 12” 1
S LAZ (x) + A2 (x + uf)] exp (-iwx)dx (2.19)

The first integral in eq (2. 19) is the de1ta function, §(w); therefore,

G(w)=aexp[”""] s(w) + b exp [ 24 ].r[A (x) +

Az (x + uf)] exp (-iwx)dx (2.20)

Equation (2.20) can be written in the following form with the applica-
tion of the shift theorem.
2
Gw) = a exp [ 4201 o(w) + b exp [ 124 1zw 1O+ exp (~iwug)]

J'A (x) exp (~iwx)dx (2.21)
The Tast integral is the definition of the Fourier Transform of pZ (x)

and is represented as F [AZ] which leads to
: G(w) = a exp [ 2k ] §{w) + b exp [ 1ZW 1F [Az]
[T + exp (-1wuf)] . (2.22)

The delta function represents the (idealized) point focus of the
i1luminating beam. It contributes to the diffracted amplitude only
at the point w=0; in practice, it is a small area around the point.

Qutside this small area, the delta function is zerc and G(w) is given by

G(w) = b exp [ ] F AT 1 + exp (-iwug)] (2.23)
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The next step in the development is to determine the intensity

function in the transformed plane which is
IF = G(w) G*(w)

where G*(w) is the complex conjugate of G(w)
.2
= 1ZW 2 3
Ip = ( bexp [ EE_'] F [A ? [1 + exp ( 1wuf)] )

L2
(‘boexp [ 2T F[A] [V + exp (iwug)] )

Ip = % F [A2] 2 [2 + exp (-iwuf)+ exp (iwuf)]
Using the trigometric identity .

cos (wuf) = exp (iwuf) + exp (-iwuf)
2

the final expression for the intensity is

I_ = 26% F[A®] (1 + cos wu

F g

(2.

(2.

(2.

(2.

(2.

A fringe will be defined when the intensity, IF, is equal to zero.

Since b and F [AZ] are both nonzero, fringes will occur when

{1 + cos wuf] =
or ‘ CcoSs wuf = ]

which means

Wi = {(2n - 1)w n=1,2,3 ...,=

With the use of eq (2.17-2), eq (2.31) can be put in thé following

pruf
Z ={2n - 1) 7
or
- 1 Az
uf - (n = 2) 'E]—

Eq (2.33) expresses the in-plane displacement in the film plane in

(2.

(2.

(2.

(2.

(2.

24)

31)
form

32)

33)

terms

sy s e e
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of quantities which can ke measured in the transform plane. Finally,

the displacement of the deformed surface is given by

u=" (2.34)
n
u=(n-3 (32) (2.35)

Information at location p is selected by p1acing'an aperture to
pass only the light in the immediate neighborhood of p as shown in
Figure 7. Cloud [12] reported that an aperture opening of approximately
one-tenth the amount by which the aperture is displaced from the optical
axis gives the best resuits. This Tight is then imaged on film. Thus
p being fixed, the image fringe information is proportional to Ug @s
shown in eq (2.33). The direction of the measured displacement is
determined by the relation of p with the u- and v- axis as shown in
Figure 7. In order to measure the horizontal displacement, the
aperture is moved along the u-axis and to determine the vertical dis-
placement, the iris is moved along the v-axis with movement always
starting from the focal point in the transformed plane. Thus, in-
plane displacement in any direction can be determined by appropriate
selection of the aperture coordinates. Eq (2.33) i11ust;ates that
the sensitivity of the displacement determination is based on the
distance of the aperture from the focal point, p. An increase in
p causes an increase in the sensitivity of the measurement; however,
due to the resolution Timit of the film and the relative width of the
fringes, the sensitivity of this technique is Timited, dependent upon

the amount of total displacement.

L Ze i e .
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2.4 Point-by-Point Data Interpretation

The point-by-point data interpretation can aiso be determined
from eq (2.33). Figure 8 is a schematic of the point-by-point data
analyzer. A narrow beam of coherent 1ight is passed through a region
of the film and fringes occur in the obseyvation plane. To correctly
interprete these fringes, a reexamination of eq (2.33) is needed. In
the development of the transformed light amplitude (eq 2.17-1}, inte-
gration over the entire film plane was conducted. For the point-by-
point analysis, this intensity relation is zero except in the narrow
region of the film through which the 1igh£ passes. The in-plane film
displacement is given by eq (2.33)

- 1y X
uf—(n-z) 5

- For this case, the in-plane displacement is constant with p being the

variable. From the worked conducted by Kinariwala [14], the expres-
sion for the in-plane film displacement for n = 1
= AL (2.36)

where
A - wavelength length of light source

Z - distance from film plane to observation plane
X - distance between fringes

For the case of n = 1, eq (2.33)

U
e = 5 (2.37)

An examination of the Tast two equations, shows the displacement
determined from eq (2.36) to be twice eq (2.37). However, this
difference arises in the measurement of X and p. The distance X

is measured between the fringes while p is measure from the center of
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the halo to the nearest fringe. Figure 8 presents these two measure-
ments. Thus, for the case of n =1,
X=2p (2.38)
and the two equations are equivalent.

2.5 Experimental Verifications

Results of experimental verifications of the development in
section 2.3 are reported in this section. Two examples are considered
and for each case theoretical and point-by-point results are presented
for comparison to the whole field results. An account of experfmentaT
procedures of recording and collection of data is also presented.

Experimental Equipment

The experimental set up for recording a specklegram is shown in
Figure 9 and schematically in Figure 10. An air-supported table was
used to isolate the optical elements from surroundings and to provide
a vibration free support system.

A Spectra-Physics model 125A He-Ne cw laser operating at 80 mw
plane palarized output was used as the Tight source. The Tight was

spatially filtered using a Spectra-Physics spatial filter 332. Light
reflected from the object was imaged onto Kodak High Speed Holographic
Film 131-02 using a Wollensek 15 inch /5.6 Tens. The emulsion was
supported on & 4 in. x 5 in. glass plate to prevent reduction of the
imaged picture.

In the point-by-point fringe interpretation, a set up similar to
the one shown in Figure 8 was used. The Tight source was a Spectra-

™

Physics Stabilite'™ Model 120 He-Ne cw Taser. The difrraction halo

with fringes was photographed with a 35mm Nikon camera using Kodak

Bt U
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Figure 9. Experimental Set up for Taking a Specklegram
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Pana tomic~-X film. For the whole-field fringe interpretation, the
set up shown in Figure 11 was used. The Spectra-Physics Model 125A
3 was the light source. The two lenses were spherical lenses with a
focal length of 26.5 inches. The fringes were photographed using
a 35mm Nikon camera with Kodak Panatomic-X film.

In the first example, only the vertical displacements were de-
termined for comparison to the theoretical results. For the second
example, horizontal displacements were determined.

Exampie 1 - Cantilever Beam

The first experimental example chosen to verify the theoretical
results was the bending of a rectangular cantilever beam with an end
load, as shown in Figure 12. The beam had the end fixed at z = 0
and the end z,=1 had a single force P directed along the positive x-
axis producing a known defiection, § , at z = 1.

The zfaxis was taken along the center line of the beam and the
x- and y-axes were orthogonal axes intersecting at the centroid of
the fixed end. The vertical (u) displacement component as given by
Sokolnikoff [15] is 1isted below
u = % [ 3 (1-z) (Y - %3 % 1—3] (2.39)

The load P is governed .by the deflection of the free end. Suppose

the Toad P is applied at z = 1 such that u(0,0,1) = & where § is the

- known deflection. From eq (2.39)

= ER (2.40)
" 1
4 38 - v 2 2 3 22
u=S0% (1) (x* -y -2 -5 {2.41)

o
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Material used for the beam was plexiglass and the physical pro-

perties of the beam are

1 = 6.00 inches
b = 0.125 inches
c = .255 inches
v = .37

E = 456000 psi
83 = .003 inches
8o = ,006 inches

Fixed end conditions for the beam were obtained by bonding one
end of the plexiglass to an aluminum block as shown in Figure 13. The
end 1oad was applied with a micrometer screw and the deflection was re-
corded with a dial indicator {Figure 14}. Deflections of .003 inches
and .006 inches w~re investigated.

Discussion and Results of Cantilever Beam Experiment

Figure 15 presents the experimental set up. The coordinates rela-
tive to the cantilever beam are given in Figure 12. Theoretical results
for & = .003 inches and & = .006 inches are tabulated in Table 3%
and Table 4, respectively. Also, a plot of deflection versus distance
along the beam for the two loading conditions are shown in Figure 16
and 17.

As discussed in section 2.4, using the point-by-point data reduction

method, the in-plane displacement in the principal plane is given by
= AZ

Figure 18 shows the diffraction halo and fringes at various locations
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along the beam for § = .003 inches. The in-plane vertical displace-
ment is given by

u=ug sin © (2.43)

wnere 8 is measured as shown in Figure 3. The data taken for the two
lToading conditions are tabulated in Tabie 1. For comparison purposes,
the experimentally determined displacements are plotted on Figure 16
for 6 = .003 in. and Figure 17 for & = .006 in.

For the whole-field fringe interpretation, the in-plane displace-

ment in the film plane was shown to be equal to

- Ty A
Ug = {n - ?ﬂ —%- (2.33)

and the actual displacement 1is

u=(n-9 2 (2.35)

Figure 19 is a phetograph of the fringes in the transformed plane for

8§ = .006 inches. For these two photographs,
p = .98 inches
z = 33 inches
A = 20.22 microinches

The data for both load conditions is tabulated in Table 2. Again,
for comparison, the experimental results are plotted on Figure 16 for
§ = .003 in. and on Figure 17 for 6 = ,006 in.

As seen from the results presented in Figures 16 and 17, excellent
results were obtained for both techniques. The maximum difference in the
point-by-point interpretation was “b6%. For the whole-field interpre-

tation, the maximum error was also ~b%.
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EXAMPLE 1 - CANTILEVER BEAM - POINT-BY-POINT INTERPRETATION

FOR VERTICAL DISPLACEMENT

.003 1inches

§ = ,006 inches
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TABLE 2
EXAMPLE 1 - CANTILEVER BEAM - WHOLE FIELD INTERPRETATION
FOR VERTIGAL DISPLACEMENT

§ = .003 inches

n Z u
(inch) (inch)
1 3.86 487 x 1073

2 2.13 1.461
3 77 2.436

§ = .006 inches

n Zz u

_ (dnch) (inch)
1 4.63 487 x 1073

2 3.36 1.461
3 2.45 2.436
4 1.72 3.410
5 1.09 4,386
6 .36 5.360

Ko
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TABLE 3

EXAMPLE T -~ CANTILEVER BEAM - THEORETICAL RESULTS

FOR VERTICAL DISPLACEMENT

§ = .003 inches

Zz

{inch)

w
.

- a . L] » -
(01 ] o)} 3] [\s] (=] W o

W no [AV] o
- L[] L] 1]

-+ - w w
. . L] -

u

{inch)
3,000 x 107°
2.775
2 552
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2.112
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1.691

—t

1.489
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1.118
.938
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.624
487
. 365

[ I o T U R = ) R PO == e

.258
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.006
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a [y o (=2} w [aw] ~J =T
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w H» s~ Oy

N N N W

{inch)

.000 x'1073
550
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660
224
.800
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876
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.248

..974
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.516
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Figure 16. Vertical Displacement for Example 1 as Determined from Theory, Point-by-Point
and Whole Field, & = .003 inches
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Example 2 - Pressure VYessel
The second experimental example chosen to verify the results
of Section 2.3 was an internally loaded thin walled cylindrical
pressure vessel, The coordinate system for this example is shown in
Figure 21. The y-axis was chosen at the axis of symmetry. With
the x- and z-axes intersecting at the center of the base of the

cylinder. The z-axes on the model and on the film were parailel.

The radial strain for a capped end thin wall pressure vessel

is
. %E =L (5, - v (2.42)
where
Ue:é_i_R (2.43-1)
5, = %,? (2.43-2)

Therefore, the radial displacement is

2 .
_APR
AR = g (2 - V) (2.44)

The horizontal displacement, u, is
u=AR sin © (2.45)

However,
sin 8 =§ {2.46)
Thus, the theoretical horizontal displacement is

A
"= 22% (2-v) (2.47)

For this example
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X = rCcoso
] Z = rsine
Y=y

Figure 21. Example 2 - Pressure Vessel



S

e

.s'.'
P

O
REERag

43
AP = 400 psi
R = 2.54 inches
t = .09 inches
E=10x 106 psi
v = .33

A tabulation of theoretical horizontal displacement for various x's
is presented in Table 6.

%he capped end conditions for the pressure vessel are obtained by
welding aluminum plugs at both ends. The physical dimensions for the
pressure vessel are shown in Figure 22.

The same procedure was followed as in the first example. The
results for the point-by-point interpretation are tabulated for example
2 in Table 4. Results for the whole field interpretation presented
in Table 5. A photograph of the whole field fringes is shown in Figure
23.

To verify the speckle theory, a comparison of the experimental
results to the theoretical results is presented in Figure 24. Excellent
agreement is obtained near the center of the cylinder; however, once
removed from the center area, a small difference between the theory and
experimental results occurs. For the whole field interpretation, rela-
tionship between x and the horizontal displacement is a straight line
as would be expected; however, the slope of the curve is less than
the theoretical. For the point-by-point results, initially the rela-
tionship between x and the displacement component is Tinear; however,
at larger values of x, this linearity disappears. Probable cause for

this difference is in the focusing of the cylindrical body onto the film
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nlate. If the center of the cylinder is used for the point of focus,
the outer edges (as x increases} will be slightly out of focus depen-
dent upon the radius of the cylinder. Recent work has been conducted
into this problem of misfocusing and has shown that this can lead to

a difference in fringe spacing.
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TABLE 4
EXAMPLE 2 - PRESSURE VESSEL - POINT-BY-POINT INTERPRETATION
FOR HORIZONTAL DISPLACEMENT

X p 6 u
(inch) {inch) {deg) (inch)
0 .25 0.0
.2 .24 7.5 1.93 x 107%
.4 .23 15.0 3.91
.6 .22 21.0 5.92
.8 .21 28.0 7.94
1.0 .20 31.0 8.92
1.2 .19 36.0 10.44
TABLE 5

EXAMPLE. 2 ~ PRESSURE VESSEL - WHOLE-FTELD INTERPRETATION
FOR HORIZONTAL DISPLACEMENT

(ne) (inch)
17 1 1.619 x 1074
52 2 4.858
.88 3 8.096

1.25 4 11.330
1.66 5 14.570
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TABLE 6

FOR HORTZONTAL DISPLACEMENT
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ITI. TIME AVERAGE SPECKLE INTERFEROMETRY

3.1 Basic Phenomena

As presented in Section II, in-plane displacement resulting from
a static load can be determined using double exposure speckle inter-
ferometry. In this section, the speckie theory is extended to in-
cliude the time averaging technique For use in determining in-plane
displacement due to harmonic vibration of an object. The time averag-.
ing technique has previously been sucessfully used in holography [16].
In recent years, time averaging in conjunction with speckle interfero-
metry has been investigated. Tiziani [10] showed the intensity expres-
sion in the transformed plane to be a function of the zero order Bessel
function for a time average recording of a harmonicaily oscillating
object or image. The work conducted in this section of the report
extends the work gonducted by Tiziani [10] by determining the relation-
ship between the transformed intensity function and the in-plane
displacement of the osciliating object.

The analytical work closely parallels the development of the double
exposure technique presented in Section II. The major difference is
in the determination of the intensity expression. For the double
exposure technique, the intensity is determined for each exposure and
summed. For the time averaging technique, integration is performed

over the total time to arrive at the intensity expression.

50
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3.2 Theory of Speckle Interferometry - Time Averaging -

Single Beam Analysis

The arrangement presented in Figure 6 is also used in the time
averaging. An object is illuminated by a single laser beam with the
Tocation of the 1ight source shown as S which ii1Tuminates a point P
on the surface of the object. In time averaging, a single exposure
is taken of the vibrating surface with an exposure time at least
equal to the time for one complete cycle of the vibration.

For the condition of the time dependent loading, the compliex
tight amplitude can be expressed as .

T (x50 %) = K (X Xy, X * X,)
exp ife(xys %) +a0] (3.7)
where

Xqs Xy - Film plane coordinates

x;, x; - Function of the amplitude of vibration,
frequency, time and location

& - Phase angle of the beam

A® ~ The relative change in the phase angle
due to the vibration

For the time averaging, the Film exposure over a time interval
t is . B
tpe [ ) B, x,) dt (3.2)
). Again, to

2
simplify the notation the x,-coordinate will be suppressed for con-

where E¥ (x , x,) is the complex conjugate of E'(xl, X

venience, i.e.

t
tly = f E{x) E*(x) dt (3.3)
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Therefore,

tlp = jt A (x +x) dt 93.4)

Q

A physical interpretation of x' is needed before this development
proceads. At £ = 0, the point P is at coordinate (Xl, XE) on the object.
For t > 0, the point is displaced to a new location P which is dependent
upon the amplitude of vibration, the frequency and the time. Thus, the
Tine segment PQ can be written as

PQ = u (X} Xp) sin wt (3.5)

where u represents the maximum displacement of the surface at (Xl, Xz)

and on the film plane
[PQJ ki1 prane = Y5 (¥15 X2} sin ot (3.6)

and

3':
-f

u = (3.7)

where M is a magnification factor. Thus

_ ot g2 .
tI, = J; A" (x + Ug sinwt) dt (3.8)

As present in Section 2.3, the amplitude transmission g(x) can
be approximated by a Tinear function of intensity, i.e.

g{x) =a+b IT (3.9)

where a and b are constants of the fiim. Thus,

g(x) = a +-% J;t A2 (x + Ug sinwt) dt {3.10)

Eq (3.10) is a relationship between transmissivity and intensity in

terms of the displacement in the film plane.
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3.3 Optical Fourier Fringg Interpretation

The whole field fringes are obtained by taking optically the

Fourier transform of the amplitude transmission function g(x1, xz)

as discussed in Section 2.3. The light amplitude function G(w) .n

the transformed piane is [5]
2
G{w) = exp (1‘7""‘T fg(x) exp (-iwx} dx

as presented in Section 2.3.

For the time averaging,
G{w) = exp (1zw [[g a + —- A% (x + ue sin wt) dt

exp (-iwx) dx

or
G(w) = exp (%EE?) [aexp (~iwx) dx + b'_EE (1zw )
J:gtﬂz (x + ug sin wt) exp (-iwx) dt dx
Now
s(w) = [exp (~iwx) dx
Thus
Glw) = as{w) exp (%EE?) + p-exp (12w )

j:fthz (x + Ug sin wt) exp (-iwx) dt dx
(8]

(3.11)

(3.12)

(3.13)

(3.14)

{3.15)

Since t and x are independent, and A2 (x + Ug sin wt) and exp (-iwx)

are continuous functions, and Ug

part of eq (3.15) can be written as

t
BXp (1zw )_£ J.Az (x + ufsin wt) exp (~jwx) dx dt

is a function of x only, the second

(3.16)
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From eq (2.21), the first integration is the Fourier transform of

A2 (x+ ugsin wt). Thus,
2 2
G(w) = as(w) exp (%EE.) ¥ %—exp (%ﬁﬂ )

fo’“F [A2 (%, * ug sin ut)] dt | (3.17)

Empioying the shift theorem, eq (3.17) can be rewritten as

o 2 2 e 2
6(w) = as(w) exp (J2L) + DELALXM o (1201

J‘texp (fugvsin wt) dt (3.18)
0 '
As discussed in Section 2.3, the deTta function's contribution occurs

~

only at w = 0. For any value of w other than zero, eq (3.18) is
2 . 2
t . .
G{w) = EEL%—L’S—)—-]--exp (%Eﬂ-lg exp (fuvsinut) dt (3.19)

From Bessel function analysis
23, (x) =_£2“ exp (ixcos8) de =_£2“exp (ix sin® ) d8  (3.20)
where J,(x) is the zero order Bessel function. For evaluation of
eq (3.19), the integration will be for one cycle, that is t will be
the time required for one cycle, thus if many cycles occur the time
will be some multiple of t. Rearranging eq (3.19), and multiplying

and dividing by w gives
.2
t . .
G{w) = $3- exp [%Eﬂ ]F [Az(x)]j; exp (1ufw sin wt)} wdt

(3.21)
Comparing eq (3.21) with eq (3.20)

8 = wt
de = wdi}

x=ufw

t = 2n/uw

e ety e g T

i o AR g e i s it



LR

g

“

-

)

55
Consequentiy, eq (3.21) becomes

¢ gl
6(w) = 2 exp G2 ] F [A%] 4, (up W) (3.22)

The intensity function in the transformed plane is

I. = &(w) 6*(w) (3.23)
Therefore,
2
_ b 2-2 2

Fringes are defined in the transformed plane when IF = 0. Since all
the terms except Jo(u%w) are always non-zero, fringes occur when

Jo (UfW) =0 (3.25)

Froin ed (2.17)

- 27p
W=z
Thus
-2mpu :
v _
Jo( 2 ) =0 (3.26)

Since all the terms inside the bracket except Ue can be measured or
are known, the in-plane displacement for a harmonically oscillating
object can be determined. Table 7 is a tabulation of the zero

values for Jdo(x).

+ 3,4 Point-by-Point Interpretation

Similarly to the discussion in Section 2.4, the point-by-point
interpretation can be determined from eq (3.26). For the point-by-
point interpretation, the in-plane displacement is constant at each
location with the distance p being variable. For the case of n =1,

eq {3.26) yields
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. TABLE 7 1

'- i ZERO VALUES FOR do(x) ,
] ]
Jo(x) Equals Zero when , j

¥ Xg2 = 5.52 ‘

- a

X03 8.65 | i

x04 = 11.79 | 4

Xg5 = 14.93 i ]

; ;

. Xqg = 18-07 |
:
Xg7 = 21.21 | j

!

= 24 |

X08 24.34 :

‘ XDQ = 27.49 ;

X10 © 30.63

| ;

8 xqq = 33.78

= 36.92

{ i)

"= 40,06

>x
——d
w

= 43.20

(] [a—_ "

i
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2wpu
f - : v
iz 2.40 (3.27)
or
. »382)z2
Ug 5 (3.28)
and
_ .382Az

, Comparison of eq (3.28) to eq {2.37), shows the only difference
between the time averaging and double exposure point-by-point inter-
pretation is a difference in the constant.

3.5 MNumerical Example - Vibrating Cantilever Beam

The numerical example chosen is a vibrating cantilever heam.
The beam is made of a]umiﬁum‘and the dimensions of the beam are pre-
sented in Figure 25. For this example, the first two modes of vibra-
tion were analyzed.

The solution for the amplitude N(zl), as presented by Nowacki
[18] for free transverse vibration of a cantilever beam with the end
fixed at z = 0 and an initial tip deflection of § at z = 1 is for

each mode of vibration
S(e..)

- R . o
wr(zl =C [U(Arzl T(B—PTV(A\"Z}-)] r .2 (3.30)
where C is dependent upon the initial conditions and

gosh A 2, - COS A_Z
- r-l r-l
U(Arzl) - 2

V(Arzl) = sinh A z; - sin Az,
2

N
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+
cosh Br cos Br

S(BY‘) = 5
sinh Br + sin Br
T(BY‘) = 2
4 n;
r
A | J—
r C‘2
31 = 1.875
B, = 4,694
Wy " natural frequency

If¥ the initial condition is such that only the first mode is

activated, then at z =]

s 5(8,)
NI(1) =0 = [U(Bl) - TTEIT'V(Bl)] (3.31)
Therefore, for this case
_ S(g, )
w]_(Zl;) C [U(}\IZI) - m V(llzl)j
3 — = () (3.32)

¢ [u(s,) - -T—(—B“l—y V(e,)]

Similarly, if the initial condition is such that only the second mode

is activated then

5(8,)
by (z,)  [V0e) - 7yg, T V(%7
— = STE, ) (3.33)

[U(8,) - 7y V(B,)]

Therefore, for each case, the ratio of the amplitude to the initial
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tip deflection as a function of distance along the beam, z,, can be

determined and is tabulated in Tabie 8.
The ampiitude of vibration is just the in-plane displacement,
u, defined in Sectian 3.2, i.e.

For thz first mode of vibration

S(8;)
[U(Alzl - T-(-B—,- V(;‘l?_l)]
y = suﬂl (3.34)
[u(s,) - TTEiT‘V(Bl)]

The in-plane displacement in the film plane is
ug = Mu (3.35)

where M is a magnification factor.

Then for the first mode of vibration, the in-plane displacement in the

film plane is
s{g,)
[U(AIZI) - 'ﬂ?{)‘ V(Alzl)]
g = M S(8,)

(3.36)

For_the second mode

S(8,)
[U(2,2,) - Trgfy V(2,2,)]
S8, T
[ufe,) - 'ﬂ‘é‘)‘ V(g,)]

=M (3.37)

Ug

Whole Field Interpretation

For the whole field interpretation, let

p = .3 inches

z = 26.5 inches

e
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TABLE 8

RATIO OF AMPLITUDE/TIP DEFLECTION

FIRST MODE

% u/s
{inch)

0 0

.3 .0042

.b .0165

.9 .0363
1.2 .0630
1.5 .0961
1.8 L1349
2.1 1789
2.4 .2275
2.7 .2803
3.0 . 3366
3.3 .3960

.6 .4580
3.9 .5221
4.2 .5880
4.5 .6551
4.8 .7232
5.1 . 7919
5.4 8611
5.7 .9305
€.0 1.0000

Z

{(inch)

o

w [h) n ]
- . .

vl R R R W

1

SECOND MODE

0

.3

o o~

» L] - »
o n 3] w

L] »
R = N I = T N Y

—

5 a BN &

u/é

. 0254
.0926
. 1888
3071
L4173

-.5262

.6178
.6836
171
L7137
.6713
.5886
.4703
317
L1351

0700

.2916
.5237
L7611
.0000
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\ = 24,9 microinches

M=1.0

§ = .006 inches

1 = 6.0 inches
With these, eq (3.26) becomes

J,(2856 uf) =0 (3.38)

With zero values of Jo(x) presented in Table 7 and eq (3.38), a plot
of fringe order as a function of in-plane displacement was determined
and presented on Figure 26.

With this information, fringe order as a function of length along
the beam for the first two modes of vibration can be determined. For
the first mode of vibration, eq (3.36) and Figure 26 along with the
fact &= .006 inches and 1 = 6.0 inches was used and the results are
plotted in Figure 27. For the tecond mode of vibration, eq (3.37)
and Figure 26 was used and the results are plotted in Figure 28. Figure
29 is a picture of the fringes for the first mode as they would appear
in the transformed plape. Figure 30 is a picture of the fringes for the
second mode of vibration.

Point-by-Point Interpretation

For the point-by-point interpretation, let

A= 24.9 microinches 5
z = 80.0 inches ?
M=1.0 :
§ = .006 inches :

—
It

6.0 inches
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Therefore for n = 1, eq (3.28) becomes

-4
_3.8x 10
Uf - ; ) {3.39)

Thus, fringe spacing as a function of displacement was determined and
presented in Figure 31. Plots of fringe spacing as a function of
length along the beam for the first and second modes of vibration were
also determined and are shown in Figures 32 and 33, respectively.
Equipment for experimental verification of the theory presented
in this section was unavaiiable. Thus, no experimental data is pre-

sented for this section.
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Figure 26.

In-Plane Displacement, {inch x 10°)

Fringe Order as a Function of In-Plane Displacement
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Figure 27. Variation of Fringe Order along the Beam for the First Mode of Vibration
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Figure 28. Variation of Fringe Order along the Beam for
the Second Mode of Vibration -
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Figure 29. Fringe Location on Cantilever Beam
for First Mode of Vibration
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Figure 30. Fringe Location on Cantilever Beam
for Second Mode of Vibration
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Figure 31. In-Plane Displacement as a Function of Fringe Spacing for the Numerical Example
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Figure 32. Fringe Spacing Along the Beam for the First Mode of Vibration
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Fringe Spacing, inches

Figure 33.
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- IV. CONCLUSIONS

The theory for the formation of fringes in the transform plane
for- double exposure and time averaging speckle interferometry was
developed. Thus, in-plane displacement resulting from either static
or dynamic loading can be determined. For the evaluation of the
Tringes, the whole field concept was used and the relationship be-
tween fringes in the transform plane and displacement was derived.
The technique is simple and needs no calibration and no laborious
alignment of opticé] elements for the formation of the fringes.

The sensitivity of the technique is dependent upon the resolving
power of the film, the magnification factor and the location of the
aperture in the transform plane. In addition, the magnitude of the
displacement has to be Targer than the speckie size which is dependent
upon the aperture opening of the camera lens.

In general, speckle interferometry has the ability to measure
in-plane displacement for either the static or dynamic case within

an accuracy of ~5% for most of the displacement field.
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PART 11

THE LASER SPECKLE EFFECT
APPLIED TO OPTICAL STRESS ANALYSIS
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I. INTRODUCTION

1.1 Basic Phenomena

The relation between the elastic and electromagnetic material

properties was studied by Wertheim in 1844.(Annales de Chimie,T.

X1I pp. 610-624). This interest was continued by Lord Kelvin who in
1856 noticed that the resistance of wires changed as the wires were
stretehed [1]. This later Ted to the developement of the electri-
cal-resistance strain gage.

Since World War 11 sirain gages have been used extensively by
industry to determine strains in variously loaded members. The
major disadvantage is the fact that three gages are required (rossette)
to analyze a single point thus requiring many gages for a complete
analysis [2].

Recently several optical stress analysis techniques have been
developed tnat give a full field representation of displacement,
strain or stress fields which utilize the wave nature of Tight as the

mathematical model [3] .

E = & cos (a +¢ ) (1.1) .
where

- optic wector ) wt - phase

A - maximum amplitude ¢ = initial phase

From Euler's identity

exp{ i0) = cos® + { sin® (1.2}
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—

E becomes

- —

E = A explifut + ¢)]

‘where it is understood that we are dealing with the real part of
the exponential function.

The intensity is
1= uE- E*
where E¥ is the complex conjugate, and y is a constant.

1.2 Photoelasticity

Photoelasticity uses the property of birefringsnce in certain

materials [4]. When polarized 1ight is incident on certain crys:als

it can be resolved into two components along the pricipal directions.

One component is retarded with respect to the other and is referred
to as the slow axis. The other is the fast axis. For a more rigor-
ous discussion see [3], or [5].

There are two basic arrangements for photne]asticfty (51, the
cross polariscope and the circular polariscope (Figure 1).

In a crossed or standard polariscope, the two elements are a
polarizer and an analyzer. Both are polarizing prisms that convert
ordinary light into plane polarized 1ight. There is no light output
from the analyzer since it is "crossed" relative to the polarizer.

If a2 birefringent model is placed betweesn the polarizer and

analyzer {Figure 2), then Toaded, there is 1ight output.

ST T T e
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1/4 WAVE PLATES

ANALYZER

(A) Circular Polaricope

e

SOURCE

POLARIZER

(B) Crossed Polariscope ANALYZER

Figure 1. Optical arrangement for cross and circular polariscope
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The tight from the polarizer can be described by

E =

K'O axp jut)

When light enters the model, it is resolved into two components

p

e~

q

= E- CDSBXP

= F s-Inexp = R, expliot) sing,

= K, exp(fut) cose,

p

P

When it leaves the model, the Tlight vector becomas

Ep: = Kb exp{int + ¢p) cos 6,

q

E, = E; expl(iut + ¢ ) sin 6,

p

P

and when it leaves the analyzer

Ey

=1 -
=E_, sine,

P p

which reduces to

The imtensity becomes

or

—
|

2 )
i AO sin ZBX

L
Eq, cose,

P

p

E. = Aj exp(iwt) sin 23xp exp(1¢p) - exp(i¢q)

= A2 <in2 -
wAZ  sin Zexp[l COA ¢ ]

sin? (A )
2

(1.

(1.

(1.

.8)

s 2 N
o aa gmmrt T .
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Figure 3. Circular Polariscope with Model
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E} = ¥2/2 R exp(iut) (1.13)

After Teaving the quarter wave plate, the Tight vectors become

Eci = /2/2 B expi(ut + ¢7)

Eqs = v2/2 K, expi(ut + ¢) (1.14)
where
oe = /2 + bs

Upon entering the model, the Tight is resolved into two light vectors

along the principal axes, p and q. They are

E) = Epu (cos{w/4 - 6,))) + Eg, (sin(a/4 - 0,))
E, = Ep (sin(a/4 -0, ) - B, (cos(n/4 - 0,)) (1.15)

and upon Teaving the modei, these light vectors become

Ep, = Aogf expi (mt.+ S - w/4 + Op * ¢p)
E&, = = A Y2 expi (ut + ¢s = w/4 + 8p * ¢q) (1.16)
7 _
Note that
exp(iz) = 1
2
and that P
e
iexp(ie) = icose ~sine . .~ 7 éﬁ?
7 s 7
, . . ) {z & ) &
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Upon entering the second quarter wave plate

.—_-_ ’ E’S = E‘pg CUS(% - Sxp) + E\-i' s']n(% - BXD)

- v -‘. -;- '

: = Epuosinlm - e,) - g - 1.17
S E.f Ep 51“(34?__ exp) Eq cos(%;_ exp) { )

and after leaving the second quarter wave plate

-

= ;f%/z‘ expi(ut + 26 - L+ 3 liexp(is,) COS(zrﬂ_r_ " fp)
- exp('i¢q) Sfﬂ(zﬂ:_ ~ pr)]
< -E:u - Ezfzexpi(mt + 2 - _z_-i- exp)[wexp(iq‘:p) sin(E_ - ,exp)
; oy 'iexp('ici:q)cos(%_ - exp)] (1.18)

Finally going info the analyzer

2

£, = E‘f,,fzg‘- e % (1.19)
and after leaving the analyzer E:, reduces to
Er = f‘g expi(uwt + 24:5 + ZBXP)[exp(i¢p) - exp(i¢q)] (1.20)
2 .
The= intensity becomes
) I= 1 A02(1- COSA@
ar
1= uA% sin &Eg_) _ . (1.21)

Fora fringe
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and from the stress optic law [5],

Ag = n-l-['lf . : (1.22)

g = Foh(p - q)

Where
fo is a stress-optic coefficient
h s plate thickness
{p - g) differences in principal stresses.

So

p-q=np fo= 2max (1.23)

h
Equation 1.23 is the basic equation for photoslasticity. The

information above, along with the isoclinic infbrmatibn, gives an
accurate descriptioa of the shear stress field.

Photoelasticity has many applications in stress analysis, for
example it ds used as a tool in fracture mechanics[7.8] for analyzing
cracks. It can also be used in finding stress concentration factors
for various structures and has application for wave propagation(9].
1.3 Holography

| Holography takes adﬁantage of the interference of two coherent
light waves at a point on a film plane. Thé same mathematical model
can be used as describéd in 1.1. Figure 4 shows the optical arrange-

ment for holography. There are iwo beams, an object which illuminates

EREE Sy . ’ .
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Figure 4. Optical arrangement for holographic interferometry,
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the object, and a reference beam which is directed to the film plane.
This is the off-axis reference beam method developed by Leith and
Upatnieks [10].

Ho]cgraphfc interferometry is a double exposure technique. An
exposure is made of the abject before deformation, and an exposure
is made afier deformation. The surface displacement of a point is
recorded as a phase variation, and fringes are produced.

With the arrangement shown in Figure 4 [11]

it

Ep = Ay expi(ut + eR)

-ty

B

Eb expi(wt + ao) (1.24)
The total 1ight vector for the first exposure is
g=%+§ (1.25)
= 'h expi{ut + eR) + E; expi(wt + so) . (1.26)
For the second exposure after deformation
Eé = —h egpi(mt + eR) + Eb expi(wt + %, +-A80) (1,27)

whereA® is the change in the object wave due to deformation of
the object by loading. .

The intensity at the film for the two exposures is

DB Erel, T (1.28)
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Aftar developing the hologram, the film is then reconstructed

(Figure 5}, where

E,

Racon - I AR expi(wt + SR) i (1.29)

From this, three distinct terms may be separated: a virtual term,
a real image term, and an undiffracted term.

The virtual term is used for analysis, and it reduces to [12].

= 2 A3

I R

Virtual Ag (1 + cosas) (1.30)

As in photoelasticity , theae term .can be interpreted physically.

Ranson [12] shows (Figure 6} that theas term is related to a geometry

change or
A6 = 2 [(Ps + Po) - Bp'] (1.31)
A

where

| 3& is a unit vector from a point on the body to the 1ight source.
Eb is a unit vector from a point on the body to the film.
Ep' is the displacement vector.

The final intensity expression becomes

Wiptua1 = 2 AR A5 [+ cos(%m('ﬁs + o) - pp')] (1.32)

A fringe occurs when I =0 or when cosAs = -1.
With the use of a photopolymer, holography can be used to find

natural frequencies in compiex vibrating objects [13]. It is very
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Figure 5. Reconstruction of Hologram
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Figure 6. Geometry of Fringe Formation
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sensitive to out of plane motion, and can be used in wave propagation
studies when a pulsed laser is used [11].

Several optical techniques can be used o determine strains [12].
These are all basad on geometry changes in a grid pattern either etched
or projected ontc the object. The most populay of these is Moire' [15].

Recently the speckle effect has received atiention as a possible
means of determining displacement components. This thesis will deal

with this speckle effect in more detail.

BN

P Y e T



II. SHEARING SPECKLE INTERFROMETRY

2.1 Static Loading Theory

The optical configuration for shearing speckie interferometry
is shown in Figure 7. Note the use of the wedge in the system.
Because of this wedge, the focused image has superimposed on it a
"shifted" image in the direction oF the shear. For a shear in the ;
%, direction, a point P is imaged at (xy, Xo) and (x5 + 8%q, xz) in
the film plane, and a point P, is imaged at (X, xz) in the film

plane.
In order to obtain fringe data, a double exposure technique

is used. A photograph is taken of the body in some reference position.
The body is then deformed and another exposure is superimposed on
the same film.

Ranson and Swinson [16] have shown that at the point (xl, xz),

the Tight amplitude for the first exposure will be given by

S = -
Ery = Ep + Epy

whers

Ep= A expli ep(x],xz)]

Ep? A expli ap](x1,x2)] ' (2.1)
The total fntensity for the first exposure is

I =B B (2.2)

17
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whera ET? denotes the complex conjugate

or

L]
—
I}

= {A exp[i ep(x],xz)] + K exp[i ep1(x1,x2)]}
. {ﬂ'exp[-iep(xT,xg) 4—E'exp[-iep1(x1,x2)]}

= T2 .2 : .4
2+ R exp[1ep(x],x2) 18, (X7sx5)] *

pl

2 . o3 T2
A exp[1ep1(x],x2) 16p(x],x2)] + &

2K2+ 2R2 cos[ep(xT,xz) - epi(x]axz)]

For convenience we define @ = Gp{x1,x2) - Gp](x1,x2)

S0

I, = 282 + 232 cose

1

Similarily for the second exposure

-—— ey e

Erp = Epi * Epy

Where

-

pl

E

K expi
exp1[ep A8 p].

(2.3)

(2.4)

(2.6)

(2.7)

A O is the change in phase due to deformation. The total intensity

p
for the second exposure will be
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2= Erp + Ep* 3 (2.9)

= A i + + A i + .
A exp1[ep Aep] A exm[ep1 Aep1]
A exp(-i[ep +Aep]) + A exp(-i[ep] +Aep]]) (2.10}
which reduces to
I, = 2A2 + 2A% cos(s +4A8) (2.11)

whered 9 =A6_ ~A9
p pl

So the total intensity expression for both exposures is

o
(]

r= I+ I (2,12}

4

482 + 2A2%cose + 2R2cos(e +A8) (2.13)

Fringe data is obtained by taking the optical transform of the
film as itlustrated in Figure 8. For a transparency, the amplitude

transmission function is Tinear for the ranges of in%erest or

[161,

g(x) = a+bIT ‘ (2.14)

Where g{x)} is the transmission function, The Fourier transform of

g(x) is

e
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G(w) = exp[-izw /2k] L g(x) exp(-iwx)dx © (2.15)

Where G(w) is the Pourier transform function of g{x) which is the

1ight amplitude in the transform plane,:

k =2n/2 and
w=kp .
z

Now define

(w) = £ exp[-iwx]dx (2.16)

C(w) = [ cose exp[-iwx]dx (2.17)

S(w) = ,-sine exp[~iwxJdx (2.18)
So

Gw) =

exp[-izw2]F {a + b[4A2 + 2A2cosg + 2A2cos{s )]
2k ™

expl~iwx]}dx (2.19)

exp[-izw2]1[ {a + b[4A2 + 2A%coss(1 + cosm 8)
2K

- 2% sine sime]} - exp[-iwx]dx (2.20)

exp[~izw2][(a + 4bA2) 8 'w) + 2bA2C(w)(1 +cosxa)
2k

- 2bA25{w)sinas : . (2.21)

The displacement {nfoymation {s related to the minimun of ]G-&ﬂl

or when (1 + cosa8) = Q and s{mse = Q or
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A= (2n - 1)v n=1,2,3,...

As in other optical techniques, this ae term can bhe physically
interpreted. Ranson and Swinson [16] have shaown
that for a wedge, the wedge angle ¢ is related to the deviation

angle & by (Figure 9)
s§={(m- 1) | | (2.22)

Where m is the index of refraction and the amount of shift or deviation

A7 1is
Af = (m= 1)as’ (2.23)

Where s' is the distance from the Jens to the focal point (Figure 10),
When an object is illuminated by a single beam (Figure 11), the

wedge causes points P and P] to be imaged at the same film Jocation,

The separation on the film plane isafj,

| Consider now the phase variation of the two points P and PT'

 As in holography the displacsment wectors are '

+ -
PP = U;E&.
PiPy = gy = Uy +Axg)E; | (2,24)

The phase change is now

_ + .-3-_.-3- 1
ABZ = g§£p1s + p]oj PyPy




Figure 9, Wedge Effect

"

Figure 10. Lens Geometry
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Figure 11, Shearing speckle interferometry.
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P =,g§_fﬁ’s + pol + pp’ (2.25)
or for parallel unit vectors

Ag = g;r:['ﬁ's #Bol - (Bypy' - Bp') (2.26)
and fringes occur whenae = 7,3m,...{(2n - 1)7 |

so [18]

D]

(2n = Vv = 2o (1 + 1,)(3u ax + 3u Ay + 3u Az) +
PO 5 3y 5z

l

(m +m0)(g_lax + 3V Ay +3V AZ) +
S 5% 3y

(o3}
™

(ng +n )W ax +3W Ay + BN AZ) +
B8X 3y |

I

a
N

(2.27)

An experimental example of this technique is shown in section 4.1.

o A B A oA e 8 e 4t e e e
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2.2 Time Average

Consider again the arrangement of Figure 7 . This time the
object is caused to vibrate toward the camera, usually by a freguency
generator or oscillator. A film record is made of the object during
vibration. During the vibration, the object reaches two positions
of zero motion. This effect is in essence the double exposure or the
recording at two different configurations. The film record is pro-
cessed and placed in a Fourier filter system as before.

Again

By =, +‘Ep] (2.28)

where
Eg Al(xg + x¢')5(xy + xz'))expi[ep(x] 2Xp) +A8p]
and

E 1= Allxg xq')s %y + xz‘))expi[ep1(x]=x2);*-ae

; N (2.29)

P

Note that the amplitude A is a function of the frequency uf vibration
and Aep andA.ep] are the relative phase changes due to vibration.

The total intensity I is

‘t - i . . | |
= + . E * ]
I IO(ED Ep}) (Ep Ep] ydt (2.30)

IOA expi[sp "rABp] + A expi[ep] +AB

pil *

L

I

et
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Kexp[-i(ep +.f_\ap)] + Kexp[-i(ep1 +A0 )] (2.31)

pl

= L oM & Tayni - -
o 2R% + A exp1[ep +Aep ap] Aap]] +
2 _ifa + - - ' .32
A2 exp[ 1(63p Aep ep1 Aep1)] (2.32)
= fg 282 + R2xpli(o +48)] + A2 exp[~i(e me )] {2.33)
where
g = -
% "p1
AB ='-A8p -Aﬁp-i |
Recall ¢(x) = a+ bl (2.34)

which becomes

g{x) =a =+ bfg 2E2+ A2 expl[i(e +40)]+ A2exp[~i{e +a8)]dt (2.35)
= g + b[2A2t + ?exp(ie-)fgexp(iﬁe)dt + Kzexp(—ie).rgexp -ifae)ldt
{2.36)
As before
G{w) = exp(izw®)rg(x) exp(-iwx)dx (2.37)
2k
t
= exp(izw?)/m + b[2A2% + E?exp(ie).rb exp(ire)di
2k :
+ T2 exp(~i0)/C exp(-0)dt]} exp(-ixw)dx | (2.38)

I

exp(izw2)a s(w) + 2A2bt s(w) exp{izw2)
2Kk 2k

+ bexp(igu) [RRexp(ie )/ exp(i o)dt

[ PP

R e .
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t

+ K exp(-io)s

exp(-ia @)dt exp[-iwxldx (2.39)

As before theA @ term can be expressed as

A@=2_1T("Is +10)(a_qu+ggAy+ggAz) +
A 3 X 3y 3z

(mS +m0)(§_u1Ax +OWAY +3WAZ) +
X 3y 32

(ng + ng)(awa x +3wWAy +3wA z)

X 3y

=

Now consider a specific optical arrangement (Figure 12}.
1. =1 1. =cos B
0

=]
ji]

o

=
[}

sin B

=
H]

o

=3
n

So A © now becomes

" Aae=2r (1 + cos B)au + singdwAz (2.40)
A 3z 3z

Assume 3w is negligible and u = uo(z) sin t , where U, is the
3z
maximum amplitude of vibration and « is the frequency of vibration.

3U = 3ug sin wt (2.42)
3z 3z .

For convenience define

LS. N : .
T B R . N
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SOURCE

Figure 12, Specific optical arrangement for vibration
shearing speckle interferometry.
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B + exp(izw?) s(w)[a + 2A2 bt] (2.43)
2k
Now substituting Equations 2.40 ~ 2.43 into equation 2.39
G(w) =B + bexp(izw—"—).r[ﬁzexp(ie)fg expif[2n(1 + cosB)A zaugsinut]ldt
2% 1

9Z

+ F"-exp(-i@)fgexp(-i[z_nﬂ + cosB)Azaugsinut])dt exp(~iwx)dx
Y 8z (2.44)

Recall that

ZwJo(x) = fﬁ“exp(ix sine)de (2.45)
if x. =27 (1 + cosB)dughz
A 3z
8 = wt
de = wdt
t] = 21T/U.\
then

G{w) = B + bexp(izw?)s[A2exp(io) d (2n(1 + cossh B u,)
2k A

: 52
+ R2exp(ie) Jo(2u(1 + cosgl z3u)] exp(-iwx)dx (2.486)
A 37

Relative minimums occur when JD(x) = 0 or when x = 9; where ¢. values
‘are tabulated in Table 1.

So

Z(1 % cosBh By =4, | (2.47)
X 3
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TABLE 1
ZERO VALUES FOR Jo(x)

%

It

2.40 | -
5.52 |
8.65
8y = 11,79
14,93
18.07

e
o
N

1]

=g
o
w
1t

u

21.21

i

24,34

=]
I

0g = 27.49 )
= b
36,92

L=
—
™

n

40.06
014 = 43.20

It




III. SINGLE BEAM SPECKLE INTERFEROMETRY

3.1 Static Loading

An object is.i1luminated by the laser 1ight before deformation,
and a photograph is taken with a conventional camera system as illust-
rated in Figure 13. The objgct is then deformed, and again another
photograph is taken superimposed on the first.

For the first exposure, the light vector can be expressed

as
E1(x15%5) = Klxqa%5) expliafx;,%,)] (3.1)

where
(x1,x2) - #i1m piane coordinates
e(x],xz) ~ phase at ¥ilm
ﬁ(x1,x2) ~ amplitude factor '

The intensity expression for the first exposure is

E.* | (é.z)
Now for the second exposure, again

Eé(x'T,x‘z) = ﬁ(x'],x‘z) exp[ie(x'],x'z)] (3.3)

and a similar expression exists for 12
Wilson [17] has shown that the total intensity at the film plane
is

33



/Q\;: . ' !l /\MERROR
LA SER | <

12




Reer

35

I = AZ(x1,x2) + Az(x‘1,x'2) | (3.4)

Wilson further shows the relation between the intensity distribution

to the displacement of the surface.

I; = Az(xi,xz) + A2(x1 t UpeaXy * UZf) (3.5)
where

Upg = Muy

Uye = Mu,

M = Magnification factor
Ugslly = displacements in X1 sXg diractions
The amplitude transmission function g(xi,xz) for a photographic

film can be approximated as a Tinear function of intensity for the

ranges of interest, or
g(xi,xz) =a + blp (3.6)

where a and ‘b are film constants.

So
Q(X-I :XZ) =a+t b[Az(X-] ’XZ) + AZ(X-I + u-!fuxz + u2f)]

Again the Fourier transform of the transmission function must

be obtained. For convenience the x, coordinate will be suppressed or

glx) = a + blA2(x) + A2(x + ug)] (3.7)

e A i . 4 b ¥ e e m | e < 1 o
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Therefore as in equation 2.15
Gw) = exp(izw?) fg(x) exp(~iwx)dx
2k
Wilson has shown that G(w) reduces to

G(w) = b exp(izw?) FLAZI[1.+ exp(-iwu%)]

k

where .
FIA2] = fA2(x) exp(-iwx)dx
The intensity in the transform plane is expressed by
IF = Glw) - G*{w)
So IF finally reduces.to
Ip = 2b2 FAZ](1 + cos(wuf))
and fringes a;e defined when
1 + cos(wuf) =0

or Wi = (2n - 1)w

) Az

or u. = {n - 1)
f 7 P

An experimental example of this technique is shown in section 4.3,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

e v s
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3.2 Time Average

Again, refer to Figure 13 for this arrangement. A frequency
oscillator is used to induce vibration, a single beam of laser Tight
is used to illuminate the object, and a camera records the motion.

The 1ight amplitude can be expressed as [17]

EIXT,xz) = EIx1 + x‘1,x2 + x'z) exp[i(e(xT,xz) +A8] ‘(3.16)

where
xi,xz - Film constants

x'l,x'z - function of amplitude of vibration,
frequency, time, and Tocation

@ phase angle
A ©- change in phase due to vibration

The Tilm exposure time t is-
t
0

o
£l = 15 Elxa%y) - g*(xT,xz)dt (3.17)

Again, suppress the coordinate notation so

P = _ Lt . .

tip = o E(x) » E*(x)dt = Iy A(x +x')dt (3.18)
Physically x' is related to the frequency of vibration and the time or

xf = uf(x1,x2) sfn wt o . | (3.19)

where Ug is the maximum displacement on the ¥ilm plane,
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Recall

g(x) = a + bI;

a+b ST A2(x + ug sinat)dt (3.20)
t

This amplitude transmission function is then Fourier transformed

or
G{w) = exp(i;gz)fg(x) exp(-iwx)dx ' (3.21)

As before, this expression is evaluated and is a function of

the Bessal Function as Wilson has shown [17].

G(w) = b_ exp(izw?) F[A<] d (uf w) (3.22)
tw 2k

where F is the Fourier Transform function. Zeros occur when
Jg (ufw) =

or

3, (2mpug) . g (3.23)
AZ . _

Refer to Table I for zeros of the Bessel function. An experimental

example is shown in section 4.4,
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IV. EXPERIMENTAL VERIFICATION

4.1 Double Exposure Shearing Speckle Interferometry

Consider a cantilever beam with a shift in the z direction only
(Figure 14). Equation 2.27 reduces to [16].

(2n-1)2= 2[(1  + To)3d + (m

g Tomgav + (ng + n)awlaz
32

A
From figure 14
10 = 15 = CcOsé
m, = 0 me = 0
Ng = 0 ng = singé

so
(n~1/2)a = [(1 + cose)g + sin e——-]Az

For a cantilever beam with tip deflection §, then

u =?—§['é’ 1-2) (xé y2)- gz + 5122]
_ 38
W= 3 Brey2 - (1z - ——)XJ
a2 38p=y(x® - y2) - 222 + 1]
aw - 38
7 = =2-1x + zx]
13

Along the center of the beam y=0 and x=.125 in.
Then

9

(4.1)

(4.2)

{4.3)
(4.4)

(4.5)

(4.5)
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Figure 14, Experimental arrangement for double exposure shearing

speckle interferometry.
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2 (-.201 - 34.77% + 816.62) x 1070 (4.7)
%’- = (-52.1 + 8.682) x 1078 (4.8)

By substituting 4.7 and 4.8, plus the other information, into
equation 4.2, a theoretical fringe equation can be obtained as a function
of beam Tength z.

(n—%)a= [1.942(~.201 - 34.7z° + 416.6z) x 1078

+0.335 (~52.1 + 8.68z) x 107°7 (.0899) (4.9)

or:

2

n = .436 + 2.93z - .244z (4.70)

A shearing speckle photograph was taken and filtered, which
is shown in Figure 15.

Using Equation (4.10), a theoretical fringe plot was made and is
shown in Figure 16. Using the shearing speckle photograph, the
actual fringe order as a function of distance can be Tound and is
plotted on the theoretical éurve of Figure 16. The agreement is

obvious.

4.2 Shearing Speckle Interferometry Vibration

Again Took at Figure 12 and let the object be a cantilever beam
with the configeration shown in Figure 17. Nowacki [18] presents a

solution for the amp1ftude'of vibration along the beam as

e - X von | (4.11)

)
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Figure 16. Comparison of theoretical curve and experimental points for double
- exposure shearing speckle interferometry.
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Where
W is the amplitude

C 1is a constant

U(a z) = coshA,z - CoSAZ

2

V(ﬁrz) s1nh1rz - sinAz

2

S(Br) - %,(coshsr + cossr)

n

1 . .
T(Br) E-(s1nh6r + s1n&r)

‘A, 1s wavelength due to vibration
BP = ArT .
The transcendentdl equation- for a vibrating cantilever beam is .[19]

coshg. cosg. = -1 (4.12)
P r _ -

The solutions are tabulated in Table 2. For the first mode of

vibration r=1 and at z=1

;1) = & = c[ U(gy) - ﬁv(sﬂ] - (4.13)
So
ty = U(hz)- .73 V(3y2) | (4.14)

for the first mode.
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TABLE 2

Solutions for Transcendental

Equation for Vibrating
Cantilever Beam

B r
1.875
4.694
7.855

10.996

14.137

ik es el
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Taking the derivative of N1 (1) the %%-term can be found.

an
ot——— T

lau g_[(sinhu],z)' * sin{A,2)) -
§az "2

(.734(cosh(ai,z) - cos(l1,z))] ' {4.15)

A cantilever beam with dimensions and properties shown in
Figure 17 was vibrated in the first mode, with two different tip
deflections, and shearing speckie photographs were taken. These
photographs were Fourier filtered and drawings are shown in Figure
18. |

From Equation (2.47)

l13u 4. '
§a7 © LA (4.16)

Zn( 1¥cosg) Az,

Fram the theoretical equation (4.18) a curve is drawn in Figure

19; the data points are plotted on this curve. The agreement is obvious.
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Figure 21, Drawing of the Purier transformed image for
single beam speckle double exposure.
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4.4 Single Beam Speckle Vibration

Figure 23 shows the experimental configuration used. Again
using the solution by Nowacki [18] for the first mode

M= UlAg,z) - 734 V(ay.z) (4.20)
3

This gives a theoretical curve for the vibration amplitude.

Recall Equation {3.23)
Jol2mptic/az) = 0 | | _ (4.21)

For the point-by-point data reduction (Figure 24), the distance
between the first two fringes is the zero of the Bessel function

giving
2rpu/Az = 2.40 | | (4.22)

For the distance between the second outer fringes, the second

zero of the Bessel function glves

pruf/Az = 5,52 (4.23)

Table 3 gives the results of the data reduction. Notice at
Z ='4.95 in. through 6.67 in., the second outer fringes were used,
thus the chaﬁge in the tonstant re1atin§ displacement to fringe
spacing.. | o
" Figure 25 shows a plot of the experimental and the thedretical

displacement curve. Again the agreement is obvious .
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Figure 25, Theoretical curve and experimental points for vibration single
beam speckie. '
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Model
Location

2.86
3.14
3.33
3.62
3.81
4.00
4.18
4.38
4,57

4.786
4.95

5.14
5.33
5.52
5.71
5.90
6.09
6.29
6.47
6.67
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TABLE 3
DATA REDUCTION FOR VIBRATION SPECKLE
X Model

4,50
3.56
3.14
2.95
2.78
2.57
2.5
2.38
1.92

1.85
4.08

3.89
3.60
3.39
3.20
3.10
2.90
2.76

-

2.70

Ug Model

1.56x10™*
1.98x10~%
2.24x107%
2.39x107%
2.53x107%
2.78x10™%
2.82x107*
2.96x10"%
3.67x107%

3.80x10™7
3.97x107%

4.16x107%

4
A

4,50%x10°
4,78x10”
5.06x10™
5.23x10™
5.59x10™"

5.87x10™%

-

§.00x10™%
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V.  CONCLUSIONS AND RECOMMENDATIONS

The speckle effect has been noticed for several years by many
investigators. The theory for shearing speckle and singie beam
interferometry was developed.

Shearing speckle, 1ike holography, is dependent upon a' phase
change. In general, for a shear in one direction at least two
derivations of displacement terms are combiried in the fringe pattern.
Experimentally shearing speckle is simple to set up, and for double
exposure the fringes are easy to transform. For time average ana-
lysis, the fringes are difficult to transform. For this type of
experimental work time average holography yields much clearer fringes,
and with photopolymer recording, natural frequencies of complex
vibrating objects can be found.

Single beam speckle interferometry is dependent upon an ampli-
tude change. This technique 1is very simple to set up experimentally,
yielding two in-plane displacement components. For time average,
single beam speckle can be used to determine the amplitude of motion,

even for thin structures.
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