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ABSTRACT

The Spaceborne Geodynamics Ranging System is a proposed satellite-borne

laser ranging system which would be capable of making highly precise geodetic

measurements over baselines ranging from a few tens of kilometers to several hundred

kilometers. In this paper we analyze the precision with which crustal strain rates

could be derived from measurements made with this system. Using simple site

configurations, intersite distances of about 25-70 kilometers, and measurement

programs ranging from a few years to fifteen years, we conclude that precisions

of several parts in 10 9 per year are achievable. Compared to the expected shear

strain rates of about 7 x 10" 7 yr	 this produces very favorable signal-to-noise

ratios. By using scaling laws, the results obtained here may also be used for

other combinations of baseline distances, measurement times, and precisions

in baseline determinations.
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DETERMINING CRUSTAL STRAIN RATES WITH A

SPACEB©RNE GEODYNAMICS RANGING SYSTEM DATA,

1, BASELINE ANALYSIS

I. INTRODUCTION

The Spaceborne Geodynamics Ranging System (SGRS) is a proposed laser

ranging system which would be carried on board a spacecraft and used for pre-

cision determination of the relative locations of groundpoints on which reflective

targets have been mounted. It is, in a sense, the inverted version of the ground

based laser tracking system that has been used for a number of years for high

accuracy satellite tracking and precision geodesy. Since the SGRS system has the

potential capability to measure changes in the relative horizontal and vertical

locations of targets spaced from tens to hundreds of kilometers apart to precisions

of a few centimetera, it is an attractive candidate for use in a number of funda-

mental and applied crustal geodynamics measurements. Among these measure-

ments are relative motions of tectonic plates across the plate boundaries, crustal

deformations prior to and after major earthquakes, land subsidence due to fluid

extraction, and edifice building associated with volcanoes. In this paper we

focus attention on one, perhaps primary, application for the SGRS system namely

the determination of the rates of crustal straining and the measurement of the

spatial extent of the strain field in regions of active strike-slip faulting. The San

Andreas fault system in California serves as an excellent example of a location

suitable for the measurement of crustal strain with a SGRS system.

Previous analyses of SGRS-type systems have focused either on the state of

engineering development or the analysis of the accuracy expected in the measure-

ment of the intersite vectors. These analyses serve as the departure point for
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the present paper which concentrates on its utility as a geodetic tool. The paper

is organized in the following manner. In section II we describe the SGRS concept,

its current state of development, and the expected precision in the intersite dis-

tance measurements. We begin section III by reviewing the concepts of crustal

strain and formulate mathematical procedures for deducing strain rates from

the measured intersite distances. We then present numerical results

showing the deuced precision in the SGRS determination of the rates and com-

pare these precisions to the current estimates of the strain rates along the strike-

slip fault systems in California. The fourth section summarizes our findings and

current thoughts on the utility of the SGRS system.

II. SYSTEM DESCRIPTION AND CAPABILITIES

A conceptual representation of a SGRS measurement is shown in Figure 1.

An orbiting spacecraft is equipped with a laser tracking system which includes

in addition to the laser, a precision acquisition and pointing system, return pulse

detection electronics, and timing devices. The laser fires frequent short dura-

tion pulses at cube corner reflectors located in a grid in a ground target area.

In a sequential manner pulses are sent to each of the reflective targets and the

round trip travel times measured. These travel times are converted in the data

analysis to ranges. With a suitably large number of measurements, a model of

the earth's gravitational field, an a-priori trajectory estimate for the satellite

and various system corrections, it is possible to determine the target locations

and the intersite vectors between the various stations. Such computations have

been described by Vonbun, et al (1977) and Gibbs and Haley (1978). In the version

of SGRS currently under development only one target reflector is illuminated at

a time. Further developments may make possible the simultaneous illumination
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of two or more reflectors. Current specifications for a system under development

and proposed for flying onboard the space shuttle are shown in Table I. The engi-

neering status of the system is well advanced. The space qualified Nd:YAG laser trans-

mttt•ar has a 50 millijoule output at 0.53µm and can be triggered at ten pulses

per second. The electro-optical-mechanical pointing system has been designed

and is under construction. The prototype cube corner reflective arrays ar a de-

signed with a number of cube corner reflectors mounted on a hemispherical sur-

face. The expected sig tal-to-noise ratio at the Shuttle is 20 db at 90° elevations

and 7 db at 200 elevations. The precision in measuring the pulse time of flight

is expected to correspond to a range precision of ten centimeters or better and,

after data processing, the precision in the intersite vectors is estimated at better

than two centimeters in both the vertical and horizontal components for baselines

less than about 100 kilometers (Gibbs and Haley, 1978). This precision ignores

some additional bias due to modelling errors in the gravity field. At the level of

discussion in this paper, this additional bias does not effect the measurement of

the rate of change of the intersite distances, which is the input parameter of

interest. For baselines of several hundred kilometers the precision in '-he hori-

zontal component is again expected to be a few centimeters, but the precision in

the veitieal components degrades to about 4 centimeters at 400 kilometers.

(Kahn, private communication).

M. STRAIN ANALYSIS

SGRS is essentially a surveying device which determines the location of

various target sites. In the present context we wish to interpret changes in the

locations in terms of the accumulations of crustal strain. It is the degree of

strain accumulation, its spatial distribution and its rate of accumulation that are



important in studying a host of geophysical problems including the causes and

prediction of earthquakes, the interactions of tectonic plates, and the formation

of geologic structures. We will present our discussion of strain accumulation

in two dimensions, the generalization to three dimensions can be made by

inspection.

There are a num r of different ways in which the data obtained from a

SGRS measurement can be employed in strain analyses. One method involves

working directly with the deduced target site coordinates determined during

several different missions and using the definitions of the strain components

discussed below. An alternative technique is to work not with the site locations

themselves but rather with the baseline distances between sites. This is the

approach we have chosen; there are a number of reasons for having done so.

By working with baselines rather than sits locations we avoid potential problems

in defining a stable reference frame in which site coordinates can be expressed.

All that is necessary to derive the strain rates are the changes in intersite dis-

tances from one survey to another and not the changes in the locations of each

point. Since it is entirely possible that baselines changes can be deduced to a

greater precision that site location changes this point may be significant. The

analysis we perform is also very general in the sense that it requires only base-

line distances and is independent of how such distances have been obtained. Thus

data from SGRS, alternative space techniques, and ground surveys can all be

processed in the same manner and the techniques we have used here are equally

applicable for all such systems.

The potential penalty we pay for adopting this approach is that we do not use

all the data that might be available from the measurements. These additional

4
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pieces of data may permit deduction of strain rates to a greater precision than

we indicate in the present paper. This point will be pursued more at a later date.

Consider as in Figure 2 an initially untrained line of length r° from point

(x 1 , yi ) to point (xz, Y2)- After straining the line length is r and the coordinates

of the two points are (x 1 + u 1 , ] + VI ) and (X 2 + U 21  y2 + V2) . The elongation of

the line, e , is defined as

Ea r - r° - (x2 +u 2 -xi 'U 1 ) 2 +(Y2 + v2 - Yl - vl ) 2 -	 XI' Y1)2+ (Y2 -Yi)2 (1)
r° 	 (x2 - xl ) 2 + (Y2 - yl ) 2

If wF now assume that u 2 - u l and v2 - v  are sufficiently small compared to

X 2 - x i and y2 - yl (this is the assumption of infinitesimal strain) it follows that

e - 
(x2 - x1 )(U 2 - U0+ (Y2 - Yl )(v2 _ Va) - r° AS	

(22	 )
(x2- xi )2+(y2_Y,)2	 r

°3

where 0 S+x (u 2 - u i ) i + (v2 - v i ) j. To lowest order

a„	 au
U2 = u l + ax ( x2 _ x i ) + ay 

(Y2 ' YO	
1

with the corresponding equation for v 2 . Thus with (x2 - x l )/r° = cos 8 and	 r °_

(Y 2 ' Yi )/r° = sin B	 t

e Cos +--a'aY s in 2 a + (auy + 
aX) 

sin 3cos 8	 (3)	 _-

We define three quantities e x , e y , and e xy by

e 
-aU 

a ^ a v e - 1 ?u + aV	
(4)x ax

e
 y ay , xy - 

2 ` ^Y ax)
Notice that 

exy 
= 

Eyx . 
With these definitions the elongation becomes

E = ex COS 2 8 + Ey"sin 2 8 + 2 exy sin8cos6	 (5)

It can be shown that the quantities %, E y , exy transform as the components of a

tensor, thus these quantities are known as the strain tensor; Ex and ey are

normal components and Exy is the shear component.
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In general, survey data does not determine the absolute level of strain since

the unstrained distance between points is not known. Rather survey data is used

to study the rate of strain accumulation. For many purposes the knowledge of

strain rate is as important or more important than the knowledge of the absolute

level of strain. If, for example, an earthquake results in a strain decrease, Ae,

in a certain region, then the next earthquake is likely to occur when the same

amount of additional strain reoccurs in the rock body. If the rate at which strain

is accumulating is known, a predintion can then be made as to the time of occur-

rence of the next comparable earthquake. Suppose the rates of strain accumula-

tion are constant between an initial survey time and some later time, ©t, it

follows that

t = ro [Ex Cos 1 0 + Ey sin 28 + 2 Exy sin8cos81	 (g)

The unknowns in this equation are E x , Ey , and Exy . The quantity known from the

resurvey is r - A r/ At.

For determining the two dimension strain rate tensor a minimum of three

lines must be resurveyed; in three dimensions six lines possibly between four

sites are required. In the more typical case many more lines are surveyed than

required in order to mitigate the effects in measurement noise. The lines are

frequently resurveyed a number of times. In this case the observed intersite

distances measured for each line at the several different measurement times

can be fit to a linear regression line of the form

r i ( t ) = a i + r i t
	

(7)

where we have arbitrarily chosen the time of the initial survey at t - 0. The

elongation rates, r, determined by the least squares analysis have a variance, ^.

which can be deduced by considering the variation in the least squares solution
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for ri . We find

a? =	
n	

n n
	

ar i
	 (8)

n ^ t i2 ^ 	 ti
1	 1

where n is the number of measurements of the intersite distances of the r i line

and a= is the variance in r i . If the measurements are made at time intervals

At years apart, then at the end of T years

	

T	 2
a - 12(n

 1) a'ii 	 12 At	 a-i	
(9)

n (n + 1) T2 (at + 
1) (ET, + 

2) T 2

Mice that the variances in ri are equal for n = 2 and n = 3, and decrease

s'owly for n > 3. As expected the variance in the line rate decreases with

increasing duration of the measurement program T.

Once the line rates have been determined they can be used in a regression

analysis for the strain rate tensor. We rewrite the system of equations for the

elongations as

rl	 ro t2 ro m2 ro 2m1 t 1 	Ex
i

r 2	 ro t2 ro m2 ra 2m 2t 2 	EY
2 2	 2 2	 2

i XY

r 	 ro^tn	 onrm2 ron	 n2mt
n

(10)
I

R=AE

vttj'WNAL PAGE 18
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where t i and m i are the direction cosines of the i th line with respect to the

x and y axis.

The preceding set of equations can again be solved by least squares tech-

niques to yield

t= (AT A)- 1 AT R
	

(12)

where AT is the transpose of A. (We have written equation 12 in the form ap-

propriate to the case where all the deduced line rates are equally weighted in the

solution. When unequal weights are used, the solution is (AT w- 1A)- 1 AT w' 1 R,

where w - 1 is a weight matrix. Similarly the line rates can also be determined

by a weighted least squares analysis of the intersite distances.)

Several properties of the least square solution deserve particular attention.

Consider the A matrix; its dimensionality is n x 3. However, in determining E

it does not appear by itself but in the combinations ATA and ATR. The matrix

(ATA) has dimensions 3 x 3; its inverse is called the variance -covariance matrix

for reasons discussed below. Straightforward algebraic analysis shows
n

AT A =	 ATA.
1

n
^ i r o `	 ^imiro	 2^3miro

t
1	 `	 1	 1	 i

n	 n	 n

m?t ? 1, ^;m! ro	 2m3tjro	 (13)1	 `l^l. ;i 	
c	 1	 ^

n	 n	 n

2m i 3ro	 2m3t ro	 (.2m i p i ) Z ro

i	 `	 1	 +` !' i	 ^	 i

UjuGL+Ai' Pr1GE XS

or POOR QUALt'Iy
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where A i is a 3 x 1 row vector corresponding to the i th row of A. Similarly

AT A is a three component vector

n

ri 

ti2 
r 

2
°i

1

n

AT R c	 ri mi r 	 (14)
1

nL ri2mi^; iro
1	 i

Thus, in order to determine the strain rates there is no need to store the poten-

tially large matrix A, only the smaller symmetric matrix A TA and the ATA

vector.

The variance-covariance matrix (AT A)-1 haQ a very important physical in-

terpretation. When multiplied by the variance in the lines rates, a , the diagonal

elements give the mean squared precision in the deduced elements of the strain

rate tensor, while the off diagonal elements give the covariance or overlap be-

tween components. Using the diagonal terms

of = ( ATA ) ii cr	 (15a)

C.2 - (AT A)-1  vT(15b)
Cy

(7! = (ATA) -Ia	 (15c)
.Y

where a? is given either by equation 8 or 9. Equations 15 are in a very useful

form for error analysis. The variance -covariance matrix contains the geometric

factors of the solution, namely the lengths of the lines between sites, the number

of lines, and their spatial orientations. On the other hand v'2 contains the meas-

urement uncertainties in the intersite distances, the frequency of measurement,



and the total time span over which the measurements are made. Scaling relation-

ships can be used to deduce expected precisions for systems with various grid

sizes, measurement periods and intersite distance uncertainties from results

obtained from the analysis of one system. Thus if the scaling relationships are:

r o' =a r o	 (16a)

At' = b At	 (16b)

Ar' = c "A r	 (16c)

then

ai,a b ^
f	 (17)

We will consider in the next several paragraphs the estimated errors in deduced

straii rates for a variety of cube corner configurations and measurement periods.

.:?: of many possible configurations of targets is shown in Figure 3.

The minimum intersite spacing is 25 kilometers, a number chosen from the fact

that shorter baselines can be economically and efficiently surveyed by conven-

tional ground techniques. The longest nearest neighbor haselines do not exceed

100 kilometers since it is likely that there are considerable variations in the

strain rate over longer distances (and possibly shorter ones). The coordinate

system is defined with the positive x axis pointing east and the positive y axis

pointing North. tt'.? ;;ill consider results obtained for five specific subnetworks

shown in Figure 4. The number of intersite lines varies from three for the

.ample triangular configurations to 36 for a nine station square grid. It is a

straightforward procedure to use results obtained with these subnetworks to

obtain results using the same subnetworks in different orientations relative to

the coordinate axes. If is the angular distance by which a new coordinate

system is rotated from the old system then
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EY	 COS 2j9

Ey	 =	 s in29

i., sy	 -sint9cos8

sin 2 8	 2eos$sin®	 ER

COS26 	 -2s inOcos 8	 Ey

sinOcosO cos20-sin28	
Exy

(18)

where the primed values are the strain rates relative to the new coordinate axes.

We also should note that the strain rate tensor can be diagonalized, that is, there

is a coordinate system in which the shear strain vanishes and the strain is repre-

sented in this coordinate system by the values of the normal components called

the principle strain rates.

FiVires 5-9 show the standard deviations in the deduced strain rates, i. , E y ,

Exp , for the subnetworks of Figure 4 as a function of the total period of the meas-

urement program, T, and the time between each resurvey, ©t. The results are

normalized to a 1 cm noise in the baseline determinations and can be scaled to

other values of noise accordingly. The simple triangular configuration of Fig-

ure 4a gives equally precise determinations of all three components of the strain

rate (Figure 5). The precision improves from about 5 x 10-7 yr -1 after one year

to about 1.5 - 3.5 x 10- 7 yr-1 after 15 vears. These numbers should be compared

with the expected strain rates for a system such as the strike-slip San Andreas

Fault System in California. Orienting the coordinate axes so that the fault trace is

aligned roughly with the y axis, measurements near the fault suggest shear strain

rates of about 7 x 10-7 yr -1 and normal strain rates somewhat less. (Scholz and

Fitch, 1969). It is clear then that the simple triangular subnetwork of sites

spaced 25 kilometers apart is barely adequate for measuring the expected strain

rates in the time frame of one or two decades. The situation improves consid-

erably as we consider other subnetworks with more reflector sites and longer

ORIGINAL PAGE W
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baselines (Figures 6-9). Figure 7 shows that with a square configuration of sites

and six baselines the precision in both the normal and shear components of

straining is about 1.5 - 3.5 x 10-8 yr" 1 after ten years. Even better, with the nine

site configuration of Figure Se, we obtain in two years a precision of 4-5 x 10-8

yr- i in the normal component and 3-4 x 10- 8 yr` 1 in the shear component, as shown

in Figure 9. Using the expected shear strain rate of 7 x 10-7 yr' 1 and assuming

a baseline noise of one centimeter our analysis suggests a signal-to-noise ratio

of 20:1. After fifteen years the signal-to-noise ratio improves to about 280:1.

Even using more conservative figures for the noise in the baseline determinations,

say two or three centimeters, yields very satisfactory signal-to-noise ratios. We

conclude that relatively simple configurations of sites can be used suitably spaced

for very precise determinations of strain rates in a relatively short periods of

time. _-. locations where various factors do not permit the density of sites to be

as high as used in this analysis, simple configurations using longer baselines of

say 100 kilometers, and longer measurement periods, T, may be used instead.

With su,:h a subnetwork more attention has to be given to consideration of the

uniformity of the strain rate over the extended spatial width and temporal span

employee.. Thatcher (1977) has obtained results suggesting that, at least in some

places in California, uniform straining extends over a deformation zone of 100

kilometers or more. One major use of a SGRS system can be to determine more

fully the spatial extent of the straining and the rate at which the straining de-

creases as one moves away from major faults at, say, tectonic plate boundaries.

The results we have presented in Figures 5-9 suggest a relatively weak de-

pendence of the strain rate precision on the frequency of resurveying. While this

is true in principle, it is somewhat misleading in practice. The analysis assumes

12
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an a-priori knowledge of the precision in the baseline determinations. In general

such knowledge is obtained only by surveying frequently enough to obtain statis-

tically reliable data for analysis of the baseline precisions.

We should also take note of the possibility of detecting time dependent changes

in the strain rates should they occur. If such changes are a significant fraction

of the strain rate, then the simulation results in, say, Figure 9 suggest such

changes might be detected with time scales of a decade or two.

IV. SU MMARY

We have performed an analysis of the precision with which strai:i rates can be

derivedfrom a determinationof baseline between various locations. We have applied

this analysis to surveys which might be made with a Spaceborne Geodynamics

Ranging System using the precisions expected for this system. The results indi-

cate that with realistic subnetwork configurations of target sites, the strain rate

tensor can be deduced to precisions of a few parts in 108 in periods of several

years. Precisions better than one part in 10 8 may be possible with programs

spanning a few decades or with sophisticated measurement and analysis tech-

niques. Among the potential applications for SGRS are:

1. the determination of the rates of crustal strain simultaneously at many

diverse locations,

2. the study of spatial variations in straining in broad deformation zones,

3. the study of temporal variations in strain rates over the time span of,

say, a decade should such variations exist.

Other applications may also become apparent as our knowledge of the system

capabilities improves and our techniques of data processing become more

sophisticated.

13
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Table I

Transmitter pulse energy 50 millijoules

Transmitter wavelength 0.53 µmeters

Pulse frequency 0.1 seconds

Transmitter divergence 0.5 mitliradians

Lidar cross section of reflective area 5 x 10 6 square meters 20 0 elevation

1 x 10 6 square meters 90° elevation

Receiver area 7.3 x 10	 square meters

Signal-to-noise ratio 7 db at 20 0 elevation

20 db at 90 0 elevation

Engineering specifications for SGRS prototype under development for proposed

use on Space Shuttle.
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FIGURE CAPTIONS

Figure 1. Conceptual representation of SGRS measurement. The vector r11

Is the intersite vector between two target sites.

Figure 1. Analysis of strain in two dimensions. The line has length r o in un-

strained state and length r in strained state.

Figure 3. A possible configuration of SGRS reflective targets sites. A total of

56 sites are spread over a grid 375 km. long and 150 km. wide. A

hypothetical fault cutting through the grid is shown as a continuous

line.

Figure 4. Representative subnetworks of Figure 3. For n sites in a subnetwork,

the potential number of lines is n (n - 1)12 (e.g. 36 lines in e).

Figure 5. Precision in the deduced values of the strain rates, E x, ey9 exy,

for the subnetwork shown in Figure 4a as a function of the total dura-

tion of the measurement program, T and the resurvey period At.

Figure 6. Precision in the deduced values of the strain rates, E x , e y , E xy,

for the subnetwork shown in Figure 4b as a' function of the total dura-

tion of the measurement program, T and the resurvey period At.

Figure 7. Precision in the deduced values of the strain rates, e x , E y , exy,

for the subnetwork shown in Figure 4c as a function of the total dura-

tion of the measurement program, T and the resurvey period At.

Figure 8. Precision in the deduced values of the strain rates, e x , e y , exy,

for the subnetwork shown in Figure 4d as a function of the total dura-

tion of the measurement program, T and the resurvey period At.
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Figure 9. Precision in the deduced values of the strain rates, Ex, E Y , EY1,

for the subnetwork shown in Figure 4e as a function of the total dura-

tion of the measurement program, T and the resurvey period 6t.
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(X2 + U2 , Y2 + V2)

f	 r = Y IX2 + U2 - X1 -UO2 + 
(Y2 

+ V2 - Y 1 -V 1) 2

1

+Up Y I +V1)

	

1	 r

	

/	 o

	

/	 ro = (X2 - X I )2 + (Y2 - Y l )2

( X I , Y  }

Figure 2. Analysis of strain in two dimensions. The line has length r o in
unstrained state and length r in strained state.
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u	 U

e
Figure 4. Representative subnetworks of Figure 3. For n sites in a subnetwork*

the potential number of lines is n (n - 1)j2 (e.g. 36 lines in e).
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