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ANALYSIS OF DAILY LATITUDE

VARIATIONS

Michael A. Graber

Geodynamics Branch, Code 921

ABSTRACT

The daily latitude measurements of the International Polar Motion Service are

analyzed. The results indicate that the annual polar oscillation is probably due

to local phenomena with amplihides varying from 0 1105 to 0" 15. Within the res-
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	 olution of the residuals (150 cm), there is no indication of the sharp changes

which might be associated with earthquake effects. Then, applying Schuster's

test to a periodogram of the residuals indicates that there are probably several

processes occurring at amplitudes between n"007 and 0': 03 whose solution

-	 awaits a more precise measurement technique.
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ANALYSIS OF DAILY LATITUDE
VARIATIONS

The position of the rotation axis in an earth-fixed coordinate system has been

monitored for over 80 years. The .nost notable phenomenon identified in this

data has been the Chandler wobble. A review of past analyses of the pole posi-

tion data can be found in Stacey [1977] and in Munk and MacDonald [1960]. A

discussion of the optical observing technique is in Melchior[1957]. These

analyses have traditionally been based upon the mean x- and y-coordinates of

the pole as reported by the International Polar Motion Service (IPMS) (previously

called the International Latitude Service) and the Bureau International de 1' Heure

(BIH) for various time intervals. In this analysis it was decided to go back one

step and utilize the IPMS latitude measurements, rather than the reported pole

positions.

Four years of daily latitudes as reported in the Monthly Notes of the IPMS are

analyzed. The data base is composed of 3788 daily latitude measurements

(weight-d by the number of star pair observations during that day) from 197L 0

to 1975.0 for the five primary IPMS stations: Gaithersburg, Ukiah, Mizusawa,

Kitab, and Carloforte. Table 1 provides a summary of this data.

The data do not form an equally spaced time series and are analyzed through

general least-squares procedure. The condition equation upon which the least-

squares analysis was based is given by equation 1.
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Table 1
Composition of the latitude data base

Daily latitudes Total star pairs
in 1461 days observed

Gaithersburg 1001 12042
Ukiah 887 13603
Mizusawa 626 5588

Kitab 497 7948
Carloforte 777 9952

01( t) — 4 i + Al (ANNUAL) cos [ 2vft + ^P i — Xi ] +
(1)

X(t) cos [ X i ] + Y(t) sin [ Xi [

Each latitude measurement ¢ i (t) (where i refers to the particular observing

station and t designates the time of observation) was assumed to be a function

of four terms. The first is a constant station latitude 4) i . The second repre-

sents an individual annual oscillation for each station (wh_^ic, is :he known

annual frequency). An annual amplitude A i and phase ^ j are derived for each

station. The annual component of the latitude data was modelled by individual

station sinusoids rather than two circularly polarized common terms because

preliminary analysis indicated that individual annual effects were as large as

the predicted amplitude of the common annual term. The data would not have

been properly modelled by only common terms for the annual oscillation. The

X(t) and Y (t) terms in equation 1 represent the common processes in the polar

motion such as the Chandler wobble.
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The Ni is the longitude of the observing station. Values for these longitudes were

taken from IPMS publications. This longitude is an angle increasing in a

counterclockwise direction from Greenwich. It is present in the argument of

the annual term in equation 1 to give the annual phases a common origin.

If the Chandler wobble were the only periodic process occurring, then X(t) and

Y(t) would be given by equation 2.

XO (t) = A cos [2at/Period + Phase]
(2)

YO M = A sin [tat/Period + Phased

The x-axis points toward Greenwich, and the y-axis toward 90° E longitude.

This would add three parameters to the least-squares analysis: an amplitude,

period, and phase. Thus to this preliminary configuration, the least-squares

analysis fits eighteen parameters: five average latitudes, five pairs of annual

amplitude and phase, and the three Chandler parameters.

The least-squares technique is iterative and was repeated until all parameters

changed by no more than 0.002 times their associated standard error. The

solution was then considered to have converged. The results of this 13 para-

meter fit are given in Table 2. The phase angles are given relative to Green-

with at 1971.0 with the angles increasing in the counterclockwise direction.

In all cases, these phases are included in the argument of the sine or cosine

with a positive sign. The correlation matrix associated with this solution

appears in Table 3.
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Table 2
Values obtained for the 18 parameters in the preliminary analysis.

The number in parentheses is the square root of the variance.

G 390 8' 13:'3755 (0:'0034)
U 390 8' 12:13659 (0."0034)Average M 390 8' 3: 13520 (0:'0051)latitude K 390 8' 1:'6647 (0:'0047)
C 390 8' 9:'0170 (00041)

0:'1112 (00051)G
96.8 0 (3.60)

Annual amplitude	 U 0:'1390 (0:'0057)

and phase 132.3 (2.60)

0:'1343 (00076)M
93.1 0 (3.60)

0:'0515 (0:'0066)K
72.2 0 (8.7°)

C 0:'0442 (0."0057)
86.8 0 (9.30)

Chandler	 amplitude 0:'1338 (00038)
wobble	 period 431.0 d. (2.4 d.)

phase 112.60 (3.6°)

The values in Table 2 determined for the station latitudes disagree with those

published by the IPMS [Yumi, 1975], which are based on the CIO coordinate

system and are given as

Gaithersburg	 390 8'	 13.202

Ukiah	 12."096

Mizusawa	 3.'602

Kitab	 1.850

Carloforte	 8:941
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Table 3
Correlation matrix associated with the 18 parameter solution. The

parameters are listed here, 1 through 18, in the same order as in Table 2.

1 1.
2 .0 1.
3 .0 .0 1.
4 .0 .0 .0 1.
5 .0 .0 .0 .0 1.
6 .0 .0 .0 .0 .0 1.
7 .0 .0 .0 .1 .1 .0 1.
8 .0 .0 .0 .0 .0 .1 .4 1.
9 .0 .2 .0 .0 .1 .0 .5 .3 1.

10 .0 .0 -.1 .0 .0 .0 .0 .0 .0 1.
11 .0 .0 .0 .0 .0 .0 .4 .3 .4 .0 1.
12 .0 .0 .0 .3 .0 .0 -.2 -.1 -.2 .0 -.1 1.

13 .0 .0 .0 -.2 .0 .0 .4 .4 .4 .0 .3 -.2 1.

14 .0 .0 .0 .0 -.1 .1 .0 .0 .0 .1 .0 .0 .0 1.

15 .0 .0 .0 .0 -.2 .0 .5 .4 .4 .0 .4 -.2 .4 .0 1.
16 .0 -.1 -.1 .1 .1 .0 .6 .5 .5 .0 .5 -.2 .5 .0 .5 1.

(17 .0 .1 .0 -.1 -.1 .0 -.7 -.6 -.6 .0 -.6 .2 -.6 .0 -.6 -.6 1.
18 -.1 .0 .0 .0 -.1 -.1 -.7 -.6 -.6 .0 -.5 .2 -.6 -.1 -.6 -.6 .9 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The differences; are primarily due to the long term secular drift of the pole to-

wards North America and to short term effects which cause the figures traced

out by the wobble to be non-concentric. There might also be some differences

due to varying data analysis methods. To keep the differences in perspective,

it should be recalled that 0:101 is equal to 31 cm. on the earth's surface.

After performing the 18 parameter analysis, the latitude residuals were con-

verted to pole positions and were fit to a series of connected line segments,

each 20 days long. The x- and y-coordinates of thQ connection points were

found by weighted least squares. The power spectrum of this residual time

5
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series of connection points was determined by standard Fourier analysis.

This spectrum is displayed in Figure 1.

The peaks at -1.25, +1.25, and +2.50 cycles per year (cpy) appeared interesting,

and it was decided to repeat the least squares analysis to include these terms.

Preliminary investigation indicated that the -1.25 and +1.25 peaks can be des-

cribed by a linear oscillation of the pole position along the x-axis (the Green-

wich meridian). Therefore, the condition equation was modified so that the

X(t) and Y(t) common terms were given by equation 3 (at the bottom of page T).

The results of this 24 parameter fit are given in Table 4, and the corresponding

correlation matrix in Table 5.

° N

NZ
W

Figure 1. Power spectrum by Fourier analysis of the residual time
series from the 18 parameter fit.
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Table 4
Values obtained for the 24 parameters in the second least-squares

analysis. The number in parentheses is the square root of the variance.

G 390 8' 13:'3759 (00034)

U 39° 8' 12: 13653 (0:'0034)
Average M 390 8' 3:'3514 (0:'0050)
latitude K 390 8' 1: 16643 (0:'0046)

C 390 8' 9: 10157 (0:'0040)

0:'1147 (0:'0052)
G 100.70 (3.9°)

0!'1489 (0:'0073)U
13"1 .7° (2.7°)

Annual amplitude 0!'1409 (0:10086)
and phase M 95.80 (3.7°)

0:'0513 (0:'0064)K
84.8 0 (10.10)

0."0556 (0:'0082)
C 101.50 (8.80)

amplitude 0!'1411 (0:'0047)
Chandler period 427.7 d. (2.6 d.)
wobble

phase 105.50 (3.9°)

amplitude 0:10304 (0:'0045)
1.25 cpy term period 303.9 d. (7.6 d.)

phase 138.50 (24.00)

amplitude 0!'0129 (0:'0024)
2.50 cpy term period 148.1 d. (1.5 d.)

phase 140.70 (20.8°)

X, (t) = XO (t) + A0.25) cos( 2rrt/Period (1.25) +Phase(1.25)]

+A(2.50) cost27rt/Period (2.50) +Phase(2.50)]

Yt(t) = YO(t) +A(2.50) sin[ _27rt/Period(2.50) +Phase(2.50)]	 (3)
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The residual analysis was performed and the connection point coordinates for

this 24 parameter fit are displayed in Figure 2, with the associated power spec-

tram in Figure 3.

The points in Figure 2 were displayed in an attempt to determine whether earth-

quPke effects could be observed in the polar motion. Ea,thquakes are known to

change the moment of inertia of the earth through their redia&ibution of the

earth's mass. However it is not known whether this change is sufficiently

large to be observed. In Figure 2, the effect would be seen as a "step-function"

in the X or Y time series. There does not appear to be such an effect in the

four years of data utilized here.

It is interesting to consider identifying the points in the periodogram in Figure

3 which might correspond to real periodic phenomena in the pole position data.

To do this, Schuster's test is utilized [see fisher, 1929 1. In an unsmoothed

periodogramn based completely on random noise processes, the points will be

I 1	 distributed so that the number of points above any positive power C is propor-

tional to exp (-x C), where X is a positive constant determined by the data.

Figure 4a displays the behavior of all 73 points in Figure 3. The ordinate is

the natural logarithm of the number of points, so exponential behavior will be

shown as a straight line. If a small number of points represent signal, the

low power end of the curve will still appear as a straight line since the small

9
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Figure 2. Coordinate values with standard errors for the

connection points of the line segments which were fit to the

residuals of the 24 parameter least-squares analysis. The

X-axis is positive towar's Greenwich; the y-axis is positive
toward 90'E longitude.

r

-8	 -6	 -4	 -2	 0	 +2	 +4	 +6	 +8

FREQUENCY (CPY)

Figure 3. Power spectrum by Fourier analysis of the connection point co-
ordinates which are displayed in Figure 2. Ideally this figure would be
identical to Figure 1 after removal of that figure's labelled peaks.
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additive constant will not have a large effect. However, the signal points would

cause the tail end of the curve to rise as is seen in Figure 4a. To make a rough

determination of the number of signal points present, four arbitrary points from

the highest power subset (0.45 x 01.101 2 to infinity) were removed, and the graph
	 fa

was replctted in Figure 4b. The tail has been lowered, but still indicates addi-

tional signal. A further four points from the same subset were removed, re- 	 f . 

(

ducing the number of periodogram points to 65, and Figure 4c was plotted. This

time the graph was found to follow an excellent straight line, indicating that the

remaining points represent noise processes.

k

The constant a determined from Figure 4c for Schuster's test is 4.6 x (0:'012 )-1.
	 i

The inverse of this constant is equal to twice the variance of the underlying ran-

dour process (in this case, the 20 day residual connection points), producing a

variance of (1/3 x 0: 101) 2. This variance is associated with the time series of

connection points and does not incorporate the least-squares standard deviations

indicated in Figure 2.

Table 6 presents the conclusions which can be derived from Figure 4. The signi-

ficance of this table can be seen by studying column d. For example, it indicates

that if in Figure 3 a point having a value between 0.45 x 0:'01 2 and 0. 60 x 0:'012

is chosen arbitrarily, then the probability is 0.56 that this point represents a

non-random fluctuation of the pole. Most notably, the two points in Figure 3

which are above 1.55 x 0:'01 2 each have a probability of 0.98 that they represent

11
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a 3
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b3

2

4

C 3

2
0.0	 0.1	 0.2	 0.3	 0.4	 0.5

POWER

Figure 4. The number of periodogram points in Figure 3 above a
given power is determined and the natural logarithm of that number
plotted. Figure 4a represents the entire set of 73 periodogram points;
7tg. 4b has four points removed; Fig. 4c has eight removed.
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Table 6
Column a presents the actual number of periodogram points per
power interval in Figure 3. Column b indicates the number of
points predicted for the power interval by Figure 4c, where
X = 4.6 x (0,.,012)-l. These points are interpreted as being due
to noise processes. Column c gives the difference between
columns a and b and is interpreted as the number of points in
the power interval which might represent real periodic phenomena
in the pole position data. Column d gives the probability that an
arbitrary periodogram point in the power interval is "signal".

Power Interval
(0:'012 ) a b c d

0.0 -	 .15 33 33 0 .0
.15 -	 .30 16 16 0 .0
.30 -	 .45 8 8 0 .0
.45 -	 .60 9 4 5 .56
.60 -1.55 5 3.95 1.05 .21

1.55 -	 - 2 0.05 1.95 .98

Total	 73 65 8

real periodic phenomena. The power at the semi-annual frequencies (approxi-

mately 0. 25 x 0:01 2 ) is well within the noise region. Any attempt to resolve

the semi-annual constituents from this data would probably be meaningless.

Another test for the accuracy of the residual power spectrum would be to compare

the amplitudes predicted for the 1.25 and 2.50 cpy terms by Figure 1 which is a

periodogram analysis with the values determined by the 24 parameter least-

squares fit as shown in Table 4. The amplitude of the 1.25 linear term is deter-

mined by summing the square roots of the peak values for -1.25 and +1.25 cpy.

This valkc ± g 0:'0287 and is within one-half of a standard deviation from the

least squares value 0: 10304. The amplitude of the 2.50 cpy term is 0: 10147 in

13
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Figure 1 and 0: 10129 in Table 4. Thus the residual analysis of the connection

paints appears to be as accurate as a general least-squares procedure based on

the entire data set and seems to provide an accurate display of the power distri-

bution of the IPNLS latitude data.

This analysis has taken a group of data which have been significantly under-

utilized, namely the IPMS daily latitude observations, and several important

features of the motion of the pole have emerged. The annual oscillations at the

individual observing stations are seen to vary from 0: 105 to 0: 1 15 in amplitude

with sizable variations in phase. Previous analyses which purport to have

determined an annual oscillation common to all the stations are probably missing

the fact that these terms are most likely due to purely local phenomena. Secondly,

a plot of the least-squares residual analysis in Figure 2 shows no sign of earth-

quake effects. This does not mean that the effects are absent, but rather that

they are smaller than the scale of that figure (approximately 0: 105 or 150 em.).

And finally, Schuster's test gives a method for identifying the presence or

absence of physical processes in the residuals. There are still several unsus-

pected processes occurring at amplitudes between 0.7 x 0: 101 and 3 x 0: 1 01 whose

solution awaits a more precise measurement technique.

14
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