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ANALYTICAL AND NUMERICAL INVESTIGATION OF STRUCTURAL
RESPONSE OF COMPLIANT WALL MATERIALS

By

R. Balasubramanian1

SUMMARY

Theoretical analysis of an electrostatically driven wall system for a

compliant wall drag reduction program is reported. The electrostatic wall
system is capable of producing deflections of many orders greater than the wall
thicknesses and at small wavelengths. An intermediate large response theory

is used for structural analysis. The theoretical predictions are compared to
bench test results, and good agreement between the two is obtained. The effects
of aerodynamic loads and perturbation electric fields on the theoretical
solutions are considered. It is shown that for very small wavelengths

(A = 2 mm) the aerodynamic effects can be estimated using potential theory
without loss of accuracy, and the perturbation electric fields do not affect
solutions as long as the deflections are less than one percent of the wave-
length. Resonance effects for thié type of structure are shown to be fairly

small.

1. INTRODUCTION

Details of the compliant wall drag reduction program at Langley have
been discussed in a supplementary report (ref. 1) under the present grant
NSG 1236. It was pointed out in that report that passive walls with short
wavelengths and large amplitudes are extremely difficult to design. Extension
of grant NSG 1236 was given in order to design controlled active wall experi-
ments. The amplitude of surface motion desired was given to be in the range
of 5 x 10°5 m to 2 x 10™% m, the wavelength of the surface motion in the range

2.5 x 1073 m-to 6 x 1073 m, and the frequency range to be between 300 Hz and

1 Research Associate, 0ld Dominion University Research Foundation,
Norfolk, Virginia 23508.



2 kHz. After careful evaluation of existing techniques for active wall
experiments (refs. 2 to 4) it was decided to develop an active wall system using
electrostatic forces as loading to the structure. The choice of materials

for this system was narrowed to extremely thin elastomers, and the amplitude
constraint given above dictated large values of the ratio of amplitude thick-
ness. A nonlinear structural response analysis was conducted to determine
accurate surface motion predictions. 1In sections 2 to 4 the electrostatic

wall system is discussed in detail, and in section 5 comparisons with experi-

mental measurements are reported.
2. ANALYSIS OF THE ELECTROSTATIC WALL PROBLEM

The recent summary paper (ref. 5) suggests that low-speed air experiments
for compliant wall drag reduction be conducted with controlled or active wa;l sur-
face motion to assess the nature of possible turbulent boundary layer modifications
due to the wall motion. Previous active wall experiments reported in the litera-
ture (refs. 2 to 4) used mechanical drivers; these drive systems are inadequate for
producing high-frequency, short-wavelength motion contemplated for active wall experi-
ments at Langley. The present work describes an electrostatic wall designed to
operate in a frequency range of 200 Hz to 10 kHz with two-dimensional standing waves
of wavelength 2 x 10-3 to 10”2 m. The structural surface is basically a thin elec-
trically conducting elastomer membrane with a series of transverse electrodes etched
on a PC board as exciters. The structure is periodic, supported at discrete lines
by transverse ribs. Figure 1 shows the electrostatic wall system along with the
electrical hookup. Referring to figure 1, the output from the transformer T
is biased at the center-tap and connected to the terminals A and B as indicated.
The conducting membrane surface of width b and thickness h and isotropic
properties (Young's modulus E, density p, Poisson's ratio ) is supported
structurally at separations of length &, where & << b; the membrane surface
is electrically grounded. The electrodes are equally spaced from one another
and at a separation H from the membrane surface, and they are connected
alternately to terminals A or B. Each periodic bay of the conducting surface

has a sealed cavity of volume V{(H X £ x b) underneath it.

The electrostatic wall model is designed to operate at a frequency range of
200 Hz to 10 kHz. The largest dimension of the model is about 0.4 m, speci-
fically for testing at the 7 in. x 11 in. tunnel facility at Langley. The

largest nondimensional speed is



WL _ 0.4 X 2w x 10000 __ . 2.1

° 3 x 108

Q

where w = 21Tfmax and g is the speed of light. Hence, the electric field

between the electrodes and the membrane is quasi-static.

When the electrodes carry voltages, an electric field is set up between
the membrane and electrodes and the membrane is subjected to a force field.
The membrane daflects under this loading thereby altering electric field
distribution. For the case where the electric field is only a weak function
of the surface undulation, it is possible to uncouple the electric field into
a primary field (field with no structural motion) and a perturbation secondary
field which is dependent on the amplitude of the structural motion. The deflec-

tion of the surface can also be split into a primary deflection (under the loading

due to the primary field) and a perturbation field, i.e.,

H

E= Eg + E;j(w,Eq)

w(®0) + wy (w(Eg), E) (2.2)

%
0

~ -~

where E; << Ep and hence wj << w(Ep)
3. STRUCTURAL ANALYSIS OF THE MEMBRANE ON PERIODIC SUPPORTS

3.1. Basic Approximations to Structural Analysis

We shall make the following assumptions with regard to the structure under
consideration:
(i) The structure is a thin elastic membrane with isotropic properties

(Young’s‘modulus E, -density p and Poisson's ratio = v)}.

(ii) The structure is rectangular, flat, and simply supported periodically
at distances £. Each periodic bay is identical with regard to the loading

on it, etc.

(iii) Beneath each bay of the structure is a cavity which is filled with
an incompressible fluid. Hence any transverse motion of the structure should

be so as not to decrease the overall volume of this cavity.



3.2. Justification of the Basic Approximations

We shall now examine the above assumptions for the case of a typical

electrostatic wall as designed:

(a) The elastomer used was a membrane of thickness between 2.5 um to 25 um.
(Four thicknesses were actually used: 25 uym, 12.5 uym, 6.25 um, and 2.5 um).
The membrane was uniform and was an elastic material with v = 0,3, p = 148 N/ms,
and E = 4 x 108 N/mz. In order to make the membrane conducting, it was
aluminized on one side. The process of aluminizing did not change its uniformity
nor its elastic properties in any considerable way, hence the validity of the

assumption (i).

(b) The membrane was usually stretched smooth and placed flat over supports
which were nylon threads. The supports were spaced equally from one another.
The nylon threads were cylindrical in shape and were glued to the membrane with
a uniform coating of epoxy resin of negligible thickness. 1In all cases of
construction the flatness of the surface was checked using an optical setup and
was found to be extremely good. The excitation field on the membrane was
obtained using a symmetrically arranged array of electrodes which were etched
on a PC board. The electrodes had a flat gecmetry, were of identical thick-
ness and breadth, and were equally spaced. The alternate electrodes were
connected to terminals A and B of a voltage source. Negligible current was
drawn by the resistance of the wires, and hence a constant potential difference
existed between terminals A and B. The electrostatic loading on the membrane
was therefore identical between bays for the form of applied voltages V_, and

A
v (see section 4 for the analysis of the electrostatic loading). Other

firms of loading that might occur on the bays include fluid loadings due to
static pressure differential appearing across the membrane (the static pressure
difference can be held constant or nulled using control valves for adjusting
the back pressure of the cavities) and dynamic loadings induced by turbulence
(1f tested in a wind tunnel with flow over the membrane) and loadings due to
fluid structure interaction. The main body of the present analysis and
experimental verification was for bench models whére the fluid loadings were
zero, and hence the fluid lcading effects are not considered here. However, in

a later section we include these cases and indicate how such cases can be

included in analysis for an accurate prediction of the ensuing structural motion.



{(c) The cavity underneath the membrane was of uniform depth of about
6 um or 10 um. For a membrane with a width of about 0.2 m and periodic
length of 0.0l m or less, the volume of the cavity is 2 X 10=8 m3 for the
worst case. For a volume change of 0.0l percent of the total volume by any
form of motion of the structure, the bay would have to suffer a loading
of 1 kg/mz. Since the electrostatic forces acting on the membrane in each bay
are orders of magnitudes lower in strength, such a change in volume is not
possible during the motion of the membrane. In other words, the spring stiff-
ness of the cavity for motions which tend to change the volume is many orders
of magnitude greater than the stiffness (of the structure + cavity) for
motions where no such compression occurs(i.e. the stiffness of the structure
in a deep cavity or in vacuo). For the example considered above, the stiffness

introduced by the cavity for motions where change in volume occurs is

ky = AF/AV = 102 kg/m3,

which is very large compared to the in vacuo stiffness of the structure
Based on the above discussion it becomes apparent that assumptions (i), (ii),
and (iii) in section 2.1 are justifiable approximations to a structural

analysis.

3.3. Structural Response Theory for Transverse Motions

of the Periodic Membrane

The undamped structural response in transverse motion of a simply supported

rectangular periodic membrane is giwven by

3 2 2\2 2 2
ph32w+[ Eh :I(a +a>w-[Nxa—"—]—+Nﬁ+N aagz}l,e (3.1)
3c2  L12(1-v2) f\ox?  ay? ax2 ¥ ay2 XY 9X%Y
, Eh3 . .
where the gquantity is the flexural rigidity of the membrane, p® is
12(1 - v2)

the total loading (in vacuo external load and the fluid loading), N, N, N
. X Xy
are the midplane forces, and w 1is the transverse motion of the membrane.

To evaluate the midplane forces, one must have an idea of the nature of the

loading on the structure. Based on a classification of the external locading we



can classify three distinct regions of structural response. To fix the above
notion, let us use the following nondimensionalization.

h
)

W_ . h_ .E\/E-:T.ﬁ_:ﬁ.
g =@ 4 YND * En ’

=3 L=y (3.2)

=
(=3
i
o
=K

Equation (3.1) in nondimensional form is given as,

2 2 2 2 - 2 - 2 - 2
aa+[ L ]Y2[3_+a_] a-[Nx—a:-’fN ==+ ¥ 3-]61
a1 L12(1 - v?) ax2  ay? 9% Y 3y XY %3y

1t

el

(3.3)

For the case where the initial stretching forces applied at the edges of

the membrane (i.e. the forces N_, N_, N are all positive) the effect
X0 yo Xyo

of these tensile forces is to limit the amplitude of motion and thus raise the

effective stiffness to transverse motion of the structure. When the initial

fields N s N , N are negative, the fields are compressive and instability
X0 yo Xyo

of the structure may occur (i.e. buckling instability).

When the initial compressive stresses are large enough to cause buckling,
the rectangular membrane will no longer be flat, but will have a deformed shape
under these compressive loads. With the presence of the cavity the initial
shape of the membrane is very complicated possibly with local buckling within
the bay at some points, etc. This situation is rather unpredictable because
of precise knowledge of the initial tension or compression, especially for
such flimsy structures. Since it is very difficult to apply compressive
stresses while mounting, usually care is taken to keep the membrane with
zero initial tension. The subsequent analysis and prediction are simplified

by the assumption of zero initial tension.

The following classification of structural response requirements is made
with the assumption that the periodic bay is short compared to the width and

the initial tension field is zero, i.e., b >> £ and N = N =N = Q.
X0 yo Xyo



Regime I: small amplitude theory. — The region of applicability of this

theory is for = a/y <0,10; thus, this analysis is valid for load parameter

w
h
- 1.6mh 1 . _ _
P < —=2—— = ., The structural response can be conducted using Nx = NY =
12(1 - v2) y3
ny = 0 in equation (3.3). The transverse motion is therefore decoupled from
inplane motions for this case.
Regime II: (intermediate) large response theory. - For this regime the
midplane forces are no longer negligible. For analysis of this case,
Von Karman's theory is employed. For the type of flimsy materials we use,
even at very large amplitudes the structure is within elastic limits. Based

on an order of magnitude analysis of terms such as ux2 compared to terms like

u.r sz we suggest that the intermediate large response theory we develop is
. <
valid for %-< 0.03 or for load parameter p, = 0.008.

Regime III: large amplitude theory (for'pe > 0.008.) - For this region
there are very few available methods of solution. The analysis should incor-
porate large rotation effects. Equation (3.1) is not valid for such analysis.
For static cases Reissner’s theory has been used with some regularity. The
problem is a fully three-dimensional elasticity problem with all components
of motion fully coupled with each other. Little progress has been made in this
area over the years. Experimental studies in these amplitude ranges are few,
and most have been using plates which are fairly thick (compared to the thick-
ness of 6 um with which we are dealing). Even before the small deformation
implied in the theory for Region II becomes invalidated, it happens more often
than not that the tensile stresses under large amplitude motion go beyond
tensile strength limits. The structure becomes locally plastic, and we no

longer can use the isotropy assumptions implied in the analysis.

For flimsy materials such as we use, the maximum tensile stresses induced

in large amplitude static motion are given by

2
1 - 2 22 8 2 %



This stress should be below the tensile strength of the material we use,
if assumptions of isotropy are to be valid. For the periodic structure we are
using in our analysis, the longitudinal inertial effects are negligible as will
be shown later in the analysis, and hence the large amplitude vibration problem can
be viewed as a quasi-steady problem, especially while evaluating stresses. Hence
the bound on the limits of an analysis such as that for Region II will definitely
fail if

o't > cts

o} .
where ts = tensile strength of the structure.

For the polyester film we use as the structural material the tensile strength
cts = 1.5 x 107/ N/m2 and E = 4 x 108 N/mz; the smallest wavelength used was
A = 1.814 mm and the thinnest membrane had a thickness of h = 2.54 um. From
eguation (3.4) we obtain the maximum limit on w/h beyond which the structure

will be at least locally plastic as

= 84.0 (3.5)

w =\'/GTs*tl*(l - v2) _ 2 | -v2)91g
o = 2

E x m2y2 Y

We had given the limit for validity of analysis for Region II by consideration

of the small deformation approximation implied in it as

w
T-22 -5, (3.6)

for a = 1.4 x 10_3, a typical case. Hence, it is feasible using the structure
we are designing to study the limits of validity of the moderate large amplitude

analysis for the first time in our knowledge.



3.4. Structural Response Theory for (Intermediate)

Large Responses of the Periodic Structure

Equation (3.3) in nondimensional form represents the governing equation for
transverse motion of the structure. We make assumptions (i), (ii),and (iii)

of section 3.1 in our analysis; i.e. b >> ¢ and

fwdxdy=0
v

furthermore, we assume that the excitation field is of the form

2
f f:e sin Imf—% dx = 0 for m = odd numbers (3.7)

0
where. §e is the loading function in each bay. The excitation field that will
‘be derived in the next section can be shown to be of the above form for a given

form of voltages at terminals A and B of the electrostatic setup.

For a simply supported rectangular bay, the deflection shape can therefore

be only of the form

_ ., 2mmX ., nuy
W—'Em:;wm sin —p sin b (3.8)

Furthermore, because of uniformity of the electrostatic field in the y direction,

the choice of the deflection shape is restricted to

_ . 2mmX . - my
_Er;gwmn sin 2 sin (2n 1) . (3.9)

or, in nondimensional form,

a =§§ a sin(2mwx) sin(2n - 1) (TyB)

where B = /b {3.10)

defining:
m = 2mm (3.11)
(cont'd)



Bz = (2n - 1)gm

yields
_ (1) . == _. - .
a —Z:Z: a , sinmx sin Bny (3.%1)
(concl’a)
3.4.1. Midplane forces. - During deflection under transverse load the

E E__ . Assuming that the external
YY., Xy

load parameter extends through Region II, we define the midplane forces as

midplane suffers in plane strains Exx'

S A
(1 - v = e
Y@ -9
_ __En
Yoy TZT@ + W (Exy> (3.12)

In terms of the nondimensionalization adopted in egquation (3.2):

-
ﬁx = —L— rE}—{;( + v E-=

1-9v2L ¥y
ﬁy=——-—l— Egs + v Bz

1 -v2 L YY XL
N o=t - 3.13
Xy 2(1 + v) "xy (3.13)

The midplane strains are related to the components of deformation as

- 2
w5040
ax 9%

2
E-- == -3—1—’ + % <a—-a.'.>
Yy 3y

oo - 30, 3%, 3ada

% -+ (3.14)
Y oy 9x Ix dy

10



where u = u/%, v = v/% and u, v are two dimensional in-plane displacements.
Before setting up the dynamic equations of in-plane motion we introduce the

following consideration:

The frequency of excitation for the electrostatic wall is well below the
longitudinal natural frequency of the structure, For this case the in-plane
motions are stiffness dominated. Hence, the effect of longitudinal inertia can
be neglected.

The above requirement is satisfied if the reduced frequency fL/csh << 1
(but a more relaxed criterion can be éEL < 0.10), where £ 1is the operating
frequency, ®ih is the shear wave spegg, and L 1is the wavelength of the
primary motion. For the electrostatic model L = 2, the maximum frequency of
operation f = 10 kHz, and S =\/§f= 1690 m/sec. For the largest wavelength

model that we considered, 2 = 7 mm. Hence, gﬂi = lZgO = 0.04 < 0.1. Thus the
s

neglect of longitudinal inertia in all the subsequent analyses is well justified.

The dynamic equations of in-plane motion are now given as

3N-  3N--
_..i -+ ——y-X = Q
ax dy
N=  ON=--
__l + __1__!2 =0 (3.15)
oy 9x

Substituting the relations given in equations (3.13) and (3.14) we get

3%2u . 1 -v 3% 1+ v 9%

— + + — + F—()-{l;IE) =0

9x2 2 ay2 2 Ixdy X

32— - 82— + Vv 32'- - 9

_v L L : v _v + 1 : _11 + F-(X,y,t) = 0 (3.16)
ay“ ox x93y

where

11



- - 2 _ 2 5
F;{(x,y,t) = a_f-[a_a + 1 Vv B—a] + 1 -25- v _3% 3. a_
3% Lax? oy dy 9xdy

- - - 2 - 2 2
F-(x,v,t) = _@%[B-a + 1 > v 3_a]+ 1 -|2- v g% 3_a_
Y oy Lay ox 9x 9xdy

For the deflection shape, we use equation (3.11).

we get expressions for F; and Fl; as:

Fy = %ZZZZ asy an {sin L(E + 5);{:’ cos [(8]-{ + BE);?]

1+ v
2

1l -v
2

-[3{12+

B2 +

X BE BE }]+ sin[(;i-.

- Dz ]

. COS[(BE + Bz)l-/'][s <12 + 3 ; - Bé + 3 ; . Bi BI}]
- sin [('j'_ + 5)§] cos[(BE - ng)}_(][g{{z s 2 ; - B% -4 ; >
S [(I - '3')}—;] cos [(Bi - BE)SEJB{JT;Z + }";’2 B)% - ; >

F; = %ZZZZ 2, ajz {sin [(Bi + 85)1-7] cos [(E + 3)}?]

- [epeg + 2522+ 2521 D] - ain [agg
[0 + 252 12 - 2521 ]+ san [
[o782 + 25212+ 1221 1)

+ 81)37] cos
- BE)}-/] cos

- BE)E;] cos

(3.17)

Substituting in equation (3.17)

(3.19)

12



From the known form of F; and F; one is now able to proceed to

solve u, wv.

3.4.2. Edge conditions. - The edge conditions describe the state of

fixity of the structure for in-plane motions along the edges. For the simply

supported periodic structure the edge restraint is

u(o,¥,1) = u(l,y,T) = 0
- b
v(x,0,T) = V(X,I,T) = 0 (3.20)
3.5. Solution of the In-Plane Motions
Since equations (3.16) are time-dependent equations, a transient solution
which depends on the initial condition will exist along with the solution of
equations (3.16). This particular solution will be representative of the initial

displacement fields that may exist (e.g., if initially the membrane is stretched

with uniform tension T, the initial displacement field will be nontrivial).

For the case of zero initial tension, the particular solution takes the

trivial form:
uo(§,§,r) = vo(§,§,r) =0 (3.21)

For the solution of equation 3.16 we take the displacement fields as,

a =§:§:z:z:[éijk2(1) sin {(E + 5)§} cos {(BE + Bi)§}
+ Bijkz(T) sin {(i - S)E} cos {(BE + B-)Y}
+ cijkl(T) sin {(1 + E)Q }cos {(BE - 81)5}

*+ Dysy(T) sin {(E - S)E}cos {(s]—{ - B?}?}] (3.22)

13



v =ZZZZ [Eijkz(r) cos:(i + 5)}?} sin{(Bi +BE)§}

+ (1) cos{(-i- - 5);<> sin{(B]-; +B:£)3—7}

Fisxe

+ Gy (1) cos{(JT. + 5);‘} Sin{(BE ;BE);’}

+H (1 cos{d - %) sin{ce; -8p7)] (3.23)
Substituting for the derivatives of a, v, F}-{, Fi; in equation (3.16) and
equating like terms one obtains a set of algebraic equations for the coefficients

A, .

19%0" etc. We give one set of these equations as:

2 2
I+3 1=V 1+Vv (- = :
o) 15 v ) | g [ (0 o)

_ 1 e ) L =-v 2 1+v .,
=7 %ix ajz[J{l BT & BTL}] (3.24)
. 2 2
+ Vv T iy l-v /= T
Bike [ 2 (BE * BE)(l * 3)] T Eigxe [(312 * BE) T2 (" * 3) ]
=1a a B-{33+1““12+1+"E"} (3.25)
4 %ix %32 | %k 2 2 3 .

and similar equations connecting other coefficients. Finally the coefficients

are given as:

2
A o _ikZie 1 ]

1+v 3 3 2 l"\)Tz l+v <<
-< 2 )(1’“3)(‘5};“31) Bg(ﬁ}'{* > 1+ T 13)] (3.26)

14



For i # 3,

5 . 2350
i3ke 2(1 - W)

when 1 = j, Bijkz =0

gy

.—_—.—2 - -
(1 - 3)° + (Bk + BZ)

1

c _ k%4
ijke 2(1 - v)

and whenever i = j, Dijkz

1+ 32+ (8- - B2

2 .
bl i 1 ~-v 2
{J[l e &

Vv [ - - 2
P (1 + 3)(512 - Bz) Bz (BE +

2

1+ v 2 1
7 R BE][(BE - Bz) *

= 0, and in other cases

5 _ ke
ijkg 2(L - V)

2
1
2

- -\ 2 - _' _
(-3)%+ (8 - By

j)} (3.27)

15



2

_ 138 1
Bigke = T 2(L = V) 2

(L+ 2+ (BE + BE)

- 2\ s )72 . 1- 2 1+
'[13\’ Gerog) @+ 3{T 52+ 252 )

2 : [ 2 1 2 1+
- - -V =V iy vV ¥
'{(i‘*j) T3 (BE+BE> }\3E+ 2 Pt 13}51] (3.30)

2

a, a,
. _ _ ik 3¢ 1
ijke 2(1 - v) I -32 + (BE + BE)Z

1+V =\ =] 1 -v 2 l+v _
'{—5—-(6§+B§)(-3\)J':1+ 3 Bt T3 Bkﬁl]

L2 - 1-y2 l4yz=
+[(i'j)2+lzvéi+si>2][52i+ > - “2*3’13]35 (3-31)

Sijkz = 0 for k = & and
a, a z
G - ika[ 1 ]
ijke  2(1 - w) (1*5)2*‘(8]‘;'8")2
2
Arxy 60 o N(F o3 5ls% s lov 2 14y o
1z =\ 2 1l -v )2 2 1 -y =2 1+ Vv = =
+82[(1+J> + = (B];-BQ>][B];+ 7 1 o+ I5—17] (3.32)
and Hijkz ZE 0 if k = & or else
2
0 = aikajz[ 1 ]
ijk2  2(1 - v) T_oI2 L a2
(i iy + (Bk' 62)

Ar vy (o NG L3 =z =2 1-v .2 1+ v
{2 (Bk Bz(l 3>3|:l+ 2 T2 BEBE]

i 3 Y 2 ,1- 2 1 - -
- 83 [(1 - 3)2 + (BE - 3_92 (1 : v)][sﬁ s 12 - ;v J]}(3.33)




Having obtained the coefficients one is now able to evaluate the midplane

forces through the help of equations (3.13) and (3.14). Thus

ﬁx ZZZZ[{ ljk,?, <l+3)+vE ik (B +B>

(r - v2
a.. a,
- —%ﬂ: (1 J + v Bi 85)} cos(:T. + 5);{ cos(BE + BE)}-(
- %1x%42 (5
+{Bijk2, (l - 3) OV Fiike (BE * B'i) T8 (l J - v B BE)}
* cos (.77. - 5)}? cos (BE + BE)E;
< n B J.k j& (
Aeime € 3) + v oy G5~ %)

. cos(-i-. + 5):: cos (B]; - B§>§ + {cos (:T. - 5)}_< cos (B]‘{ - Bi);’}

a,.a.
Y o _ oAl ik 3% (-.- - ool
+ {Dijm (1 J) + Vv Hljkz (Bk Bz) + 5 i3 +v 8 32)} (3.34)

e}
~

Ll ]

[}

<
w
Eoll
w™w
=i
N
~—r—

Z1

e DD [{ Bijke (Tl * 5) * Bijxe (Bi * BE)

(1 - v?)

2ik%42 - 2 L= .
- 5 (B]'; Bp tvi 3)} cos (1 + j>x cos (3]_{ + BS-L>Y

3 ry - _ a,. a. _
o €3) * 2 s ¢ L (g g, - 13 ))

’ Cos(z - 37)’_‘ cos (Bi * BE);’ + {” Ciike (E * 3) * Ciixe <BE - BE)

a0 [ - - L\ _
+ __8JL- vijg- B]-; B-;J}cos(i + j)x cos(B]-< - Bi>y (3.35)

(cont'd)
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a,. a
T 3 oAl ik 92 Tz oA
+{v Dijkl (1 3) + Hijm (Bk 82> + 5 [v i3j+ Bk 82]}

s Ccos (I - 5)}2 cos (BE - BS_L>§] (3.35)

(concl'd)
and
N o= ik _ik ja (_ '.') _ (_ _)
5, - s SEEE (3559 (5 9) - a5+ e
E;ykg (JT. + 5)} sin(:-'L + 5); sin(gE + 3;)17
(= - aikajﬂ, - - -) -
'{Bijkz (Bl? +BE) * Fijke (l ) 3) YT B 3} Sm(l - )X
- sinfgp + 55)7 ”{’ i (65 - D)~ Sisme (- 5
aikajg = - -\ - -
+ 2 BE 3 } sin (1 + 3>x s:m(gi - Bz)y - {Dijkg (BE - BE)
e - aikajz - e -\ - -
+ Hijkz (i - ) A fx j}Sin(i - j)x sin (B]; - BE)Y] (3.36)

Having cobtained the terms ﬁx’ N, ﬁxy one can now solve equation (3.1).

3.6. Solution of the Transverse Motion

The governing equation (3.3) can be solved as modal equations in time.

The form of a is given by equation (3.11) as:
a =ZZ a_ sin m x sin(Bn y)
m n

The Raleigh-Ritz approximation to equation (3.3) is obtained by multiplying

equation (3.3) by sin 5 % sin Ba § and integrating over the x - y space.
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Defining:

A(l)

ijkd

(2)
ijke

(3)
Biske

(4)
Biske

and

(L)
Bijkz

(2)
ijk&

(3)
Biixe

(4)
ijks

and

(1)
Cisks

(2)
i3k

\Y

RN

- [Bijkz <817: ¥ SE> * Fiske (l -

Aijkg,

Biixe

Ciike

Pi4xe

a,,a. -
- - . o +
TRIL BE 3 7 Ry (Bk'

AT = T P

-
+
Lo

’_l

u

e
©

J‘) * Gisxe

3) * Higke

ik?4e (BE o

a,.a,
1k8]l (B— 8-

+

+

4

a.,a.
ik 38
3 6)

]

g

.

a
8

k

a.. a,
1i3]2 6)

e
'

oy
1

8

) Eiss )

2ik?ye -
g B3

- v g

)

~

(3.

(3.

(3.

(3.

(3.

(3.

(3.

{3.
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38)
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40)

41)

42)

43)

44)

45)

46)



(3) O N L
Cijke = "Cijke (BE - BE) = Siike <l * 3) g B3 (3.47)

and

CS})& - [Dijkz (812 B BE) * Hiska (E - 3-'> * ii—k;ﬂ iR 5] (3-48)
and also the following parameters

Ry =1+ 3+p

Ro=i+3+r

Ry =1+ 3j -p

Ry =1 +p-7

Rg =1+ -3

Rg =1 +p +r

Ry=j+p+r (3.49)

and

Sy =k + L + s

S3 =k +s+ g

(3.50)
{cont'd)
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k-2+s

n
(=}
]

S7=k-s+qg

and the Kronecker delta function

Grs = 0 r#s

$
rs

il
'_.l
H

]
'._l

the Rayleigh-Ritz approximation equation (3.3) is then

rq
. [61 Py + 82 Pp + 83 P3 + Oy PL,.]= PGen

where
2 . 2\2
- - 6)
P 1201 - v?)
1 [= (1) 2 (1) ]
pl=—-—_———[p AT+ B= B
1jak2 ijke q 1]k£_
1 [ @ 2 () |
2
Py = —— [P® AL, + BZ B2
aijakz L ijk g “ijka
1 [=2 .3 2 (3)
P3 = —— A, + B= B.:
aijakl A ijk& g "1ijk4 |
1 [sp .4 2, (4) ]
Py = p< A, + B= B,.
2 2
13ak2 i ijk g "ijk _
and

(3.50)

(concl'd)

{3.51)

(3.52)

(3.53)

(3.54)
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o1 = <6R1r * CSRzp B GRar) (5515 * 5szq - 655s>
= - + - - .
%2 (6515 ¥ 682@{ 6555) <5Rt+r aRsp SRej 6R71>

% = <6R1r * O T 6R3r> (5372 * 6ssq "%y T 5541«:)

= - -6 ) ) - &8 -6 3.55
S <6Rl+r * GRSP 6R6j R7i> <S72 * S6gQ S38 Sq_k) ( )
and

Pq LAl - - -

PGen = 48 [{B{ P, (x,y) sin (p x) sin (Bc—I y) dx dy] (3.56)

The set of ordinary differential equations is highly nonlinear because of the
presence of terms such as aijakl apé. The coupled set of such equations can
be solved using numerical techniques. Analytical solutions might be impossible
except in the simplest case, e.g. a one mode solution such as i = j =k =2 =
p =g = 1. When the electrostatic wall model is subjected to fluidic forces such
as will occur if used for drag reduction studies, a complete analysis of the
problem as formulated above with a few normal modes in the deflection shape might
be necessary. This is especially so in flutter regimes of structural motion. 1In
such cases the generalized loading will consist of three main contributions:
(a) random turbulent pressure loading which can be insiénificant unless flow speeds
are fairly large and the membrane thickness very small; (b) wall pressure loading
due to the interaction of a pulsating boundary in a turbulent boundary layer flow;
the magnitude of this loading ean be significant under a variety of circumstances
including the flutter mode instability case; and (c) the electrostatic wall loading

due to the primary excitation through electrostatic attraction forces.

In an actual experiment with flow over the structure such as in a windtunnel
other loadings might also be present. The most common of these are pressure
gradients in tne tunnel and static pressure differentials across the membrane. An
accurate prediction of the structural response depends largely on identifying all

these influences.
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4. ANALYSIS OF THE ELECTRIC FIELD

4.1. Determination of the Primary Electric Field

The schematic of the electrostatic system is shown in figure la. The output
from the transformer T 1is biased at the center tap and connected to terminals A
and B as indicated. An array of electrodes which is etched on a printed circuit
board and coated by degassed epoxy cement or lacquer forms one part of the
electrostatic wall system. A grounded conducting sheet (membrane) which is struc-
turally supported periodically at distances "2" apart and separated from the
electrodes at a height "H" forms with these electrodes a capacitive network.
The membrane is free to move transversely; when alternate electrodes are connected
to the terminals A and B respectively the membrane is subjected to an electro-
static force distribution and deflects under these forces. The space between
the membrane and the electrodes is filled with air and sealed. To obtain maximum
force for given terminal voltages, the distance between the membrane and the
electrodes should be as small as possible. However, as the distance between the
membrane and the electrodes becomes smaller and smaller the applied voltages in
the terminals must be reduced lest a breakdown of the electrostatic wall system
due to arcing will occur. ‘The breakdown potential for a given separation in air
is given by Paschen's law. For air at NTP the breakdown rms potential gradient

is 3.1 kV/mm. If instead of air a fluid such as SFg is used, the breakdown voltage

gradient can be raised by a factor of two.

In figure 2 we show a typical bay of the electrostatic wall configuration.
The electric field between the electrodes and the membrane can be obtained by

solving in the domain

Vv = 0 (4.1)
with the boundary conditions (as indicated in fig. 2).

z= 0 Vv=20

Vg + Vi (x,H) sin Ot
Vo z/H (4.2)

N
i

<
il

x= 0,2 v

In figure 3, Vj(x,H) and its Fourier series representation is shown.

From the figure it can be seen that
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V1(x,H) £ 1.1463 V] sin 21% sin Qt (4.3)

is a good approximation.

The solution of equation (4.1) with the boundary conditions given in equation

(4.2) is rather straightforward and can be written as

Voz o sinh <2w%)
V = —— + 1.1463 V] sin == sin Qt (4.4)
H ) . H
sinh 27 2

The electric field in the dielectric between the electrodes and the membrane

is thus

X Y
v v cosh[ZﬂE]
E = =2 47 2024 —E-sin 2mx sin Qt T
z H : 2 L . 2TH
sinh {7y (4.5)

Force density due to primary field. The membrane is subjected to a force

eEZ2
Po =2 z =20 (4.6)

Thus the generalized electrostatic force is

pPa
PGen

0 forp>1

and for P = 1

o L 0.935 e V_ Vv,
Gen _ [27H EYHR st (4.7)
2g - 1) sinh o

Optimal values for Vg, V There is a limit to the maximum voltages

L
Vor Vl permissible for a given configuration, which is determined by the rms

voltage gradient to be less than the breakdown value (3.1 kV/mm for air at NTP).
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From equation (4.5) the maximum rms electric field wvalue is given as

2
v V]
rms value = = +-£ -— coth 2mH 7.2024
H 2 2 2

< 3.1 Mv/m (4.8)

2

In order to obtain the optimal values of V3, V; for maximum generalized
forces, one must minimize the generalized forces subject to the constraint

equation (4.8).

4.2. Requirements, Ratings,; etc. of the Electrical

Networks for Electrostatic Wall Configuration

In figure 4a is shown the schematic of the electrical setup. Power is
drawn from a signal generator stepped through a power amplifier and fed into a
transformer. The transformer output is fed into the exciter for the electrostatic
configuration. Basically the electrostatic wall comprising the membrane and the
terminals act as a capacitive load. The capacitance can be measured using a
capacity meter available commercially. It is also fairly straightforward to
theoretically model this electrostatic wall as a discrete capacitive network and

evaluate the capacitances of the wall as done in reference 6.

For satisfactory performance of the electrostatic wall system the following

points should be kept in mind:

(1) The electrostatic wall should be operated below the breakdown voltage
levels to avoid arcing and sparking and consequent degradation of the terminals

and burnout or charring of the membrane surface.

(ii) Collapse of the membrane into the cavity and consequent shorting of
the electrical system should at all costs be avoided lest the transformer or

power amplifier be damaged.

(iii) Any L~C oscillation due to the loading of the system should be avoided.
This is accomplished by designing the outages of the units such that the external

load is well within the operating load for the system.
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4.3. Evaluation of the Maximum Permissible Capacitive

Load for the Electrical System

The ratings of the transformer are

Turns ratio a = Np/Nj; = 40

Resistance on the primary side R; = 0.5 Q

Inductive reactance on the primary side X; =8 Q@ @ 1 kHz
. Registance on the secondary side Ry = 2 k@

Inductive reactance on the secondary side X; = 50 kQ @ 1 kHz

External load is capacitive with a reactance Xc @ 1 kHz = E%E
In figure 4b the equivalent circuit is shown. It is assumed that the
magnetizing current is zero, an assumption which is quite valid (usually it is

5 to 10 percent of the primary current). With this assumption the reactance

X
mag

From figﬁre 4:

The equivalent impedance on the XLZ Ry 1
primary side = Zeg =3 X +Ry +J——+ —+
L1 a a2  4uca2
JwCa
XL 1 R
oy 2 2)s - e )
1 a? wCa? a2
= ELG (4.9)
. )
The primary current I = V/zeq =z L=6 (4.10)
\
The load current I = I1/a == ;-8 (4.11)
za
The circuit becomes a resonant circuit when the reactance is zero,
1
i.e. XL + XL = (4.12)
1 b2 wCaZ
al

The operating range of the electrostatic wall for experiments lies between

200 Hz to 2 kHz. 1In order to protect the power amplifier the rescnant frequency
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which can be determined from equation (4.12) should be well above this range.
Fixing the resonant frequency £ to be around 3000 Hz we obtain the condition

that capacitance of the electrostatic wall be

c < - = 280 pf
XIf o, X2f ——— (4.13)
2m€ 7500 2 * Tooo

With a proper choice of equipment (i.e. low reactance transformers and
power amplifiers), the size and capacity of the electrostatic wall can be
enhanced considerably for the same range of operating frequencies. The fore-
going discussion makes it imperative that when different models require
laboratory testing the capacitance of the model be measured to see whether
there is any limitation on operating frequency imposed by the choice and

availability of power equipments.

5. THECORETICAL ANALYSIS AND EXPERIMENTAL VERIFICATION OF THE
) PERFORMANCE OF THE ELECTROSTATIC WALL

5.1. 2Analysis of Structural Motion

We consider the case where the generalized force is due primarily.to the
electrostatic field set up in the model. The structural motion resulting can
be studied by solving equation (3.52) with the expression for ppq provided

Gen
by equation (4.7). The deflection shape a is given in equation (3.1l1) as

a=ZZa sinm x sin B- ¥y
mn mn n

We consider the case where B = 4/b << 1, corresponding to the situation of the
width of the bays b = 50 2 which was true for most of the wall to be built for

tunnel testing.

From the nature of the generalized load szn given in equation (4.7),

bg
PGen

|
o

p>1
Fl@)p=1

f
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it is obvious that the deflection shape can be approximated as

a =Za sin 27x sin B~ v (5.1)
o m n

It is not at once clear how far the summation implied in equation (5.1) must

be carried out. However, the nature of the generalized forces ngn {being
. 1
proportional to 735—:*170 suggests that at best the first two modes are important.

The equation system for two mode series is of the form

a1 1.3 1.2 1 2 11
2 | ou [kli] * Gy ey ¥ CGrp a7y 3y F G133y 21 < Pg,
a%a
' 1.3 1 .2 1 2 - pl2
2 + aso [kzz] + Gy, aj, + Gy ayy a12 + Gj3 a1l ag, PGen (5.2)

. s 1
In table 1 the coefficients Gji, G%z, 6%3, ki1, etc. are all tabulated
for arbitrary 8, using a program called MACSYMA available through ARPA, NBS

or MIT network.

5.1.1. Initial approximations. - We shall examine the case of B << 1

and assume that the percentage of the second normal mode in the solution to the
problem is entirely insignificant in order to obtain an idea of the sensitivity
of the solution to truncatiog of the series. Setting B = 0 and taking only the

first of the equation set in equation (5.2) one obtains

d2a11 1 3 11 5.3)
+ + = .
ar? ki1 ay1] + Gy, aj; Poen (
From equation (4.7) Péén = Pyg sin Qrt (5.4a)
1 0.935 ¢ Vg V1
where Pig = sinh 27d ) (5.4b)

2

Then terms k31 and G%l in equation (5.3) have (for B = 0) values
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b2 - v2yml
kll = _.__1_6__TLL..—. , G%l - ..(_3_____.\2__)._"_ (5.4C)
12(1 - v?) (L - v2)

Equation (5.3) can be rewritten using the following transformation:

T 1 k11
8 ==-Q 1, u=ajnGli1 ,» Bl = —
2 92
Q
1
G11
and Py = Pig . [—— (5.5)
93
as
a2y 3 (5.6)
—= 4+ B u+ u’ =Py cos § (5.
a2

5.1.2. Harmonic solution of equation (5.6). - Seeking harmonic solutions

for u, equation (5.6) leads to a simplified cubic equation,

(B1- D u+2ud=p (5.7)

from which u, and hence a, can be obtained.
5.2. Theoretical and Experimental Results
Theoretical results for two configurations of the electrostatic wall are
presented in figures 5 through 8. The membrane material used (commercially

named Mylar) has the following properties:

3.5 x 108 kgf/m?

=
It

o = 138 kgf sec?
L

m

v = 0.3 (5.8)
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The air gap between the membranes in two different configurations were
H=0,305mm and H = 0,127 mm. Since the electrostatic forces are inversely
proportional to gap height H, the smaller gap provides a larger force on
the structure for a given voltage. However, the breakdown potential for the
system is smaller when the gap is smaller. Hence the electrostatic forces
available in both these configurations at the optimal voltage are of the same
order. However the smaller air gap has the advantage that one can work with

lower voltage levels.

In figures 5 and 6 the theoretical values are compared to the bench test
results. It is surprising to observe such an excellent agreement between the
test values and theoretical prediction. The experimen%al measurements of
dynamic surface motion were obtained using an optical setup. Reference 6
describes in detail the measurement technique. The a.c. voltage applied to

the electrodes was at 300 Hz for these experiments.

Figures 7 and 8 show the frequency response of the structure at various
excitation levels. The nature of the backbone curve is indicated by dotted
lines in these figures. At low excitation levels where w/h << 1, there is a
steep increase in amplitude levels at resonance. At higher levels of excitation
resonance has little effect on amplitude level. In the theoretical analysis
structural damping was taken to be negligible. Since damping primarily affects
the near resonance amplitude levels, it is not necessary to include structural
damping in the response studies for the present case as can be seen from the
nature of the response curves. The reason for this is very clear; viz, the
test structures have resonance frequencies well above the excitation frequency
for load values of interest (large amplitude case). Furthermore at these load
values the nonlinear stiffnesses themselves act as a damper or delimiter on
the amplitude levels. When the structural nonlinearity is of the soft spring type
it might well be important to include the damping in the analysis since natural
frequencies for this case are being constantly shifted downward from the low

excitation case (w/h << 1) with larger excitation levels.

5.3. Examination of the Perturbation Field

Due to Primary Motion

When the membrane is set into motion by the action of an electrostatic
force field, the electrical field configuration changes and consequently the
excitation field itself must be reexamined.
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To analyze the effect of the surface motion on the electric field configu-
ration an orthogonal curvilinear coordinate system can be used. Since, as
far as the electric field is concerned, the structural motions have a station-
ary behavior, a quasi-rigid coordinate mapping is required. Curvilinear
coordinates such as the one to be described have been used by Benjamin (ref. 7)
and Chang (ref. 8) for flow problems. The first order curvilinear orthogonal
map is shown in figure 9. The amplitude of the wavy surface is taken to
be (0.1 H); ¥; = 0.0 curve in the figure represents the approximation to the
actual surface. Since % << 1, the variation in the chordwise directions have

been neglected just as in section 4. The mappings for this configuration are

X] = x - a e"2%2 gog 27x sin Ot

e™2T2 gin 2mx sin Qt (5.9)

N

Yl = - a

X - y coordinates can be written as

- =27 —
Xy +ae 71 cos 2mx] sin Qt

b
il

y] + a e~2MY1 sin 2v§; sin Qt (5.10)

N
It

The solution of equation (4.1) with the boundary conditions should be attempted.

We write the governing equation and the boundary conditions in the mapped system

as

3%y 32y

9xX] 3y12

y1 =0 V=20

y1 = (H/4) V = Vg + Vi sin Qt sin(2mx;)

x3 =0, 1 V= VoY) (5.12)
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The solution of the above problem yields

2_Trv’ -
Vo 7 V1 sin 27x sin Qt

VS w® YT -

sinh EEE

L
+ 2Ta(cos 2mx ézﬁﬂ/z - cos 4u§) sin Qt (5.13)
and
v =0.

X

The correction to the electric field distribution is therefore of the order of
(w/&) times its original value. For the electrostatic walls we are tesﬁing
the magnitude of this correction is less than five percent when the amplitude
of the surface motion is 0.025 mm at a spacing of the bay of 1.814 mm. In all
the tests that we carried out the perturbation field was negligible since the
excitation field could barely drive the system to these values of amplitude.
An error of 15 percent in the evaluation of the electric field would usually
generate.an error of 10 percent in the amplitude prediction, which must be

borne in mind when accuracies of that order are required.

When the deflections of the surface are quite large the perturbed field
can be evaluated using a more refined {(second order) coordinate sysfem such as
used by Chang (ref. 8). We show the mapped system in figure 10 and give the
transformations below as ?

2 _-ymz

e™2T2 o5 27x sin Qt - ma® e

X1 = x - a sin 4mx sin Qt

- _ -21z

vyi=2 - ae sin 2mx sin Qt + ma2 <e‘L”TZ cos 4mx - l) (5.14)

2 ™Y1 gig 4%

x=x1 +a e 2™l cog 21%; - Ta

z =51 +ae ?™l gip 2n%; + ma? <e-‘+“9—1 cos 4mx] + l> (5.15)
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5.4. Inclusion of Aerodynamic Forces for

the Electrostatic wall

The electrostatic walls were purposefully designed as small wavelength
configurations. Hence, static divergence will not be achieved in any of the
electrostatic walls under operating condition (15 m/s - 50 m/s) in the 7 in. X
11 in. tunnel. 1In reference 1, an inviscid analysis has been carried out for
the evaluation of the aerodynamically induced pressure paero[eq. (39), p. 16 of

ref. 1] due to structural motion.
We give this expression as

2
U
= 27mp<air> ajj; - sin 2mx sin m§ sin wTt. (5.16)

1 - M2
[+ -]

aero

Figure 11 shows the effect of including aerodynamic loads in the analysis
for the case of flow over the membrane. Our contention is fairly clear; there is
no need for any sophisticated analysis of aerodynamic effects for these configu-
rations since even the inclusion of the inviscid values which overestimate
these magnitudes increases the levels of amplitude very slightly and that increase
is only over a very narrow window. The a.c. voltage applied to the electrodes
in this example is at 300 Hz. If the a.c. voltage was applied at very much higher
frequencies the effect of the aerodynamic load on the motion will be enhanced

since the effective nonlinear stiffness would be considerably lowered.

We again point out that the analysis which took into consideration the
aerodynamic load was carried out under the prior known fact that the wavelength
of the structures was much too short to cause static divergence; hence the flow-
structure interaction problem is not of an eigenvalue type but merely a forced

response problem.
6. CONCLUDING REMARKS
A unified theory for an electrostatically driven active wall system has been

presented. The electrostatic wall system is capable of producing deflections of

many orders of wall thicknesses. Consequently a large intermediate response theory

has been used for analysis. The theoretical analyses are compared with bench test

33



results which show excellent agreements between the two. The case of an elec-
trostatic wall vibrating in the windtunnel is considered, and the theoretical
predictions under simulated flow conditions indicate that the aerodynamic

effects are negligible. The perturbation effects to the electric field due to
the structural motions are also considered and shown to be negligible for the

test experiments.
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Table 1. Stiffness coefficients.

L
61, E{‘ITL" [(12— 4\)2> +—Z—v62+§4— <5-\>2>:|
T*8 5 b= I 3 (4,2
* B = 1) (82 + 4) B(— >+B(W>+B(4v +12—16\)>

2 _ -
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(b) Voltage distribution in the terminals A and B
Figure 1. The electrical arrangement of the electrostatic wall system.
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Figure 4. Schematic of the hookup for the electrostatic wall system.
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