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PREFACE

The technology of cloud microphysics was greatly advanced
in 1949 by the work of Howell who first computed the growth
pattern of droplets formed in rising air on a population of
condensation nuclei. It was advanced somewhat again by Mason's
(1957) derivation of a "growth ecuation" for droplets. Subse-
quent applications of this equaticn to models of the develop-
ment of cloud led to the ohservation that cloud droplets
growing in a steady updraft tend in time to progress toward
an increasingly narrow size spectrum. Although mort workers
in the field hLave agreed that the microphysical result of the
Mason growth equation is “reasonébie," nearly all, including
Mason, et al. (1962, 1974) have observed thai: the maximum cloud
droplet sizes generated in 20 to 30 minutes of steady rise are
too small and/or too few to generate precipitation by the
coalescence process. This is a basie question regarding the
fidelity of simulation.

In his Ph.D. Dissertation, D. D. Harding has explored
two distincet approaches to the correction of the above
deficiency. The first is to note that cumuli in general are
not produced by steady updrafts but rather are characterized
by turbﬁlent eddies, and to create a simulation using synthetic
eddies (alternately increasing and decreasing saturation ratios)
with Mason's growth equation (the implicit model). The result
is clear: within certain domaing of amplitude and frequency
of the fluctuations of tie saturation ratio, the lérgest drop=-

lets of a population continue to grow almost steadily, the



smallest evaporate and recondense with the fluctuations, and
in toto, a shift of water mass toward the largest sizes takes
place. |

The second approach is a reconsideration of the growth
equation in which it is noted that Mascn's simplifying assump-
tions tend to create a systematic bias favoring growth of the
small particles with respect to the large ones. Although in
the context of conventional analytic derivations, Mason's
assumptions appear quite reasonable, the particular process
being considered appears to demand greater fidelity. In any
event, the exvlicit modellproposed here restores appropriate
growth potential to the 1arge droplet end of the éloud particle
spectrum. By this means and by conriderations of the turbulent
nature of cumuli, the explicit microphysical model is capable
of simulating natural rain-generation more adequately than
prior models.

An additional benefit is derived frum the explicit model
in that vapors other than water vapor can be included in the
microphysical simulation. Although the basic data or properties
of dilute solutions, diffusion and sticking coefficients, and
latent- and solution-energies are not always available, they
will be determined as the need is shown. The field of atmos-
pheric chemistry now demands and justifies these necessary

determinations.

A. Nelson Dingle
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ABSTRACT
MICROPHYSICAL RESPONSE OF CLOUD

DROPLETS IN A PLUCTUATING UPDRAFT

by
Duane Douglas Harding
Chairman: A. Nelson Dingle

The effect of a fluctuating updraft upon a
distribution of ¢loud droplets is examined. Computations'
are pertormad for fourteen vertical velocity patterns;
each allows a closed parcel of cloud air to undergo downward
as well as upward motion. Droplet solution and curvature
effects are included. It is found that with suitable
conditions, adiabatic warming during downward motion.
causes small droplets to evaporate, and large, unactivated
droplets to continue growing. Periods of long, slow,
downward motion followed by uplifting can result in a
broadening of the droplet size distribution in the lowaest
100 meters of cloud height. The results depend upon the
frequency and amplitude of the vertical velocity fluctua-
tions.

The classical equation for the growth rate of
an individual droplet by vapor condensation relies on
simplifying assumptions. Those assumptions are isolated
and examined. One result of the assumptions is that the
‘slassical eQuation underestimates by a few percent the
actual growth rate of the lafgeSt droplets. Since the

droplet temperature does not appear in the final equation,

idd



the classical approach is called here the "implicit
model." A unique approach is presented in which all
energy sources and sinks of a droplet may be considered.
Since direct calculation of the droplet temperature is
required, the new approach is termed the "explicit model."
Though'detaila differ, both medels yield similar results
for the growth of ammonium sulfate solution droplets in
the lowest 100 meters of cloud height. It is speculated
that the explicit model may enhance the growth of large
droplets at greater heights. The advantage of the ex-
plicit model is that it is the first capable of computing
the grewth rate of droplets in the presence of more than
one voigtile component. Such a model is beneficial to

the studies of pollution scavenging and acid rain.
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CHAPTER i
INTRODUCTION

1.1 Background

Current interest in energy conversion, and the
anticipated shift to the further use of coal as a fuel
source, have increased attention to the removal of
effluents. Contaminants, once released to the atmosphere
by either anthropogenic or natural sources, are beyond
the limits of man's pollution controls. Rather, their
remo#al is dependent on the rates and efficiencies of
the atmospheric cleanaing.processes that determine the
self-renewal capability of the air. Aamong the important
atmospheric scavenging processes'are those associated
with clouds and precipiEation (sartor and Jiusto, 1976) .
Of thése, the formation of cloud droplets upon condensa-
tion nuclei is prominent.

At the same time, nucleation of droplets is the
initial step for cloud development and precipitaﬁion
generation., It has been ;ealized for mﬁny years that
the colloidal stability of a cloud is related to the
early growth of cloud droplets by condensation of water
vapor. The growth of droplets is generally expected to
depend on such things as the size distribution of nuclei
and the updraft speed.

To determine how long growth by vapor diffusion must

continue in order to produce rain, and to assess the



impact of varying conditions on the nucleation of droplets,

it is logical to study the early growth of a population
of droplets by means of a numerical model.

Howell (1949) was the first to calculate the growth
of droplets by condensation. He described the growth of
an individual droplet with an ordinayxy differential

equation that included the droplet radius, supersaturation,

and nucleus mass. His model consisted of a parcel of air,
containing a discrete size distribution of sodium chloride
particles, rising adiabatically within a steady updraft.
Because of the mutual relationship between cooling rate,
‘vapor consumption, and supersaturation, he was able to
perform hand calculations for only three cases; his up-
draft velocities ranged:from.0.015 to 0.6 m/sec.

Howell recognized that the rate of consumption of
water vapor depends on the total surface area of the
droplet size distribution. Until the droplets reach
appreciable size, the rate of condensation is slow. He
found with his model that as adiabatic cooling began,
the supersaturation increased until the aerosol reached
some tens of meters above the cloud base. At that point,
the supersaturation determined the smallest salt particle
size that could surpass its critical fadius-{Kéhler, 1926}
and become an activated cloud droplet.

Continued cooling resulted in further growth of the

activated droplets and reduction of the supersaturation.
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Small droplets that failed to activate began to evaporate
and were carried along as haze droplets.

Howell discovered that because the rad.al growth

rate of an individual droplet decreases with increasing

droplet siza, a droplet size distribution narrows with age
in the case of a simple steady updraft. He postulated
that condensation might be the dominating process creating
homogeneous distributions found in some young clouds.
Also, he suspected that this process might be the cause
of the brilliant . iridescence seen in altocumulus clouds
of uniform composition. Finally, he concluded that the
updraft speed is most important in determining the shape
of the droplet size distribution, whereas the particle
gize distribution has a minor effect. Although no further
calculations were performed, he suggested that evaporation
or turbulent mixing might create a broader size dis-
tribution. |

Cloud droplet size diStributions in convective clouds

have been observed (Diem, 1942; Weickmann and aufm KRampe,

'1953; Warner; 1969a; Spyers-Duran, 1972) to be considerably

broader than those computed from the microphysical model

Qf Howell; The problem of modelliﬁg the generation

of cloud droplets with size distributions similar to

those observed has been addressed by several authors.
Following the increase in the number of.particle

measurements énd the development of computers, Mordy (1959)



made further calculations. He included droplet sedimen-
tation, but concluded that the effect is important only
if the updraft velocity is less than 10 cm/sec or if

there are extremely high concentrations of giant particles.

After including larger particles than.did Howell,
Mordy concluded that the particle size distribution is
as important as the updraft speed in determining the
final droplet population. Because of the relatively
slow radial growth rate, the largest droplets lagged
behind their respective equilibrium size, whereas the
smallest droplets were able to react quickly to environ-
mental changes. In a fast updraft, then, the droplet
spectrum was narrow; the spectrum was broader in a
slow updraft, in which the large droplets could approach
further their equilibrium size. |

Mason and Ghosh (1957) showed that large droplets
may be formed on giant (r>1l Mm) salt nuclei. This may
be acceptable for maritime clouds, but does not expiain
the observed droplet size distributions in continental
clouds where giant salt.nuclei are extremely rare or
nonexistent.

Kornfeld (1970) considered growth upon a particle
size distribution that inclﬁded both salt nuélei and
'insolﬁble discs. The particle distributions used Qere
not representative 6f those found in the atmosphere. In

several cases, the salt particles had only one size

peiriem



(r =1 um). At most, they were distributed among three
sizes (r = 0.25, 0.5, and 1.0 um). After 800 seconds,
the ihclusicn of insoluble particles broadened the size
distribution somewhat. Whereas the presence of insoluble
particles may be instrument2l in broadening the range of
droplet sizes, Kornfeld's particle size distributions
waere not realistic enough to evaluate properly their
effect. Furthermore, Paluch (1971) showed that by replac-
ing the insoluble discs with small salt particles (r <
0.1 um), she could approximate the results of Kornfeld.
Pitzgerald (1972) measured droplet size distributions
at the 200 to 300-meter level for fifteen clouds in
Minnesota and Florida and compared them to his computed
droplet size distributions. Nucleus size distributiona':
were inferred from the measured supersaturation spectra.
He found fairly.good agreement between the meaguréd and 
computedrdfoplet sizé'distributions, but his efforts
were limited to small of medium sized nonprecipitaﬁing
éumulus clouds 6f nearly tniforﬁ cbmposition. An extension
of his study to cdmulgs congestus cloudé is desirable.
~ Other authors have augménted the Howell model in.
laminar conditions to explain the observed broad spectra.
Most 6f them considered turbulent mixinq.__ |
. Instead of aésuming a steady updraft speed, Neiburger
and Chien;(1960} emp1oyed vertical velocities based on

the results of the Thunderstorm Project (Byers and Braham,



1949). Their model produced, after 2400 seconds, 20 um-
radius droplets at a concentration of 1/liter. They
concluded that coalescence could take place after that
time. Even so, as with those of Mordy and Howell, their
droplet size distributions rarrowed with age and did

not resemble measured droplet spectra.

Warnar {(196%a,b) measured droplet size spectra at
various levals in several cumulus clouds near the
Australian coast, Although most of the clouds had mari~
time origins, some were likely influenced by continental

sources. A.arage droplet concentrations measured by

Warner may differ from those of North American continental

¢louds, but the behavior of the droplet distributions is
of.interastf

Warner found that when the environment was unstable,

the measured droplet, size distribution was often bimodal.

The frequency of bimodal distributions increased with
incréaaing height and decreasing stability. During more
stable conditions, the bimodal feature was not as common.
It was suggested that mixing of c¢loud and environmental
air might produce the observed bimodal diétribuﬁions;

The argument is that when a distribution of clqﬁd
- droplets with a single mode is mixed with driet,
polluted environmental air, the supersaturation ié feduged

and the small droplets evaporate. Large droplets may

evaporate or continue growing depending on the mixed super-

saturation., As the péréel'cqntinues to rise, the small

A e s . bt i
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droplets are not as likely to become reactivated. Instead,
water condenses on the smaller numbers of large droplets.
If this aerosol is subsequently mixed with cloud air,

a bimodal distribution might be produced.

During horizontal passes through the cloud, War v¢
found that the bimodal nature was not confined strictly
to the edges of the cloud. If entrainment through the
sides of the cloud were the principal mixing mechanism,
he speculated that horizontal uniformity would not
be expected., Warner suggests that the primary mixing
might occur at the top of the growing olood.

Mason and Chien (1962) developed a model assuming
turbulentlmixing between cloud droplets and unactivated
particles at the cloud e&ge. Squires (1958) suggestad
a similar model in which dry.air entered the cloud ﬁop
and produced regions of low homidity. Both of these

processes are expected to be more efficient near the

_oloud boundaries, and thus are not likeiy to account

for the broad apeotra and the abundance of small

droplets within the interior (Paluoh, 1971)

_ Warner (1973) improved somewhat the model of Mason
and Chien. His_turbulont model produced, 150 meters
abovo the c;oud base, d:oplot distributions that char-

_actefistically had a mode-near 6 pm-radius, and a nearly

constant number denaity of smaller droplets which he

called a "plateau-" The mode was a result of the growth

of dropicts that formed at the cloud base, whereas




the lower plateau was caused by the introduction of
frash nuclei into the cloud edges., However, Warner
stated that the plateau is not normally found in cloud
measurements. He concluded that although entrainment
of polluted air results in a broader spectrum, it does
not yield realistic size distributions. Moreover, he
presented evidence that the rate of entrainment, as
indicated by the ratio of the measured and adiabatic
liquid water contents, does not have an obvious direct
relationship to the dispersion (standard deviation di-
vided by the mean radius) of the measured distribution.
Mason and Jonas (1974) advanced the single thermal
model of Mason and Chién. In their model, a thermal
rose by virtue of its own buoyancy and then fell back
as a result of entrainment of dry environmental air,
A second thermal was allowed to rise and mix with the

residue of the first. They conciuded that their model

successfully predicted droplet size spectra which closgely

resembled observations. Their maritime cloud model
produced droplets of 25 um in radius in 30 minutes;
. - however, the continental cloud model, with its greater

number of particles, did not result in a significant

number of 20 um-radius droplets within a reasonable time.

Warner (1975) criticized the model because it predicted

liquid water contents in the lower regidns of the cloud

much greater than those measured. Mason (1975) replied

PR Ferrn—
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that measurements refer to averages across a cloud and
not to a single active thermal.

Srivastava and Roy (1962) investigated the effacts
of turbulence within a cloud. Droplets at a given height
ware assumed to have experienced different trajectories
and hence different growth times. Their size distri-
butions were broader than those calculated within a
uniform updraft, but it was assumed that the supersatura-
tion was constant. Fitzgerald (1972) pointed out that
if the supersaturation had not been assumed coustant,
then the size distribution would have been much narrower
than that predicted by Srivastava and Roy.

Belyaev (196l1) and Sedunov (1965) studied the growth
of droplets in an updraft of fluctuating speed and super-
saturation. Particles entering the cloud scattered
about and experienced different growth times and growth
rates. Although the size distributions were broader,
they could not be related to those at a fixed height.

Paluch (1971) developed a model which ineluded small
humidity variations along the vertical axis of an updraft.
Droplets within each region of the updraft grew at
different rates. lLarge droplets were allowed to settle
into regions of low humidity originally occupied by small
droplets, thus retarding their growth rate. The high
| humidity region, then void of 1arge_dr091ets. resulted'
in rapid growth of the remaining small droplets.. This |

process was able to maintain local variations of droplet
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concentration and relative humidity. Although she 2id
include turbulence which could counter this effect some~
what, observations (e.g., Warner, 1969a) indicate that
turbhulence is not extensive enough to completely homoge-
nize a cloud.

There are several features of the observed micro-
structure of a cloud (Warner, 1969a) that should be
explained by a comprehensive model, namely:

1. the range of droplet radii i.e., the formation
within reasonable time limits of droplets large
enough to coalesce (r ~ 25 um), and the presence
of droplets less than 5 um in radius;

2. the bimodal nature ¢f the spectrum, which is
not confined to the cloud edges;

3. the measured dispersion (standard deviation
divided by the mean size) of the spectrum;

4, regions of low or zero liquid water content; and

5. regions in which the liquid water content is
‘larger than the adiabatic value (this is not
a common occurrence, however.)

To arrive at a calcv'ated distribution different
from that first obtained by Howell, one must impose a
physical sxtuation other than laminar Elow. The most
common approach has been to use a diabatio, or “open

parcel" model such as entrainment, turhulenoe, and/or

droplet set*ling.



To date, no model has reproduced all aspects of
the observed distributions, especially for a continental
cloud. Those models which consider entrainment appear
to-offér the best promise, particularly when wetted
nuclei are introduced along with the entrained air.
However, they are most applicable near the c¢cloud boun-
daries. Despite its shortcomings, the model of Mason
and Jonaé, in which a spent thermal is mixed with the
active cloud, is the most successful.

A complete cloud model must include both microphysics
and dynamics in time and space coordinates. Many in-
vestigators of cloud systems, (e.g., Ogura and Takahashi,
1971; Murray and Loenig, 1972) model the dynamics
and parameterize the thermodynamics of condensation |
(Silverman and Glass, 1973). Inasmuch as a comprehensive
‘model is not now attainable because of the limits of
available computer capacity {(Lilly, 1970}, an equally
plausible approach is to parameterize the'dynamics
(e.g., by specifying particle trajectories, etc.) and
to investigate in detail the microphyéiéal processes
and how they are affected by the motion field. This
would seem to be one approaéh to evaluate the microphysical
feedback to the local and overall dynamic prbcess. and
thus to indicate the requirements for parameterization

of the microphysics.

i e e e AT
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For this purpose a one dimensional model is useful.

A few authors have used an adiabatic parcel to investigate
the direct effect of a selected oscillating updraft
speed upon a distribution of droplets.

Saad, et al. (1976) '.odelled the early growth of
droplets in a simulation chamber. They included oscil-
lating updraft speeds of w = 100 + 100 sin(t) and w =
100 + 100 sin(0.1lt}) [cm/sec] and found no appreciable
difference between the resulting droplet size distri-
bution and those predicted under steady updraft conditions.
It should be pointéd out that the selecﬁed velocities
did not allow downdraft ahd conéequeht evapofation‘

Storebg and Dingle (1974) have calcuiated the growth
and washout of particles moving up and over a land
barrier. Under adiabatic compression of an air parcel,.
the relative humidity decreased enough to initiate
evaporation from small activated droplets. At the same
time, larger ones continued to grow as long as the humidity
was high enough. These findings led them to speculate
that if the parcel were then lifted again, the droplet
size spectrum might have broadened.

Kornfeld (1970) included in her model an unsteady
updraft velocity. Periodic fluctuations about a mean
velocity did not prﬁduce a spectrum significantly
different from that within'a.steady updraft. Paluch

(1973), however, éuggested that the resulté.might depend
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to a large degree on the amplitude and frequencies of

the velocity variations.

1.2 Objectives of Research

This research is divided into two parts. The first
is to use currently acceptable techniques to determine
whether a fluctuating updraft has any effect upon a
population of droplets within the lower reagions of a
cloud. The movement of a parcel of air in a
convective cloud is a complicated pattern of upward,
downward, and lateral motions of varying_speeds and
reversal frequencies. For the purpose of this study,
turbrlence is characterized by either a sinusoidal velo=-
city pattern or alternating steady upward and downward
motion. Modifying effects of entrainment and droplet
settling are not included,

The second part is to develop an alternative
approach to model droplet growth by condensation.

- The classical approach (chiefly attributed to Mason,
1957, 1971) presented in the first part makes use of .
certain assumptions and approximations to arrive at a
single equation for the growth rate of a droplet.
Since the droplet temperature is never actualiy determined
in the classical approach, it is called here the "implicit
medel," An alternative method presented here, which |
" includes all the known heat sources and sinks, makes

direct use of the droplet temperature and so is called the
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"explicit model." The advantage of the explicit model
is that it' has the capacity to treat more than one dif- :

fusing vapor.

!
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CHAPTER II
IMPLICIT MODEL

2.1 General Statement of the Model

The modelling begins at cloud base with an aerosél
of moist air and'droplets. Each droplet contains one
nucleus of ammonium sulfate, (NH,),S0,; the amount of
water on each droplet depends on the cloud base
conditions and the size of the nucleus.

The parcel of cloud air is allowed to rise or fall.
according to an imposed vertical velocity. The intent
is to limit the study to the direct response of the
droplet growth rate to a fluctuating updraft. Processes
such as coalescence and impaction by raindrops are not
considered. Further, it is assumed that droplet inter-
action may be ignored (Carsﬁens, et al., 1970; Williams
and Carstens, 197.). No mixing is allowed with other
cloud elements or with the outside air so tﬁat the
parcel expands or contracﬁs adiabatically but the mass
remains constant. For these reasons, all equations are
written in terms of unit mass of dry air to ensure that
the number of particles and the total mass of water
are unchanged throughout the integration.

The implicit model consists of five equations.
They are expressions for:

1. the change of pressure within the parcel,

2, the change of air temperature,

15



3. the conservation of water mass,
4. the energy budget of an individual droplet, and
5. the rate of growth of a droplet.

2.2 Pressure Equation

The air parcel is assumed to have an unsteady

vertical velocity, w. The pressure equation, then, is

where
P, = pressure of moist air,
= density of moist air,
g = acceleration of gravity.,
w = updraft speed, and
z = height.
Using the ideal gas law and multiplying by dz/dt, this

transforms to

dp P .
m___m dw
& - "R, 9t aev | (2.1)

- where T, = air temperature. The gas constant for moist

air is (Fleagle and Businger, 1963)
R = (1+ (%-1) 2R
m B I+x’ "a’

where

X = water vapor mixing ratio,

RO

P

R
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B = ratio of the molecular masses of water
and air, and

Ry ® gas constant for dry air.

2.3 Temperature Equation

The parcel is assumed to contain one gram of air,
x grams of water vapor, and ¥, grams of liquid water.
Then the first law is (Haltiner and Martin, 1957)

= -—1—
dg (l+x)[cpmd'ra o del.

where
q = heat, and
cpm = gpecific heat of moist air,
There are two sources of heat:

1. the heat released by condensation

dql = =Ldx
2. the sensible heat due to the cooling of the
droplets |
dq2 = -chwdTa
where
Sy = specific heat of liquid water, and
1, = latent heat of con&ensation. In units of
ergs/gm it is _
L= 2.503 x 1000 - 2.425 x 107 (r_ - 273.16).

Combining, and substituting the pressure equation

{(2.1), yields |
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dw dx
aT, (L+x) (g + §8) v + L 3E

T -
dat »cpd+xcpv+chw

(2.2)

Here, ¢ was replaced by the equivalent expression

PMm

(cpd + X cpv)/(l+x), inlwhich Couy is the specific

P

heat of water vapor, and ¢ a is the specifiic heat of dry

P
"~ air. '

2.4 Conaervation of Mass

Since the total mass of water in the parcel is
constant,
dx = -dxw. .
For a discrete distribution of droplets,
| am . o
dx wi
i | - Y
where
Ny = number of droplets in the 1th radius
interval,'énd
m . = mass of water in a droplet of the 1

wi
radius interval.

2.5 Energy Budget of a Droplet

_ In the implicit model, it is assumed that all of
the heat supplied to the droplet by condensation of_the

vapor is returned to the air by conduction. Thus

OSELi

PR
[R————

LE T ?-M



| L ;gﬁ = 4erFK(Tr-Ta)V (2.4)
where
K = coefficient of conduction. 1In units
of ergs cm YK ‘gec?,
K= 2395. + 8,037% ('1‘a - 273.16);
F,, = Fuchs' (1959) correction for thermal dif-
fusion, (see Appendix A),
r = droplet radius,
T_ = droplet temperature, and
Vv = ventilation factor (Squires, 1952).
It is assumed that the droplet is homogeneous
go that the droplet tempefatdre is represented by the
surface temperature{
Squires' values for the ventilation féctor were
fit to the curve |
V = 1.0 + 36.8r + 3012,0r>

for droplet radius in centimeters.

2.6 Droplet Growth Equation
| Consider a spherical droplet of radius r. The
flux of vapor along the radial distance is

_ dmw .
It = 41erFv (C’a-cr)v,

"where

Cy = ambient vapor density,
c, = vapor density at the droplet surface,



F, ™ Fuchs' (1959} correction for vapor diffusion
(Appendix A), and
D = coefficient of diffusion of water vapor
in air. In units of cmz/sec it is
(Dorsey, 1940)
D= (,219 + .0015(T=-273.16)) x 1.01325 x 105/53.
The growth rate equation aa.given above is for a
staady state situation} however, the droplet radius and
the ambient conditions are variable. It is generally
assumed (Sedunov, 1974) that the growth of a droplet
is quasisteady, so that the growth rate at any particular.
time can.he represented by the steady state eguation.
 The implication is that the droPIet radius and the ambiént
conditions vary slowly relative to the establishment of
the vapor density and temperature gradients. Kirkaldy
(1958) studied nonstationary diffusion théory and arrived
at the same growth rate expression as that of the quasi-
steady apprqximation. He points out, however, that the
agreement is not a justification of the quasisteady
concept. Philip (1965) studied the nonstationary theory
and ccncluded that the quasisteady model is sufficient
- for most problems.
 Using the ideal gas law and the assumption that

'I'a/'rr N 1.0, the growth rate equation is transformed

dmw , 4ﬂrDFv

= Vie.=e_) ' o ©(2.5)
at RT, a‘r - s
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R, = gas constant for water vapor,
e, " ambient vapor pressure, and

e, = vapor pressure at the droplet surface.

The ambient vapor pressure is related to vapor

mixing ratio with

x
" &% P
The vapor pressure in equilibrium with a droplet
containing a soluble particle is
20

e, = o, (T ) a exp nw—ﬁ—-— (2.6)
r EPrSvie

 where

= dengity of the droplet,

o, = surfeoe tension of the droplet, and

a = water activity (Low, 1969a,b).

Here, the water activity is used to quantify the

vapor pressure reduction by the solute because it is
more accurate than Raoult's Law, pairticularly for droplets
in the activation stage (McDonald, 1¢53; Vvohra and Nair,
1971). Low's tables of activity are presented as a func~
tion of molality. The activities are insensitive enough
to temperature and pressure (Harned and Owens, 1958) |
that the published values are used without modification.

To determine the solution surface tension lt is

' . assumed here that temperature and molallty act inoependently

on the surface tension, viz.




0L (T,u) = 9, (T) + da(w),
where
K = molality,
Oy ™ surface energy of pure water, and
Ac = correction due to the presence of an elec-
trolyte.
Values of v, are interpolated between those given
by Weast (1968). The correction term is fit to the
data of Dean (1973). For ammonium sulfate it is
Ao = 2.18
Tolman (1949) and Dufour and Defay (1963) have shown

that for droplets of 0.0l um=-radius, the reduction of

_the surface tension due to the radius of curvature is

of the order of only 2%. For droplets of 1.0 um-radius;
the reduction is about 0.03%. The influence of the radius
of curvature is ignored in this study.

The solution aensity, Pps is taken from tabulated
valuegs of Hodgeman (1961). Between the listings, linear
interpolation ié used. |

The saturation vapor pressure for pure water is

computed from the Murray (1967) formulation

e (T) = 6107.8 exp 11:2693832(3-213.16) (5 4

with T in units of K and e, in dynes/gmz. At 283.16 K, o ?g
it predicts a value 0.057% greater than that given by |
the Goff-Gratch formulation (List, 1968). = _ _ ;I

y,_,A
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To eliminate the droplaet temperature from the
calculations, the equilibrium vapor pressure at the
droplet surface is first related to the air temperature

by (2.7) so that
T*(T,~T,)

e, (T.) = e,(T,) °“P[TE‘=53'§3TTE'=55'§€T
where T* = 4098,03 K. Since the difference between the
droplet and air temperatures is small, one can use

T*(Tr-Ta)

e (T) = o (T,)[1 + ] (2.8)
s''r s'"a (Tafas.ss)f -

The droplet temperature elevation is determined

by the heat budget (2.4):

| L 9m,
e = Ta T TErREY & (2.9)
Finally, by combining (2.5), (2.6), (2.8) and (2.9),

one arrives at the rate of growth for an individual

droplet

20
dny, 8 ey (T,)a exp(rervTa)
O a 47V ' ; (2.10)
T*L e (T )a exp(__r__)
RvTa s 8'"a rervTa
DF -
.v KFK‘Ta 35.86)

2 7 Initial COnditiona

The model is env;sioned in the following manner,

A parcel of air with a population of wet particles starts




at the base of a cloud at 900 mb and 283.16 K. 1In nature,
the amount of water associated with each nucleus depends
on the particular history of each particle before entering
the cloud., In this model, the precloud histories are
not specified; rather, dry particles are placed artifi-
cially into the cloud base and allowed to approach esquili-
brium with the environment. Dufing this adjustment period,
the temperature and pressure are constant and the ralative
humidity is held steady at 100%. This procedure is not
intended to duplicate nature exactly, but to give a
representative distribution of droplets at the cloud
base.

The parcel composed of one gram of dry air and its
associated vapor and droplets is then raised according
to a preselected velocity pattern to a height of 100
meters. The distribuiion resulting from a steady updraft
is used as a standard to compare those created by the

turbulent motion.

2.8 Dry Particle Distribution
a. Chemical composition

There is evidence (e.g., Twomey, 1371; Junge, 1963;
Williamson, 1973) that ammonium sulfate, (NH4)ZSO4,
is a common constituent of atmospheric particlés. in

this study, spherical particles of pure ammonium sulfate

are assumed. o ' ' L,

ot et g
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The effects of including insoluble matter within
an aerosol and of using another pure salt, asodium
chloride NaCl, were discussed in reports by Junge and
McLaren (1971) and Fitzgerald (1974). Junge and McLaren
concluded that mixed particles containing both soluble
and insoluble matter behave essentially as soluble particles
as long as they have at least 10% by volume of soluble
matefial.

Fitzgerald performed further numerical computations
to study the effect of the chemical composition.
Solubilities ranged from 1% to 90% throuchout a particle

distribution. He also used'distribuﬁions of pure ammonium

-sulfate and pure sodium chloride. His results showad

that increasing the pr0portion'of insoluble matter 16wered
the maximum concentration of droplets and correspondingly
raised the mean droplet size, However, a change in the
chemical composiﬁion of the parﬁicles did not aignifi—
canﬁly alter the breadth of the resultant droplet dis~
tribution. Also, both pure salt distributions produced
similar droplet spectra. His conclusion.reinforcedrthat

of Junge and McLafén that a.change_of shape of the particle
distribution has a greater effect than the chemical
composition on_the_dispersion of the droplet size

spectrum.

b. Surface impurities

In theoretical models it is assumed that there is



no energy barrier to the initial condensation of vapor
onto the dry crystal surface. Experiments by Knight
(1971) indicated that early diffusion of vapor to sodium
chloride particles results in the formation of droplets
on the surface rather then a uniform liquid layer. The

- crystals used were apparently quite large (tens and
hundreds of microns) and it is uncertain how the behavior
he repbrted is to be applied to the nucleation of particles
found in the atmosphere.

| Katz and Kocmond (1973) concluded from their
experiments with sodium chloride that particles must

bé two to three timeé.larger than predicted by theory

to become activated at a particular supersaturation.

This may be related to the non-zero contact angle between
the liQuid water and the crystal, evident in Knight's
work.

However, there were no claims by either author of
purity of the salt surface. Adsorption of organic cr
other matter onts the surface of the crystals can lead
~to an energy barrier to the initial condensation. 1In
nature there is no guarantee that nuclei are un-
contaminated. Impurities can either increase or reduce

the surface energy.

‘¢, ‘Particle shape

Atmospheric nuclei are likely to be irregular

agglomefates rather than spherical partiéles. Thisg
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agglomeration creates cracks and crevices in the surface
which can contain concave water surfaces that accept
condensing vapor readily due to a negative curvature
effect.

Because of all the uncertainties of the phfsical
and chemical properties of particles within an aerosol,
it is assumed for this study that the nuclei are pure
' sphérical particles of ammonium sulphate with zero

contact angle.

d. Discrete clagsification

Particle sizes are continuous in a natural aerosol,
but mﬁst be distributed in a discrete manner for modelling.
The'particle sizes used here are defined such that the
mass, m, of a particle increases by a factor y from one

size to the next. Then if i is the size class number,

d{lnr) =lnr;,, -lnr, =%1iny.
With a constant dfln r),
r, = exp(ln rl+(i-l)'d(1n r)).

Particle sizes can be readily calculated by specifying

rl; the smallest particle radius, and y. In this study .
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r, = 0.015 um and y = 1.9, Tha distribution is represented
by 27 size classes so that the largest particle has a
dry radius of 3.908 um.

Thée particle number densities are distributed
according to a formulation similar to that found by

Junge (1963),
=g
0.08 x 10 cm

0.08 x 10”4 em

ni = constant' r

Ia

ng = bri-J r

v

If the total particulate mass is M, then

b oa 3

7 - 27 o _
4o, (1E,7300.08x10"4H 7T & zord 27T
_ where-pn is the density of the nucleus salt., For the-
aerosol modelled, the total particulate loading is
3 ug/m3 and J = 3. Figure 1 represents the distri-
bution of dry particles.

2.9 Distribution of Droplets at the Cloud.Base

The particles at the cloud base are not all at
their respective equilibrium sizes because the largest
. particles grow in radius very slowly and thus lag behind
their equilibrium sizes. For dilute dréplets, the super-
~ saturation, 'S, in equilibrium with a droplet is (Fletcher,
1966) |

' | 3
g = gor i _ iwan rn._
r
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where the gubscript n refers to the nucleus. The van't
Hoff factor is i, To find the equilibrium droplet size
‘at 100% relative humidity, set S = 0. Then

3/2
Fam0“n

Thus the droplet size distribution at the cloud basge is
broader than that of the dry particles if the droplets
are at or near their equilibrium sizes. |

To estimate how long the dry particles should be
adjusted to the cloud base environment, a distribution
- of droplets growing on sdodium chloride particles was
allowed to approach equilibrium and was compared periodi-
cally to the cloud base droplet distributions used by
Mordy (1959) and fitzgerald (1972). From thi; study
it was judged that an adjustment time of 60 seconds would
give a representative disﬁribution. During the adjustment
period the temperature and relative humidity are held
constant, so the adjustment time can not be compared
directly to a pre-cloud history of the particles.

The distribution of droplets at the cloud base is
shown gfaphically in Pigqure 2. Also shown are the
equilibrium sizes at cloud base. Nuclei of radius less
than 0.13 um are at equilibrium with the saturated
environment, whereas the largest particles are at their
99% relative humidity equilibrium size.

The distributions of dry particles and of cloud

‘droplets are listed in Table I.
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librium at 100% relative humidity.
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2.10 Integration of the Equations
a. Method of integration

To integrate, it is assumed that during a time
step each droplet category responds to the environment
independently of the others. The interaction of the
droplets is treated by resetting the vapor mixing
ratio by (2.3) at the end of each time step. The equa~-
tions to be integrated, then, are a growth equation (2.10)
for each of the 27 size classes, the temperature equation
(2.2),and the pressure eguation (2.1).

All equations are integrated using a fourth order
Rutta=-Simpson Method (Ralston & Wilf, 196L). This
method gives a good degree of accuracy without requiring
calculations of higher than the first derivative. Then,

if

g% = £f(m,T,p,%x)

the predicted value of the mass of the droplet is

- AL o o
m{t+At) = m{t) + 1T(Fl+2F2+2F3+F4),
where '

}_'-"1 = £fim{t),T(t} (), x(t))

F, = £lm(t) + 5F Py, T(e+lE),p(eehl), x(e+b)]
Fy = flmie) + 85 F), T(e+hE) pesd, x (t+45) ]

|
1

4 = Elm(e) + AtFa. T(t+At), p(t+At), x(t+at)].

The temperature and pressure equations are integrated

first to get values at t+At. Linear interpoiation is

s

|- g
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used to get the temperature and pressure #t t+%§-.
There is 10 differential equation for the vapor mixing
ratio; the quantities x(t+%§) and x{(t+it) are extrap-
olated by using the value of dx/dt of the previous time
step. | |

b. stabilit
" All 29 equations could be solved simultaneously,

hut because of stability problems, a slightly different
approach is used.

- The smallest droplets are nearly in equilibrium
with the environment. If the time step is too large,
they ténd to overshoot their equilibrium size. Successive
time steps lead to ©Oscillations of size and <o numerical
instability. The integration here follows the suggestion
of Paluch (1971) that good accuracy can be maintained
if the time step is chosen such that the increase of
mass of any droplet is less than 0.5% during the time
step. Further, in the present study, the time step
is increased if no droplet is found to growuby more than
0.2% of its mass. - | |

At the beginning of each time step; the teméerature
and pressﬁre'are'integrated first. Next ihtegrated is
the growth equation for the droplet with thé greatest
value for Fi} If the change of mass is beﬁween 0.2 and

0.5%, the integration is continued, otherwise the time

wertrargen



step is altered accordingly and only three equations
need to be reintegrated.

Because the growth rate of a droplet is related to
the vapor pressure gradient, the length of the time
step 18 linked to the supersaturation in such a way that
the time step decreases as the supersaturation increases.
For the case of a steady updraft of 1 m/s, the time
step decreases from 0.1 seconds to 0.014 seconds and
increases after surpassing the maximum supersaturation

to 0.16 aeconds a: the 100 meter level,

c¢. Roundoff error

In addition to stability, the other concern is_
:oundeff eiror. The temperature, for instance, changes
only a few ten thousandths of one.percent in é 0.1 meter
altitude shift. To have this change be meaningful, it
is necessary to use double precision (16 significant
digits) throughout. Computations are performed on an

Amdahl 470 at the University of Michigan.

d. Efficiency of integration

Other schemes of integration may be more efficient
but have not been pursued. _ﬁrnason and Brown (1971)
and Brown and ﬂrnason (1973) use another approach put
forward by Liniger and Willoughby (1970). Their

technique, however, is not useful during activation.
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Also, convergence is not assured during evaporation.

For these reasons their methed is not used here.
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CHAPTER III
RESULTS WITH IMPLICIT MODEL

3.1 Introduction

This chapter is divided into two parts. The first

is an overview of aroplet behavior in a steady updraft.

The effects of a steady updraft are studied for the

following reasons:

i,

ii.

1ii.

To understand in detail how a population of
droplets responds to a variable supersaturation
and temperature. In particular, each nucleus
size class has its own set of physical charac-

teristics and responds to the environment

accordingly.

To use (i) as a basis to suggest mechanisms that
might result in substantial modification of

the droplet growth behavior.

To arrive at a droplet size distribution at

the looneter level for each of three éteady
updraft cases. .These are used as standards

for comparison with ﬁhe droplet size distribu-

tions produced in the fluctﬁating updraft.

The second part discusses the consequences of a

fluctuating updraft.
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3.2 Steady Updraft
a. Growth of droplets

Figure 3 illustrates the modeslled growth
of the droplets from the cloud base to a height above
cloud base of 100 meters in a steady updraft of 1 m/s
(Case 1). All droplets grow slowly through the first
few meters until the supersaturation peaks some 18 meters
above cloud base with a value of 0.71%, at which time
the'aropiets grow quite rapidly. Subsequently, the
supersaturation decreases and the grnwth rate slows. In
this case particles of the first two size classes do
not become active cloud droplets but evaporate as the
supersaturation decreases and are carried along as
haze particles. Included at the bottom of the figure
are the nucleus radii of the 27 size classges.

In a faster updraft, the droplet behavior
pattern is similar, but details differ. For a steady
updraft of 4 m/s (Case 2), the maximum supersaturation
is higher (1.56%) as is the height at which the maximum
is achieved (40 meters). The growth of the droplets
for Case 2 is shown by Figu;e'4. Pigure 5 represents
droplet growth in a steady updraft of 10 m/s (Case 3).
In this case, the supersaturation attains an extremely
high value of 2.7% at a height of some 70 meters above
cloud baseQ This case probably reptesénts'an upper limit

of sustained updfaft sﬁeed.
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b. Temperature and liquid water content

Because the growth rate of the droplets is
slow in the lower regions of the cloud, the temperature
initially decreases at a rate close to the dry adiabatic
cooling rate (Figure 6). The liquid water content
increases slowly during that time. Shortly after the
supersaturation peaks, the rate of consumption of water

vapor increases markedly and the temperature decay -

approaches the moist adiabatic cooling rate asymptotically.

The liquid water content at the 100-meter level decre-~ses
with increasing updraft speed, Correspondingly, the
temperature at the l00-meter level decreases with

increasing updraft speed.

c. Breadth of distribution

The narrowing of the droplet size distribution
vigible in Figures 3, 4, and 5 is mainly a result of
plotting droplet size on a logarithmic scale, for the
actual size difference between the largest and smallest
activé cloud droplets increases slightly with height
in the lower region of the cloud. For example, in
Case 1, the difference in radius between size classes
3 and 27 is 14.7 ym at the cloud base and 14.9 ym at

the.iOO-meter level. |
- A more useful indicator of the breadth of
‘a droplet size distribution is the coefficient of dis-

persion (standard deviation of droplet sizes divided

T
[anema——_
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by the mean size), referred to in this report as simply

the dispersion. In Case 1, the dispersion decreased

'.
[RE——e

considerably from 0.387 at the cloud base to 0.072 at the

100-meter level. The dispersion at the 1l00-meter level

for Case 2 is 0.067 and for Case 3 is 0.060. Thus, by

the dispersion criterion, the droplet size distribution

narrows substantially with time. s
From (2.10) it is easy to show that the t

radial growth rate, dr/dt, is inversely proportional

to the radius. This 1/r relationship is the cause of the

narrowing of the droplet size distribution. At the

same time, the radial growth rate is proportional to the

water vapor pressure difference (ea-er) near the individual

droplet. The vapor pressure of the environment, e, is

a function of the air pressure and the vapor mixing

ratio, whereas the vapor pressure at the droplet surface,

er; is a function of the droplet siée and nucleus mass

and thus varies over the size spectrum.

d. Droplet equilibrium vapor pressure

The convex surface of a droplet requires
that the aguilibrium vapor pressure over the droplet a B
be greater than it would be over a flat surface of pure
water. Concurrently, the presence of a salt lowers
the equilibrium vapor pressure over the droplet. The -
combination results in an egquilibrium vapor prassure

over the droplet (Kohler, 1926) given by (2.6). The %E
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aquilibrium supersaturation for a droplet is (er/es- 1.0).
When a droplet £irst starts to condense water, it has

a high molality and can grow under less than saturated
conditions. As it increases in size and becomes more
dilute, the curvature term becomes important and the
atmosphere must be supersaturated for the droplet to
continue growing. If growth continues, both the curva-
ture and sclution effects decrease.

The maximum value of the equilibrium super-
saturation is the critical supersaturation, sc. The
corresponding critical radius is r . Once a droplet
exceeds its criticai fadius, the droplet is said to
be abtivated._ The physical significance of the critical
radius will be made clear in a later paragraph. Figure 7
'shows the critical values for aqueous ammonium sulfate
droplets at 10°C. Also included is the radius, r__,, at
which the droplet would be in equilibrium with an
environment of 100% relative.humidity. It can be shown
that r, N /T Laop® |

| It is of interest that a very small nucleus
of 0.0l ym-radius must increase its racius by a factor
of 3.8 to reach its critical radius. This means that the
volume must be increased by a factor of 3.83-= 54,9,
On the othér hand.’the critical radius for a 1.0 um
radius salt'nucléus”is 38.3 ym; the volume of the particle

is increased roughly by a factor of'(38)3 = 5.5 x 104,
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e, Droplet growth time

A very crude estimate can be made of the time
required for a particle to grow from £, to Laug OF

i e If the assumption is made that solution and curvature

effects are necligible, then for a given temperature
and constant saturation ratic, (2.10) can be integrated.
The time it takes a droplet to reach its critical radius

is approximately

; PR, T . T*Lpr .
| g K(T=35,86) _ L2
! | ot = 2(5-1) (rg = ry)

Admittedly, this does not give accurate
results, especially for a small nucleus. It does,
however, allow order of magnitude estimates which
appear in Table II. The supersathration used here was

} 1%. Since this is a high value, the listings in Table II
" represent the minimum time a nucleus must remain in
a cioud to become activated. A droplet with 0.1 um-

radius nucleus will activate in less than one second

f Rt

under the high humidity ccnditions. On the other hand,

a 10.0 um—radius nucleus would have to be in a cloud

et d

at least 10 days to activate, and at least 3 days to

reach its equillbrium radius r__,. A large droplet,

then, will not reach QQuilibrium with cloud conditions.

& ot

f. Selective evaporation and activation

Fxgure 8 shcws the equilxbrlum supersaturaticn

for two droplets of nucleus size rgl) and r(z)._ The

Uiszhms
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critical points sc and r, are indicated, as well as
*3-0' It is to be remembered that the Kohler curves
of Figure 8 are loci of equilibrium points. Whether
a droplet will tend to grow or evaporate depends on
both environment and droplaet conditions. It has already
been shown that = large droplet will not reach equilibrium
in a cloud..'Only small droplets can be expected to-
react quickly enough to be near equilibrium with a
changing environment,

Suppose the environment to have a supersaturation
of A in Figure 8. Suppose further that the two drbplets
have particular radii such that their conditions

(1) ang a(?) respectively.

are represented by the points A
For both droplets the ambient supergaturation is Qreater
than the equilibrium value so both would grow along the
indiceted errows (constant ambient conditions assumed).
If the ambient supersaturation were lowered to B, the
first droplet would evaporate, while the second one would
continue.to grow. This is the basis ef selective
evaporatlon within the droplet distribution.

Selective evaporation is apparent in Pigure 3.
Droplets of the smallest two size classes evaporate

as the supersaturation decreases.

Once a droplet exceeds its critical radius,

- it is said to be activated, since it will continue to

grow even though the ambient supersaturation decreases,

-as long as the ambient value does not go below the )

ram—

o

e et

#

W



TABLE II

Estimated times for a droplet to grow
from r,, to r o and r .. Temperature
is 283.16 K. Supersaturation is 1l.0%.

Rt o

L L GBRRRES

t

n s=0 g=0 c 0
0.1 um 0.7 um 0.3 sec 1.2 um 0.8 sec
0.3 3.6 7.6 6.3 23
0.5 7.8 36 13.5 108
1.0 22 290 38 860
3.0 115 7,800 199 23,000
5.0 247 36,000 428 109,000
10.0 699 290,000 1,210 870,000

D A
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equilibrium value for that droplet. A droplet will
activate if two conditions are met: the supersaturation
of the environment exceeds the critical supersaturation
for the droplet; and the droplet is given sufficient
time under supersaturated conditions to grow beyond

its critical size.

Not all droplets activate. A large droplet,
by virtue of its slow growth, does not activate despite
its low critical supersaturation. In contrast, the
smallest droplet, even though it has a small critical
radiug, does not activate if the ambient supersaturation
does not exceed the droplet equilibrium supersaturatibn.
As a result, the first droplets to activate in Case 1
(Figure 3) are those of size class 7 (r = 0.054 ym)
after 7 seconds. With time, the threshold of activated
droplets spreads outward to larger and smaller sizes.

At the time of maximum supersaturation, droplets of

size classes 3 to 13 (rn = 0.023 to 0.195 um) are

activated. Even as the ambient supersaturation decreases,

size classes 14 and 15 (rn = 0,24 and 0.30 um) becorne

activated.

g. Radial growth rate

The effect of the dependence of the vapor
pressure difference (e -e,.) on the droplet properties
is that the radial growth rate of a droplet is not

related simply to the inverse of the radius. Droplets

containing a small nucleus are able to respond quickly

I Tt ot 00 8 8T e e, R
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to changes in the environment; hence they are nearly
in equilibrium and majitin a small vapor pressure
difference with a corrvst :anding low growth rate. Con-
versely, a droplet with a large nucleus lags well behind
its equilibrium size and has a large vapor gradient
near it.

Figure 9 illustrates the radial growth
rata of the droplets at various times for Case 1.
The curve at 5 saconds has two maxima: one at about
0.8 Ym and the other at about 15 um. The first is
due to the dominance of the 1/r relationship and the

a'r
Only after 20 seconds, which is just beyond the maximum

second to that of the vapor pressure ¢difference, e_-e_.

supersaturation, does the smallest (class 3) droplet

have the fastest radial growth rate,

3.3 Fluctuating Updraft
The growth rate of a droplet depends on two

properties: the droplet radius and the ambient supersat-
uration. Taken togéther, these give rise to a vapor

pressure difference (ea—er) for each droplet. It has

been demonstrated that the radial growth rate of a

droplet is inversely proportional to the droplet radius
and directly pkoportional to the vapor pressure difference.

To produce a droplet size spectrum broader than that

 .6htained'in'a steady updraft, there needs to be a

mechanism which slows the growth rate of the small
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droplets and allows the large droplets to continue
growing. The key is to discover a naturally occurring
process which alters the spectral variation of the vapor
pressure difference in such a way that broadening of

the droplet size spectrum is achieved.

Consider, then, the effect of alternating
upward and downward motions. As a parcel of cloud air
is raised, the smaller droplets activate while larger
oneé grow toward equilibrium. As the parcel of cloud

air is then lowered, some of the smallest droplets

deactivate, whereas the largest ones continue to grow for

‘some time, Subsequent uplifting produces renewed growth,
but grcwth upon a size distribution brbéder than the
_o:iginal one. The overall effect on thg_d:bplet size disg~
ttibuﬁidn is expécted to éééend on the eddy size And

frequency and on the speed of the parcel.

R-T Vertical velocity patterns

To test the above idea, studies with two types
of vertical velocity patterns are presented. The veloci=-
ties for 14 cases are ligted in Table IIX.

" One velocity group simulates a parcel of
cloud air that leaves the updraft, falls, and subsequently
reenters the updraft. A steady updraft of 1.0 m/s is
combined with a steady downdraft, usually of -0.2 m/s,

Velocities of this group'are referred to as square

" wave velocity patterns to distinguish them from sinusoidal

patterns.




Case Number

1
2
3

Case
Number

TABLE III

Steady Updraft

Vertical velocity
{m/s}

1

4
10

Square wave

Helight
(m)}
0-20
20~0
0-100

velocity {(m/s)

Vertical

i

Vertical velocity patterns

Time to reach 100-
meter level (3)

100
25
10

Time to reach 100~
meter level (s)

220

0=-20
20-0
0=-20
20~0
0-100

[
- =

. =

340

0-20
20=0
0=-30
30-10
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TABLE III Continued

Sinusoidal
Case Velocity Maximum Eddy Time
Number {m/8) updraft diameter to reach
speed (m) 100 meter
(m/s) level (s8)
8 0.25+0.75 cos(0.032¢) 1 25 375
9 1.0+3.0 cos(0.13¢t) 4 25 100
10 1.0+3.0 cos(0.064¢t) 4 50 100
11 1.0+3.0 sin(0.1l5¢) 4 40 61
2 2.5+7.5 cos(l.6¢t) 10 5 40
13 2.5+7.5 cos(0.32t) 10 25 40
14 cos(0.16¢) 10 50 40

2.5+7.5
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Sinusoidal velocities make up the second
group of velocity patterns. They are used to relate
the eddy size and frequency to the dispersion of the
droplet size distribution. Maximum updra€ts of 1, 4,
or 10 m/s are used. The maximum downdraft speed is
half the maximum updraft speed. Variousfdescent lengths

(eddy diameter) of 5, 25, and 50 meters afe used,

b. Growth of droplets

The effects of alternating steady upward and
downward motion (Cases 4-7) are illustrated in Figures
10~-13. 1In Figure 10, the cloud parcel rises to £he 20
" meter level at 1 m/s, descends to the cloud base at
-0.2 m/s, and rises again to the'loo méter level at

1l m/s. with aownward'motibn of.thé parcel the super-

saturation drops'bﬁloﬁ zero to a minimum of =-0.12%. Small

Iaroplets undergo substantial eéaporation during that
time. It will be shown later that droplets of gize
class 22(r, = 1.34 um) through__Z?(rn = 3.9 pm) grow
throughout the ehtire cycle. As the parcel is again
lifted, the supersaturation reaches a peak of 0.59%,
a value somewhaﬁ lo@er than the first maximum of 0.71%.
_. Caée 5 (Figure 11) differs from Case 4 in

~ that the:é are two loops between the cloud base and
ﬁhe 20 meter level. Again, selective evapotation'is
apparent. In Case 6, the second loop is between the
lo_meter level and the 30 meter level. The droplet

behavior is shown in Figure 12, (In this figﬁré, and

e e ek o
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Figure 10. Growth of cloud droplets for indicated
sguare wave velocity pattern: Case 4.
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in Figures 13-20, only the odd~numbered size classes
have been included.) One result of the 10 meter shift
between loops is that droplets of size class 3 (rn -
0.023 um) do not reactivate during the second loop.

Case 7 (Figure 13) is a series of six
quick loops, with a maximum downdraft of -1 m/s. The
effect is not nearly as dramatic as in the earlier
cases.,

Figures 14=-20 represent the behavior of the
droplets in a sinusoidal updraft. The effect of the
fluctuating motion is small; thé usual pattern is an
oscillation of the size of the smallest droplets in
direct response to the changing supersaturation. For
the case of a maximum updraft of 1 m/s and a simulated
eddy diameter gf 25 meters (Figure 14), droplets of
size class 3 ére deactivated after some 165 seconds and
thereafter carried along as haze éarticles. In this
case, therefore, the water previously associated with
class 3 droplets is released to promote growth of the
larger droplets. This result indicates a process, which
in a natural continuum of nucleus sizes must always be
present, but which shows up only occasionally in a
simulation based upon discrete size classes. It appears,
however, that the transfer of water mass from the small
to the larger sizes for this case is not great enough

to affect the cloud droplet spectrum appreciably.
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Figure 16. Growth of cloud droplets for indicated
sinusoidal velocity pattern. Only
odd-numbered size classes are shown:
Case 10.
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¢. Dispersion of the droplet size distribution
To describe the droplet size distribution,

threestatistical parameters are useful: the mean

radius, ¥, the standard deviation, o; and the coefficient

of dispersion abou: the mean, § = 0/r. The values

at the 100-meter level ‘orxr all fourteen cases are listed

in Table IV. It is significant that the dispersion

is increased substantially for the square wave velocity

patterns, Cases 4-7. In Cases 4 and 5 in particular,

the dispersion is more than double that produced by

the steady updraft Case 1. For the sinusoidal velocity

variations, the mean radius and dispersion decrease

with incfeasing eddy diameter. For example, the dis-

persion produced by 2 steady updraft of 10 m/s is 0.060.

With an eddy diameter of 5 meters, it is increased to

0;083. However, with eddy diameters of 25 and 50 meters,

the dispersion decreases to 0.056 and 0.055 respectively.
Warner (1969a) measured the dispersion of

droplet size distributions.in Austfalian cumuli; these

are shown in_Figure 21, BHis measurementé show that

the dispersion averages about 0.2 at the cloﬁd base,

increases to a peak of about 0.45 at a height of 1.5 km

above cloud base, and thereafter decreases somewhat.

- None of the values of the dispersion in this study is

as high as 0.2. Other factors may be involved, but

Warner's measurements were in maritime clouds, and the

nucleus size distribution for this study is more descriptive

.
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Table IV

Mean radius, r, standard deviation, o, and dispersion, §,

of droplet distributions 100 meters above cloud base.

Case No.

O W O~ S U s W N

i e o e~
e W N RO

Figure No.
3
4
5

10
11
12
13
14
15
16
17
18
19
20

T (um)
5.36
4.83
4.15
5.27
5.27
5.84
5.56
5.59
4,85
4,83
4,85
4,83
4.73
4.59

g (pm)

.384
.308
.250
. 783
.760
.722
.606
.456
.383
.351
. 357
.402
.265
.252

.072
.067
. 060
.14%
.144
.124
.109
.082
.079
.073
.074
.083
.056
.055
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of ¢ornzinental clouds. Fitzgerald (1972) showed that
the dispersion depends on the original nucleus size
distribution. With a particle distribution similar

to the one used here, Fitzgerald calculated a dispecssion
of 0.074 at the 244-meter level, With a less steep
nuclens size distribution (fewer small particles, more
large particles) his calculated dispersion was 0.28 at
the 200-meter level. What in of interest in this study
is how the dispersion and droplet size distribution

are altered by turbulent motion,

d. Droplet size distribution

Some droplet size distributions
are illustrated in Figures 22-25. The number of droplets

per unit volume per unit radius interval is

dny ) 2
dr ‘ r, - I

th size

in which N, = number of droplets/gm air in i
¢lass, and

pg = dry air density.

Since our interest is with the cloud droplets,
the mode due to nonactivated haze drdplets is not shown
in the figure. Aléo, it has been omitted from the
calculation of the dispersion.

Figures 22 and 23 include the droplet size

ntmy
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distributions for a steady updraft of 1 m/s and for the

cases {4-7) of alternating steady up and down motion.

Figures 24 and 25 show "droplet size distributions

for steady updrafts of 4 and 10 m/s and corresponding

sinusoidal velocity patterns. There are some striking

differences between the droplet size distributions of

the two vertical velocity groups. In the sinusoidal

cases, the droplet size distributions have about the
R

same shape as those produced by the steady -updfaft.

Turbulence simulated by alternate steady
up and down motions changas the shape of the droplet
size distribution dramatically. In each case, the
maximum value is less than that obtained in the steady
updraft. In addition, the distributions are broader,
with some displaying a bimodal character.

The trend of the shape of the droplet size
distribution is interesting. For Case 1, the mean
droplet radius is 5.36 ym. For Case 4, which has a
gingle loop, the mean radius is slightly less, 5.27 um,
despite the fact that it took 2.2 times as long to
reach the 100-meter level. Also, the distribution is
bimodal, with a major maximum near 5.8 um=-radius and
a minor maximum near 4.9 uym=-radius. When the droplets
undergo a second loop {(Case 5), the mean droplet radius
remaing the same, but the modes are reversed. The major
maximum shifts to near 5.1 um—fadius and the minor maxi-

mum moves to near 6.0 pm-radius.
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The velocity pattern for Case 6 differs from
that of Case 5 only slightly; the second loop is centered
10 meters higher than the first. However, the resulting
droplet size distribution is quite different. The
mean droplet radius moves upward to 5.84 um, and there
is only one mede, near 6.1 um-radius. The droplet
size distribution for Case 7 does not resemble those of
Cages 4 and 5 either, but that is not surprising since
Case 7 involved small fast eddies.

The fact that alterations to the droplet si:e
distribution occurred with the square wave velocity
patterns and not with the sinusoidal velocity patterns
is not considered to be attributable to the fact that

the square wave patterns make no allowance for acceleration.

Square wave velocity patterns are used because thera is
more control over the downdraft speed, the height

where dow.ward motion begins, etec. The next sections
look at Cases 4, 5, and 6 in more detail to suggest
why these cases increased the dispersion and others

did not.

e. Single loop: Case 4

To review, the velocity pattern is this: the
parcel is lifted from the cloud base at 1 m/s, lowered
to the cloud base at -0.2 m/s, and raised again to the
100-meter level at 1 m/s.

Figure 26 shows the equilibrium supersatura-
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tion (er/es-l.O) for a few droplets for the first 150
seconds or s0o. The ambient supersaturation (ea/e’ -1.0)
is dashed in. A droplet grows whenever its equilibrium
vapor pressure is less than the ambient value. A peak
in a curve represents the critical supersaturation for
droplets of the indicated size class.

The processes of selective activation and
selective evaporation are seen here. Droplets of size
class 6 (r, = 0.04 ym) ave among the first to activate
and those of size class 13 (rn = 0,20 ym) are the largest
to activate. During downward motion (20-120'seconds),
it is some 16 seconds before any droplets evagorate. The
smallest droplets (size class 3) deactivate first. They
evaporate for 48 seconds before they evaporate below
critical fédius, but once they_do. they déactivate and
reach equilibrium with the environment_in less than a

second. Before droplets of size class 6 can deactivate,

‘the ambient snpersaturation increases again due to

renewed uﬁlift, and the droplets resume growth. Since
they did not deactivate, they did not pass through the
critidal point and the second maximum in the curve for
size class 6 is not as high as the first.

The ambient supersaturaticn reached a low
value of -0.117%. This was high enough that droplets
of size cl&ss 22 (r, = 1.27 um) and larger did not
evaporate during the cycle. :

‘The radial growth rate of the droplets is

T T S T



shown by Pigure 27. Selective evaporation is quite
evident. | |
| The rasulting size distribution 0, 20, and

100 m above cloud base are shown in Figure 28. At

tha bottom of the loop (¢t = 120 8, z = 0 m}, most of

the droplets are larger than they were originally
(0 s, 0 m). The second time the parcel reaches the

20-meter level (140.s, 20 m) the mean size is slightly

~ larger than it was just prior to downward motion (2.23 vs.

2.09 ym) and the dispersion is some 1.4 times as large

- {0.406 vs. 6.281). Further, a bimodal nature has

developed. Subsequent lifting to the 100-meter level
(220 s, 100 m) does not void the bimodal character. For
comparison, the distribution at 100 meters for the
steady updraft Case 1 (100 m, 100 s) is included.

fg"bouble loopez Cases 5 and 6

The effect of muitiple loops is investigeted
with Casee's"ahd 6. In Case 5, there is a ‘second loop

between the 20 and 0-meter levels. For Case 6 the

':seoond Loop is between the 3V and lo-meter levels.
" In case S, the second loop initially increases the dls-
'persion. At 20 meters, the dispersion for Case 5 (260 s,

20 m) is 0 48, and for Case 4 (140 s, 20 m) is 0.41. At

the 100-meter level, the dispersion for Case 5 (0 76). is

Tonly sl;ghtlgnless than.that fo:_Caee,4 (0,78). (See

- Table V for a summary of some statistics of Cases 1, 4, 5
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‘rise to 100

second- zloop

meter leve

TABLE V

Selected statistics for Cases 1,4,5 and 6.

Case

time spent in downdraft, seo
minimum S, &

ho:lghi_:_ at top of loop, Z,
E(z’l); um ' '
2
3
;i

i height at bottom of loop, z,

¥(z,), U

c'(zz)

time spent in updraft, sec
maximum S, %

heigh,. at top of loop, 2,
E(zy), Um
0(23)

_minimum S, %

height at bottom of loop, 2
®lzy)

4

Q
N

4)

]r-l

time spent in updraft
maximum S, %

(60 m), Um
o(00 m)

r

time spent in downdraft, sec

1

.38

4
20
2.09

.28
100

=117

1.55
647
100

+591

100
.591
5.27
.78

5
20

. 2.09

o 28
100
™} 117

1.55

647

20
.591

100
.611
5.26

.76

20
2.09
.28
100
-.117

1.55
.647
30

.591

0

2,92

+36

- 100

-.059
10

2.54
'1.02

90
411
5.84%

.72

. *droplets in size classes 3 and 4did not reactivate in Case 6. -
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and 6). However, the shapes of the size distribution
curves are different (Figure 22). The effect of the
second loop is best shown by Figure 29. Here, tha mass
of water on each size class is shown relative to that
for Casa 1. -It can be seen that the effect of one loop,
Case 4, is to remove some of the water from the small'
droplets (size class <7), without eliminating the smallaest
droplets, and move it to the higher size classes. In
Case 5, even more water has heen removed between size
classes 5 to 8 and moved upscale.

In Case 6, the droplets had more time to
recover before descending for the second time. As a
-result, the mean droplet radius before the second descent
was larger (2.9 um) than for Case 5 (2.2 um). After
the second loop, the maximum supersaturation attained
in the final updraft (0.41%) was not high enough to

reactivate size classes 3 and 4.

g. Effect of mixing parcels of cloud air

For a final experiment, parcels of air at
the 100-meter level from several cases are mixed to see
the effect on the dispersion. The results are in Table VI;
‘When a parcel frbm Case 4'(squarélwave velocity pattern)
is miked with one or more éarcels from éinusoidal caseé
the dispersion decreases; .Thé.dispersion increases when
two'sinusoidal casés are mixed togéther, and decreases

slightly from the most disperse case when three ére

s 3
H -
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Figure 29. Mass of water associated with each size
class for Cases 4, 5, and 6 relative
to that of Case 1. Height is 100
meters above cloud base.




Table VI

Coefficient of Dispersion
for Mixed Parcels of Cloud Air

Case Numbers of - Individual
Parcels Mixed Dispersions
1,4 2716, .1486
4,14 .1486, .054%
8,12 .0815, .0832
8,14 .0815, .0549
4,8,14 .1486, .0B15, .0549
12,13,14 © .0832, .0561, .0549

Mixed
Dispersion

.1163
.1328
.1105
.1209
1334
0696
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mixed. Apparently, mixing of cloud air is not an effective

means to broaden the droplet size distribution.

3.4 Conclusion

The effect of a fluctuating updraft on a
distribution of droplets is complicated and not obvious,
Some explanation of the behavior of a droplet size
distribution can be made on the basis of this study.
Ostensibly, there are at least three aspects which
influence the droplet size distribution: the maximum and
minimum values of the supersaturation, the height
{or time) at which the parcel first undergoes downward
motion, and the time spent in downward motion.
| Figure 30 illustrates an important point.

It shows the total mass of water associated with each
droplet size class at several times for Case 4. Roughly
60% of the total ligquid water is condensed on droplets |
of size classes 7{(r 20.05 um) through 1l(r = 0.12 um).
Droplets in those size classes are activated in all

14 cases of this study. They are fairly slow to react
tc change in the environment; it takes 99 seconds of
downward motion to deactivate the smaller droplets of
size class 3(r_ =_05035 um) in Case 4.

smal; droplets near equilibrium feact gquickly
to environmental changes. A trajectery which affects only

those droplets has only a small effect on the distribution
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as a whole. An example of this situation is Case 12,
with S-meter diameter eddies and a maximum updraft
velocity of 10 m/s. At first, small droplets oscillate
in size in response to the changing supersaturation.
Once they are activated, however, none of the droplets
undergoes evaporation. Conversely, Case 14 with a
50-meter diameter eddy has a very low minimum super=-
saturation (~.717%) so that even the largeat droplets
begin to evaporate although the time spent in the downward
motion field is only about 15 seconds.
The optimum situation for brcadening the

droplet size spectrum seems to occur when a long time
is spent in an environment of a small undersaturation,
as in Cases. 4=-6. In each, the parcel first undergoes
downward motion after 20 seconds and continues on a
downward path for 100 seconds with a minimum supersatur-
ation of -0.12%. Under these conditions large droplets
continue to grow and small ones grow toward equilibrium.
The main difference is that the droplets of intermediate
size, which are sluggish in their response to the environ-
ment but at the same time account for most of the liquid
' wéter, have sufficient time to evaporate significantly.
It is apparently these droplets that are important in

directing the flu# of liquid water within the droplet
spectrum and aré responsible for the broadening of

the droplet size distributien.
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If droplets penetrate farther into the cloud
hefore reversing direction, the mean radius increases
and the pnrcel must spend a longsr time in downward
motion in orxrder to significantly evaporate droplets with
large amounts of water on them and therefors have a
meaningful effect on the size distribution.

The pattern of growth o* the cloud droplet
population appears to be influenced by three fairly
distinct groups of droplets within the population: small
droplets near equilibrium which react quickly with changes
cf the environment but have a small effect on the final
droplet distribution; larée droplets which continue
to grow thxouéﬁout the downward motion; and inter-
mediate sizes which account for a large fraction of
the cloud ligquid water.

_ The characteristic time for a growing or evaporating
droplet is a complicated function of its physical and
chemical nature and the environmental conditions.

- For this reason it is difficuit to predict accurately
what a given distribution of droplets will do under
particular circumstances.

It has been demonstrated, however, that
turbulence does indeed have a direct influence on a
distribution of droplets. It can be expected that the
degree of the modifidétion of a droplet populatibn

 differs ﬁhrodqhout the various regions of a cloud.
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CHAPTER IV
EXPLICIT MODEL

4.1 Introduction

Comprehensive modelling of air pollution scavenging
requires a model capable of representing co-condensation
of multiple vapors and energies of chemical reactions,
One example is the transformation of gas2o0us sulfur
dioxide to sulfate particles in the presence of water
droplets and natural ammonia.

The classical, or implicit, model represents cloud
droplet activation and growth upon condensation nuclei.
It ignores any chemical reactions and vapors other than
H,0 and depends upon simplifying assumptions %o arrive
at a single expression for droplet growth (Mason, 1957).

When two or mocre vapors whose condensates may form
a solution are present, however, they jointly determine
the equilibrium pressure of each component over the
solution, and the simplifications of the implicit
model are not applicable. The explicit model is designed
to meet these problemas,

Several authors have considered the heteromolecular

nucleation (multimolecular formation) of droplet embryos,

for example NH,=H,O (Lewis, 1969), H,50,-H,0 (Doyle,
1961; Nair and Vohra, 1975; Hamill, 1975;

93
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Hamill et al., 1377), and HC1l~H,0 (Lewii. 1968; Stauffer
and Kiang 1974). 1In addition, Kiang et al., (1975) have
investigated the H,80,~HNO,=H,0 ternary system. rThele
papers deal specifically with the formation of embryos,
say r < 0.1 um. The focus in most of these refareizes is
on, though not limited to, the stratosphere and extra-
terrestrial atmospheres. There are two approaches:
analysis of equilibrium phase diagrams, and hetaromolecular
nucleation theory (Byers, 1965) extended to multicomponent
systems. | |

The nucleation theory applies to'the initial
formation of small droplets in equilibrium with the
envircnment. 1In conﬁrasg, the explicit medel developed
hara_éxtenda the theory tg the further growth ¢f the
droplets by co-condensation of the vapors without
présuppoaing the condition of equilibrium,

The explicit model is applied here for the conden-
sation of water only so that the results may be compared
directly to those of the implicit medel as an initial
test. Considerations for the expansion of the model for

more complicated systems follows.

4.2 Energy Budget of a Droplet
- Considering all the known energy sources and sinks

‘for a droplet, the energy balance is

+
e

o i



95

A T

where
ar

r
mcr dc

dm
L 3E

am
= =C {T.~T,)3E

2

-lémr °r T3(T ~T )E

a r a

- é%(4wr26)

= ~grpl (R 3y + A 20
GEMES R ol et

aT
0g _ 20 9 r
5T o 3 @)
2/9 rzmgztpr-pd)
He

dh
() Tu

L=
[»]
H
1
[« 1
8

~

and

2

In the above expressions,

pq is the air density

+ QF 4 QD + Qc (4.1)

internal energy{4.la)

(4.1b)

latent heat
conductive (4.1lc)
transfer

mixing (4.14d)
radiative (4.1e)
transfer

surface energy (4.1lf)

ac)dm

' de
friction (4.1g)
dilutior (4.1h)

represents any other energy terms which might
pertain to a particular system.

¢, is the density of the droplet

Ug is the moledular viscosity of air



9, is the Stefan-Boltzmann constant
E is effective emissivity of the droplet
h is the enthalpy of dilution

and all other symbols are defined as beforé.

The mixing term arises from the assumption that
the vapor condenses at :he air temperature and then mixes
completely with the droplet. The radiation term is an
approximate formulation based upon the Stefan-Boltzmann
law (Sedunov, 1974). The exact nature of the radiation
exchange of a droplet is unknown, hence the inclusion
of the factcer E. The surface energy term includes the
relationships of temperature and molality to the density
and surface free energy. The friction term is related
to the change of potential energy. It is strictly valid
only when droplet settling is édnsidered, but it is
included here for completeness. The dilution term is -
the change of energy as a result of dilution by the con-
densing vapor. It is small for most salt solutions but
can be important for acids. | |

A study of the magnitudes of each of these terms
indicates that Q. and Q, are three to five orders of
magnitude latger than the others. Hoﬁéver. these twd
terms are of.opéosite_sign and thei:_fesidual_detErmines
the order.of magniﬁﬁde df terms ﬁhat should be retained;

~ This is cqmparable to Qn. The calculations show that

iyt el

IR
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of the energy terms only the frictional term, Qp, can
safely be dropped from further consideration in the
aarly stages of cloud formation. QF is of the order of

10

107 Qp or less for droplets smaller than 30 um-radius,

4.3 Droplet Growth Equatioh

The droplet growth aquation is

41eDF V. e e~.
dm v a r :
dt RV 'I‘a 'I.‘r | |
Because the droplet tgmperatﬁre is explicitly determined

in the explicit model, (4.2) is used directly,

4.4 Integration Technique |
Variocus attempts were made to determine the best

method for solving the system (4.1), (4.2). The first
method was to integrate (4.1) and (4.2) simultaneously
by a Runge-Kutta technique. It was found to be highly
unstable for time steps larger than 10~ ° seconds because

in the energy balance, an error in QK or’QIl of 1% leads

“to an error of about 10,000% in Q. Clearly, direct

differencing of Q. and Q, should be avoided. |
A second approach was an expansion of the method of

Storebg and Dingle (1972);"i£ was assumed (see Dingle,

'1976) that a two-step process would adequately represent

o the'ﬁiééoPhysicéfﬂ First;'aiiﬁthﬁ vapor which would



condense during a time step was allowed to condense
at the beginning of the time step. Secondly, the heat
gained as a result of condensation of the vapor was
transferred to the environment by conduction’ and radiation,
so that a mean temperature over the time step could be
found. Since the mass increase of the droplet depended
on this average temperature, the two steps were iterated
to find the solution. This method was quite comp;icated,
and since it was not clear that a second volatile
component could be added to the system, it was abandoned,

The integration technique decided upon is simple,
relatively stable, and can includé ahy number of reacting
gases and heat sinks. To begin, the energy balance
(4.1) is rewritten as

T.-T, = [-QT+QL+Q°+QD+QC]/(4v:KFkV +

dm , ,...2
Cw a—E + léenmr“o

By this device, the large terms Qx and Q;, are divided
rather than subtracted. This properly emphasizes“the nminor
contributions of the other terms and more easily maintains
computational stability.

After the first time step, the rate of change of
droplet temperature in Qn and Q_ is estimated from the
previous time step, leaving only one differential equation

(4.2) to be stepped forward for each droplet.

3 . _
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at time t(0), ar{%/at is calculated by setting

the time rate of change of the vapour during the previous

- atep, dx('l)/dt, equal to zero. For each size category,

the initial droplet temperatures are found by the following
process:
i. set {Tri}(O) - Tio), where the curved brackets
indicate an estimated value;

ii. using the estimated droplet temperatures,
estimate from (4.2) the growth rate of each
droplet, {dm,/at}(®);

iii, with these, calculate the droplet temperatures
by (4.3} to get {Trii(o’, where the square
brackets indicate a calculated value;

iv. compare the estimated and calculated droplet
ﬁemperatures;'if the absolute value of
{Tri}(O)-[Tri] > 10710, then {Tri}(O) is re-

adjusted by a rglaxation technique and steps
ii, iii and iv are repéated.
At a subsegquent time t(k? = t(o) + At(O) + At(1)+...
' the.known.variables ére T;k), pék), and all

mik). The vapor mixing ratio x(k) is calculated from the

water conservation equation (2.3). The rate of consump-

tion of vapor during the previous time step is approximated
by _
_ x(k),x(kfl)

_Qt At(k-l) .

ax (k=1).
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The derivatives of pressure (2.1) and air temperaturs
(2.2) can then be readily calculated. |

To compute the growth rste, it is necessary to find
the temperature of each droplet. This is done by esti-
mating the droplet temperature by extrapclation from the

previous time step with a function y such that

T(k) - Ta('k) + (Tr -~ )(k-l) +

ry i 9
w{k-2) At (k=1)

where the definition of wi is presented below. 2
procedure similar to that used at time (0} is used to
iterate (4.2) and (4.3) to find the droplet temperatures
and dmi/dt. Under normal conditiocns, steps ii, iii, and
iv, above, need to be repeated only once or twice.

The function Y; is then recalculated for use during

the next time step as
(k«1) " (K)_tm o (k=1} (k-1)
wi. [('1'ri Ta) (Tri Ta) 1/4t .

The rate of change of droplet temperature is

estimated with

Ty (k) (k=-1) (k-1)
—_— = ('I'ri - T, ) /bt .

- 8ince Yy, dTr/dt, and dx/dt are averaged slopes over

the previcus time step At k™) - t(k)—t(k-l), rather than

actual derivatives calculated at t(k), the superscript
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must be in keeping with the convention asdopted here.

For the zeroth time step (k=1), w:'l) is defined
to be equal to zero. That is to say, that d?éo’/dt -
ari® sae.

Finally, the pressure, air temperatura, and droplet
maaaes_are_aﬁepped forward using a Hamming modified
predictor~corrector gubroutine. This is a fourth-order
technique which does not require computation of derivatives
within the time step as does the RKutta~Simpson method.
On the other hand, it is not self starting, and a modi-
fied Runge~Kutta method suggested by R&lston {1962)
is used to integrate from t(o) to t(z’g

The method outiined above alléws for variable tiﬁé

steps and can readily include another volatile component.

4.5 Review of Implicit and Explicit Equations

There are three major differences between the
équatidns of the implicit an& explicit mbdels. They_
are summarized below.

i. The.implicit model depends on the assumption
that the eneréy arising from the condensation of the
vapor onto the droplet surface is conducted away to the
éhvirbnmgﬁt. _All.oéher energy sources and sinks are
assumed negligible;'_oh ﬁhe other hand, all energy sources

and éinks_compérabie in magnitude to the heat storage
term or larger_may be included in the explicit model.

"The'gfowth rate of a droplet depends on the droplet

ek e it baa e e for R T
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temperature by means of the droplet equilibrium vapor
pressure, e .. An error in the droplet temperature re-
sults directly in an error in the droplet growth rate,
In the case of ammonium sulfate particles, the g
difference between the implicit and explicit computations
is not significant. Situations do exist, however, in
which the "minor" energy terms can be of importance,
particularly if chemical reactions are taking place.
Also, if there is a second condensing vapor, the latent
energy of condensation of that vapor must enter the .
¢alculations. -
ii. The gacond assumption of the implicit model
is somewhat less obvious. The correct expression for

the droplet growth rate is given by (4.2), rewritten

as _ ' Y
47rDF Vv T _
%% = —-@—-!- (ea-er @E). ) (4.4)
a - r

In the implicit model, it is assumed that the droplet
temperature is nearly equal to the air température S0

that (4.4) can be adequately approximated by

dm 4erFvv

JE = T (ea-ef). ' (4.5)

*

Inasmuch as the approximation is made within a difference

e,

term, the error introduced should not be assumed negligible.
When vapor condenses onto a droplet, then Tr > Ta' k

and (4.5) underestimates the true growth rate. Similarly,

o, s d

ORI P
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when a droplet is evaporating, T.< T, and e, < e, 80

that the rate of evaporation is underestimated by the
implicit model.

It is of interest to estimate the magnitude of the
 error. If (4.4) is taken to be the correct growth

rate, then the error introduced in the implicit model is

a
er T er

E = -3 .
Ta
e, - g, -
a r '1'r

Ignoring droplet curvature and solute effects,
the droplet equilibrium vapor pressure is, from (2.8),
T* (T,~T,)

e. = e (T.)I[1 + ],
r s a ('ra--ss.ee)E

Since the supersaturation is § = ea/es - 1, the error

is approximately
: T*(T:-Ta)
1+ 1 (T,-7.)
(Ta-35.86;§ a’r

TH* (T =T )}
o a TQ‘]Ta
(T,~35.86)

(S+1.)Tr - [1 +

The error therefore depends upon'the supersaturation
and the droplet temperature elevation, T -T,. For a
solution droplet, the.error'aiso depends on the droplet
size and molality. Estimates show that for average cloud

conditions the error ranges from zero to a few percent.
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iii. The third difference between the two models

is the most important. In the implicit model, the approxi-

mate energy balance equation is substituted into the
droplet growth rate equation to axrive at a single
differantial equation. If there are important enexcgy
terms other than those for water vapor condensation and
tharmal conduction, or if there is another vapor present,
the substitution of the energy balance equation into
the growth rate equation is not practical.

The explicit model is the only approach which allows
chemical reactions within the droplet and the simultaneous

condensation of multiple vapors.

4.6 Results with Explicit Model

a, Droplet size distribution |

The explicit madel is used under the same conditions
ags Cages 1 and 4 of the implicit model. The droplet
gsize distribution 100 meters above cloud base after a
steady uplift of 1l m/s (Case l) is shown in Figure 31.

It is clear that both models, though they differ in
detail, give nearly identical resulﬁs for this case.

It has'been shown that the implicit growth rate.
equation underestimates the true droplet growth rate.
Spot checks of the outpﬁt of the explicit model show that
if assumption ii.above were made, the growth rate at

the 20-meter level would be 1.7% slower for droplets
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of size class 3 and 6.7% slower for droplets of size
class 27, At the l00-meter level the growth rates would
be slower by 4.3% and 5.6%, respectively. Because the
explicit model pradicts a faster droplet growth rate, the
rate of consumption of vapor is enhanced, and the super-
saturation is slightly lower. The maximum supersaturation
reached by the explicit model is 0.708%, just barely less
than the 0.713% obtained by the implicit model, but enough
to compensate. Apparantly, the errors introduced by
the implicit model are not important in this case.

Only the very early periocd of cloud droplet growth
is represented. As anticipated, the explicit model
results in slightly more water in the larger droplet
sizes. The small increase noted is in the direction
required to produce a broader droplet spectrum and to
promote rain generation. The effect is likaly.magnified
at greater heights. | |

For the dscillating updrafc, Case 4, the droplet -
size distributions predicted by the two mddels are slightly
different (Figure 32). The reascn for the difference
is that droplets of size claés_3.§£e not reagtiv&ted |
durinélghe finai ascent so that more ﬁater is available
and is £akén up:bf tﬁe larger dropleta. _This illustrates
oné of the difficulﬁies.that arises from the necessity
gf using a discreté, rathér than a gbntinuous, droplet

”_ size distributiqn. Cloud models must have a sufficient
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number of droplat size categoriaes to assure that the
results are not greatly distorted because of the finite '

increments used in specifying tho'nucllul size distributien.

The difference between the curves of Figura 32 may have
been reduced by choosing more size cacegories in the
region of the smallest activated category. The dis-

éributicns at 20 meters for Case 4 (not shown) are nearly
identical..

b. Droplet temperature elevation
The temperature elevation, (Tr'Ta)' is shown in

Figures 33 (Case 1) and 34 (Case 4). The droplet tem~
peratures of the implicit model which may be calculated
from (2.9) are not discernible from these. Throughout

the moaelling time, the largest droplets are the warmest
and the smallest, the coolest. The greatest temperature
éievaﬁiohs oécur near theﬁhaight of maximum supersaturation

(v18 meters).

c. Drogiet equilibrium aupersatﬁrat&on

The droplet equilibrium supersaturation is defined
at zero growth rate. From (2;10)'the droplet equilibrium
supersaturation for the implicit model is
20

oy . SR .
8 8 ] = a exp{=———a) ,
, rervTa

eq

According to the explicit model, the droplet equilibrium

13 b " * Preron
F o ra—— [Ty [} | ;1
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aupersaturation is, from (4.2),
S:q =1 -2 exp(gazg-f-) ;f;;i} '

The difference is that in the implicit model, the air
temperature is used to compute the droplet equilibrium
vapor pressure. The explicit model requires the actual
droplet temperature. Since the droplet equilibrium
vapor pressure is exponentially dependent on the droplet
temperature, the droplet equilibrium supersaturation
is different for the two mcdels (Figure 35). The values
at the 20-meter level are between those of the 0~ and
100-meter levels for the implicit model; for the
explicit model, the values at the 20-meter level are the
highest. This is a direct consequenca of the fact that
the droplet temperature elevations are the greatest
near the 20-meter level, where the maximum supersaturatlon
and growth rates occur. |

The shapes of the curves are themselves interesting.
At 20 meters with the implicit model, the smallest
drOplets, of size class 3, have the greatest value of
equilibrium supersaturation. At this p01nt, these drop-
lets have just surpassed their critical supersaturation.
With the ekp}ieit model at 20 meters, the maximum equili~
brium supersaturation is asecciated with someuhat_largex |
dreplets. It increases because of incfeasing_dreplet
temperature and finally decreases because of increasing

droplet radius and increasing molality.

-

\
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Both the trend and the shape of the curves are
different for the explicit model because a new dimension
has been included in the computation of the droplet
equilibrium supersaturation: the droplet temperature.

fhe implicit model uses the air temperature to
calculate the droplet equilibrium vapor pressure. Even
so, the accuracy of the growth rate egquation used in the
implicit model is not jeopardized by the substitution.
This is because the air temperature and the droplet
temperature are related by means of the Murray formula-
tion (2.8) before arriving at the growth rate equation

(2.10). The droplet temperature appears implicitly.

d. Energy terms

The values of the energy terms relative to the
internal energy, QT’ are shown in Figure 36. As QL N
-QK; it is clear that QL and Qg dominate. For the radia-
tion term, the effective emissivity; E, is aésigned
‘the value 1,0. For Qpe it is assumed that.the enthalpy

10

of dilution is =-2,385 x 10 ergs/mole of ammonium sul-

fate.

4.7 Coﬁclusion

The explicit model is a workable alternative method
fgr'cdmputing the growth or evaporation of droplets

| by vépor diffusion. For a simple system such as

.;‘_,_A.T.,.Mw
-
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ammonium sulfate droplets, both the implicit and the
explicit models predict comparable results up to at
least the 100-meter level.

The explicit model makes direct use of the droplet
temperature. By rearranging the energy balance equation,
the set of equations includes one for the instantaneous
droplet temperature elevation, rather than the time rate
of change of the droplet temperature. This helps
maintain computational stability by not requiring extreme
accuracy in the calculation of minor energy terms.

For droplets of ammonium sulfate solution, all of
the energy terms except QK and QL are unimportant and
may be dropped without serious consequence. Indeed,
without the extra energy terms, the explicit model
éssentially reduces to the implicit model.

It is the capability of considering all energy
sources and sinks that makes the explicit model useful.
To include'more volatile liquids, it is assumed that
dmr =.dml + dm2 + .o+, where the subscript, r,_:efers_
to the bulk droplet, and the numbered_sﬁbscripts repre-
sent the vafious components. This can be done because
the energy terms are additive. Such a system allows
for simultanedus diffusion 6f_a11 componentc in both
directions.

| Some special information is required of each com-

ponent, for example the diffusivity of each. The
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sticking coefficient, a«, used in the Fuchs' correction

for vapor diffusion may be difficult to find in published

b aliiias ]

d

data., The saturated vapor pressure nver the solution

can be used instead of the activity, if available. 1In

addition, it is necessary to consider energies of chemical
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reactions and changes of phase of each component.
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CHAPTER V
CONCLUDING REMARKS

5.1 Summary |
| Much regearch of the early growth of droplets
within a cunulus congestus has bheen done before. A'
major shortcoming of medels is the divergence between
computed and observed droplet size distributions. 1In
particular, droplet size distributions are observed

to be broadef than those calculated. Several schemes

have been introduced to explain the observed &istributidn,

chiefly turbulence and entrainment.

Turbulence has been characterized by, among others,

random walk, mixing of parcels with different trajectories,

and sinusoidal updraft velocities. This study uses a
closed, adiabatic parcel of cloud air and imposes some
simple predefined fluctuating velocity pattern to deter~
mine if there is any feedback from the action of dynamic
turbulence alone to a distribution of dloud droplets.
Two types of velocity patterhs are used: sinusoidal
and alternating steady up and down motion, The latter .
is used because it is easier to control the period and
amplitude of osciliation. ‘The important point is that
downward motion is included in the velocity pattern.
Fourteen cases in all-afe studied: three steady updraft
speeds Qf 1, 4, and_lo m/s; four cases of square wave

dscillations; and seven cases with sinusoidal velocity

117
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patterns of various eddy sizes and speeds. The study
is restricted to the lowest 100 meters of cloud height.

Careful study of the steady updraft cases revealed
that while small droplets can remain in near equilibrium
with the environment, larger droplets tend to lag behind
their equilibrium size because of their relatively
long characteristic times for growth.

There are two consegquences. First, large nuclei
are not the first to become activated (surpass critical
radius) and in fact may not be activated at all because
of their large critical radius. Small droplets, on the
other hand, do not become activated until their critical
supersaturation'is exceeded., Consequently, only a certain
part of the nucleus distribution becomes: activated and
each droplet size has associated with.it an equilibrium
supersatufation which may be more than or less than zero.

 Secondly, as a result of the fact that the vapor
gradient to a droplet varies over the spectrum, droplets
do not grow according to ﬁhe inverse radius.

The result of these consequences is that if a parcel

of cloud air is forced to descend, some droplets evaporate

while others may continue to grow. Whether renewed
updréft leads to a broader spectrum than before depends
on many things. The transfer of water to droplets of
large nuclei depends on the behavior of the portion

of the spectrum which contains the bulk of the liguid

.water. If droplets in this region of the spectrum

5 S WS i S biom s e e 1 e s
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undergo cycles of substantial evaporation and condensation,
and at the same time the larger droplets grow throughout
the cycle, then the droplet size distribution can be
broadened. |

| If eddies are tvo small, then those droplets holding
most of the liquid water do not evaporate to release
the water for consumption by the large droplets; hence
there is little effect on the droplet size distribution.

If an eddy size is too large, large droplets gain
considerable mass of water at the expense of newly
deactivated small droplets; subsequent uplifting results
in a lower maximum supersaturation than before, and the
small droplets do not reactivate. Consequently, the net
effect is to increase the mean radius with no substantial
increase of the breadth of the spectrum.

Also, if the downdraft speed is too high, all the
droplets evaporate and recover with little hysteretic
change.

Turbulence within a cloud has a wide range of eddy
sizes and frequencies. The.quesﬁion that arises is thié:
does there exist a domain, br'dcmains, of the tufbulent
enérgy Spectrum'that maximiieé the breadth of the
droplet size distribution, along with domains thét_
 produce narrow size distribuiions?_ The imblication of

this study'is that such domains do exist.
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A clear relationship between the droplet size
distribution and eddy size and frequency has not been
found since the underlying determinant is the ambient
- gupersaturation and distribution of the droplet equilibrium
supersaturation, In this study, the greatest increase
in dispersion (107%) occurs when the parcel is lifted
from the cloud base for 20 seconds at 1 m/s, lowered
to the cloud base at -0.2 m/s, and lifted to the l00-meter
level at 1 m/s. The maximum supersaturation during the
first uplift is 0.71%. The minimum is =0.12% and the
second maximum is 0.59%, |

An adiabatic model as used here can increase the
dispersion of a droplet population. It is not restricted
to ﬁhe c¢loud boundaries, but rather requires a certain
oscillation of ambient supersaturation. These variations
do occur in natural c¢louds, but not isotropically. Thus,
different regions of a cloud, with different scales of
turbulence, can have varying effects on the droplets
therein.

Turbulence as described in this model lowers the
ambient supersaturation and causes selective evaporation
- of the droplets, as does entrainment, but it does not
~at the same time dilute the vapor or introduce fresh
particles. Further, an entrainment model which introduces
‘cloud environment air and/or particles in é step=-wise
fashion may reduce the ambient supersaturation too much

over a short period of time and lead to unrealistic results.
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The model used for the study of turbulence is similar
to dne attributed to Mason (1957) in which the droplet
tamperature is dropped from the equation by substitution
of a simplified heat balance equation for the droplet.
whe,result is a single analytical expression for the
growth rate of an individual droplet. Since the droplet
temperature does not appear, it is called here the
"implicit model."

A separate approach is presented in which all energy
sources and sinks of a droplet may be considered. Since
consolidation of the differential equations for droplet
size and temperature is not possible, it is called the
‘*explicit model."” |

Though dptails differ, studies show that for a
population of droplets containing a nucleus of ammonium
sulfate, both models give nearly identical results.
Therefore, for this situation, energy termé_such as
'radiation, surface expansion, and dilution of the droplet
are unimportant and the implicit model adequately com-
pu;es the rate of droplet growth.

:_.The advantage of the explicit model, though, is

'. thatfit.is.the first capable.of computing the growth
~of solution droplets in the presence of more than one
-éolat;;e_cdmponént.. Such a model is beneficial to the

studies of air pollution scavenging and acid rain.
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5.2 Suggestions for Further Research
The report presented here is limited in purview

and by no means aexhausts the study of the influence of
turbulence upon a distribution of droplets. Some
suggestions for further study follow:

1. The computations are limited to the lower 100
meters of the c¢loud - the region in which dropleta first
become activated. Extension to higher levels is
necegsary.

2. It would be desirable to include entrainment
to see if it would increase.or inhibit the effect of
turbulence. Detrainment as well, in whieh a parcel
slides down the edge of a cloud and reenters the updraft,
should be considered.

3. Although the nucleus distribution is chosen
somewhat arbitrarily, the portion of the size distri-
bution which undergces cycles of evaporation and regrowth
coincide with that which contains the bulk of the liquid
water. Other distributions should be tested.

4. No attempt is made to investigate the details
and scales of dynamiecs and turbulence of a cloud. Such
examinations exist (e.g., Fankhauser, 1969, 1971;
Shmeter, 1970; Ackerman, 1967; Warner, 1970)'and it
is important to link the scales of turbulence to the
microphysics. | -

5., One use of microphysidal modeliing is to para-

meterize the microphysics for inclusion into cloud models.
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N .Fu:thgr, the'exp1icit model is marely introduced
“here. Exteniions of the study include the :ollowingz

1. The explicit model is shown to be capable of
treating the growth of droplets_by,the diffusion of
water vapor. The next logical step is to use it to
study the growth of droplets in the presence of multiple
vapors.

2, Although the Hamming method used to integrate
the equations is successful, it is time consuming for =
this system of equations. Other methods (Fox, 1972;
Enright, et al., 1975) may prove to be more'efficient.'



APPENDIX
FUCHS' CORRECTION FACTORS

A.l1 Correction for vapor Diffusion

A droplet is considered to grow by the
condensation of water vapor molecules which migrate
to the surface of the droplet. Maxwell's eguation
assumes that diffusion is a continuous process; this
treatment is not valid when the size of the droplet is
of the order of magnitude of, or smaller than, the mean
free path length, A, For droplets smaller than A, the
‘Maxwell equation predicts a growth greater than that
predicted by kinetic theory.

Langmuir (1915), while studying the dis~
sociation of hydrogen in a light bulb, used the concept
of a boundary layer near the wall surface. Borovikov,
et al., (1963) called the boundary layer a parietal
layer. According to Fuchs (1959), the necessary
correction rfactor to the Maxwell equation was first
derived by Schaefer {(1932). The solution by Fuchs,
especially the correction for heat transfer, has been
criticized (Fukuta and Wéiter, 1970) somewhat. Fukuta
and Walter (leoc. cit.) and Fltzgerald (1972) have glven
a detailed derxvation of the correction factor.

It is assumed that Maxwell's equatlon predicts

the correct diffusion rate up to a dlstance K m A from
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the droplet. Inside this layer, it is assumed that the -
motion of molecules is dstermined by kinetic theory.
The rate of collision of molecules onto

the aroplet surface, from kinetic theory, is

'ggﬂ = 4ﬂr206vv6aé '
nwhére | cﬁ = vaporconcentratxon at a distance R = §
| | _aé = condensation coefficient, or "sticking
coefficient ," the fraction of striking
molecules which condense onto the surface,
- and , .
Vs a 1/4 of the mean3VPlocity of wvapor at
= 5. Numerically, it is equal to
(R, T/2w)l/' R ' '

| Simila:;y, the_rate_of evapo:ation_is

174 of the mean v=10ﬂ1ty of vapor_'

o "Jmolecules leaving the surface. and N
':'-aé“é evaporation coefficlent. - |

- Fuchs and bther*authors'assume that v, =
Vgg = v andag, = ey =a. It is not physicaily obvioﬁs:
- that aé =g ot ‘particularly in the case of ‘a di irty

*surface_ ‘Under equllzbrium conditzons pr“vr e ='p§?v5acj.
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c
Fitzgerald (1972) lists values of o determined

Suggesting that de = g under conditions of equilibrium,

by the experiments of various investigators. Most
| reports of o vary from 0.02 to 0.05. Others found
values as high as 0.3. Fuchs (1959) assumes the Alty
and Mackay (1935) value of o for pure water of 0.036,
as dces Fitzgerald.
With these assumptions, then, the net rate

of condensation is

dm

EE" = 4ﬂr (CG -C,. )u o, _ {aA.1)
For continuity, this rate must equai the rate of vépor
diffusion to the surfaée of radiué r + 8, viz.

dm -
agi = 47 (r+8)D{(C=C,) . (A.2)

Combining equations {A.l) and (A.2),

, :
o = Cpvyor™ + (r+§)DC,
§ r°va + (r+¢)D

Substitution into egqguation (A.é) vields the growth
equation in the form | | | |

d
mw = 4rrF D{C_-C ), -~ (A.3)

where
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i
is the Fuchs correction to the coefficient of vapor fi
diffusion. For this study, 0.036 is used for the con~ £ ]
densation coefficient. Values of F  at 10°C appear in

Pigure 37 . y R ” | | §j

A.2 Correction for.Thermal Diffusion - ' 3 E‘
Similar reasoning holds for the difFusion ;3

of sensible heat. For heat loss from the droplet,

T = dn(r+a)R(T,-T,) | ) |

where K = thermal conductivity, and .

A = thickness of parietal layer for heat

diffusicn.
The kinetic equation is | | | . o g}
E% = Tr vdpdcpd(nr TA)Y' (3.4) ?|

where

Vg =V for dry air molecules

.
P = density of dry air _ . | 3€

it

cpd heat capacity at constant pressure for

R
R

dry air, and

vy = accomodation coefficient.

_'F».“m_g;-;
Shcohmieren. it

It is assumed herc tha t the vapor density in the

périétél layer is negligible compared to that of dry

alr, and hence all the heat transfer is accompllshed by

the air molecules.

=

¥
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Ffrom the above equations,

rzpdvdycpdTr+4K(r+A)Ta

T, = — .
4K (x+A) + P o a¥ Cpg¥

Substitution inteo equation (A.4) yields

g% = 4mZF K(T ~T,),
where -
Fp * < i 57 172 (A.5)
+ (s5m=) 7

£+A TPLYCavg RyT.

is the Fuchs correction to the coefficient of thermal
conductivity.

The accomodation coesfficient is generally
assumed to be close to unity. Howell (19492) and Fitzgerald
(1972) used a value of 0.7 which iz adepted here.

The variance cf Fy with droplet radius is shcwn by

Figure 38.

~ A.3 Thickness cf Parietal Lavyer

Fuchs (1964) gives a simplified derivation of
§ (orA), since a rigorous derivation is difficult,
Suppose there are two particles of radius ry anéd rj

{ri > rj) and r, is at rest. The small particles may

leave the surface of the contact sphere (radius x; + rj)

and go in any equally probable directior or distance
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equal to the mean free path length, Aj. The average

distance normal to the surface is then

3 2 . .2,3/2
{ri'q"rj"';‘j) - ((ri'!‘rj) + ;\j)

§ =

- (1'.'+r)-
3(::'i + rj)J\j 13

For particles in relative motion, hj should be replaced

with
» = 2. Ag)l/z.
The mean free path of a vapor molecule is
v mTop 2M r_+r !
a v
where

10 = mean free path length of air at To, Po

=
=
i

= molecular mass of air, water

a
2l
il

radius of air, water molecule.

Similarly, the mean free path cf an air molecule

m
_ “Pg
)\a —Ao T—'p" -

0
The thickness of parietal layers for vapor
diffusion, 3§, and thermal diffusion, A, are shown in
Figure 39. The radius of air and water molecules are

azsumed negligible nelative to that of the droplet.
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Figure 39. Thickness of parietal layer at 10°C
and 900 mb. The mean free path lengths
for air and water molecules are 0,071
and 0.064 um, respectively.
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