
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA Technical Memorandum 78515

(NISI —T11-78515) PIONEES 10 CESERVATION OF	 N78-31030
THE SOLIS HIND FRCTCN TERFERATURE
HELICCENT&IC GRICIENT (RASA) 15 F HC A02 /RF
A01	 CSCI Oaf	 Unclas

G3/92 28557

Pioneer 10 Observation of the
Solar Wind Proton Temperature
Heliocentric Gradient
J. D. Mihalov and J. H. Wolfe

August 1978

r	 ^

ROM
National Aeronaut( and

Space Admmistra to , ^",



NASA Technical Memorandum 78515

Pioneer 10 Observation of the
Solar Wind Proton Temperature
Heliocentric Gradient
J.D. Mihalov
J.H. Wolfe, Ames Research Center, Moffett Field, California

NAM
National Aeronautics and
Space Administration

Ames Research Center
Moffett Feld California 94035



2

1. Introduction

The Pioneer 10 spacecraft was launched on March 3, 1972, on a trajectory

that permitted encounter with Jupiter in late 1973, and after that, escape from

the solar system. One of the principal objectives of the Pioneer 10 mission was

the determination of the properties of the interplanetary medium beyond the

orbit of Mars (Wolfe, 1976). An ecliptic plane projection of the Pioneer 10

trajectory from launch through February 1977, encompassing the period of the

data discussed here, is given on Figure 1, and demonstrates the temporal and

spatial coverage that has been obtained. The extreme values of solar latitude

along this trajectory are -8 deg, reached in March 1972 not long after launch,

and +8.6 deg, reached at the end of December, 1974.

2. Experiment Characteristics

The complement of scientific experiments aboard Pioneer 10 (see Wolfe,

1976, and Table 1 of Hall, 1974) included the Ames Research Center solar wind

plasma analyzer, described by Wolfe et al. (1974) and McKibbin et al. (1977).

This experiment contains two separate sets of quadrispherical electrostatic

deflection plates, with the solar wind fluxes within a stepped energy/charge

response range measured by current collectors in one case, and by closed channel

multipliers in the other. In this report, solar wind proton temperature mea-

surements, obtained from normalized least-squares fitting of an isotropic tem-	
1

perature, convecting Maxwellian proton velocity distribution model, to the
	 I

flight data (currents and channel multiplier counts), are used. The velocity 	 Y,

distribution model fits the logarithms of the flight data. Experiment calibra-

tion information for the five current collectors was obtained in the laboratory

before launch as described by McKibbin et al. (1977), and refinements of this

current calibration were made using later results from laboratory calibration
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of the Pioneer 11 flight and spare plasma analyzers. To date, however, the

only calibration information used for the instrument's channel multipliers is

that obtained by intercomparison of flight data from the two deflection plate

sets, when the solar wind proton temperature is in the higher portion of its

range, the proton flux is adequately large, the spacecraft telemetry rate is

not low, and the solar wind temporal variations appear to be small. This

procedure permits an independent assessment of, and a calculated correction of

channel multiplier count rates for possible variations with time of the multipli-

cation factors of the channel multipliers.

3. Results and Analysis

The set of calculated solar wind proton isotropic temperatures was organized

in time using Carrington rotations 1587 through 1649 as viewed at Earth, and

also was restricted to one sample or less per hour. The 22,281 hourly samples

which appear to correspond with these Carrington rotations were manually edited

for least-squares fitting errors that appeared excessively large. Transit time

delay and differences in solar longitude were considered, and radial flow was

assumed. Then average temperatures for 21 time periods, each corresponding to

three consecutive Carrington rotations, were obtained. During this time the

Pioneer 10 spacecraft moved out from 1.26 to 12.19 AU in heliocentric distance.

It has been reported that at least out to 6.5 AU, the solar wind proton fluxes

measured by Pioneer 10 are consistent with a 1/P 2 decrease (Wolfe and Mihalov,

1977).
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The plot of average temperatures against heliocentric distance is given in

Figure 2 on a log-log scale. On this Figure the average Pioneer 10 proton iso-

tropic temperature corresponding with each time period of three Carrington rota-

tions is expected to lie within the ranges shown. These indicated ranges are

defined to lie between the average temperature calculated when least-squares

values that appear misfit are deleted, and 2/3 of the distance along the ordinate

of the plot (the logarithm of the temperature) to the average temperature cal-

culated without deleting these values. For the three time periods centered at

4.5, 5.06, and 5.5 AU heliocentirc distance, calculated temperatures that appeared

misfit were replaced with correctly recalculated, or estimated values, and the

resulting corrected average proton temperature is indicated with arrows.

Unresolved multiple velocity and temperature characteristics of the solar

wind proton velocity distribution (Asbridge et al., 1974; Feldman et al., 1974;

1976) could cause erroneous enhancement of proton temperatures included in the

averages of Figure 2. Evidence of multiple velocity streams appears at times

in the Pioneer 10 data, but these occurrences have not yet been analyzed, or

searched for exhaustively. Because the least-squares analyses employed to

obtain the solar wind proton temperature values discussed in this paper tend to

weight the largest instrumental responses most heavily, many of these isotropic

proton temperature values shiuld be characteristic of the principal compoi: .)t

of the velocity distribution, for cases with multiple components. The appropriate

principal component just referred to would be the one yielding the several

highest current or channel multiplier count values.

Least-squares fitting uncertainties are available for each individual

isotropic proton temperature used in the calculation of the averages plotted

on Figure 2.	 These relative uncertainties are given by (scale factor)

X X 2 E i pc	 where e
i	(H 1)ii' H

ij - 
a^(
x ) and p k refers to the kth

p ia r3
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solar wind plasma parameter determined from one measured velocity distribution.

j,	 1

	 where Fi and S i are the flight and simulated data points

(both current values and channel multiplier counts), the sum is over the data

points of each measured proton velocity distribution, and u  is an estimated

uncertainty for Fi t including the effects of the 'L2.3% digitization window width,

and of the noise levels of the electrometer amplifiers. For the 21 average tem-

peratures of Figure 2, this most probable fractional temperature uncertainty due

to fitting is typically .13 to .18. These temperature uncertainties are expected

to be correlated with the value of the temperature, but this has not yet been

studied completely.

tt the hnttom of Figure 2 are given the Zurich Relative Sunspot Numbers R 

as an indication of solar activity, and the geomagnetic index A  which should be

related to the number of solar wind high-speed streams encountered by Earth at

1 AU. Both of these quantities are averaged over time periods that correspond

with the same Carrington solar rotations associated with the time periods for

the Pioneer 10 proton temperatures, and are plotted linearly. When there are

long gaps in the Pioneer 10 data, the corresponding sunspot and geomagnetic

activity data are deleted from the averages.

Some correlative features are suggested by the data of Figure 2, and this

in turn is an indication of temporal variations in the average proton temperatures.

For example, enhanced proton temperatures for the Pioneer 10 distance range centered

at 4.1 AU, and perhaps that centered at 9.9 AU when Solar Cycle 21 began, appear

to correlate with the largest two average A  values. Similarly, the proton tem-

perature appears to be enhanced at 8.0 AU, in association with a relatively large

value for the average Rz.

A least-squares fit to a power-law dependence on heliocentric distance, R,

of the proton temperature data of Figure 2, weighted by the numbers of valid

- 	C2-
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values in each of the 21 time intervals, has been calculated (Bevington, 1969).
^I

i
	 The average temperatures used for the calculation were for the middle of the'ranges

plotted on Figure 2 for the 18 time perious for which a corrected average is not

available. The power law R_' 
52  

was obtained, with a correlation coefficient of

-.85.

Solar activity, at least as measured by the sunspot number R Z , underwent

a pronounced decline as Solar Cycle 20 ended during the time of these Pioneer

10 observations, as is evident from Figure 2. If any aspect of increased solar

activity results in enhanced solar wind proton heating and is also associated

with R Z , the result obtained above for a heliocentric gradient of solar wind

proton temperature would not be characteristic of specific solar conditions,

as no account was made for the decrease in solar activity. In order to explore

this possibility, a multiple correlation calculation was done, with the 21

average proton temperature values fit, in the least-squares sense, to an expres-

n

sion proportional to R x 1 :v,	 again weighted by the number of valid

samples in each time interval. Here R
z	 p
and A are the average sunspot number

and geomagnetic activity index A p , as plotted on Figure 2. The resulting

multiple correlation coefficient is .88, with estimates of partial correlation

coefficients (Hald, 1952; Croxton, 1959) of -.29, .21 and .27 for R, R Z , and

Ap , respectively. The average temperatures are not fit much better using R z 
and

A as two variables added to R. Furthermore, any two of the three variables,
p

R, R z , and A
P 

can be used to fit the average temperatures equally well, as

I
	

indicated by the partial correlation coefficients. It seems, in particular,

that inclusion of either R or R  will produce as good a least-squares fit as
1

available here, since En R and R  are correlated together much better (-.95)

than either En R or Rz alone with the logarithms of the average temperatures.

It is not likely, then, that improved knowledge of the temperature gradient

will be obtained by including R
2 
as an independent parameter of the least-squares

0
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fit, and this expectation is verified by the physically unrealistic value for

the exponent n that is obtained from the calculation described above, with

three independent parameters.

4. Summary and Discussion

In summary, the profile of proton isotropic temperature with heliocentric

distance as measured by Pioneer 10 and presented in Figure 2 does not appear to

drop as steeply as the -4/3 power behavior expected (cf. review by Barnes, 1974)

for the case of an adiabatic, radial, and spherically symmetric expansion. There

are structural reasons that could contribute to this difference, in addition to

temporal effects such as were just discussed.

One such structural effect would be heating of the proton component of the

distant solar wind that may be produced by the co-rotating shock waves generated

in this medium (Smith and Wolfe, 1976; 1977). An increase of the numbers of

these shocks with increasing heliocentric distance, between 1.5 and 5 AU, was

reported, which would imply an increased heating with distance, in this distance

range, due to these shocks. One could study the partial correlation of the proton

temperature in the distant solar wind with the numbers of these shocks, but

these numbers will not be available accurately for some of the larger heliocentric

distances of Figure 2 when there are substantial gaps in the tracking of Pioneer

10 by the ground receiving stations.

Calculation of the heating of solar wind protons and electrons by interac-

tion with incident interstellar gas has indicated a proton temperature minimum

at about 3.5 AU (Holzer and Leer, 1973; Holzer, 1977). This calculated effect

seems similar to the behavior of the average proton temperatures for the first

five time periods of Figure 2. Because, from Figure 1, the trajectory of Pioneer

10 prior to encounter with Jupiter is generally toward the direction of relative

e	 aA
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incoming flow of the interstellar medium, it is tempting to consider both iden-

tification of the minimum near 3.5 AU on Figure 2 with heating associated with

interstellar hydrogen, and the subsequent decline of proton temperature beyond

1^6 AU heliocentric distance with the movement of Pioneer 10 into the region

downstream from the Sun with respect to the interstellar gas flow. However,

a contribution to t"-.e solar wind proton temperature in the -1.5 to 5 AU range is

also expected due to co-rotating shocks, as discussed above, as well as a certain

amount of variation due to temporal charges of the solar wind. Consequently,

it is not clear that the apparent minimum in the Pioneer 10 proton temperatures

near 3 AU can by associated solely with the effect of the interstellar medium.

Both a detailed assessment of heating due to the co-rotating shock waves observed

by Pioneer 10, and also study of the Pioneer 11 solar wind proton temperature

measurements at somewhat different times and celestial longitudes, may serve

to clarify this matter.

With regard to the temporal variation of the solar wind, the situation as

observed near Earth during the time period of this paper has been presented

and discussed by Feldman et al. (1978), who report enhanced solar wind stream

structures during 1973 to mid-1976, during the central portion of the time

period of this paper, and discuss associations of these enhanced speeds with

changes in the area and location of the Sun's polar coronal holes. It should

be noted that the data of Feldman et al. (1978) exhibit particularly high

solar wind proton temperatures during the first half of 1974, which may be

reflected in the data of F'Lgure 2. Temporal variations are eliminated from

results for heliocentric gradients that use observations at two widely separated

but radially aligned spacecraft, as has been done for Pioneers 10 and 11 (Wolfe

and Hihalov, 1977).

Searches, reviewed by Feldman et al. (1977) (see also Bame et al., 1977),

have been conducted for a "structure-free" solar wind state in the experimental

J __j	 _:,,
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results, in order to represent more realistically conditions of theoretical

models, such as steady state, symmetric expansion cases. These studies some-

times use solar wind parameters at only restricted ranges of proton bulk speed,

such as only the high or low speed portions of the speed record. Such parti-

tioning has also been used for heliocentric radial gradient studies (Intriligator,

1977; Eyni and Steinitz, 1978), but was not done for the present study; additional

analysis would be required for the following reason. While stream structure per-

sists in the distant interplanetary medium (Collard and Wolfe, 1974), both the

high and low ends of the range of speeds is diminished as heliocentric distance

increases. Conse.uently the high and low speed ranges characteristic of condi-

tions at 1 AU distance from the Sun would have to be re-identified in the distant

solar wind with other different speed ranges closer to the mean value.
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Figure 1 .•- Projection onto the ecliptic plane of the Pioneer 10 trajectory
from (at, nch until March 1977. Tic marks along the projected trajectory
indicate the beginning of each month. The apparent discontinuity in
the path occurs at the encounter with Jupiter. The projection of the
upstream direction in the interstellar wind, relative to the polar
system, as given by Weller and Meier (1974) and Thomas (1978) is
indicated by "U". The direction of the vernal equinox is also shown.

V
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Figure 2.- Proton isotropic temperatures measured by Pioneer 10 and aver-
aged over 21 time intervals, each corresponding with three successive
Carrington solar rotations, plotted with log-log scales against the
heliocentric distance in AU of the measurements. The derivation of
the temperature intervals that are indicated for the various time
intervals is discussed in the text. The three horizontal arrows
at 4.5, 5.06, and 5.5 AU heliocentric distance are corrected aver-
age temperatures as described in the text. At the bottom of the
temperature plot are also corresponding linear plots of average
Zurich relative sunspot numbers, Rz, and the average geomagnetic
activity index Ap, as explained in the text. Also, a scale gives
the years when the proton temperatures were measured. There is
a gap in the Pioneer 10 data series during nearly all of February
1974, because of a superior conjunction. An R 473 line, the case
for adiabatic, radial, spherically symmetric expansion is given
through the center of the plot, for comparison with the data.
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