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The technology of cloud microphysics was greatly advanced

in 1949 by the work of Howell who first computed the growth

pattern of droplets formed in rising air on a population of

condensation nuclei. It was advanced somewhat again by Mason's

(1957) derivation of a "growth equation" for droplets. Subse-

quent applications of this equation to models of the develop-

ment of cloud led to the ot,servation that cloud droplets

growing in a steady updraft tend in time to progress toward

an increasingly narrow size spectrum. Although moat workers

in the field have agreed that the microphysical result of the

Mason growth equation is "reasonable," nearly all, including

Mason, et al. ( 1962, 1974) have observed thot the maximum cloud

droplet sizes generated in 20 to 30 minutes of steady rise are

too small and/or too few to generate precipitation by the

coalescence process. This is a basic question regarding the

fidelity of simulation.

In his Ph.D. Dissertation, D. D. Harding has explored

two distinct approaches to the correction of the above

deficiency. The first is to note that cumuli in general are

not produced by steady updrafts but rather are characterized

by turbulent eddies, and to create a simulation using synthetic

eddies (alternately increasing and decreasing saturation ratios)

with Mason ' s growth equation (the implicit model). The result

is clear: within certain domain: of amplitude and frequency

of the fluctuations of the saturation ratio, the largest drop-

lets of a population continue to grow almost steadily, the

L
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smallest evaporate and recondense with the fluctuations, and

in toto, a shift of water mass toward the largest sizes takes

"'r place.
k

t" The second approach is a reconsideration of the growth

equation in which it is noted that Mason's simplifying assump-

tions tend to create a systematic bias favoring growth of the

small particles with respect to the large ones. 	 Although in

the context of conventional analytic derivations, Mason's

j, assiunptions appear quite reasonable, the particular process

}{ being considered appears to demand greater fidelity. 	 In anyr

event, the explicit model proposed here restores appropriate

growth potential to the large droplet end of the cloud particle

spectrum.	 By this means and by con€iderations of the turbulent

nature of cumuli, the explicit microphysical model is capable

of simulating natural rain-generation more adequately than

prior models.

An additional benefit is derived from the explicit model

in that vapors other than water vapor can be included in the

microphysical simulation. 	 Although the basic data or_ properties

of dilute solutions, diffusion and sticking, coefficients, and

latent- and solution-energies are not always available, they

' will be determined as the need is shown. 	 The field of atmos-

pheric chemistry now demands and justifies these necessary
s

11
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determinations.

A. Nelson Dingle	 1
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ABSTRACT

MICROPHYSICAL RESPONSE OF CLOUD
DROPLETS IN A FLUCTUATING UPDRAFT

by
Duane Douglas Harding

Chairman: A. Nelson Dingle

The effect of a fluctuating updraft upon a

jt distribution of cloud droplets is examined. 	 Computations

are performed for fourteen vertical velocity patterns;

each allows a closed parcel of cloud air to undergo downward

as well as upward motion.	 Droplet solution and curvature

effects are included. 	 It is found that with suitable

conditions, adiabatic warming during downward motion

causes small droplets to evaporate, and large, unactivated

7tf
I 
i droplets to continue growing.	 Periods of long, slow,

downward motion followed by uplifting can result in a

broadening of the droplet size distribution in the lowest

100 meters of cloud height. 	 The results depend upon the

frequency and amplitude of the vertical velocity fluctua-

tions.

The classical equation for the growth rate of

an individual droplet by vapor condensation relies on

simplifying assumptions. Those assumptions are isolated

and examined. one result of the assumptions is that the

z1assical equation underestimates by a few percent the

actual growth rate of the largest droplets. Since the

droplet temperature does not appear in the final equation,

ii



the classical approach is called here the "implicit

model." A unique approach is presented in which all

energy sources and sinks of a droplet may be considered.

since direct calculation of the droplet temperature is

required, the new approach is termed the "explicit model."

Though details differ, both models yield similar results

for the growth of ammonium sulfate solution droplets in

the lowest 100 meters of cloud height. It is speculated

that the explicit model may enhance the growth of Barge

droplets at greater heights. The advantage of the ex-

plicit model is that it is the first capable of computing

the growth rate of droplets in the presence of more than

one volntile component. Such a model is beneficial to

the studies of pollution scavenging and acid rain.

iv
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CHAPTER I

INTRODUCTION

1.1	 Background

4	 ` Current interest in energy conversion, and the
r

anticipated shift to the further use of coal as a fuel

source, have increased attention to the removal of

effluents.	 Contaminants, once released to the atmosphere

' by either anthropogenic or natural sources, are beyond

the limits of man's pollution controls. 	 Rather, their

removal is dependent on the rates and efficiencies of

j the atmospheric cleansing processes that determine the

r ( self-renewal capability of the air. 	 Among the important
E

atmospheric scavenging processes are those associated

with clouds and precipitation ( Sartor and Jiusto, 1976).

Of these, the formation of cloud droplets upon condensa-

tion nuclei is prominent.

At the same time, nucleation of droplets is the

F initial step for cloud development and precipitationN

generation.	 It has been realized for many years that 	 {

the colloidal stability of a cloud is related to the

early growth of cloud droplets by condensation of water

vapor.	 The growth of droplets is generally expected to

depend on such things as the size distribution of nuclei

ii
and the updraft speed.

To determine how long growth by vapor diffusion must

w,
continue in order to produce rain, and to assess the

9
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impact of varying conditions on the nucleation of droplets,

it is logical to study the early growth of a population

of droplets by means of a numerical model.

Howell (1949) was the first to calculate the growth

of droplets by condensation. He described the growth of

an individual droplet with an ordinary differential

equation that included the droplet radius, supersaturation, 	 4

and nucleus mass. His model consisted of a parcel of air,

containing a discrete size distribution of sodium chloride

particles, rising adiabatically within a steady updraft.
1

Because of the mutual relationship between cooling rate,

vapor consumption, and supersaturation, he was able to

perform hand calculations for only three cases; his up-

draft velocities ranged from 0.015 to 0.6 m/sec. 	 'j

Howell recognized that the rate of consumption of

water vapor depends on the total surface area of the

droplet size distribution. Until the droplets reach

appreciable size, the rate of condensation is slow. He

found with his model that as adiabatic cooling began,

the supersaturation increased until the aerosol reached

some tens of meters above the cloud base. At that point,

the supersaturation determined the smallest salt particle 	 '{

size that could surpass its critical radius (Kohler, 1926)

and become an activated cloud droplet.

Continued cooling resulted in further growth of the

activated droplets and reduction of the supersaturation.
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Small droplets that failed to activate began to evaporate

and were carried along as haze droplets.

Howell discovered that because the radial growthI	 ^	
ee	 rate of an individual droplet decreases with increasing

f

	

	
droplet size, a droplet size distribution narrows with age

in the case of a simple steady updraft. He postulated

that condensation might be the dominating process creating

homogeneous distributions found in some young clouds.

Also, he suspected that this process might be the cause

of the brilliant . iridescence seen in altocumulus clouds

of uniform composition. Finally, he concluded that the

updraft speed is most important in determining the shape

of the droplet size distribution, whereas the particle

size distribution has a minor effect. Although no further

calculations were performed, he suggested that evaporation

or turbulent mixing might create a broader size dis-

tribution.

Cloud droplet size distributions in convective clouds

have been observed (Diem, 1942; Weickmann and aufm Kampe,

1953; Warner, 1969a; Spyers -Duran, 1972) to be considerably

broader than those computed from the microphysical model

of Howell. The problem of modelling the generation

of cloud droplets with size distribution s similar to

those observed has been addressed by several authors.

Following the increase in the number of particle

measurements and the development of computers, Mordy (1959)

L
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made further calculations. He included droplet sedimen-

tation, but concluded that the effect is important only

if the updraft velocity is less than 10 cm/sec or if

there are extremely high concentrations of giant particles.

After including larger particles than did Howell,

Mordy concluded that the particle size distribution is

as important as the updraft speed in determining the

final droplet population. Because of the relatively

slow radial growth rate, the largest droplets lagged

behind their respective equilibrium size, whereas the

smallest droplets were able to react quickly to environ-

mental changes. In a fast updraft, then, the droplet

spectrum was narrow; the spectrum was broader in a

slow updraft, in which the large droplets could approach

further their equilibrium size.

Mason and Ghosh ( 1957) showed that large droplets
may be formed on giant ( r>1 um) salt nuclei. This may
be acceptable for maritime clouds, but does not explain

the observed droplet size distributions in continental

clouds where giant salt nuclei are extremely rare or

nonexistent.

Kornfeld ( 1970) considered growth upon a particle
size distribution that included both salt nuclei and

insoluble discs. The particle distributions used were

not representative of those found in the atmosphere. in

several cases, the salt particles had only one size
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	a!	 (r 1 um). At most, they were distributed among three

sizes (r . 0.25, 0 . 5 0 and 1 . 0 Nm). After 800 seconder,

" ±}

	

	 the inclusion of insoluble particles broadened the size

distribution somewhat. Whereas the presence of insoluble

{

	

	
particles may be instrumental in broadening the range of

droplet sizes, Kornfeld ' s particle size distributions

were not realistic enough to evaluate properly their

	

'	 effect. Furthermore, Paluch ( 1971) showed that by replac-

ing the insoluble discs with small salt particles (r nti.
t;

0.1 run), she could approximate the results of Kornfeld.

Fitzgerald (1972) measured droplet size distributions

at the 200 to 300-meter level for fifteen clouds in

	

+	 Minnesota and Florida and compared them to his computed

droplet size distributions. Nucleus size distributions

were inferred from the measured supersaturation spectra.

He found fairly good agreement between the measured and

computed droplet size distributions, but his efforts

were limited to small or medium sized nonprecipitating

cumulus clouds of nearly uniform composition. An extension

of his study to cumulus congestus clouds is desirable.

other authors have augmented the Howell model in

u

laminar conditions to explain the observed broad ;spectra.

Most of them considered turbulent mixing.

Instead of assuming a steady updraft speed, Neibur5er

and Chien ( 1960) employed vertical velocities based on

the results of the Thunderstorm Project (Byers and Braham,
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1949)• Their model produced, after 2400 seconds, 20 pm-

radius droplets at a concentration of 1/liter. They

concluded that coalescence could take place after that

time. Even so, as with those of Mordy and Howell, their

droplet size distributions narrowed with age and did

not resemble measured droplet spectra.

Warner (1969a,b) measured droplet size spectra at

various levels in several cumulus clouds near the

Australian coast. Although most of the clouds had mari-

time origins, some were likely influenced by continental

sources. A.erage droplet concentrations measured by

Warner may differ from those of North American continental

clouds, but the behavior of the droplet distributions is

of interest.

Warner found that when the environment was unstable,

the measured droplet size distribution was often bimodal.

The frequency of bimodal distributions increased with

increasing height and decreasing stability. During more

stable conditions, the bimodal feature was not as common.

It was suggested that mixing of cloud and environmental

air might produce the observed bimodal distributions.

The argument is that when a distribution of cloud

droplets with a single mode is mixed with drier,

polluted environmental air, the supersaturation is reduced

and the small droplets evaporate. Large droplets may

evaporate or continue growing depending on the mixed super-

saturation. As the parcel continues to rise, the small



droplets are not as likely to become reactivated. instead,

water condenses on the smaller numbers of large droplets.

If this aerosol is subsequently mixed with cloud air,

a bimodal distribution might be produced.

During horizontal passes through the cloud, War , r

found that the bimodal nature was not confined strictly

to the edges of the cloud. if entrainment through the

sides of the cloud were the principal mixing mechanism,

he speculated that horizontal uniformity would not

be expected. Warner suggests that the primary mixing

might occur at the top of the growing cloud.

Mason and Chien (1962) developed a model assuming

turbulent mixing between cloud droplets and unactivated

particles at the cloud edge. Squires (1958) suggested

a similar model in which dry air entered the cloud top

rf

and produced regions of low humidity. Both of these

processes are expected to be more efficient near the

cloud boundaries, and thus are not likely to account

for the broad spectra and the abundance of small

droplets within the interior (Paluch, 1971).

Warner (1973) improved somewhat the model c£ Mason

and Chien. His turbulent model produced, 150 meters

abovethe cloud base, droplet distributions that char-

acteristically had a mode near V ym-radius, and -a nearly

constant number density of smaller droplets which he

called a "plateau . " The mode was 'a result of the growth

of droplets that formed at the cloud base, whereas
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the lower plateau was caused by the introduction of

fresh nuclei into the cloud edges. However, Warner

stated that the plateau is not normally found in cloud

measurements. He concluded that although entrainment

of polluted air results in a broader spectrum, it does

not yield realistic size distributions. Moreover, he

presented evidence that the rate of entrainment, as

indicated by the ratio of the measured and adiabatic
	 7

liquid water contents, does not have an obvious direct

relationship to the dispersion ( standard deviation di-
vided by the mean radius) of the measured distribution.

Mason and Jonas ( 1974) advanced the single thermal
model of Mason and Chien. in their model, a thermal

rose by virtue of its own buoyancy and then fell back

as a result of entrainment of dry environmental air.

A second thermal was allowed to rise and mix with the

residue of the first. They concluded that their model

successfully predicted droplet size spectra which closely

resembled observations. Their maritime cloud model

produced droplets of 25 Um in radius in 30 minutes;

however, the continental cloud model, with its greater

number of particles, did not result in a significant

number of 20 Um-radius droplets within a reasonable time.

Warner (1975) criticized the model because it predicted

liquid water contents in the lower regions of the cloud

much greater than those measured.- Mason (1975) replied

^1
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that measurements refer to averages across a cloud and

not to a single active thermal.

Srivastava and Roy (1962) investigated the effects

of turbulence within a cloud. Droplets at a given height

were assumed to have experienced different trajectories

and hence different growth times. Their size distri-

butions were broader than those calculated within a

uniform updraft, but it was assumed that the supersatura-

tion was constant. Fitzgerald (1972) pointed out that

if the supersaturation had not been assumed constant,

then the size distribution would have been much narrower

than that predicted by Srivastava and Roy.

Belyaev (1961) and Sedunov (1965) studied the growth

of droplets in an updraft of fluctuating speed and super-

saturation. Particles entering the cloud scattered

about and experienced different growth times and growth

rates. Although the size distributions were broader,

they could not be related to those at a fixed height.

Paluch (1971) developed a model which included small

humidity variations along the vertical axis of an updraft.

Droplets within each region of the updraft grew at

different rates. Large droplets were allowed to settle

into regions of low humidity originally occupied by small
1

droplets, thus retarding their growth rate. The high
humidity region, then void of large droplets, resulted

in rapid growth of the remaining small droplets. This
d

1
'	 process was able to maintain local variations of droplet
)

iJ
a
t
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concentration and relative humidity. Although she eid

include turbulence which could counter this effect some-

what, observations (e.g., Warner, 1969x) indicate that

turbulence is not extensive enough to completely homoge-

nize a cloud.

There are several features of the observed micro-

structure of a cloud (Warner, 1969a) that should be

explained by a comprehensive model, namely:

1, the range of droplet radii i.e., the formation

within reasonable time limits of droplets large

enough to coalesce (r v 25 um), and the presence

of droplets less than 5 um in radius;

2. the bimodal nature of the spectrum, which is

not confined to the cloud edges;

3. the measured dispersion (standard deviation

divided by the mean size) of the spectrum;

4. regions of low or zero liquid water content; and

S. regions in which the liquid water content is

larger than the adiabatic value (this is not

a common occurrence, however.)

To arrive at a calcv'ated distribution different

from that first obtained by Howell, otte must impose a

physical situation other than laminar Flow. The most

common approach has been to use a diabatic, or "open

parcel" model such as entrainment, turbulence, and/or	 `f

droplet settling.

a
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To date, no model has reproduced all aspects of

the observed distributions, especially for a continental

cloud. Those models which consider entrainment appear

to offer the best promise, particularly when wetted

nuclei are introduced along with the entrained air.

However., they are most applicable near the cloud boun-

daries. Despite its shortcomings, the model of Mason

and Jonas, in which a spent thermal is mixed with the

active cloud, is the most successful.

A complete cloud model must include both microphysics

and dynamics in time and space coordinates. Many in-

vestigators of cloud systems, (e.g., Ogura and Takahashi,

1971; Murray and Loenig, 1972) model the dynamics

and parameterize the thermodynamics of condensation

(Silverman and Glass, 1973). Inasmuch as a comprehensive

model is not now attainable because of the limits of

available computer capacity (Lilly, 1970), an equally

plausible approach is to parameterize the dynamics

(e.g., by specifying particle trajectories, etc.) and

to investigate in detail the microphysical processes

and how they are affected by the motion field. This

would seem to be one approach to evaluate the microphysical

feedback to the local and overall dynamic process, and

thus to indicate the requirements for parameterization

of the microphysics.
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For this purpose a one dimensional model is useful.

A few authors have used an adiabatic parcel to investigate

the direct effect of a selected oscillating updraft

speed upon a distribution' of droplets.

Saad, at al. ( 1976) ^,.adelled the early growth of

droplets in a simulation chamber. They included oscil-

lating updraft speeds of w = 100 + 100 sin(t) and w =

100 + 100 sin(0 . 1t) (cm/sec) and found no appreciable

difference between the resulting droplet size distri-

bution and those predicted under steady updraft conditions.

It should be pointed out that the selected velocities

did not allow downdraft and consequent evaporation,

Storebo and Dingle (1974) have calculated the growth

and washout of particles moving up and over a land

barrier. Under adiabatic compression of an air parcel,

the relative humidity decreased enough to initiate

evaporation from small activated droplets. At the same

time, larger ones continued to grow as long as the humidity

was high enough. These findings led them to speculate

g
	

that if the parcel were then lifted again, the droplet

size spectrum might have broadened.

Kornfeld (1970) included in her model an unsteady

updraft velocity. - Periodic fluctuations about a mean

velocity did not produce a spectrum significantly

different from that within a steady updraft. Paluch

(1973), however, suggested that the results might depend
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to a large degree on the amplitude and frequencies of

the velocity variations.

1.2 Obiectives of Research

This research is divided into two parts. The first

is to use currently acceptable techniques to determine

whether a fluctuating updraft has any effect upon a

population of droplets within the lower regions of a

cloud. The movement of a parcel of air in a

convective cloud is a complicated pattern of upward,

downward, and lateral motions of varying speeds and

reversal frequencies. For the purpose of this study,

turbi+lence is characterized by either a sinusoidal velo-

city pattern or alternating steady upward and downward

motion. Modifying effects of entrainment and droplet

settling are not included.

The second part is to develop an alternative

approach to model droplet growth by condensation.

The classical approach (chiefly attributed to Mason,

1957, 1971) presented in the first part makes use of

certain assumptions and approximations to arrive at a

single equation for the growth rate of a droplet.

Since the droplet temperature is never actually determined

in the classical approach, it is called here the "implicit

model," An alternative method presented here, which

includes all the known heat sources and sinks, makes

direct use of the droplet temperature and so is called the

4

1
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"explicit model." The advantage of the explicit model

is that it~ has the capacity to treat more than one dif-
3

fusing vapor.

.3=



i

i

i
M

,

k

k

!'' F

Y[[..̂4g

7a7a1

N

CHAPTER II

IMPLICIT MODEL

2.1 General Statement of the Model

The modelling begins at cloud base with an aerosol

of moist air and droplets. Each droplet contains one

nucleus of ammonium sulfate, (NH4 ) 25O4 ; the amount of

water on each droplet depends on the cloud base

conditions and the size of the nucleus.

The parcel of cloud air is allowed to rise or fall

according to an imposed vertical velocity. The intent

is to limit the study to the direct response of the

droplet growth rate to a fluctuating updraft. Processes

such as coalescence and impaction by raindrops are not

considered. Further, it is assumed that droplet inter-

action may be ignored (Carstens, et al., 1970; Williams

and Carstens, 197.). No mixing is allowed with other

cloud elements or with the outside air so that the

parcel expands or contracts adiabatically but the mass

remains constant. For these reasons, all equations are

written in terms of unit mass of dry air to ensure that

the number of particles and the total mass of water

are unchanged throughout the integration.

The implicit model consists of five equations.

They are expressions_ fore

1. the change of pressure within the parcel,

2. the change of air temperature,

15
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3. the conservation of water mass,

4. the energy budget of an individual droplet, and 	 }

S. the rate of growth of a droplet.

l

2.2 Pressure Equation	 ljj

I

The air parcel is assumed to have an unsteady

vertical velocity, w. The pressure equation, then, is	 x

dpm	 dw
CH-	dt

where

pm = pressure of moist air,

pm = density of moist air,

g = acceleration of gravity,

w = updraft speed, and

z = height.

Using the ideal gas law and multiplying by dz/dt, this

transforms to

d - - RmTa (g + 3-)w,
	 (2.1)

where T  = air temperature. The gas constant for moist

air is (Fleagle and Businger, 1963)

Rm [1 + (S - 1) rK+—X I Rd r

where

x = water vapor mixing ratio,

E;

kb
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S ratio of the molecular masses of water

and air, and

Rd gas constant for dry air.

2.3 Temperature Equation

The parcel is assumed to contain one gram of air,

x grams of water vapor, and x  grams of liquid water.

Then the first law is (Haltiner and Martin, 1957)

dq = (1+x)[cpmdTa - A dpm],
m

where

q heat, and

cpm = specific heat of moist air.

There are two sources of heat:

1. the heat released by condensation

dql = -Ldx

2. the sensible heat due to the cooling of the

droplets

dq2 = -xwcwdTa

where

c  = specific heat of liquid water,. and

L = latent heat of condensation. In units of

ergs/gm it is

L = 2.503 x 10 10 - 2.425 x 10 7 (Ta - 273.16).

Combining, and substituting the pressure equation

(2.1), yields

I
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dTa 	(1+x)(g+^) w+Lat 
-	 cpd+xcpv+xwcw	

(2.2)

Here, cpm was replaced by the equivalent expression

(cpd + x cpv)/( l+x), in which cpv is the specific

heat of water vapor, and cpd is the specific heat of dry

air.

t
s

2.4 Conservation of Mass

Since the total mass of water in the parcel is

i	 constant,

dx = -dxw.
d

For a discrete distribution of droplets, 	 I,f

dm	
!t

ti	 dt EN dti 	 (2.3)

where

Ni = number of droplets in the ith radius	 j

fi	
interval, and	 j

m	 mass of water in a droplet of the ithwi

radius interval. 	 { "

2.5 Energy Budget of a Droplet

In the implicit model, it is assumed that all of	 r

z the heat supplied to the droplet by condensation of the

vapor is returned to the air by conduction. Thus
E 

F,
Y
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dowt
L	 = 4wrKFK (Tr Ta)V (2.4)

where

K	 coefficient of conduction. 	 in units

.) of ergs cm 1K-1sec-1,

K ' 2395. + 8.0375	 Me - 273.16);

FK = Fuchs'	 (1959) correction for thermal dif-

fusion,	 (see Appendix A),

r r = droplet radius,

Tr = droplet temperature, and

V = ventilation factor (Squires, 1952).
1

it is assumed that the droplet is homogeneous

so that the droplet temperature is represented by the

-(,
k

surface temperature.

(( Squires' values for the ventilation factor were
Y `	 3

fit to the curve

V = 1.0 + 36.8r + 3012.Or2

for droplet radius in centimeters.

w
4

2.6	 Droplet Growth Equation

Consider a spherical droplet of radius r.	 The

flux of vapor along the radial distance is

dmw
Tr = 47rrDFv (Ca-Cr) V,

where

Ca = ambient vapor density,

Cr = vapor density at the droplet surface,

w'.
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Fv m Fuchs' (1959) correction for vapor diffusion

(Appendix A), and

D . coefficient of diffusion of water vapor

in air. In units of cm2/sec it is

(Dorsey, 1940)

D . (.219 + .0015(T-273.16)) x 1.01325 x 106/ pa.

The growth rate equation as given above is for a

steady state situation; however, the droplet radius and

the ambient conditions are variable. it is generally

assumed (Sedunov, 1974) that the growth of a droplet

is quasisteady, so that hhe growth rate at any particular

time can be represented by the steady state equation.

The implication is that the droplet radius and the ambient

conditions vary slowly relative to the establishment of

the vapor density and temperature gradients. Kirkaldy

(1958) studied nonstationary diffusion theory and arrived

at the same growth rate expression as that of the quasi-

steady approximation. He points out, however, that the

agreement is not a justification of the quasisteady

concept. Philip (1965) studied the nonstationary theory

and concluded that the quasisteady model is sufficient

for most problems.

Using the ideal gas law and the assumption that

Ta/Tr ry 1.0 1 the growth rate equation is transformed

dm	 4TrrDP



'D
where

Rv = gas constant for water vapor,

ea w ambient vapor pressure, and 

or 
n vapor pressure at the droplet surface.

The ambient vapor pressure is related to vapor

j mixing ratio with

i ea '
X
+s PM -

The vapor pressure in equilibrium with a droplet

containing a soluble particle is

tt f 2c
} 1. ere en (Tr) a exp r—Tt Tprvr

where

t pr . density of the droplet,

i
ar s surface tension of the droplet, and

' a e water activity (Low, 1969a,b)..

Here, the water activity is used to quantify the

vapor pressure reduction by the solute because it is

(2.6)

more accurate than Raoult's Law, particularly for dropt,ets

in the activation stage (McDonald, 1953; Vohra and Nair,

1971). Low's tables of activity are presented as a func-

tion of molality. The activities are insensitive enough

3	 to temperature and pressure Warned and Owens, 1958)
rt

	

1	 that the published values are used without modification.

To determine the solution surface tension it is

	

i	
assumed here that temperature and molality act independently

on the surface tension, viz:



22

e

ar (T., u) a so (T) + aa( W 0

where

µ = molality,

ao - surface energy of pure water, and

as . correction due to the presence of an elec-

trolyte.

Values of a  are interpolated between those given

by Weast ( 1968). The correction term is fit to the

data of Dean ( 1973). For ammonium sulfate it is

as . 2.18

Tolman (1949) and Dufour and Defay ( 1963) have shown

that for droplets of 0.01 um-radius, the reduction of

the surface tension due to the radius of curvature is

of the order of only 28. For droplets of 1.0 um-radius,

the reduction is about 0 . 038. The influence of the radius

of curvature is ignored in this study.

The solution dansity, pr , is taken from tabulated

values of Hodgeman (1961). Between the listings, linear

interpolation is used.

The saturation vapor pressure for pure water is

computed from the Murray (1967) formulation

es (T) - 6107.8 exp 17 . 26938T2 (T-2863.16)	 (2.7)

with T in units of K and es in dynes/cm2 . • At 283.16 K,

it predicts a value 0.0578 greater than that given by

the Goff-Gratch formulation (List, 1968).

F	 }s

}l

y+

^R

I
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To eliminate the droplet temperature from the

calculations, the equilibrium vapor pressure at the

droplet surface is first related to the air temperature

by (2.7) so that	
T*(T -T )

es (T)	 es (T	 xp) e(r	 a	
Ta -	 r aTr	 )

where T* a 4098.03 K. Since the difference between the

droplet and air temperatures is small, one can use

T*(T -T )
e (T)	 a (T )(1 +	 r a )	 (2.8)
s r	 s a	 (Ta-3

The droplet temperature elevation is determined

by the heat budget (2.4):

T	
L	 dMW
	

(2.9)
r Ta 1r^ at—

Finally, by combining (2.5), (2.6), ( 2.8) and (2.9),

one arrives at the rate of growth for an individual

droplet

20

rdo	 ea es (Ta)a exp( rp RT )
s 4^ry	 s v a	 (2.10)

	

R T	 T*L es (Ta )a exp ( r RrT )
va + 	 p 

zo

rva
DFv	 KFK (Ta-35.86)

HI

(

2.7 Initial Conditions

The model is envisioned in the following manner.

F A parcel of air with a population of wet particles starts

a

^	 a
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at the base of a cloud at 900 mb and 283.16 K. 	 In nature,

the amount of water associated with each nucleus depends

r s on the particular history of each particle before entering

" f # the cloud.	 in this model, the precloud histories are

rel not specifiedr rather, dry particles are placed artifi-

cial ly into the cloud base and allowed to approach equili-

brium with the environment. 	 During this adjustment period,

the temperature and pressure are constant and the relative

humidity is held steady at 100 %. 	This procedure is not

intended to duplicate nature exactly, but to give a

representative distribution of droplets at the cloud

base.
y

The parcel composed of one gram of dry air and its

f associated vapor and droplets is then raised according

to a preselected velocity pattern to a height of 100

meters.	 The distribution resulting from a steady updraft

is used as a standard to compare those created by the

turbulent motion.

•• 2.8	 Dry Particle Distribution

a.	 Chemical composition

There is evidence (e.g., Twomey, 1971; Junge, 1963;

Williamson, 1973) that ammonium sulfate, 	 (NHg)2sO4,
-_-

is a common constituent of atmosphericp	 particles.	 Ink^

this study, spherical particles of pure ammonium sulfate

are assumed.

E

is

1s
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The effects of including insoluble matter within

an aerosol and of using another pure salt, podium

chloride NaCl, were discussed in reports by Junge and

McLaren (1971) and Fitzgerald (1974). Junge and McLaren
concluded that mixed particles containing both soluble

and insoluble matter behave essentially as soluble particles

as long as they have at least 108 by volume of soluble

material.

Fitzgerald performed further numerical computations

to study the effect of the chemical composition.

Solubilities ranged from 18 to 90% throughout a particle

distribution.	 He also used distributions of pure ammonium

sulfate and pure sodium chloride. 	 His results showed

( that increasing the proportion of insoluble matter lowered

the maximum concentration of droplets and correspondingly

4 raised the mean droplet size.	 However, a change in the

chemical composition of the particles did not signifi-

cantly alter the breadth of the resultant droplet dis-

tribution.	 Also, both pure salt distributions produced

similar droplet spectra. 	 His conclusion reinforced that
1 of Junge and McLaren that a change of shape of theg	 g	 p	 particle

f? distribution has a greater effect than the chemical

composition on the dispersion of the droplet size

apeLtrum.

b. Surface impurities'
u
F (	 In theoretical models it is assumed that there is

J##}
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5	
,

no energy barrier to the initial condensation of vapor

onto the dry crystal surface.	 Experiments by Knight

(1971) indicated that early diffusion of vapor to sodium

chloride particles results in the formation of droplets

on the surface rather than a uniform liquid layer. 	 The

crystals used were apparently quite large (tens and

hundreds of microns) and it is uncertain how the behavior

i he reported is to be applied to the nucleation of particles

found in the atmosphere.

Katz and Kocmond (1973) concluded from their

experiments with sodium chloride that particles must

be two to three times larger than predicted by theoryr

to become activated at a particular supersaturation.

This may be related to the non-zero contact angle between

the liquid water and the crystal, evident in Knight's

work.

However, there were no claims by either author of

purity of the salt surface.	 Adsorption of organic or

other matter onto the surface of the crystals can lead

to an energy barrier to the initial condensation. 	 In

1$ nature there is no guarantee that nuclei are un-

contaminated.	 Impurities can either increase or reduce

the surface energy.

c. Particle shape

Atmospheric nuclei are likely to be irregular

agglomerates rather than spherical particles. This
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L agglomeration creates cracks and crevices in the surface

which can contain concave water surfaces that accept

condensing vapor readily due to a negative curvature

effect.r,

Because of all the uncertainties of the physical
11

'a	 t, and chemical properties of particles within an aerosol,
f

it is assumed for this study that the nuclei are pure
Y

spherical particles of ammonium sulphate with zero

i
y

contact angle.

f°r d.	 Discrete classification

f Particle sizes are continuous in a natural aerosol,

but must be distributed in a discrete manner for modelling.

The particle sizes used here are defined such that the

4 mass, m, of a particle increases by a factor y from one

size to the next.	 Then if i is the size class number,

[i	 mi+l
i

	

	 = Y. or

m 

d(ln r) = In ri+1 -In ri	In y.

With a constant d(ln r),

ri = exp ( ln rl+(i-1) d(ln r)).

Particle sizes can be readily calculated by specifying

r , the smallest article radius, and^^	 1	 p	 y. In this study
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r1 	0.015 µm and y - 1.9. 	 Tho distribution is represented

by 27 size classes so that the largest particle has a 1i
.	 ?

L{

dry radius of 3.908 um.

The particle number densities are distributed

according to a formulation similar to that found by

Junge ( 1963),

ni = constant	 r < 0.08 x 10 4 cm

F ni - bri.J	 r > 0.08 x 10 '-4 cm

If the total particulate mass is M, then
1	

I
i
F{ b -	 3M

41rpn (ijlri (0.08xlO-4)
-1 

+ i;8ri r1J)

+ Where pn is the density of the nucleus salt.	 For the- -^

aerosol modelled, the total particulate loading is

3 jig/m3 and J = 3.	 Figure l represents the distri-

bution of dry particles.

'i

2.9	 Distribution of Droplets at the Cloud Base

The particles at the cloud base are not all at
i

?^?

their respective equilibrium sizes because the largest
r

particles grow in radius very slowly and thus lag behind

their equilibrium sizes.	 For dilute droplets, the super- j
s

saturation,	 S, in equilibrium With a droplet is (Fletcher, ;]

1966)	 3

ta
r 	1	 'wpn rn aS	 _- 

PrRVTa r
	

Mnpr	 -T
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where the subscript n refers to the nucleus. 	 The van't

Hoff factor is i. 	 To find the equilibrium droplet size

at 1009 relative humidity, set S = 0.	 Then
r y

3!rs=OQr3/2

Thus the droplet size distribution at the cloud base is

broader than that of the dry particles if the droplets

are at or near their equilibrium sizes.

To estimate how long the dry particles should be

adjusted to the cloud base environment, a distribution

of droplets growing on sbdium chloride particles was

allowed to approach equilibrium and was compared periodi-

cally to the cloud base droplet distributions used by

Mordy (1959) and Fitzgerald (1972).	 From this study

it was judged that an adjustment time of 60 seconds would

give a representative distribution.	 During the adjustment

period the temperature and relative humidity are held

constant, so the adjustment time can not be compared

directly to a pre-cloud history of the particles.

' The distribution of droplets at the cloud base is

shown graphically in Figure 2. 	 Also shown are the

equilibrium sizes at cloud base.	 Nuclei of radius less

than 0.13 um are at equilibrium with the saturated

environment, whereas the largest particles are at their

99% relative humidity equilibrium size. (-}

The distributions of dry particles and of cloud

' droplets are listed in Table I. t,

P
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2.10 Inteqration of the Equations

a. Method of integration

To integrate, it is assumed that during a time

step each droplet category responds to the environment

independently of the others. The interaction of the

droplets is treated by resetting the vapor mixing

ratio by (2.3) at the end of each time step. The equa-

tions to be integrated, then, are a growth equation (2.10)

for each of the 27 size classes, the temperature equation

(2.2),and the pressure equation (2.1).

All equations are integrated using a fourth order

Kutta-Simpson Method (Ralston & Wilf, 1960). This

method gives a good degree of accuracy without requiring
:i

calculations of higher than the first derivative. Then,

if	 i

at = f(m,T,p,x)
the predicted value of the mass of the droplet is

m(t+At) = m(t) + 6t(F1+2F2+2F3+F4),

where

F1	 f[m (t),T(t),p(t),x(t)3

F 2 = f[m(t) + 2t Fl , T(t+Zt),p(t+Zt), x(t+Zt)3

F3 = f[m(t) + 2t F2 , T(t+ ),p(t+Zt), x(t+2t)3

to	 F4 = f[m(t) + AtF3, T(t+At), p(t+At), x (t+At)3.

l	 The temperature and pressure equations are integrated

^,	 first to get values at t+At. Linear interpolation is
(y'

t
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used to get the temperature and pressure at t+/It .

There is io differential equation for the vapor mixing

ratios the quantities x(t+^) and x(t+At) are extrap-

olated by using the value of dx/dt of the previous time

step.

b. Stability

All 29 equations could be solved simultaneously,

but because of stability problems, a slightly different

approach is used.

The smallest droplets are nearly in equilibrium

with the environment. If the time step is too large,

they tend to overshoot their equilibrium size. Successive

time steps lead to oscillations of size and to numerical

instability. The integration here follows the suggestion

of Paluch (1971) that good accuracy can be maintained

if the time step is chosen such that the increase of

mass of any droplet is less than 0.5% during the time

step. Further, in the present study, the time step
w

is increased if no droplet is found to grow by more than

0.2% of its mass.

At the beginning of each time step, the temperature

and pressure are integrated first. Next integrated is

the growth equation for the droplet with the greatest

value for Fl. If the change of mass is between 0.2 and

0.5%, the integration is continued, otherwise the time

}

y

t LJ
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a

step is altered accordingly and only three equations

need to be reintegrated.

Because the growth rate of a droplet is related to

the vapor pressure gradient, the length of the time

step is linked to the supersaturation in such a way that

the time step decreases as the supersaturation increases.

For the case of a steady updraft of 1 m/s, the time

step decreases from 0.1 seconds to 0.014 seconds and

increases after surpassing the maximum supersaturation

to 0.16 seconds at the 100 meter level.

C. Roundoff error

In addition to stability, the other concern is

roundoff error. The temperature, for instance, changes

only a few ten thousandths of one percent in a 0.1 meter

altitude shift. To have this change be meaningful, it

is necessary to use double precision (16 significant

digits) throughout. Computations are performed on an

Amdahl 470 at the University of Michigan.

I
L d.	 Efficiency of integration

Other schemes of integration may be more efficient

but have not been pursued.	 Arnason and Brown (1971)

! and Brown and Arnason (1973) use another approach put

! forward by Liniger and Willoughby (1970). Their

i
technique, however, is not useful during activation.

1

IL	 . , __-.._- ..	 _	 __	 j
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Also, convergence is not assured during evaporation.

For these reasons their method Is not used here.

4

r



CHAPTER III

RESULTS WITH IMPLICIT MODEL

r ' 3.1	 Introduction

This chapter is divided into two parts.	 The first

is an overview of aroplet behavior in a steady updraft.

r The effects of a steady updraft are studied for the
ii

t
following reasons:

r i.	 To understand in detail how a population of
k

1 droplets responds to a variable supersaturation

r and temperature.	 In particular, each nucleus

^
Y size class has its own set of physical charac-

teristics and responds to the environment

{{ accordingly.

.'

1

ii.	 To use ( i) as a basis to suggest mechanisms that 	 1

might result in substantial modification of

- the droplet growth behavior.

iii.	 To arrive at a droplet size distribution at

i
the 100-meter level for each of three steady

updraft cases. 	 These are used as standards

for comparison with the droplet size distribu-

tions produced in the fluctuating updraft.

The second part discusses the consequences of a
v

fluctuating updraft.

F

37
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3.2 Steady Updraft

a. Growth of droplets

Figure 3 illustrates the modelled growth

of the droplets from the cloud base to a height above

cloud base of 100 meters in a steady updraft of 1 m/s

(.Case 1). All droplets grow slowly through the first

few meters until the supersaturation peaks some 18 meters

above cloud base with a value of 0.718, at which time

the droplets grow quite rapidly. Subsequently, the

supersaturation decreases and the growth rate slows. In

this case particles of the first two size classes do

not become active cloud droplets but evaporate as the

supersaturation decreases and are carried along as

haze particles. Included at the bottom of the figure

are the nucleus radii of the 27 size classes.

In a faster updraft, the droplet behavior

pattern is similar but details differ. For a steady

updraft of 4 m/s (Case 2), the maximum supersaturation

is higher (1.568) as is the height at which the maximum

is achieved (40 meters). The growth of the droplets

for Case 2 is shown by Figure 4. Figure 5 represents

droplet growth in a steady updraft of 10 m/s (Case 3).

In this case, the supersaturation attains an extremely

high value of 2.7% at a height of some 70 meters above

cloud base. This case probably represents an upper limit

of sustained updraft speed.

as

t
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ra f	 .

b. Temperature and liquid water content

Because the growth rate of the droplets is

slow in the lower regions of the cloud, the temperature

initially decreases at a rate close to the dry adiabatic

cooling rate (Figure 6). The liquid water content

increases slowly during that time. Shortly after the

supersaturation peaks, the rate of consumption of water

vapor increases markedly and the temperature decay

approaches the moist adiabatic cooling rate asymptotically

The liquid water content at the 100 -meter level decre-.ses

with increasing updraft speed. Correspondingly, the

temperature at the 100-meter level decreases with

increasing updraft speed.

c. Breadth of distribution

The narrowing of the droplet size distribution

visible in Figures 3, 4, and 5 is mainly a result of

plotting droplet size on a logarithmic scale, for the

	

h^	 actual size difference between the largest and smallest

active cloud droplets increases slightly with height

in the lower region of the cloud. For example, in

Case 1, the difference in radius between size classes

3 and 27 is 14.7 um at the cloud base and 14.9 um at

the 100-meter level.

	

[i	 A more useful indicator of the breadth of

a droplet size distribution is the coefficient of dis-

persion (standard deviation of droplet sizes divided

F

P
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by the mean size), referred to in this report as simply

the dispersion. In Case 1 1 the dispersion decreased

considerably from 0.387 at the cloud base to 0.072 at the

100-meter level. The dispersion at the 100-meter level

for Case 2 is 0.067 and for Case 3 is 0.060. Thus, by

the dispersion criterion, the droplet size distribution

narrows substantially with time.

From (2.10) it is easy to show that the

radial growth rate, dr/dt, is inversely proportional

Y

	

	
to the radius. This 1/r relationship is the cause of the

narrowing of the droplet size distribution. At the

same time, the radial growth rate is proportional to the

water vapor pressure difference (ea er ) near the individual

i

	

	 droplet. The vapor pressure of the environment, ea , is

a function of the air pressure and the vapor mixing

ratio, whereas the vapor pressure at the droplet surface,

er , is a function of the droplet size and nucleus mass

and thus varies over the size spectrum.

d. Droplet equilibrium vapor pressure

The convex surface of a droplet requires

that the equilibrium vapor pressure over the droplet

be greater than it would be over a flat surface of pure

water. Concurrently, the presence of a salt lowers

the equilibrium vapor pressure over the droplet. The

combination results in an equilibrium vapor pressure

over the droplet (Kohler, 1926) given by(2.6). The   
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r

equilibrium supersaturation for a droplet is (er/es- 1.0).

When a droplet first starts to condense water, it has
r

a high molality and can grow under less than saturated

.3 conditions.	 As it increases in size and becomes more

dilute, the curvature term becomes important and the

atmosphere must be supersaturated for the droplet to

continue growing.	 If growth continues, both the curva-

ture and solution effects decrease.

The maximum value of the equilibrium super-

saturation	 is the critical supersaturation, Sc .	 The
^.

corresponding critical radius is r c .	 Once a droplet
((

exceeds its critical radius, the droplet is said to

be activated.	 The physical significance of the critical

radius will be made clear in a later paragraph. 	 Figure 7

.' I shows the critical values for aqueous ammonium sulfate

droplets at 10°C.	 Also included is the radius, r s=01 at

f lr ^5; which the droplet would be in equilibrium with an

environment of 100% relative humidity. 	 It can be shown

that rc ti 33 is=0.
j

r It is of interest that a very small nucleus
a,

of 0.01 um-radius must increase its radius by a factor
^iAl of 3.8 to reach its critical radius. 	 This means that the

%J.
volume must be increased by a factor of 	 3.83	54.9.

On the other hand, the critical radius for a 1.0 um

radius salt nucleus is 38.3 um; the volume of the particle
13
 3	 9is increased roughly by a factor of (.38) 	 5.5 x 10.

f<



NUCLEUS RADIUS, µm

Figure 7, Critical supersaturation; S
critical radius, r,,iand ejilibrium
radius at 1008 rel ve humidity,
rj for droplets containing a
ndMeus of (NH4)2SO4 at 10 °C.
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Y

e.	 DroPlet growth time

{ "' A very crude estimate can be made of the time

4 required for a particle to grow from rn to rewo or

rc .	 if the assumption is made that solution and curvature

effects are ne5ligible, then for a given temperature

ri and constant saturation ratio,	 (2.10) can be integrated.

The time it takes a droplet to reach its critical radius

{ is approximately
a prRvTa	 T*Lpr

i yT
At ®	 Dot- K(T-35.86)	 (rc _ rn)

i,
i

Admittedly, this does not give accurate

results, especially for a small nucleus.	 it does,

however, allow order of magnitude estimates which

appear in Table I1.	 The supersaturation used here was

18.	 Since this is a high • alue, the listings in Table ii

represent the minimum time a nucleus must remain in

a cloud to become activated. 	 A droplet with 0.1 pm-

radius nucleus will activate in less than one second

under the high humidity conditions.	 On the other hand,

k ( a 10.0 um-radius nucleus would have to be in a cloud

at least 10 days to activate, and at least 3 days to

u	 m reach its equilibrium radius 	 rs_0 .	 A large droplet,

then, will not reach equilibrium with cloud conditions.

Rf. Selective-evaporation and activation

Figure 8 shows the equilibrium supersaturation
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9J
critical points So and rc are indicated, as well as

i

rs,,.	 It is to be remembered that the Kohler curves

of Figure 8 are loci of equilibrium points.	 whether

a droplet will tend to grow or evaporate depends on

both environment and droplet conditions.	 It has already

been shown that a large droplet will not reach equilibrium

in a cloud.	 only small droplets can be expected to t]

react quickly enough to be near equilibrium with a
}
e

changing environment.

Suppose the environment to have a supersaturation

of A in Figure 8. 	 Suppose further that the two droplets

have particular radii such that their conditions

' are represented by the points A il) and AM respectively.

For both droplets the ambient superpaturation is greater

than the equilibrium value so both would grow along the
II

.;

indicated arrows (constant ambient conditions assumed).
,j

If the ambient supersaturation were lowered to B, the

first droplet would evaporate, while the second one would

continue to grow.	 This is the basis of selective

l evaporation within the droplet distribution. V 1'

Selective evaporation is apparent in Figure 3. `J

Droplets of the smallest two size classes evaporate
^^t

as the supersaturation decreases.

once a droplet exceeds its critical radius,

it is said to be activated, since it will continue to

' grow even though the ambient supersaturation decreases,

as long as the ambient value does not go below the

a
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4 :

TABLE II

Estimated times for a droplet to grow

from rn to rs=0 and rc . Temperature
is 283.16 K. Supersaturation is 1.08.

z

C

i

i

rn rs=0 is=0 rc t0

r 0.1 um 0.7 um 0.3 sec 1.2 um 0.8 see

E 0.3 3.6 7.6 6.3 23

0.5 7.8 36 13.5 108

1.0 22 290 38 860

' 3.0 115 7,800 199 23,000
t

5.0 247 36,000 428 109,000

10.0 699 290,000 1,210 870,000

r

F

t;:
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equilibrium value for that droplet. A droplet will

activate if two conditions are met: the supersaturation

of the environment exceeds the critical supersaturation

for the droplet; and the droplet is given sufficient

time under supersaturated conditions to grow beyond

its critical size.

Not all droplets activate. A large droplet,

by virtue of its slow growth, does not activate despite

its low critical supersaturation. In contrast, the

smallest droplet, even though it has a small critical

radius, does not activate if the ambient supersaturation

does not exceed the droplet equilibrium supersaturation.

As a result, the first droplets to activate in Case 1

(Figure 3) are those,of size class 7 (r n= 0.054 um)

after 7 seconds. With time, the threshold of activated

droplets spreads outward to larger and smaller sizes.

At the time of maximum supersaturation, droplets of

size classes 3 to 13 (r n = 0.023 to 0.195 um) are

activated. Even as the ambient supersaturation decreases,

size classes 14 and 15 (r n - 0.24 and 0.30 um) become

activated.

g. Radial growth rate

The effect of the dependence of the vapor

pressure difference (e a-er ) on the droplet properties

is that the radial growth rate of a droplet is not

related simply to the inverse of the radius. Droplets

containi4g a small nucleus are able to respond quickly
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to changes in the environment; hence they are nearly

in equilibrium and mai 0, a .n a small vapor pressure

difference with a corri,-.5r ending low growth rate. Con-

versely, a droplet with a large nucleus lags well behind

its equilibrium size and has a large vapor gradient

near it.

Figure 9 illustrates the radial growth

rate of the droplets at various times for Case 1.

The curve at 5 saconds has two maxima: one at about

0.8 um and the other at about 15 um. The first is
N

t -_

	

	 due to the dominance of the 1/r relationship and the

second to that of the vapor pressure difference, ea-er.

1	 Only after 20 seconds, which is just beyond the maximum

K	 supersaturation, does the smallest (class 3) droplet

have the fastest radial growth rate.

3.3 Fluctuating Updraft

The growth rate of a droplet depends on two

properties: the droplet radius and the ambient supersat-

uration. Taken together, these give rise to a vapor

pressure difference (ea-er) for each droplet. it has

been demonstrated that the radial growth rate of a

droplet is inversely proportional to the droplet radius

and directly proportional to the vapor pressure difference.

To produce a droplet size spectrum broader than that

obtained in a steady updraft, there needs to be a

mechanism which slows the growth rate of the small
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i

droplets and allows the large droplets to continue

growing. The key is to discover a naturally occurring

process which alters the spectral variation of the vapor

pressure difference in such a way that broadening of

the droplet size spectrum is achieved.

Consider, then, the effect of alternating

upward and downward motions. `As a parcel of cloud air

is raised, the smaller droplets activate while larger

ones grow toward equilibrium. As the parcel of cloud

air is then lowered, some of the smallest droplets

deactivate, whereas the largest ones continue to grow for

some time. Subsequent uplifting produces renewed growth,

but growth upon a size distribution broader than the

original one. The overall effect on the droplet size dis-

tribution_is expected to depend on the eddy size and

frequency and on the speed of the parcel.

a. Vertical velocity patterns

To test the above idea, studies with two types

of vertical velocity patterns are presented. The veloci-

ties for 14 cases are listed inTable Ill.

One velocity group simulates a parcel of

cloud air that leaves the updraft, falls, and subsequently

reenters the updraft. A steady updraft of 1.0 m/s is

combined with a steady downdraft, usually of -0.2 m/s,

Velocities of this group are referred to as square'

wave velocity patterns to distinguish them from sinusoidal

patterns.
o
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TABLE III

Vertical velocity patterns

Steady Updraft

Case Number Vertical velocity Time to reach 100-
(m/s) meter level	 (s)

1 1 100
2 4 25
3 10 10

Square wave

Case Height	 Vertical Time to reach 100-
Number (m)	 velocity (m/s) meter level (s)

4 0-20	 1.0
20-0	 -0.2
0-100	 1.0 220

5 0-20	 1.0
20-0	 -0.2
0-20	 1.0
20-0	 -0.2
0-100	 1.0 340

6 0-20	 1.0
20-0	 -0.2'
0-30	 1.0
30-10	 -0.2
10-100	 1.0 340

7	
--0-10 1.0

10-0 -1.0
0-20 1.0
20-10 -1.0
10-30 1.0
30-20 -1.0
20-40 1.0
40-30 -1,0
30-50 1.0
50-40 -1.0
40-60 1.0
60-50 -1.0
50-100 1.0	 220
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TABLE III Continued

Sinusoidal

Case Velocity Maximum Eddy Time
Number (m/s) updraft diameter to reach

speed (m) 100 meter
(m/s) level(s)

8 0.25+0.75 cos(0.032t) 1 25 375

9 1.0+3.0 cos(0.13t) 4 25 100

10 1.0+3.0 cos(0.064t) 4 50 100

11 1.0+3.0 sin(0.15t) 4 40 61

12 2.5+7.5 cos(1.6t) 10 5 40

13 2.5+7.5 cos(0.32t) 10 25 40

14 2.5+7.5 cos(0.16t) 10 50 40

r

9

F

I f
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Sinusoidal velocities make up the second

group of velocity patterns. They are used to relate

the eddy size and frequency to the dispersion of the

t	 droplet size distribution. Maximum updrafts of 1 1 4,

or 10 m/s are used. The maximum downdraft speed is

half the maximum updraft speed. Various descent lengths

i	 (.eddy diameter) of 5, 25, and 50 meters are used.

t

b. Growth of droplets
`R

The effects of alternating steady upward and

t•	 downward motion (Cases 4-7) are illustrated in Figures

10-13. In Figure 10, the cloud parcel rises to the 20
I

meter level at 1 m/s. descends to the cloud base at

-0.2 m/s, and rises again to the 100 meter level at
a

`

	

	 I'm/s. With downward motion of the parcel the super-

saturation drops below zero to a minimum of -0.128. Small

droplets undergo substantial evaporation during that

time. It will be shown later that droplets of size

class 22(rn 1.34 um) through 27(rn 3.9 um) grow

throughout the entire cycle. As the parcel is again

lifted, the supersaturation leaches a peak of 0.598,

a value somewhat lower than the first maximum of 0.718.

Case 5 (Figure 11) differs from Case 4 in

that there are two loops between the cloud base and

the 20 meter level Again, selective evaporation is

apparent. In Case 6, the second loop is between the

10 meter level and the 30 meter level. The droplet

behavior is shown in Figure 12. (.In this figure, and
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in Figures 13-20, only the odd-numbered size classes

have been included.) One result of the 10 meter shift
4

between loops is that droplets of size class 3 (rn -

0.023 um) do not reactivate during the second loop. 	 q

Case 7 (Figure 13) is a series of six
t

quick loops, with a maximum downdraft of -1 m/s. The

effect is not nearly as dramatic as in the earlier

cases.

Figures 14-20 represent the behavior of the

droplets in a sinusoidal updraft. The effect of the

fluctuating motion is small; the usual pattern is an

oscillation of the size of the smallest droplets in

direct response to the changing supersaturation. For

the case of a maximum updraft of 1 m/s and a simulated

eddy diameter of 25 meters (Figure 14), droplets of

size class 3 are deactivated after some 165 Seconds and

thereafter carried along as haze particles. In this

case, therefore, the water previously associated with

class 3 droplets is released to promote growth of the

larger droplets. This result indicates a process, which

in a natural continuum of nucleus sizes must always be

present, but which shows up only occasionally in a

simulation based upon discrete size classes. It appears,

however, that the transfer of water mass from the small

to the larger sizes for this case is not great enough

to affect the cloud droplet spectrum appreciably.
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c. Dispersion of the droplet size distribution

To describe the droplet size distribution,

threestatistical parameters are useful: the mean

radius, Fe the standard deviation, a; and the coefficient

of dispersion about the mean, 6 = a/r. The values

at the 100-meter level `or all fourteen cases are listed

in Table IV. It is significant that the dispersion

is increased substantially for the square wave velocity

patterns, Cases 4-7. In Cases 4 and 5 in particular,

the dispersion is more than double that produced by

the steady updraft Case 1. For the sinusoidal velocity

variations, the mean radius and dispersion decrease

with increasing eddy diameter. For example, the dis-

persion produced by a steady updraft of 10 m/s is 0.060.

With an eddy diameter of 5 meters, it is increased to

0.083. However, with eddy diameters of 25 and 50 meters,

the dispersion decreases to 0.056 and 0.055 respectively.

Warner (1969a) measured the dispersion of

droplet size distributions in Australian cumuli; these

are shown in Figure 21. His measurements show that

the dispersion averages about 0.2 at the cloud base,

increases to a peak of about 0.45 at a height of 1.5 km

above cloud base, and thereafter decreases somewhat.

None of the values of the dispersion in this study is

as high as 0.2. Other factors may be involved, but
Warner's measurements were in maritime clouds, and the

nucleus size distribution for this study is more descriptive

1
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Table IV

Mean radiis, r, standard deviation, v, and dispersion, d,
of droplet distributions 100 meters above cloud base.

Case No. Figure No. r(um) a(µm) 6

1 3 5.36 .384 .072

2 4 4.83 .308 .067

3 5 4.15 .250 .060

4 10 5.27 .783 .145

5 11 5.27 .760 .144

6 12 5.84 .722 .124

7 13 5.56 .606 .109

8 14 5.59 .456 .082

9 15 4.85 .383 .079

10 16 4.83 .351 .073

11 17 4.85 .357 .074

12 18 4.83 .402 .083

13 19 4.73 .265 .056

14 20 4.59 .252 .055
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of co ,::^rinental clouds. Fitzgerald (1972) showed that

the dispersion depends on the original nucleus size
,F

distribution. With a particle distribution similar

to the one used here, Fitzgerald calculated a dispersion

of 0.074 at the 244-meter level. With a less steep
-	 I

(

	

	 nuclenn size distribution (fewer small particles, more

large particles) his calculated dispersion was 0.28 at
t.

the 200-meter level. What in of interest in this study

is how the dispersion and droplet size distribution

are altered by turbulent motion.

y	 d. Droplet size distribution
t

Some droplet size distributions

are illustrated in Figures 22-25. The number of droplets

per unit volume per unit radius interval is

dni	2Nipd	 4
car	 ri+l - ri-1

{	 in which N.	 number of droplets/gm air in ith size

class, and

Pd = dry air density.

9

Since our interest is with the cloud droplets,

the mode due to nonactivated haze droplets is not shown i

ji	
in the figure. Also, it has been omitted from the

calculation of the dispersion.

Figures 22 and 23 include the droplet size

i F

N4
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distributions for a steady updraft of 1 m/s and for the

cases (4-7) of alternating steady up and down motion.

Figures 24 and 25 show 'droplet size distributions

for steady updrafts of 4 and 10 m/s and corresponding

sinusoidal velocity patterns. There are some striking

differences between the droplet size distributions of

the two vertical velocity groups. In the sinusoidal

cases, the droplet size distributions have about the

same shape as those produced by the steady-upWraft.

Turbulence simulated by alternate steady

up and down motions changes the shape of the droplet

size distribution dramatically. In each case, the

maximum value is less than that obtained in the steady

updraft. In addition, the distributions are broader,

with some displaying a bimodal character.

The trend of the shape of the droplet size

distribution is interesting. For Case 1, the mean

droplet radius is 5.36 um. For Case 4, which has a
single loop, the mean radius is slightly less, 5.27 um,

despite the fact that it took 2.2 times as long to

reach the 100-meter level. Also, the distribution is

bimodal, with a major maximum near 5.8 um-radius and

a minor maximum near 4.9 um-radius. When the droplets

undergo a second loop (Case 5), the mean droplet radius

remains the same, but the modes are reversed. The major

maximum shifts to near 5.1 um-radius and the minor maxi-

mum moves to near 6.0 um-radius.

i;
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The velocity pattern for Case 6 differs from

that of Case 5 only slightly; the second loop is centered

10 meters higher than the first. However, the resulting

droplet size distribution is quite different. The

mean droplet radius moves upward to 5.84 um, and there

is only one mode, near 6.1 um-radius. The droplet

size distribution for Casa 7 does not resemble those of

Cases 4 and 5 either, but that is not surprising since

Case 7 involved small fast eddies.

The fact that alterations to the droplet sie

distribution occurred with the square wave velocity

patterns and not with the sinusoidal velocity patterns

is not considered to be attributable to the fact that

the square wave patterns make no allowance for acceleration.

Square wave velocity patterns are used because there is

more control over the downdra£t speed, the height

cohere dowi,ward motion begins, etc. The next sections

look at Cases 4, 5, and 6 in more detail to suggest

why these cases increased the dispersion and others

did not.

e. Single loop: Case 4

To review, the velocity pattern is this: the

parcel is lifted from the cloud base at 1 m/s, lowered

to the cloud base at -0.2 m/s, and raised again to the

100-meter level at 1 m/s.

Figure 26 shows the equilibrium supersatura-
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} tion (er/es-1.0) for a few droplets for the first 150

seconds or so.	 The ambient supersaturation (ea/es -1.0)

is dashed in.	 A dropletp	 grows whenever its equilibrium

vapor pressure is less than the ambient value. 	 A peak

in a curve represents the critical supersaturation for

droplets of the indicated size class.

f The processes of selective activation and

`` selective evaporation are seen here.	 Droplets of size

class 6 (rn = 0.04 um) are among the first to activate

and those of size class 13 (rn = 0 . 20 um) are the largest

to activate.	 During downward motion ( 20-120 seconds),

it is some 16 seconds before any droplets evaporate. The

smallest droplets (size class 3) deactivate first. They

I^	 evaporate for 48 seconds before they evaporate below
{F

critical radius, but once they do, they deactivate and

reach equilibrium with the environment in less than a

second. Before droplets of size class 6 can deactivate,

the ambient supersaturation increases again due to

renewed uplift, and the droplets resume growth. Since

they did not deactivate, they did not pass through the

critical point and the second maximum in the curve for

E	
{± size class 6 is not as high as . the first.

,[ (

	

	 The ambient supersaturation reached a low

value of 0.1178. This was high enough that droplets

of size class 22 (rn 1.3' um) and larger did not

evaporate during the cycle.

The radial growth rate of the droplets is

El

i



c^ shown by Figure 27. 	 Selective evaporation is quite

^ evident.
^

The resulting size distribution 0 1 20, and

100 m above cloud base are shown in Figure 28. 	 At

the bottom of the loop (t n 120 at z w 0 m), most of

the droplets are larger than they were originally

r(0 s, 0 m).	 The second time the parcel reaches the
.;

20-meter level ( 140 s, 20 m) the mean size is slightly

larger than it was just prior to downward motion ( 2.23 vs. :^y

2.09 um) and the dispersion is some 1.4 times as large

1
(0.406 vs. 0.281);	 Further, a bimodal nature has

developed.	 subsequent lifting to the 100-meter level

-(220 s, 100 m) does not void the bimodal character.	 For

'r comparison, the distribution at 100 meters for the fi

^• steady updraft Case l (100 m, 100 s) is included. ,.
'^f

}

£,	 Double loops: Cases 5 and 6

The effect of multiple loops 	 id investigated

0 with Cases 5 and 6.' 	 In Case S. there	 is a second loop

between the 20 and 0-meter levels. 	 For Case 6, the

second loop	 is between the 30 and 10 -meter levels.

In Case 5, the second loop initially increases the dis-

persion.	 At 20 meters, the dispersion for Case 5 (260 s,

20 m) is 0.48, and for Case 4	 (140 s, 20 m) is 0.41. 	 At

the 100 -meter level, the dispersion for Case 5 (0.76) is
El

only slightly less than that for Case 4 (0.78).	 Csee

Table v for a summary of some statistics of Cases 1, 4, ,5

A
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TABLE	 V

selected statistics for Cases 1 # 4jS and 6.

Case 1 4 5 6

20height at top of loop # z - 20 20

;(z	 UM 2.09 2.09 2*09

O(z .28 .20 .28

time spent in downdraft, sea - 100 too 100

minimum S P - -.117 -.117 -.117

A
44 height at bottom of loopp z 2

- 0 0 0

(z	 wki - 1.55 1.55 1.55
2

Cr(z
2

.647 .647 .647

time spent in updraft, sac 100 20 30

max., mum S, .591 .591 .591

heighi. at top of loop, z3
- 20 30

;(z	 )IM3
- - 2.23 2.92

CY (z
3

m - .41 .36

time spent in downdraftp sac - - _,n_o 100

I minimum S, - - -.144 -.059
0
0
4)

height at bottom of loop, z 4 0 10

F1 ;(z 1.6's 2.544
Cr (z

4 Sri 1.02

time spent in updraft 100 100 100 90
r4. maximum S, .713 .591 .611 .411F! w r(lCO m), Pm	 5.36 5.27 5.26 5.80

a(loo M) .38 .78 .76 .72

Mroplets in size classes 3 and 4 did not reactivate in Case 6

k L
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and 6). However, the shapes of the size distribution

curves are different (Figure 22). The effect of the

second loop is best shown by Figure 29. flare, the mass

of water on each size class is shown relative to that

for Case 1. •It can be seen that the effect of one loop,

Case 4, is to remove some of the water from the small

droplets (size class <7), without eliminating the smallest

droplets, and move it to the higher size classes. In

Case S. even more water has been removed between size

classes 5 to 8 and moved upscale.

In Case 6, the droplets had More time to

recover before descending for the second time. As a

result, the mean droplet radius before the second descent

was larger (2.9 um) than for Case 5 (2.2 um). After

the second loop, the maximum supersaturation attained

in the final updraft (0.41%) was not high enough to

reactivate size classes 3 and 4.

g. Effect of mixing parcels of cloud air

For a final experiment, parcels of air at

the 100-meter level from several cases are mixed to see

the effect on the dispersion.. The results are in Table VI.

When a parcel from Case 4 (square wave velocity pattern)

is mixed with one or more parcels from sinusoidal cases

the dispersion decreases. The dispersion increases when

two sinusoidal cases are mixed together, and decreases

slightly from the most disperse case when three are 	 +
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Table VI

Coefficient of Dispersion
for Mixed Parcels of Cloud Air

Case Numbers of Individual MixedParcels Mixed Dispersions Dispersion

1 1 4 .,"716,	 .1486 .1163
4,14 .1486,	 .0549 .1328
8,12 .0815,	 .0832 .1105
8,14 .0815,	 .0549 .1209
4 1 8,14 .1486.	 .0815.	 .nS4Q 1111A
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mixed. Apparently, mixing of cloud air is not an effective

means to broaden the droplet size distribution.{

4
3.4	 Conclusion

The effect of a fluctuating updraft on a

distribution of droplets is complicated and 	 not obvious.

Some explanation of the behavior of a droplet size

distribution can be made on the basis of this study.

Ostensibly, there are at least three aspects which

influence the droplet size distribution: the maximum and

minimum values of the supersaturation, the height

(or time) at which the parcel first undergoes downward

motion, and the time spent in downward motion.

' i Figure 30 illustrates an important point.r

( It shows the total mass of water associated with each
s

,.	 r droplet size class at several times for Case 4. 	 Roughly

60% of the total liquid water is condensed on droplets

of size classes 7(rn =0.05 um)	 through 11(rn = 0.12 µm).

4 Droplets in those size classes are activated in all
L

14 cases of this study. 	 They are fairly slow to react

i
to change in the environment; it takes 99 seconds of

.y
downward motion to deactivate the smaller droplets of±	 &

size class 5(rn = 0.035 um) in .Case 4.

r	 Small droplets near equilibrium react quickly
i

to environmental changes. A trajectory which affects only

W
those droplets has only a small effect on the distribution
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as a whole. An example of this situation is Case 12, 	
i

with 5-meter diameter eddies and a maximum u9draft

velocity of 10 m/s. At first, small droplets oscillate

in size in response to the changing supersaturation.

Once they are activ,sted, however, none of the droplets 	
i

undergoes evaporation. Conversely, Case 14 with a

50-meter diameter eddy has a very low minimum super-

saturation (- .7178) so that even the largest droplets

begin to evaporate although the time spent in she downward

motion field is only about 15 seconds.

The optimum situation for broadening the

droplet size spectrum seems to occur when a long time

is spent in an environment of a small undersaturation,

as in Cases.4-6. In each, the parcel first undergoes

downward motion after 20 seconds and continues on a

downward path for 100 seconds with a minimum supersatur-

ation of -0.128. Under these conditions large droplets

continue to grow and small ones grow toward equilibrium.

The main difference is that the droplets of intermediate

size, which are sluggish in their response to the environ-

ment but at the same time account for most of the liquid

water, have sufficient time to evaporate significantly.

It is apparently these droplets that are important in

directing the flux of liquid water within the droplet

spectrum and are responsible for the broadening of

the droplet size distribution.
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If droplets penetrate farther into the cloud

before reversing direction, the mean radius increases

and the pnrcel must spend a longer time in downward

motion in order to significantly evaporate droplets with

large amounts of water on them and therefore have a

meaningful effect on the size distribution.

The pattern of growth o R the cloud droplet

population appears to be influenced by three fairly

distinct groups of droplets within the population: small

droplets near equilibrium which react quickly with changes

of the environment but have a small effect on the final

droplet distribution; large droplets which continue

to grow throughout the downward motions and inter-

mediate sizes which account for a large fraction of

the cloud liquid water.

The characteristic time for a growing or evaporating

droplet is a complicated function of its physical and

chemical nature and the environmental conditions.

For this reason it is difficul t 	predict accurately

what a given distribution of droplets will do ?.nder

particular circumstances.

It has been demonstrated, however, that

turbulence does indeed have a direct influence on a

distribution of droplets. It can be expected that the

degree of the modification of a droplet population

differs throughout the various regions of a cloud.



EXPLICIT MODEL

4.1	 Introduction
s:

Comprehensive modelling of air pollution scavenging

requires a model 4apable of representing co-condensation

of multiple vapors and energies of chemical reactions.

One example is the transformation of gaseous sulfur

dioxide to sulfate particles in the presence of water

droplets and natural ammonia.

The classical, or implicit, model represents cloud

droplet activation and growth upon condensation nuclei.

i, It ignores any chemical reactions and vapors other than

f.., H2O and depends upon simplifying 	 assumptions to arrive

at a single expression for droplet growth (Mason, 1957).

When two or mere vapors whose condensates may form

i a solution are present, however, they jointly determine

` the equilibrium pressure of each component over the

solution, and the simplifications of the implicit

model are not applicable. The explicit model is designed

to meet these problems.

Several authors have considered the heteromolecular

nucleation (multimolecular formation) of droplet embryos,

4	
for example NH 3-H ZO (Lewis, 1969), H 2SO4-H20 (Doyle,

1961; Nair and Vohra, 1975; Hamill, 1975;
^l }

)1
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Hamill at ai., 1977), and HC1-H20 (Lewii• 19681 Stauffer	 L

and Kiang 1974). in addition, Kiang at al., (1975) have

investigated the H 2so4-HNO3-H20 ternary system. These

papers deal specifically with the formation of embryo}a,

say r < 0.1 tun. The focus in most of these references is

on, though not limited to, the stratosphere and extra- 9

terrestrial atmospheres. There are two approaches:

analysis of equilibrium phase diagrams, and heteromolecular

nucleation theory (Byers, 1965) extended to multicomponent

systems.

The nucleation theory applies to the initial

formation of small droplets in equilibrium with the

environment. in contrast, the explicit model developed

here extends the theory tg the further growth of the

droplets by cc-condensation of the vapors without

presupposing the condition of equilibrium.

The explicit model is applied here for the conden-

sation of water only so that the results may be compared

directly to those of the implicit model as an initial

text. Considerations for the expansion of the model for

1
	 more complicated systems follows.

4.2- Energy Budget of a Droplet

Considering all the known energy sources and sinks
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4
E QT=QL +QK +QM+QR +QQ +QF ^ Qp +Q4 (4.1)
r x'

where
' dT

QT = mcr 	internal energy(4 «1a)

y,

QL = L ar	 latent heat (4.1b)
r

OK = -47rKFkV(Tr-Ta )	 conductive ( 4.1c)
transfer

dm
Q'M _ —cw (Tr-TAf 	mixing (4.1d)

^t=

Q	 = -167r2a	 T3 
(T -T )E	 radiative

R	 R
(4.1e)a	 r	 a	 transfer

QC,	 - ar(4 7rr 2a)	 surface energy (4.1f)

.. _ 
-4nr2 ( 1 ( 2a (1 + u a )-u ao)dm

F^, )

dT

+ (	 - 
2^ 

F) Wt)WT

2/9 r2mg2 (Pi--Pd)

^i
Q	 friction

F
(4-1g)

of )

dh dm4c = M ^	 dilutior (4.1h)

and

Q	 represents any other energy terms which might
5 pertain to a pr:irticular system.

'. In the above expressions,

Pd is the air density
t

1 Pr is the density of the droplet

f f of is the molecular viscosity of air

4

n
x

..
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ar is the Stefan-Boltzmann const(nt

E is effective emissivity of the droplet

h is the enthalpy of dilution

and all other symbols are defined as before.

The mixing term arises from the assumption that
i^

the vapor condenses at ijie air temperature and then mixes •'

completely with the droplet.	 The radiation term is an

approximate formulation based upon the Stefan-Boltzmann

law (Sedunov, 1974).	 The exact nature of the radiation

exchange of a droplet is unknown, hence the inclusion

of the factor E.	 The surface energy term includes the

relationships of temperature and molality to the density

and surface free energy. 	 The friction term is related

to the change of potential energy.	 It is strictly valid

only when droplet settling is considered, but it is

included here for completeness.	 The dilution term is

the change of energy as a result of dilution by the con-

densing vapor. it is small for most salt solutions but

can be important for acids.

A study of the magnitudes of each of these terms

indicates that OK and Q  are three to five orders of

magnitude larger than the others. However, these two

terms are of opposite sign and their residual determines

the order of magnitude of terms that should be retained.

This is comparable to QT . The calculations show that
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1
of the energy terms only the frictional term, Q F , can

-` safely be dropped from further consideration in the

early stages of cloud formation. 	 Q 	 is of the order of

10-10 QT or less for droplets smaller than 30 um-radius.

4.3	 Droplet Growth Equation

jj

t.
The droplet growth equation is

4irrDF V	 e	 edm	 v
R	

(Ta - Tr)	 (4.2)
v	 a	 r

Because the droplet temperature is explicitly determined

in the explicit model,	 (4.2) is used directly.

k

4.4	 Integration Technique	 i

Various attempts were made to determine the best

method for solving the system (4.1), 	 (4.2).	 The first

method was to integrate (4.1) and (4.2) simultaneously

by a Runge-Rutta technique.	 It was found to be highly

unstable for time steps larger than 10-6 seconds because
(

in the energy balance, an error in OK 
or QL 

Of 
1% leads

to an error of about 10,000$ in QT . Clearly, direct

[y	 differencing of QK and QL should be avoided.

A second approach was an expansion of the method of

Storebo and Dingle (1972). it was assumed (see Dingle,

1976) that a two-step process would adequately represent

the mcrophysics. First, all the vapor which would

hL
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condense during a time step was allowed to condense

at the beginning of the time step. Secondly, the heat 	 4.

gained as a result of condensation of the vapor was

transferred to the environment by conduction' and radiation,

so that a mean temperature over the time step could be

found. Since the mass increase of the droplet depended

on this average temperature, the two steps were iterated	 j

to find the solution. This method was quite complicated,

and since it was not clear that a second volatile

component could be added to the system, it was abandoned.

The integration technique decided upon is simple,`

relatively stable, and can include any number of reacting M`

gases and heat sinks. To begin, the energy balance

(4.1) is rewritten as	 °l

Tr Ta = (-OT+QL+Qa+Qn+QC )/( 4 7rrKrkV +

dm
ow dt + 161rr2 aRETa)	 (4.3) A.^

By this device, the large terms Q K and QL are divided

rather than subtracted. This properly emphasizes the minor

contributions of the other terms and more easily maintains

computational stability.

After the first time step, the rate of change of

droplet temperature in QT and Q. is estimated from the

previous time step, leaving only one differential equation

(4.2) to be stepped forward for each droplet.



1
99

At time t (0) , dT (0) /dt is calculated by setting

the time rate of change of the vapor during the previous

step, dx (-1) /dt, equal to zero.	 For each size category,

l	 the initial droplet temperatures are found by the following

^Y

process:

i.	 set (Tr ) (0) = T (0) , where the curved brackets
i

r

r•

k	 indicate an estimated value;

ii.	 using the estimated droplet temperatures,

estimate from ( 4.2) the growth rate of each

a	 droplet,	 {dmi/dt)(0);

iii.	 with these, calculate the droplet Lemperatures

p
i lr ,	 by	 (4.3) to get (Tr ] (0) , where the square

k	 ibrackets indicate a calculated value;

iv.	 compare the estimated and calculated droplet

temperatures; if the absolute value of

(Tr ) (0) -(Tr ]	 > 10-10p	 then {Tr 1(0)
	 is re-

K	 i	 i	 i

adjusted by a relaxation technique and steps

ii, iii and iv are repeated.

w +	 1	 At a subsequent time t (k)	 = t (0)	 + At (0)	 + At(1)+...

(k-1)	 (k)	 (k)At	 , the known variables are Ta	pa	 and all

mlk) .	 The vapor mixing ratio x (k) is calculated from the

water conservation equation (2.3).	 The rate of consump-

tion of vapor during the previous time step is approximated

l.b	 by

dx(k-1)	 x(k)_x(k-1)

^— At k-1

P	 At

i

kL _	 _	 ^'
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The derivatives of pressure (2.1) and air temperature

(2.2) can then be readily calculated.
.a

To compute the growth rate, it is necessary to find

the temperature of each droplet. This is done by esti-

mating the droplet temperature by extrapolation from the
F

previous time step with a function * such that

T 	 a T(k) + (T -T ) (k-1) +
ri	 a	 ri a

Pik-2) at(k-1)

where the definition of 01 is presented below. A

procedure similar to that used at time t (0) is used to

iterate (4.2) and (4.3) to find the droplet temperatures

and dmi/dt. Under normal conditions, steps ii, iii, and

iv, above, need to be repeated only once or twice.

The function * i is then recalculated for use during

the next time step as

Pik-1) = ((Tr _Ta)(k)-(Tr -Ta)(k-1))/At(k-1),
i	 i

The rate of change of droplet temperature is

estimated with

dT(k-1)

^_ _ (Trk) _ Trk-1))/At(k-1).
i	 i

Since ^, dTr/dt, and dx/dt are averaged slopes over

the previous time step At(k-1) = t(k)_t(k-1)I rather than

actual derivatives calculated at t (k) , the superscript
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must be in keeping with the convention adopted here.

For the zeroth time step (k=l), i-1) is defined

to be equal to zero. That is to say, that dT=O)/dt

I.d	 dT(0)/dt.

Finally, the pressure, air temperature, and droplet

masses are stepped forward using a Hamming modified

predictor-corrector subroutine. This is a fourth-order

technique which does not require computation of derivatives

within the time step as does the Kutta-Simpson method.

On the other hand, it is not self starting, and a modi-

fied Runge-Kutta method suggested by Ralston (1962)

(!	 is used to integrate from t (0) to t(2).{ k

The method outlined above allows for variable time

 steps and can readily include another volatile component.

fi+	
4.5 Review of implicit and Explicit Equations

There are three major differences between the
^j

equations of the implicit and explicit models. They
CY ^" t

are summarized below.

i. The implicit model depends on the assumption

that the energy arising from the condensation of the

vapor onto the droplet surface is conducted away to the

environment. All other energy sources and sinks are

assumed negligible. On the other hand, all energy^.;

	

	 sources

and sinks comparable in magnitude to the heat storage

term or larger may be included in the explicit model.

'	 The growth rate of a droplet depends on the droplet
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temperature by means of the droplet equilibrium vapor

pressure, er
e An error in the droplet temperature re-

sults directly in an error in the droplet growth rate.

In the case of ammonium sulfate particles, the

difference between the implicit and explicit computations

is not significant. Situations do exist, however, in

which the "minor" energy terms can be of importance,

particularly if chemical reactions are taking place.

Also, if there is a second condensing vapor, the latent

energy of condensation of that vapor must enter the

calculations.

ii. The second assumption of the implicit model 	 i

is somewhat less obvious. The correct expression for

the droplet growth rate is given by (4.2), rewritten

as

dm 41rrDpvV	 Ta
^— (e _

eTr ) .	
(4.4)

In the implicit model, it is assumed that the droplet

temperature is nearly equal to the air temperature so

that ( 4.4) can be adequately approximated by

47rrDF V

a

Inasmuch as the approximation is made within a difference	 i.

term, the error introduced should not be assumed negligible.

When vapor condenses onto a droplet, then Tr > Ta p	 s

and (4.5) underestimates the true growth rate. Similarly, 	 .,
i

t
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when a droplet is evaporating, T r< T  and ea < er , so

'	 that the rate of evaporation is underestimated by the

r"	 implicit model.

^;

	

	 it is of interest to estimate the magnitude of the

error. If (4.4) is taken to be the correct growth

rate, then the error introduced in the implicit model is

^ t

r j ti	 Ta
1	 erTr- err.

E =	 T

f "	 aea - er Tr
C	 E!

s

	

	 ignoring droplet curvature and solute effects,

the droplet equilibrium vapor pressure is, from (2.8),
if

+ m I	 T*(Tr-Ta)
er es (Ta) [1 + -- )2).

+	 (Ta-35.86)

'	 Since the supersaturation is S = ea/es - 1, the error

is approximately'	 T*(T -T

li

(Ta-35.86)
! 	E =	 T (T -T

(S+1)Tr - [1 + --. 2IT a

(Ta 35.86)

The error therefore depends upon the supersaturation

and the droplet temperature elevation, T r-Ta . For a
y,

solution droplet, the error also depends on the droplet

size and molality. Estimates show that for average cloud

conditions the error ranges from zero to a few percent.
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iii. The third difference between the two models

is the most important. In the implicit model, the approxi-

mate energy balance equation is substituted into the

droplet growth rate equation to arrive at a single

differential equation.. It there are important energy

terms other than those for water vapor condensation and

thermal conduction, or if there is another vapor present,

the substitution of the energy balance equation into

the growth rate equation is not practical.

The explicit model is the only approach which allows

chemical reactions within the droplet and the simultaneous

condensation of multiple vapors.

4.6 Results with Explicit Model

a. Droplet size distribution

The explicit model is used under the same conditions

as Cases 1 and 4 of the implicit model. The droplet

size distribution 100 meters ,above cloud base after a

steady uplift of 1 m/s (Case 1) is shown in Figure 31.

It is clear that both models, though they differ in

detail, give nearly identical results for this case.

It has been shown that the implicit growth rate

equation underestimates the true droplet growth rate.

Spot checks of the output of the explicit model show that

if assumption ii above were made, the growth rate at

the 20-meter level would be 1.78 slower for droplets



to 105

^^
S00

s

— 400
implicit

.

{ 3
is

200
explicit

i
or

y 100r 1

tl q	 g	 g 7
DROPLET RADIUS.µm

Figure 31.	 Droplet size distributions computed
by implicit and explicit models
for Case 1.	 Height is 100 meters
above cloud bass:

t

f

_
-

-

. __..	 .,..	 .., ...e....y. A.,_-^.... _...	 ..



1

106

of size class 3 and 6.71 slower for droplets of size

class 27. At the 100-meter level the growth rates would

be slower by 4.31 and 5.61, respectively. Because the

explicit model predicts a faster droplet growth rate, the

rate of consumption of vapor is enhanced, and the super-

saturation is slightly lower. The maximum supersaturation

reached by the explicit model is 0.7081, just barely less

than the 0.7131 obtained by the implicit model, but enough

to compensate. Apparently, the errors introduced by

the implicit model are not important in this case.

Only the very early period of cloud droplet growth

is repreoented. As anticipated, the explicit model

results in slightly more water in the larger droplet

sizes. The small increase noted is in the direction

required to produce a broader droplet spectrum and to

promote rain generation. The effect is likely magnified

at greater heights.

For the ascillating updraft. Case 4, the droplet

size distributions predicted by the two models are slightly

different (Figure 32). The reasen for the difference

	

E	 is that droplets of size class 3 are not reactivated

during the final ascent so that more water is available
i

	

:a	 and is taken up by the larger droplets._ This illustrates

one of the difficulties that arises from the necessity

of using a discrete, rather than a continuous, droplet

size distribution. Cloud models must have a sufficient"

r
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number of droplet size categories to assure that the

results are not greatly distorted because of the finite

increments used in specifying the nucleus size distribution.

The difference between the curves of Figure 32 may have

t

	

	 been reduced by choosing more size caregories in the

region of the smallest activated category. The dis-

tributions at 20 meters for Case 4 (not shown) are nearly

identical.

b. Droplet temperature elevation

The temperature elevation, (Tr-Ta ), is shown in

Figures 33 (Case 1) and 34 (Case 4). The droplet tem-

peratures of the implicit model which may be calculated

from (2.9) are not discernible from these. Throughout

the modelling time, the largest droplets are the warmest

and the smallest, the coolest. The greatest temperature

elevations occur near the height of maximum supersaturation

N18 meters).

c. Droplet equilibrium supersaturation

The droplet equilibrium supersaturation is defined

at zero growth rate. From (2.10) the droplot equilibrium

supersaturation

i$ aeq

According to th,

r	 Ri

for the implicit model is

20
l - a exp(tprRvTa)

explicit model, the droplet equilibrium

1
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2a	 a (T )
Seq . 1 - a exp ( rprRVTr ) eess(Ta)

s ^	 i
It

q{!

r

supersaturation is, from (4.2),

4

I

}

IL

,

`i

r,

j

s ^.t

G

e^

The difference is that in the implicit model, the air

temperature is used to compute the droplet equilibrium

vapor pressure. The explicit model requires the actual

droplet temperature. Since the droplet equilibrium

vapor pressure is exponentially dependent on the droplet

temperature, the droplet equilibrium supersaturation

is different for the two models (Figure 35). The values

at the 20-meter level are between those of the 0- and

100-meter levels for the implicit model; for the

explicit model, the values at the 20-meter level are the

highest. This is a direct consequence of the fact that

the droplet temperature elevations are the greatest

near the 20-meter level, where the maximum supersaturation

and growth rates occur.

The shapes of the curves are themselves interesting.

At 20 meters with the implicit model, the smallest

droplets, of size class 3, have the greatest value of

equilibrium supersaturation. At this point, these drop-

lets have just surpassed their critical supersaturation.

With the explicit model at 20 meters, the maximum equili-

brium supersaturation is associated with somewhat larger

droplets. It increases because of increasing droplet

temperature and finally decreases because of increasing

{	 droplet radius and increasing molal.

i N

I
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Both the trend and the shape of the curves are

different for the explicit model because a new daimension

has been included in the computation of the droplet

equilibrium supersaturation: the droplet temperature.

The implicit model uses the air temperature to

calculate the droplet equilibrium vapor pressure. Even

so, the accuracy of the growth rate equation used in the

implicit model is not jeopardized by the substitution.

This is because the air temperature and the droplet

temperature are related by means of the Murray formula-

tion (2.8) before arriving at the growth rate equation

(2.10). The droplet temperature appears implicitly.

d. Energy terms

The values of the energy terms relative to the

internal energy, QT , are shown in Figure 36. As QL ti

-QK , it is clear that Q L and QK dominate. For the radia-

tion term, the effective emissivity, E, is assigned

the value 1.0. For Q., it is assumed that the enthalpy

of dilution is -2.385 x 10 10 ergs/mole of amanonium sul-

fate.

4.7 Conclusion

The explicit model is a workable alternative method

for computing the growth or evaporation of droplets

by vapor diffusion. For a simple system such as
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ammonium sulfate droplets, both the implicit and the

{	 explicit models predict comparable results up to at
.	 t

least the 100-meter level.
t	 1	 ,i

The explicit model makes direct use of the droplet
f

temperature. By rearranging the energy balance equation,

`

	

	 the set of equations includes one for the instantaneous

droplet temperature elevation, rather than the time rate

of change of the droplet temperature. This helps

1 w !

	

	 maintain computational stability by not requiring extreme

accuracy in the calculation of minor energy terms.

For droplets of ammonium sulfate solution, all of

the energy terms except QK and QL are unimportant and
F

may be dropped without serious consequence. indeed,

'	 {	 without the extra energy terms, the explicit model

essentially reduces to the implicit model.

t,

	

	 It is the capability of considering all energy

sources and sinks that makes the explicit model useful.

To include more volatile liquids, it is assumed that

dmr = dm  + dm  + ..., where the subscript, r, refers

to the bulk droplet, and the numbered subscripts repre-

sent the various components. This can be done because

the energy terms are additive. Such a system allows

for simultaneous diffusion of all components in both

directions.

Some special information is required of each com-

ponent, for example the diffusivity of each. The
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sticking coefficient, a t used in the Fuchs' correction

for vapor diffusion may be difficult to find in published

data. The saturated vapor pressure over the solution

can be used instead of the activity, if available. In

addition, it is necessary to consider energies of chemical

reactions and changes of phase of each component.
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}	 CONCLUDING REMARKS
i.

5.1 Summary

Much research of the early growth of droplets

(°z	 within a cumulus congestus has been done before. A

major shortcoming of models is the divergence between

computed and observed droplet size distributions. In

particular, droplet size distributions are observed

to be broader than those calculated. Several schemes

have been introduced to explain the observed distribution,

chiefly turbulence and entrainment.

Turbulence has been characterized by, among others,

random walk, mixing of parcels with different trajectories,

^j

s

and sinusoidal updraft velocities. This study uses a

closed, adiabatic parcel of cloud air and imposes some

simple predefined fluctuating velocity pattern to deter-

mine if there is any feedback from the action of dynamic

turbulence alone to a distribution of cloud droplets.

Two types of velocity patterns are used: sinusoidal

and alternating steady up and down motion. The latter

is used because it i s easier to control the period and

amplitude of oscillation. The important point is that

downward motion is included in the velocity pattern.

Fourteen cases in all are studied: three steady updraft

speeds of 1. A, and 10 m/s; four cases of square wave

oscillations; and seven cases with sinusoidal velocity



patterns of various eddy sizes and speeds. The study

is restricted to the lowest 100 meters of cloud height.

Careful study of the steady updraft cases revealed

that while small droplets can remain in near equilibrium

with the environment, larger droplets tend to lag behind

their equilibrium size because of their relatively

long characteristic times for growth.

There are two consequences. First, large nuclei

are not the first to become activated (surpass critical

radius) and in fact may not be activated at all because

of their large critical radius. Small droplets, on the

other hand, do not become activated until their critical

supersaturation is exceeded. Consequently, only a certain

part of the nucleus distribution becomes activated and

each droplet size has associated with it an equilibrium

supersaturation which may be more than or less than zero.

Secondly, as a result of the fact that the vapor

gradient to a droplet varies over the spectrum, droplets

do not grow according to the inverse radius.

The result of these consequences is that if a parcel

of cloud air is forced to descend, some droplets evaporate

while others may continue to grow. Whether renewed

updraft leads to a broader spectrum than before depends

on many things. The transfer of water to droplets of

large nuclei depends on the behavior of the portion

Of the spectrum which contains the bulk of the liquid

water. If droplets in this region of the spectrum

118
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undergo cycles of substantial evaporation and condensation,

and at the same time the larger droplets grow throughout

the cycle, then the droplet size distribution can be

broadened.

If eddies are too small, then those droplets holding

most of the liquid water do not evaporate to release

the water for consumption by the large droplets; hence

there is little effect on the droplet size distribution.

If an eddy size is too large, large droplets gain

considerable mass of water at the expense of newly

deactivated small droplets; subsequent uplifting results

in a lower maximum supersaturation than before, and the

small droplets do not reactivate. Consequently, the net

effect is to increase the mean radius with no substantial

increase of the breadth of the spectrum.

Also, if the downdraft speed is too high, all the

droplets evaporate and recover with little hysteretic

change.

Turbulence within a cloud has a wide range of eddy

sizes and frequencies. The question that arises is this:

does there exist a domain, or domains, of the turbulent

energy spectrum that maximizes the breadth of the

droplet size distribution, along with domains that

produce narrow size distributions? The implication of

this study is that such domains do exist.
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A clear relationship between the droplet size

distribution and eddy size and frequency has not been

found since the underlying determinant is the ambient

supersaturation and distribution of the droplet equilibrium

supersaturation. In this study, the greatest increase

in dispersion (1078) occurs when the parcel is lifted

from the cloud base for 20 seconds at 1 m/s, lowered

p	 to the cloud base at -0.2 m/s, and lifted to the 100-meter

!

	

	 level at 1 m/s. The maximum supersaturation during the

first uplift is 0.718. The minimum is -0.128 and the

second maximum is 0.598.

An adiabatic model as used here can increase the

6

	

	 dispersion of a droplet population. It is not restricted

to the cloud boundaries, but rather requires a certain:,3

oscillation of ambient supersaturation. These variations

do occur in natural clouds, but not isotropically. Thus,

different regions of a cloud, with different scales of

!

	

	 turbulence, can have varying effects on the droplets

therein.

Turbulence as described in this model lowers the

g	 ambient supersaturation and causes selective evaporation
a

of the droplets, as does entrainment, but it does not
a

at the same time dilute the vapor or introduce fresh
5

particles. Further, an entrainment model which introduces

r
cloud environment air and/or particles in a step-wise

°	 fashion may reduce the ambient supersaturation too much

over a short period of time and lead to unrealistic results.

k-

p

L
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The model used for the study of turbulence is similar

to one attributed to Mason (1957) in which the droplet
temperature is dropped from the equation by substitution

of a simplified heat balance equation for the droplet.

The result is a single analytical expression for the
^ 1

growth rate of an individual droplet. 	 Since the droplet

temperature doe& not appear, it is called here the

"implicit model."

A separate approach is presented in which all energy

sources and sinks of a droplet may be considered. 	 Since

consolidation of the di fferential equations for droplet
size and temperature is not possible, it is called the

"explicit model."

Though details differ, studies show that for a

f

population of droplets containing a nucleus of ammonium
y4
i, sulfate, both models give nearly identical results.

F Therefore, for this situation, energy terms such as
t

radiation, surface expansion, and dilution of the droplet

are unimportant and the implicit model adequately com-

putes the rate of droplet growth.

The advantage of the explicit model, though, is

that it is the first capable of computing the growth

of solution droplets in the presence of more than one

volatile component.	 Such a model is beneficial to the

studies of air pollution scavenging and acid rain.

C
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5,2 Suggestions for Further Research

The report presented here is limited in purview

and by no means exhausts the study of the influence of

turbulence upon a distribution of droplets. Some

suggestions for further study follows

1. The computations are limited to the lower 100

meters of the cloud - the region in which droplets first

become activated. Extension to higher levels is

necessary.
j^

2. It would be desirable to include entrainment 	 !(^

to see if it would increase or inhibit the effect of

turbulence. Detrainment as well, in which a parcel

slides down the edge of a cloud and reenters the updraft,

should be considered.

3. Although the nucleus distribution is chosen

somewhat arbitrarily, the portion of the size distri-

bution which undergoes cycles of evaporation and regrowth

coincide with that which contains the bulk of the liquid

water. Other distributions should be tested.

A. No attempt is made to investigate the details

and scales of dynamics and turbulence of a cloud. Such

examinations exist (e.g., Fankhauser, 1969, 1971;

Shmeter, 1970; Ackerman, 1967; Warner, 1970) and it

is important to link the scales of turbulence to the

microphysics.

5. One use of microphysical modelling is to para-

meterize the microphysics for inclusion into cloud models. 	 Kr
r

m^
L.k
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^- Further, the explicit model is merely introduced

i;. here.	 Extensions of the study include the followings_
r

1.	 The explicit model is shown to be capable of

treating the growth of droplets by the diffusion of

water vapor.	 The next logical step is to use it to

study the growth of droplets, in the presence of multiple

1 vapors.
( e..

^ 2.	 Although the Hamming method used to integrateY

the equations is successful, it is time consuming for

this system of equations.	 Other methods (Fox, 1972;

Enright, et al., 1975) may prove to be more efficient.
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APPENDIX

FUCHS' CORRECTION FACTORS

A.1	 Correction for Vapor Diffusion

A droplet is considered to grow by the

condensation of water vapor molecules which migrate

to the surface of the droplet.	 Maxwell's equation

assumes that diffusion is a continuous process; this

treatment is not valid when the size of the droplet is

of the order of magnitude of, or smaller than, the mean

free path length, X.	 For droplets smaller than X, the

Maxwell equation predicts a growth greater than that

predicted by kinetic theory.

Langmuir (1915), while studying the dis-

sociation of hydrogen in a light bulb, used the concept

of a boundary layer near the wall surface. 	 Borovikov,

et al.,	 (1963) called the boundary layer a parietal

layer.	 According to Fuchs (1959), the necessary

correction factor to the Maxwell equation was first

derived by Schaefer (1932).	 The solution by Fuchs,

especially the correction for heat transfer has been

criticized (Fukuta and Walter, 1970) somewhat. 	 Fukuta

and Walter (loc. cit.) and Fitzgerald (1972) have given

a detailed derivation of the correction factor.

It is assumed that Maxwell's equation predicts

the correct diffusion rate up to a distance 6 ti X from



  

i

'	 the droplet.	 Inside this layer, it is assumed that the
I

motion of molecules is determined by kinetic theory.

A'	 }	 The rate of collision of molecules onto

+	 the droplet surface * from kinetic theory, is

3 	 = 4nr2Cdvvdac	
3

fwhere	 Cd - vapor concentration at a distance R = d

et
c
 = condensation coefficient, or "sticking

coefficient," the fraction of striking

E	 molecules which, condense onto the surface,

and

V%,S a 1/4 of the mean v ,:,locity of vapor at

-R	 d.	 Numerically, it is equal to

(RVT/21t) l/` .

E	

(((	 Similarly, the rate of evaporation is

t

4

jtF	

d^	
47rr2Crvvrae

where	 vvr = 1/4 of the mean velocity of vapor

molecules leaving the surface, and

t	 ae = evaporation coefficient.

Fuchs and other authors assume that vvr =

VVd	v and me = ac = a.	 It is not physically obvious

that me = ac , particularly in the case of a dirty

tl

surface.	 Under equilibrium conditions Prvvrae — Pdwdac'



where

126

suggesting that ae ac under conditions of equilibrium.

Fitzgerald (1972) lists values of a determined

by the experiments of various investigators. Most

reports of a vary from 0.02 to 0 .05. others found':

values as high as 0.3. Fuchs ( 1959) assumes the Alty

and Mackay ( 1935) value of a for pure water of 0.036,

as does Fitzgerald.	 j

With these assumptions, then, the net rate

of condensation is

d^ = 41rr2 (C 6-Cr)vva.	 (A.1)

For continuity, this rate must equal the rate of vapor

diffusion to the surface of radius r + 6, viz.

dam'- - 47r(r+6)D(Ca-C 6 ).	 (A.2)	 y

t

Combining equations (A.1) and (A.2),

Crvvar2 + (r +d)DCa

6	 r2

Substitution into equation (A.2) yields the growth

equation in the form
a.

d^ = 4TrrrvD (Ca-Cr),	 (A.3)
r.^

w

v	 r + D
F+7 rvva

ti.
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;!

is the Fuuhs correction to the coefficient of
1

vapor

diffusion. For this study, 0.036 is used for the con-

densation coefficient. Values of F v at 10 0C appear in

Figure 37 .

A.2 Correction for Thermal Diffusion

Similar reasoning holds for the diffusion

of sensible heat. For heat loss from the droplet,

P= 41r(r+A)K(Ta-Ta)

where	 K - thermal conductivity, and

a ^ thickness of parietal layer for heat

diffusion.

The kinetic equation is

dff
irr 2 vdpdcpa(Rr-TC)Y•	 (A.4).^ I

where

va = v for dry air molecules

Pd = density of dry air

cpd heat capacity at constant pressure for

dry air, and

y = accomodation coefficient.

It is assumed here that the vapor density in the

parietal layer is negligible compared to that of dry 	 aP

{ air, and hence all the heat transfer is accomplished by

the air molecules.

'f
M

y	 M9

Y
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From the above equations,

r2pdvdycpdTr+4K(r+a)Ta
Ta	 4K(r+a) + pavdycpdr2— .

Substitution into equation (A.4) yields

St a 41rrFKK(Tr-Ta),

where

1

FK	 r +	 K( 27t ) 1/2
r++	 rpaycpdvd R d T r

(A.5)

P
t'

is the Fuchs correction to the coefficient of thermal

conductivity.

The accomodation coefficient is generally

assumed to be close to unity. Howell (1949) and Fitzgerald

(1972) used a value of 0.7 which is adepted here.

The variance of F  with droplet radius is shown by

Figure 38.

A.3 Thickness of Parietal Layer

Fuchs (1964) gives a simplified derivation. of

5 (or a), since a rigorous derivation is difficult.

Suppose there are two particles of radius r i and rj

(ri > r
i

) and r i is at rest. The small particles may

leave the surface of the contact sphere (radius r i + rj)

and go in any equally probable direction or distance

^y

l:
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}

equal to the mean free path length, a j . The average

distance normal to the surface is then

(ri+rj +a j ) 3 - ((ri+r j ) 2 + a2)3/2

3(ri + rj)aj

For particles in relative motion, }. j should be replaced

with

a

x	 (7^2 + }.2)1/2•

The mean free path of a vapor molecule is

Tp0 Ma+M,A 1!2 2 ra
av - xOT^p ( —TM—a ) (ra+rye)

I

E

where

?.o - mean free path length of air at T o , po

Ma ,Mw = molecular mass of air, water

ra ,rw = radius of air, water molecule.

Similarly, the mean free path cf an air molecule

Tpo

X a =X 0 op.

The thickness of parietal layers for vapor

diffusion, d, and thermal diffusion, A, are shown in

Figure 39. The radius of air and water molecules are

assumed negligible relative to that of the droplet.
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Figure 39. Thickness of parietal layer at 10°C

	

r	 and 900 mb. The mean free path lengths
for air and water molecules are 0.071
and 0 . 064 um, respectively.
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